diff --git a/instat/ucrCalculator.vb b/instat/ucrCalculator.vb index 3c948ec307..c1688b4529 100644 --- a/instat/ucrCalculator.vb +++ b/instat/ucrCalculator.vb @@ -266,9 +266,10 @@ Public Class ucrCalculator ttCalculator.SetToolTip(cmdNthPrime, "gives the n-th prime. For example nth_prime(1000)= 7919") ttCalculator.SetToolTip(cmdGeneratePrimes, "generates the first n prime numbers equal to the number of rows in the data") ttCalculator.SetToolTip(cmdGCD, "greatest common divisor, for example gcd(18,42) = 6") - ttCalculator.SetToolTip(cmdSCM, "smallest common multiple, for example scm(18,42) = 126 (= 718 & 342)") - ttCalculator.SetToolTip(cmdCoprime, "also called mutually prime, for example coprime(30,77) = TRUE. (30 = 235, 77 = 7*11)") - ttCalculator.SetToolTip(cmdPhi, "Euler’s Totient Function. For example phi(12) = 4 (1, 2, 5, 7 are less than 12 and coprime)") + ttCalculator.SetToolTip(cmdReverseStr, "reverses a string. So reverse(""I am roger"") becomes ""regor ma I""") + ttCalculator.SetToolTip(cmdSCM, "smallest common multiple, for example scm(18,42) = 126(= 718 & 342)") + ttCalculator.SetToolTip(cmdCoprime, "also called mutually prime, For example coprime(30,77) = True. (30 = 235, 77 = 7*11)") + ttCalculator.SetToolTip(cmdPhi, "Euler's Totient Function. For example phi(12) = 4 (1, 2, 5, 7 are less than 12 and coprime)") ttCalculator.SetToolTip(cmdTwin, "twin primes, for example, twin(0,10) gives (3,5), & (5,7)") ttCalculator.SetToolTip(cmdCousin, "cousin primes, for example cousin(0,20) gives (3,7) & (13,17)") ttCalculator.SetToolTip(cmdSexy, "sexy primes (6 in Latin is sex!), for example sexy(0,40) gives (23,29) & (31,37)") @@ -279,14 +280,15 @@ Public Class ucrCalculator ttCalculator.SetToolTip(cmdPalindrome, "generates palindromes to the length of the dataframe. For example the 100th palindromic number is 909") ttCalculator.SetToolTip(cmdCatalan, "generates Catalan numbers to the length of the data frame. The 5th is 10!/(5!*6!) =7 * 6 = 42") ttCalculator.SetToolTip(cmdPerfect, "divisors add to the number. So 6 = 1+2+3. Only 51 perfect numbers are currently known.") + ttCalculator.SetToolTip(cmdAbundant, "generates abundant numbers to the length of the data frame. 12 is is the first, because 1+2+3+4+6 > 12") ttCalculator.SetToolTip(cmdFrugal, "125 is frugal because 125 = 5(cubed) and 5 and 3 are fewer digits (2) than 125 (3).") - ttCalculator.SetToolTip(cmdPowerful, "36 = 2(squared)*3(squared) is powerful because for each divisor, here 2 and 3, its square is also a divisor.") - ttCalculator.SetToolTip(cmdUgly, "also called Regular or Hamming or 5-smooth numbers. Numbers for which the factors are only 2, or 3 or 5.") - ttCalculator.SetToolTip(cmdHappy, "13 is happy because 1(squared) + 3(squared) = 10, then 1(squared)+ 0(squared) = 1.") - ttCalculator.SetToolTip(cmdAchilles, "powerful numbers that are not perfect squares. 72 is the smallest Achilles number.") - ttCalculator.SetToolTip(cmdPadovan, "sum of last but 1 and last but 2 values. So from ...7, 9, 12, next is 7+9 = 16.") + ttCalculator.SetToolTip(cmdPowerful, "36 = 2(squared)*3(squared) is powerful because for each divisor, here 2 and 3, its square is also a divisor") + ttCalculator.SetToolTip(cmdUgly, "also called Regular or Hamming or 5-smooth numbers. Numbers for which the factors are only 2, or 3 or 5") + ttCalculator.SetToolTip(cmdHappy, "13 is happy because 1(squared) + 3(squared) = 10, then 1(squared)+ 0(squared) = 1") + ttCalculator.SetToolTip(cmdAchilles, "powerful numbers that are not perfect squares. 72 is the smallest Achilles number") + ttCalculator.SetToolTip(cmdPadovan, "sum of last but 1 and last but 2 values. So from ...7, 9, 12, next is 7+9 = 16") ttCalculator.SetToolTip(cmdTriangle, "number of objects in a triangle, so 0, 1, 3, 6, 10...") - ttCalculator.SetToolTip(cmdSquare, "squares of each integer, so 1, 4, 9, 16.") + ttCalculator.SetToolTip(cmdSquare, "squares of each integer, so 1, 4, 9, 16") ttCalculator.SetToolTip(cmdLucas, "generates Lucas numbers to the length of the dataframe. For example the 10th Lucas number is 76") ttCalculator.SetToolTip(cmdPrimorial, "gives the primorial (like the factorial, but just the primes up to the number) for a variable. For example primorial(c(7,8,9)) = 235*7 = (210, 210, 210)") @@ -1573,7 +1575,7 @@ Public Class ucrCalculator Private Sub cmdPnorm_Click(sender As Object, e As EventArgs) Handles cmdPnorm.Click If chkShowParameters.Checked Then - ucrReceiverForCalculation.AddToReceiverAtCursorPosition("pnorm(q= , mean = 0, sd = 1, lower.tail = True, Log.p = False)", 54) + ucrReceiverForCalculation.AddToReceiverAtCursorPosition("pnorm(q= , mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE)", 54) Else ucrReceiverForCalculation.AddToReceiverAtCursorPosition("pnorm( )", 2) End If