From 4a44624c040086a3b148494d55989bc8fc91d353 Mon Sep 17 00:00:00 2001 From: Alberto Mercurio Date: Thu, 3 Oct 2024 20:11:43 +0200 Subject: [PATCH] Add progress_bar in mcsolve, ssesolve and dsf_mcsolve --- Project.toml | 12 +-- src/QuantumToolbox.jl | 1 + src/qobj/operators.jl | 2 +- src/qobj/states.jl | 4 +- src/time_evolution/mcsolve.jl | 76 ++++++++++++------- src/time_evolution/mesolve.jl | 7 +- src/time_evolution/sesolve.jl | 7 +- src/time_evolution/ssesolve.jl | 60 +++++++++------ .../time_evolution_dynamical.jl | 50 +++++++----- src/utilities.jl | 1 + 10 files changed, 136 insertions(+), 84 deletions(-) diff --git a/Project.toml b/Project.toml index dfbfae0e..b7dba8d6 100644 --- a/Project.toml +++ b/Project.toml @@ -8,6 +8,7 @@ ArrayInterface = "4fba245c-0d91-5ea0-9b3e-6abc04ee57a9" DiffEqBase = "2b5f629d-d688-5b77-993f-72d75c75574e" DiffEqCallbacks = "459566f4-90b8-5000-8ac3-15dfb0a30def" DiffEqNoiseProcess = "77a26b50-5914-5dd7-bc55-306e6241c503" +Distributed = "8ba89e20-285c-5b6f-9357-94700520ee1b" FFTW = "7a1cc6ca-52ef-59f5-83cd-3a7055c09341" Graphs = "86223c79-3864-5bf0-83f7-82e725a168b6" IncompleteLU = "40713840-3770-5561-ab4c-a76e7d0d7895" @@ -37,23 +38,24 @@ CUDA = "5" DiffEqBase = "6" DiffEqCallbacks = "2 - 3.1, 3.8, 4" DiffEqNoiseProcess = "5" +Distributed = "1" FFTW = "1.5" Graphs = "1.7" IncompleteLU = "0.2" -LinearAlgebra = "<0.0.1, 1" +LinearAlgebra = "1" LinearSolve = "2" OrdinaryDiffEqCore = "1" OrdinaryDiffEqTsit5 = "1" -Pkg = "<0.0.1, 1" -Random = "<0.0.1, 1" +Pkg = "1" +Random = "1" Reexport = "1" SciMLBase = "2" SciMLOperators = "0.3" -SparseArrays = "<0.0.1, 1" +SparseArrays = "1" SpecialFunctions = "2" StaticArraysCore = "1" StochasticDiffEq = "6" -Test = "<0.0.1, 1" +Test = "1" julia = "1.10" [extras] diff --git a/src/QuantumToolbox.jl b/src/QuantumToolbox.jl index 1822ff09..2326a084 100644 --- a/src/QuantumToolbox.jl +++ b/src/QuantumToolbox.jl @@ -40,6 +40,7 @@ import DiffEqNoiseProcess: RealWienerProcess # other dependencies (in alphabetical order) import ArrayInterface: allowed_getindex, allowed_setindex! +import Distributed: RemoteChannel import FFTW: fft, fftshift import Graphs: connected_components, DiGraph import IncompleteLU: ilu diff --git a/src/qobj/operators.jl b/src/qobj/operators.jl index feb15780..9ce68001 100644 --- a/src/qobj/operators.jl +++ b/src/qobj/operators.jl @@ -511,7 +511,7 @@ function tunneling(N::Int, m::Int = 1; sparse::Union{Bool,Val} = Val(false)) (m < 1) && throw(ArgumentError("The number of excitations (m) cannot be less than 1")) data = ones(ComplexF64, N - m) - if getVal(makeVal(sparse)) + if getVal(sparse) return QuantumObject(spdiagm(m => data, -m => data); type = Operator, dims = N) else return QuantumObject(diagm(m => data, -m => data); type = Operator, dims = N) diff --git a/src/qobj/states.jl b/src/qobj/states.jl index df01f81c..92c5ff20 100644 --- a/src/qobj/states.jl +++ b/src/qobj/states.jl @@ -34,7 +34,7 @@ It is also possible to specify the list of dimensions `dims` if different subsys If you want to keep type stability, it is recommended to use `fock(N, j, dims=dims, sparse=Val(sparse))` instead of `fock(N, j, dims=dims, sparse=sparse)`. Consider