diff --git a/benchmarks/eigenvalues.jl b/benchmarks/eigenvalues.jl index d6143b9a..3fc4287a 100644 --- a/benchmarks/eigenvalues.jl +++ b/benchmarks/eigenvalues.jl @@ -9,10 +9,10 @@ function benchmark_eigenvalues!(SUITE) ωb = 1 g = 0.2 κ = 0.01 - n_thermal = 0.1 + n_th = 0.1 H = ωc * a_d * a + ωb * b_d * b + g * (a + a_d) * (b + b_d) - c_ops = [√((1 + n_thermal) * κ) * a, √κ * b, √(n_thermal * κ) * a_d] + c_ops = [√((1 + n_th) * κ) * a, √κ * b, √(n_th * κ) * a_d] L = liouvillian(H, c_ops) SUITE["Eigenvalues"]["eigenstates"]["dense"] = @benchmarkable eigenstates($L) diff --git a/docs/src/api.md b/docs/src/api.md index 6d5fdb11..30c367bb 100644 --- a/docs/src/api.md +++ b/docs/src/api.md @@ -238,7 +238,7 @@ AbstractLinearMap QuantumToolbox.versioninfo QuantumToolbox.about gaussian -n_th +n_thermal row_major_reshape meshgrid _calculate_expectation! diff --git a/docs/src/users_guide/steadystate.md b/docs/src/users_guide/steadystate.md index ab06406a..a69409f5 100644 --- a/docs/src/users_guide/steadystate.md +++ b/docs/src/users_guide/steadystate.md @@ -103,14 +103,11 @@ sol_me = mesolve(H, ψ0, tlist, c_op_list, e_ops=e_ops, progress_bar=false) exp_me = real(sol_me.expect[1, :]) # plot the results -fig = Figure(size = (500, 350), fontsize = 15) +fig = Figure(size = (500, 350)) ax = Axis(fig[1, 1], title = L"Decay of Fock state $|10\rangle$ in a thermal environment with $\langle n\rangle=2$", xlabel = "Time", - ylabel = "Number of excitations", - titlesize = 24, - xlabelsize = 20, - ylabelsize = 20 + ylabel = "Number of excitations", ) lines!(ax, tlist, exp_mc, label = "Monte-Carlo", linewidth = 2, color = :blue) lines!(ax, tlist, exp_me, label = "Master Equation", linewidth = 2, color = :orange, linestyle = :dash) diff --git a/src/time_evolution/time_evolution.jl b/src/time_evolution/time_evolution.jl index f3878295..971d53c6 100644 --- a/src/time_evolution/time_evolution.jl +++ b/src/time_evolution/time_evolution.jl @@ -322,7 +322,7 @@ function liouvillian_generalized( end # Ohmic reservoir - N_th = n_th.(Ωp, T_list[i]) + N_th = n_thermal.(Ωp, T_list[i]) Sp₀ = QuantumObject(triu(X_op, 1), type = Operator, dims = dims) Sp₁ = QuantumObject(droptol!((@. Ωp * N_th * Sp₀.data), tol), type = Operator, dims = dims) Sp₂ = QuantumObject(droptol!((@. Ωp * (1 + N_th) * Sp₀.data), tol), type = Operator, dims = dims) diff --git a/src/utilities.jl b/src/utilities.jl index a2888b70..69d250a7 100644 --- a/src/utilities.jl +++ b/src/utilities.jl @@ -3,7 +3,7 @@ Utilities: internal (or external) functions which will be used throughout the entire package =# -export gaussian, n_th +export gaussian, n_thermal export row_major_reshape, meshgrid @doc raw""" @@ -34,15 +34,18 @@ where ``\mu`` and ``\sigma^2`` are the mean and the variance respectively. gaussian(x::Number, μ::Number, σ::Number) = exp(-(x - μ)^2 / (2 * σ^2)) @doc raw""" - n_th(ω::Number, T::Real) + n_thermal(ω::Real, ω_th::Real) -Gives the mean number of excitations in a mode with frequency ω at temperature T: -``n_{\rm th} (\omega, T) = \frac{1}{e^{\omega/T} - 1}`` +Return the number of photons in thermal equilibrium for an harmonic oscillator mode with frequency ``\omega``, at the temperature described by ``\omega_{\textrm{th}} \equiv k_B T / \hbar``: +```math +n(\omega, \omega_{\textrm{th}}) = \frac{1}{e^{\omega/\omega_{\textrm{th}}} - 1}, +``` +where ``\hbar`` is the reduced Planck constant, and ``k_B`` is the Boltzmann constant. """ -function n_th(ω::Real, T::Real)::Float64 - (T == 0 || ω == 0) && return 0.0 - abs(ω / T) > 50 && return 0.0 - return 1 / (exp(ω / T) - 1) +function n_thermal(ω::Real, ω_th::Real)::Float64 + x = exp(ω / ω_th) + n = ((x != 1) && (ω_th > 0)) ? (1.0 / (x - 1.0)) : 0.0 + return n end _get_dense_similar(A::AbstractArray, args...) = similar(A, args...) diff --git a/test/core-test/eigenvalues_and_operators.jl b/test/core-test/eigenvalues_and_operators.jl index 9e8ad76a..31d5997a 100644 --- a/test/core-test/eigenvalues_and_operators.jl +++ b/test/core-test/eigenvalues_and_operators.jl @@ -50,10 +50,10 @@ ωb = 1 g = 0.01 κ = 0.1 - n_thermal = 0.01 + n_th = 0.01 H = ωc * a_d * a + ωb * b_d * b + g * (a + a_d) * (b + b_d) - c_ops = [√((1 + n_thermal) * κ) * a, √κ * b, √(n_thermal * κ) * a_d] + c_ops = [√((1 + n_th) * κ) * a, √κ * b, √(n_th * κ) * a_d] L = liouvillian(H, c_ops) # eigen solve for general matrices @@ -103,10 +103,10 @@ ωb = 1 g = 0.01 κ = 0.1 - n_thermal = 0.01 + n_th = 0.01 H = ωc * a_d * a + ωb * b_d * b + g * (a + a_d) * (b + b_d) - c_ops = [√((1 + n_thermal) * κ) * a, √κ * b, √(n_thermal * κ) * a_d] + c_ops = [√((1 + n_th) * κ) * a, √κ * b, √(n_th * κ) * a_d] L = liouvillian(H, c_ops) @inferred eigenstates(H, sparse = false) diff --git a/test/core-test/generalized_master_equation.jl b/test/core-test/generalized_master_equation.jl index 080ab17e..a35114e8 100644 --- a/test/core-test/generalized_master_equation.jl +++ b/test/core-test/generalized_master_equation.jl @@ -40,7 +40,7 @@ a2 = Qobj(dense_to_sparse((U'*a*U).data[1:N_trunc, 1:N_trunc], tol)) sm2 = Qobj(dense_to_sparse((U'*sm*U).data[1:N_trunc, 1:N_trunc], tol)) - @test abs(expect(Xp' * Xp, steadystate(L1)) - n_th(1, Tlist[1])) / n_th(1, Tlist[1]) < 1e-4 + @test abs(expect(Xp' * Xp, steadystate(L1)) - n_thermal(1, Tlist[1])) / n_thermal(1, Tlist[1]) < 1e-4 @testset "Type Inference (liouvillian_generalized)" begin N_c = 30