-
Notifications
You must be signed in to change notification settings - Fork 60
/
Copy pathimage_helper.py
306 lines (230 loc) · 10.2 KB
/
image_helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
import os
from typing import List
from enum import IntEnum
import cv2 as cv
import numpy as np
from pydicom import dcmread
from pydicom.dataset import Dataset
from pydicom.sequence import Sequence
from rt_utils.utils import ROIData, SOPClassUID
def load_sorted_image_series(dicom_series_path: str):
"""
File contains helper methods for loading / formatting DICOM images and contours
"""
series_data = load_dcm_images_from_path(dicom_series_path)
if len(series_data) == 0:
raise Exception("No DICOM Images found in input path")
# Sort slices in ascending order
series_data.sort(key=get_slice_position, reverse=False)
return series_data
def load_dcm_images_from_path(dicom_series_path: str) -> List[Dataset]:
series_data = []
for root, _, files in os.walk(dicom_series_path):
for file in files:
try:
ds = dcmread(os.path.join(root, file))
if hasattr(ds, "pixel_array"):
series_data.append(ds)
except Exception:
# Not a valid DICOM file
continue
return series_data
def get_contours_coords(roi_data: ROIData, series_data):
transformation_matrix = get_pixel_to_patient_transformation_matrix(series_data)
series_contours = []
for i, series_slice in enumerate(series_data):
mask_slice = roi_data.mask[:, :, i]
# Do not add ROI's for blank slices
if np.sum(mask_slice) == 0:
series_contours.append([])
continue
# Create pin hole mask if specified
if roi_data.use_pin_hole:
mask_slice = create_pin_hole_mask(mask_slice, roi_data.approximate_contours)
# Get contours from mask
contours, _ = find_mask_contours(mask_slice, roi_data.approximate_contours)
validate_contours(contours)
# Format for DICOM
formatted_contours = []
for contour in contours:
# Add z index
contour = np.concatenate(
(np.array(contour), np.full((len(contour), 1), i)), axis=1
)
transformed_contour = apply_transformation_to_3d_points(
contour, transformation_matrix
)
dicom_formatted_contour = np.ravel(transformed_contour).tolist()
formatted_contours.append(dicom_formatted_contour)
series_contours.append(formatted_contours)
return series_contours
def find_mask_contours(mask: np.ndarray, approximate_contours: bool):
approximation_method = (
cv.CHAIN_APPROX_SIMPLE if approximate_contours else cv.CHAIN_APPROX_NONE
)
contours, hierarchy = cv.findContours(
mask.astype(np.uint8), cv.RETR_TREE, approximation_method
)
# Format extra array out of data
contours = list(
contours
) # Open-CV updated contours to be a tuple so we convert it back into a list here
for i, contour in enumerate(contours):
contours[i] = [[pos[0][0], pos[0][1]] for pos in contour]
hierarchy = hierarchy[0] # Format extra array out of data
return contours, hierarchy
def create_pin_hole_mask(mask: np.ndarray, approximate_contours: bool):
"""
Creates masks with pin holes added to contour regions with holes.
This is done so that a given region can be represented by a single contour.
"""
contours, hierarchy = find_mask_contours(mask, approximate_contours)
pin_hole_mask = mask.copy()
# Iterate through the hierarchy, for child nodes, draw a line upwards from the first point
for i, array in enumerate(hierarchy):
parent_contour_index = array[Hierarchy.parent_node]
if parent_contour_index == -1:
continue # Contour is not a child
child_contour = contours[i]
line_start = tuple(child_contour[0])
pin_hole_mask = draw_line_upwards_from_point(
pin_hole_mask, line_start, fill_value=0
)
return pin_hole_mask
def draw_line_upwards_from_point(
mask: np.ndarray, start, fill_value: int
) -> np.ndarray:
line_width = 2
end = (start[0], start[1] - 1)
mask = mask.astype(np.uint8) # Type that OpenCV expects
# Draw one point at a time until we hit a point that already has the desired value
while mask[end] != fill_value:
cv.line(mask, start, end, fill_value, line_width)
# Update start and end to the next positions
start = end
end = (start[0], start[1] - line_width)
return mask.astype(bool)
def validate_contours(contours: list):
if len(contours) == 0:
raise Exception(
"Unable to find contour in non empty mask, please check your mask formatting"
)
def get_pixel_to_patient_transformation_matrix(series_data):
"""
https://nipy.org/nibabel/dicom/dicom_orientation.html
"""
first_slice = series_data[0]
offset = np.array(first_slice.ImagePositionPatient)
row_spacing, column_spacing = first_slice.PixelSpacing
slice_spacing = get_spacing_between_slices(series_data)
row_direction, column_direction, slice_direction = get_slice_directions(first_slice)
mat = np.identity(4, dtype=np.float32)
