-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathhaar.cpp
329 lines (280 loc) · 8.81 KB
/
haar.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
/***************************************************************************
imgSeek :: Haar 2d transform implemented in C/C++ to speed things up
-------------------
begin : Fri Jan 17 2003
email : nieder|at|mail.ru
Time-stamp: <05/01/30 19:58:56 rnc>
***************************************************************************
* Wavelet algorithms, metric and query ideas based on the paper *
* Fast Multiresolution Image Querying *
* by Charles E. Jacobs, Adam Finkelstein and David H. Salesin. *
* <http://www.cs.washington.edu/homes/salesin/abstracts.html> *
***************************************************************************
Copyright (C) 2003 Ricardo Niederberger Cabral
Clean-up and speed-ups by Geert Janssen <geert at ieee.org>, Jan 2006:
- introduced names for various `magic' numbers
- made coding style suitable for Emacs c-mode
- expressly doing constant propagation by hand (combined scalings)
- preferring pointer access over indexed access of arrays
- introduced local variables to avoid expression re-evaluations
- took out all dynamic allocations
- completely rewrote calcHaar and eliminated truncq()
- better scheme of introducing sqrt(0.5) factors borrowed from
FXT package: author Joerg Arndt, email: [email protected],
http://www.jjj.de/
- separate processing per array: better cache behavior
- do away with all scaling; not needed except for DC component
To do:
- the whole Haar transform should be done using fixpoints
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/* C Includes */
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
/* imgSeek Includes */
#include "haar.h"
// RGB -> YIQ colorspace conversion; Y luminance, I,Q chrominance.
// If RGB in [0..255] then Y in [0..255] and I,Q in [-127..127].
#define RGB_2_YIQ(a, b, c) \
do { \
int i; \
\
for (i = 0; i < NUM_PIXELS_SQUARED; i++) { \
Unit Y, I, Q; \
\
Y = 0.299 * a[i] + 0.587 * b[i] + 0.114 * c[i]; \
I = 0.596 * a[i] - 0.275 * b[i] - 0.321 * c[i]; \
Q = 0.212 * a[i] - 0.523 * b[i] + 0.311 * c[i]; \
a[i] = Y; \
b[i] = I; \
c[i] = Q; \
} \
} while(0)
#if 0
/* Haar 2D transform.
Not doing any scaling by 1/sqrt(128).
Better cache behaviour when processing array by array.
This version needs a different imgBin array! FIXME.
*/
static void
haar2D(Unit a[])
{
int i, i1;
/* scale by 1/sqrt(128) = 0.08838834764831843: */
/*
for (i = 0; i < NUM_PIXELS_SQUARED; i++)
a[i] *= 0.08838834764831843;
*/
/* Decompose rows: */
for (i = 0; i < NUM_PIXELS_SQUARED; i = i1) {
Unit C = 1;
int l, l1;
i1 = i + NUM_PIXELS; /* start of next row, next i */
for (l = 1; l < NUM_PIXELS; l = l1) {
int j;
C *= 0.7071; /* 1/sqrt(2) */
l1 = l << 1; /* l1 = 2*l, next l */
for (j = i; j < i1; j += l1) {
int j1 = j+l;
Unit t1;
t1 = (a[j] - a[j1]) * C;
a[j] += a[j1];
a[j1] = t1;
}
}
/* Fix first element of each row: */
a[i] *= C; /* C = 1/sqrt(NUM_PIXELS) */
}
/* scale by 1/sqrt(128) = 0.08838834764831843: */
/*
for (i = 0; i < NUM_PIXELS_SQUARED; i++)
a[i] *= 0.08838834764831843;
*/
/* Decompose columns: */
for (i = 0; i < NUM_PIXELS; i++) {
Unit C = 1;
int l, l1;
for (l = 1; l < NUM_PIXELS; l = l1) {
int j;
C *= 0.7071; /* 1/sqrt(2) = 0.7071 */
l1 = l << 1; /* l1 = 2*l, next l */
for (j = i; j < i+NUM_PIXELS_SQUARED; j += l1*NUM_PIXELS) {
int j1 = j+(l*NUM_PIXELS);
Unit t1;
t1 = (a[j] - a[j1]) * C;
a[j] += a[j1];
a[j1] = t1;
}
}
/* Fix first element of each column: */
a[i] *= C;
}
}
#else
// Do the Haar tensorial 2d transform itself.
// Here input is RGB data [0..255] in Unit arrays
// Computation is (almost) in-situ.
static void
haar2D(Unit a[])
{
int i;
Unit t[NUM_PIXELS >> 1];
// scale by 1/sqrt(128) = 0.08838834764831843:
/*
for (i = 0; i < NUM_PIXELS_SQUARED; i++)
a[i] *= 0.08838834764831843;
*/
// Decompose rows:
for (i = 0; i < NUM_PIXELS_SQUARED; i += NUM_PIXELS) {
int h, h1;
Unit C = 1;
for (h = NUM_PIXELS; h > 1; h = h1) {
int j1, j2, k;
h1 = h >> 1; // h = 2*h1
C *= 0.7071; // 1/sqrt(2)
for (k = 0, j1 = j2 = i; k < h1; k++, j1++, j2 += 2) {
int j21 = j2+1;
t[k] = (a[j2] - a[j21]) * C;
a[j1] = (a[j2] + a[j21]);
}
// Write back subtraction results:
memcpy(a+i+h1, t, h1*sizeof(a[0]));
}
// Fix first element of each row:
a[i] *= C; // C = 1/sqrt(NUM_PIXELS)
}
// scale by 1/sqrt(128) = 0.08838834764831843:
/*
for (i = 0; i < NUM_PIXELS_SQUARED; i++)
a[i] *= 0.08838834764831843;
*/
// Decompose columns:
for (i = 0; i < NUM_PIXELS; i++) {
Unit C = 1;
int h, h1;
for (h = NUM_PIXELS; h > 1; h = h1) {
int j1, j2, k;
h1 = h >> 1;
C *= 0.7071; // 1/sqrt(2) = 0.7071
for (k = 0, j1 = j2 = i; k < h1;
k++, j1 += NUM_PIXELS, j2 += 2*NUM_PIXELS) {
int j21 = j2+NUM_PIXELS;
t[k] = (a[j2] - a[j21]) * C;
a[j1] = (a[j2] + a[j21]);
}
// Write back subtraction results:
for (k = 0, j1 = i+h1*NUM_PIXELS; k < h1; k++, j1 += NUM_PIXELS)
a[j1]=t[k];
}
// Fix first element of each column:
a[i] *= C;
}
}
#endif
/* Do the Haar tensorial 2d transform itself.
Here input is RGB data [0..255] in Unit arrays.
Results are available in a, b, and c.
Fully inplace calculation; order of result is interleaved though,
but we don't care about that.
*/
void
transform(Unit* a, Unit* b, Unit* c)
{
RGB_2_YIQ(a, b, c);
haar2D(a);
haar2D(b);
haar2D(c);
/* Reintroduce the skipped scaling factors: */
a[0] /= 256 * 128;
b[0] /= 256 * 128;
c[0] /= 256 * 128;
}
// Do the Haar tensorial 2d transform itself.
// Here input RGB data is in unsigned char arrays ([0..255])
// Results are available in a, b, and c.
void
transformChar(unsigned char* c1, unsigned char* c2, unsigned char* c3,
Unit* a, Unit* b, Unit* c)
{
int i;
Unit *p = a;
Unit *q = b;
Unit *r = c;
for (i = 0; i < NUM_PIXELS_SQUARED; i++) {
*p++ = *c1++;
*q++ = *c2++;
*r++ = *c3++;
}
transform(a, b, c);
}
// Find the NUM_COEFS largest numbers in cdata[] (in magnitude that is)
// and store their indices in sig[].
inline static void
get_m_largests(Unit *cdata, Idx *sig)
{
int cnt, i;
valStruct val;
valqueue vq; // dynamic priority queue of valStruct's
// Could skip i=0: goes into separate avgl
// Fill up the bounded queue. (Assuming NUM_PIXELS_SQUARED > NUM_COEFS)
for (i = 1; i < NUM_COEFS+1; i++) {
val.i = i;
val.d = ABS(cdata[i]);
vq.push(val);
}
// Queue is full (size is NUM_COEFS)
for (/*i = NUM_COEFS+1*/; i < NUM_PIXELS_SQUARED; i++) {
val.d = ABS(cdata[i]);
if (val.d > vq.top().d) {
// Make room by dropping smallest entry:
vq.pop();
// Insert val as new entry:
val.i = i;
vq.push(val);
}
// else discard: do nothing
}
// Empty the (non-empty) queue and fill-in sig:
cnt=0;
do {
int t;
val = vq.top();
t = (cdata[val.i] <= 0); /* t = 0 if pos else 1 */
/* i - 0 ^ 0 = i; i - 1 ^ 0b111..1111 = 2-compl(i) = -i */
sig[cnt++] = (val.i - t) ^ -t; // never 0
vq.pop();
} while(!vq.empty());
// Must have cnt==NUM_COEFS here.
}
// Determines a total of NUM_COEFS positions in the image that have the
// largest magnitude (absolute value) in color value. Returns linearized
// coordinates in sig1, sig2, and sig3. avgl are the [0,0] values.
// The order of occurrence of the coordinates in sig doesn't matter.
// Complexity is 3 x NUM_PIXELS^2 x 2log(NUM_COEFS).
int
calcHaar(Unit *cdata1, Unit *cdata2, Unit *cdata3,
Idx *sig1, Idx *sig2, Idx *sig3, double *avgl)
{
avgl[0]=cdata1[0];
avgl[1]=cdata2[0];
avgl[2]=cdata3[0];
// Color channel 1:
get_m_largests(cdata1, sig1);
// Color channel 2:
get_m_largests(cdata2, sig2);
// Color channel 3:
get_m_largests(cdata3, sig3);
return 1;
}