-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_sbert.py
50 lines (39 loc) · 1.87 KB
/
train_sbert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
'''
Running this script:
python train_sbert.py
'''
from sentence_transformers import losses, models, SentenceTransformer
from beir import util, LoggingHandler
from beir.datasets.data_loader import GenericDataLoader
from beir.retrieval.train import TrainRetriever
import pathlib, os
import logging
logging.basicConfig(format='%(asctime)s - %(message)s',
datefmt='%Y-%m-%d %H:%M:%S',
level=logging.INFO,
handlers=[LoggingHandler()])
dataset = "ToolLens"
data_path = "./datasets/ToolLens"
corpus, queries, qrels = GenericDataLoader(data_path).load(split="train")
dev_corpus, dev_queries, dev_qrels = GenericDataLoader(data_path).load(split="test")
model_name="./PLMs/contriever-base-msmarco"
word_embedding_model = models.Transformer(model_name, max_seq_length=350)
pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension())
model = SentenceTransformer(modules=[word_embedding_model, pooling_model])
retriever = TrainRetriever(model=model, batch_size=16)
train_samples = retriever.load_train(corpus, queries, qrels)
train_dataloader = retriever.prepare_train(train_samples, shuffle=True)
train_loss = losses.MultipleNegativesRankingLoss(model=retriever.model)
ir_evaluator = retriever.load_ir_evaluator(dev_corpus, dev_queries, dev_qrels)
model_save_path = os.path.join(pathlib.Path(__file__).parent.absolute(), "{}-{}".format(model_name, dataset))
os.makedirs(model_save_path, exist_ok=True)
num_epochs = 5
evaluation_steps = 5000
warmup_steps = int(len(train_samples) * num_epochs / retriever.batch_size * 0.1)
retriever.fit(train_objectives=[(train_dataloader, train_loss)],
evaluator=ir_evaluator,
epochs=num_epochs,
output_path=model_save_path,
warmup_steps=warmup_steps,
evaluation_steps=evaluation_steps,
use_amp=True)