This S2I respository has template files used for building tensorflow wheel files for:
Centos7
Fedora27
Fedora28
RHEL7.5
NOTE: for RHEL7.5
you need a system with RHEL Subscription enabled.
Building Tensorflow from source on Linux can give better performance. This is because
...the default TensorFlow wheel files target the broadest range of hardware to make TensorFlow accessible to everyone. If you are using CPUs for training or inference, it is recommended to compile TensorFlow with all of the optimizations available for the CPU in use. To install the most optimized version of TensorFlow, build and install from source. If there is a need to build TensorFlow on a platform that has different hardware than the target, then cross-compile with the highest optimizations for the target platform....
For example:
--copt=-mavx --copt=-mavx2 --copt=-mavx512f --copt=-mfma --copt=-mfpmath=both --copt=-msse4.2
using above options in CUSTOM_BUILD
will build the package with optimizations for FMA, AVX and SSE
.
Build and install from source is fraught with errors due to gcc
compatability issues, mismatch between CUDA platform and cuDNN libraries with TensorFlow, python
versions, bazel
versions , unsupported optimizations on the target CPU etc.
The templates and Dockerfiles available here provide a flexible approach to create wheel files for different combinations of OS, python
version, bazel
version etc by specifying them as PARAMS(--param=
) in the templates.
The wheel files created from these templates are available at AICoE/tensorflow-wheels.
And the instructions to use with pipfile are given here AICoE's TensorFlow Artifacts.
GPU is not yet supported.
TF_NEED_JEMALLOC
: = 1TF_NEED_GCP
: = 0TF_NEED_VERBS
: = 0TF_NEED_HDFS
: = 0TF_ENABLE_XLA
: = 0TF_NEED_OPENCL
: = 0TF_NEED_CUDA
: = 1TF_NEED_MPI
: = 0TF_NEED_GDR
: = 0TF_NEED_S3
: = 0TF_CUDA_VERSION
: = 9.0TF_CUDA_COMPUTE_CAPABILITIES
: = 3.0,3.5,5.2,6.0,6.1,7.0TF_CUDNN_VERSION
: = 7TF_NEED_OPENCL_SYCL
:= 0TF_NEED_TENSORRT
:= 0TF_CUDA_CLANG
:= 0GCC_HOST_COMPILER_PATH
:= /usr/bin/gccCUDA_TOOLKIT_PATH
:= /usr/lib/cudaCUDNN_INSTALL_PATH
:= /usr/lib/cudaTF_NEED_KAFKA
:=0TF_NEED_OPENCL_SYCL
:=0TF_DOWNLOAD_CLANG
:=0TF_SET_ANDROID_WORKSPACE
:=0TF_NEED_IGNITE
:=0TF_NEED_ROCM
:=0
Here is the default build command used to build tensorflow.
CUSTOM_BUILD
:=bazel build --copt=-mavx --copt=-mavx2 --copt=-mfma --copt=-mfpmath=both --copt=-msse4.2 --cxxopt='-D_GLIBCXX_USE_CXX11_ABI=0' --cxxopt='-D_GLIBCXX_USE_CXX11_ABI=0' --local_resources 2048,2.0,1.0 --verbose_failures //tensorflow/tools/pip_package:build_pip_package
Following should be left blank for a build job.
TEST_LOOP
:=BUILD_OPTS
:=
set some environment values for convenience
# valid values are 2.7,3.6,3.5
PYTHON_VERSION=3.6
# git token and repo
export GIT_TOKEN=
export GIT_RELEASE_REPO=
oc create -f tensorflow-build-image.json
oc create -f tensorflow-build-job.json
oc create -f tensorflow-build-dc.json
oc new-app --template=tensorflow-build-image \
--param=APPLICATION_NAME=tf-rhel75-build-image-${PYTHON_VERSION//.} \
--param=S2I_IMAGE=registry.access.redhat.com/rhscl/s2i-core-rhel7 \
--param=DOCKER_FILE_PATH=Dockerfile.rhel75 \
--param=PYTHON_VERSION=$PYTHON_VERSION \
--param=BUILD_VERSION=2 \
--param=BAZEL_VERSION=0.22.0
The above command creates a tensorflow builder image APPLICATION_NAME:BUILD_VERSION
for specific OS.
The values for S2I_IMAGE
are :
- Fedora26-
registry.fedoraproject.org/f26/s2i-core
- Fedora27-
registry.fedoraproject.org/f27/s2i-core
- Fedora28-
registry.fedoraproject.org/f28/s2i-core
- RHEL7.5-
registry.access.redhat.com/rhscl/s2i-core-rhel7
- Centos7-
openshift/base-centos7
The values for DOCKER_FILE_PATH
are :
- Fedora26-
Dockerfile.fedora26
- Fedora27-
Dockerfile.fedora27
- Fedora28-
Dockerfile.fedora28
- RHEL7.5-
Dockerfile.rhel75
- Centos7-
Dockerfile.centos7
OR
Import the template tensorflow-build-image.json
into your namespace from Openshift UI.
And then deploy from UI with appropriate values.
oc new-app --template=tensorflow-build-job \
--param=APPLICATION_NAME=tf-rhel75-build-job-${PYTHON_VERSION//.} \
--param=BUILDER_IMAGESTREAM=tf-rhel75-build-image-${PYTHON_VERSION//.}:2 \
--param=PYTHON_VERSION=$PYTHON_VERSION \
--param=BAZEL_VERSION=0.22.0 \
--param=GIT_RELEASE_REPO=$GIT_RELEASE_REPO \
--param=GIT_TOKEN=$GIT_TOKEN
NOTE: BUILDER_IMAGESTREAM = APPLICATION_NAME:BUILD_VERSION
from step 2.
OR
Import the template tensorflow-build-job.json
into your namespace from Openshift UI.
And then deploy from UI with appropriate values.
Tensorflow wheel files will be pushed to $GIT_RELEASE_REPO
using the token $GIT_TOKEN
.
(NOTE: This will ONLY work if the oauth token has scope of "repo".
You can generate Personal API access token at https://github.com/settings/tokens. Minimal token scope is "repo".)
oc new-app --template=tensorflow-build-dc \
--param=APPLICATION_NAME=tf-rhel75-build-dc-${PYTHON_VERSION//.} \
--param=BUILDER_IMAGESTREAM=tf-rhel75-build-image-${PYTHON_VERSION//.}:2 \
--param=PYTHON_VERSION=$PYTHON_VERSION \
--param=TEST_LOOP=y
NOTE: BUILDER_IMAGESTREAM = APPLICATION_NAME:BUILD_VERSION
from step 2.
See Usage example