also to use `dims` as a `Tuple` or `SVector` instead of `Vector`. See [this link](https://docs.julialang.org/en/v1/manual/performance-tips/#man-performance-value-type) and the [related Section](@ref doc:Type-Stability) about type stability for more details. """ function fock(N::Int, j::Int = 0; dims::Union{Int,AbstractVector{Int},Tuple} = N, sparse::Union{Bool,Val} = Val(false)) - if getVal(makeVal(sparse)) + if getVal(sparse) array = sparsevec([j + 1], [1.0 + 0im], N) else array = zeros(ComplexF64, N) @@ -130,7 +130,7 @@ function thermal_dm(N::Int, n::Real; sparse::Union{Bool,Val} = Val(false)) β = log(1.0 / n + 1.0) N_list = Array{Float64}(0:N-1) data = exp.(-β .* N_list) - if getVal(makeVal(sparse)) + if getVal(sparse) return QuantumObject(spdiagm(0 => data ./ sum(data)), Operator, N) else return QuantumObject(diagm(0 => data ./ sum(data)), Operator, N) diff --git a/src/time_evolution/mcsolve.jl b/src/time_evolution/mcsolve.jl index f73c1edc..6b63570c 100644 --- a/src/time_evolution/mcsolve.jl +++ b/src/time_evolution/mcsolve.jl @@ -83,6 +83,7 @@ end function _mcsolve_output_func(sol, i) resize!(sol.prob.p.jump_times, sol.prob.p.jump_times_which_idx[] - 1) resize!(sol.prob.p.jump_which, sol.prob.p.jump_times_which_idx[] - 1) + put!(sol.prob.p.progr_channel, true) return (sol, false) end @@ -204,7 +205,8 @@ function mcsolveProblem( end saveat = e_ops isa Nothing ? t_l : [t_l[end]] - default_values = (DEFAULT_ODE_SOLVER_OPTIONS..., saveat = saveat) + # We disable the progress bar of the sesolveProblem because we use a global progress bar for all the trajectories + default_values = (DEFAULT_ODE_SOLVER_OPTIONS..., saveat = saveat, progress_bar = Val(false)) kwargs2 = merge(default_values, kwargs) cache_mc = similar(ψ0.data) @@ -396,15 +398,20 @@ end mcsolve(H::QuantumObject{<:AbstractArray{T1},OperatorQuantumObject}, ψ0::QuantumObject{<:AbstractArray{T2},KetQuantumObject}, tlist::AbstractVector, - c_ops::Union{Nothing,AbstractVector,Tuple}=nothing; - alg::OrdinaryDiffEqAlgorithm=Tsit5(), - e_ops::Union{Nothing,AbstractVector,Tuple}=nothing, - H_t::Union{Nothing,Function,TimeDependentOperatorSum}=nothing, - params::NamedTuple=NamedTuple(), - ntraj::Int=1, - ensemble_method=EnsembleThreads(), - jump_callback::TJC=ContinuousLindbladJumpCallback(), - kwargs...) + c_ops::Union{Nothing,AbstractVector,Tuple} = nothing; + alg::OrdinaryDiffEqAlgorithm = Tsit5(), + e_ops::Union{Nothing,AbstractVector,Tuple} = nothing, + H_t::Union{Nothing,Function,TimeDependentOperatorSum} = nothing, + params::NamedTuple = NamedTuple(), + seeds::Union{Nothing,Vector{Int}} = nothing, + ntraj::Int = 1, + ensemble_method = EnsembleThreads(), + jump_callback::TJC = ContinuousLindbladJumpCallback(), + prob_func::Function = _mcsolve_prob_func, + output_func::Function = _mcsolve_output_func, + progress_bar::Union{Val,Bool} = Val(true), + kwargs..., + ) Time evolution of an open quantum system using quantum trajectories. @@ -457,6 +464,7 @@ If the environmental measurements register a quantum jump, the wave function und - `prob_func::Function`: Function to use for generating the ODEProblem. - `output_func::Function`: Function to use for generating the output of a single trajectory. - `kwargs...