forked from PaddlePaddle/PaddleOCR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrec_resnet_aster.py
143 lines (122 loc) · 4.46 KB
/
rec_resnet_aster.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is refer from:
https://github.com/ayumiymk/aster.pytorch/blob/master/lib/models/resnet_aster.py
"""
import paddle
import paddle.nn as nn
import sys
import math
def conv3x3(in_planes, out_planes, stride=1):
"""3x3 convolution with padding"""
return nn.Conv2D(
in_planes,
out_planes,
kernel_size=3,
stride=stride,
padding=1,
bias_attr=False)
def conv1x1(in_planes, out_planes, stride=1):
"""1x1 convolution"""
return nn.Conv2D(
in_planes, out_planes, kernel_size=1, stride=stride, bias_attr=False)
def get_sinusoid_encoding(n_position, feat_dim, wave_length=10000):
# [n_position]
positions = paddle.arange(0, n_position)
# [feat_dim]
dim_range = paddle.arange(0, feat_dim)
dim_range = paddle.pow(wave_length, 2 * (dim_range // 2) / feat_dim)
# [n_position, feat_dim]
angles = paddle.unsqueeze(
positions, axis=1) / paddle.unsqueeze(
dim_range, axis=0)
angles = paddle.cast(angles, "float32")
angles[:, 0::2] = paddle.sin(angles[:, 0::2])
angles[:, 1::2] = paddle.cos(angles[:, 1::2])
return angles
class AsterBlock(nn.Layer):
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(AsterBlock, self).__init__()
self.conv1 = conv1x1(inplanes, planes, stride)
self.bn1 = nn.BatchNorm2D(planes)
self.relu = nn.ReLU()
self.conv2 = conv3x3(planes, planes)
self.bn2 = nn.BatchNorm2D(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class ResNet_ASTER(nn.Layer):
"""For aster or crnn"""
def __init__(self, with_lstm=True, n_group=1, in_channels=3):
super(ResNet_ASTER, self).__init__()
self.with_lstm = with_lstm
self.n_group = n_group
self.layer0 = nn.Sequential(
nn.Conv2D(
in_channels,
32,
kernel_size=(3, 3),
stride=1,
padding=1,
bias_attr=False),
nn.BatchNorm2D(32),
nn.ReLU())
self.inplanes = 32
self.layer1 = self._make_layer(32, 3, [2, 2]) # [16, 50]
self.layer2 = self._make_layer(64, 4, [2, 2]) # [8, 25]
self.layer3 = self._make_layer(128, 6, [2, 1]) # [4, 25]
self.layer4 = self._make_layer(256, 6, [2, 1]) # [2, 25]
self.layer5 = self._make_layer(512, 3, [2, 1]) # [1, 25]
if with_lstm:
self.rnn = nn.LSTM(512, 256, direction="bidirect", num_layers=2)
self.out_channels = 2 * 256
else:
self.out_channels = 512
def _make_layer(self, planes, blocks, stride):
downsample = None
if stride != [1, 1] or self.inplanes != planes:
downsample = nn.Sequential(
conv1x1(self.inplanes, planes, stride), nn.BatchNorm2D(planes))
layers = []
layers.append(AsterBlock(self.inplanes, planes, stride, downsample))
self.inplanes = planes
for _ in range(1, blocks):
layers.append(AsterBlock(self.inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x):
x0 = self.layer0(x)
x1 = self.layer1(x0)
x2 = self.layer2(x1)
x3 = self.layer3(x2)
x4 = self.layer4(x3)
x5 = self.layer5(x4)
cnn_feat = x5.squeeze(2) # [N, c, w]
cnn_feat = paddle.transpose(cnn_feat, perm=[0, 2, 1])
if self.with_lstm:
rnn_feat, _ = self.rnn(cnn_feat)
return rnn_feat
else:
return cnn_feat