-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathsoftmax_annealing.py
41 lines (36 loc) · 1.36 KB
/
softmax_annealing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import random
import math
class SoftmaxAnnealing():
def __init__(self, n_arms, annealing_factor=.0000001):
self.annealing_factor = annealing_factor
self.n_arms = n_arms
self.counts = [0] * n_arms
self.values = [0.0] * n_arms
self.alpha = [1] * n_arms
self.beta = [1] * n_arms
def reset(self):
self.counts = [0] * self.n_arms
self.values = [0.0] * self.n_arms
self.alpha = [1] * self.n_arms
self.beta = [1] * self.n_arms
def select_arm(self):
t = sum(self.counts) + 1
temperature = 1 / math.log(t + self.annealing_factor)
total = sum([math.exp(value / temperature) for value in self.values])
probs = [math.exp(value / temperature) / total for value in self.values]
threshold = random.random()
cum_prob = 0.0
for idx in range(len(probs)):
prob = probs[idx]
cum_prob += prob
if cum_prob > threshold:
return idx
return len(probs) - 1
def update(self, chosen_arm, reward):
self.counts[chosen_arm] += 1
self.alpha[chosen_arm] += reward
self.beta[chosen_arm] += 1 - reward
n = float(self.counts[chosen_arm])
value = self.values[chosen_arm]
new_value = ((n - 1) / n) * value + (1 / n) * reward
self.values[chosen_arm] = new_value