`: Additional keyword arguments to pass to the solver. +- `progress_bar::Union{Val,Bool}`: Whether to show the progress bar. Using non-`Val` types might lead to type instabilities. # Notes @@ -486,29 +494,42 @@ function mcsolve( jump_callback::TJC = ContinuousLindbladJumpCallback(), prob_func::Function = _mcsolve_prob_func, output_func::Function = _mcsolve_output_func, + progress_bar::Union{Val,Bool} = Val(true), kwargs..., ) where {MT1<:AbstractMatrix,T2,TJC<:LindbladJumpCallbackType} if !isnothing(seeds) && length(seeds) != ntraj throw(ArgumentError("Length of seeds must match ntraj ($ntraj), but got $(length(seeds))")) end - ens_prob_mc = mcsolveEnsembleProblem( - H, - ψ0, - tlist, - c_ops; - alg = alg, - e_ops = e_ops, - H_t = H_t, - params = params, - seeds = seeds, - jump_callback = jump_callback, - prob_func = prob_func, - output_func = output_func, - kwargs..., - ) + progr = ProgressBar(ntraj, enable = getVal(progress_bar)) + progr_channel::RemoteChannel{Channel{Bool}} = RemoteChannel(() -> Channel{Bool}(1)) + @async while take!(progr_channel) + next!(progr) + end - return mcsolve(ens_prob_mc; alg = alg, ntraj = ntraj, ensemble_method = ensemble_method) + # Stop the async task if an error occurs + try + ens_prob_mc = mcsolveEnsembleProblem( + H, + ψ0, + tlist, + c_ops; + alg = alg, + e_ops = e_ops, + H_t = H_t, + params = merge(params, (progr_channel = progr_channel,)), + seeds = seeds, + jump_callback = jump_callback, + prob_func = prob_func, + output_func = output_func, + kwargs..., + ) + + return mcsolve(ens_prob_mc; alg = alg, ntraj = ntraj, ensemble_method = ensemble_method) + catch e + put!(progr_channel, false) + rethrow() + end end function mcsolve( @@ -518,6 +539,9 @@ function mcsolve( ensemble_method = EnsembleThreads(), ) sol = solve(ens_prob_mc, alg, ensemble_method, trajectories = ntraj) + + put!(sol[:, 1].prob.p.progr_channel, false) + _sol_1 = sol[:, 1] expvals_all = Array{ComplexF64}(undef, length(sol), size(_sol_1.prob.p.expvals)...) diff --git a/src/time_evolution/mesolve.jl b/src/time_evolution/mesolve.jl index 8dc5895d..3188e3b4 100644 --- a/src/time_evolution/mesolve.jl +++ b/src/time_evolution/mesolve.jl @@ -120,14 +120,13 @@ function mesolveProblem( throw(ArgumentError("The keyword argument \"save_idxs\" is not supported in QuantumToolbox.")) is_time_dependent = !(H_t isa Nothing) - progress_bar_val = makeVal(progress_bar) ρ0 = sparse_to_dense(_CType(ψ0), mat2vec(ket2dm(ψ0).data)) # Convert it to dense vector with complex element type t_l = convert(Vector{_FType(ψ0)}, tlist) # Convert it to support GPUs and avoid type instabilities for OrdinaryDiffEq.jl L = liouvillian(H, c_ops).data - progr = ProgressBar(length(t_l), enable = getVal(progress_bar_val)) + progr = ProgressBar(length(t_l), enable = getVal(progress_bar)) if e_ops isa Nothing expvals = Array{ComplexF64}(undef, 0, length(t_l)) @@ -158,7 +157,7 @@ function mesolveProblem( saveat = e_ops isa Nothing ? t_l : [t_l[end]] default_values = (DEFAULT_ODE_SOLVER_OPTIONS..., saveat = saveat) kwargs2 = merge(default_values, kwargs) - kwargs3 = _generate_mesolve_kwargs(e_ops, progress_bar_val, t_l, kwargs2) + kwargs3 = _generate_mesolve_kwargs(e_ops, makeVal(progress_bar), t_l, kwargs2) dudt! = is_time_dependent ? mesolve_td_dudt! : mesolve_ti_dudt! @@ -241,7 +240,7 @@ function mesolve( e_ops = e_ops, H_t = H_t, params = params, - progress_bar = makeVal(progress_bar), + progress_bar = progress_bar, kwargs..., ) diff --git a/src/time_evolution/sesolve.jl b/src/time_evolution/sesolve.jl index 42966e12..b30ed2cb 100644 --- a/src/time_evolution/sesolve.jl +++ b/src/time_evolution/sesolve.jl @@ -101,14 +101,13 @@ function sesolveProblem( throw(ArgumentError("The keyword argument \"save_idxs\" is not supported in QuantumToolbox.")) is_time_dependent = !(H_t isa Nothing) - progress_bar_val = makeVal(progress_bar) ϕ0 = sparse_to_dense(_CType(ψ0), get_data(ψ0)) # Convert it to dense vector with complex element type t_l = convert(Vector{_FType(ψ0)}, tlist) # Convert it to support GPUs and avoid type instabilities for OrdinaryDiffEq.jl U = -1im * get_data(H) - progr = ProgressBar(length(t_l), enable = getVal(progress_bar_val)) + progr = ProgressBar(length(t_l), enable = getVal(progress_bar)) if e_ops isa Nothing expvals = Array{ComplexF64}(undef, 0, length(t_l)) @@ -135,7 +134,7 @@ function sesolveProblem( saveat = e_ops isa Nothing ? t_l : [t_l[end]] default_values = (DEFAULT_ODE_SOLVER_OPTIONS..., saveat = saveat) kwargs2 = merge(default_values, kwargs) - kwargs3 = _generate_sesolve_kwargs(e_ops, progress_bar_val, t_l, kwargs2) + kwargs3 = _generate_sesolve_kwargs(e_ops, makeVal(progress_bar), t_l, kwargs2) dudt! = is_time_dependent ? sesolve_td_dudt! : sesolve_ti_dudt! @@ -203,7 +202,7 @@ function sesolve( e_ops = e_ops, H_t = H_t, params = params, - progress_bar = makeVal(progress_bar), + progress_bar = progress_bar, kwargs..., ) diff --git a/src/time_evolution/ssesolve.jl b/src/time_evolution/ssesolve.jl index a423e66d..bdd92ba2 100644 --- a/src/time_evolution/ssesolve.jl +++ b/src/time_evolution/ssesolve.jl @@ -52,7 +52,10 @@ function _ssesolve_prob_func(prob, i, repeat) return remake(prob, p = prm, noise = noise, noise_rate_prototype = noise_rate_prototype) end -_ssesolve_output_func(sol, i) = (sol, false) +function _ssesolve_output_func(sol, i) + put!(sol.prob.p.progr_channel, true) + return (sol, false) +end function _ssesolve_generate_statistics!(sol, i, states, expvals_all) sol_i = sol[:, i] @@ -72,7 +75,6 @@ end e_ops::Union{Nothing,AbstractVector,Tuple} = nothing, H_t::Union{Nothing,Function,TimeDependentOperatorSum}=nothing, params::NamedTuple=NamedTuple(), - progress_bar::Union{Val,Bool}=Val(true), kwargs...) Generates the SDEProblem for the Stochastic Schrödinger time evolution of a quantum system. This is defined by the following stochastic differential equation: @@ -106,7 +108,6 @@ Above, `C_n` is the `n`-th collapse operator and `dW_j(t)` is the real Wiener i - `e_ops::Union{Nothing,AbstractVector,Tuple}=nothing`: The list of operators to be evaluated during the evolution. - `H_t::Union{Nothing,Function,TimeDependentOperatorSum}`: The time-dependent Hamiltonian of the system. If `nothing`, the Hamiltonian is time-independent. - `params::NamedTuple`: The parameters of the system. -- `progress_bar::Union{Val,Bool}`: Whether to show the progress bar. Using non-`Val` types might lead to type instabilities. - `kwargs...