This repository has been archived by the owner on Jun 20, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 19
Needs to add support for custom compiler #3
Comments
radcolor
pushed a commit
that referenced
this issue
Nov 25, 2019
As Jiqun Li reported in bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=202883 sometimes, dead lock when make system call SYS_getdents64 with fsync() is called by another process. monkey running on android9.0 1. task 9785 held sbi->cp_rwsem and waiting lock_page() 2. task 10349 held mm_sem and waiting sbi->cp_rwsem 3. task 9709 held lock_page() and waiting mm_sem so this is a dead lock scenario. task stack is show by crash tools as following crash_arm64> bt ffffffc03c354080 PID: 9785 TASK: ffffffc03c354080 CPU: 1 COMMAND: "RxIoScheduler-3" >> #7 [ffffffc01b50fac0] __lock_page at ffffff80081b11e8 crash-arm64> bt 10349 PID: 10349 TASK: ffffffc018b83080 CPU: 1 COMMAND: "BUGLY_ASYNC_UPL" >> #3 [ffffffc01f8cfa40] rwsem_down_read_failed at ffffff8008a93afc PC: 00000033 LR: 00000000 SP: 00000000 PSTATE: ffffffffffffffff crash-arm64> bt 9709 PID: 9709 TASK: ffffffc03e7f3080 CPU: 1 COMMAND: "IntentService[A" >> #3 [ffffffc001e67850] rwsem_down_read_failed at ffffff8008a93afc >> #8 [ffffffc001e67b80] el1_ia at ffffff8008084fc4 PC: ffffff8008274114 [compat_filldir64+120] LR: ffffff80083584d4 [f2fs_fill_dentries+448] SP: ffffffc001e67b80 PSTATE: 80400145 X29: ffffffc001e67b80 X28: 0000000000000000 X27: 000000000000001a X26: 00000000000093d7 X25: ffffffc070d52480 X24: 0000000000000008 X23: 0000000000000028 X22: 00000000d43dfd60 X21: ffffffc001e67e90 X20: 0000000000000011 X19: ffffff80093a4000 X18: 0000000000000000 X17: 0000000000000000 X16: 0000000000000000 X15: 0000000000000000 X14: ffffffffffffffff X13: 0000000000000008 X12: 0101010101010101 X11: 7f7f7f7f7f7f7f7f X10: 6a6a6a6a6a6a6a6a X9: 7f7f7f7f7f7f7f7f X8: 0000000080808000 X7: ffffff800827409c X6: 0000000080808000 X5: 0000000000000008 X4: 00000000000093d7 X3: 000000000000001a X2: 0000000000000011 X1: ffffffc070d52480 X0: 0000000000800238 >> #9 [ffffffc001e67be0] f2fs_fill_dentries at ffffff80083584d0 PC: 0000003c LR: 00000000 SP: 00000000 PSTATE: 000000d9 X12: f48a02ff X11: d4678960 X10: d43dfc00 X9: d4678ae4 X8: 00000058 X7: d4678994 X6: d43de800 X5: 000000d9 X4: d43dfc0c X3: d43dfc10 X2: d46799c8 X1: 00000000 X0: 00001068 Below potential deadlock will happen between three threads: Thread A Thread B Thread C - f2fs_do_sync_file - f2fs_write_checkpoint - down_write(&sbi->node_change) -- 1) - do_page_fault - down_write(&mm->mmap_sem) -- 2) - do_wp_page - f2fs_vm_page_mkwrite - getdents64 - f2fs_read_inline_dir - lock_page -- 3) - f2fs_sync_node_pages - lock_page -- 3) - __do_map_lock - down_read(&sbi->node_change) -- 1) - f2fs_fill_dentries - dir_emit - compat_filldir64 - do_page_fault - down_read(&mm->mmap_sem) -- 2) Since f2fs_readdir is protected by inode.i_rwsem, there should not be any updates in inode page, we're safe to lookup dents in inode page without its lock held, so taking off the lock to improve concurrency of readdir and avoid potential deadlock. Reported-by: Jiqun Li <[email protected]> Signed-off-by: Chao Yu <[email protected]> Signed-off-by: Jaegeuk Kim <[email protected]>
radcolor
pushed a commit
that referenced
this issue
Nov 29, 2019
[ Upstream commit 64081362e8ff4587b4554087f3cfc73d3e0a4cd7 ] We've recently seen a workload on XFS filesystems with a repeatable deadlock between background writeback and a multi-process application doing concurrent writes and fsyncs to a small range of a file. range_cyclic writeback Process 1 Process 2 xfs_vm_writepages write_cache_pages writeback_index = 2 cycled = 0 .... find page 2 dirty lock Page 2 ->writepage page 2 writeback page 2 clean page 2 added to bio no more pages write() locks page 1 dirties page 1 locks page 2 dirties page 1 fsync() .... xfs_vm_writepages write_cache_pages start index 0 find page 1 towrite lock Page 1 ->writepage page 1 writeback page 1 clean page 1 added to bio find page 2 towrite lock Page 2 page 2 is writeback <blocks> write() locks page 1 dirties page 1 fsync() .... xfs_vm_writepages write_cache_pages start index 0 !done && !cycled sets index to 0, restarts lookup find page 1 dirty find page 1 towrite lock Page 1 page 1 is writeback <blocks> lock Page 1 <blocks> DEADLOCK because: - process 1 needs page 2 writeback to complete to make enough progress to issue IO pending for page 1 - writeback needs page 1 writeback to complete so process 2 can progress and unlock the page it is blocked on, then it can issue the IO pending for page 2 - process 2 can't make progress until process 1 issues IO for page 1 The underlying cause of the problem here is that range_cyclic writeback is processing pages in descending index order as we hold higher index pages in a structure controlled from above write_cache_pages(). The write_cache_pages() caller needs to be able to submit these pages for IO before write_cache_pages restarts writeback at mapping index 0 to avoid wcp inverting the page lock/writeback wait order. generic_writepages() is not susceptible to this bug as it has no private context held across write_cache_pages() - filesystems using this infrastructure always submit pages in ->writepage immediately and so there is no problem with range_cyclic going back to mapping index 0. However: mpage_writepages() has a private bio context, exofs_writepages() has page_collect fuse_writepages() has fuse_fill_wb_data nfs_writepages() has nfs_pageio_descriptor xfs_vm_writepages() has xfs_writepage_ctx All of these ->writepages implementations can hold pages under writeback in their private structures until write_cache_pages() returns, and hence they are all susceptible to this deadlock. Also worth noting is that ext4 has it's own bastardised version of write_cache_pages() and so it /may/ have an equivalent deadlock. I looked at the code long enough to understand that it has a similar retry loop for range_cyclic writeback reaching the end of the file and then promptly ran away before my eyes bled too much. I'll leave it for the ext4 developers to determine if their code is actually has this deadlock and how to fix it if it has. There's a few ways I can see avoid this deadlock. There's probably more, but these are the first I've though of: 1. get rid of range_cyclic altogether 2. range_cyclic always stops at EOF, and we start again from writeback index 0 on the next call into write_cache_pages() 2a. wcp also returns EAGAIN to ->writepages implementations to indicate range cyclic has hit EOF. writepages implementations can then flush the current context and call wpc again to continue. i.e. lift the retry into the ->writepages implementation 3. range_cyclic uses trylock_page() rather than lock_page(), and it skips pages it can't lock without blocking. It will already do this for pages under writeback, so this seems like a no-brainer 3a. all non-WB_SYNC_ALL writeback uses trylock_page() to avoid blocking as per pages under writeback. I don't think #1 is an option - range_cyclic prevents frequently dirtied lower file offset from starving background writeback of rarely touched higher file offsets. #2 is simple, and I don't think it will have any impact on performance as going back to the start of the file implies an immediate seek. We'll have exactly the same number of seeks if we switch writeback to another inode, and then come back to this one later and restart from index 0. #2a is pretty much "status quo without the deadlock". Moving the retry loop up into the wcp caller means we can issue IO on the pending pages before calling wcp again, and so avoid locking or waiting on pages in the wrong order. I'm not convinced we need to do this given that we get the same thing from #2 on the next writeback call from the writeback infrastructure. #3 is really just a band-aid - it doesn't fix the access/wait inversion problem, just prevents it from becoming a deadlock situation. I'd prefer we fix the inversion, not sweep it under the carpet like this. #3a is really an optimisation that just so happens to include the band-aid fix of #3. So it seems that the simplest way to fix this issue is to implement solution #2 Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Dave Chinner <[email protected]> Reviewed-by: Jan Kara <[email protected]> Cc: Nicholas Piggin <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]> Signed-off-by: Sasha Levin <[email protected]>
radcolor
pushed a commit
that referenced
this issue
Nov 29, 2019
commit 5effc09c4907901f0e71e68e5f2e14211d9a203f upstream. 8-letter strings representing ARC perf events are stores in two 32-bit registers as ASCII characters like that: "IJMP", "IALL", "IJMPTAK" etc. And the same order of bytes in the word is used regardless CPU endianness. Which means in case of big-endian CPU core we need to swap bytes to get the same order as if it was on little-endian CPU. Otherwise we're seeing the following error message on boot: ------------------------->8---------------------- ARC perf : 8 counters (32 bits), 40 conditions, [overflow IRQ support] sysfs: cannot create duplicate filename '/devices/arc_pct/events/pmji' CPU: 0 PID: 1 Comm: swapper/0 Not tainted 5.2.18 #3 Stack Trace: arc_unwind_core+0xd4/0xfc dump_stack+0x64/0x80 sysfs_warn_dup+0x46/0x58 sysfs_add_file_mode_ns+0xb2/0x168 create_files+0x70/0x2a0 ------------[ cut here ]------------ WARNING: CPU: 0 PID: 1 at kernel/events/core.c:12144 perf_event_sysfs_init+0x70/0xa0 Failed to register pmu: arc_pct, reason -17 Modules linked in: CPU: 0 PID: 1 Comm: swapper/0 Not tainted 5.2.18 #3 Stack Trace: arc_unwind_core+0xd4/0xfc dump_stack+0x64/0x80 __warn+0x9c/0xd4 warn_slowpath_fmt+0x22/0x2c perf_event_sysfs_init+0x70/0xa0 ---[ end trace a75fb9a9837bd1ec ]--- ------------------------->8---------------------- What happens here we're trying to register more than one raw perf event with the same name "PMJI". Why? Because ARC perf events are 4 to 8 letters and encoded into two 32-bit words. In this particular case we deal with 2 events: * "IJMP____" which counts all jump & branch instructions * "IJMPC___" which counts only conditional jumps & branches Those strings are split in two 32-bit words this way "IJMP" + "____" & "IJMP" + "C___" correspondingly. Now if we read them swapped due to CPU core being big-endian then we read "PMJI" + "____" & "PMJI" + "___C". And since we interpret read array of ASCII letters as a null-terminated string on big-endian CPU we end up with 2 events of the same name "PMJI". Signed-off-by: Alexey Brodkin <[email protected]> Cc: [email protected] Signed-off-by: Vineet Gupta <[email protected]> Signed-off-by: Greg Kroah-Hartman <[email protected]>
radcolor
pushed a commit
that referenced
this issue
Dec 1, 2019
[ Upstream commit b66f31efbdad95ec274345721d99d1d835e6de01 ] This patch fixes the lock inversion complaint: ============================================ WARNING: possible recursive locking detected 5.3.0-rc7-dbg+ #1 Not tainted -------------------------------------------- kworker/u16:6/171 is trying to acquire lock: 00000000035c6e6c (&id_priv->handler_mutex){+.+.}, at: rdma_destroy_id+0x78/0x4a0 [rdma_cm] but task is already holding lock: 00000000bc7c307d (&id_priv->handler_mutex){+.+.}, at: iw_conn_req_handler+0x151/0x680 [rdma_cm] other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(&id_priv->handler_mutex); lock(&id_priv->handler_mutex); *** DEADLOCK *** May be due to missing lock nesting notation 3 locks held by kworker/u16:6/171: #0: 00000000e2eaa773 ((wq_completion)iw_cm_wq){+.+.}, at: process_one_work+0x472/0xac0 #1: 000000001efd357b ((work_completion)(&work->work)#3){+.+.}, at: process_one_work+0x476/0xac0 #2: 00000000bc7c307d (&id_priv->handler_mutex){+.+.}, at: iw_conn_req_handler+0x151/0x680 [rdma_cm] stack backtrace: CPU: 3 PID: 171 Comm: kworker/u16:6 Not tainted 5.3.0-rc7-dbg+ #1 Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011 Workqueue: iw_cm_wq cm_work_handler [iw_cm] Call Trace: dump_stack+0x8a/0xd6 __lock_acquire.cold+0xe1/0x24d lock_acquire+0x106/0x240 __mutex_lock+0x12e/0xcb0 mutex_lock_nested+0x1f/0x30 rdma_destroy_id+0x78/0x4a0 [rdma_cm] iw_conn_req_handler+0x5c9/0x680 [rdma_cm] cm_work_handler+0xe62/0x1100 [iw_cm] process_one_work+0x56d/0xac0 worker_thread+0x7a/0x5d0 kthread+0x1bc/0x210 ret_from_fork+0x24/0x30 This is not a bug as there are actually two lock classes here. Link: https://lore.kernel.org/r/[email protected] Fixes: de910bd ("RDMA/cma: Simplify locking needed for serialization of callbacks") Signed-off-by: Bart Van Assche <[email protected]> Reviewed-by: Jason Gunthorpe <[email protected]> Signed-off-by: Jason Gunthorpe <[email protected]> Signed-off-by: Sasha Levin <[email protected]>
radcolor
pushed a commit
that referenced
this issue
Dec 5, 2019
Move the loop-invariant calculation of 'cpu' in do_idle() out of the loop body, because the current CPU is always constant. This improves the generated code both on x86-64 and ARM64: x86-64: Before patch (execution in loop): 864: 0f ae e8 lfence 867: 65 8b 05 c2 38 f1 7e mov %gs:0x7ef138c2(%rip),%eax 86e: 89 c0 mov %eax,%eax 870: 48 0f a3 05 68 19 08 bt %rax,0x1081968(%rip) 877: 01 After patch (execution in loop): 872: 0f ae e8 lfence 875: 4c 0f a3 25 63 19 08 bt %r12,0x1081963(%rip) 87c: 01 ARM64: Before patch (execution in loop): c58: d5033d9f dsb ld c5c: d538d080 mrs x0, tpidr_el1 c60: b8606a61 ldr w1, [x19,x0] c64: 1100fc20 add w0, w1, #0x3f c68: 7100003f cmp w1, #0x0 c6c: 1a81b000 csel w0, w0, w1, lt c70: 13067c00 asr w0, w0, #6 c74: 93407c00 sxtw x0, w0 c78: f8607a80 ldr x0, [x20,x0,lsl #3] c7c: 9ac12401 lsr x1, x0, x1 c80: 36000581 tbz w1, #0, d30 <do_idle+0x128> After patch (execution in loop): c84: d5033d9f dsb ld c88: f9400260 ldr x0, [x19] c8c: ea14001f tst x0, x20 c90: 54000580 b.eq d40 <do_idle+0x138> Signed-off-by: Cheng Jian <[email protected]> [ Rewrote the title and the changelog. ] Cc: Linus Torvalds <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Thomas Gleixner <[email protected]> Cc: [email protected] Cc: [email protected] Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Ingo Molnar <[email protected]> Signed-off-by: celtare21 <[email protected]>
radcolor
pushed a commit
that referenced
this issue
Dec 5, 2019
…into scheduler For an interface to support blocking for IOs, it must call io_schedule() instead of schedule(). This makes it tedious to add IO blocking to existing interfaces as the switching between schedule() and io_schedule() is often buried deep. As we already have a way to mark the task as IO scheduling, this can be made easier by separating out io_schedule() into multiple steps so that IO schedule preparation can be performed before invoking a blocking interface and the actual accounting happens inside the scheduler. io_schedule_timeout() does the following three things prior to calling schedule_timeout(). 1. Mark the task as scheduling for IO. 2. Flush out plugged IOs. 3. Account the IO scheduling. done close to the actual scheduling. This patch moves #3 into the scheduler so that later patches can separate out preparation and finish steps from io_schedule(). Patch-originally-by: Peter Zijlstra <[email protected]> Signed-off-by: Tejun Heo <[email protected]> Signed-off-by: Peter Zijlstra (Intel) <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Mike Galbraith <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Thomas Gleixner <[email protected]> Cc: [email protected] Cc: [email protected] Cc: [email protected] Cc: [email protected] Cc: [email protected] Cc: [email protected] Cc: [email protected] Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Ingo Molnar <[email protected]> Signed-off-by: celtare21 <[email protected]>
radcolor
pushed a commit
that referenced
this issue
Dec 5, 2019
Daniel Casini got this warn while running a DL task here at RetisLab: [ 461.137582] ------------[ cut here ]------------ [ 461.137583] rq->clock_update_flags < RQCF_ACT_SKIP [ 461.137599] WARNING: CPU: 4 PID: 2354 at kernel/sched/sched.h:967 assert_clock_updated.isra.32.part.33+0x17/0x20 [a ton of modules] [ 461.137646] CPU: 4 PID: 2354 Comm: label_image Not tainted 4.18.0-rc4+ #3 [ 461.137647] Hardware name: ASUS All Series/Z87-K, BIOS 0801 09/02/2013 [ 461.137649] RIP: 0010:assert_clock_updated.isra.32.part.33+0x17/0x20 [ 461.137649] Code: ff 48 89 83 08 09 00 00 eb c6 66 0f 1f 84 00 00 00 00 00 55 48 c7 c7 98 7a 6c a5 c6 05 bc 0d 54 01 01 48 89 e5 e8 a9 84 fb ff <0f> 0b 5d c3 0f 1f 44 00 00 0f 1f 44 00 00 83 7e 60 01 74 0a 48 3b [ 461.137673] RSP: 0018:ffffa77e08cafc68 EFLAGS: 00010082 [ 461.137674] RAX: 0000000000000000 RBX: ffff8b3fc1702d80 RCX: 0000000000000006 [ 461.137674] RDX: 0000000000000007 RSI: 0000000000000096 RDI: ffff8b3fded164b0 [ 461.137675] RBP: ffffa77e08cafc68 R08: 0000000000000026 R09: 0000000000000339 [ 461.137676] R10: ffff8b3fd060d410 R11: 0000000000000026 R12: ffffffffa4e14e20 [ 461.137677] R13: ffff8b3fdec22940 R14: ffff8b3fc1702da0 R15: ffff8b3fdec22940 [ 461.137678] FS: 00007efe43ee5700(0000) GS:ffff8b3fded00000(0000) knlGS:0000000000000000 [ 461.137679] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 461.137680] CR2: 00007efe30000010 CR3: 0000000301744003 CR4: 00000000001606e0 [ 461.137680] Call Trace: [ 461.137684] push_dl_task.part.46+0x3bc/0x460 [ 461.137686] task_woken_dl+0x60/0x80 [ 461.137689] ttwu_do_wakeup+0x4f/0x150 [ 461.137690] ttwu_do_activate+0x77/0x80 [ 461.137692] try_to_wake_up+0x1d6/0x4c0 [ 461.137693] wake_up_q+0x32/0x70 [ 461.137696] do_futex+0x7e7/0xb50 [ 461.137698] __x64_sys_futex+0x8b/0x180 [ 461.137701] do_syscall_64+0x5a/0x110 [ 461.137703] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [ 461.137705] RIP: 0033:0x7efe4918ca26 [ 461.137705] Code: 00 00 00 74 17 49 8b 48 20 44 8b 59 10 41 83 e3 30 41 83 fb 20 74 1e be 85 00 00 00 41 ba 01 00 00 00 41 b9 01 00 00 04 0f 05 <48> 3d 01 f0 ff ff 73 1f 31 c0 c3 be 8c 00 00 00 49 89 c8 4d 31 d2 [ 461.137738] RSP: 002b:00007efe43ee4928 EFLAGS: 00000283 ORIG_RAX: 00000000000000ca [ 461.137739] RAX: ffffffffffffffda RBX: 0000000005094df0 RCX: 00007efe4918ca26 [ 461.137740] RDX: 0000000000000001 RSI: 0000000000000085 RDI: 0000000005094e24 [ 461.137741] RBP: 00007efe43ee49c0 R08: 0000000005094e20 R09: 0000000004000001 [ 461.137741] R10: 0000000000000001 R11: 0000000000000283 R12: 0000000000000000 [ 461.137742] R13: 0000000005094df8 R14: 0000000000000001 R15: 0000000000448a10 [ 461.137743] ---[ end trace 187df4cad2bf7649 ]--- This warning happened in the push_dl_task(), because __add_running_bw()->cpufreq_update_util() is getting the rq_clock of the later_rq before its update, which takes place at activate_task(). The fix then is to update the rq_clock before calling add_running_bw(). To avoid double rq_clock_update() call, we set ENQUEUE_NOCLOCK flag to activate_task(). Reported-by: Daniel Casini <[email protected]> Signed-off-by: Daniel Bristot de Oliveira <[email protected]> Signed-off-by: Peter Zijlstra (Intel) <[email protected]> Acked-by: Juri Lelli <[email protected]> Cc: Clark Williams <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Luca Abeni <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Steven Rostedt <[email protected]> Cc: Thomas Gleixner <[email protected]> Cc: Tommaso Cucinotta <[email protected]> Fixes: e0367b12674b sched/deadline: Move CPU frequency selection triggering points Link: http://lkml.kernel.org/r/ca31d073a4788acf0684a8b255f14fea775ccf20.1532077269.git.bristot@redhat.com Signed-off-by: Ingo Molnar <[email protected]> Signed-off-by: celtare21 <[email protected]>
radcolor
pushed a commit
that referenced
this issue
Dec 6, 2019
Currently, smp_processor_id() is used to fetch the current CPU in cpu_idle_loop(). Every time the idle thread runs, it fetches the current CPU using smp_processor_id(). Since the idle thread is per CPU, the current CPU is constant, so we can lift the load out of the loop, saving execution cycles/time in the loop. x86-64: Before patch (execution in loop): 148: 0f ae e8 lfence 14b: 65 8b 04 25 00 00 00 00 mov %gs:0x0,%eax 152: 00 153: 89 c0 mov %eax,%eax 155: 49 0f a3 04 24 bt %rax,(%r12) After patch (execution in loop): 150: 0f ae e8 lfence 153: 4d 0f a3 34 24 bt %r14,(%r12) ARM64: Before patch (execution in loop): 168: d5033d9f dsb ld 16c: b9405661 ldr w1,[x19,#84] 170: 1100fc20 add w0,w1,#0x3f 174: 6b1f003f cmp w1,wzr 178: 1a81b000 csel w0,w0,w1,lt 17c: 130c7000 asr w0,w0,#6 180: 937d7c00 sbfiz x0,x0,#3,#32 184: f8606aa0 ldr x0,[x21,x0] 188: 9ac12401 lsr x1,x0,x1 18c: 36000e61 tbz w1,#0,358 After patch (execution in loop): 1a8: d50339df dsb ld 1ac: f8776ac0 ldr x0,[x22,x23] ab0: ea18001f tst x0,x24 1b4: 54000ea0 b.eq 388 Further observance on ARM64 for 4 seconds shows that cpu_idle_loop is called 8672 times. Shifting the code will save instructions executed in loop and eventually time as well. Signed-off-by: Gaurav Jindal <[email protected]> Signed-off-by: Peter Zijlstra (Intel) <[email protected]> Reviewed-by: Sanjeev Yadav <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Mike Galbraith <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Thomas Gleixner <[email protected]> Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Ingo Molnar <[email protected]>
radcolor
pushed a commit
that referenced
this issue
Dec 10, 2019
[ Upstream commit 443f2d5ba13d65ccfd879460f77941875159d154 ] Observe a segmentation fault when 'perf stat' is asked to repeat forever with the interval option. Without fix: # perf stat -r 0 -I 5000 -e cycles -a sleep 10 # time counts unit events 5.000211692 3,13,89,82,34,157 cycles 10.000380119 1,53,98,52,22,294 cycles 10.040467280 17,16,79,265 cycles Segmentation fault This problem was only observed when we use forever option aka -r 0 and works with limited repeats. Calling print_counter with ts being set to NULL, is not a correct option when interval is set. Hence avoid print_counter(NULL,..) if interval is set. With fix: # perf stat -r 0 -I 5000 -e cycles -a sleep 10 # time counts unit events 5.019866622 3,15,14,43,08,697 cycles 10.039865756 3,15,16,31,95,261 cycles 10.059950628 1,26,05,47,158 cycles 5.009902655 3,14,52,62,33,932 cycles 10.019880228 3,14,52,22,89,154 cycles 10.030543876 66,90,18,333 cycles 5.009848281 3,14,51,98,25,437 cycles 10.029854402 3,15,14,93,04,918 cycles 5.009834177 3,14,51,95,92,316 cycles Committer notes: Did the 'git bisect' to find the cset introducing the problem to add the Fixes tag below, and at that time the problem reproduced as: (gdb) run stat -r0 -I500 sleep 1 <SNIP> Program received signal SIGSEGV, Segmentation fault. print_interval (prefix=prefix@entry=0x7fffffffc8d0 "", ts=ts@entry=0x0) at builtin-stat.c:866 866 sprintf(prefix, "%6lu.%09lu%s", ts->tv_sec, ts->tv_nsec, csv_sep); (gdb) bt #0 print_interval (prefix=prefix@entry=0x7fffffffc8d0 "", ts=ts@entry=0x0) at builtin-stat.c:866 #1 0x000000000041860a in print_counters (ts=ts@entry=0x0, argc=argc@entry=2, argv=argv@entry=0x7fffffffd640) at builtin-stat.c:938 #2 0x0000000000419a7f in cmd_stat (argc=2, argv=0x7fffffffd640, prefix=<optimized out>) at builtin-stat.c:1411 #3 0x000000000045c65a in run_builtin (p=p@entry=0x6291b8 <commands+216>, argc=argc@entry=5, argv=argv@entry=0x7fffffffd640) at perf.c:370 #4 0x000000000045c893 in handle_internal_command (argc=5, argv=0x7fffffffd640) at perf.c:429 #5 0x000000000045c8f1 in run_argv (argcp=argcp@entry=0x7fffffffd4ac, argv=argv@entry=0x7fffffffd4a0) at perf.c:473 #6 0x000000000045cac9 in main (argc=<optimized out>, argv=<optimized out>) at perf.c:588 (gdb) Mostly the same as just before this patch: Program received signal SIGSEGV, Segmentation fault. 0x00000000005874a7 in print_interval (config=0xa1f2a0 <stat_config>, evlist=0xbc9b90, prefix=0x7fffffffd1c0 "`", ts=0x0) at util/stat-display.c:964 964 sprintf(prefix, "%6lu.%09lu%s", ts->tv_sec, ts->tv_nsec, config->csv_sep); (gdb) bt #0 0x00000000005874a7 in print_interval (config=0xa1f2a0 <stat_config>, evlist=0xbc9b90, prefix=0x7fffffffd1c0 "`", ts=0x0) at util/stat-display.c:964 #1 0x0000000000588047 in perf_evlist__print_counters (evlist=0xbc9b90, config=0xa1f2a0 <stat_config>, _target=0xa1f0c0 <target>, ts=0x0, argc=2, argv=0x7fffffffd670) at util/stat-display.c:1172 #2 0x000000000045390f in print_counters (ts=0x0, argc=2, argv=0x7fffffffd670) at builtin-stat.c:656 #3 0x0000000000456bb5 in cmd_stat (argc=2, argv=0x7fffffffd670) at builtin-stat.c:1960 #4 0x00000000004dd2e0 in run_builtin (p=0xa30e00 <commands+288>, argc=5, argv=0x7fffffffd670) at perf.c:310 #5 0x00000000004dd54d in handle_internal_command (argc=5, argv=0x7fffffffd670) at perf.c:362 #6 0x00000000004dd694 in run_argv (argcp=0x7fffffffd4cc, argv=0x7fffffffd4c0) at perf.c:406 #7 0x00000000004dda11 in main (argc=5, argv=0x7fffffffd670) at perf.c:531 (gdb) Fixes: d4f63a4 ("perf stat: Introduce print_counters function") Signed-off-by: Srikar Dronamraju <[email protected]> Acked-by: Jiri Olsa <[email protected]> Tested-by: Arnaldo Carvalho de Melo <[email protected]> Tested-by: Ravi Bangoria <[email protected]> Cc: Namhyung Kim <[email protected]> Cc: Naveen N. Rao <[email protected]> Cc: [email protected] # v4.2+ Link: http://lore.kernel.org/lkml/[email protected] Signed-off-by: Arnaldo Carvalho de Melo <[email protected]> Signed-off-by: Sasha Levin <[email protected]>
