diff --git a/src/query/fuzzy_query.rs b/src/query/fuzzy_query.rs index 70424dee47..e61201bb89 100644 --- a/src/query/fuzzy_query.rs +++ b/src/query/fuzzy_query.rs @@ -1,8 +1,5 @@ -use std::collections::HashMap; -use std::ops::Range; - use levenshtein_automata::{Distance, LevenshteinAutomatonBuilder, DFA}; -use once_cell::sync::Lazy; +use once_cell::sync::OnceCell; use tantivy_fst::Automaton; use crate::query::{AutomatonWeight, EnableScoring, Query, Weight}; @@ -34,22 +31,6 @@ impl Automaton for DfaWrapper { } } -/// A range of Levenshtein distances that we will build DFAs for our terms -/// The computation is exponential, so best keep it to low single digits -const VALID_LEVENSHTEIN_DISTANCE_RANGE: Range = 0..3; - -static LEV_BUILDER: Lazy> = Lazy::new(|| { - let mut lev_builder_cache = HashMap::new(); - // TODO make population lazy on a `(distance, val)` basis - for distance in VALID_LEVENSHTEIN_DISTANCE_RANGE { - for &transposition in &[false, true] { - let lev_automaton_builder = LevenshteinAutomatonBuilder::new(distance, transposition); - lev_builder_cache.insert((distance, transposition), lev_automaton_builder); - } - } - lev_builder_cache -}); - /// A Fuzzy Query matches all of the documents /// containing a specific term that is within /// Levenshtein distance @@ -129,30 +110,39 @@ impl FuzzyTermQuery { } fn specialized_weight(&self) -> crate::Result> { - // LEV_BUILDER is a HashMap, whose `get` method returns an Option - match LEV_BUILDER.get(&(self.distance, self.transposition_cost_one)) { - // Unwrap the option and build the Ok(AutomatonWeight) - Some(automaton_builder) => { - let term_text = self.term.as_str().ok_or_else(|| { - crate::TantivyError::InvalidArgument( - "The fuzzy term query requires a string term.".to_string(), - ) - })?; - let automaton = if self.prefix { - automaton_builder.build_prefix_dfa(term_text) - } else { - automaton_builder.build_dfa(term_text) - }; - Ok(AutomatonWeight::new( - self.term.field(), - DfaWrapper(automaton), + static AUTOMATON_BUILDER: [[OnceCell; 2]; 3] = [ + [OnceCell::new(), OnceCell::new()], + [OnceCell::new(), OnceCell::new()], + [OnceCell::new(), OnceCell::new()], + ]; + + let automaton_builder = AUTOMATON_BUILDER + .get(self.distance as usize) + .ok_or_else(|| { + InvalidArgument(format!( + "Levenshtein distance of {} is not allowed. Choose a value less than {}", + self.distance, + AUTOMATON_BUILDER.len() )) - } - None => Err(InvalidArgument(format!( - "Levenshtein distance of {} is not allowed. Choose a value in the {:?} range", - self.distance, VALID_LEVENSHTEIN_DISTANCE_RANGE - ))), - } + })? + .get(self.transposition_cost_one as usize) + .unwrap() + .get_or_init(|| { + LevenshteinAutomatonBuilder::new(self.distance, self.transposition_cost_one) + }); + + let term_text = self.term.as_str().ok_or_else(|| { + InvalidArgument("The fuzzy term query requires a string term.".to_string()) + })?; + let automaton = if self.prefix { + automaton_builder.build_prefix_dfa(term_text) + } else { + automaton_builder.build_dfa(term_text) + }; + Ok(AutomatonWeight::new( + self.term.field(), + DfaWrapper(automaton), + )) } }