`: The keyword arguments passed to the `SDEProblem` constructor. # Notes @@ -130,7 +131,6 @@ function ssesolveProblem( e_ops::Union{Nothing,AbstractVector,Tuple} = nothing, H_t::Union{Nothing,Function,TimeDependentOperatorSum} = nothing, params::NamedTuple = NamedTuple(), - progress_bar::Union{Val,Bool} = Val(true), kwargs..., ) where {MT1<:AbstractMatrix,T2} H.dims != ψ0.dims && throw(DimensionMismatch("The two quantum objects are not of the same Hilbert dimension.")) @@ -143,8 +143,6 @@ function ssesolveProblem( !(H_t isa Nothing) && throw(ArgumentError("Time-dependent Hamiltonians are not currently supported in ssesolve.")) - progress_bar_val = makeVal(progress_bar) - t_l = convert(Vector{Float64}, tlist) # Convert it into Float64 to avoid type instabilities for StochasticDiffEq.jl ϕ0 = get_data(ψ0) @@ -159,8 +157,6 @@ function ssesolveProblem( D = reduce(vcat, sc_ops2) - progr = ProgressBar(length(t_l), enable = getVal(progress_bar_val)) - if e_ops isa Nothing expvals = Array{ComplexF64}(undef, 0, length(t_l)) e_ops2 = MT1[] @@ -177,7 +173,6 @@ function ssesolveProblem( e_ops = e_ops2, sc_ops = sc_ops2, expvals = expvals, - progr = progr, Hdims = H.dims, H_t = H_t, times = t_l, @@ -188,7 +183,7 @@ function ssesolveProblem( saveat = e_ops isa Nothing ? t_l : [t_l[end]] default_values = (DEFAULT_SDE_SOLVER_OPTIONS..., saveat = saveat) kwargs2 = merge(default_values, kwargs) - kwargs3 = _generate_sesolve_kwargs(e_ops, progress_bar_val, t_l, kwargs2) + kwargs3 = _generate_sesolve_kwargs(e_ops, Val(false), t_l, kwargs2) tspan = (t_l[1], t_l[end]) noise = RealWienerProcess(t_l[1], zeros(length(sc_ops)), zeros(length(sc_ops)), save_everystep = false) @@ -298,6 +293,7 @@ end ensemble_method=EnsembleThreads(), prob_func::Function=_mcsolve_prob_func, output_func::Function=_mcsolve_output_func, + progress_bar::Union{Val,Bool} = Val(true), kwargs...) @@ -339,6 +335,7 @@ Above, `C_n` is the `n`-th collapse operator and `dW_j(t)` is the real Wiener i - `ensemble_method`: Ensemble method to use. - `prob_func::Function`: Function to use for generating the SDEProblem. - `output_func::Function`: Function to use for generating the output of a single trajectory. +- `progress_bar::Union{Val,Bool}`: Whether to show a progress bar. - `kwargs...`: Additional keyword arguments to pass to the solver. # Notes @@ -367,23 +364,35 @@ function ssesolve( ensemble_method = EnsembleThreads(), prob_func::Function = _ssesolve_prob_func, output_func::Function = _ssesolve_output_func, + progress_bar::Union{Val,Bool} = Val(true), kwargs..., ) where {MT1<:AbstractMatrix,T2} - ens_prob = ssesolveEnsembleProblem( - H, - ψ0, - tlist, - sc_ops; - alg = alg, - e_ops = e_ops, - H_t = H_t, - params = params, - prob_func = prob_func, - output_func = output_func, - kwargs..., - ) + progr = ProgressBar(ntraj, enable = getVal(progress_bar)) + progr_channel::RemoteChannel{Channel{Bool}} = RemoteChannel(() -> Channel{Bool}(1)) + @async while take!(progr_channel) + next!