radcolor
pushed a commit
that referenced
this issue
Dec 11, 2019
Currently, smp_processor_id() is used to fetch the current CPU in cpu_idle_loop(). Every time the idle thread runs, it fetches the current CPU using smp_processor_id(). Since the idle thread is per CPU, the current CPU is constant, so we can lift the load out of the loop, saving execution cycles/time in the loop. x86-64: Before patch (execution in loop): 148: 0f ae e8 lfence 14b: 65 8b 04 25 00 00 00 00 mov %gs:0x0,%eax 152: 00 153: 89 c0 mov %eax,%eax 155: 49 0f a3 04 24 bt %rax,(%r12) After patch (execution in loop): 150: 0f ae e8 lfence 153: 4d 0f a3 34 24 bt %r14,(%r12) ARM64: Before patch (execution in loop): 168: d5033d9f dsb ld 16c: b9405661 ldr w1,[x19,#84] 170: 1100fc20 add w0,w1,#0x3f 174: 6b1f003f cmp w1,wzr 178: 1a81b000 csel w0,w0,w1,lt 17c: 130c7000 asr w0,w0,#6 180: 937d7c00 sbfiz x0,x0,#3,#32 184: f8606aa0 ldr x0,[x21,x0] 188: 9ac12401 lsr x1,x0,x1 18c: 36000e61 tbz w1,#0,358 After patch (execution in loop): 1a8: d50339df dsb ld 1ac: f8776ac0 ldr x0,[x22,x23] ab0: ea18001f tst x0,x24 1b4: 54000ea0 b.eq 388 Further observance on ARM64 for 4 seconds shows that cpu_idle_loop is called 8672 times. Shifting the code will save instructions executed in loop and eventually time as well. Signed-off-by: Gaurav Jindal <[email protected]> Signed-off-by: Peter Zijlstra (Intel) <[email protected]> Reviewed-by: Sanjeev Yadav <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Mike Galbraith <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Thomas Gleixner <[email protected]> Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Ingo Molnar <[email protected]>
radcolor
changed the title
Needs to add support for custom comipiler
Needs to add support for custom compiler
Dec 14, 2019
radcolor
pushed a commit
that referenced
this issue
Jan 9, 2020
commit 5c9934b6767b16ba60be22ec3cbd4379ad64170d upstream. We got another syzbot report [1] that tells us we must use write_lock_irq()/write_unlock_irq() to avoid possible deadlock. [1] WARNING: inconsistent lock state 5.5.0-rc1-syzkaller #0 Not tainted -------------------------------- inconsistent {HARDIRQ-ON-W} -> {IN-HARDIRQ-R} usage. syz-executor826/9605 [HC1[1]:SC0[0]:HE0:SE1] takes: ffffffff8a128718 (disc_data_lock){+-..}, at: sp_get.isra.0+0x1d/0xf0 drivers/net/ppp/ppp_synctty.c:138 {HARDIRQ-ON-W} state was registered at: lock_acquire+0x190/0x410 kernel/locking/lockdep.c:4485 __raw_write_lock_bh include/linux/rwlock_api_smp.h:203 [inline] _raw_write_lock_bh+0x33/0x50 kernel/locking/spinlock.c:319 sixpack_close+0x1d/0x250 drivers/net/hamradio/6pack.c:657 tty_ldisc_close.isra.0+0x119/0x1a0 drivers/tty/tty_ldisc.c:489 tty_set_ldisc+0x230/0x6b0 drivers/tty/tty_ldisc.c:585 tiocsetd drivers/tty/tty_io.c:2337 [inline] tty_ioctl+0xe8d/0x14f0 drivers/tty/tty_io.c:2597 vfs_ioctl fs/ioctl.c:47 [inline] file_ioctl fs/ioctl.c:545 [inline] do_vfs_ioctl+0x977/0x14e0 fs/ioctl.c:732 ksys_ioctl+0xab/0xd0 fs/ioctl.c:749 __do_sys_ioctl fs/ioctl.c:756 [inline] __se_sys_ioctl fs/ioctl.c:754 [inline] __x64_sys_ioctl+0x73/0xb0 fs/ioctl.c:754 do_syscall_64+0xfa/0x790 arch/x86/entry/common.c:294 entry_SYSCALL_64_after_hwframe+0x49/0xbe irq event stamp: 3946 hardirqs last enabled at (3945): [<ffffffff87c86e43>] __raw_spin_unlock_irq include/linux/spinlock_api_smp.h:168 [inline] hardirqs last enabled at (3945): [<ffffffff87c86e43>] _raw_spin_unlock_irq+0x23/0x80 kernel/locking/spinlock.c:199 hardirqs last disabled at (3946): [<ffffffff8100675f>] trace_hardirqs_off_thunk+0x1a/0x1c arch/x86/entry/thunk_64.S:42 softirqs last enabled at (2658): [<ffffffff86a8b4df>] spin_unlock_bh include/linux/spinlock.h:383 [inline] softirqs last enabled at (2658): [<ffffffff86a8b4df>] clusterip_netdev_event+0x46f/0x670 net/ipv4/netfilter/ipt_CLUSTERIP.c:222 softirqs last disabled at (2656): [<ffffffff86a8b22b>] spin_lock_bh include/linux/spinlock.h:343 [inline] softirqs last disabled at (2656): [<ffffffff86a8b22b>] clusterip_netdev_event+0x1bb/0x670 net/ipv4/netfilter/ipt_CLUSTERIP.c:196 other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(disc_data_lock); <Interrupt> lock(disc_data_lock); *** DEADLOCK *** 5 locks held by syz-executor826/9605: #0: ffff8880a905e198 (&tty->legacy_mutex){+.+.}, at: tty_lock+0xc7/0x130 drivers/tty/tty_mutex.c:19 #1: ffffffff899a56c0 (rcu_read_lock){....}, at: mutex_spin_on_owner+0x0/0x330 kernel/locking/mutex.c:413 #2: ffff8880a496a2b0 (&(&i->lock)->rlock){-.-.}, at: spin_lock include/linux/spinlock.h:338 [inline] #2: ffff8880a496a2b0 (&(&i->lock)->rlock){-.-.}, at: serial8250_interrupt+0x2d/0x1a0 drivers/tty/serial/8250/8250_core.c:116 #3: ffffffff8c104048 (&port_lock_key){-.-.}, at: serial8250_handle_irq.part.0+0x24/0x330 drivers/tty/serial/8250/8250_port.c:1823 #4: ffff8880a905e090 (&tty->ldisc_sem){++++}, at: tty_ldisc_ref+0x22/0x90 drivers/tty/tty_ldisc.c:288 stack backtrace: CPU: 1 PID: 9605 Comm: syz-executor826 Not tainted 5.5.0-rc1-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: <IRQ> __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x197/0x210 lib/dump_stack.c:118 print_usage_bug.cold+0x327/0x378 kernel/locking/lockdep.c:3101 valid_state kernel/locking/lockdep.c:3112 [inline] mark_lock_irq kernel/locking/lockdep.c:3309 [inline] mark_lock+0xbb4/0x1220 kernel/locking/lockdep.c:3666 mark_usage kernel/locking/lockdep.c:3554 [inline] __lock_acquire+0x1e55/0x4a00 kernel/locking/lockdep.c:3909 lock_acquire+0x190/0x410 kernel/locking/lockdep.c:4485 __raw_read_lock include/linux/rwlock_api_smp.h:149 [inline] _raw_read_lock+0x32/0x50 kernel/locking/spinlock.c:223 sp_get.isra.0+0x1d/0xf0 drivers/net/ppp/ppp_synctty.c:138 sixpack_write_wakeup+0x25/0x340 drivers/net/hamradio/6pack.c:402 tty_wakeup+0xe9/0x120 drivers/tty/tty_io.c:536 tty_port_default_wakeup+0x2b/0x40 drivers/tty/tty_port.c:50 tty_port_tty_wakeup+0x57/0x70 drivers/tty/tty_port.c:387 uart_write_wakeup+0x46/0x70 drivers/tty/serial/serial_core.c:104 serial8250_tx_chars+0x495/0xaf0 drivers/tty/serial/8250/8250_port.c:1761 serial8250_handle_irq.part.0+0x2a2/0x330 drivers/tty/serial/8250/8250_port.c:1834 serial8250_handle_irq drivers/tty/serial/8250/8250_port.c:1820 [inline] serial8250_default_handle_irq+0xc0/0x150 drivers/tty/serial/8250/8250_port.c:1850 serial8250_interrupt+0xf1/0x1a0 drivers/tty/serial/8250/8250_core.c:126 __handle_irq_event_percpu+0x15d/0x970 kernel/irq/handle.c:149 handle_irq_event_percpu+0x74/0x160 kernel/irq/handle.c:189 handle_irq_event+0xa7/0x134 kernel/irq/handle.c:206 handle_edge_irq+0x25e/0x8d0 kernel/irq/chip.c:830 generic_handle_irq_desc include/linux/irqdesc.h:156 [inline] do_IRQ+0xde/0x280 arch/x86/kernel/irq.c:250 common_interrupt+0xf/0xf arch/x86/entry/entry_64.S:607 </IRQ> RIP: 0010:cpu_relax arch/x86/include/asm/processor.h:685 [inline] RIP: 0010:mutex_spin_on_owner+0x247/0x330 kernel/locking/mutex.c:579 Code: c3 be 08 00 00 00 4c 89 e7 e8 e5 06 59 00 4c 89 e0 48 c1 e8 03 42 80 3c 38 00 0f 85 e1 00 00 00 49 8b 04 24 a8 01 75 96 f3 90 <e9> 2f fe ff ff 0f 0b e8 0d 19 09 00 84 c0 0f 85 ff fd ff ff 48 c7 RSP: 0018:ffffc90001eafa20 EFLAGS: 00000246 ORIG_RAX: ffffffffffffffd7 RAX: 0000000000000000 RBX: ffff88809fd9e0c0 RCX: 1ffffffff13266dd RDX: 0000000000000000 RSI: 0000000000000008 RDI: 0000000000000000 RBP: ffffc90001eafa60 R08: 1ffff11013d22898 R09: ffffed1013d22899 R10: ffffed1013d22898 R11: ffff88809e9144c7 R12: ffff8880a905e138 R13: ffff88809e9144c0 R14: 0000000000000000 R15: dffffc0000000000 mutex_optimistic_spin kernel/locking/mutex.c:673 [inline] __mutex_lock_common kernel/locking/mutex.c:962 [inline] __mutex_lock+0x32b/0x13c0 kernel/locking/mutex.c:1106 mutex_lock_nested+0x16/0x20 kernel/locking/mutex.c:1121 tty_lock+0xc7/0x130 drivers/tty/tty_mutex.c:19 tty_release+0xb5/0xe90 drivers/tty/tty_io.c:1665 __fput+0x2ff/0x890 fs/file_table.c:280 ____fput+0x16/0x20 fs/file_table.c:313 task_work_run+0x145/0x1c0 kernel/task_work.c:113 exit_task_work include/linux/task_work.h:22 [inline] do_exit+0x8e7/0x2ef0 kernel/exit.c:797 do_group_exit+0x135/0x360 kernel/exit.c:895 __do_sys_exit_group kernel/exit.c:906 [inline] __se_sys_exit_group kernel/exit.c:904 [inline] __x64_sys_exit_group+0x44/0x50 kernel/exit.c:904 do_syscall_64+0xfa/0x790 arch/x86/entry/common.c:294 entry_SYSCALL_64_after_hwframe+0x49/0xbe RIP: 0033:0x43fef8 Code: Bad RIP value. RSP: 002b:00007ffdb07d2338 EFLAGS: 00000246 ORIG_RAX: 00000000000000e7 RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 000000000043fef8 RDX: 0000000000000000 RSI: 000000000000003c RDI: 0000000000000000 RBP: 00000000004bf730 R08: 00000000000000e7 R09: ffffffffffffffd0 R10: 00000000004002c8 R11: 0000000000000246 R12: 0000000000000001 R13: 00000000006d1180 R14: 0000000000000000 R15: 0000000000000000 Fixes: 6e4e2f8 ("6pack,mkiss: fix lock inconsistency") Signed-off-by: Eric Dumazet <[email protected]> Reported-by: syzbot <[email protected]> Cc: Arnd Bergmann <[email protected]> Signed-off-by: Jakub Kicinski <[email protected]> Signed-off-by: Greg Kroah-Hartman <[email protected]>
radcolor
pushed a commit
that referenced
this issue
Jan 9, 2020
Currently, smp_processor_id() is used to fetch the current CPU in cpu_idle_loop(). Every time the idle thread runs, it fetches the current CPU using smp_processor_id(). Since the idle thread is per CPU, the current CPU is constant, so we can lift the load out of the loop, saving execution cycles/time in the loop. x86-64: Before patch (execution in loop): 148: 0f ae e8 lfence 14b: 65 8b 04 25 00 00 00 00 mov %gs:0x0,%eax 152: 00 153: 89 c0 mov %eax,%eax 155: 49 0f a3 04 24 bt %rax,(%r12) After patch (execution in loop): 150: 0f ae e8 lfence 153: 4d 0f a3 34 24 bt %r14,(%r12) ARM64: Before patch (execution in loop): 168: d5033d9f dsb ld 16c: b9405661 ldr w1,[x19,#84] 170: 1100fc20 add w0,w1,#0x3f 174: 6b1f003f cmp w1,wzr 178: 1a81b000 csel w0,w0,w1,lt 17c: 130c7000 asr w0,w0,#6 180: 937d7c00 sbfiz x0,x0,#3,#32 184: f8606aa0 ldr x0,[x21,x0] 188: 9ac12401 lsr x1,x0,x1 18c: 36000e61 tbz w1,#0,358 After patch (execution in loop): 1a8: d50339df dsb ld 1ac: f8776ac0 ldr x0,[x22,x23] ab0: ea18001f tst x0,x24 1b4: 54000ea0 b.eq 388 Further observance on ARM64 for 4 seconds shows that cpu_idle_loop is called 8672 times. Shifting the code will save instructions executed in loop and eventually time as well. Signed-off-by: Gaurav Jindal <[email protected]> Signed-off-by: Peter Zijlstra (Intel) <[email protected]> Reviewed-by: Sanjeev Yadav <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Mike Galbraith <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Thomas Gleixner <[email protected]> Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Ingo Molnar <[email protected]>
radcolor
pushed a commit
that referenced
this issue
Jan 9, 2020
Currently, smp_processor_id() is used to fetch the current CPU in cpu_idle_loop(). Every time the idle thread runs, it fetches the current CPU using smp_processor_id(). Since the idle thread is per CPU, the current CPU is constant, so we can lift the load out of the loop, saving execution cycles/time in the loop. x86-64: Before patch (execution in loop): 148: 0f ae e8 lfence 14b: 65 8b 04 25 00 00 00 00 mov %gs:0x0,%eax 152: 00 153: 89 c0 mov %eax,%eax 155: 49 0f a3 04 24 bt %rax,(%r12) After patch (execution in loop): 150: 0f ae e8 lfence 153: 4d 0f a3 34 24 bt %r14,(%r12) ARM64: Before patch (execution in loop): 168: d5033d9f dsb ld 16c: b9405661 ldr w1,[x19,#84] 170: 1100fc20 add w0,w1,#0x3f 174: 6b1f003f cmp w1,wzr 178: 1a81b000 csel w0,w0,w1,lt 17c: 130c7000 asr w0,w0,#6 180: 937d7c00 sbfiz x0,x0,#3,#32 184: f8606aa0 ldr x0,[x21,x0] 188: 9ac12401 lsr x1,x0,x1 18c: 36000e61 tbz w1,#0,358 After patch (execution in loop): 1a8: d50339df dsb ld 1ac: f8776ac0 ldr x0,[x22,x23] ab0: ea18001f tst x0,x24 1b4: 54000ea0 b.eq 388 Further observance on ARM64 for 4 seconds shows that cpu_idle_loop is called 8672 times. Shifting the code will save instructions executed in loop and eventually time as well. Signed-off-by: Gaurav Jindal <[email protected]> Signed-off-by: Peter Zijlstra (Intel) <[email protected]> Reviewed-by: Sanjeev Yadav <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Mike Galbraith <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Thomas Gleixner <[email protected]> Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Ingo Molnar <[email protected]>
radcolor
pushed a commit
that referenced
this issue
Jan 29, 2020
In many cases in the RCU tree code, we iterate over the set of cpus for a leaf node described by rcu_node::grplo and rcu_node::grphi, checking per-cpu data for each cpu in this range. However, if the set of possible cpus is sparse, some cpus described in this range are not possible, and thus no per-cpu region will have been allocated (or initialised) for them by the generic percpu code. Erroneous accesses to a per-cpu area for these !possible cpus may fault or may hit other data depending on the addressed generated when the erroneous per cpu offset is applied. In practice, both cases have been observed on arm64 hardware (the former being silent, but detectable with additional patches). To avoid issues resulting from this, we must iterate over the set of *possible* cpus for a given leaf node. This patch add a new helper, for_each_leaf_node_possible_cpu, to enable this. As iteration is often intertwined with rcu_node local bitmask manipulation, a new leaf_node_cpu_bit helper is added to make this simpler and more consistent. The RCU tree code is made to use both of these where appropriate. Without this patch, running reboot at a shell can result in an oops like: [ 3369.075979] Unable to handle kernel paging request at virtual address ffffff8008b21b4c [ 3369.083881] pgd = ffffffc3ecdda000 [ 3369.087270] [ffffff8008b21b4c] *pgd=00000083eca48003, *pud=00000083eca48003, *pmd=0000000000000000 [ 3369.096222] Internal error: Oops: 96000007 [#1] PREEMPT SMP [ 3369.101781] Modules linked in: [ 3369.104825] CPU: 2 PID: 1817 Comm: NetworkManager Tainted: G W 4.6.0+ #3 [ 3369.121239] task: ffffffc0fa13e000 ti: ffffffc3eb940000 task.ti: ffffffc3eb940000 [ 3369.128708] PC is at sync_rcu_exp_select_cpus+0x188/0x510 [ 3369.134094] LR is at sync_rcu_exp_select_cpus+0x104/0x510 [ 3369.139479] pc : [<ffffff80081109a8>] lr : [<ffffff8008110924>] pstate: 200001c5 [ 3369.146860] sp : ffffffc3eb9435a0 [ 3369.150162] x29: ffffffc3eb9435a0 x28: ffffff8008be4f88 [ 3369.155465] x27: ffffff8008b66c80 x26: ffffffc3eceb2600 [ 3369.160767] x25: 0000000000000001 x24: ffffff8008be4f88 [ 3369.166070] x23: ffffff8008b51c3c x22: ffffff8008b66c80 [ 3369.171371] x21: 0000000000000001 x20: ffffff8008b21b40 [ 3369.176673] x19: ffffff8008b66c80 x18: 0000000000000000 [ 3369.181975] x17: 0000007fa951a010 x16: ffffff80086a30f0 [ 3369.187278] x15: 0000007fa9505590 x14: 0000000000000000 [ 3369.192580] x13: ffffff8008b51000 x12: ffffffc3eb940000 [ 3369.197882] x11: 0000000000000006 x10: ffffff8008b51b78 [ 3369.203184] x9 : 0000000000000001 x8 : ffffff8008be4000 [ 3369.208486] x7 : ffffff8008b21b40 x6 : 0000000000001003 [ 3369.213788] x5 : 0000000000000000 x4 : ffffff8008b27280 [ 3369.219090] x3 : ffffff8008b21b4c x2 : 0000000000000001 [ 3369.224406] x1 : 0000000000000001 x0 : 0000000000000140 ... [ 3369.972257] [<ffffff80081109a8>] sync_rcu_exp_select_cpus+0x188/0x510 [ 3369.978685] [<ffffff80081128b4>] synchronize_rcu_expedited+0x64/0xa8 [ 3369.985026] [<ffffff80086b987c>] synchronize_net+0x24/0x30 [ 3369.990499] [<ffffff80086ddb54>] dev_deactivate_many+0x28c/0x298 [ 3369.996493] [<ffffff80086b6bb8>] __dev_close_many+0x60/0xd0 [ 3370.002052] [<ffffff80086b6d48>] __dev_close+0x28/0x40 [ 3370.007178] [<ffffff80086bf62c>] __dev_change_flags+0x8c/0x158 [ 3370.012999] [<ffffff80086bf718>] dev_change_flags+0x20/0x60 [ 3370.018558] [<ffffff80086cf7f0>] do_setlink+0x288/0x918 [ 3370.023771] [<ffffff80086d0798>] rtnl_newlink+0x398/0x6a8 [ 3370.029158] [<ffffff80086cee84>] rtnetlink_rcv_msg+0xe4/0x220 [ 3370.034891] [<ffffff80086e274c>] netlink_rcv_skb+0xc4/0xf8 [ 3370.040364] [<ffffff80086ced8c>] rtnetlink_rcv+0x2c/0x40 [ 3370.045663] [<ffffff80086e1fe8>] netlink_unicast+0x160/0x238 [ 3370.051309] [<ffffff80086e24b8>] netlink_sendmsg+0x2f0/0x358 [ 3370.056956] [<ffffff80086a0070>] sock_sendmsg+0x18/0x30 [ 3370.062168] [<ffffff80086a21cc>] ___sys_sendmsg+0x26c/0x280 [ 3370.067728] [<ffffff80086a30ac>] __sys_sendmsg+0x44/0x88 [ 3370.073027] [<ffffff80086a3100>] SyS_sendmsg+0x10/0x20 [ 3370.078153] [<ffffff8008085e70>] el0_svc_naked+0x24/0x28 Signed-off-by: Mark Rutland <[email protected]> Reported-by: Dennis Chen <[email protected]> Cc: Catalin Marinas <[email protected]> Cc: Josh Triplett <[email protected]> Cc: Lai Jiangshan <[email protected]> Cc: Mathieu Desnoyers <[email protected]> Cc: Steve Capper <[email protected]> Cc: Steven Rostedt <[email protected]> Cc: Will Deacon <[email protected]> Cc: [email protected] Signed-off-by: Paul E. McKenney <[email protected]> Signed-off-by: celtare21 <[email protected]>
radcolor
pushed a commit
that referenced
this issue
Jan 29, 2020
In many cases in the RCU tree code, we iterate over the set of cpus for a leaf node described by rcu_node::grplo and rcu_node::grphi, checking per-cpu data for each cpu in this range. However, if the set of possible cpus is sparse, some cpus described in this range are not possible, and thus no per-cpu region will have been allocated (or initialised) for them by the generic percpu code. Erroneous accesses to a per-cpu area for these !possible cpus may fault or may hit other data depending on the addressed generated when the erroneous per cpu offset is applied. In practice, both cases have been observed on arm64 hardware (the former being silent, but detectable with additional patches). To avoid issues resulting from this, we must iterate over the set of *possible* cpus for a given leaf node. This patch add a new helper, for_each_leaf_node_possible_cpu, to enable this. As iteration is often intertwined with rcu_node local bitmask manipulation, a new leaf_node_cpu_bit helper is added to make this simpler and more consistent. The RCU tree code is made to use both of these where appropriate. Without this patch, running reboot at a shell can result in an oops like: [ 3369.075979] Unable to handle kernel paging request at virtual address ffffff8008b21b4c [ 3369.083881] pgd = ffffffc3ecdda000 [ 3369.087270] [ffffff8008b21b4c] *pgd=00000083eca48003, *pud=00000083eca48003, *pmd=0000000000000000 [ 3369.096222] Internal error: Oops: 96000007 [#1] PREEMPT SMP [ 3369.101781] Modules linked in: [ 3369.104825] CPU: 2 PID: 1817 Comm: NetworkManager Tainted: G W 4.6.0+ #3 [ 3369.121239] task: ffffffc0fa13e000 ti: ffffffc3eb940000 task.ti: ffffffc3eb940000 [ 3369.128708] PC is at sync_rcu_exp_select_cpus+0x188/0x510 [ 3369.134094] LR is at sync_rcu_exp_select_cpus+0x104/0x510 [ 3369.139479] pc : [<ffffff80081109a8>] lr : [<ffffff8008110924>] pstate: 200001c5 [ 3369.146860] sp : ffffffc3eb9435a0 [ 3369.150162] x29: ffffffc3eb9435a0 x28: ffffff8008be4f88 [ 3369.155465] x27: ffffff8008b66c80 x26: ffffffc3eceb2600 [ 3369.160767] x25: 0000000000000001 x24: ffffff8008be4f88 [ 3369.166070] x23: ffffff8008b51c3c x22: ffffff8008b66c80 [ 3369.171371] x21: 0000000000000001 x20: ffffff8008b21b40 [ 3369.176673] x19: ffffff8008b66c80 x18: 0000000000000000 [ 3369.181975] x17: 0000007fa951a010 x16: ffffff80086a30f0 [ 3369.187278] x15: 0000007fa9505590 x14: 0000000000000000 [ 3369.192580] x13: ffffff8008b51000 x12: ffffffc3eb940000 [ 3369.197882] x11: 0000000000000006 x10: ffffff8008b51b78 [ 3369.203184] x9 : 0000000000000001 x8 : ffffff8008be4000 [ 3369.208486] x7 : ffffff8008b21b40 x6 : 0000000000001003 [ 3369.213788] x5 : 0000000000000000 x4 : ffffff8008b27280 [ 3369.219090] x3 : ffffff8008b21b4c x2 : 0000000000000001 [ 3369.224406] x1 : 0000000000000001 x0 : 0000000000000140 ... [ 3369.972257] [<ffffff80081109a8>] sync_rcu_exp_select_cpus+0x188/0x510 [ 3369.978685] [<ffffff80081128b4>] synchronize_rcu_expedited+0x64/0xa8 [ 3369.985026] [<ffffff80086b987c>] synchronize_net+0x24/0x30 [ 3369.990499] [<ffffff80086ddb54>] dev_deactivate_many+0x28c/0x298 [ 3369.996493] [<ffffff80086b6bb8>] __dev_close_many+0x60/0xd0 [ 3370.002052] [<ffffff80086b6d48>] __dev_close+0x28/0x40 [ 3370.007178] [<ffffff80086bf62c>] __dev_change_flags+0x8c/0x158 [ 3370.012999] [<ffffff80086bf718>] dev_change_flags+0x20/0x60 [ 3370.018558] [<ffffff80086cf7f0>] do_setlink+0x288/0x918 [ 3370.023771] [<ffffff80086d0798>] rtnl_newlink+0x398/0x6a8 [ 3370.029158] [<ffffff80086cee84>] rtnetlink_rcv_msg+0xe4/0x220 [ 3370.034891] [<ffffff80086e274c>] netlink_rcv_skb+0xc4/0xf8 [ 3370.040364] [<ffffff80086ced8c>] rtnetlink_rcv+0x2c/0x40 [ 3370.045663] [<ffffff80086e1fe8>] netlink_unicast+0x160/0x238 [ 3370.051309] [<ffffff80086e24b8>] netlink_sendmsg+0x2f0/0x358 [ 3370.056956] [<ffffff80086a0070>] sock_sendmsg+0x18/0x30 [ 3370.062168] [<ffffff80086a21cc>] ___sys_sendmsg+0x26c/0x280 [ 3370.067728] [<ffffff80086a30ac>] __sys_sendmsg+0x44/0x88 [ 3370.073027] [<ffffff80086a3100>] SyS_sendmsg+0x10/0x20 [ 3370.078153] [<ffffff8008085e70>] el0_svc_naked+0x24/0x28 Signed-off-by: Mark Rutland <[email protected]> Reported-by: Dennis Chen <[email protected]> Cc: Catalin Marinas <[email protected]> Cc: Josh Triplett <[email protected]> Cc: Lai Jiangshan <[email protected]> Cc: Mathieu Desnoyers <[email protected]> Cc: Steve Capper <[email protected]> Cc: Steven Rostedt <[email protected]> Cc: Will Deacon <[email protected]> Cc: [email protected] Signed-off-by: Paul E. McKenney <[email protected]> Signed-off-by: celtare21 <[email protected]>
radcolor
pushed a commit
that referenced
this issue
Jan 29, 2020