mat[:3, 0] = row_direction * row_spacing
mat[:3, 1] = column_direction * column_spacing
mat[:3, 2] = slice_direction * slice_spacing
mat[:3, 3] = offset
return mat
def get_patient_to_pixel_transformation_matrix(series_data):
first_slice = series_data[0]
offset = np.array(first_slice.ImagePositionPatient)
row_spacing, column_spacing = first_slice.PixelSpacing
slice_spacing = get_spacing_between_slices(series_data)
row_direction, column_direction, slice_direction = get_slice_directions(first_slice)
# M = [ rotation&scaling translation ]
# [ 0 1 ]
#
# inv(M) = [ inv(rotation&scaling) -inv(rotation&scaling) * translation ]
# [ 0 1 ]
linear = np.identity(3, dtype=np.float32)
linear[0, :3] = row_direction / row_spacing
linear[1, :3] = column_direction / column_spacing
linear[2, :3] = slice_direction / slice_spacing
mat = np.identity(4, dtype=np.float32)
mat[:3, :3] = linear
mat[:3, 3] = offset.dot(-linear.T)
return mat
def apply_transformation_to_3d_points(
points: np.ndarray, transformation_matrix: np.ndarray
):
"""
* Augment each point with a '1' as the fourth coordinate to allow translation
* Multiply by a 4x4 transformation matrix
* Throw away added '1's
"""
vec = np.concatenate((points, np.ones((points.shape[0], 1))), axis=1)
return vec.dot(transformation_matrix.T)[:, :3]
def get_slice_position(series_slice: Dataset):
_, _, slice_direction = get_slice_directions(series_slice)
return np.dot(slice_direction, series_slice.ImagePositionPatient)
def get_slice_directions(series_slice: Dataset):
orientation = series_slice.ImageOrientationPatient
row_direction = np.array(orientation[:3])
column_direction = np.array(orientation[3:])
slice_direction = np.cross(row_direction, column_direction)
if not np.allclose(
np.dot(row_direction, column_direction), 0.0, atol=1e-3
) or not np.allclose(np.linalg.norm(slice_direction), 1.0, atol=1e-3):
raise Exception("Invalid Image Orientation (Patient) attribute")
return row_direction, column_direction, slice_direction
def get_spacing_between_slices(series_data):
if len(series_data) > 1:
first = get_slice_position(series_data[0])
last = get_slice_position(series_data[-1])
return (last - first) / (len(series_data) - 1)
# Return nonzero value for one slice just to make the transformation matrix invertible
return 1.0
def create_series_mask_from_contour_sequence(series_data, contour_sequence: Sequence):
mask = create_empty_series_mask(series_data)
transformation_matrix = get_patient_to_pixel_transformation_matrix(series_data)
# Iterate through each slice of the series, If it is a part of the contour, add the contour mask
for i, series_slice in enumerate(series_data):
slice_contour_data = get_slice_contour_data(series_slice, contour_sequence)
if len(slice_contour_data):
mask[:, :, i] = get_slice_mask_from_slice_contour_data(
series_slice, slice_contour_data, transformation_matrix
)
return mask
def get_slice_contour_data(series_slice: Dataset, contour_sequence: Sequence):
slice_contour_data = []
# Traverse through sequence data and get all contour data pertaining to the given slice
for contour in contour_sequence:
for contour_image in contour.ContourImageSequence:
if contour_image.ReferencedSOPInstanceUID == series_slice.SOPInstanceUID:
slice_contour_data.append(contour.ContourData)
return slice_contour_data
def get_slice_mask_from_slice_contour_data(
series_slice: Dataset, slice_contour_data, transformation_matrix: np.ndarray
):
# Go through all contours in a slice, create polygons in correct space and with a correct format
# and append to polygons array (appropriate for fillPoly)
polygons = []
for contour_coords in slice_contour_data:
reshaped_contour_data = np.reshape(contour_coords, [len(contour_coords) // 3, 3])
translated_contour_data = apply_transformation_to_3d_points(reshaped_contour_data, transformation_matrix)
polygon = [np.around([translated_contour_data[:, :2]]).astype(np.int32)]
polygon = np.array(polygon).squeeze()
polygons.append(polygon)
slice_mask = create_empty_slice_mask(series_slice).astype(np.uint8)
cv.fillPoly(img=slice_mask, pts = polygons, color = 1)
return slice_mask
def create_empty_series_mask(series_data):
ref_dicom_image = series_data[0]
mask_dims = (
int(ref_dicom_image.Columns),
int(ref_dicom_image.Rows),
len(series_data),
)
mask = np.zeros(mask_dims).astype(bool)
return mask
def create_empty_slice_mask(series_slice):
mask_dims = (int(series_slice.Columns), int(series_slice.Rows))
mask = np.zeros(mask_dims).astype(bool)
return mask
class Hierarchy(IntEnum):
"""
Enum class for what the positions in the OpenCV hierarchy array mean
"""
next_node = 0
previous_node = 1
first_child = 2
parent_node = 3