(progr) + end - return ssesolve(ens_prob; alg = alg, ntraj = ntraj, ensemble_method = ensemble_method) + try + ens_prob = ssesolveEnsembleProblem( + H, + ψ0, + tlist, + sc_ops; + alg = alg, + e_ops = e_ops, + H_t = H_t, + params = merge(params, (progr_channel = progr_channel,)), + prob_func = prob_func, + output_func = output_func, + kwargs..., + ) + + return ssesolve(ens_prob; alg = alg, ntraj = ntraj, ensemble_method = ensemble_method) + catch e + put!(progr_channel, false) + rethrow() + end end function ssesolve( @@ -393,6 +402,9 @@ function ssesolve( ensemble_method = EnsembleThreads(), ) sol = solve(ens_prob, alg, ensemble_method, trajectories = ntraj) + + put!(sol[:, 1].prob.p.progr_channel, false) + _sol_1 = sol[:, 1] expvals_all = Array{ComplexF64}(undef, length(sol), size(_sol_1.prob.p.expvals)...) diff --git a/src/time_evolution/time_evolution_dynamical.jl b/src/time_evolution/time_evolution_dynamical.jl index 1b1f4827..496f2513 100644 --- a/src/time_evolution/time_evolution_dynamical.jl +++ b/src/time_evolution/time_evolution_dynamical.jl @@ -691,6 +691,7 @@ end ensemble_method=EnsembleThreads(), jump_callback::LindbladJumpCallbackType=ContinuousLindbladJumpCallback(), krylov_dim::Int=max(6, min(10, cld(length(ket2dm(ψ0).data), 4))), + progress_bar::Union{Bool,Val} = Val(true) kwargs...) Time evolution of a quantum system using the Monte Carlo wave function method and the Dynamical Shifted Fock algorithm. @@ -716,25 +717,38 @@ function dsf_mcsolve( ensemble_method = EnsembleThreads(), jump_callback::TJC = ContinuousLindbladJumpCallback(), krylov_dim::Int = min(5, cld(length(ψ0.data), 3)), + progress_bar::Union{Bool,Val} = Val(true), kwargs..., ) where {T,TOl,TJC<:LindbladJumpCallbackType} - ens_prob_mc = dsf_mcsolveEnsembleProblem( - H, - ψ0, - t_l, - c_ops, - op_list, - α0_l, - dsf_params; - alg = alg, - e_ops = e_ops, - H_t = H_t, - params = params, - δα_list = δα_list, - jump_callback = jump_callback, - krylov_dim = krylov_dim, - kwargs..., - ) + progr = ProgressBar(ntraj, enable = getVal(progress_bar)) + progr_channel::RemoteChannel{Channel{Bool}} = RemoteChannel(() -> Channel{Bool}(1)) + @async while take!(progr_channel) + next!(progr) + end - return mcsolve(ens_prob_mc; alg = alg, ntraj = ntraj, ensemble_method = ensemble_method) + # Stop the async task if an error occurs + try + ens_prob_mc = dsf_mcsolveEnsembleProblem( + H, + ψ0, + t_l, + c_ops, + op_list, + α0_l, + dsf_params; + alg = alg, + e_ops = e_ops, + H_t = H_t, + params = merge(params, (progr_channel = progr_channel,)), + δα_list = δα_list, + jump_callback = jump_callback, + krylov_dim = krylov_dim, + kwargs..., + ) + + return mcsolve(ens_prob_mc; alg = alg, ntraj = ntraj, ensemble_method = ensemble_method) + catch e + put!(progr_channel, false) + rethrow() + end end diff --git a/src/utilities.jl b/src/utilities.jl index 69d250a7..3230a676 100644 --- a/src/utilities.jl +++ b/src/utilities.jl @@ -57,6 +57,7 @@ makeVal(x::Val{T}) where {T} = x makeVal(x) = Val(x) getVal(x::Val{T}) where {T} = T +getVal(x) = x # getVal for any other type _get_size(A::AbstractMatrix) = size(A) _get_size(A::AbstractVector) = (length(A), 1)