In many cases in the RCU tree code, we iterate over the set of cpus for a leaf node described by rcu_node::grplo and rcu_node::grphi, checking per-cpu data for each cpu in this range. However, if the set of possible cpus is sparse, some cpus described in this range are not possible, and thus no per-cpu region will have been allocated (or initialised) for them by the generic percpu code. Erroneous accesses to a per-cpu area for these !possible cpus may fault or may hit other data depending on the addressed generated when the erroneous per cpu offset is applied. In practice, both cases have been observed on arm64 hardware (the former being silent, but detectable with additional patches). To avoid issues resulting from this, we must iterate over the set of *possible* cpus for a given leaf node. This patch add a new helper, for_each_leaf_node_possible_cpu, to enable this. As iteration is often intertwined with rcu_node local bitmask manipulation, a new leaf_node_cpu_bit helper is added to make this simpler and more consistent. The RCU tree code is made to use both of these where appropriate. Without this patch, running reboot at a shell can result in an oops like: [ 3369.075979] Unable to handle kernel paging request at virtual address ffffff8008b21b4c [ 3369.083881] pgd = ffffffc3ecdda000 [ 3369.087270] [ffffff8008b21b4c] *pgd=00000083eca48003, *pud=00000083eca48003, *pmd=0000000000000000 [ 3369.096222] Internal error: Oops: 96000007 [#1] PREEMPT SMP [ 3369.101781] Modules linked in: [ 3369.104825] CPU: 2 PID: 1817 Comm: NetworkManager Tainted: G W 4.6.0+ #3 [ 3369.121239] task: ffffffc0fa13e000 ti: ffffffc3eb940000 task.ti: ffffffc3eb940000 [ 3369.128708] PC is at sync_rcu_exp_select_cpus+0x188/0x510 [ 3369.134094] LR is at sync_rcu_exp_select_cpus+0x104/0x510 [ 3369.139479] pc : [<ffffff80081109a8>] lr : [<ffffff8008110924>] pstate: 200001c5 [ 3369.146860] sp : ffffffc3eb9435a0 [ 3369.150162] x29: ffffffc3eb9435a0 x28: ffffff8008be4f88 [ 3369.155465] x27: ffffff8008b66c80 x26: ffffffc3eceb2600 [ 3369.160767] x25: 0000000000000001 x24: ffffff8008be4f88 [ 3369.166070] x23: ffffff8008b51c3c x22: ffffff8008b66c80 [ 3369.171371] x21: 0000000000000001 x20: ffffff8008b21b40 [ 3369.176673] x19: ffffff8008b66c80 x18: 0000000000000000 [ 3369.181975] x17: 0000007fa951a010 x16: ffffff80086a30f0 [ 3369.187278] x15: 0000007fa9505590 x14: 0000000000000000 [ 3369.192580] x13: ffffff8008b51000 x12: ffffffc3eb940000 [ 3369.197882] x11: 0000000000000006 x10: ffffff8008b51b78 [ 3369.203184] x9 : 0000000000000001 x8 : ffffff8008be4000 [ 3369.208486] x7 : ffffff8008b21b40 x6 : 0000000000001003 [ 3369.213788] x5 : 0000000000000000 x4 : ffffff8008b27280 [ 3369.219090] x3 : ffffff8008b21b4c x2 : 0000000000000001 [ 3369.224406] x1 : 0000000000000001 x0 : 0000000000000140 ... [ 3369.972257] [<ffffff80081109a8>] sync_rcu_exp_select_cpus+0x188/0x510 [ 3369.978685] [<ffffff80081128b4>] synchronize_rcu_expedited+0x64/0xa8 [ 3369.985026] [<ffffff80086b987c>] synchronize_net+0x24/0x30 [ 3369.990499] [<ffffff80086ddb54>] dev_deactivate_many+0x28c/0x298 [ 3369.996493] [<ffffff80086b6bb8>] __dev_close_many+0x60/0xd0 [ 3370.002052] [<ffffff80086b6d48>] __dev_close+0x28/0x40 [ 3370.007178] [<ffffff80086bf62c>] __dev_change_flags+0x8c/0x158 [ 3370.012999] [<ffffff80086bf718>] dev_change_flags+0x20/0x60 [ 3370.018558] [<ffffff80086cf7f0>] do_setlink+0x288/0x918 [ 3370.023771] [<ffffff80086d0798>] rtnl_newlink+0x398/0x6a8 [ 3370.029158] [<ffffff80086cee84>] rtnetlink_rcv_msg+0xe4/0x220 [ 3370.034891] [<ffffff80086e274c>] netlink_rcv_skb+0xc4/0xf8 [ 3370.040364] [<ffffff80086ced8c>] rtnetlink_rcv+0x2c/0x40 [ 3370.045663] [<ffffff80086e1fe8>] netlink_unicast+0x160/0x238 [ 3370.051309] [<ffffff80086e24b8>] netlink_sendmsg+0x2f0/0x358 [ 3370.056956] [<ffffff80086a0070>] sock_sendmsg+0x18/0x30 [ 3370.062168] [<ffffff80086a21cc>] ___sys_sendmsg+0x26c/0x280 [ 3370.067728] [<ffffff80086a30ac>] __sys_sendmsg+0x44/0x88 [ 3370.073027] [<ffffff80086a3100>] SyS_sendmsg+0x10/0x20 [ 3370.078153] [<ffffff8008085e70>] el0_svc_naked+0x24/0x28 Signed-off-by: Mark Rutland <[email protected]> Reported-by: Dennis Chen <[email protected]> Cc: Catalin Marinas <[email protected]> Cc: Josh Triplett <[email protected]> Cc: Lai Jiangshan <[email protected]> Cc: Mathieu Desnoyers <[email protected]> Cc: Steve Capper <[email protected]> Cc: Steven Rostedt <[email protected]> Cc: Will Deacon <[email protected]> Cc: [email protected] Signed-off-by: Paul E. McKenney <[email protected]> Signed-off-by: celtare21 <[email protected]>
radcolor
pushed a commit
that referenced
this issue
Jan 29, 2020
In many cases in the RCU tree code, we iterate over the set of cpus for a leaf node described by rcu_node::grplo and rcu_node::grphi, checking per-cpu data for each cpu in this range. However, if the set of possible cpus is sparse, some cpus described in this range are not possible, and thus no per-cpu region will have been allocated (or initialised) for them by the generic percpu code. Erroneous accesses to a per-cpu area for these !possible cpus may fault or may hit other data depending on the addressed generated when the erroneous per cpu offset is applied. In practice, both cases have been observed on arm64 hardware (the former being silent, but detectable with additional patches). To avoid issues resulting from this, we must iterate over the set of *possible* cpus for a given leaf node. This patch add a new helper, for_each_leaf_node_possible_cpu, to enable this. As iteration is often intertwined with rcu_node local bitmask manipulation, a new leaf_node_cpu_bit helper is added to make this simpler and more consistent. The RCU tree code is made to use both of these where appropriate. Without this patch, running reboot at a shell can result in an oops like: [ 3369.075979] Unable to handle kernel paging request at virtual address ffffff8008b21b4c [ 3369.083881] pgd = ffffffc3ecdda000 [ 3369.087270] [ffffff8008b21b4c] *pgd=00000083eca48003, *pud=00000083eca48003, *pmd=0000000000000000 [ 3369.096222] Internal error: Oops: 96000007 [#1] PREEMPT SMP [ 3369.101781] Modules linked in: [ 3369.104825] CPU: 2 PID: 1817 Comm: NetworkManager Tainted: G W 4.6.0+ #3 [ 3369.121239] task: ffffffc0fa13e000 ti: ffffffc3eb940000 task.ti: ffffffc3eb940000 [ 3369.128708] PC is at sync_rcu_exp_select_cpus+0x188/0x510 [ 3369.134094] LR is at sync_rcu_exp_select_cpus+0x104/0x510 [ 3369.139479] pc : [<ffffff80081109a8>] lr : [<ffffff8008110924>] pstate: 200001c5 [ 3369.146860] sp : ffffffc3eb9435a0 [ 3369.150162] x29: ffffffc3eb9435a0 x28: ffffff8008be4f88 [ 3369.155465] x27: ffffff8008b66c80 x26: ffffffc3eceb2600 [ 3369.160767] x25: 0000000000000001 x24: ffffff8008be4f88 [ 3369.166070] x23: ffffff8008b51c3c x22: ffffff8008b66c80 [ 3369.171371] x21: 0000000000000001 x20: ffffff8008b21b40 [ 3369.176673] x19: ffffff8008b66c80 x18: 0000000000000000 [ 3369.181975] x17: 0000007fa951a010 x16: ffffff80086a30f0 [ 3369.187278] x15: 0000007fa9505590 x14: 0000000000000000 [ 3369.192580] x13: ffffff8008b51000 x12: ffffffc3eb940000 [ 3369.197882] x11: 0000000000000006 x10: ffffff8008b51b78 [ 3369.203184] x9 : 0000000000000001 x8 : ffffff8008be4000 [ 3369.208486] x7 : ffffff8008b21b40 x6 : 0000000000001003 [ 3369.213788] x5 : 0000000000000000 x4 : ffffff8008b27280 [ 3369.219090] x3 : ffffff8008b21b4c x2 : 0000000000000001 [ 3369.224406] x1 : 0000000000000001 x0 : 0000000000000140 ... [ 3369.972257] [<ffffff80081109a8>] sync_rcu_exp_select_cpus+0x188/0x510 [ 3369.978685] [<ffffff80081128b4>] synchronize_rcu_expedited+0x64/0xa8 [ 3369.985026] [<ffffff80086b987c>] synchronize_net+0x24/0x30 [ 3369.990499] [<ffffff80086ddb54>] dev_deactivate_many+0x28c/0x298 [ 3369.996493] [<ffffff80086b6bb8>] __dev_close_many+0x60/0xd0 [ 3370.002052] [<ffffff80086b6d48>] __dev_close+0x28/0x40 [ 3370.007178] [<ffffff80086bf62c>] __dev_change_flags+0x8c/0x158 [ 3370.012999] [<ffffff80086bf718>] dev_change_flags+0x20/0x60 [ 3370.018558] [<ffffff80086cf7f0>] do_setlink+0x288/0x918 [ 3370.023771] [<ffffff80086d0798>] rtnl_newlink+0x398/0x6a8 [ 3370.029158] [<ffffff80086cee84>] rtnetlink_rcv_msg+0xe4/0x220 [ 3370.034891] [<ffffff80086e274c>] netlink_rcv_skb+0xc4/0xf8 [ 3370.040364] [<ffffff80086ced8c>] rtnetlink_rcv+0x2c/0x40 [ 3370.045663] [<ffffff80086e1fe8>] netlink_unicast+0x160/0x238 [ 3370.051309] [<ffffff80086e24b8>] netlink_sendmsg+0x2f0/0x358 [ 3370.056956] [<ffffff80086a0070>] sock_sendmsg+0x18/0x30 [ 3370.062168] [<ffffff80086a21cc>] ___sys_sendmsg+0x26c/0x280 [ 3370.067728] [<ffffff80086a30ac>] __sys_sendmsg+0x44/0x88 [ 3370.073027] [<ffffff80086a3100>] SyS_sendmsg+0x10/0x20 [ 3370.078153] [<ffffff8008085e70>] el0_svc_naked+0x24/0x28 Signed-off-by: Mark Rutland <[email protected]> Reported-by: Dennis Chen <[email protected]> Cc: Catalin Marinas <[email protected]> Cc: Josh Triplett <[email protected]> Cc: Lai Jiangshan <[email protected]> Cc: Mathieu Desnoyers <[email protected]> Cc: Steve Capper <[email protected]> Cc: Steven Rostedt <[email protected]> Cc: Will Deacon <[email protected]> Cc: [email protected] Signed-off-by: Paul E. McKenney <[email protected]> Signed-off-by: celtare21 <[email protected]>
radcolor
pushed a commit
that referenced
this issue
Feb 4, 2020
Currently, smp_processor_id() is used to fetch the current CPU in cpu_idle_loop(). Every time the idle thread runs, it fetches the current CPU using smp_processor_id(). Since the idle thread is per CPU, the current CPU is constant, so we can lift the load out of the loop, saving execution cycles/time in the loop. x86-64: Before patch (execution in loop): 148: 0f ae e8 lfence 14b: 65 8b 04 25 00 00 00 00 mov %gs:0x0,%eax 152: 00 153: 89 c0 mov %eax,%eax 155: 49 0f a3 04 24 bt %rax,(%r12) After patch (execution in loop): 150: 0f ae e8 lfence 153: 4d 0f a3 34 24 bt %r14,(%r12) ARM64: Before patch (execution in loop): 168: d5033d9f dsb ld 16c: b9405661 ldr w1,[x19,#84] 170: 1100fc20 add w0,w1,#0x3f 174: 6b1f003f cmp w1,wzr 178: 1a81b000 csel w0,w0,w1,lt 17c: 130c7000 asr w0,w0,#6 180: 937d7c00 sbfiz x0,x0,#3,#32 184: f8606aa0 ldr x0,[x21,x0] 188: 9ac12401 lsr x1,x0,x1 18c: 36000e61 tbz w1,#0,358 After patch (execution in loop): 1a8: d50339df dsb ld 1ac: f8776ac0 ldr x0,[x22,x23] ab0: ea18001f tst x0,x24 1b4: 54000ea0 b.eq 388 Further observance on ARM64 for 4 seconds shows that cpu_idle_loop is called 8672 times. Shifting the code will save instructions executed in loop and eventually time as well. Signed-off-by: Gaurav Jindal <[email protected]> Signed-off-by: Peter Zijlstra (Intel) <[email protected]> Reviewed-by: Sanjeev Yadav <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Mike Galbraith <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Thomas Gleixner <[email protected]> Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Ingo Molnar <[email protected]>
radcolor
pushed a commit
that referenced
this issue
Feb 4, 2020
Currently, smp_processor_id() is used to fetch the current CPU in cpu_idle_loop(). Every time the idle thread runs, it fetches the current CPU using smp_processor_id(). Since the idle thread is per CPU, the current CPU is constant, so we can lift the load out of the loop, saving execution cycles/time in the loop. x86-64: Before patch (execution in loop): 148: 0f ae e8 lfence 14b: 65 8b 04 25 00 00 00 00 mov %gs:0x0,%eax 152: 00 153: 89 c0 mov %eax,%eax 155: 49 0f a3 04 24 bt %rax,(%r12) After patch (execution in loop): 150: 0f ae e8 lfence 153: 4d 0f a3 34 24 bt %r14,(%r12) ARM64: Before patch (execution in loop): 168: d5033d9f dsb ld 16c: b9405661 ldr w1,[x19,#84] 170: 1100fc20 add w0,w1,#0x3f 174: 6b1f003f cmp w1,wzr 178: 1a81b000 csel w0,w0,w1,lt 17c: 130c7000 asr w0,w0,#6 180: 937d7c00 sbfiz x0,x0,#3,#32 184: f8606aa0 ldr x0,[x21,x0] 188: 9ac12401 lsr x1,x0,x1 18c: 36000e61 tbz w1,#0,358 After patch (execution in loop): 1a8: d50339df dsb ld 1ac: f8776ac0 ldr x0,[x22,x23] ab0: ea18001f tst x0,x24 1b4: 54000ea0 b.eq 388 Further observance on ARM64 for 4 seconds shows that cpu_idle_loop is called 8672 times. Shifting the code will save instructions executed in loop and eventually time as well. Signed-off-by: Gaurav Jindal <[email protected]> Signed-off-by: Peter Zijlstra (Intel) <[email protected]> Reviewed-by: Sanjeev Yadav <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Mike Galbraith <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Thomas Gleixner <[email protected]> Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Ingo Molnar <[email protected]>
radcolor
pushed a commit
that referenced
this issue
Feb 15, 2020
[ Upstream commit 42ffb0bf584ae5b6b38f72259af1e0ee417ac77f ] There exists a deadlock with range_cyclic that has existed forever. If we loop around with a bio already built we could deadlock with a writer who has the page locked that we're attempting to write but is waiting on a page in our bio to be written out. The task traces are as follows PID: 1329874 TASK: ffff889ebcdf3800 CPU: 33 COMMAND: "kworker/u113:5" #0 [ffffc900297bb658] __schedule at ffffffff81a4c33f #1 [ffffc900297bb6e0] schedule at ffffffff81a4c6e3 #2 [ffffc900297bb6f8] io_schedule at ffffffff81a4ca42 #3 [ffffc900297bb708] __lock_page at ffffffff811f145b #4 [ffffc900297bb798] __process_pages_contig at ffffffff814bc502 #5 [ffffc900297bb8c8] lock_delalloc_pages at ffffffff814bc684 #6 [ffffc900297bb900] find_lock_delalloc_range at ffffffff814be9ff #7 [ffffc900297bb9a0] writepage_delalloc at ffffffff814bebd0 #8 [ffffc900297bba18] __extent_writepage at ffffffff814bfbf2 #9 [ffffc900297bba98] extent_write_cache_pages at ffffffff814bffbd PID: 2167901 TASK: ffff889dc6a59c00 CPU: 14 COMMAND: "aio-dio-invalid" #0 [ffffc9003b50bb18] __schedule at ffffffff81a4c33f #1 [ffffc9003b50bba0] schedule at ffffffff81a4c6e3 #2 [ffffc9003b50bbb8] io_schedule at ffffffff81a4ca42 #3 [ffffc9003b50bbc8] wait_on_page_bit at ffffffff811f24d6 #4 [ffffc9003b50bc60] prepare_pages at ffffffff814b05a7 #5 [ffffc9003b50bcd8] btrfs_buffered_write at ffffffff814b1359 #6 [ffffc9003b50bdb0] btrfs_file_write_iter at ffffffff814b5933 #7 [ffffc9003b50be38] new_sync_write at ffffffff8128f6a8 #8 [ffffc9003b50bec8] vfs_write at ffffffff81292b9d #9 [ffffc9003b50bf00] ksys_pwrite64 at ffffffff81293032 I used drgn to find the respective pages we were stuck on page_entry.page 0xffffea00fbfc7500 index 8148 bit 15 pid 2167901 page_entry.page 0xffffea00f9bb7400 index 7680 bit 0 pid 1329874 As you can see the kworker is waiting for bit 0 (PG_locked) on index 7680, and aio-dio-invalid is waiting for bit 15 (PG_writeback) on index 8148. aio-dio-invalid has 7680, and the kworker epd looks like the following crash> struct extent_page_data ffffc900297bbbb0 struct extent_page_data { bio = 0xffff889f747ed830, tree = 0xffff889eed6ba448, extent_locked = 0, sync_io = 0 } Probably worth mentioning as well that it waits for writeback of the page to complete while holding a lock on it (at prepare_pages()). Using drgn I walked the bio pages looking for page 0xffffea00fbfc7500 which is the one we're waiting for writeback on bio = Object(prog, 'struct bio', address=0xffff889f747ed830) for i in range(0, bio.bi_vcnt.value_()): bv = bio.bi_io_vec[i] if bv.bv_page.value_() == 0xffffea00fbfc7500: print("FOUND IT") which validated what I suspected. The fix for this is simple, flush the epd before we loop back around to the beginning of the file during writeout. Fixes: b293f02 ("Btrfs: Add writepages support") CC: [email protected] # 4.4+ Reviewed-by: Filipe Manana <[email protected]> Signed-off-by: Josef Bacik <[email protected]> Signed-off-by: David Sterba <[email protected]> Signed-off-by: Sasha Levin <[email protected]>
radcolor
pushed a commit
that referenced
this issue
Mar 20, 2020
[ Upstream commit 6c5d911249290f41f7b50b43344a7520605b1acb ] journal_head::b_transaction and journal_head::b_next_transaction could be accessed concurrently as noticed by KCSAN, LTP: starting fsync04 /dev/zero: Can't open blockdev EXT4-fs (loop0): mounting ext3 file system using the ext4 subsystem EXT4-fs (loop0): mounted filesystem with ordered data mode. Opts: (null) ================================================================== BUG: KCSAN: data-race in __jbd2_journal_refile_buffer [jbd2] / jbd2_write_access_granted [jbd2] write to 0xffff99f9b1bd0e30 of 8 bytes by task 25721 on cpu 70: __jbd2_journal_refile_buffer+0xdd/0x210 [jbd2] __jbd2_journal_refile_buffer at fs/jbd2/transaction.c:2569 jbd2_journal_commit_transaction+0x2d15/0x3f20 [jbd2] (inlined by) jbd2_journal_commit_transaction at fs/jbd2/commit.c:1034 kjournald2+0x13b/0x450 [jbd2] kthread+0x1cd/0x1f0 ret_from_fork+0x27/0x50 read to 0xffff99f9b1bd0e30 of 8 bytes by task 25724 on cpu 68: jbd2_write_access_granted+0x1b2/0x250 [jbd2] jbd2_write_access_granted at fs/jbd2/transaction.c:1155 jbd2_journal_get_write_access+0x2c/0x60 [jbd2] __ext4_journal_get_write_access+0x50/0x90 [ext4] ext4_mb_mark_diskspace_used+0x158/0x620 [ext4] ext4_mb_new_blocks+0x54f/0xca0 [ext4] ext4_ind_map_blocks+0xc79/0x1b40 [ext4] ext4_map_blocks+0x3b4/0x950 [ext4] _ext4_get_block+0xfc/0x270 [ext4] ext4_get_block+0x3b/0x50 [ext4] __block_write_begin_int+0x22e/0xae0 __block_write_begin+0x39/0x50 ext4_write_begin+0x388/0xb50 [ext4] generic_perform_write+0x15d/0x290 ext4_buffered_write_iter+0x11f/0x210 [ext4] ext4_file_write_iter+0xce/0x9e0 [ext4] new_sync_write+0x29c/0x3b0 __vfs_write+0x92/0xa0 vfs_write+0x103/0x260 ksys_write+0x9d/0x130 __x64_sys_write+0x4c/0x60 do_syscall_64+0x91/0xb05 entry_SYSCALL_64_after_hwframe+0x49/0xbe 5 locks held by fsync04/25724: #0: ffff99f9911093f8 (sb_writers#13){.+.+}, at: vfs_write+0x21c/0x260 #1: ffff99f9db4c0348 (&sb->s_type->i_mutex_key#15){+.+.}, at: ext4_buffered_write_iter+0x65/0x210 [ext4] #2: ffff99f5e7dfcf58 (jbd2_handle){++++}, at: start_this_handle+0x1c1/0x9d0 [jbd2] #3: ffff99f9db4c0168 (&ei->i_data_sem){++++}, at: ext4_map_blocks+0x176/0x950 [ext4] #4: ffffffff99086b40 (rcu_read_lock){....}, at: jbd2_write_access_granted+0x4e/0x250 [jbd2] irq event stamp: 1407125 hardirqs last enabled at (1407125): [<ffffffff980da9b7>] __find_get_block+0x107/0x790 hardirqs last disabled at (1407124): [<ffffffff980da8f9>] __find_get_block+0x49/0x790 softirqs last enabled at (1405528): [<ffffffff98a0034c>] __do_softirq+0x34c/0x57c softirqs last disabled at (1405521): [<ffffffff97cc67a2>] irq_exit+0xa2/0xc0 Reported by Kernel Concurrency Sanitizer on: CPU: 68 PID: 25724 Comm: fsync04 Tainted: G L 5.6.0-rc2-next-20200221+ #7 Hardware name: HPE ProLiant DL385 Gen10/ProLiant DL385 Gen10, BIOS A40 07/10/2019 The plain reads are outside of jh->b_state_lock critical section which result in data races. Fix them by adding pairs of READ|WRITE_ONCE(). Reviewed-by: Jan Kara <[email protected]> Signed-off-by: Qian Cai <[email protected]> Link: https://lore.kernel.org/r/[email protected] Signed-off-by: Theodore Ts'o <[email protected]> Signed-off-by: Sasha Levin <[email protected]>
radcolor
pushed a commit
that referenced
this issue
Apr 4, 2020
…event commit 7d36665a5886c27ca4c4d0afd3ecc50b400f3587 upstream. An eventfd monitors multiple memory thresholds of the cgroup, closes them, the kernel deletes all events related to this eventfd. Before all events are deleted, another eventfd monitors the memory threshold of this cgroup, leading to a crash: BUG: kernel NULL pointer dereference, address: 0000000000000004 #PF: supervisor write access in kernel mode #PF: error_code(0x0002) - not-present page PGD 800000033058e067 P4D 800000033058e067 PUD 3355ce067 PMD 0 Oops: 0002 [#1] SMP PTI CPU: 2 PID: 14012 Comm: kworker/2:6 Kdump: loaded Not tainted 5.6.0-rc4 #3 Hardware name: LENOVO 20AWS01K00/20AWS01K00, BIOS GLET70WW (2.24 ) 05/21/2014 Workqueue: events memcg_event_remove RIP: 0010:__mem_cgroup_usage_unregister_event+0xb3/0x190 RSP: 0018:ffffb47e01c4fe18 EFLAGS: 00010202 RAX: 0000000000000001 RBX: ffff8bb223a8a000 RCX: 0000000000000001 RDX: 0000000000000001 RSI: ffff8bb22fb83540 RDI: 0000000000000001 RBP: ffffb47e01c4fe48 R08: 0000000000000000 R09: 0000000000000010 R10: 000000000000000c R11: 071c71c71c71c71c R12: ffff8bb226aba880 R13: ffff8bb223a8a480 R14: 0000000000000000 R15: 0000000000000000 FS: 0000000000000000(0000) GS:ffff8bb242680000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000004 CR3: 000000032c29c003 CR4: 00000000001606e0 Call Trace: memcg_event_remove+0x32/0x90 process_one_work+0x172/0x380 worker_thread+0x49/0x3f0 kthread+0xf8/0x130 ret_from_fork+0x35/0x40 CR2: 0000000000000004 We can reproduce this problem in the following ways: 1. We create a new cgroup subdirectory and a new eventfd, and then we monitor multiple memory thresholds of the cgroup through this eventfd. 2. closing this eventfd, and __mem_cgroup_usage_unregister_event () will be called multiple times to delete all events related to this eventfd. The first time __mem_cgroup_usage_unregister_event() is called, the kernel will clear all items related to this eventfd in thresholds-> primary. Since there is currently only one eventfd, thresholds-> primary becomes empty, so the kernel will set thresholds-> primary and hresholds-> spare to NULL. If at this time, the user creates a new eventfd and monitor the memory threshold of this cgroup, kernel will re-initialize thresholds-> primary. Then when __mem_cgroup_usage_unregister_event () is called for the second time, because thresholds-> primary is not empty, the system will access thresholds-> spare, but thresholds-> spare is NULL, which will trigger a crash. In general, the longer it takes to delete all events related to this eventfd, the easier it is to trigger this problem. The solution is to check whether the thresholds associated with the eventfd has been cleared when deleting the event. If so, we do nothing. [[email protected]: fix comment, per Kirill] Fixes: 907860e ("cgroups: make cftype.unregister_event() void-returning") Signed-off-by: Chunguang Xu <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Acked-by: Michal Hocko <[email protected]> Acked-by: Kirill A. Shutemov <[email protected]> Cc: Johannes Weiner <[email protected]> Cc: Vladimir Davydov <[email protected]> Cc: <[email protected]> Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Linus Torvalds <[email protected]> Signed-off-by: Greg Kroah-Hartman <[email protected]>
radcolor
pushed a commit
that referenced
this issue
Apr 4, 2020
