-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy path26.rb
60 lines (53 loc) · 1.39 KB
/
26.rb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
# Problem 26
# 13 September 2002
# A unit fraction contains 1 in the numerator. The decimal representation of
# the unit fractions with denominators 2 to 10 are given:
# 1/2 = 0.5
# 1/3 = 0.(3)
# 1/4 = 0.25
# 1/5 = 0.2
# 1/6 = 0.1(6)
# 1/7 = 0.(142857)
# 1/8 = 0.125
# 1/9 = 0.(1)
# 1/10 = 0.1
# Where 0.1(6) means 0.166666..., and has a 1-digit recurring cycle. It can be
# seen that 1/7 has a 6-digit recurring cycle.
#
# Find the value of d < 1000 for which 1/d contains the longest recurring cycle
# in its decimal fraction part.
largest_cycle = [1,0]
(2...1000).each do |d|
cycles = {}
num = 10
digits = []
catch (:found) {
until num.zero?
while d > num
num *= 10
digits << 0
end
q, r = num.divmod d
digits << q
if cycles[num]
l = digits.length - cycles[num]
puts "1/%d => 0.%s(%s) %d"%[d,
digits[0, l].join,
digits[(digits.length - l)..-1].join,
l,
]
largest_cycle = [d,l] if l > largest_cycle[1]
throw :found
end
throw :found if r.zero?
cycles[num] = digits.length
num = r * 10
end
}
end
puts "Largest cycle from %d (length %d)"%largest_cycle
__END__
Largest cycle from 983 (length 982)
real 0m0.430s
user 0m0.310s
sys 0m0.028s