Skip to content

Latest commit

 

History

History
115 lines (92 loc) · 4.82 KB

GETTING_STARTED.md

File metadata and controls

115 lines (92 loc) · 4.82 KB

Getting Started

The dataset configs are located within tools/cfgs/dataset_configs, and the model configs are located within tools/cfgs for different datasets.

Dataset Preparation

Currently we provide the dataloader of KITTI dataset and NuScenes dataset, and the supporting of more datasets are on the way.

KITTI Dataset

  • Please download the official KITTI 3D object detection dataset and organize the downloaded files as follows (the road planes could be downloaded from [road plane], which are optional for data augmentation in the training):
  • If you would like to train CaDDN, download the precomputed depth maps for the KITTI training set
  • NOTE: if you already have the data infos from pcdet v0.1, you can choose to use the old infos and set the DATABASE_WITH_FAKELIDAR option in tools/cfgs/dataset_configs/kitti_dataset.yaml as True. The second choice is that you can create the infos and gt database again and leave the config unchanged.
OpenPCDet
├── data
│   ├── kitti
│   │   │── ImageSets
│   │   │── training
│   │   │   ├──calib & velodyne & label_2 & image_2 & (optional: planes) & (optional: depth_2)
│   │   │── testing
│   │   │   ├──calib & velodyne & image_2
├── pcdet
├── tools
  • Generate the data infos by running the following command:
python -m pcdet.datasets.kitti.kitti_dataset create_kitti_infos tools/cfgs/dataset_configs/kitti_dataset.yaml

Waymo Open Dataset

  • Please download the official Waymo Open Dataset, including the training data training_0000.tar~training_0031.tar and the validation data validation_0000.tar~validation_0007.tar.
  • Unzip all the above xxxx.tar files to the directory of data/waymo/raw_data as follows (You could get 798 train tfrecord and 202 val tfrecord ):
OpenPCDet
├── data
│   ├── waymo
│   │   │── ImageSets
│   │   │── raw_data
│   │   │   │── segment-xxxxxxxx.tfrecord
|   |   |   |── ...
|   |   |── waymo_processed_data_v0_5_0
│   │   │   │── segment-xxxxxxxx/
|   |   |   |── ...
│   │   │── waymo_processed_data_v0_5_0_gt_database_train_sampled_1/
│   │   │── waymo_processed_data_v0_5_0_waymo_dbinfos_train_sampled_1.pkl
│   │   │── waymo_processed_data_v0_5_0_gt_database_train_sampled_1_global.npy (optional)
│   │   │── waymo_processed_data_v0_5_0_infos_train.pkl (optional)
│   │   │── waymo_processed_data_v0_5_0_infos_val.pkl (optional)
├── pcdet
├── tools
  • Install the official waymo-open-dataset by running the following command:
pip3 install --upgrade pip
# tf 2.0.0
pip3 install waymo-open-dataset-tf-2-5-0 --user
  • Extract point cloud data from tfrecord and generate data infos by running the following command (it takes several hours, and you could refer to data/waymo/waymo_processed_data_v0_5_0 to see how many records that have been processed):
python -m pcdet.datasets.waymo.waymo_dataset --func create_waymo_infos \
    --cfg_file tools/cfgs/dataset_configs/waymo_dataset.yaml

Note that you do not need to install waymo-open-dataset if you have already processed the data before and do not need to evaluate with official Waymo Metrics.

Training & Testing

Test and evaluate the pretrained models

  • Test with a pretrained model:
python test.py --cfg_file ${CONFIG_FILE} --batch_size ${BATCH_SIZE} --ckpt ${CKPT}
  • To test all the saved checkpoints of a specific training setting and draw the performance curve on the Tensorboard, add the --eval_all argument:
python test.py --cfg_file ${CONFIG_FILE} --batch_size ${BATCH_SIZE} --eval_all
  • To test with multiple GPUs:
sh scripts/dist_test.sh ${NUM_GPUS} \
    --cfg_file ${CONFIG_FILE} --batch_size ${BATCH_SIZE}

# or

sh scripts/slurm_test_mgpu.sh ${PARTITION} ${NUM_GPUS} \
    --cfg_file ${CONFIG_FILE} --batch_size ${BATCH_SIZE}

Train a model

You could optionally add extra command line parameters --batch_size ${BATCH_SIZE} and --epochs ${EPOCHS} to specify your preferred parameters.

  • Train with multiple GPUs or multiple machines
sh scripts/dist_train.sh ${NUM_GPUS} --cfg_file ${CONFIG_FILE}

# or 

sh scripts/slurm_train.sh ${PARTITION} ${JOB_NAME} ${NUM_GPUS} --cfg_file ${CONFIG_FILE}
  • Train with a single GPU:
python train.py --cfg_file ${CONFIG_FILE}