commit 9765635b30756eb74e05e260ac812659c296cd28 upstream. This reverts commit: c54c7374ff44 ("drm/dp_mst: Skip validating ports during destruction, just ref") ugh. In drm_dp_destroy_connector_work(), we have a pretty good chance of freeing the actual struct drm_dp_mst_port. However, after destroying things we send a hotplug through (*mgr->cbs->hotplug)(mgr) which is where the problems start. For i915, this calls all the way down to the fbcon probing helpers, which start trying to access the port in a modeset. [ 45.062001] ================================================================== [ 45.062112] BUG: KASAN: use-after-free in ex_handler_refcount+0x146/0x180 [ 45.062196] Write of size 4 at addr ffff8882b4b70968 by task kworker/3:1/53 [ 45.062325] CPU: 3 PID: 53 Comm: kworker/3:1 Kdump: loaded Tainted: G O 4.20.0-rc4Lyude-Test+ #3 [ 45.062442] Hardware name: LENOVO 20BWS1KY00/20BWS1KY00, BIOS JBET71WW (1.35 ) 09/14/2018 [ 45.062554] Workqueue: events drm_dp_destroy_connector_work [drm_kms_helper] [ 45.062641] Call Trace: [ 45.062685] dump_stack+0xbd/0x15a [ 45.062735] ? dump_stack_print_info.cold.0+0x1b/0x1b [ 45.062801] ? printk+0x9f/0xc5 [ 45.062847] ? kmsg_dump_rewind_nolock+0xe4/0xe4 [ 45.062909] ? ex_handler_refcount+0x146/0x180 [ 45.062970] print_address_description+0x71/0x239 [ 45.063036] ? ex_handler_refcount+0x146/0x180 [ 45.063095] kasan_report.cold.5+0x242/0x30b [ 45.063155] __asan_report_store4_noabort+0x1c/0x20 [ 45.063313] ex_handler_refcount+0x146/0x180 [ 45.063371] ? ex_handler_clear_fs+0xb0/0xb0 [ 45.063428] fixup_exception+0x98/0xd7 [ 45.063484] ? raw_notifier_call_chain+0x20/0x20 [ 45.063548] do_trap+0x6d/0x210 [ 45.063605] ? _GLOBAL__sub_I_65535_1_drm_dp_aux_unregister_devnode+0x2f/0x1c6 [drm_kms_helper] [ 45.063732] do_error_trap+0xc0/0x170 [ 45.063802] ? _GLOBAL__sub_I_65535_1_drm_dp_aux_unregister_devnode+0x2f/0x1c6 [drm_kms_helper] [ 45.063929] do_invalid_op+0x3b/0x50 [ 45.063997] ? _GLOBAL__sub_I_65535_1_drm_dp_aux_unregister_devnode+0x2f/0x1c6 [drm_kms_helper] [ 45.064103] invalid_op+0x14/0x20 [ 45.064162] RIP: 0010:_GLOBAL__sub_I_65535_1_drm_dp_aux_unregister_devnode+0x2f/0x1c6 [drm_kms_helper] [ 45.064274] Code: 00 48 c7 c7 80 fe 53 a0 48 89 e5 e8 5b 6f 26 e1 5d c3 48 8d 0e 0f 0b 48 8d 0b 0f 0b 48 8d 0f 0f 0b 48 8d 0f 0f 0b 49 8d 4d 00 <0f> 0b 49 8d 0e 0f 0b 48 8d 08 0f 0b 49 8d 4d 00 0f 0b 48 8d 0b 0f [ 45.064569] RSP: 0018:ffff8882b789ee10 EFLAGS: 00010282 [ 45.064637] RAX: ffff8882af47ae70 RBX: ffff8882af47aa60 RCX: ffff8882b4b70968 [ 45.064723] RDX: ffff8882af47ae70 RSI: 0000000000000008 RDI: ffff8882b788bdb8 [ 45.064808] RBP: ffff8882b789ee28 R08: ffffed1056f13db4 R09: ffffed1056f13db3 [ 45.064894] R10: ffffed1056f13db3 R11: ffff8882b789ed9f R12: ffff8882af47ad28 [ 45.064980] R13: ffff8882b4b70968 R14: ffff8882acd86728 R15: ffff8882b4b75dc8 [ 45.065084] drm_dp_mst_reset_vcpi_slots+0x12/0x80 [drm_kms_helper] [ 45.065225] intel_mst_disable_dp+0xda/0x180 [i915] [ 45.065361] intel_encoders_disable.isra.107+0x197/0x310 [i915] [ 45.065498] haswell_crtc_disable+0xbe/0x400 [i915] [ 45.065622] ? i9xx_disable_plane+0x1c0/0x3e0 [i915] [ 45.065750] intel_atomic_commit_tail+0x74e/0x3e60 [i915] [ 45.065884] ? intel_pre_plane_update+0xbc0/0xbc0 [i915] [ 45.065968] ? drm_atomic_helper_swap_state+0x88b/0x1d90 [drm_kms_helper] [ 45.066054] ? kasan_check_write+0x14/0x20 [ 45.066165] ? i915_gem_track_fb+0x13a/0x330 [i915] [ 45.066277] ? i915_sw_fence_complete+0xe9/0x140 [i915] [ 45.066406] ? __i915_sw_fence_complete+0xc50/0xc50 [i915] [ 45.066540] intel_atomic_commit+0x72e/0xef0 [i915] [ 45.066635] ? drm_dev_dbg+0x200/0x200 [drm] [ 45.066764] ? intel_atomic_commit_tail+0x3e60/0x3e60 [i915] [ 45.066898] ? intel_atomic_commit_tail+0x3e60/0x3e60 [i915] [ 45.067001] drm_atomic_commit+0xc4/0xf0 [drm] [ 45.067074] restore_fbdev_mode_atomic+0x562/0x780 [drm_kms_helper] [ 45.067166] ? drm_fb_helper_debug_leave+0x690/0x690 [drm_kms_helper] [ 45.067249] ? kasan_check_read+0x11/0x20 [ 45.067324] restore_fbdev_mode+0x127/0x4b0 [drm_kms_helper] [ 45.067364] ? kasan_check_read+0x11/0x20 [ 45.067406] drm_fb_helper_restore_fbdev_mode_unlocked+0x164/0x200 [drm_kms_helper] [ 45.067462] ? drm_fb_helper_hotplug_event+0x30/0x30 [drm_kms_helper] [ 45.067508] ? kasan_check_write+0x14/0x20 [ 45.070360] ? mutex_unlock+0x22/0x40 [ 45.073748] drm_fb_helper_set_par+0xb2/0xf0 [drm_kms_helper] [ 45.075846] drm_fb_helper_hotplug_event.part.33+0x1cd/0x290 [drm_kms_helper] [ 45.078088] drm_fb_helper_hotplug_event+0x1c/0x30 [drm_kms_helper] [ 45.082614] intel_fbdev_output_poll_changed+0x9f/0x140 [i915] [ 45.087069] drm_kms_helper_hotplug_event+0x67/0x90 [drm_kms_helper] [ 45.089319] intel_dp_mst_hotplug+0x37/0x50 [i915] [ 45.091496] drm_dp_destroy_connector_work+0x510/0x6f0 [drm_kms_helper] [ 45.093675] ? drm_dp_update_payload_part1+0x1220/0x1220 [drm_kms_helper] [ 45.095851] ? kasan_check_write+0x14/0x20 [ 45.098473] ? kasan_check_read+0x11/0x20 [ 45.101155] ? strscpy+0x17c/0x530 [ 45.103808] ? __switch_to_asm+0x34/0x70 [ 45.106456] ? syscall_return_via_sysret+0xf/0x7f [ 45.109711] ? read_word_at_a_time+0x20/0x20 [ 45.113138] ? __switch_to_asm+0x40/0x70 [ 45.116529] ? __switch_to_asm+0x34/0x70 [ 45.119891] ? __switch_to_asm+0x40/0x70 [ 45.123224] ? __switch_to_asm+0x34/0x70 [ 45.126540] ? __switch_to_asm+0x34/0x70 [ 45.129824] process_one_work+0x88d/0x15d0 [ 45.133172] ? pool_mayday_timeout+0x850/0x850 [ 45.136459] ? pci_mmcfg_check_reserved+0x110/0x128 [ 45.139739] ? wake_q_add+0xb0/0xb0 [ 45.143010] ? check_preempt_wakeup+0x652/0x1050 [ 45.146304] ? worker_enter_idle+0x29e/0x740 [ 45.149589] ? __schedule+0x1ec0/0x1ec0 [ 45.152937] ? kasan_check_read+0x11/0x20 [ 45.156179] ? _raw_spin_lock_irq+0xa3/0x130 [ 45.159382] ? _raw_read_unlock_irqrestore+0x30/0x30 [ 45.162542] ? kasan_check_write+0x14/0x20 [ 45.165657] worker_thread+0x1a5/0x1470 [ 45.168725] ? set_load_weight+0x2e0/0x2e0 [ 45.171755] ? process_one_work+0x15d0/0x15d0 [ 45.174806] ? __switch_to_asm+0x34/0x70 [ 45.177645] ? __switch_to_asm+0x40/0x70 [ 45.180323] ? __switch_to_asm+0x34/0x70 [ 45.182936] ? __switch_to_asm+0x40/0x70 [ 45.185539] ? __switch_to_asm+0x34/0x70 [ 45.188100] ? __switch_to_asm+0x40/0x70 [ 45.190628] ? __schedule+0x7d4/0x1ec0 [ 45.193143] ? save_stack+0xa9/0xd0 [ 45.195632] ? kasan_check_write+0x10/0x20 [ 45.198162] ? kasan_kmalloc+0xc4/0xe0 [ 45.200609] ? kmem_cache_alloc_trace+0xdd/0x190 [ 45.203046] ? kthread+0x9f/0x3b0 [ 45.205470] ? ret_from_fork+0x35/0x40 [ 45.207876] ? unwind_next_frame+0x43/0x50 [ 45.210273] ? __save_stack_trace+0x82/0x100 [ 45.212658] ? deactivate_slab.isra.67+0x3d4/0x580 [ 45.215026] ? default_wake_function+0x35/0x50 [ 45.217399] ? kasan_check_read+0x11/0x20 [ 45.219825] ? _raw_spin_lock_irqsave+0xae/0x140 [ 45.222174] ? __lock_text_start+0x8/0x8 [ 45.224521] ? replenish_dl_entity.cold.62+0x4f/0x4f [ 45.226868] ? __kthread_parkme+0x87/0xf0 [ 45.229200] kthread+0x2f7/0x3b0 [ 45.231557] ? process_one_work+0x15d0/0x15d0 [ 45.233923] ? kthread_park+0x120/0x120 [ 45.236249] ret_from_fork+0x35/0x40 [ 45.240875] Allocated by task 242: [ 45.243136] save_stack+0x43/0xd0 [ 45.245385] kasan_kmalloc+0xc4/0xe0 [ 45.247597] kmem_cache_alloc_trace+0xdd/0x190 [ 45.249793] drm_dp_add_port+0x1e0/0x2170 [drm_kms_helper] [ 45.252000] drm_dp_send_link_address+0x4a7/0x740 [drm_kms_helper] [ 45.254389] drm_dp_check_and_send_link_address+0x1a7/0x210 [drm_kms_helper] [ 45.256803] drm_dp_mst_link_probe_work+0x6f/0xb0 [drm_kms_helper] [ 45.259200] process_one_work+0x88d/0x15d0 [ 45.261597] worker_thread+0x1a5/0x1470 [ 45.264038] kthread+0x2f7/0x3b0 [ 45.266371] ret_from_fork+0x35/0x40 [ 45.270937] Freed by task 53: [ 45.273170] save_stack+0x43/0xd0 [ 45.275382] __kasan_slab_free+0x139/0x190 [ 45.277604] kasan_slab_free+0xe/0x10 [ 45.279826] kfree+0x99/0x1b0 [ 45.282044] drm_dp_free_mst_port+0x4a/0x60 [drm_kms_helper] [ 45.284330] drm_dp_destroy_connector_work+0x43e/0x6f0 [drm_kms_helper] [ 45.286660] process_one_work+0x88d/0x15d0 [ 45.288934] worker_thread+0x1a5/0x1470 [ 45.291231] kthread+0x2f7/0x3b0 [ 45.293547] ret_from_fork+0x35/0x40 [ 45.298206] The buggy address belongs to the object at ffff8882b4b70968 which belongs to the cache kmalloc-2k of size 2048 [ 45.303047] The buggy address is located 0 bytes inside of 2048-byte region [ffff8882b4b70968, ffff8882b4b71168) [ 45.308010] The buggy address belongs to the page: [ 45.310477] page:ffffea000ad2dc00 count:1 mapcount:0 mapping:ffff8882c080cf40 index:0x0 compound_mapcount: 0 [ 45.313051] flags: 0x8000000000010200(slab|head) [ 45.315635] raw: 8000000000010200 ffffea000aac2808 ffffea000abe8608 ffff8882c080cf40 [ 45.318300] raw: 0000000000000000 00000000000d000d 00000001ffffffff 0000000000000000 [ 45.320966] page dumped because: kasan: bad access detected [ 45.326312] Memory state around the buggy address: [ 45.329085] ffff8882b4b70800: fb fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc [ 45.331845] ffff8882b4b70880: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc [ 45.334584] >ffff8882b4b70900: fc fc fc fc fc fc fc fc fc fc fc fc fc fb fb fb [ 45.337302] ^ [ 45.340061] ffff8882b4b70980: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb [ 45.342910] ffff8882b4b70a00: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb [ 45.345748] ================================================================== So, this definitely isn't a fix that we want. This being said; there's no real easy fix for this problem because of some of the catch-22's of the MST helpers current design. For starters; we always need to validate a port with drm_dp_get_validated_port_ref(), but validation relies on the lifetime of the port in the actual topology. So once the port is gone, it can't be validated again. If we were to try to make the payload helpers not use port validation, then we'd cause another problem: if the port isn't validated, it could be freed and we'd just start causing more KASAN issues. There are already hacks that attempt to workaround this in drm_dp_mst_destroy_connector_work() by re-initializing the kref so that it can be used again and it's memory can be freed once the VCPI helpers finish removing the port's respective payloads. But none of these really do anything helpful since the port still can't be validated since it's gone from the topology. Also, that workaround is immensely confusing to read through. What really needs to be done in order to fix this is to teach DRM how to track the lifetime of the structs for MST ports and branch devices separately from their lifetime in the actual topology. Simply put; this means having two different krefs-one that removes the port/branch device from the topology, and one that finally calls kfree(). This would let us simplify things, since we'd now be able to keep ports around without having to keep them in the topology at the same time, which is exactly what we need in order to teach our VCPI helpers to only validate ports when it's actually necessary without running the risk of trying to use unallocated memory. Such a fix is on it's way, but for now let's play it safe and just revert this. If this bug has been around for well over a year, we can wait a little while to get an actual proper fix here. Signed-off-by: Lyude Paul <[email protected]> Fixes: c54c7374ff44 ("drm/dp_mst: Skip validating ports during destruction, just ref") Cc: Daniel Vetter <[email protected]> Cc: Sean Paul <[email protected]> Cc: Jerry Zuo <[email protected]> Cc: Harry Wentland <[email protected]> Cc: [email protected] # v4.6+ Acked-by: Sean Paul <[email protected]> Link: https://patchwork.freedesktop.org/patch/msgid/[email protected] Cc: Guenter Roeck <[email protected]> Signed-off-by: Greg Kroah-Hartman <[email protected]>
radcolor
pushed a commit
that referenced
this issue
Apr 24, 2020
commit 28936b62e71e41600bab319f262ea9f9b1027629 upstream. inode->i_blocks could be accessed concurrently as noticed by KCSAN, BUG: KCSAN: data-race in ext4_do_update_inode [ext4] / inode_add_bytes write to 0xffff9a00d4b982d0 of 8 bytes by task 22100 on cpu 118: inode_add_bytes+0x65/0xf0 __inode_add_bytes at fs/stat.c:689 (inlined by) inode_add_bytes at fs/stat.c:702 ext4_mb_new_blocks+0x418/0xca0 [ext4] ext4_ext_map_blocks+0x1a6b/0x27b0 [ext4] ext4_map_blocks+0x1a9/0x950 [ext4] _ext4_get_block+0xfc/0x270 [ext4] ext4_get_block_unwritten+0x33/0x50 [ext4] __block_write_begin_int+0x22e/0xae0 __block_write_begin+0x39/0x50 ext4_write_begin+0x388/0xb50 [ext4] ext4_da_write_begin+0x35f/0x8f0 [ext4] generic_perform_write+0x15d/0x290 ext4_buffered_write_iter+0x11f/0x210 [ext4] ext4_file_write_iter+0xce/0x9e0 [ext4] new_sync_write+0x29c/0x3b0 __vfs_write+0x92/0xa0 vfs_write+0x103/0x260 ksys_write+0x9d/0x130 __x64_sys_write+0x4c/0x60 do_syscall_64+0x91/0xb05 entry_SYSCALL_64_after_hwframe+0x49/0xbe read to 0xffff9a00d4b982d0 of 8 bytes by task 8 on cpu 65: ext4_do_update_inode+0x4a0/0xf60 [ext4] ext4_inode_blocks_set at fs/ext4/inode.c:4815 ext4_mark_iloc_dirty+0xaf/0x160 [ext4] ext4_mark_inode_dirty+0x129/0x3e0 [ext4] ext4_convert_unwritten_extents+0x253/0x2d0 [ext4] ext4_convert_unwritten_io_end_vec+0xc5/0x150 [ext4] ext4_end_io_rsv_work+0x22c/0x350 [ext4] process_one_work+0x54f/0xb90 worker_thread+0x80/0x5f0 kthread+0x1cd/0x1f0 ret_from_fork+0x27/0x50 4 locks held by kworker/u256:0/8: #0: ffff9a025abc4328 ((wq_completion)ext4-rsv-conversion){+.+.}, at: process_one_work+0x443/0xb90 #1: ffffab5a862dbe20 ((work_completion)(&ei->i_rsv_conversion_work)){+.+.}, at: process_one_work+0x443/0xb90 #2: ffff9a025a9d0f58 (jbd2_handle){++++}, at: start_this_handle+0x1c1/0x9d0 [jbd2] #3: ffff9a00d4b985d8 (&(&ei->i_raw_lock)->rlock){+.+.}, at: ext4_do_update_inode+0xaa/0xf60 [ext4] irq event stamp: 3009267 hardirqs last enabled at (3009267): [<ffffffff980da9b7>] __find_get_block+0x107/0x790 hardirqs last disabled at (3009266): [<ffffffff980da8f9>] __find_get_block+0x49/0x790 softirqs last enabled at (3009230): [<ffffffff98a0034c>] __do_softirq+0x34c/0x57c softirqs last disabled at (3009223): [<ffffffff97cc67a2>] irq_exit+0xa2/0xc0 Reported by Kernel Concurrency Sanitizer on: CPU: 65 PID: 8 Comm: kworker/u256:0 Tainted: G L 5.6.0-rc2-next-20200221+ #7 Hardware name: HPE ProLiant DL385 Gen10/ProLiant DL385 Gen10, BIOS A40 07/10/2019 Workqueue: ext4-rsv-conversion ext4_end_io_rsv_work [ext4] The plain read is outside of inode->i_lock critical section which results in a data race. Fix it by adding READ_ONCE() there. Link: https://lore.kernel.org/r/[email protected] Signed-off-by: Qian Cai <[email protected]> Signed-off-by: Theodore Ts'o <[email protected]> Cc: [email protected] Signed-off-by: Greg Kroah-Hartman <[email protected]>
radcolor
pushed a commit
that referenced
this issue
Aug 19, 2020
Move the loop-invariant calculation of 'cpu' in do_idle() out of the loop body, because the current CPU is always constant. This improves the generated code both on x86-64 and ARM64: x86-64: Before patch (execution in loop): 864: 0f ae e8 lfence 867: 65 8b 05 c2 38 f1 7e mov %gs:0x7ef138c2(%rip),%eax 86e: 89 c0 mov %eax,%eax 870: 48 0f a3 05 68 19 08 bt %rax,0x1081968(%rip) 877: 01 After patch (execution in loop): 872: 0f ae e8 lfence 875: 4c 0f a3 25 63 19 08 bt %r12,0x1081963(%rip) 87c: 01 ARM64: Before patch (execution in loop): c58: d5033d9f dsb ld c5c: d538d080 mrs x0, tpidr_el1 c60: b8606a61 ldr w1, [x19,x0] c64: 1100fc20 add w0, w1, #0x3f c68: 7100003f cmp w1, #0x0 c6c: 1a81b000 csel w0, w0, w1, lt c70: 13067c00 asr w0, w0, #6 c74: 93407c00 sxtw x0, w0 c78: f8607a80 ldr x0, [x20,x0,lsl #3] c7c: 9ac12401 lsr x1, x0, x1 c80: 36000581 tbz w1, #0, d30 <do_idle+0x128> After patch (execution in loop): c84: d5033d9f dsb ld c88: f9400260 ldr x0, [x19] c8c: ea14001f tst x0, x20 c90: 54000580 b.eq d40 <do_idle+0x138> Signed-off-by: Cheng Jian <[email protected]> [ Rewrote the title and the changelog. ] Cc: Linus Torvalds <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Thomas Gleixner <[email protected]> Cc: [email protected] Cc: [email protected] Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Ingo Molnar <[email protected]> Signed-off-by: Shashank Baghel <[email protected]>
radcolor
pushed a commit
that referenced
this issue
Aug 21, 2020
[ Upstream commit e24c6447ccb7b1a01f9bf0aec94939e6450c0b4d ] I compiled with AddressSanitizer and I had these memory leaks while I was using the tep_parse_format function: Direct leak of 28 byte(s) in 4 object(s) allocated from: #0 0x7fb07db49ffe in __interceptor_realloc (/lib/x86_64-linux-gnu/libasan.so.5+0x10dffe) #1 0x7fb07a724228 in extend_token /home/pduplessis/repo/linux/tools/lib/traceevent/event-parse.c:985 #2 0x7fb07a724c21 in __read_token /home/pduplessis/repo/linux/tools/lib/traceevent/event-parse.c:1140 #3 0x7fb07a724f78 in read_token /home/pduplessis/repo/linux/tools/lib/traceevent/event-parse.c:1206 #4 0x7fb07a725191 in __read_expect_type /home/pduplessis/repo/linux/tools/lib/traceevent/event-parse.c:1291 #5 0x7fb07a7251df in read_expect_type /home/pduplessis/repo/linux/tools/lib/traceevent/event-parse.c:1299 #6 0x7fb07a72e6c8 in process_dynamic_array_len /home/pduplessis/repo/linux/tools/lib/traceevent/event-parse.c:2849 #7 0x7fb07a7304b8 in process_function /home/pduplessis/repo/linux/tools/lib/traceevent/event-parse.c:3161 #8 0x7fb07a730900 in process_arg_token /home/pduplessis/repo/linux/tools/lib/traceevent/event-parse.c:3207 #9 0x7fb07a727c0b in process_arg /home/pduplessis/repo/linux/tools/lib/traceevent/event-parse.c:1786 #10 0x7fb07a731080 in event_read_print_args /home/pduplessis/repo/linux/tools/lib/traceevent/event-parse.c:3285 #11 0x7fb07a731722 in event_read_print /home/pduplessis/repo/linux/tools/lib/traceevent/event-parse.c:3369 #12 0x7fb07a740054 in __tep_parse_format /home/pduplessis/repo/linux/tools/lib/traceevent/event-parse.c:6335 #13 0x7fb07a74047a in __parse_event /home/pduplessis/repo/linux/tools/lib/traceevent/event-parse.c:6389 #14 0x7fb07a740536 in tep_parse_format /home/pduplessis/repo/linux/tools/lib/traceevent/event-parse.c:6431 #15 0x7fb07a785acf in parse_event ../../../src/fs-src/fs.c:251 #16 0x7fb07a785ccd in parse_systems ../../../src/fs-src/fs.c:284 #17 0x7fb07a786fb3 in read_metadata ../../../src/fs-src/fs.c:593 #18 0x7fb07a78760e in ftrace_fs_source_init ../../../src/fs-src/fs.c:727 #19 0x7fb07d90c19c in add_component_with_init_method_data ../../../../src/lib/graph/graph.c:1048 #20 0x7fb07d90c87b in add_source_component_with_initialize_method_data ../../../../src/lib/graph/graph.c:1127 #21 0x7fb07d90c92a in bt_graph_add_source_component ../../../../src/lib/graph/graph.c:1152 #22 0x55db11aa632e in cmd_run_ctx_create_components_from_config_components ../../../src/cli/babeltrace2.c:2252 #23 0x55db11aa6fda in cmd_run_ctx_create_components ../../../src/cli/babeltrace2.c:2347 #24 0x55db11aa780c in cmd_run ../../../src/cli/babeltrace2.c:2461 #25 0x55db11aa8a7d in main ../../../src/cli/babeltrace2.c:2673 #26 0x7fb07d5460b2 in __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x270b2) The token variable in the process_dynamic_array_len function is allocated in the read_expect_type function, but is not freed before calling the read_token function. Free the token variable before calling read_token in order to plug the leak. Signed-off-by: Philippe Duplessis-Guindon <[email protected]> Reviewed-by: Steven Rostedt (VMware) <[email protected]> Link: https://lore.kernel.org/linux-trace-devel/[email protected] Signed-off-by: Arnaldo Carvalho de Melo <[email protected]> Signed-off-by: Sasha Levin <[email protected]>
radcolor
pushed a commit
that referenced
this issue
Aug 26, 2020
There appears to be a timing issue where using a divider of 32 breaks the DSS for OMAP36xx despite the TRM stating 32 is a valid number. Through experimentation, it appears that 31 works. This same fix was issued for kernels 4.5+. However, between kernels 4.4 and 4.5, the directory structure was changed when the dss directory was moved inside the omapfb directory. That broke the patch on kernels older than 4.5, because it didn't permit the patch to apply cleanly for 4.4 and older. A similar patch was applied to the 3.16 kernel already, but not to 4.4. Commit 4b911101a5cd ("drm/omap: fix max fclk divider for omap36xx") is on the 3.16 stable branch with notes from Ben about the path change. Since this was applied for 3.16 already, this patch is for kernels 3.17 through 4.4 only. Fixes: f7018c2 ("video: move fbdev to drivers/video/fbdev") Cc: <[email protected]> #3.17 - 4.4 CC: <[email protected]> Signed-off-by: Adam Ford <[email protected]> Signed-off-by: Greg Kroah-Hartman <[email protected]>
radcolor
pushed a commit
that referenced
this issue
Sep 3, 2020
In many cases in the RCU tree code, we iterate over the set of cpus for a leaf node described by rcu_node::grplo and rcu_node::grphi, checking per-cpu data for each cpu in this range. However, if the set of possible cpus is sparse, some cpus described in this range are not possible, and thus no per-cpu region will have been allocated (or initialised) for them by the generic percpu code. Erroneous accesses to a per-cpu area for these !possible cpus may fault or may hit other data depending on the addressed generated when the erroneous per cpu offset is applied. In practice, both cases have been observed on arm64 hardware (the former being silent, but detectable with additional patches). To avoid issues resulting from this, we must iterate over the set of *possible* cpus for a given leaf node. This patch add a new helper, for_each_leaf_node_possible_cpu, to enable this. As iteration is often intertwined with rcu_node local bitmask manipulation, a new leaf_node_cpu_bit helper is added to make this simpler and more consistent. The RCU tree code is made to use both of these where appropriate. Without this patch, running reboot at a shell can result in an oops like: [ 3369.075979] Unable to handle kernel paging request at virtual address ffffff8008b21b4c [ 3369.083881] pgd = ffffffc3ecdda000 [ 3369.087270] [ffffff8008b21b4c] *pgd=00000083eca48003, *pud=00000083eca48003, *pmd=0000000000000000 [ 3369.096222] Internal error: Oops: 96000007 [#1] PREEMPT SMP [ 3369.101781] Modules linked in: [ 3369.104825] CPU: 2 PID: 1817 Comm: NetworkManager Tainted: G W 4.6.0+ #3 [ 3369.121239] task: ffffffc0fa13e000 ti: ffffffc3eb940000 task.ti: ffffffc3eb940000 [ 3369.128708] PC is at sync_rcu_exp_select_cpus+0x188/0x510 [ 3369.134094] LR is at sync_rcu_exp_select_cpus+0x104/0x510 [ 3369.139479] pc : [<ffffff80081109a8>] lr : [<ffffff8008110924>] pstate: 200001c5 [ 3369.146860] sp : ffffffc3eb9435a0 [ 3369.150162] x29: ffffffc3eb9435a0 x28: ffffff8008be4f88 [ 3369.155465] x27: ffffff8008b66c80 x26: ffffffc3eceb2600 [ 3369.160767] x25: 0000000000000001 x24: ffffff8008be4f88 [ 3369.166070] x23: ffffff8008b51c3c x22: ffffff8008b66c80 [ 3369.171371] x21: 0000000000000001 x20: ffffff8008b21b40 [ 3369.176673] x19: ffffff8008b66c80 x18: 0000000000000000 [ 3369.181975] x17: 0000007fa951a010 x16: ffffff80086a30f0 [ 3369.187278] x15: 0000007fa9505590 x14: 0000000000000000 [ 3369.192580] x13: ffffff8008b51000 x12: ffffffc3eb940000 [ 3369.197882] x11: 0000000000000006 x10: ffffff8008b51b78 [ 3369.203184] x9 : 0000000000000001 x8 : ffffff8008be4000 [ 3369.208486] x7 : ffffff8008b21b40 x6 : 0000000000001003 [ 3369.213788] x5 : 0000000000000000 x4 : ffffff8008b27280 [ 3369.219090] x3 : ffffff8008b21b4c x2 : 0000000000000001 [ 3369.224406] x1 : 0000000000000001 x0 : 0000000000000140 ... [ 3369.972257] [<ffffff80081109a8>] sync_rcu_exp_select_cpus+0x188/0x510 [ 3369.978685] [<ffffff80081128b4>] synchronize_rcu_expedited+0x64/0xa8 [ 3369.985026] [<ffffff80086b987c>] synchronize_net+0x24/0x30 [ 3369.990499] [<ffffff80086ddb54>] dev_deactivate_many+0x28c/0x298 [ 3369.996493] [<ffffff80086b6bb8>] __dev_close_many+0x60/0xd0 [ 3370.002052] [<ffffff80086b6d48>] __dev_close+0x28/0x40 [ 3370.007178] [<ffffff80086bf62c>] __dev_change_flags+0x8c/0x158 [ 3370.012999] [<ffffff80086bf718>] dev_change_flags+0x20/0x60 [ 3370.018558] [<ffffff80086cf7f0>] do_setlink+0x288/0x918 [ 3370.023771] [<ffffff80086d0798>] rtnl_newlink+0x398/0x6a8 [ 3370.029158] [<ffffff80086cee84>] rtnetlink_rcv_msg+0xe4/0x220 [ 3370.034891] [<ffffff80086e274c>] netlink_rcv_skb+0xc4/0xf8 [ 3370.040364] [<ffffff80086ced8c>] rtnetlink_rcv+0x2c/0x40 [ 3370.045663] [<ffffff80086e1fe8>] netlink_unicast+0x160/0x238 [ 3370.051309] [<ffffff80086e24b8>] netlink_sendmsg+0x2f0/0x358 [ 3370.056956] [<ffffff80086a0070>] sock_sendmsg+0x18/0x30 [ 3370.062168] [<ffffff80086a21cc>] ___sys_sendmsg+0x26c/0x280 [ 3370.067728] [<ffffff80086a30ac>] __sys_sendmsg+0x44/0x88 [ 3370.073027] [<ffffff80086a3100>] SyS_sendmsg+0x10/0x20 [ 3370.078153] [<ffffff8008085e70>] el0_svc_naked+0x24/0x28 Signed-off-by: Mark Rutland <[email protected]> Reported-by: Dennis Chen <[email protected]> Cc: Catalin Marinas <[email protected]> Cc: Josh Triplett <[email protected]> Cc: Lai Jiangshan <[email protected]> Cc: Mathieu Desnoyers <[email protected]> Cc: Steve Capper <[email protected]> Cc: Steven Rostedt <[email protected]> Cc: Will Deacon <[email protected]> Cc: [email protected] Signed-off-by: Paul E. McKenney <[email protected]> Signed-off-by: celtare21 <[email protected]>
fakeyatogod
pushed a commit
that referenced
this issue
Sep 23, 2020
[ Upstream commit d26383dcb2b4b8629fde05270b4e3633be9e3d4b ] The following leaks were detected by ASAN: Indirect leak of 360 byte(s) in 9 object(s) allocated from: #0 0x7fecc305180e in calloc (/lib/x86_64-linux-gnu/libasan.so.5+0x10780e) #1 0x560578f6dce5 in perf_pmu__new_format util/pmu.c:1333 #2 0x560578f752fc in perf_pmu_parse util/pmu.y:59 #3 0x560578f6a8b7 in perf_pmu__format_parse util/pmu.c:73 #4 0x560578e07045 in test__pmu tests/pmu.c:155 #5 0x560578de109b in run_test tests/builtin-test.c:410 #6 0x560578de109b in test_and_print tests/builtin-test.c:440 #7 0x560578de401a in __cmd_test tests/builtin-test.c:661 #8 0x560578de401a in cmd_test tests/builtin-test.c:807 #9 0x560578e49354 in run_builtin /home/namhyung/project/linux/tools/perf/perf.c:312 #10 0x560578ce71a8 in handle_internal_command /home/namhyung/project/linux/tools/perf/perf.c:364 #11 0x560578ce71a8 in run_argv /home/namhyung/project/linux/tools/perf/perf.c:408 #12 0x560578ce71a8 in main /home/namhyung/project/linux/tools/perf/perf.c:538 #13 0x7fecc2b7acc9 in __libc_start_main ../csu/libc-start.c:308 Fixes: cff7f95 ("perf tests: Move pmu tests into separate object") Signed-off-by: Namhyung Kim <[email protected]> Acked-by: Jiri Olsa <[email protected]> Cc: Alexander Shishkin <[email protected]> Cc: Andi Kleen <[email protected]> Cc: Ian Rogers <[email protected]> Cc: Mark Rutland <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Stephane Eranian <[email protected]> Link: http://lore.kernel.org/lkml/[email protected] Signed-off-by: Arnaldo Carvalho de Melo <[email protected]> Signed-off-by: Sasha Levin <[email protected]>
radcolor
pushed a commit
that referenced
this issue
Oct 1, 2020
[ Upstream commit b872d0640840018669032b20b6375a478ed1f923 ] The vfio_pci_release call will free and clear the error and request eventfd ctx while these ctx could be in use at the same time in the function like vfio_pci_request, and it's expected to protect them under the vdev->igate mutex, which is missing in vfio_pci_release. This issue is introduced since commit 1518ac272e78 ("vfio/pci: fix memory leaks of eventfd ctx"),and since commit 5c5866c593bb ("vfio/pci: Clear error and request eventfd ctx after releasing"), it's very easily to trigger the kernel panic like this: [ 9513.904346] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000008 [ 9513.913091] Mem abort info: [ 9513.915871] ESR = 0x96000006 [ 9513.918912] EC = 0x25: DABT (current EL), IL = 32 bits [ 9513.924198] SET = 0, FnV = 0 [ 9513.927238] EA = 0, S1PTW = 0 [ 9513.930364] Data abort info: [ 9513.933231] ISV = 0, ISS = 0x00000006 [ 9513.937048] CM = 0, WnR = 0 [ 9513.940003] user pgtable: 4k pages, 48-bit VAs, pgdp=0000007ec7d12000 [ 9513.946414] [0000000000000008] pgd=0000007ec7d13003, p4d=0000007ec7d13003, pud=0000007ec728c003, pmd=0000000000000000 [ 9513.956975] Internal error: Oops: 96000006 [#1] PREEMPT SMP [ 9513.962521] Modules linked in: vfio_pci vfio_virqfd vfio_iommu_type1 vfio hclge hns3 hnae3 [last unloaded: vfio_pci] [ 9513.972998] CPU: 4 PID: 1327 Comm: bash Tainted: G W 5.8.0-rc4+ #3 [ 9513.980443] Hardware name: Huawei TaiShan 2280 V2/BC82AMDC, BIOS 2280-V2 CS V3.B270.01 05/08/2020 [ 9513.989274] pstate: 80400089 (Nzcv daIf +PAN -UAO BTYPE=--) [ 9513.994827] pc : _raw_spin_lock_irqsave+0x48/0x88 [ 9513.999515] lr : eventfd_signal+0x6c/0x1b0 [ 9514.003591] sp : ffff800038a0b960 [ 9514.006889] x29: ffff800038a0b960 x28: ffff007ef7f4da10 [ 9514.012175] x27: ffff207eefbbfc80 x26: ffffbb7903457000 [ 9514.017462] x25: ffffbb7912191000 x24: ffff007ef7f4d400 [ 9514.022747] x23: ffff20be6e0e4c00 x22: 0000000000000008 [ 9514.028033] x21: 0000000000000000 x20: 0000000000000000 [ 9514.033321] x19: 0000000000000008 x18: 0000000000000000 [ 9514.038606] x17: 0000000000000000 x16: ffffbb7910029328 [ 9514.043893] x15: 0000000000000000 x14: 0000000000000001 [ 9514.049179] x13: 0000000000000000 x12: 0000000000000002 [ 9514.054466] x11: 0000000000000000 x10: 0000000000000a00 [ 9514.059752] x9 : ffff800038a0b840 x8 : ffff007ef7f4de60 [ 9514.065038] x7 : ffff007fffc96690 x6 : fffffe01faffb748 [ 9514.070324] x5 : 0000000000000000 x4 : 0000000000000000 [ 9514.075609] x3 : 0000000000000000 x2 : 0000000000000001 [ 9514.080895] x1 : ffff007ef7f4d400 x0 : 0000000000000000 [ 9514.086181] Call trace: [ 9514.088618] _raw_spin_lock_irqsave+0x48/0x88 [ 9514.092954] eventfd_signal+0x6c/0x1b0 [ 9514.096691] vfio_pci_request+0x84/0xd0 [vfio_pci] [ 9514.101464] vfio_del_group_dev+0x150/0x290 [vfio] [ 9514.106234] vfio_pci_remove+0x30/0x128 [vfio_pci] [ 9514.111007] pci_device_remove+0x48/0x108 [ 9514.115001] device_release_driver_internal+0x100/0x1b8 [ 9514.120200] device_release_driver+0x28/0x38 [ 9514.124452] pci_stop_bus_device+0x68/0xa8 [ 9514.128528] pci_stop_and_remove_bus_device+0x20/0x38 [ 9514.133557] pci_iov_remove_virtfn+0xb4/0x128 [ 9514.137893] sriov_disable+0x3c/0x108 [ 9514.141538] pci_disable_sriov+0x28/0x38 [ 9514.145445] hns3_pci_sriov_configure+0x48/0xb8 [hns3] [ 9514.150558] sriov_numvfs_store+0x110/0x198 [ 9514.154724] dev_attr_store+0x44/0x60 [ 9514.158373] sysfs_kf_write+0x5c/0x78 [ 9514.162018] kernfs_fop_write+0x104/0x210 [ 9514.166010] __vfs_write+0x48/0x90 [ 9514.169395] vfs_write+0xbc/0x1c0 [ 9514.172694] ksys_write+0x74/0x100 [ 9514.176079] __arm64_sys_write+0x24/0x30 [ 9514.179987] el0_svc_common.constprop.4+0x110/0x200 [ 9514.184842] do_el0_svc+0x34/0x98 [ 9514.188144] el0_svc+0x14/0x40 [ 9514.191185] el0_sync_handler+0xb0/0x2d0 [ 9514.195088] el0_sync+0x140/0x180 [ 9514.198389] Code: b9001020 d2800000 52800022 f9800271 (885ffe61) [ 9514.204455] ---[ end trace 648de00c8406465f ]--- [ 9514.212308] note: bash[1327] exited with preempt_count 1 Cc: Qian Cai <[email protected]> Cc: Alex Williamson <[email protected]> Fixes: 1518ac272e78 ("vfio/pci: fix memory leaks of eventfd ctx") Signed-off-by: Zeng Tao <[email protected]> Signed-off-by: Alex Williamson <[email protected]> Signed-off-by: Sasha Levin <[email protected]>
radcolor
pushed a commit
that referenced
this issue
Oct 29, 2020
[ Upstream commit 71a174b39f10b4b93223d374722aa894b5d8a82e ] b6da31b2c07c "tty: Fix data race in tty_insert_flip_string_fixed_flag" puts tty_flip_buffer_push under port->lock introducing the following possible circular locking dependency: [30129.876566] ====================================================== [30129.876566] WARNING: possible circular locking dependency detected [30129.876567] 5.9.0-rc2+ #3 Tainted: G S W [30129.876568] ------------------------------------------------------ [30129.876568] sysrq.sh/1222 is trying to acquire lock: [30129.876569] ffffffff92c39480 (console_owner){....}-{0:0}, at: console_unlock+0x3fe/0xa90 [30129.876572] but task is already holding lock: [30129.876572] ffff888107cb9018 (&pool->lock/1){-.-.}-{2:2}, at: show_workqueue_state.cold.55+0x15b/0x6ca [30129.876576] which lock already depends on the new lock. [30129.876577] the existing dependency chain (in reverse order) is: [30129.876578] -> #3 (&pool->lock/1){-.-.}-{2:2}: [30129.876581] _raw_spin_lock+0x30/0x70 [30129.876581] __queue_work+0x1a3/0x10f0 [30129.876582] queue_work_on+0x78/0x80 [30129.876582] pty_write+0x165/0x1e0 [30129.876583] n_tty_write+0x47f/0xf00 [30129.876583] tty_write+0x3d6/0x8d0 [30129.876584] vfs_write+0x1a8/0x650 [30129.876588] -> #2 (&port->lock#2){-.-.}-{2:2}: [30129.876590] _raw_spin_lock_irqsave+0x3b/0x80 [30129.876591] tty_port_tty_get+0x1d/0xb0 [30129.876592] tty_port_default_wakeup+0xb/0x30 [30129.876592] serial8250_tx_chars+0x3d6/0x970 [30129.876593] serial8250_handle_irq.part.12+0x216/0x380 [30129.876593] serial8250_default_handle_irq+0x82/0xe0 [30129.876594] serial8250_interrupt+0xdd/0x1b0 [30129.876595] __handle_irq_event_percpu+0xfc/0x850 [30129.876602] -> #1 (&port->lock){-.-.}-{2:2}: [30129.876605] _raw_spin_lock_irqsave+0x3b/0x80 [30129.876605] serial8250_console_write+0x12d/0x900 [30129.876606] console_unlock+0x679/0xa90 [30129.876606] register_console+0x371/0x6e0 [30129.876607] univ8250_console_init+0x24/0x27 [30129.876607] console_init+0x2f9/0x45e [30129.876609] -> #0 (console_owner){....}-{0:0}: [30129.876611] __lock_acquire+0x2f70/0x4e90 [30129.876612] lock_acquire+0x1ac/0xad0 [30129.876612] console_unlock+0x460/0xa90 [30129.876613] vprintk_emit+0x130/0x420 [30129.876613] printk+0x9f/0xc5 [30129.876614] show_pwq+0x154/0x618 [30129.876615] show_workqueue_state.cold.55+0x193/0x6ca [30129.876615] __handle_sysrq+0x244/0x460 [30129.876616] write_sysrq_trigger+0x48/0x4a [30129.876616] proc_reg_write+0x1a6/0x240 [30129.876617] vfs_write+0x1a8/0x650 [30129.876619] other info that might help us debug this: [30129.876620] Chain exists of: [30129.876621] console_owner --> &port->lock#2 --> &pool->lock/1 [30129.876625] Possible unsafe locking scenario: [30129.876626] CPU0 CPU1 [30129.876626] ---- ---- [30129.876627] lock(&pool->lock/1); [30129.876628] lock(&port->lock#2); [30129.876630] lock(&pool->lock/1); [30129.876631] lock(console_owner); [30129.876633] *** DEADLOCK *** [30129.876634] 5 locks held by sysrq.sh/1222: [30129.876634] #0: ffff8881d3ce0470 (sb_writers#3){.+.+}-{0:0}, at: vfs_write+0x359/0x650 [30129.876637] #1: ffffffff92c612c0 (rcu_read_lock){....}-{1:2}, at: __handle_sysrq+0x4d/0x460 [30129.876640] #2: ffffffff92c612c0 (rcu_read_lock){....}-{1:2}, at: show_workqueue_state+0x5/0xf0 [30129.876642] #3: ffff888107cb9018 (&pool->lock/1){-.-.}-{2:2}, at: show_workqueue_state.cold.55+0x15b/0x6ca [30129.876645] #4: ffffffff92c39980 (console_lock){+.+.}-{0:0}, at: vprintk_emit+0x123/0x420 [30129.876648] stack backtrace: [30129.876649] CPU: 3 PID: 1222 Comm: sysrq.sh Tainted: G S W 5.9.0-rc2+ #3 [30129.876649] Hardware name: Intel Corporation 2012 Client Platform/Emerald Lake 2, BIOS ACRVMBY1.86C.0078.P00.1201161002 01/16/2012 [30129.876650] Call Trace: [30129.876650] dump_stack+0x9d/0xe0 [30129.876651] check_noncircular+0x34f/0x410 [30129.876653] __lock_acquire+0x2f70/0x4e90 [30129.876656] lock_acquire+0x1ac/0xad0 [30129.876658] console_unlock+0x460/0xa90 [30129.876660] vprintk_emit+0x130/0x420 [30129.876660] printk+0x9f/0xc5 [30129.876661] show_pwq+0x154/0x618 [30129.876662] show_workqueue_state.cold.55+0x193/0x6ca [30129.876664] __handle_sysrq+0x244/0x460 [30129.876665] write_sysrq_trigger+0x48/0x4a [30129.876665] proc_reg_write+0x1a6/0x240 [30129.876666] vfs_write+0x1a8/0x650 It looks like the commit was aimed to protect tty_insert_flip_string and there is no need for tty_flip_buffer_push to be under this lock. Fixes: b6da31b2c07c ("tty: Fix data race in tty_insert_flip_string_fixed_flag") Signed-off-by: Artem Savkov <[email protected]> Acked-by: Jiri Slaby <[email protected]> Link: https://lore.kernel.org/r/[email protected] Signed-off-by: Greg Kroah-Hartman <[email protected]> Signed-off-by: Sasha Levin <[email protected]>
radcolor
pushed a commit
that referenced
this issue
Dec 2, 2020
[ Upstream commit e773ca7da8beeca7f17fe4c9d1284a2b66839cc1 ] Actually, burst size is equal to '1 << desc->rqcfg.brst_size'. we should use burst size, not desc->rqcfg.brst_size. dma memcpy performance on Rockchip RV1126 @ 1512MHz A7, 1056MHz LPDDR3, 200MHz DMA: dmatest: /# echo dma0chan0 > /sys/module/dmatest/parameters/channel /# echo 4194304 > /sys/module/dmatest/parameters/test_buf_size /# echo 8 > /sys/module/dmatest/parameters/iterations /# echo y > /sys/module/dmatest/parameters/norandom /# echo y > /sys/module/dmatest/parameters/verbose /# echo 1 > /sys/module/dmatest/parameters/run dmatest: dma0chan0-copy0: result #1: 'test passed' with src_off=0x0 dst_off=0x0 len=0x400000 dmatest: dma0chan0-copy0: result #2: 'test passed' with src_off=0x0 dst_off=0x0 len=0x400000 dmatest: dma0chan0-copy0: result #3: 'test passed' with src_off=0x0 dst_off=0x0 len=0x400000 dmatest: dma0chan0-copy0: result #4: 'test passed' with src_off=0x0 dst_off=0x0 len=0x400000 dmatest: dma0chan0-copy0: result #5: 'test passed' with src_off=0x0 dst_off=0x0 len=0x400000 dmatest: dma0chan0-copy0: result #6: 'test passed' with src_off=0x0 dst_off=0x0 len=0x400000 dmatest: dma0chan0-copy0: result #7: 'test passed' with src_off=0x0 dst_off=0x0 len=0x400000 dmatest: dma0chan0-copy0: result #8: 'test passed' with src_off=0x0 dst_off=0x0 len=0x400000 Before: dmatest: dma0chan0-copy0: summary 8 tests, 0 failures 48 iops 200338 KB/s (0) After this patch: dmatest: dma0chan0-copy0: summary 8 tests, 0 failures 179 iops 734873 KB/s (0) After this patch and increase dma clk to 400MHz: dmatest: dma0chan0-copy0: summary 8 tests, 0 failures 259 iops 1062929 KB/s (0) Signed-off-by: Sugar Zhang <[email protected]> Link: https://lore.kernel.org/r/[email protected] Signed-off-by: Vinod Koul <[email protected]> Signed-off-by: Sasha Levin <[email protected]>
radcolor
pushed a commit
that referenced
this issue
Dec 3, 2020
This patch is to fix a crash: #3 [ffffb6580689f898] oops_end at ffffffffa2835bc2 #4 [ffffb6580689f8b8] no_context at ffffffffa28766e7 #5 [ffffb6580689f920] async_page_fault at ffffffffa320135e [exception RIP: f2fs_is_compressed_page+34] RIP: ffffffffa2ba83a2 RSP: ffffb6580689f9d8 RFLAGS: 00010213 RAX: 0000000000000001 RBX: fffffc0f50b34bc0 RCX: 0000000000002122 RDX: 0000000000002123 RSI: 0000000000000c00 RDI: fffffc0f50b34bc0 RBP: ffff97e815a40178 R8: 0000000000000000 R9: ffff97e83ffc9000 R10: 0000000000032300 R11: 0000000000032380 R12: ffffb6580689fa38 R13: fffffc0f50b34bc0 R14: ffff97e825cbd000 R15: 0000000000000c00 ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0018 #6 [ffffb6580689f9d8] __is_cp_guaranteed at ffffffffa2b7ea98 #7 [ffffb6580689f9f0] f2fs_submit_page_write at ffffffffa2b81a69 #8 [ffffb6580689fa30] f2fs_do_write_meta_page at ffffffffa2b99777 #9 [ffffb6580689fae0] __f2fs_write_meta_page at ffffffffa2b75f1a #10 [ffffb6580689fb18] f2fs_sync_meta_pages at ffffffffa2b77466 #11 [ffffb6580689fc98] do_checkpoint at ffffffffa2b78e46 #12 [ffffb6580689fd88] f2fs_write_checkpoint at ffffffffa2b79c29 #13 [ffffb6580689fdd0] f2fs_sync_fs at ffffffffa2b69d95 #14 [ffffb6580689fe20] sync_filesystem at ffffffffa2ad2574 #15 [ffffb6580689fe30] generic_shutdown_super at ffffffffa2a9b582 #16 [ffffb6580689fe48] kill_block_super at ffffffffa2a9b6d1 #17 [ffffb6580689fe60] kill_f2fs_super at ffffffffa2b6abe1 #18 [ffffb6580689fea0] deactivate_locked_super at ffffffffa2a9afb6 #19 [ffffb6580689feb8] cleanup_mnt at ffffffffa2abcad4 #20 [ffffb6580689fee0] task_work_run at ffffffffa28bca28 #21 [ffffb6580689ff00] exit_to_usermode_loop at ffffffffa28050b7 #22 [ffffb6580689ff38] do_syscall_64 at ffffffffa280560e #23 [ffffb6580689ff50] entry_SYSCALL_64_after_hwframe at ffffffffa320008c This occurred when umount f2fs if enable F2FS_FS_COMPRESSION with F2FS_IO_TRACE. Fixes it by adding IS_IO_TRACED_PAGE to check validity of pid for page_private. Signed-off-by: Yu Changchun <[email protected]> Reviewed-by: Chao Yu <[email protected]> Signed-off-by: Jaegeuk Kim <[email protected]>
radcolor
pushed a commit
that referenced
this issue
Dec 3, 2020
This patch is to fix a crash: #3 [ffffb6580689f898] oops_end at ffffffffa2835bc2 #4 [ffffb6580689f8b8] no_context at ffffffffa28766e7 #5 [ffffb6580689f920] async_page_fault at ffffffffa320135e [exception RIP: f2fs_is_compressed_page+34] RIP: ffffffffa2ba83a2 RSP: ffffb6580689f9d8 RFLAGS: 00010213 RAX: 0000000000000001 RBX: fffffc0f50b34bc0 RCX: 0000000000002122 RDX: 0000000000002123 RSI: 0000000000000c00 RDI: fffffc0f50b34bc0 RBP: ffff97e815a40178 R8: 0000000000000000 R9: ffff97e83ffc9000 R10: 0000000000032300 R11: 0000000000032380 R12: ffffb6580689fa38 R13: fffffc0f50b34bc0 R14: ffff97e825cbd000 R15: 0000000000000c00 ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0018 #6 [ffffb6580689f9d8] __is_cp_guaranteed at ffffffffa2b7ea98 #7 [ffffb6580689f9f0] f2fs_submit_page_write at ffffffffa2b81a69 #8 [ffffb6580689fa30] f2fs_do_write_meta_page at ffffffffa2b99777 #9 [ffffb6580689fae0] __f2fs_write_meta_page at ffffffffa2b75f1a #10 [ffffb6580689fb18] f2fs_sync_meta_pages at ffffffffa2b77466 #11 [ffffb6580689fc98] do_checkpoint at ffffffffa2b78e46 #12 [ffffb6580689fd88] f2fs_write_checkpoint at ffffffffa2b79c29 #13 [ffffb6580689fdd0] f2fs_sync_fs at ffffffffa2b69d95 #14 [ffffb6580689fe20] sync_filesystem at ffffffffa2ad2574 #15 [ffffb6580689fe30] generic_shutdown_super at ffffffffa2a9b582 #16 [ffffb6580689fe48] kill_block_super at ffffffffa2a9b6d1 #17 [ffffb6580689fe60] kill_f2fs_super at ffffffffa2b6abe1 #18 [ffffb6580689fea0] deactivate_locked_super at ffffffffa2a9afb6 #19 [ffffb6580689feb8] cleanup_mnt at ffffffffa2abcad4 #20 [ffffb6580689fee0] task_work_run at ffffffffa28bca28 #21 [ffffb6580689ff00] exit_to_usermode_loop at ffffffffa28050b7 #22 [ffffb6580689ff38] do_syscall_64 at ffffffffa280560e #23 [ffffb6580689ff50] entry_SYSCALL_64_after_hwframe at ffffffffa320008c This occurred when umount f2fs if enable F2FS_FS_COMPRESSION with F2FS_IO_TRACE. Fixes it by adding IS_IO_TRACED_PAGE to check validity of pid for page_private. Signed-off-by: Yu Changchun <[email protected]> Reviewed-by: Chao Yu <[email protected]> Signed-off-by: Jaegeuk Kim <[email protected]>
radcolor
pushed a commit
that referenced
this issue
Dec 3, 2020
This patch is to fix a crash: #3 [ffffb6580689f898] oops_end at ffffffffa2835bc2 #4 [ffffb6580689f8b8] no_context at ffffffffa28766e7 #5 [ffffb6580689f920] async_page_fault at ffffffffa320135e [exception RIP: f2fs_is_compressed_page+34] RIP: ffffffffa2ba83a2 RSP: ffffb6580689f9d8 RFLAGS: 00010213 RAX: 0000000000000001 RBX: fffffc0f50b34bc0 RCX: 0000000000002122 RDX: 0000000000002123 RSI: 0000000000000c00 RDI: fffffc0f50b34bc0 RBP: ffff97e815a40178 R8: 0000000000000000 R9: ffff97e83ffc9000 R10: 0000000000032300 R11: 0000000000032380 R12: ffffb6580689fa38 R13: fffffc0f50b34bc0 R14: ffff97e825cbd000 R15: 0000000000000c00 ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0018 #6 [ffffb6580689f9d8] __is_cp_guaranteed at ffffffffa2b7ea98 #7 [ffffb6580689f9f0] f2fs_submit_page_write at ffffffffa2b81a69 #8 [ffffb6580689fa30] f2fs_do_write_meta_page at ffffffffa2b99777 #9 [ffffb6580689fae0] __f2fs_write_meta_page at ffffffffa2b75f1a #10 [ffffb6580689fb18] f2fs_sync_meta_pages at ffffffffa2b77466 #11 [ffffb6580689fc98] do_checkpoint at ffffffffa2b78e46 #12 [ffffb6580689fd88] f2fs_write_checkpoint at ffffffffa2b79c29 #13 [ffffb6580689fdd0] f2fs_sync_fs at ffffffffa2b69d95 #14 [ffffb6580689fe20] sync_filesystem at ffffffffa2ad2574 #15 [ffffb6580689fe30] generic_shutdown_super at ffffffffa2a9b582 #16 [ffffb6580689fe48] kill_block_super at ffffffffa2a9b6d1 #17 [ffffb6580689fe60] kill_f2fs_super at ffffffffa2b6abe1 #18 [ffffb6580689fea0] deactivate_locked_super at ffffffffa2a9afb6 #19 [ffffb6580689feb8] cleanup_mnt at ffffffffa2abcad4 #20 [ffffb6580689fee0] task_work_run at ffffffffa28bca28 #21 [ffffb6580689ff00] exit_to_usermode_loop at ffffffffa28050b7 #22 [ffffb6580689ff38] do_syscall_64 at ffffffffa280560e #23 [ffffb6580689ff50] entry_SYSCALL_64_after_hwframe at ffffffffa320008c This occurred when umount f2fs if enable F2FS_FS_COMPRESSION with F2FS_IO_TRACE. Fixes it by adding IS_IO_TRACED_PAGE to check validity of pid for page_private. Signed-off-by: Yu Changchun <[email protected]> Reviewed-by: Chao Yu <[email protected]> Signed-off-by: Jaegeuk Kim <[email protected]>
radcolor
pushed a commit
that referenced
this issue
Dec 11, 2020
commit ca10845a56856fff4de3804c85e6424d0f6d0cde upstream While running btrfs/061, btrfs/073, btrfs/078, or btrfs/178 we hit the following lockdep splat: ====================================================== WARNING: possible circular locking dependency detected 5.9.0-rc3+ #4 Not tainted ------------------------------------------------------ kswapd0/100 is trying to acquire lock: ffff96ecc22ef4a0 (&delayed_node->mutex){+.+.}-{3:3}, at: __btrfs_release_delayed_node.part.0+0x3f/0x330 but task is already holding lock: ffffffff8dd74700 (fs_reclaim){+.+.}-{0:0}, at: __fs_reclaim_acquire+0x5/0x30 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #3 (fs_reclaim){+.+.}-{0:0}: fs_reclaim_acquire+0x65/0x80 slab_pre_alloc_hook.constprop.0+0x20/0x200 kmem_cache_alloc+0x37/0x270 alloc_inode+0x82/0xb0 iget_locked+0x10d/0x2c0 kernfs_get_inode+0x1b/0x130 kernfs_get_tree+0x136/0x240 sysfs_get_tree+0x16/0x40 vfs_get_tree+0x28/0xc0 path_mount+0x434/0xc00 __x64_sys_mount+0xe3/0x120 do_syscall_64+0x33/0x40 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #2 (kernfs_mutex){+.+.}-{3:3}: __mutex_lock+0x7e/0x7e0 kernfs_add_one+0x23/0x150 kernfs_create_link+0x63/0xa0 sysfs_do_create_link_sd+0x5e/0xd0 btrfs_sysfs_add_devices_dir+0x81/0x130 btrfs_init_new_device+0x67f/0x1250 btrfs_ioctl+0x1ef/0x2e20 __x64_sys_ioctl+0x83/0xb0 do_syscall_64+0x33/0x40 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #1 (&fs_info->chunk_mutex){+.+.}-{3:3}: __mutex_lock+0x7e/0x7e0 btrfs_chunk_alloc+0x125/0x3a0 find_free_extent+0xdf6/0x1210 btrfs_reserve_extent+0xb3/0x1b0 btrfs_alloc_tree_block+0xb0/0x310 alloc_tree_block_no_bg_flush+0x4a/0x60 __btrfs_cow_block+0x11a/0x530 btrfs_cow_block+0x104/0x220 btrfs_search_slot+0x52e/0x9d0 btrfs_insert_empty_items+0x64/0xb0 btrfs_insert_delayed_items+0x90/0x4f0 btrfs_commit_inode_delayed_items+0x93/0x140 btrfs_log_inode+0x5de/0x2020 btrfs_log_inode_parent+0x429/0xc90 btrfs_log_new_name+0x95/0x9b btrfs_rename2+0xbb9/0x1800 vfs_rename+0x64f/0x9f0 do_renameat2+0x320/0x4e0 __x64_sys_rename+0x1f/0x30 do_syscall_64+0x33/0x40 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #0 (&delayed_node->mutex){+.+.}-{3:3}: __lock_acquire+0x119c/0x1fc0 lock_acquire+0xa7/0x3d0 __mutex_lock+0x7e/0x7e0 __btrfs_release_delayed_node.part.0+0x3f/0x330 btrfs_evict_inode+0x24c/0x500 evict+0xcf/0x1f0 dispose_list+0x48/0x70 prune_icache_sb+0x44/0x50 super_cache_scan+0x161/0x1e0 do_shrink_slab+0x178/0x3c0 shrink_slab+0x17c/0x290 shrink_node+0x2b2/0x6d0 balance_pgdat+0x30a/0x670 kswapd+0x213/0x4c0 kthread+0x138/0x160 ret_from_fork+0x1f/0x30 other info that might help us debug this: Chain exists of: &delayed_node->mutex --> kernfs_mutex --> fs_reclaim Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(fs_reclaim); lock(kernfs_mutex); lock(fs_reclaim); lock(&delayed_node->mutex); *** DEADLOCK *** 3 locks held by kswapd0/100: #0: ffffffff8dd74700 (fs_reclaim){+.+.}-{0:0}, at: __fs_reclaim_acquire+0x5/0x30 #1: ffffffff8dd65c50 (shrinker_rwsem){++++}-{3:3}, at: shrink_slab+0x115/0x290 #2: ffff96ed2ade30e0 (&type->s_umount_key#36){++++}-{3:3}, at: super_cache_scan+0x38/0x1e0 stack backtrace: CPU: 0 PID: 100 Comm: kswapd0 Not tainted 5.9.0-rc3+ #4 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014 Call Trace: dump_stack+0x8b/0xb8 check_noncircular+0x12d/0x150 __lock_acquire+0x119c/0x1fc0 lock_acquire+0xa7/0x3d0 ? __btrfs_release_delayed_node.part.0+0x3f/0x330 __mutex_lock+0x7e/0x7e0 ? __btrfs_release_delayed_node.part.0+0x3f/0x330 ? __btrfs_release_delayed_node.part.0+0x3f/0x330 ? lock_acquire+0xa7/0x3d0 ? find_held_lock+0x2b/0x80 __btrfs_release_delayed_node.part.0+0x3f/0x330 btrfs_evict_inode+0x24c/0x500 evict+0xcf/0x1f0 dispose_list+0x48/0x70 prune_icache_sb+0x44/0x50 super_cache_scan+0x161/0x1e0 do_shrink_slab+0x178/0x3c0 shrink_slab+0x17c/0x290 shrink_node+0x2b2/0x6d0 balance_pgdat+0x30a/0x670 kswapd+0x213/0x4c0 ? _raw_spin_unlock_irqrestore+0x41/0x50 ? add_wait_queue_exclusive+0x70/0x70 ? balance_pgdat+0x670/0x670 kthread+0x138/0x160 ? kthread_create_worker_on_cpu+0x40/0x40 ret_from_fork+0x1f/0x30 This happens because we are holding the chunk_mutex at the time of adding in a new device. However we only need to hold the device_list_mutex, as we're going to iterate over the fs_devices devices. Move the sysfs init stuff outside of the chunk_mutex to get rid of this lockdep splat. CC: [email protected] # 4.4.x: f3cd2c58110dad14e: btrfs: sysfs, rename device_link add/remove functions CC: [email protected] # 4.4.x Reported-by: David Sterba <[email protected]> Signed-off-by: Josef Bacik <[email protected]> Reviewed-by: David Sterba <[email protected]> Signed-off-by: David Sterba <[email protected]> [sudip: adjust context] Signed-off-by: Sudip Mukherjee <[email protected]> Signed-off-by: Sasha Levin <[email protected]>
radcolor
pushed a commit
that referenced
this issue
Dec 29, 2020
[ Upstream commit 4a9d81caf841cd2c0ae36abec9c2963bf21d0284 ] If the elem is deleted during be iterated on it, the iteration process will fall into an endless loop. kernel: NMI watchdog: BUG: soft lockup - CPU#4 stuck for 22s! [nfsd:17137] PID: 17137 TASK: ffff8818d93c0000 CPU: 4 COMMAND: "nfsd" [exception RIP: __state_in_grace+76] RIP: ffffffffc00e817c RSP: ffff8818d3aefc98 RFLAGS: 00000246 RAX: ffff881dc0c38298 RBX: ffffffff81b03580 RCX: ffff881dc02c9f50 RDX: ffff881e3fce8500 RSI: 0000000000000001 RDI: ffffffff81b03580 RBP: ffff8818d3aefca0 R8: 0000000000000020 R9: ffff8818d3aefd40 R10: ffff88017fc03800 R11: ffff8818e83933c0 R12: ffff8818d3aefd40 R13: 0000000000000000 R14: ffff8818e8391068 R15: ffff8818fa6e4000 CS: 0010 SS: 0018 #0 [ffff8818d3aefc98] opens_in_grace at ffffffffc00e81e3 [grace] #1 [ffff8818d3aefca8] nfs4_preprocess_stateid_op at ffffffffc02a3e6c [nfsd] #2 [ffff8818d3aefd18] nfsd4_write at ffffffffc028ed5b [nfsd] #3 [ffff8818d3aefd80] nfsd4_proc_compound at ffffffffc0290a0d [nfsd] #4 [ffff8818d3aefdd0] nfsd_dispatch at ffffffffc027b800 [nfsd] #5 [ffff8818d3aefe08] svc_process_common at ffffffffc02017f3 [sunrpc] #6 [ffff8818d3aefe70] svc_process at ffffffffc0201ce3 [sunrpc] #7 [ffff8818d3aefe98] nfsd at ffffffffc027b117 [nfsd] #8 [ffff8818d3aefec8] kthread at ffffffff810b88c1 #9 [ffff8818d3aeff50] ret_from_fork at ffffffff816d1607 The troublemake elem: crash> lock_manager ffff881dc0c38298 struct lock_manager { list = { next = 0xffff881dc0c38298, prev = 0xffff881dc0c38298 }, block_opens = false } Fixes: c87fb4a ("lockd: NLM grace period shouldn't block NFSv4 opens") Signed-off-by: Cheng Lin <[email protected]> Signed-off-by: Yi Wang <[email protected]> Signed-off-by: Chuck Lever <[email protected]> Signed-off-by: Sasha Levin <[email protected]>
radcolor
pushed a commit
that referenced
this issue
Jan 29, 2021
Our static-static calculation returns a failure if the public key is of low order. We check for this when peers are added, and don't allow them to be added if they're low order, except in the case where we haven't yet been given a private key. In that case, we would defer the removal of the peer until we're given a private key, since at that point we're doing new static-static calculations which incur failures we can act on. This meant, however, that we wound up removing peers rather late in the configuration flow. Syzkaller points out that peer_remove calls flush_workqueue, which in turn might then wait for sending a handshake initiation to complete. Since handshake initiation needs the static identity lock, holding the static identity lock while calling peer_remove can result in a rare deadlock. We have precisely this case in this situation of late-stage peer removal based on an invalid public key. We can't drop the lock when removing, because then incoming handshakes might interact with a bogus static-static calculation. While the band-aid patch for this would involve breaking up the peer removal into two steps like wg_peer_remove_all does, in order to solve the locking issue, there's actually a much more elegant way of fixing this: If the static-static calculation succeeds with one private key, it *must* succeed with all others, because all 32-byte strings map to valid private keys, thanks to clamping. That means we can get rid of this silly dance and locking headaches of removing peers late in the configuration flow, and instead just reject them early on, regardless of whether the device has yet been assigned a private key. For the case where the device doesn't yet have a private key, we safely use zeros just for the purposes of checking for low order points by way of checking the output of the calculation. The following PoC will trigger the deadlock: ip link add wg0 type wireguard ip addr add 10.0.0.1/24 dev wg0 ip link set wg0 up ping -f 10.0.0.2 & while true; do wg set wg0 private-key /dev/null peer AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= allowed-ips 10.0.0.0/24 endpoint 10.0.0.3:1234 wg set wg0 private-key <(echo AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA=) done [ 0.949105] ====================================================== [ 0.949550] WARNING: possible circular locking dependency detected [ 0.950143] 5.5.0-debug+ #18 Not tainted [ 0.950431] ------------------------------------------------------ [ 0.950959] wg/89 is trying to acquire lock: [ 0.951252] ffff8880333e2128 ((wq_completion)wg-kex-wg0){+.+.}, at: flush_workqueue+0xe3/0x12f0 [ 0.951865] [ 0.951865] but task is already holding lock: [ 0.952280] ffff888032819bc0 (&wg->static_identity.lock){++++}, at: wg_set_device+0x95d/0xcc0 [ 0.953011] [ 0.953011] which lock already depends on the new lock. [ 0.953011] [ 0.953651] [ 0.953651] the existing dependency chain (in reverse order) is: [ 0.954292] [ 0.954292] -> #2 (&wg->static_identity.lock){++++}: [ 0.954804] lock_acquire+0x127/0x350 [ 0.955133] down_read+0x83/0x410 [ 0.955428] wg_noise_handshake_create_initiation+0x97/0x700 [ 0.955885] wg_packet_send_handshake_initiation+0x13a/0x280 [ 0.956401] wg_packet_handshake_send_worker+0x10/0x20 [ 0.956841] process_one_work+0x806/0x1500 [ 0.957167] worker_thread+0x8c/0xcb0 [ 0.957549] kthread+0x2ee/0x3b0 [ 0.957792] ret_from_fork+0x24/0x30 [ 0.958234] [ 0.958234] -> #1 ((work_completion)(&peer->transmit_handshake_work)){+.+.}: [ 0.958808] lock_acquire+0x127/0x350 [ 0.959075] process_one_work+0x7ab/0x1500 [ 0.959369] worker_thread+0x8c/0xcb0 [ 0.959639] kthread+0x2ee/0x3b0 [ 0.959896] ret_from_fork+0x24/0x30 [ 0.960346] [ 0.960346] -> #0 ((wq_completion)wg-kex-wg0){+.+.}: [ 0.960945] check_prev_add+0x167/0x1e20 [ 0.961351] __lock_acquire+0x2012/0x3170 [ 0.961725] lock_acquire+0x127/0x350 [ 0.961990] flush_workqueue+0x106/0x12f0 [ 0.962280] peer_remove_after_dead+0x160/0x220 [ 0.962600] wg_set_device+0xa24/0xcc0 [ 0.962994] genl_rcv_msg+0x52f/0xe90 [ 0.963298] netlink_rcv_skb+0x111/0x320 [ 0.963618] genl_rcv+0x1f/0x30 [ 0.963853] netlink_unicast+0x3f6/0x610 [ 0.964245] netlink_sendmsg+0x700/0xb80 [ 0.964586] __sys_sendto+0x1dd/0x2c0 [ 0.964854] __x64_sys_sendto+0xd8/0x1b0 [ 0.965141] do_syscall_64+0x90/0xd9a [ 0.965408] entry_SYSCALL_64_after_hwframe+0x49/0xbe [ 0.965769] [ 0.965769] other info that might help us debug this: [ 0.965769] [ 0.966337] Chain exists of: [ 0.966337] (wq_completion)wg-kex-wg0 --> (work_completion)(&peer->transmit_handshake_work) --> &wg->static_identity.lock [ 0.966337] [ 0.967417] Possible unsafe locking scenario: [ 0.967417] [ 0.967836] CPU0 CPU1 [ 0.968155] ---- ---- [ 0.968497] lock(&wg->static_identity.lock); [ 0.968779] lock((work_completion)(&peer->transmit_handshake_work)); [ 0.969345] lock(&wg->static_identity.lock); [ 0.969809] lock((wq_completion)wg-kex-wg0); [ 0.970146] [ 0.970146] *** DEADLOCK *** [ 0.970146] [ 0.970531] 5 locks held by wg/89: [ 0.970908] #0: ffffffff827433c8 (cb_lock){++++}, at: genl_rcv+0x10/0x30 [ 0.971400] #1: ffffffff82743480 (genl_mutex){+.+.}, at: genl_rcv_msg+0x642/0xe90 [ 0.971924] #2: ffffffff827160c0 (rtnl_mutex){+.+.}, at: wg_set_device+0x9f/0xcc0 [ 0.972488] #3: ffff888032819de0 (&wg->device_update_lock){+.+.}, at: wg_set_device+0xb0/0xcc0 [ 0.973095] #4: ffff888032819bc0 (&wg->static_identity.lock){++++}, at: wg_set_device+0x95d/0xcc0 [ 0.973653] [ 0.973653] stack backtrace: [ 0.973932] CPU: 1 PID: 89 Comm: wg Not tainted 5.5.0-debug+ #18 [ 0.974476] Call Trace: [ 0.974638] dump_stack+0x97/0xe0 [ 0.974869] check_noncircular+0x312/0x3e0 [ 0.975132] ? print_circular_bug+0x1f0/0x1f0 [ 0.975410] ? __kernel_text_address+0x9/0x30 [ 0.975727] ? unwind_get_return_address+0x51/0x90 [ 0.976024] check_prev_add+0x167/0x1e20 [ 0.976367] ? graph_lock+0x70/0x160 [ 0.976682] __lock_acquire+0x2012/0x3170 [ 0.976998] ? register_lock_class+0x1140/0x1140 [ 0.977323] lock_acquire+0x127/0x350 [ 0.977627] ? flush_workqueue+0xe3/0x12f0 [ 0.977890] flush_workqueue+0x106/0x12f0 [ 0.978147] ? flush_workqueue+0xe3/0x12f0 [ 0.978410] ? find_held_lock+0x2c/0x110 [ 0.978662] ? lock_downgrade+0x6e0/0x6e0 [ 0.978919] ? queue_rcu_work+0x60/0x60 [ 0.979166] ? netif_napi_del+0x151/0x3b0 [ 0.979501] ? peer_remove_after_dead+0x160/0x220 [ 0.979871] peer_remove_after_dead+0x160/0x220 [ 0.980232] wg_set_device+0xa24/0xcc0 [ 0.980516] ? deref_stack_reg+0x8e/0xc0 [ 0.980801] ? set_peer+0xe10/0xe10 [ 0.981040] ? __ww_mutex_check_waiters+0x150/0x150 [ 0.981430] ? __nla_validate_parse+0x163/0x270 [ 0.981719] ? genl_family_rcv_msg_attrs_parse+0x13f/0x310 [ 0.982078] genl_rcv_msg+0x52f/0xe90 [ 0.982348] ? genl_family_rcv_msg_attrs_parse+0x310/0x310 [ 0.982690] ? register_lock_class+0x1140/0x1140 [ 0.983049] netlink_rcv_skb+0x111/0x320 [ 0.983298] ? genl_family_rcv_msg_attrs_parse+0x310/0x310 [ 0.983645] ? netlink_ack+0x880/0x880 [ 0.983888] genl_rcv+0x1f/0x30 [ 0.984168] netlink_unicast+0x3f6/0x610 [ 0.984443] ? netlink_detachskb+0x60/0x60 [ 0.984729] ? find_held_lock+0x2c/0x110 [ 0.984976] netlink_sendmsg+0x700/0xb80 [ 0.985220] ? netlink_broadcast_filtered+0xa60/0xa60 [ 0.985533] __sys_sendto+0x1dd/0x2c0 [ 0.985763] ? __x64_sys_getpeername+0xb0/0xb0 [ 0.986039] ? sockfd_lookup_light+0x17/0x160 [ 0.986397] ? __sys_recvmsg+0x8c/0xf0 [ 0.986711] ? __sys_recvmsg_sock+0xd0/0xd0 [ 0.987018] __x64_sys_sendto+0xd8/0x1b0 [ 0.987283] ? lockdep_hardirqs_on+0x39b/0x5a0 [ 0.987666] do_syscall_64+0x90/0xd9a [ 0.987903] entry_SYSCALL_64_after_hwframe+0x49/0xbe [ 0.988223] RIP: 0033:0x7fe77c12003e [ 0.988508] Code: c3 8b 07 85 c0 75 24 49 89 fb 48 89 f0 48 89 d7 48 89 ce 4c 89 c2 4d 89 ca 4c 8b 44 24 08 4c 8b 4c 24 10 4c 4 [ 0.989666] RSP: 002b:00007fffada2ed58 EFLAGS: 00000246 ORIG_RAX: 000000000000002c [ 0.990137] RAX: ffffffffffffffda RBX: 00007fe77c159d48 RCX: 00007fe77c12003e [ 0.990583] RDX: 0000000000000040 RSI: 000055fd1d38e020 RDI: 0000000000000004 [ 0.991091] RBP: 000055fd1d38e020 R08: 000055fd1cb63358 R09: 000000000000000c [ 0.991568] R10: 0000000000000000 R11: 0000000000000246 R12: 000000000000002c [ 0.992014] R13: 0000000000000004 R14: 000055fd1d38e020 R15: 0000000000000001 Signed-off-by: Jason A. Donenfeld <[email protected]> Reported-by: syzbot <[email protected]>
radcolor
pushed a commit
that referenced
this issue
Mar 9, 2021
[ Upstream commit c5c97cadd7ed13381cb6b4bef5c841a66938d350 ] The ubsan reported the following error. It was because sample's raw data missed u32 padding at the end. So it broke the alignment of the array after it. The raw data contains an u32 size prefix so the data size should have an u32 padding after 8-byte aligned data. 27: Sample parsing :util/synthetic-events.c:1539:4: runtime error: store to misaligned address 0x62100006b9bc for type '__u64' (aka 'unsigned long long'), which requires 8 byte alignment 0x62100006b9bc: note: pointer points here 00 00 00 00 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ^ #0 0x561532a9fc96 in perf_event__synthesize_sample util/synthetic-events.c:1539:13 #1 0x5615327f4a4f in do_test tests/sample-parsing.c:284:8 #2 0x5615327f3f50 in test__sample_parsing tests/sample-parsing.c:381:9 #3 0x56153279d3a1 in run_test tests/builtin-test.c:424:9 #4 0x56153279c836 in test_and_print tests/builtin-test.c:454:9 #5 0x56153279b7eb in __cmd_test tests/builtin-test.c:675:4 #6 0x56153279abf0 in cmd_test tests/builtin-test.c:821:9 #7 0x56153264e796 in run_builtin perf.c:312:11 #8 0x56153264cf03 in handle_internal_command perf.c:364:8 #9 0x56153264e47d in run_argv perf.c:408:2 #10 0x56153264c9a9 in main perf.c:538:3 #11 0x7f137ab6fbbc in __libc_start_main (/lib64/libc.so.6+0x38bbc) #12 0x561532596828 in _start ... SUMMARY: UndefinedBehaviorSanitizer: misaligned-pointer-use util/synthetic-events.c:1539:4 in Fixes: 045f8cd ("perf tests: Add a sample parsing test") Signed-off-by: Namhyung Kim <[email protected]> Acked-by: Adrian Hunter <[email protected]> Cc: Alexander Shishkin <[email protected]> Cc: Andi Kleen <[email protected]> Cc: Ian Rogers <[email protected]> Cc: Ingo Molnar <[email protected]> Cc: Jiri Olsa <[email protected]> Cc: Mark Rutland <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Stephane Eranian <[email protected]> Link: https://lore.kernel.org/r/[email protected] Signed-off-by: Arnaldo Carvalho de Melo <[email protected]> Signed-off-by: Sasha Levin <[email protected]>
zebusen
pushed a commit
to zebusen/android_kernel_xiaomi_whyred
that referenced
this issue
Aug 3, 2021
This patch implements deduplication feature in zram. The purpose of this work is naturally to save amount of memory usage by zram. Android is one of the biggest users to use zram as swap and it's really important to save amount of memory usage. There is a paper that reports that duplication ratio of Android's memory content is rather high [1]. And, there is a similar work on zswap that also reports that experiments has shown that around 10-15% of pages stored in zswp are duplicates and deduplicate them provides some benefits [2]. Also, there is a different kind of workload that uses zram as blockdev and store build outputs into it to reduce wear-out problem of real blockdev. In this workload, deduplication hit is very high due to temporary files and intermediate object files. Detailed analysis is on the bottom of this description. Anyway, if we can detect duplicated content and avoid to store duplicated content at different memory space, we can save memory. This patch tries to do that. Implementation is almost simple and intuitive but I should note one thing about implementation detail. To check duplication, this patch uses checksum of the page and collision of this checksum could be possible. There would be many choices to handle this situation but this patch chooses to allow entry with duplicated checksum to be added to the hash, but, not to compare all entries with duplicated checksum when checking duplication. I guess that checksum collision is quite rare event and we don't need to pay any attention to such a case. Therefore, I decided the most simplest way to implement the feature. If there is a different opinion, I can accept and go that way. Following is the result of this patch. Test result radcolor#1 (Swap): Android Marshmallow, emulator, x86_64, Backporting to kernel v3.18 orig_data_size: 145297408 compr_data_size: 32408125 mem_used_total: 32276480 dup_data_size: 3188134 meta_data_size: 1444272 Last two metrics added to mm_stat are related to this work. First one, dup_data_size, is amount of saved memory by avoiding to store duplicated page. Later one, meta_data_size, is the amount of data structure to support deduplication. If dup > meta, we can judge that the patch improves memory usage. In Adnroid, we can save 5% of memory usage by this work. Test result radcolor#2 (Blockdev): build the kernel and store output to ext4 FS on zram <no-dedup> Elapsed time: 249 s mm_stat: 430845952 191014886 196898816 0 196898816 28320 0 0 0 <dedup> Elapsed time: 250 s mm_stat: 430505984 190971334 148365312 0 148365312 28404 0 47287038 3945792 There is no performance degradation and save 23% memory. Test result radcolor#3 (Blockdev): copy android build output dir(out/host) to ext4 FS on zram <no-dedup> Elapsed time: out/host: 88 s mm_stat: 8834420736 3658184579 3834208256 0 3834208256 32889 0 0 0 <dedup> Elapsed time: out/host: 100 s mm_stat: 8832929792 3657329322 2832015360 0 2832015360 32609 0 952568877 80880336 It shows performance degradation roughly 13% and save 24% memory. Maybe, it is due to overhead of calculating checksum and comparison. Test result radcolor#4 (Blockdev): copy android build output dir(out/target/common) to ext4 FS on zram <no-dedup> Elapsed time: out/host: 203 s mm_stat: 4041678848 2310355010 2346577920 0 2346582016 500 4 0 0 <dedup> Elapsed time: out/host: 201 s mm_stat: 4041666560 2310488276 1338150912 0 1338150912 476 0 989088794 24564336 Memory is saved by 42% and performance is the same. Even if there is overhead of calculating checksum and comparison, large hit ratio compensate it since hit leads to less compression attempt. I checked the detailed reason of savings on kernel build workload and there are some cases that deduplication happens. 1) *.cmd Build command is usually similar in one directory so content of these file are very similar. In my system, more than 789 lines in fs/ext4/.namei.o.cmd and fs/ext4/.inode.o.cmd are the same in 944 and 938 lines of the file, respectively. 2) intermediate object files built-in.o and temporary object file have the similar contents. More than 50% of fs/ext4/ext4.o is the same with fs/ext4/built-in.o. 3) vmlinux .tmp_vmlinux1 and .tmp_vmlinux2 and arch/x86/boo/compressed/vmlinux.bin have the similar contents. Android test has similar case that some of object files(.class and .so) are similar with another ones. (./host/linux-x86/lib/libartd.so and ./host/linux-x86-lib/libartd-comiler.so) Anyway, benefit seems to be largely dependent on the workload so following patch will make this feature optional. However, this feature can help some usecases so is deserved to be merged. [1]: MemScope: Analyzing Memory Duplication on Android Systems, dl.acm.org/citation.cfm?id=2797023 [2]: zswap: Optimize compressed pool memory utilization, lkml.kernel.org/r/1341407574.7551.1471584870761.JavaMail.weblogic@epwas3p2 Change-Id: I8fe80c956c33f88a6af337d50d9e210e5c35ce37 Reviewed-by: Sergey Senozhatsky <[email protected]> Acked-by: Minchan Kim <[email protected]> Signed-off-by: Joonsoo Kim <[email protected]> Link: https://lore.kernel.org/patchwork/patch/787162/ Patch-mainline: linux-kernel@ Thu, 11 May 2017 22:30:26 Signed-off-by: Charan Teja Reddy <[email protected]> Signed-off-by: Park Ju Hyung <[email protected]> Signed-off-by: Kazuki Hashimoto <[email protected]>
zebusen
pushed a commit
to zebusen/android_kernel_xiaomi_whyred
that referenced
this issue
Aug 13, 2021
This patch implements deduplication feature in zram. The purpose of this work is naturally to save amount of memory usage by zram. Android is one of the biggest users to use zram as swap and it's really important to save amount of memory usage. There is a paper that reports that duplication ratio of Android's memory content is rather high [1]. And, there is a similar work on zswap that also reports that experiments has shown that around 10-15% of pages stored in zswp are duplicates and deduplicate them provides some benefits [2]. Also, there is a different kind of workload that uses zram as blockdev and store build outputs into it to reduce wear-out problem of real blockdev. In this workload, deduplication hit is very high due to temporary files and intermediate object files. Detailed analysis is on the bottom of this description. Anyway, if we can detect duplicated content and avoid to store duplicated content at different memory space, we can save memory. This patch tries to do that. Implementation is almost simple and intuitive but I should note one thing about implementation detail. To check duplication, this patch uses checksum of the page and collision of this checksum could be possible. There would be many choices to handle this situation but this patch chooses to allow entry with duplicated checksum to be added to the hash, but, not to compare all entries with duplicated checksum when checking duplication. I guess that checksum collision is quite rare event and we don't need to pay any attention to such a case. Therefore, I decided the most simplest way to implement the feature. If there is a different opinion, I can accept and go that way. Following is the result of this patch. Test result radcolor#1 (Swap): Android Marshmallow, emulator, x86_64, Backporting to kernel v3.18 orig_data_size: 145297408 compr_data_size: 32408125 mem_used_total: 32276480 dup_data_size: 3188134 meta_data_size: 1444272 Last two metrics added to mm_stat are related to this work. First one, dup_data_size, is amount of saved memory by avoiding to store duplicated page. Later one, meta_data_size, is the amount of data structure to support deduplication. If dup > meta, we can judge that the patch improves memory usage. In Adnroid, we can save 5% of memory usage by this work. Test result radcolor#2 (Blockdev): build the kernel and store output to ext4 FS on zram <no-dedup> Elapsed time: 249 s mm_stat: 430845952 191014886 196898816 0 196898816 28320 0 0 0 <dedup> Elapsed time: 250 s mm_stat: 430505984 190971334 148365312 0 148365312 28404 0 47287038 3945792 There is no performance degradation and save 23% memory. Test result radcolor#3 (Blockdev): copy android build output dir(out/host) to ext4 FS on zram <no-dedup> Elapsed time: out/host: 88 s mm_stat: 8834420736 3658184579 3834208256 0 3834208256 32889 0 0 0 <dedup> Elapsed time: out/host: 100 s mm_stat: 8832929792 3657329322 2832015360 0 2832015360 32609 0 952568877 80880336 It shows performance degradation roughly 13% and save 24% memory. Maybe, it is due to overhead of calculating checksum and comparison. Test result radcolor#4 (Blockdev): copy android build output dir(out/target/common) to ext4 FS on zram <no-dedup> Elapsed time: out/host: 203 s mm_stat: 4041678848 2310355010 2346577920 0 2346582016 500 4 0 0 <dedup> Elapsed time: out/host: 201 s mm_stat: 4041666560 2310488276 1338150912 0 1338150912 476 0 989088794 24564336 Memory is saved by 42% and performance is the same. Even if there is overhead of calculating checksum and comparison, large hit ratio compensate it since hit leads to less compression attempt. I checked the detailed reason of savings on kernel build workload and there are some cases that deduplication happens. 1) *.cmd Build command is usually similar in one directory so content of these file are very similar. In my system, more than 789 lines in fs/ext4/.namei.o.cmd and fs/ext4/.inode.o.cmd are the same in 944 and 938 lines of the file, respectively. 2) intermediate object files built-in.o and temporary object file have the similar contents. More than 50% of fs/ext4/ext4.o is the same with fs/ext4/built-in.o. 3) vmlinux .tmp_vmlinux1 and .tmp_vmlinux2 and arch/x86/boo/compressed/vmlinux.bin have the similar contents. Android test has similar case that some of object files(.class and .so) are similar with another ones. (./host/linux-x86/lib/libartd.so and ./host/linux-x86-lib/libartd-comiler.so) Anyway, benefit seems to be largely dependent on the workload so following patch will make this feature optional. However, this feature can help some usecases so is deserved to be merged. [1]: MemScope: Analyzing Memory Duplication on Android Systems, dl.acm.org/citation.cfm?id=2797023 [2]: zswap: Optimize compressed pool memory utilization, lkml.kernel.org/r/1341407574.7551.1471584870761.JavaMail.weblogic@epwas3p2 Change-Id: I8fe80c956c33f88a6af337d50d9e210e5c35ce37 Reviewed-by: Sergey Senozhatsky <[email protected]> Acked-by: Minchan Kim <[email protected]> Signed-off-by: Joonsoo Kim <[email protected]> Link: https://lore.kernel.org/patchwork/patch/787162/ Patch-mainline: linux-kernel@ Thu, 11 May 2017 22:30:26 Signed-off-by: Charan Teja Reddy <[email protected]> Signed-off-by: Park Ju Hyung <[email protected]> Signed-off-by: Kazuki Hashimoto <[email protected]>
zebusen
pushed a commit
to zebusen/android_kernel_xiaomi_whyred
that referenced
this issue
Aug 13, 2021
This patch implements deduplication feature in zram. The purpose of this work is naturally to save amount of memory usage by zram. Android is one of the biggest users to use zram as swap and it's really important to save amount of memory usage. There is a paper that reports that duplication ratio of Android's memory content is rather high [1]. And, there is a similar work on zswap that also reports that experiments has shown that around 10-15% of pages stored in zswp are duplicates and deduplicate them provides some benefits [2]. Also, there is a different kind of workload that uses zram as blockdev and store build outputs into it to reduce wear-out problem of real blockdev. In this workload, deduplication hit is very high due to temporary files and intermediate object files. Detailed analysis is on the bottom of this description. Anyway, if we can detect duplicated content and avoid to store duplicated content at different memory space, we can save memory. This patch tries to do that. Implementation is almost simple and intuitive but I should note one thing about implementation detail. To check duplication, this patch uses checksum of the page and collision of this checksum could be possible. There would be many choices to handle this situation but this patch chooses to allow entry with duplicated checksum to be added to the hash, but, not to compare all entries with duplicated checksum when checking duplication. I guess that checksum collision is quite rare event and we don't need to pay any attention to such a case. Therefore, I decided the most simplest way to implement the feature. If there is a different opinion, I can accept and go that way. Following is the result of this patch. Test result radcolor#1 (Swap): Android Marshmallow, emulator, x86_64, Backporting to kernel v3.18 orig_data_size: 145297408 compr_data_size: 32408125 mem_used_total: 32276480 dup_data_size: 3188134 meta_data_size: 1444272 Last two metrics added to mm_stat are related to this work. First one, dup_data_size, is amount of saved memory by avoiding to store duplicated page. Later one, meta_data_size, is the amount of data structure to support deduplication. If dup > meta, we can judge that the patch improves memory usage. In Adnroid, we can save 5% of memory usage by this work. Test result radcolor#2 (Blockdev): build the kernel and store output to ext4 FS on zram <no-dedup> Elapsed time: 249 s mm_stat: 430845952 191014886 196898816 0 196898816 28320 0 0 0 <dedup> Elapsed time: 250 s mm_stat: 430505984 190971334 148365312 0 148365312 28404 0 47287038 3945792 There is no performance degradation and save 23% memory. Test result radcolor#3 (Blockdev): copy android build output dir(out/host) to ext4 FS on zram <no-dedup> Elapsed time: out/host: 88 s mm_stat: 8834420736 3658184579 3834208256 0 3834208256 32889 0 0 0 <dedup> Elapsed time: out/host: 100 s mm_stat: 8832929792 3657329322 2832015360 0 2832015360 32609 0 952568877 80880336 It shows performance degradation roughly 13% and save 24% memory. Maybe, it is due to overhead of calculating checksum and comparison. Test result radcolor#4 (Blockdev): copy android build output dir(out/target/common) to ext4 FS on zram <no-dedup> Elapsed time: out/host: 203 s mm_stat: 4041678848 2310355010 2346577920 0 2346582016 500 4 0 0 <dedup> Elapsed time: out/host: 201 s mm_stat: 4041666560 2310488276 1338150912 0 1338150912 476 0 989088794 24564336 Memory is saved by 42% and performance is the same. Even if there is overhead of calculating checksum and comparison, large hit ratio compensate it since hit leads to less compression attempt. I checked the detailed reason of savings on kernel build workload and there are some cases that deduplication happens. 1) *.cmd Build command is usually similar in one directory so content of these file are very similar. In my system, more than 789 lines in fs/ext4/.namei.o.cmd and fs/ext4/.inode.o.cmd are the same in 944 and 938 lines of the file, respectively. 2) intermediate object files built-in.o and temporary object file have the similar contents. More than 50% of fs/ext4/ext4.o is the same with fs/ext4/built-in.o. 3) vmlinux .tmp_vmlinux1 and .tmp_vmlinux2 and arch/x86/boo/compressed/vmlinux.bin have the similar contents. Android test has similar case that some of object files(.class and .so) are similar with another ones. (./host/linux-x86/lib/libartd.so and ./host/linux-x86-lib/libartd-comiler.so) Anyway, benefit seems to be largely dependent on the workload so following patch will make this feature optional. However, this feature can help some usecases so is deserved to be merged. [1]: MemScope: Analyzing Memory Duplication on Android Systems, dl.acm.org/citation.cfm?id=2797023 [2]: zswap: Optimize compressed pool memory utilization, lkml.kernel.org/r/1341407574.7551.1471584870761.JavaMail.weblogic@epwas3p2 Change-Id: I8fe80c956c33f88a6af337d50d9e210e5c35ce37 Reviewed-by: Sergey Senozhatsky <[email protected]> Acked-by: Minchan Kim <[email protected]> Signed-off-by: Joonsoo Kim <[email protected]> Link: https://lore.kernel.org/patchwork/patch/787162/ Patch-mainline: linux-kernel@ Thu, 11 May 2017 22:30:26 Signed-off-by: Charan Teja Reddy <[email protected]> Signed-off-by: Park Ju Hyung <[email protected]> Signed-off-by: Kazuki Hashimoto <[email protected]>
zebusen
pushed a commit
to zebusen/android_kernel_xiaomi_whyred
that referenced
this issue
Aug 15, 2021
Daniel Casini got this warn while running a DL task here at RetisLab: [ 461.137582] ------------[ cut here ]------------ [ 461.137583] rq->clock_update_flags < RQCF_ACT_SKIP [ 461.137599] WARNING: CPU: 4 PID: 2354 at kernel/sched/sched.h:967 assert_clock_updated.isra.32.part.33+0x17/0x20 [a ton of modules] [ 461.137646] CPU: 4 PID: 2354 Comm: label_image Not tainted 4.18.0-rc4+ radcolor#3 [ 461.137647] Hardware name: ASUS All Series/Z87-K, BIOS 0801 09/02/2013 [ 461.137649] RIP: 0010:assert_clock_updated.isra.32.part.33+0x17/0x20 [ 461.137649] Code: ff 48 89 83 08 09 00 00 eb c6 66 0f 1f 84 00 00 00 00 00 55 48 c7 c7 98 7a 6c a5 c6 05 bc 0d 54 01 01 48 89 e5 e8 a9 84 fb ff <0f> 0b 5d c3 0f 1f 44 00 00 0f 1f 44 00 00 83 7e 60 01 74 0a 48 3b [ 461.137673] RSP: 0018:ffffa77e08cafc68 EFLAGS: 00010082 [ 461.137674] RAX: 0000000000000000 RBX: ffff8b3fc1702d80 RCX: 0000000000000006 [ 461.137674] RDX: 0000000000000007 RSI: 0000000000000096 RDI: ffff8b3fded164b0 [ 461.137675] RBP: ffffa77e08cafc68 R08: 0000000000000026 R09: 0000000000000339 [ 461.137676] R10: ffff8b3fd060d410 R11: 0000000000000026 R12: ffffffffa4e14e20 [ 461.137677] R13: ffff8b3fdec22940 R14: ffff8b3fc1702da0 R15: ffff8b3fdec22940 [ 461.137678] FS: 00007efe43ee5700(0000) GS:ffff8b3fded00000(0000) knlGS:0000000000000000 [ 461.137679] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 461.137680] CR2: 00007efe30000010 CR3: 0000000301744003 CR4: 00000000001606e0 [ 461.137680] Call Trace: [ 461.137684] push_dl_task.part.46+0x3bc/0x460 [ 461.137686] task_woken_dl+0x60/0x80 [ 461.137689] ttwu_do_wakeup+0x4f/0x150 [ 461.137690] ttwu_do_activate+0x77/0x80 [ 461.137692] try_to_wake_up+0x1d6/0x4c0 [ 461.137693] wake_up_q+0x32/0x70 [ 461.137696] do_futex+0x7e7/0xb50 [ 461.137698] __x64_sys_futex+0x8b/0x180 [ 461.137701] do_syscall_64+0x5a/0x110 [ 461.137703] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [ 461.137705] RIP: 0033:0x7efe4918ca26 [ 461.137705] Code: 00 00 00 74 17 49 8b 48 20 44 8b 59 10 41 83 e3 30 41 83 fb 20 74 1e be 85 00 00 00 41 ba 01 00 00 00 41 b9 01 00 00 04 0f 05 <48> 3d 01 f0 ff ff 73 1f 31 c0 c3 be 8c 00 00 00 49 89 c8 4d 31 d2 [ 461.137738] RSP: 002b:00007efe43ee4928 EFLAGS: 00000283 ORIG_RAX: 00000000000000ca [ 461.137739] RAX: ffffffffffffffda RBX: 0000000005094df0 RCX: 00007efe4918ca26 [ 461.137740] RDX: 0000000000000001 RSI: 0000000000000085 RDI: 0000000005094e24 [ 461.137741] RBP: 00007efe43ee49c0 R08: 0000000005094e20 R09: 0000000004000001 [ 461.137741] R10: 0000000000000001 R11: 0000000000000283 R12: 0000000000000000 [ 461.137742] R13: 0000000005094df8 R14: 0000000000000001 R15: 0000000000448a10 [ 461.137743] ---[ end trace 187df4cad2bf7649 ]--- This warning happened in the push_dl_task(), because __add_running_bw()->cpufreq_update_util() is getting the rq_clock of the later_rq before its update, which takes place at activate_task(). The fix then is to update the rq_clock before calling add_running_bw(). To avoid double rq_clock_update() call, we set ENQUEUE_NOCLOCK flag to activate_task(). Reported-by: Daniel Casini <[email protected]> Signed-off-by: Daniel Bristot de Oliveira <[email protected]> Signed-off-by: Peter Zijlstra (Intel) <[email protected]> Acked-by: Juri Lelli <[email protected]> Cc: Clark Williams <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Luca Abeni <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Steven Rostedt <[email protected]> Cc: Thomas Gleixner <[email protected]> Cc: Tommaso Cucinotta <[email protected]> Fixes: e0367b12674b sched/deadline: Move CPU frequency selection triggering points Link: http://lkml.kernel.org/r/ca31d073a4788acf0684a8b255f14fea775ccf20.1532077269.git.bristot@redhat.com Signed-off-by: Ingo Molnar <[email protected]> Signed-off-by: celtare21 <[email protected]>
zebusen
pushed a commit
to zebusen/android_kernel_xiaomi_whyred
that referenced
this issue
Aug 15, 2021
Daniel Casini got this warn while running a DL task here at RetisLab: [ 461.137582] ------------[ cut here ]------------ [ 461.137583] rq->clock_update_flags < RQCF_ACT_SKIP [ 461.137599] WARNING: CPU: 4 PID: 2354 at kernel/sched/sched.h:967 assert_clock_updated.isra.32.part.33+0x17/0x20 [a ton of modules] [ 461.137646] CPU: 4 PID: 2354 Comm: label_image Not tainted 4.18.0-rc4+ radcolor#3 [ 461.137647] Hardware name: ASUS All Series/Z87-K, BIOS 0801 09/02/2013 [ 461.137649] RIP: 0010:assert_clock_updated.isra.32.part.33+0x17/0x20 [ 461.137649] Code: ff 48 89 83 08 09 00 00 eb c6 66 0f 1f 84 00 00 00 00 00 55 48 c7 c7 98 7a 6c a5 c6 05 bc 0d 54 01 01 48 89 e5 e8 a9 84 fb ff <0f> 0b 5d c3 0f 1f 44 00 00 0f 1f 44 00 00 83 7e 60 01 74 0a 48 3b [ 461.137673] RSP: 0018:ffffa77e08cafc68 EFLAGS: 00010082 [ 461.137674] RAX: 0000000000000000 RBX: ffff8b3fc1702d80 RCX: 0000000000000006 [ 461.137674] RDX: 0000000000000007 RSI: 0000000000000096 RDI: ffff8b3fded164b0 [ 461.137675] RBP: ffffa77e08cafc68 R08: 0000000000000026 R09: 0000000000000339 [ 461.137676] R10: ffff8b3fd060d410 R11: 0000000000000026 R12: ffffffffa4e14e20 [ 461.137677] R13: ffff8b3fdec22940 R14: ffff8b3fc1702da0 R15: ffff8b3fdec22940 [ 461.137678] FS: 00007efe43ee5700(0000) GS:ffff8b3fded00000(0000) knlGS:0000000000000000 [ 461.137679] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 461.137680] CR2: 00007efe30000010 CR3: 0000000301744003 CR4: 00000000001606e0 [ 461.137680] Call Trace: [ 461.137684] push_dl_task.part.46+0x3bc/0x460 [ 461.137686] task_woken_dl+0x60/0x80 [ 461.137689] ttwu_do_wakeup+0x4f/0x150 [ 461.137690] ttwu_do_activate+0x77/0x80 [ 461.137692] try_to_wake_up+0x1d6/0x4c0 [ 461.137693] wake_up_q+0x32/0x70 [ 461.137696] do_futex+0x7e7/0xb50 [ 461.137698] __x64_sys_futex+0x8b/0x180 [ 461.137701] do_syscall_64+0x5a/0x110 [ 461.137703] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [ 461.137705] RIP: 0033:0x7efe4918ca26 [ 461.137705] Code: 00 00 00 74 17 49 8b 48 20 44 8b 59 10 41 83 e3 30 41 83 fb 20 74 1e be 85 00 00 00 41 ba 01 00 00 00 41 b9 01 00 00 04 0f 05 <48> 3d 01 f0 ff ff 73 1f 31 c0 c3 be 8c 00 00 00 49 89 c8 4d 31 d2 [ 461.137738] RSP: 002b:00007efe43ee4928 EFLAGS: 00000283 ORIG_RAX: 00000000000000ca [ 461.137739] RAX: ffffffffffffffda RBX: 0000000005094df0 RCX: 00007efe4918ca26 [ 461.137740] RDX: 0000000000000001 RSI: 0000000000000085 RDI: 0000000005094e24 [ 461.137741] RBP: 00007efe43ee49c0 R08: 0000000005094e20 R09: 0000000004000001 [ 461.137741] R10: 0000000000000001 R11: 0000000000000283 R12: 0000000000000000 [ 461.137742] R13: 0000000005094df8 R14: 0000000000000001 R15: 0000000000448a10 [ 461.137743] ---[ end trace 187df4cad2bf7649 ]--- This warning happened in the push_dl_task(), because __add_running_bw()->cpufreq_update_util() is getting the rq_clock of the later_rq before its update, which takes place at activate_task(). The fix then is to update the rq_clock before calling add_running_bw(). To avoid double rq_clock_update() call, we set ENQUEUE_NOCLOCK flag to activate_task(). Reported-by: Daniel Casini <[email protected]> Signed-off-by: Daniel Bristot de Oliveira <[email protected]> Signed-off-by: Peter Zijlstra (Intel) <[email protected]> Acked-by: Juri Lelli <[email protected]> Cc: Clark Williams <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Luca Abeni <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Steven Rostedt <[email protected]> Cc: Thomas Gleixner <[email protected]> Cc: Tommaso Cucinotta <[email protected]> Fixes: e0367b12674b sched/deadline: Move CPU frequency selection triggering points Link: http://lkml.kernel.org/r/ca31d073a4788acf0684a8b255f14fea775ccf20.1532077269.git.bristot@redhat.com Signed-off-by: Ingo Molnar <[email protected]> Signed-off-by: celtare21 <[email protected]>
zebusen
pushed a commit
to zebusen/android_kernel_xiaomi_whyred
that referenced
this issue
Aug 24, 2021
Move the loop-invariant calculation of 'cpu' in do_idle() out of the loop body, because the current CPU is always constant. This improves the generated code both on x86-64 and ARM64: x86-64: Before patch (execution in loop): 864: 0f ae e8 lfence 867: 65 8b 05 c2 38 f1 7e mov %gs:0x7ef138c2(%rip),%eax 86e: 89 c0 mov %eax,%eax 870: 48 0f a3 05 68 19 08 bt %rax,0x1081968(%rip) 877: 01 After patch (execution in loop): 872: 0f ae e8 lfence 875: 4c 0f a3 25 63 19 08 bt %r12,0x1081963(%rip) 87c: 01 ARM64: Before patch (execution in loop): c58: d5033d9f dsb ld c5c: d538d080 mrs x0, tpidr_el1 c60: b8606a61 ldr w1, [x19,x0] c64: 1100fc20 add w0, w1, #0x3f c68: 7100003f cmp w1, #0x0 c6c: 1a81b000 csel w0, w0, w1, lt c70: 13067c00 asr w0, w0, radcolor#6 c74: 93407c00 sxtw x0, w0 c78: f8607a80 ldr x0, [x20,x0,lsl radcolor#3] c7c: 9ac12401 lsr x1, x0, x1 c80: 36000581 tbz w1, #0, d30 <do_idle+0x128> After patch (execution in loop): c84: d5033d9f dsb ld c88: f9400260 ldr x0, [x19] c8c: ea14001f tst x0, x20 c90: 54000580 b.eq d40 <do_idle+0x138> Signed-off-by: Cheng Jian <[email protected]> [ Rewrote the title and the changelog. ] Cc: Linus Torvalds <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Thomas Gleixner <[email protected]> Cc: [email protected] Cc: [email protected] Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Ingo Molnar <[email protected]> Signed-off-by: Reinazhard <[email protected]>
zebusen
pushed a commit
to zebusen/android_kernel_xiaomi_whyred
that referenced
this issue
Aug 24, 2021
In many cases in the RCU tree code, we iterate over the set of cpus for a leaf node described by rcu_node::grplo and rcu_node::grphi, checking per-cpu data for each cpu in this range. However, if the set of possible cpus is sparse, some cpus described in this range are not possible, and thus no per-cpu region will have been allocated (or initialised) for them by the generic percpu code. Erroneous accesses to a per-cpu area for these !possible cpus may fault or may hit other data depending on the addressed generated when the erroneous per cpu offset is applied. In practice, both cases have been observed on arm64 hardware (the former being silent, but detectable with additional patches). To avoid issues resulting from this, we must iterate over the set of *possible* cpus for a given leaf node. This patch add a new helper, for_each_leaf_node_possible_cpu, to enable this. As iteration is often intertwined with rcu_node local bitmask manipulation, a new leaf_node_cpu_bit helper is added to make this simpler and more consistent. The RCU tree code is made to use both of these where appropriate. Without this patch, running reboot at a shell can result in an oops like: [ 3369.075979] Unable to handle kernel paging request at virtual address ffffff8008b21b4c [ 3369.083881] pgd = ffffffc3ecdda000 [ 3369.087270] [ffffff8008b21b4c] *pgd=00000083eca48003, *pud=00000083eca48003, *pmd=0000000000000000 [ 3369.096222] Internal error: Oops: 96000007 [radcolor#1] PREEMPT SMP [ 3369.101781] Modules linked in: [ 3369.104825] CPU: 2 PID: 1817 Comm: NetworkManager Tainted: G W 4.6.0+ radcolor#3 [ 3369.121239] task: ffffffc0fa13e000 ti: ffffffc3eb940000 task.ti: ffffffc3eb940000 [ 3369.128708] PC is at sync_rcu_exp_select_cpus+0x188/0x510 [ 3369.134094] LR is at sync_rcu_exp_select_cpus+0x104/0x510 [ 3369.139479] pc : [<ffffff80081109a8>] lr : [<ffffff8008110924>] pstate: 200001c5 [ 3369.146860] sp : ffffffc3eb9435a0 [ 3369.150162] x29: ffffffc3eb9435a0 x28: ffffff8008be4f88 [ 3369.155465] x27: ffffff8008b66c80 x26: ffffffc3eceb2600 [ 3369.160767] x25: 0000000000000001 x24: ffffff8008be4f88 [ 3369.166070] x23: ffffff8008b51c3c x22: ffffff8008b66c80 [ 3369.171371] x21: 0000000000000001 x20: ffffff8008b21b40 [ 3369.176673] x19: ffffff8008b66c80 x18: 0000000000000000 [ 3369.181975] x17: 0000007fa951a010 x16: ffffff80086a30f0 [ 3369.187278] x15: 0000007fa9505590 x14: 0000000000000000 [ 3369.192580] x13: ffffff8008b51000 x12: ffffffc3eb940000 [ 3369.197882] x11: 0000000000000006 x10: ffffff8008b51b78 [ 3369.203184] x9 : 0000000000000001 x8 : ffffff8008be4000 [ 3369.208486] x7 : ffffff8008b21b40 x6 : 0000000000001003 [ 3369.213788] x5 : 0000000000000000 x4 : ffffff8008b27280 [ 3369.219090] x3 : ffffff8008b21b4c x2 : 0000000000000001 [ 3369.224406] x1 : 0000000000000001 x0 : 0000000000000140 ... [ 3369.972257] [<ffffff80081109a8>] sync_rcu_exp_select_cpus+0x188/0x510 [ 3369.978685] [<ffffff80081128b4>] synchronize_rcu_expedited+0x64/0xa8 [ 3369.985026] [<ffffff80086b987c>] synchronize_net+0x24/0x30 [ 3369.990499] [<ffffff80086ddb54>] dev_deactivate_many+0x28c/0x298 [ 3369.996493] [<ffffff80086b6bb8>] __dev_close_many+0x60/0xd0 [ 3370.002052] [<ffffff80086b6d48>] __dev_close+0x28/0x40 [ 3370.007178] [<ffffff80086bf62c>] __dev_change_flags+0x8c/0x158 [ 3370.012999] [<ffffff80086bf718>] dev_change_flags+0x20/0x60 [ 3370.018558] [<ffffff80086cf7f0>] do_setlink+0x288/0x918 [ 3370.023771] [<ffffff80086d0798>] rtnl_newlink+0x398/0x6a8 [ 3370.029158] [<ffffff80086cee84>] rtnetlink_rcv_msg+0xe4/0x220 [ 3370.034891] [<ffffff80086e274c>] netlink_rcv_skb+0xc4/0xf8 [ 3370.040364] [<ffffff80086ced8c>] rtnetlink_rcv+0x2c/0x40 [ 3370.045663] [<ffffff80086e1fe8>] netlink_unicast+0x160/0x238 [ 3370.051309] [<ffffff80086e24b8>] netlink_sendmsg+0x2f0/0x358 [ 3370.056956] [<ffffff80086a0070>] sock_sendmsg+0x18/0x30 [ 3370.062168] [<ffffff80086a21cc>] ___sys_sendmsg+0x26c/0x280 [ 3370.067728] [<ffffff80086a30ac>] __sys_sendmsg+0x44/0x88 [ 3370.073027] [<ffffff80086a3100>] SyS_sendmsg+0x10/0x20 [ 3370.078153] [<ffffff8008085e70>] el0_svc_naked+0x24/0x28 Signed-off-by: Mark Rutland <[email protected]> Reported-by: Dennis Chen <[email protected]> Cc: Catalin Marinas <[email protected]> Cc: Josh Triplett <[email protected]> Cc: Lai Jiangshan <[email protected]> Cc: Mathieu Desnoyers <[email protected]> Cc: Steve Capper <[email protected]> Cc: Steven Rostedt <[email protected]> Cc: Will Deacon <[email protected]> Cc: [email protected] Signed-off-by: Paul E. McKenney <[email protected]> Signed-off-by: celtare21 <[email protected]> Signed-off-by: Yasir-Siddiqui <[email protected]> Signed-off-by: Reinazhard <[email protected]>
zebusen
pushed a commit
to zebusen/android_kernel_xiaomi_whyred
that referenced
this issue
Aug 24, 2021
Move the loop-invariant calculation of 'cpu' in do_idle() out of the loop body, because the current CPU is always constant. This improves the generated code both on x86-64 and ARM64: x86-64: Before patch (execution in loop): 864: 0f ae e8 lfence 867: 65 8b 05 c2 38 f1 7e mov %gs:0x7ef138c2(%rip),%eax 86e: 89 c0 mov %eax,%eax 870: 48 0f a3 05 68 19 08 bt %rax,0x1081968(%rip) 877: 01 After patch (execution in loop): 872: 0f ae e8 lfence 875: 4c 0f a3 25 63 19 08 bt %r12,0x1081963(%rip) 87c: 01 ARM64: Before patch (execution in loop): c58: d5033d9f dsb ld c5c: d538d080 mrs x0, tpidr_el1 c60: b8606a61 ldr w1, [x19,x0] c64: 1100fc20 add w0, w1, #0x3f c68: 7100003f cmp w1, #0x0 c6c: 1a81b000 csel w0, w0, w1, lt c70: 13067c00 asr w0, w0, radcolor#6 c74: 93407c00 sxtw x0, w0 c78: f8607a80 ldr x0, [x20,x0,lsl radcolor#3] c7c: 9ac12401 lsr x1, x0, x1 c80: 36000581 tbz w1, #0, d30 <do_idle+0x128> After patch (execution in loop): c84: d5033d9f dsb ld c88: f9400260 ldr x0, [x19] c8c: ea14001f tst x0, x20 c90: 54000580 b.eq d40 <do_idle+0x138> Signed-off-by: Cheng Jian <[email protected]> [ Rewrote the title and the changelog. ] Cc: Linus Torvalds <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Thomas Gleixner <[email protected]> Cc: [email protected] Cc: [email protected] Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Ingo Molnar <[email protected]> Signed-off-by: Reinazhard <[email protected]>
zebusen
pushed a commit
to zebusen/android_kernel_xiaomi_whyred
that referenced
this issue
Aug 24, 2021
In many cases in the RCU tree code, we iterate over the set of cpus for a leaf node described by rcu_node::grplo and rcu_node::grphi, checking per-cpu data for each cpu in this range. However, if the set of possible cpus is sparse, some cpus described in this range are not possible, and thus no per-cpu region will have been allocated (or initialised) for them by the generic percpu code. Erroneous accesses to a per-cpu area for these !possible cpus may fault or may hit other data depending on the addressed generated when the erroneous per cpu offset is applied. In practice, both cases have been observed on arm64 hardware (the former being silent, but detectable with additional patches). To avoid issues resulting from this, we must iterate over the set of *possible* cpus for a given leaf node. This patch add a new helper, for_each_leaf_node_possible_cpu, to enable this. As iteration is often intertwined with rcu_node local bitmask manipulation, a new leaf_node_cpu_bit helper is added to make this simpler and more consistent. The RCU tree code is made to use both of these where appropriate. Without this patch, running reboot at a shell can result in an oops like: [ 3369.075979] Unable to handle kernel paging request at virtual address ffffff8008b21b4c [ 3369.083881] pgd = ffffffc3ecdda000 [ 3369.087270] [ffffff8008b21b4c] *pgd=00000083eca48003, *pud=00000083eca48003, *pmd=0000000000000000 [ 3369.096222] Internal error: Oops: 96000007 [radcolor#1] PREEMPT SMP [ 3369.101781] Modules linked in: [ 3369.104825] CPU: 2 PID: 1817 Comm: NetworkManager Tainted: G W 4.6.0+ radcolor#3 [ 3369.121239] task: ffffffc0fa13e000 ti: ffffffc3eb940000 task.ti: ffffffc3eb940000 [ 3369.128708] PC is at sync_rcu_exp_select_cpus+0x188/0x510 [ 3369.134094] LR is at sync_rcu_exp_select_cpus+0x104/0x510 [ 3369.139479] pc : [<ffffff80081109a8>] lr : [<ffffff8008110924>] pstate: 200001c5 [ 3369.146860] sp : ffffffc3eb9435a0 [ 3369.150162] x29: ffffffc3eb9435a0 x28: ffffff8008be4f88 [ 3369.155465] x27: ffffff8008b66c80 x26: ffffffc3eceb2600 [ 3369.160767] x25: 0000000000000001 x24: ffffff8008be4f88 [ 3369.166070] x23: ffffff8008b51c3c x22: ffffff8008b66c80 [ 3369.171371] x21: 0000000000000001 x20: ffffff8008b21b40 [ 3369.176673] x19: ffffff8008b66c80 x18: 0000000000000000 [ 3369.181975] x17: 0000007fa951a010 x16: ffffff80086a30f0 [ 3369.187278] x15: 0000007fa9505590 x14: 0000000000000000 [ 3369.192580] x13: ffffff8008b51000 x12: ffffffc3eb940000 [ 3369.197882] x11: 0000000000000006 x10: ffffff8008b51b78 [ 3369.203184] x9 : 0000000000000001 x8 : ffffff8008be4000 [ 3369.208486] x7 : ffffff8008b21b40 x6 : 0000000000001003 [ 3369.213788] x5 : 0000000000000000 x4 : ffffff8008b27280 [ 3369.219090] x3 : ffffff8008b21b4c x2 : 0000000000000001 [ 3369.224406] x1 : 0000000000000001 x0 : 0000000000000140 ... [ 3369.972257] [<ffffff80081109a8>] sync_rcu_exp_select_cpus+0x188/0x510 [ 3369.978685] [<ffffff80081128b4>] synchronize_rcu_expedited+0x64/0xa8 [ 3369.985026] [<ffffff80086b987c>] synchronize_net+0x24/0x30 [ 3369.990499] [<ffffff80086ddb54>] dev_deactivate_many+0x28c/0x298 [ 3369.996493] [<ffffff80086b6bb8>] __dev_close_many+0x60/0xd0 [ 3370.002052] [<ffffff80086b6d48>] __dev_close+0x28/0x40 [ 3370.007178] [<ffffff80086bf62c>] __dev_change_flags+0x8c/0x158 [ 3370.012999] [<ffffff80086bf718>] dev_change_flags+0x20/0x60 [ 3370.018558] [<ffffff80086cf7f0>] do_setlink+0x288/0x918 [ 3370.023771] [<ffffff80086d0798>] rtnl_newlink+0x398/0x6a8 [ 3370.029158] [<ffffff80086cee84>] rtnetlink_rcv_msg+0xe4/0x220 [ 3370.034891] [<ffffff80086e274c>] netlink_rcv_skb+0xc4/0xf8 [ 3370.040364] [<ffffff80086ced8c>] rtnetlink_rcv+0x2c/0x40 [ 3370.045663] [<ffffff80086e1fe8>] netlink_unicast+0x160/0x238 [ 3370.051309] [<ffffff80086e24b8>] netlink_sendmsg+0x2f0/0x358 [ 3370.056956] [<ffffff80086a0070>] sock_sendmsg+0x18/0x30 [ 3370.062168] [<ffffff80086a21cc>] ___sys_sendmsg+0x26c/0x280 [ 3370.067728] [<ffffff80086a30ac>] __sys_sendmsg+0x44/0x88 [ 3370.073027] [<ffffff80086a3100>] SyS_sendmsg+0x10/0x20 [ 3370.078153] [<ffffff8008085e70>] el0_svc_naked+0x24/0x28 Signed-off-by: Mark Rutland <[email protected]> Reported-by: Dennis Chen <[email protected]> Cc: Catalin Marinas <[email protected]> Cc: Josh Triplett <[email protected]> Cc: Lai Jiangshan <[email protected]> Cc: Mathieu Desnoyers <[email protected]> Cc: Steve Capper <[email protected]> Cc: Steven Rostedt <[email protected]> Cc: Will Deacon <[email protected]> Cc: [email protected] Signed-off-by: Paul E. McKenney <[email protected]> Signed-off-by: celtare21 <[email protected]> Signed-off-by: Yasir-Siddiqui <[email protected]> Signed-off-by: Reinazhard <[email protected]>
zebusen
pushed a commit
to zebusen/android_kernel_xiaomi_whyred
that referenced
this issue
Aug 24, 2021
Move the loop-invariant calculation of 'cpu' in do_idle() out of the loop body, because the current CPU is always constant. This improves the generated code both on x86-64 and ARM64: x86-64: Before patch (execution in loop): 864: 0f ae e8 lfence 867: 65 8b 05 c2 38 f1 7e mov %gs:0x7ef138c2(%rip),%eax 86e: 89 c0 mov %eax,%eax 870: 48 0f a3 05 68 19 08 bt %rax,0x1081968(%rip) 877: 01 After patch (execution in loop): 872: 0f ae e8 lfence 875: 4c 0f a3 25 63 19 08 bt %r12,0x1081963(%rip) 87c: 01 ARM64: Before patch (execution in loop): c58: d5033d9f dsb ld c5c: d538d080 mrs x0, tpidr_el1 c60: b8606a61 ldr w1, [x19,x0] c64: 1100fc20 add w0, w1, #0x3f c68: 7100003f cmp w1, #0x0 c6c: 1a81b000 csel w0, w0, w1, lt c70: 13067c00 asr w0, w0, radcolor#6 c74: 93407c00 sxtw x0, w0 c78: f8607a80 ldr x0, [x20,x0,lsl radcolor#3] c7c: 9ac12401 lsr x1, x0, x1 c80: 36000581 tbz w1, #0, d30 <do_idle+0x128> After patch (execution in loop): c84: d5033d9f dsb ld c88: f9400260 ldr x0, [x19] c8c: ea14001f tst x0, x20 c90: 54000580 b.eq d40 <do_idle+0x138> Signed-off-by: Cheng Jian <[email protected]> [ Rewrote the title and the changelog. ] Cc: Linus Torvalds <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Thomas Gleixner <[email protected]> Cc: [email protected] Cc: [email protected] Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Ingo Molnar <[email protected]> Signed-off-by: Reinazhard <[email protected]>
zebusen
pushed a commit
to zebusen/android_kernel_xiaomi_whyred
that referenced
this issue
Aug 24, 2021
In many cases in the RCU tree code, we iterate over the set of cpus for a leaf node described by rcu_node::grplo and rcu_node::grphi, checking per-cpu data for each cpu in this range. However, if the set of possible cpus is sparse, some cpus described in this range are not possible, and thus no per-cpu region will have been allocated (or initialised) for them by the generic percpu code. Erroneous accesses to a per-cpu area for these !possible cpus may fault or may hit other data depending on the addressed generated when the erroneous per cpu offset is applied. In practice, both cases have been observed on arm64 hardware (the former being silent, but detectable with additional patches). To avoid issues resulting from this, we must iterate over the set of *possible* cpus for a given leaf node. This patch add a new helper, for_each_leaf_node_possible_cpu, to enable this. As iteration is often intertwined with rcu_node local bitmask manipulation, a new leaf_node_cpu_bit helper is added to make this simpler and more consistent. The RCU tree code is made to use both of these where appropriate. Without this patch, running reboot at a shell can result in an oops like: [ 3369.075979] Unable to handle kernel paging request at virtual address ffffff8008b21b4c [ 3369.083881] pgd = ffffffc3ecdda000 [ 3369.087270] [ffffff8008b21b4c] *pgd=00000083eca48003, *pud=00000083eca48003, *pmd=0000000000000000 [ 3369.096222] Internal error: Oops: 96000007 [radcolor#1] PREEMPT SMP [ 3369.101781] Modules linked in: [ 3369.104825] CPU: 2 PID: 1817 Comm: NetworkManager Tainted: G W 4.6.0+ radcolor#3 [ 3369.121239] task: ffffffc0fa13e000 ti: ffffffc3eb940000 task.ti: ffffffc3eb940000 [ 3369.128708] PC is at sync_rcu_exp_select_cpus+0x188/0x510 [ 3369.134094] LR is at sync_rcu_exp_select_cpus+0x104/0x510 [ 3369.139479] pc : [<ffffff80081109a8>] lr : [<ffffff8008110924>] pstate: 200001c5 [ 3369.146860] sp : ffffffc3eb9435a0 [ 3369.150162] x29: ffffffc3eb9435a0 x28: ffffff8008be4f88 [ 3369.155465] x27: ffffff8008b66c80 x26: ffffffc3eceb2600 [ 3369.160767] x25: 0000000000000001 x24: ffffff8008be4f88 [ 3369.166070] x23: ffffff8008b51c3c x22: ffffff8008b66c80 [ 3369.171371] x21: 0000000000000001 x20: ffffff8008b21b40 [ 3369.176673] x19: ffffff8008b66c80 x18: 0000000000000000 [ 3369.181975] x17: 0000007fa951a010 x16: ffffff80086a30f0 [ 3369.187278] x15: 0000007fa9505590 x14: 0000000000000000 [ 3369.192580] x13: ffffff8008b51000 x12: ffffffc3eb940000 [ 3369.197882] x11: 0000000000000006 x10: ffffff8008b51b78 [ 3369.203184] x9 : 0000000000000001 x8 : ffffff8008be4000 [ 3369.208486] x7 : ffffff8008b21b40 x6 : 0000000000001003 [ 3369.213788] x5 : 0000000000000000 x4 : ffffff8008b27280 [ 3369.219090] x3 : ffffff8008b21b4c x2 : 0000000000000001 [ 3369.224406] x1 : 0000000000000001 x0 : 0000000000000140 ... [ 3369.972257] [<ffffff80081109a8>] sync_rcu_exp_select_cpus+0x188/0x510 [ 3369.978685] [<ffffff80081128b4>] synchronize_rcu_expedited+0x64/0xa8 [ 3369.985026] [<ffffff80086b987c>] synchronize_net+0x24/0x30 [ 3369.990499] [<ffffff80086ddb54>] dev_deactivate_many+0x28c/0x298 [ 3369.996493] [<ffffff80086b6bb8>] __dev_close_many+0x60/0xd0 [ 3370.002052] [<ffffff80086b6d48>] __dev_close+0x28/0x40 [ 3370.007178] [<ffffff80086bf62c>] __dev_change_flags+0x8c/0x158 [ 3370.012999] [<ffffff80086bf718>] dev_change_flags+0x20/0x60 [ 3370.018558] [<ffffff80086cf7f0>] do_setlink+0x288/0x918 [ 3370.023771] [<ffffff80086d0798>] rtnl_newlink+0x398/0x6a8 [ 3370.029158] [<ffffff80086cee84>] rtnetlink_rcv_msg+0xe4/0x220 [ 3370.034891] [<ffffff80086e274c>] netlink_rcv_skb+0xc4/0xf8 [ 3370.040364] [<ffffff80086ced8c>] rtnetlink_rcv+0x2c/0x40 [ 3370.045663] [<ffffff80086e1fe8>] netlink_unicast+0x160/0x238 [ 3370.051309] [<ffffff80086e24b8>] netlink_sendmsg+0x2f0/0x358 [ 3370.056956] [<ffffff80086a0070>] sock_sendmsg+0x18/0x30 [ 3370.062168] [<ffffff80086a21cc>] ___sys_sendmsg+0x26c/0x280 [ 3370.067728] [<ffffff80086a30ac>] __sys_sendmsg+0x44/0x88 [ 3370.073027] [<ffffff80086a3100>] SyS_sendmsg+0x10/0x20 [ 3370.078153] [<ffffff8008085e70>] el0_svc_naked+0x24/0x28 Signed-off-by: Mark Rutland <[email protected]> Reported-by: Dennis Chen <[email protected]> Cc: Catalin Marinas <[email protected]> Cc: Josh Triplett <[email protected]> Cc: Lai Jiangshan <[email protected]> Cc: Mathieu Desnoyers <[email protected]> Cc: Steve Capper <[email protected]> Cc: Steven Rostedt <[email protected]> Cc: Will Deacon <[email protected]> Cc: [email protected] Signed-off-by: Paul E. McKenney <[email protected]> Signed-off-by: celtare21 <[email protected]> Signed-off-by: Yasir-Siddiqui <[email protected]> Signed-off-by: Reinazhard <[email protected]>
zebusen
pushed a commit
to zebusen/android_kernel_xiaomi_whyred
that referenced
this issue
Aug 24, 2021
In many cases in the RCU tree code, we iterate over the set of cpus for a leaf node described by rcu_node::grplo and rcu_node::grphi, checking per-cpu data for each cpu in this range. However, if the set of possible cpus is sparse, some cpus described in this range are not possible, and thus no per-cpu region will have been allocated (or initialised) for them by the generic percpu code. Erroneous accesses to a per-cpu area for these !possible cpus may fault or may hit other data depending on the addressed generated when the erroneous per cpu offset is applied. In practice, both cases have been observed on arm64 hardware (the former being silent, but detectable with additional patches). To avoid issues resulting from this, we must iterate over the set of *possible* cpus for a given leaf node. This patch add a new helper, for_each_leaf_node_possible_cpu, to enable this. As iteration is often intertwined with rcu_node local bitmask manipulation, a new leaf_node_cpu_bit helper is added to make this simpler and more consistent. The RCU tree code is made to use both of these where appropriate. Without this patch, running reboot at a shell can result in an oops like: [ 3369.075979] Unable to handle kernel paging request at virtual address ffffff8008b21b4c [ 3369.083881] pgd = ffffffc3ecdda000 [ 3369.087270] [ffffff8008b21b4c] *pgd=00000083eca48003, *pud=00000083eca48003, *pmd=0000000000000000 [ 3369.096222] Internal error: Oops: 96000007 [radcolor#1] PREEMPT SMP [ 3369.101781] Modules linked in: [ 3369.104825] CPU: 2 PID: 1817 Comm: NetworkManager Tainted: G W 4.6.0+ radcolor#3 [ 3369.121239] task: ffffffc0fa13e000 ti: ffffffc3eb940000 task.ti: ffffffc3eb940000 [ 3369.128708] PC is at sync_rcu_exp_select_cpus+0x188/0x510 [ 3369.134094] LR is at sync_rcu_exp_select_cpus+0x104/0x510 [ 3369.139479] pc : [<ffffff80081109a8>] lr : [<ffffff8008110924>] pstate: 200001c5 [ 3369.146860] sp : ffffffc3eb9435a0 [ 3369.150162] x29: ffffffc3eb9435a0 x28: ffffff8008be4f88 [ 3369.155465] x27: ffffff8008b66c80 x26: ffffffc3eceb2600 [ 3369.160767] x25: 0000000000000001 x24: ffffff8008be4f88 [ 3369.166070] x23: ffffff8008b51c3c x22: ffffff8008b66c80 [ 3369.171371] x21: 0000000000000001 x20: ffffff8008b21b40 [ 3369.176673] x19: ffffff8008b66c80 x18: 0000000000000000 [ 3369.181975] x17: 0000007fa951a010 x16: ffffff80086a30f0 [ 3369.187278] x15: 0000007fa9505590 x14: 0000000000000000 [ 3369.192580] x13: ffffff8008b51000 x12: ffffffc3eb940000 [ 3369.197882] x11: 0000000000000006 x10: ffffff8008b51b78 [ 3369.203184] x9 : 0000000000000001 x8 : ffffff8008be4000 [ 3369.208486] x7 : ffffff8008b21b40 x6 : 0000000000001003 [ 3369.213788] x5 : 0000000000000000 x4 : ffffff8008b27280 [ 3369.219090] x3 : ffffff8008b21b4c x2 : 0000000000000001 [ 3369.224406] x1 : 0000000000000001 x0 : 0000000000000140 ... [ 3369.972257] [<ffffff80081109a8>] sync_rcu_exp_select_cpus+0x188/0x510 [ 3369.978685] [<ffffff80081128b4>] synchronize_rcu_expedited+0x64/0xa8 [ 3369.985026] [<ffffff80086b987c>] synchronize_net+0x24/0x30 [ 3369.990499] [<ffffff80086ddb54>] dev_deactivate_many+0x28c/0x298 [ 3369.996493] [<ffffff80086b6bb8>] __dev_close_many+0x60/0xd0 [ 3370.002052] [<ffffff80086b6d48>] __dev_close+0x28/0x40 [ 3370.007178] [<ffffff80086bf62c>] __dev_change_flags+0x8c/0x158 [ 3370.012999] [<ffffff80086bf718>] dev_change_flags+0x20/0x60 [ 3370.018558] [<ffffff80086cf7f0>] do_setlink+0x288/0x918 [ 3370.023771] [<ffffff80086d0798>] rtnl_newlink+0x398/0x6a8 [ 3370.029158] [<ffffff80086cee84>] rtnetlink_rcv_msg+0xe4/0x220 [ 3370.034891] [<ffffff80086e274c>] netlink_rcv_skb+0xc4/0xf8 [ 3370.040364] [<ffffff80086ced8c>] rtnetlink_rcv+0x2c/0x40 [ 3370.045663] [<ffffff80086e1fe8>] netlink_unicast+0x160/0x238 [ 3370.051309] [<ffffff80086e24b8>] netlink_sendmsg+0x2f0/0x358 [ 3370.056956] [<ffffff80086a0070>] sock_sendmsg+0x18/0x30 [ 3370.062168] [<ffffff80086a21cc>] ___sys_sendmsg+0x26c/0x280 [ 3370.067728] [<ffffff80086a30ac>] __sys_sendmsg+0x44/0x88 [ 3370.073027] [<ffffff80086a3100>] SyS_sendmsg+0x10/0x20 [ 3370.078153] [<ffffff8008085e70>] el0_svc_naked+0x24/0x28 Signed-off-by: Mark Rutland <[email protected]> Reported-by: Dennis Chen <[email protected]> Cc: Catalin Marinas <[email protected]> Cc: Josh Triplett <[email protected]> Cc: Lai Jiangshan <[email protected]> Cc: Mathieu Desnoyers <[email protected]> Cc: Steve Capper <[email protected]> Cc: Steven Rostedt <[email protected]> Cc: Will Deacon <[email protected]> Cc: [email protected] Signed-off-by: Paul E. McKenney <[email protected]> Signed-off-by: celtare21 <[email protected]> Signed-off-by: Yasir-Siddiqui <[email protected]> Signed-off-by: Reinazhard <[email protected]>
zebusen
pushed a commit
to zebusen/android_kernel_xiaomi_whyred
that referenced
this issue
Aug 24, 2021
Move the loop-invariant calculation of 'cpu' in do_idle() out of the loop body, because the current CPU is always constant. This improves the generated code both on x86-64 and ARM64: x86-64: Before patch (execution in loop): 864: 0f ae e8 lfence 867: 65 8b 05 c2 38 f1 7e mov %gs:0x7ef138c2(%rip),%eax 86e: 89 c0 mov %eax,%eax 870: 48 0f a3 05 68 19 08 bt %rax,0x1081968(%rip) 877: 01 After patch (execution in loop): 872: 0f ae e8 lfence 875: 4c 0f a3 25 63 19 08 bt %r12,0x1081963(%rip) 87c: 01 ARM64: Before patch (execution in loop): c58: d5033d9f dsb ld c5c: d538d080 mrs x0, tpidr_el1 c60: b8606a61 ldr w1, [x19,x0] c64: 1100fc20 add w0, w1, #0x3f c68: 7100003f cmp w1, #0x0 c6c: 1a81b000 csel w0, w0, w1, lt c70: 13067c00 asr w0, w0, radcolor#6 c74: 93407c00 sxtw x0, w0 c78: f8607a80 ldr x0, [x20,x0,lsl radcolor#3] c7c: 9ac12401 lsr x1, x0, x1 c80: 36000581 tbz w1, #0, d30 <do_idle+0x128> After patch (execution in loop): c84: d5033d9f dsb ld c88: f9400260 ldr x0, [x19] c8c: ea14001f tst x0, x20 c90: 54000580 b.eq d40 <do_idle+0x138> Signed-off-by: Cheng Jian <[email protected]> [ Rewrote the title and the changelog. ] Cc: Linus Torvalds <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Thomas Gleixner <[email protected]> Cc: [email protected] Cc: [email protected] Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Ingo Molnar <[email protected]> Signed-off-by: Reinazhard <[email protected]>
zebusen
pushed a commit
to zebusen/android_kernel_xiaomi_whyred
that referenced
this issue
Aug 24, 2021
In many cases in the RCU tree code, we iterate over the set of cpus for a leaf node described by rcu_node::grplo and rcu_node::grphi, checking per-cpu data for each cpu in this range. However, if the set of possible cpus is sparse, some cpus described in this range are not possible, and thus no per-cpu region will have been allocated (or initialised) for them by the generic percpu code. Erroneous accesses to a per-cpu area for these !possible cpus may fault or may hit other data depending on the addressed generated when the erroneous per cpu offset is applied. In practice, both cases have been observed on arm64 hardware (the former being silent, but detectable with additional patches). To avoid issues resulting from this, we must iterate over the set of *possible* cpus for a given leaf node. This patch add a new helper, for_each_leaf_node_possible_cpu, to enable this. As iteration is often intertwined with rcu_node local bitmask manipulation, a new leaf_node_cpu_bit helper is added to make this simpler and more consistent. The RCU tree code is made to use both of these where appropriate. Without this patch, running reboot at a shell can result in an oops like: [ 3369.075979] Unable to handle kernel paging request at virtual address ffffff8008b21b4c [ 3369.083881] pgd = ffffffc3ecdda000 [ 3369.087270] [ffffff8008b21b4c] *pgd=00000083eca48003, *pud=00000083eca48003, *pmd=0000000000000000 [ 3369.096222] Internal error: Oops: 96000007 [radcolor#1] PREEMPT SMP [ 3369.101781] Modules linked in: [ 3369.104825] CPU: 2 PID: 1817 Comm: NetworkManager Tainted: G W 4.6.0+ radcolor#3 [ 3369.121239] task: ffffffc0fa13e000 ti: ffffffc3eb940000 task.ti: ffffffc3eb940000 [ 3369.128708] PC is at sync_rcu_exp_select_cpus+0x188/0x510 [ 3369.134094] LR is at sync_rcu_exp_select_cpus+0x104/0x510 [ 3369.139479] pc : [<ffffff80081109a8>] lr : [<ffffff8008110924>] pstate: 200001c5 [ 3369.146860] sp : ffffffc3eb9435a0 [ 3369.150162] x29: ffffffc3eb9435a0 x28: ffffff8008be4f88 [ 3369.155465] x27: ffffff8008b66c80 x26: ffffffc3eceb2600 [ 3369.160767] x25: 0000000000000001 x24: ffffff8008be4f88 [ 3369.166070] x23: ffffff8008b51c3c x22: ffffff8008b66c80 [ 3369.171371] x21: 0000000000000001 x20: ffffff8008b21b40 [ 3369.176673] x19: ffffff8008b66c80 x18: 0000000000000000 [ 3369.181975] x17: 0000007fa951a010 x16: ffffff80086a30f0 [ 3369.187278] x15: 0000007fa9505590 x14: 0000000000000000 [ 3369.192580] x13: ffffff8008b51000 x12: ffffffc3eb940000 [ 3369.197882] x11: 0000000000000006 x10: ffffff8008b51b78 [ 3369.203184] x9 : 0000000000000001 x8 : ffffff8008be4000 [ 3369.208486] x7 : ffffff8008b21b40 x6 : 0000000000001003 [ 3369.213788] x5 : 0000000000000000 x4 : ffffff8008b27280 [ 3369.219090] x3 : ffffff8008b21b4c x2 : 0000000000000001 [ 3369.224406] x1 : 0000000000000001 x0 : 0000000000000140 ... [ 3369.972257] [<ffffff80081109a8>] sync_rcu_exp_select_cpus+0x188/0x510 [ 3369.978685] [<ffffff80081128b4>] synchronize_rcu_expedited+0x64/0xa8 [ 3369.985026] [<ffffff80086b987c>] synchronize_net+0x24/0x30 [ 3369.990499] [<ffffff80086ddb54>] dev_deactivate_many+0x28c/0x298 [ 3369.996493] [<ffffff80086b6bb8>] __dev_close_many+0x60/0xd0 [ 3370.002052] [<ffffff80086b6d48>] __dev_close+0x28/0x40 [ 3370.007178] [<ffffff80086bf62c>] __dev_change_flags+0x8c/0x158 [ 3370.012999] [<ffffff80086bf718>] dev_change_flags+0x20/0x60 [ 3370.018558] [<ffffff80086cf7f0>] do_setlink+0x288/0x918 [ 3370.023771] [<ffffff80086d0798>] rtnl_newlink+0x398/0x6a8 [ 3370.029158] [<ffffff80086cee84>] rtnetlink_rcv_msg+0xe4/0x220 [ 3370.034891] [<ffffff80086e274c>] netlink_rcv_skb+0xc4/0xf8 [ 3370.040364] [<ffffff80086ced8c>] rtnetlink_rcv+0x2c/0x40 [ 3370.045663] [<ffffff80086e1fe8>] netlink_unicast+0x160/0x238 [ 3370.051309] [<ffffff80086e24b8>] netlink_sendmsg+0x2f0/0x358 [ 3370.056956] [<ffffff80086a0070>] sock_sendmsg+0x18/0x30 [ 3370.062168] [<ffffff80086a21cc>] ___sys_sendmsg+0x26c/0x280 [ 3370.067728] [<ffffff80086a30ac>] __sys_sendmsg+0x44/0x88 [ 3370.073027] [<ffffff80086a3100>] SyS_sendmsg+0x10/0x20 [ 3370.078153] [<ffffff8008085e70>] el0_svc_naked+0x24/0x28 Signed-off-by: Mark Rutland <[email protected]> Reported-by: Dennis Chen <[email protected]> Cc: Catalin Marinas <[email protected]> Cc: Josh Triplett <[email protected]> Cc: Lai Jiangshan <[email protected]> Cc: Mathieu Desnoyers <[email protected]> Cc: Steve Capper <[email protected]> Cc: Steven Rostedt <[email protected]> Cc: Will Deacon <[email protected]> Cc: [email protected] Signed-off-by: Paul E. McKenney <[email protected]> Signed-off-by: celtare21 <[email protected]> Signed-off-by: Yasir-Siddiqui <[email protected]> Signed-off-by: Reinazhard <[email protected]>
zebusen
pushed a commit
to zebusen/android_kernel_xiaomi_whyred
that referenced
this issue
Aug 30, 2021
This patch implements deduplication feature in zram. The purpose of this work is naturally to save amount of memory usage by zram. Android is one of the biggest users to use zram as swap and it's really important to save amount of memory usage. There is a paper that reports that duplication ratio of Android's memory content is rather high [1]. And, there is a similar work on zswap that also reports that experiments has shown that around 10-15% of pages stored in zswp are duplicates and deduplicate them provides some benefits [2]. Also, there is a different kind of workload that uses zram as blockdev and store build outputs into it to reduce wear-out problem of real blockdev. In this workload, deduplication hit is very high due to temporary files and intermediate object files. Detailed analysis is on the bottom of this description. Anyway, if we can detect duplicated content and avoid to store duplicated content at different memory space, we can save memory. This patch tries to do that. Implementation is almost simple and intuitive but I should note one thing about implementation detail. To check duplication, this patch uses checksum of the page and collision of this checksum could be possible. There would be many choices to handle this situation but this patch chooses to allow entry with duplicated checksum to be added to the hash, but, not to compare all entries with duplicated checksum when checking duplication. I guess that checksum collision is quite rare event and we don't need to pay any attention to such a case. Therefore, I decided the most simplest way to implement the feature. If there is a different opinion, I can accept and go that way. Following is the result of this patch. Test result radcolor#1 (Swap): Android Marshmallow, emulator, x86_64, Backporting to kernel v3.18 orig_data_size: 145297408 compr_data_size: 32408125 mem_used_total: 32276480 dup_data_size: 3188134 meta_data_size: 1444272 Last two metrics added to mm_stat are related to this work. First one, dup_data_size, is amount of saved memory by avoiding to store duplicated page. Later one, meta_data_size, is the amount of data structure to support deduplication. If dup > meta, we can judge that the patch improves memory usage. In Adnroid, we can save 5% of memory usage by this work. Test result radcolor#2 (Blockdev): build the kernel and store output to ext4 FS on zram <no-dedup> Elapsed time: 249 s mm_stat: 430845952 191014886 196898816 0 196898816 28320 0 0 0 <dedup> Elapsed time: 250 s mm_stat: 430505984 190971334 148365312 0 148365312 28404 0 47287038 3945792 There is no performance degradation and save 23% memory. Test result radcolor#3 (Blockdev): copy android build output dir(out/host) to ext4 FS on zram <no-dedup> Elapsed time: out/host: 88 s mm_stat: 8834420736 3658184579 3834208256 0 3834208256 32889 0 0 0 <dedup> Elapsed time: out/host: 100 s mm_stat: 8832929792 3657329322 2832015360 0 2832015360 32609 0 952568877 80880336 It shows performance degradation roughly 13% and save 24% memory. Maybe, it is due to overhead of calculating checksum and comparison. Test result radcolor#4 (Blockdev): copy android build output dir(out/target/common) to ext4 FS on zram <no-dedup> Elapsed time: out/host: 203 s mm_stat: 4041678848 2310355010 2346577920 0 2346582016 500 4 0 0 <dedup> Elapsed time: out/host: 201 s mm_stat: 4041666560 2310488276 1338150912 0 1338150912 476 0 989088794 24564336 Memory is saved by 42% and performance is the same. Even if there is overhead of calculating checksum and comparison, large hit ratio compensate it since hit leads to less compression attempt. I checked the detailed reason of savings on kernel build workload and there are some cases that deduplication happens. 1) *.cmd Build command is usually similar in one directory so content of these file are very similar. In my system, more than 789 lines in fs/ext4/.namei.o.cmd and fs/ext4/.inode.o.cmd are the same in 944 and 938 lines of the file, respectively. 2) intermediate object files built-in.o and temporary object file have the similar contents. More than 50% of fs/ext4/ext4.o is the same with fs/ext4/built-in.o. 3) vmlinux .tmp_vmlinux1 and .tmp_vmlinux2 and arch/x86/boo/compressed/vmlinux.bin have the similar contents. Android test has similar case that some of object files(.class and .so) are similar with another ones. (./host/linux-x86/lib/libartd.so and ./host/linux-x86-lib/libartd-comiler.so) Anyway, benefit seems to be largely dependent on the workload so following patch will make this feature optional. However, this feature can help some usecases so is deserved to be merged. [1]: MemScope: Analyzing Memory Duplication on Android Systems, dl.acm.org/citation.cfm?id=2797023 [2]: zswap: Optimize compressed pool memory utilization, lkml.kernel.org/r/1341407574.7551.1471584870761.JavaMail.weblogic@epwas3p2 Change-Id: I8fe80c956c33f88a6af337d50d9e210e5c35ce37 Reviewed-by: Sergey Senozhatsky <[email protected]> Acked-by: Minchan Kim <[email protected]> Signed-off-by: Joonsoo Kim <[email protected]> Link: https://lore.kernel.org/patchwork/patch/787162/ Patch-mainline: linux-kernel@ Thu, 11 May 2017 22:30:26 Signed-off-by: Charan Teja Reddy <[email protected]> Signed-off-by: Park Ju Hyung <[email protected]> Signed-off-by: Kazuki Hashimoto <[email protected]>
Sign up for free
to subscribe to this conversation on GitHub.
Already have an account?
Sign in.
In order to use custom binaries, compilers for compilation, source needs some changes.
The text was updated successfully, but these errors were encountered: