From 5fbe1de1a32758b277e5e85b23eb81391bca62a7 Mon Sep 17 00:00:00 2001 From: Max Margenot Date: Thu, 20 Jul 2017 12:21:39 -0400 Subject: [PATCH 1/4] First draft --- .../notebook.ipynb | 635 ++++++++++++++++++ 1 file changed, 635 insertions(+) create mode 100644 notebooks/lectures/Combining_Independent_Signals/notebook.ipynb diff --git a/notebooks/lectures/Combining_Independent_Signals/notebook.ipynb b/notebooks/lectures/Combining_Independent_Signals/notebook.ipynb new file mode 100644 index 00000000..8a9c7df8 --- /dev/null +++ b/notebooks/lectures/Combining_Independent_Signals/notebook.ipynb @@ -0,0 +1,635 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#Model Combining\n", + "By Chris Fenaroli, Delaney Granizo-Mackenzie, and Max Margenot \n", + "\n", + "Part of the Quantopian Lecture Series:\n", + "\n", + "* [www.quantopian.com/lectures](https://www.quantopian.com/lectures)\n", + "* [github.com/quantopian/research_public](https://github.com/quantopian/research_public)\n", + "\n", + "Notebook released under the Creative Commons Attribution 4.0 License.\n", + "\n", + "---" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import matplotlib as mpl\n", + "import matplotlib.cm as cm\n", + "import scipy.stats as stats\n", + "import scipy.linalg as linalg\n", + "from statsmodels import regression\n", + "import statsmodels.api as sm" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## What is Model Ensembling?" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Model ensembling is the name for a variety of methods which combine information from many prediction models to obtain results with more predictive power than any of its components alone. An model ensemble takes these component predictions and uses some logic to combine them into a final prediction. There are many methods used to aggregate the predictions, the simplest of which would be to find the equally weighted average of the predictions. \n", + "\n", + "### Why Combine Models?\n", + "\n", + "A common approach to model selection is a \"winner takes all\" process where the best single model is chosen to make predictions. A OLS fitted simple linear regression, for example, returns a single set of coefficients that minimizes the sum of squared residuals with the training set. This model is simply an estimate. It will usually have bias (difference betwen model expected value and true value) and variance (sensitivity to small changes in the training set). \n", + "\n", + "Let's define a identical standard normal toy models `m_1` and `m_2`, and see what happens to their mean and standard deviation when we average their predictions over 1000 trials." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "---- Mean ---- ---- Variance ---- \n", + "Model 1: -0.019 Model 1: 0.996 \n", + "Model 2: -0.003 Model 2: 1.011 \n", + "Combined: -0.011 Combined: 0.526 \n", + "\n", + "Covariance between models: 0.0478288505058\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzAAAAHrCAYAAAAQbnjeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl4FeX9///XnG2ynISQjR0vUBG12EuoC1VUENncirWo\nVWi17e/bVsR+tGKhQhVbrFspSrWugGC1VcQViAutbbEVRC1oxYVF9pB9PzMn58zvj5jTnKyHQJaB\n5+O6uEhm7pl5z7nPSc4rM/d9DMdxHAEAAACAC3i6ugAAAAAASBQBBgAAAIBrEGAAAAAAuAYBBgAA\nAIBrEGAAAAAAuAYBBgAAAIBrEGAAdHtDhw5Vfn5+3LKVK1fq2muvlSQ9/fTTeuCBB1rdx6ZNm/TZ\nZ591WI0dKRqNatq0aRo7dqw+//zzuHUrV67U0KFD9fbbb8cttyxLw4cP16xZsw76eCeffLL27t3b\napupU6fqlVdeaXbd9u3bNWPGDI0bN06TJk3SlClT9Prrryd07MPRT88999whbd/RNm3apLFjx2rO\nnDlxy7ds2aIrr7xSEyZM0FVXXaVPP/00tm7JkiWaNGmSJk6cqDlz5qi2tlaSVFFRoRtuuEHjx4/X\nxRdfrNWrVzc53rp16zRx4kRNmjRJZ555pk477TRNmjRJkyZN0ksvvdSk/Ztvvqlf/vKXbZ5Hc69L\nAOgMvq4uAADaYhhGq8uvvvrqNvexYsUKjRgxQkOGDDnkehzHabGmjpCfn6+NGzdq06ZN8nq9Tdb3\n7dtXr776qs4999zYsr/97W/KyMho1/EO5dwOHDigqVOnasaMGbFQuWXLFl1//fWqrq7Wt771rVa3\nP9R+ikQiuueee/Sd73ynXdsfTs09T9avX6/f/va3Gj58eJP2N910k37+859rzJgxWrt2rX7+85/r\nlVde0Ycffqjly5frxRdfVDAY1IwZM7Rs2TJde+21uvfee9W3b189+OCDys/P1+TJkzVixAjl5ubG\n9nvWWWfFgs2iRYuUn5+vO++8s8Wax44dq7Fjx7Z5fp35GgCAhrgCA6Dba+vzdhctWqTbbrtNkrR6\n9WpdfPHFmjRpki699FKtX79ezz77rF566SXdd999WrJkiRzH0YIFC2J/lZ41a5ZCoZAk6eOPP9b4\n8eM1fvx4LVq0SJdeeqk2bNigPXv2aNSoUbr77rs1depUSdJbb72liy++WOPHj9e3v/1tbdmyRVLd\nm9Qrr7xS8+fP19ixY3X55Zdr8+bNmjZtms4++2w9+OCDzZ7Hp59+qquuukoTJ07U5MmTtW7dutjV\nl2g0qosvvjjur/L1Tj31VL377ruyLCu27LXXXtNZZ50V+962bf3qV7/ShAkTdOGFF+ruu++OPa5v\nv/22xo0bp4suukiLFy+O2/ef//xnTZw4Ueeff75uvvlm2bbdal8sWbJE3/zmNzVlypTYsqFDh2rO\nnDlasGBBk/5q+H3jflq0aJFuvfVW/fjHP9aYMWP03e9+V8XFxZKkMWPG6P3334/to/776667ThUV\nFZo0aZL27NnT5PmwYcOGJjU393yoqanRn/70J/34xz+OtYtGozrzzDO1fft25efn68c//rHGjx+v\nCRMm6O9//7skNfs8aahXr1565plnNHDgwLjln332mSoqKjRmzJjY+ZSUlGjbtm3Ky8vTpEmTFAwG\nJUnf/va3tWbNGklSXl6errzyyti+Tz/9dK1du7bVPmps5cqVmjFjRiwQNby6WVhYqB/+8IeaOHGi\nxo4dqyVLlsQ9bpJUXV2t6dOna9KkSRo3bpzmzp2rSCRyUDUAwMEgwABwpcahpv6vwfPmzdNjjz2m\nVatW6de//rXWrl2rK6+8UsOGDdPMmTP1/e9/X6tWrdI//vEPvfjii3rttddUXl4ee2M2d+5cXXfd\ndcrLy1NaWpp27NgRO0ZJSYmGDh2q5cuXKxKJaPbs2Zo3b57y8vI0ZswY3XPPPbG2H3/8scaNG6c3\n33xThmFo3rx5evzxx7V48WI98sgjTYKA4zi66aabNHXqVK1evVp33nmnbrrpJoVCIS1ZskRer1er\nVq3SCSec0OSxCAQCGjlyZOyNa1VVlbZs2aJTTz011mbJkiXKz8/X6tWr9cILL+i9997Tq6++qmg0\nqttuu0133HGHXn31VUmKvfl877339OCDD2rZsmV66623lJaWpt///vet9suGDRt03nnnNVl+zjnn\nqKioSDt37ozrr4b917ifpLqQOHfuXK1du1b9+/fXo48+2urx58+fL5/Pp1WrVqlfv35Nng9vvfVW\nk22aez4sXbpU48aN0/r162PBcMOGDerVq5cGDRqkmTNn6uSTT1ZeXp4ee+wx3XLLLSorK5MU/zxp\n7JhjjpFpmk2W79ixQwMGDIhb1r9/f23btk3bt2+PWzdw4EBt27ZNpaWlKisriwtD9esO1rp16zRv\n3jzNnDlT0v/65+GHH1bfvn21evVqLV68WPfff3+zt3Omp6dr1apVysvLk2maTW51BIDDiQADwBWm\nTZsWu29/4sSJ+t3vftdsu+zsbD3zzDPau3evhg0bpl/84hexdQ2vOEyePFmmacowDF122WVat26d\nLMvSxx9/rAsvvFBS3a1p0Wg0tn0kEondWuP1evWPf/wjFhJGjBihXbt2xdr26NFD3/jGNyRJxx13\nnE477TQFAgEdf/zxikQiKikpiat79+7dKiws1KRJkyRJX/va19SvXz9t3rw5ocdn0qRJsQDy1ltv\nafTo0XEh4e2339aUKVNkGIZM09TFF1+sdevWaceOHbJtWyNHjpQkTZ48ObbNX//6V02cOFHZ2dmS\npCuuuKLNsSxlZWXKzMxsstzj8SgjI0OlpaVtnkvDcHrGGWeob9++kqRx48bpgw8+aHP7hlp7PtRr\n6fmQnZ2tk046SevWrZMkvfHGG5o4caJqamq0fv16fe9735MkDRgwQN/4xjf0t7/9TVL88yRRNTU1\nTYKNaZqqqalRKBSKW5eUlBRb7vF44m4rrN/mYB1zzDFNApQkzZkzJ3a1bMCAAcrJyYl7nktSVlaW\nPvzwQ61bt07hcFi//OUvNXTo0IOuAQASxRgYAK6wbNmyuPv6V65c2ewg8oceekgPPfSQLrvsMvXt\n21ezZ8+OBYl6xcXFSk9Pj33fo0cPFRUVqaysTB6PJ3arjs/nU1ZWVqyd1+tVampq7Pv6cQnhcFiW\nZcUFhobtvF6vUlJSYt97PJ4mt9g0rkmS0tLSVFRUpP79+7f+4KhunMOcOXNUUVGhVatW6Sc/+Unc\nX+Ib7z89PT12zvXnW/9Y1KuoqNAbb7wRewMfiUTavDWoZ8+eOnDgQJPl0WhUJSUlcY9nIhrWk56e\nHrvKkajGz4dZs2bptNNOi2vT0vNBksaPH6+1a9fGxqUsXbpUFRUVchwnduuW4ziqqamJhcDGz5NE\npKSkxN0CKEmhUEgpKSlKTk6OW1dTUxNbHo1GVVtbK5/PF7fNwWppvNSmTZv0u9/9Tvv27ZPH41FB\nQUGTq58TJkxQeXm5Fi5cqO3bt+uSSy7RL37xC/n9/oOuAwASQYAB4AptjYOpN2DAAN11112S6kLO\nTTfdFBufUC87OzvuSkBpaamysrIUDAYVjUZlWZZM01QkEomNuWjsgw8+0OOPP64VK1aoT58+eued\nd5rMKnUwsrKymrw5Ly0tjV39aIvP59N5552nl19+WTt27NDXv/71uADT3DlnZ2crPT1dlZWVseX1\nb9wlKTc3V5MnT47dVpSIUaNG6Y033tAll1wSt/ztt99Wv3791K9fvyYBrrVQ0vBKVVlZWeyNttfr\njbs6Vl5e3uz2jZ8PN998c8LPB6nuqs8jjzyijz76SBkZGRowYIAikYh8Pp9eeOEFJSUlxe1rz549\nLZ5LawYPHhy7va7el19+qeOOO67Juh07dujYY49Vjx49lJmZqZ07d2rw4MGxbUaNGtWuGppzyy23\n6LrrrtMVV1whqe5WwOZMmTJFU6ZM0YEDB3TDDTfoxRdf7BYTKQA4MnELGYAjRnFxsa677rrYG/JT\nTjlFHk/djzm/3x97k1v/Rj8UCqm2tlbPP/+8Ro8erZSUFB133HGxGZueffbZ2PZSfIgqKipSVlaW\nevfurZqaGq1cubJdt+7U69+/v3r16qVVq1ZJkt5//30VFRXplFNOaXLsllx44YV65JFHdMEFFzRZ\nd9555+n5559XNBpVdXW1Xn75ZZ133nk65phj5PP5YoPbX3jhhdiVpDFjxuiNN96Ihbg333xTjz/+\neKs1fP/739emTZtikyVIdZMTzJ8/XzfffLMkKScnR59//rkcx1FxcXFcoGjYT/WPQ/2YizVr1sSu\npuXk5MQmTVi1alVsTJHP54udY2vPh8aPTePnQ/04nl69eql///764x//qAkTJkiqC0/nnnuu/vSn\nP0mquyIye/bsWJ2Jhu2G7Y499lhlZmbqtddek1TXD/369dMxxxyjiRMn6rXXXlNxcbFqa2u1bNky\nXXTRRZKkiRMnaunSpZKkL774Qhs2bND555+f0PETUVJSopNOOklSXQAMhUKqrq6Oa/PQQw9pxYoV\nkupCb//+/ZmhDECH4goMgG4v0TdDmZmZGjVqlC6//HL5fD75/X7Nnz9fkjR27Fjde++92r17t269\n9VZ9+umnuuyyyyTVjbO45pprJEm/+tWvdNttt+mJJ57Qt771LfXq1St2/IZ1nHPOOXrmmWc0duxY\n9e7dW7Nnz9amTZt04403NpnWubkB681ZsGCB5s6dq0WLFiklJUULFy6M/YU/kcfg9NNPl6TYOJqG\npk6dqt27d+vCCy+Ux+PRxIkTNX78eEl1Ex/MmjVLpmnq29/+duwWpJNOOkn/7//9P02bNk2O4ygz\nM1Pz5s1rtZ5gMKjly5fr3nvv1dNPPy2fz6e0tDTNnj1bo0ePllT3pvuVV17RBRdcoMGDB2vChAmx\nkNSwn1JTU/XNb35Td9xxh/773/+qX79+satcP/3pTzV37lz9+c9/1vjx43XcccdJqnsDPXz4cI0e\nPVqPPPKIzjnnnGafDw1NmDBBn332Wez5cOaZZ8bNIDZhwgTdfffduvXWW2PLfvWrX2nu3Ll67rnn\nZBiGLrnkEvXq1Ut79uxpta9uv/12vfDCC7GrR6+88oouvfRSzZs3T/fdd5/mzJmjBx54QNnZ2brv\nvvsk1Y2Huu6663TVVVdJks4+++zY1//3f/+nWbNmady4cTJNU/Pnz292DFJ7zZgxQ9dff7169uyp\nK664QldccYVuu+02/elPf4qd56WXXqpZs2bp8ccfl2EY+vrXv65LL730sNUAAI0ZTht/Knr++ef1\n0ksvyTAMOY6jjz/+WKtWrdItt9wix3GUk5Oje+65h3tdARyRRo4cqSVLljQ7+xc6VlufWQIAODq1\neQvZ5ZdfrmXLlumpp57SjBkzNHnyZC1cuFBTp07V8uXLNXDgwNilYwBwuxtvvFGPPfaYJOlf//qX\nJGnQoEFdWRIAAGjgoMbA/OEPf9BPf/pTrV+/PnYrwOjRo/XOO+90SHEA0NluvPFGvfnmmxo/frzm\nz5+ve++9V4FAoKvLAgAAX0l4DMzmzZvVp08fZWVlqaamJnbLWFZWlgoKCjqsQADoTIMHD9af//zn\nri4DkqZPn97VJQAAuqGEA8xzzz0XG+DYUCKzrWzcuPHgqgIAAABwVBoxYkSr6xMOMOvXr9fcuXMl\n1X1Am23bCgQCys/Pj/twufYWgo63ceNG+qEboB+6Hn3QPdAP3QP90PXog+6BfugeErnwkdAYmAMH\nDig1NTX2Sb8jR45UXl6eJCkvL++wfmgWAAAAALQkoQBTUFAQ+1RiSbrhhhu0cuVKXXPNNSovL9fk\nyZM7rEAAAAAAqJfQLWQnn3yyHn300dj3OTk5evLJJzusKAAAAKA1juPIsqzDus9QKHRY94fWmaaZ\n8IdVN3RQ0ygDAAAA3YFlWYc1wJx88smHbV9o26H0X8KD+AEASFQ0Gm1ziv2ioiLl5+crJydHHg9/\nTwNw8EzTVFJSUleXgU5GgAEAHHYFBQV6/8E/qGcw2GKb2qIivf/3f2r4DderV69enVgdAMDNCDAA\ngA7RMxhUdnp6yw0sSzLNzisIAHBEIMAAAADA9TpiUH97B5mjYxFgAAAA4HqWZemTbQcU8AcOy/7s\nsK0TB+e2OsZmz549Ov/88/Xcc89p2LBhseWXX365jj/+eN11111tHqe6uloXXXSR1q5d2+z69evX\na/ny5XrggQfilu/du1fTp0/XmWeeqZkzZyZ4VkcGAgwAAACOCAF/QGYnD+ofOHCgVq9eHQswe/fu\nVXl5ecLbO47T5lWe5tbPmTNHo0aNUjgcPriCjwAEGAAAAKCdTjnlFP373/+OfZ+Xl6ezzz5bNTU1\nkqR3331XCxYskN/vV+/evTV//nxZlqUZM2bItm0NHz48tu17770Xa9unTx/deeedLR530aJFWrNm\njT7//POOO7luinkrAQAAgHby+/0aOnSoNm3aJEn661//qnPPPTe2/vbbb9fChQu1bNky9ejRQ6+8\n8opefvllDRkyRMuXL9fQoUNjbX/zm9/o4Ycf1pIlS5SZmanVq1e3eNzk5OSOO6lujiswAAAAwCGY\nMGGCVq1apdzcXGVkZMTCRVlZmTweT2yq+NNPP13r16+XJJ122mmSpDPOOENS3Wdj7dixQ9OnT5fj\nOAqFQsrMzGSa+WYQYAAAAIBDMHLkSN1///3q27evLrjggthywzAUjUZj34fDYXk8HkUikdgH+Nav\nDwQC6tWrl5566qm4fdcHHvwPt5ABAADgiGCHbVmh0GH5Z4fthI/r9/t10kknacWKFRo9enRseXp6\nujwej/bv3y+pLowMGzZMgwYN0ubNmyUpNn4mLS1NhmFo69atkqTly5frs88+a/PYjuMkXOeRgisw\nAAAAcD3TNHXi4NzDvs9ETZgwQSUlJQoGg3HL582bp5tuukk+n08DBw7UhRdeqKqqKl1//fW69tpr\n4wbx//rXv9asWbMUCASUm5urK664Qh988EGTY+3fv18/+tGPVFFRIcuy9M9//lP333+/hgwZ0v6T\ndRHD6YTYtnHjRo0YMaKjD4M20A/dA/3Q9eiDjpefn6/ti5cqOz29xTaFBQWSaWrQtd/jHu8uxOuh\n69EH7RMKhSSp1c9pQffVUv8l8nrgFjIAAAAArkGAAQAAAOAaBBgAAAAArkGAAQAAAOAaBBgAAAAA\nrsE0ygAAAHA9x3FkWdZh3adpmjIM47DuE4eOAAMAAADXsyxLn+7/QoGA/7Dsz7bDOqH3ca1O07xn\nzx6df/75eu655zRs2LDY8ssvv1zHH3+87rrrrjaPU11drYsuukhr165tdv369eu1fPlyPfDAA3HL\nly5dqldffVWSNHnyZH33u99N5LSOCAQYAAAAHBECAb/MTv5cmIEDB2r16tWxALN3716Vl5cnvL3j\nOG1e5Wm8fteuXVq5cqVWrlyp2tpajR8/XpdcckmTD9E8UhFgAAAAgHY65ZRT9O9//zv2fV5ens4+\n+2zV1NRIkt59910tWLBAfr9fvXv31vz582VZlmbMmCHbtjV8+PDYtu+9916sbZ8+fXTnnXc2e8wB\nAwbo6aeflmEY8vv9Sk5OVlVV1VETYBjEDwAAALST3+/X0KFDtWnTJknSX//6V5177rmx9bfffrsW\nLlyoZcuWqUePHnrllVf08ssva8iQIVq+fLmGDh0aa/ub3/xGDz/8sJYsWaLMzEytXr26xeOmpqZK\nkv75z38qMzNTvXr16qAz7H64AgMAAAAcggkTJmjVqlXKzc1VRkaGkpOTJUllZWXyeDyxcHH66adr\n/fr1kqTTTjtNknTGGWdIkoqKirRjxw5Nnz5djuMoFAq1GUw+/PBD3XvvvXr00Uc78vS6HQIMAAAA\ncAhGjhyp+++/X3379tUFF1wQW24YhqLRaOz7cDgsj8ejSCQij6fuRqj69YFAQL169dJTTz0Vt+/6\nwNPYli1bNGfOHD366KNH1dUXiVvIAAAAcISw7bCsUOiw/LPtcMLH9fv9Oumkk7RixQqNHj06tjw9\nPV0ej0f79++XVBdGhg0bpkGDBmnz5s2SFBs/k5aWJsMwtHXrVknS8uXL9dlnnzV7vGg0qtmzZ+vB\nBx9Unz592vVYuRlXYAAAAOB6pmnqhN7HHfZ9JmrChAkqKSlpMpB+3rx5uummm+Tz+TRw4EBdeOGF\nqqqq0vXXX69rr702bhD/r3/9a82aNUuBQEC5ubm64oor9MEHHzQ51r/+9S/t2bNHc+fOjc1idsst\nt8RN5XwkMxzHcTr6IBs3btSIESM6+jBoA/3QPdAPXY8+6Hj5+fnavnipstPTW2xTWFAgmaYGXfu9\no+72h+6E10PXow/aJxQKSVKrn9OC7qul/kvk9cAtZAAAAABcgwADAAAAwDUIMAAAAABcgwADAAAA\nwDUIMAAAAABcg2mUAQAA4HrRaFQFBQWHdZ85OTmxD5xE90GAAQAAgOsVFBTo/Qf/oJ6NPoelvUoq\nKzX8huvbnOb9yy+/1Pz581VSUqJIJKJTTz1VM2fOVCAQaNdxV65cqc8++0y33npr3PKbb75Zd911\nV7v3+/nnn2vevHlatmxZ3PKhQ4fq97//vSZMmBBbduONN6qkpERPPfVUQvs+88wzYx/I2diePXs0\nY8YMrVixol11N4cAAwAAgCNCz2Cw1c+fOtyi0ahuuOEGzZ07V9/4xjck1X0Y5UMPPaSf/exn7d6v\nYRhNlt1///3t3l9r+x0wYIDWrFkTCzCWZWn79u3KyMg4pP0ezPqDRYABAAAA2mHdunU69thjY+FF\nkmbOnBl7w7506VKtXr1akjR27Fj98Ic/1KxZs5SZmamPP/5YxcXF+tGPfqQXXnhBpaWlsasjO3fu\n1I9+9CMdOHBA3/ve93TZZZdpzJgxeu211zRv3jzl5ubqo48+0v79+3XffffpxBNP1NNPP61XX31V\nXq9XY8eO1fe//33l5+frxhtvVCAQ0AknnNDsOfTu3Vv79u1TKBRSUlKS3n77bY0YMUJbt26VJH36\n6ae688475fF4lJqaqrvvvlupqam6+eabtX//fn3ta1+L7euLL76Ia/vb3/62Qx53buoDAAAA2mHb\ntm068cQT45YFAgH5/X7t3r1bL730kp555hk9/fTTWrVqlXbt2iVJ8vl8WrJkiYYMGaIPP/xQixcv\n1pAhQ/Tuu+9KqgswjzzyiJYuXaoHHnhAUvxVDNu29cQTT2jq1Kl68cUXtXv3buXl5emZZ57R8uXL\ntWbNGu3fv19PPfWULrzwQj311FPKzc1t8TzOOeccrV27VpKUl5encePGxdbNnz9ft956q5566imd\nfvrpWrp0qf75z38qEono2Wef1SWXXKLS0lJJdVef7rzzTi1evFjf/OY3tXz58sPwKDdFgAEAAADa\nwTAMRSKRZtd98skn+vrXvy7DMOT1ejV8+HBt2bJFknTKKadIqpskoD4AZWZmqqKiQpI0YsQIeTwe\nZWRkKBgMqqSkJG7f9Vd8evfurYqKCm3atElffvmlpk2bpqlTp6qmpka7d+/W1q1bdeqpp0qSzjjj\njBbPYcKECVq9erVs21Z+fr4GDhwYW79161YNGzZMknT66afrv//9r7Zt2xbb7ymnnKKkpCRJ0qZN\nm3Tbbbdp6tSpevnll1VUVHSQj2hiuIUMAAAAaIfBgwc3ucpg27a+/PJLGYahaDQat7x+RjOf739v\nwRt+Xa/xmJHG3zfcxnEcBQIBnXfeebrjjjvi2j322GOxYzaspbFjjz1We/fu1euvv66zzz67xXbh\ncFgej0eO48TNzla/7+Tk5CYD//fs2dPi/tqLKzAAAAA4IpRUVqqwvPyw/CuprGzzeGeddZb27dun\nv/3tb5Lq3sjfd999Wr16tU488UT95z//UTQaVW1trTZv3qyTTjopofP48MMP5TiOiouLVV1drYyM\nDDmO02L7k08+We+++65CoZAcx9FvfvMb2batQYMGafPmzZIUuz2tsfr9jh49WosWLYq7fUyShgwZ\nov/85z+SpPXr12vYsGFx+33//fdl27akuhnN/v73v0uSVq1aFZuZrLXa24MrMAAAAHC9nJwcDb/h\n+sO2v0Ff7bM1hmHoiSee0G233aZFixbJ7/frrLPO0vTp0yVJU6ZM0dVXXy3HcfSd73xHffr0abJ9\n468Nw9CgQYM0Y8YM7dy5UzfddFOTto316dNH06ZN09VXXy2fz6fzzz9fgUBA06ZN089+9jO98cYb\nGjJkSIvnIEkTJkxQXl6eBg8eHHfV5Je//KXuuOMOeTwepaen66677pJpmnr++ec1depUnXDCCbGp\npmfPnq25c+fqscceU1JSku6//35VVFQc9lnIDOdwR6JmbNy4USNGjOjow6AN9EP3QD90Pfqg4+Xn\n52v74qWtTmdaWFAgmaYGXfu9Nj9nAR2H10PXow/aJxQKSVJs/AXcpaX+S+T1wC1kAAAAAFyDW8gA\nAB3PUZOZeiKRqFQbUSgUiv0lriHTNA/7bQcAAPcjwAAAOlwkElFpRU3crDXVVkSRWls79par0jbj\n2tthWycOzuXWEABAEwQYAECn8Hg88nr/92vH4/VKXq9M05RJUAHQDpZldXUJaCfLsmSaZtsNm8EY\nGAAAALiOaZrtfgPcnI8//viw7QttO5T+4woMAAAAXMcwjMN+mym3rboDV2AAAAAAuAYBBgAAAIBr\nEGAAAAAAuAYBBgAAAIBrEGAAAAAAuEZCs5C9/PLLeuKJJ+Tz+TRjxgydcMIJuuWWW+Q4jnJycnTP\nPffI7/d3dK0AAAAAjnJtXoEpLS3VH/7wBz377LN65JFH9NZbb2nhwoWaOnWqli9froEDB2rFihWd\nUSsAAACAo1ybAeadd97RWWedpeTkZGVnZ2vevHlav369Ro8eLUkaPXq03nnnnQ4vFAAAAADavIVs\nz549qqmp0U9+8hNVVFTo+uuvVygUit0ylpWVpYKCgg4vFADQPTiOI8uymnzdUFlZmWzblm3ZkqRI\npFaRSCSDLikJAAAgAElEQVS23uP1dk6xAIAjTpsBxnGc2G1ke/bs0bRp0+Q4Ttz6RGzcuLH9VeKw\noR+6B/qh69EH7WdZlnYdqJbP75Nt2yqwDsjni/91Ul5aqr779qq0vEySVFtbK4/HI5/Pp2g0qmRv\nsjxer8rKy7Tvi89VUFQUt71tWyorCMg0zU47r6MZr4euRx90D/SDO7QZYLKzs3XqqafK4/FowIAB\nSk1Nlc9X90srEAgoPz9fubm5bR5oxIgRh6VgtN/GjRvph26Afuh69MGhCYVC6rGrVGZSkqxQSHuq\n9jYJGsWFhfJs3amewTRJUjhsS4Yhv8+vSCSiVH+Kyisq1CO9h/ofd7yyc+J/j1ihkI4dkKGkpKRO\nO6+jFa+HrkcfdA/0Q/eQSIhscwzMWWedpXfffVeO46ikpETV1dUaOXKk1qxZI0nKy8vTqFGjDr1a\nAAAAAGhDm1dgevXqpfHjx2vKlCkyDENz587V1772Nc2cOVN/+ctf1LdvX02ePLkzagUAAABwlEvo\nc2CmTJmiKVOmxC178sknO6QgAAAAAGhJm7eQAQAAAEB3QYABAAAA4BoEGAAAAACuQYABAAAA4BoE\nGAAAAACuQYABAAAA4BoEGAAAAACukdDnwAAA0Jkcx1EoFDrobSTJMIyEtzFN86DaAwC6HgEGANDt\n2LalT3dUKZgaTHibispyGYYn4W3ssK0TB+cqKSmpvWUCALoAAQYA0C35A36ZBxEuLCskeYyD2gYA\n4D6MgQEAAADgGgQYAAAAAK5BgAEAAADgGgQYAAAAAK5BgAEAAADgGgQYAAAAAK5BgAEAAADgGgQY\nAAAAAK5BgAEAAADgGgQYAAAAAK7h6+oCAACHn+M4sizroLczTVOGYXRARYcmGo2quKiw1TYV5WXq\nmZ3dSRUBALoKAQYAjkCWZenT/V8oEPAnvI1th3VC7+OUlJTUgZW1T3FRoXYtX6yM1NQW2xSUlkjf\nuUoZPXp2YmUAgM5GgAGAI1Qg4JfZDcNIe2WkpiorLb3F9eGw3YnVAAC6CmNgAAAAALgGAQYAAACA\naxBgAAAAALgGAQYAAACAaxBgAAAAALgGAQYAAACAaxBgAAAAALgGAQYAAACAaxBgAAAAALiGr6sL\nAAB0vWg0qsKCQqWEk5SUlNRq27S0tE6qCgCApggwAAAVFxZp71PPy9MzV16ft8V2JZWVOulHP5Bk\ndl5xAAA0QIABAEiSMlJTlJ2e3mqAAQCgqzEGBgAAAIBrEGAAAAAAuAYBBgAAAIBrEGAAAAAAuAYB\nBgAAAIBrEGAAAAAAuAYBBgAAAIBrEGAAAAAAuAYBBgAAAIBrEGAAAAAAuAYBBgAAAIBrEGAAAAAA\nuAYBBgAAAIBrEGAAAAAAuAYBBgAAAIBrEGAAAAAAuAYBBgAAAIBr+Lq6AADAwYtGoyooKGhxfSgU\nUmFpoUzTVGZ2ljwe/l4FADgyEGAAwIUKCgr0/oN/UM9gsNn1kdqIqu1K5YdC0nVXKTs3p5MrBACg\nYxBgAMClegaDyk5Pb3ZdpDYi0zLk9Xo7uSoAADpWmwFm/fr1uvHGG3X88cfLcRydcMIJ+uEPf6hb\nbrlFjuMoJydH99xzj/x+f2fUCwAAAOAoltAVmNNPP10LFy6MfT9r1ixNnTpV48aN04IFC7RixQpd\neeWVHVYkAAAAAEgJzkLmOE7c9+vXr9fo0aMlSaNHj9Y777xz+CsDAAAAgEYSugKzdetW/fSnP1VZ\nWZmuv/56hUKh2C1jWVlZrc6EAwBoH8dxFAqFZFlWk3VlZWWybVu2ZTdZ5/V6FIlE5TRZ0104ikQi\nikYiikiyLEtWKBTXwrIsySNZfjP2fWefT1szvdWLRCKyLCuhmd5ycnJi7UzTlGEYh1wnABxt2gww\nxxxzjKZPn66JEydq165dmjZtmmpra2PrG1+dacnGjRvbXyUOG/qhe6Afup4b+sCyLG3dXaqSaLF8\nvvgf1+Wlpeq7b69Ky8vilkejUSWbPjnRqAyPRxVWSPs//0IFRUWtHqukuERmWYUKVSivt+U34sWV\nlSrcvFmWEVQgYMq2LRXXFssfCMS1KyspUXZlpfxf/Y6o/73h8/lUG65VqVMqn8+nkrIqHfhsg9IP\nZMRtX11dJUlKSUmtO25hoQaVFMsbibRYW1l5ucq2blXICrd6rvVs21JZQUCmaTa7vqioSIUvvaKM\nlJRW97Mt/4AMI6LcjIxW25XVVMs77hxlZPZUbW1Y/YK9Wzx2Z3PD6+FIRx90D/SDO7QZYHr16qWJ\nEydKkgYMGKDs7Gx99NFHsm1bgUBA+fn5ys3NbfNAI0aMOPRqcUg2btxIP3QD9EPXc0sfhEIhJaXv\nV2FtcZM3usWFhfJs3amewbS45ZFoRMFkvyK1tZJhyBsylX78cW1Oo1x4oEAlGzYrOztbXl8rM5eZ\npvoMG6ZK25SZlCQrFNKeqr1N6wumybP5E6V9VV84bEuGIb/Pr7BtS0bd+aWnpys4+FhlZmfHbV9V\nWSF5DKWm1E0TvT+YpvSt+9Qzo2eLpVnRiLKPPVaDBh3X6rnG2odCOnZAhpKSkppdn5+fr+3vf9ji\nTG/1Il6vHMfWgF69Wm1XVFGh9K+dpOzcHFmhkAZlHtPisTuTW14PRzL6oHugH7qHREJkm9e7X3nl\nFS1atEhS3V+jioqKdNlll2nNmjWSpLy8PI0aNeoQSwUAAACAtrV5BWbMmDG6+eabddVVV8lxHN1x\nxx0aOnSobr31Vv3lL39R3759NXny5M6oFQAAAMBRrs0Ak5qaqj/+8Y9Nlj/55JMdUhAAAAAAtCSh\nWcgAADhSRKNRFRcVyrIsBQNWi+NQCgoKEp6oBgDQeQgwAICjSnFRoXYtX6y0pCTtTgm0OGnBtv37\n1bdHhtSjkwsEALSKAAMAOOpkpKYqIyVF6almiwGmuKKik6sCACSi7U/dAgAAAIBuggADAAAAwDUI\nMAAAAABcgwADAAAAwDUYxA8AncRxHFmWlXD7UCgkR0zjK9U9dtFoRJFIbYttwrW1Ks7fp4DfjG0j\nSYZhxLUrLi5SUiSiyFf/GvN6vZLRZDEAoJsgwABAJ7EsS59sO6CAP5BQ+4rK8roAw5tphe2wquwq\npYRbfuwOlBerds2LKsrKkSRFwmHJkLw+f1y7nYUF6p2WJjMgGXZYXs//bkaIRKPKSO7R4sxkAICu\nR4ABgE4U8AdktvDBiY1ZVkhWOPErNkc6w+OpuzrS0nqvRxlJQeX0qPvglrBtS4bkbxQYK0I18nq8\n8ni98nq9cQEGAND98VMbAAAAgGsQYAAAAAC4BgEGAAAAgGswBgYA0GWijqPS4uImy6urqiSPZFWH\nJEllJSVKdpiRDQBAgAEAdKHy6mpFVr8uT8+eccvNcFgyDHl8db+mwnv3yU5P74oSAQDdDAEGANCl\neiSnKDOYFrcsHLYlw5D/qymQC5JLu6I0AEA3xBgYAAAAAK5BgAEAAADgGgQYAAAAAK7BGBgAAL7i\nSIpEItJX/0cMQ5HaSKvbRKJRGZ1QGwCgDgEGAICvRCMRldWWy+/zqcqukuP4VWFVtLpNpVWpVH+g\nkyoEABBgAABowOPxyOv11v3z1P3fGoO7sQGgU/FTFwAAAIBrEGAAAAAAuAYBBgAAAIBrEGAAAAAA\nuAaD+AGgkziOI8sKJdzesixZYUsynQ6sCgAAdyHAAEAnsSxLO8t2KiU1mFD76poKVVfXqEdGD5lJ\nSR1cHQAA7kCAAYBO5Pf7ZZpmQm1rw7bssN3BFQEA4C6MgQEAAADgGgQYAAAAAK5BgAEAAADgGoyB\nAYAjieMoEokqEo3KkKFwJKJ9+/NlhcMtbhLw+VVcVCTDYbYzAED3R4ABgCNINBpVZbUlJxqVZGhf\nSblq//SyIj17ttg+LSWgPYWFyg0mNjsaAABdiQADAEcYw+ORIUMyJK/Ho7TUoHLSezTbNhKNKJjs\nV3l1dSdXCQBA+zAGBgAAAIBrEGAAAAAAuAYBBgAAAIBrEGAAAAAAuAaD+AGgm4lGoyotLlZ1VZWq\nqiplh2zZlh3XprS4WD0Px6zHDaZdjjiSbVvyRlr+1WDbtsrLy2UbdTOWWVZIYvplAEAnIsAAQDdT\nWlysiudWKiXgly8cltfvl8fvj2tTWVCgYFq6lJZ2SMeqn3a52oqo1qnVvpIS+fwt/2oorqzUp59v\nUU7vXkpJCaq6slL+gF9mUtIh1QEAQKIIMADQDfVITVGaaao2HJbP75ffH4hbX1pVddiOZXg88no8\n8jiSz+9rcqyG/H6/UlJSFTBNmaYp27IOWx0AACSCMTAAAAAAXIMAAwAAAMA1CDAAAAAAXIMxMACA\no9NXM7A1FIlGZchQxPvVzGxf/Ytt8tX/RoNtoooq2qhdQx6PJ649AODQEGAAAEel+hnYvL7//Sqs\ntcOSDPkiUrUVkVErVdaE/7e+NixDRtw2oZqwPP74dg2PkZ5qyuvhhgcAOFwIMACAo1bdDGze2PdR\nj1cyJK/HWzczm8cbv96ISIYRt8zweGU0agcA6Dj8SQgAAACAaxBgAAAAALgGAQYAAACAazAGBgCA\nTuY4jkKhULu2NU1ThsG8ZgCOXgQYAAA6mW3Z+rx6u4KpKQe3nR3WCb2PU1JSUgdVBgDdHwEGAIAu\n4Pf7ZRJEAOCgMQYGAAAAgGskFGAsy9IFF1ygF198Ufv379fUqVN1zTXX6P/+7/8UDjf94C4AAAAA\n6AgJBZiHHnpIGRkZkqSFCxdq6tSpWr58uQYOHKgVK1Z0aIEAAAAAUK/NALNt2zZt375d5557rhzH\n0YYNGzR69GhJ0ujRo/XOO+90eJEAAAAAICUwiP+ee+7R3Llz9cILL0iSampq5Pf7JUlZWVkqKCjo\n2AoBAHArx1EkEpUkRaJRWeGwLNuWFQ7LkCHLtpvdLOAPqCNnSnYcR5ZlSaq7TTzRKZ2ZwhlAd9Bq\ngHnxxRd12mmnqW/fvs2udxwn4QNt3Ljx4CpDh6Afugf6oet1RR+Ul5fry6J8paQGW21XVlKi7MpK\nGeGwasNh+fx++XzxP66rqqrkeH2qMANxy2tra+u+cCQZLbdr3L6qqkoBSZVmoMmxGqqsqtKuPbtU\nVlWhlJRUVVdWSoaanFP9Ofi/+j1Rfxyfz6facK1k1H3d1nnU11JTXS35faqoKG+xtro2/libhsdp\nqP6YptcTd4zG2zRXW+O62qqttrZWpY4jn9erkqoqHfjgE6VnZHz1uBlKSU1tsk2kNqJemUkK+Jv2\nmW3ZKkkqkmmaLT4OibAsS7sOVMvnrzuP1976d5vb1IZrNSA35ZCPjebxe6F7oB/codUA8/bbb2v3\n7t16/fXXlZ+fL7/fr5SUFNm2rUAgoPz8fOXm5iZ0oBEjRhyWgtF+GzdupB+6Afqh63VVH5SWlqr6\ns08UTEtvtV1xME2ezZ8oaJqxAONv9GY2tbpaKV6f0hrtKxy2JcOQoo5kSKm23Wy7xu1TbVt+RwoG\ng02OFdfeMDSg3wD1zMlSakpQFeXlMgw1Oaf6c0gLpsUdx+/zK2zbkiGFQiGlpqa2eh5+X90V/+SU\nMqX4/S2ehyQll5UptUGb+uO09NgFg8G4YzTeprnHuHFdbdXWsH3E61Vw0LHKzM5u8XGTJNu21L9X\nmsxA036wQiENyjzmkD8HJhQKqceuUplJSfpkyyc6ceiJbW5jhUI6dkAGn0HTAfi90D3QD91DIiGy\n1QCzYMGC2NeLFi1S//799f7772vNmjW65JJLlJeXp1GjRh16pQAAAACQgIP+HJgZM2boxRdf1DXX\nXKPy8nJNnjy5I+oCAAAAgCbaHMRfb/r06bGvn3zyyQ4pBgAAAABac9BXYAAAAACgqxBgAAAAALgG\nAQYAAACAaxBgAAAAALgGAQYAAACAaxBgAAAAALhGwtMoAwD+x3EcWZZ1UNuEQiE5jtNBFQEAcHQg\nwABAO1iWpU/3f6FAwJ/wNkXFJaoNhzuwKgAAjnwEGABop0DALzMpKeH2fr9f0sFdtQEAAPEYAwMA\nAADANQgwAAAAAFyDAAMAAADANQgwAAAAAFyDQfwAcIii0aiKC4vabFdUVKxoNPFZywAAQFMEGAA4\nRMWFRdr55DPKSE1tvV1xiWrPH6OsnNxOqgwAgCMPAQYADoOM1FRlpaW12iZkWSrspHoAADhSMQYG\nAAAAgGsQYAAAAAC4BgEGAAAAgGswBgbAEcdxHFmW1eJ6y7IUCoWaLDdNU4ZhdGRprhd1HJWVlEge\nyaoOqbKiUoYh2ZYd1660uFg9nS4qEnGaez2EQiFZVt1rwLYtWc28HgK8HgB0UwQYAEccy7L0ybYD\nCvgDza7fV2Jr667SuGV22NaJg3OVlJTUGSW6Vnl1tbxv/U1mz57y+HxKtsOSIXn88dNDVxYUKJiW\nLrUxsQE6nmVZ+nT/FwoE/tdHlh3WvuoK+WtNFdcWa0/V3rhtasNhHZNxjExeDwC6IQIMgCNSwB9o\n8c1XIGDyxuwQpKekKDMYlN/nV9i2JUPyNwqLpVVVXVQdmhMI+OOf8x6PAqatQMCUPxCQaZpdVxwA\nHCTGwAAAAABwDQIMAAAAANcgwAAAAABwDQIMAAAAANdgED+Ao17dNLOhZqdWbkkoFJLDNMEAAHQ6\nAgyAo55tWdpZtlOeYKXMgL/tDSRVVFQqYJpKSmY2MwAAOhMBBgAk+f1+mUmmzEDznx3TmBVq+YMy\nAQBAx2EMDAAAAADXIMAAAAAAcA0CDAAAAADXYAwMAACdIOo4Ki0uliRVVlTKMCTbspu0C4dt9c1J\nbXYfjuMc1Gx5UvtmzKufma+hRGbqM01ThmEc3MEA4CARYAAA6ATl1dWKrH5dnp49lWyHJUPy+JvO\neldVWaHi/++76tevb5N1tmXr8+rtCqamJHzc9syYF7Zt7azeqZTUYINlljylLc/UZ9thndD7OCUl\nMTMfgI5FgAEAoJP0SE5RZjBNYduWDMnvbzrrXSQabXUfdTPmJR4S2jtjnt/vl2mase8NQwc1Ux8A\ndBTGwAAAAABwDQIMAAAAANcgwAAAAABwDcbAAEA7OI4UtmxZti0rHFYkGm1z7EI0EpWjg5wOCgAA\nxCHAAEA72LVh7dxXooyQVFJUKV+oVqYv3Oo2VTW2wrW1nVQhAABHJgIMALST3+dXIGDK7w/I4/HI\n6/G22t7D52MAAHDIGAMDAAAAwDUIMAAAAABcgwADAAAAwDUIMAAAAABcg0H8ANBJoo6j8tJSFRcW\nttqutLhYPZlt+ejlOLEpuhuzwmEZMppdF/AHxDwRAI4GBBgA6CTlNdVK/se/5Pl8R6vtKgsKFExL\nl5LMzikM3Uo0GtXuA+WK+NOarKssr5BhGEoNxS8P14Y1qF+mzECgk6oEgK5DgAGATpSWnKzMYNM3\npg2VVlV1UjXorrw+rwKBpgHWHzBlGGp2HQAcLRgDAwAAAMA1CDAAAAAAXIMAAwAAAMA1GAMD4KgT\njUZVWHAg9r1lWSopLVZhsmT6/XFtM7Oz5PHwtx4AALoLAgyAo05ZWansvFeVkZoqSYpEIkqyK1Wd\naspqEFZKq6qk665Sdm5OV5UKAAAaIcAAOCplpKYqKy1dkhSJ1CpgSenBJHm52gIAQLfWZoAJhUL6\nxS9+oaKiItm2rZ/85CcaOnSobrnlFjmOo5ycHN1zzz3yN7rtAgAAAAAOtzYDzNq1azVs2DD94Ac/\n0N69e3Xttddq+PDhuuaaazR+/HgtWLBAK1as0JVXXtkZ9QIAAAA4irV5r8SkSZP0gx/8QJK0d+9e\n9enTRxs2bNCYMWMkSaNHj9Y777zTsVUCAAAAgA5iDMyVV16pAwcO6OGHH9Z1110Xu2UsKytLBQUF\nHVYgAABHk6jjqKykRCnJqU3WVVZUyjAk27IVjUYlGfJ4DIXDtpI8VpNZ9KLRqCrKK+TxemWHQrHl\nVjiskqJK+f0BlZWUqDiYpozMTGbcA+AKCQeYZ599Vlu2bNHPf/5zOY4TW97w69Zs3Ljx4KvDYUc/\ndA/0Q8eyLEv7SmwFAmaLbcrKy+SJRCRJ0UhENZEaRWtDcW/gSisrtf/zL1RQVNRk++KSYhVX1Kq0\nokJlJSXKrqyUv42fh9XV1ZI/oIqK8lbbVVVVyfH6ZHo9qg2H5fP75fP5mm1TYQbiltfW1tZ94Ugy\nWm7XuH1VVZUCkirNQJNjNT5u2DBUGahrVxuulQy1WV/9cRpv09Z51O+3prpa8vtafezq2vhjbdqq\nzfR64o7ReJvmamtcV1u1NWzfcH8t1SZJ+YWFqn15taozM5usc8K1cgyp2ufT7qIiJft8yurRQ9Fo\nVPv9HhkeI679rsIiBWQoK6OHSnze/+0n6sgKRxX2eJQtaf9bb2vn+eeqR8+ekqTqykrJkFJSg7Ft\nwmFblSV+BfzNP5dsy1ZJUpFMs+XXHVrG74XugX5whzYDzEcffaSsrCz16dNHQ4cOVTQaVWpqqmzb\nViAQUH5+vnJzc9s80IgRIw5LwWi/jRs30g/dAP3Q8UKhkLbuKpWZlNTs+nf+tU490nuoZ4NZyLyW\nt8ksZFGvV+nHH9fsNMoFBYXaV1CpnlnZKg6mybP5E6UF01qtKyUlRcl+v9K+Om5LUqurleL1KRgM\nxgKMv9Gbxvo2jfcVDtuSYUhRRzKkVNtutl3j9qm2Lb8jBYPBJsdqfNyApGBamvw+v8K2LRlqs776\n4zTcJhQKKTU1tdXz8Pvqrigkp5QppY3HLrmsTKkN2rRVWzAYjDtG422ae4wb19VWbQ3bN9xfS7U1\nPI/+vXo33V+D7WoNQylen3pnZysSjSiY7G8yi57j9crnSH1zshVocHUmEo2qsiYsr8eriopyBYNB\nRQcMVGZ2tiSporxchiEFG5yTbVvq3ytNZqD554cVCmlQ5jFKauF1h5bxe6F7oB+6h0RCZJvXit97\n7z0tXrxYklRYWKjq6mqNHDlSa9askSTl5eVp1KhRh1gqAAAAALStzSswV111lWbPnq2rr75almXp\n9ttv18knn6yZM2fqL3/5i/r27avJkyd3Rq0AAAAAjnJtBhjTNHX//fc3Wf7kk092SEEAAAAA0BKm\nGwEAAADgGgQYAAAAAK5BgAEAAADgGgQYAAAAAK5BgAEAAADgGgQYAAAAAK5BgAEAAADgGm1+DgwA\ndBXHcWRZVru2AwAARyYCDIBuy7Isfbr/CwUC/oS3se2wjsno34FVAQCArkSAAdCtBQJ+mUlJXV0G\nAADoJhgDAwAAAMA1CDAAAAAAXIMAAwAAAMA1CDAAAAAAXINB/AC6NceRLNtOuH3IslVqlypktTyV\ncti2FIlEFInUSpIikYjEzMsAALgCAQZAt2aHw9q7v0p+X2JTKVeWl2tTxXb1yMhQSkqw2TalkVL1\nrK1RUtgrSaoNhw9bvQAAoGMRYAB0e36fX4GAmVjbgKnkpGQFTFOm2fw2Pr9fXq9HXm9dgIlGIopG\no4etXgAA0HEYAwMAAADANQgwAAAAAFyDAAMAAADANQgwAAAAAFyDAAMAAADANQgwAAAAAFyDAAMA\nAADANQgwAAAAAFyDAAMAAADANXxdXQAAdA+OIpFo3JJINCorHJZl201a25YtR05nFQcAAL5CgAEA\nSdFoVJXVlry+//1YrArVqqygUqGo2aT9gfwS+QP+ziwRAACIAAMAMYbHI6/HG/ve6/HI8AcUCDQN\nMH4vPz4BAOgKjIEBAAAA4BoEGAAAAACuQYABAAAA4BoEGAAAAACuQYABAAAA4BoEGAAAAACuQYAB\nAAAA4BoEGAAAAACuQYABAAAA4BoEGAAAAACu4evqAgC4j+M4sizroLczTVOGYXRARR0j6jgqLS5u\ndl1pSYnkMeT3BlRaXKyeTicXB3QzjuMoFAod9Had8XPhaPmZBRwtCDAADpplWfp0/xcKBPwJb2Pb\nYZ3Q+zglJSV1YGWHV3l1tSKrX5enZ88m63pUV0uG5ElOUWVBgYJp6VJaWhdUCXQPtmXr8+rtCqam\nJL5NJ/1cOFp+ZgFHCwIMgHYJBPwy///27j1Grvq++/jnnJlzztx217u+YCDAk1AlQSmtIkpV4qaB\nPHFaNVVUV4UYAr2oSv+oVIlKbWQgov0PYf6IaFEakExbNbSLjBtKn6ZyoBEkeZI6rvOUUmLTGOja\nZH3Z9ezs3PZcZuc8f4x3PLM7t13vzuzZeb/+Ws/+fud8z4znnPnO7O8zQ3BhH0umNJFZ2ZgsmKZk\nSMlkWrlSaQCVAZuPZW3e88KwnLOAYcAaGAAAAACRQQMDAAAAIDJoYAAAAABEBg0MAAAAgMhgET8w\n5NYSL+q6rsJQCkPJD/ye5nh+UI9YJZoU2Pp6OT80nheWcH4A0A0NDDDk1hIvWigUZTuOjJipd3+S\nlRXvPtf3PFWLORmmqVs+sItoUmCL8wO/6/lh6bzgOIn6HM4PALqhgQGw6nhRz73yiY0Vt2TbTtc5\nYaj6ixQAw6Hb+WHpvEC8MYDVYA0MAAAAgMiggQEAAAAQGTQwAAAAACKDNTAA6npNFfOCQIYMGYah\nUOGG11WtVpWdne1pbCzOaQ0AgK2MKz2Aul5SgySpmC/IMAwZsZIs25Zjb2xd83Nzcl/8Z42lU53H\nlcoyfmWvnMQGFwQAAAaGBgZAk15SxSzbkWGor9/VMJZOaSIz0nVcvg+1AACAwempgTl48KB++MMf\nanFxUb//+7+vW2+9VX/yJ3+iMAy1c+dOHTx4UJbV+3dIAAAAAMBadG1gjh07ptOnT2tyclK5XE77\n9u3TL/zCL+j+++/XL//yL+vLX/6yjhw5ov379/ejXgAAAABDrGsK2e23364nn3xSkjQ6Oqpyuazj\nx4/rk5/8pCTprrvu0ve+972NrRIAAAAA1MMnMKZpKplMSpJeeOEF3Xnnnfrud79b/5Ox7du3a2Zm\nZmOrBLBlhGEo13V7Guu6rnzP70vSGRBpYajFxeqKmxerVRmhVF2sajF25fe1sYN/XoVhKM+7cj7w\nPH/0KPEAACAASURBVLen84PjOH1dgwdgc+l5Ef8rr7yiI0eO6NChQ/r0pz9dvz0MezsBnjhxYvXV\nYd3xOGwOm+lx8DxPF9xLsh1bfuBrNh/IsjqneJWLRcmQdPkFRCqV7rqfwPdViOfl+77+3+sVpVKd\nE8Ukyfd9nStOy/c93VAsyupyvimWSvrJT87KSjhKzqU61lVs2F4lqKiyWFHc8xRviGEulUoKY3EV\nWsSsuQsLkmGoUlnsOK5RuVyWLFuFQueogaXtOTFTlSBQ3LKa6upUW6VSqf0QSjI6H0Pj+FKpJFtS\n0bFX7Gv5fgPDUNGujasEFclQ1/qW9rN8TrfjWNruQrksWfGO911tjFUf0602J2Y27WP5nFa1La+r\nW22N4xu31662VsfRtL029VUqFeXCUPFYrGn8bDYvW1JcsebjXFyUaRj124rFombPntF8sSDpynM8\nlc7U5wSBr+KcJbvN+aFYKEqmlLk8p5fzSblY1FuLJ5VMpur7+PG0JTvefk6lEuj6zG45TuewkUaN\n57le+Z6vucSlVe3namym68Iw43GIhp4amO985zt65plndOjQIWUyGaXTafm+L9u2deHCBe3atavr\nNm677barLhZX58SJEzwOm8Bmexxc19W72Sk5iYQ839d7FwpdU8gK+fyVFDLTUDqV6Theqr2AuD59\nXe3dVtPQ6MhY9zmuq+QFR6VySZnTUxrpkkIWGIauv/4GOQlbmbHRtnX9x9ycMplMfXuB76tSCRS3\n7aYI6XS5rFQsrpGR0RXbiMdikiElk+mO4xqlUiklLavruKXtZTKZegOz/EVgu30GgV9rLKuhZEhp\n3+9Y29L4tO/LCqVMJtPxBWe6XJYtKTMyIituKfB9yVDX+pb20zjHdV2l0+mOx7H0eCRT80p1ue+S\n8/NKN4zpVlsmk2nax/I5re7j5XV1q61xfOP22tXW6jiattemvlZ1SdKI68oKa38C3rivxvGFQl6Z\nTEapG27UxI4dkq48xzMNNfi+p/ddMyLHbv3/I5+bl0xTo6O151Uv55Pl++m2D6l2Xnj/xE1KJBJt\nxyzXeJ7r1Vr2s1ab7bowrHgcNodemsiua2CKxaKeeOIJffWrX9XISO2kdMcdd+jo0aOSpKNHj+rj\nH//4VZYKAAAAAN11/QTmG9/4hnK5nB588EGFYSjDMPT444/rkUce0fPPP6/rrrtO+/bt60etAAAA\nAIZc1wbmnnvu0T333LPi9meffXZDCgIAAACAdrr+CRkAAAAAbBY9p5ABAABspDAM5Xt+xzGeHzRF\nLROpDAwfGhgAALApVIJAU+fc+vfPteJ7nqrFnBwnIT/wdcsHdvUlKQzA5kEDAwAANo24Fe8YvRyG\nkuMkVhWJDGBrYQ0MAAAAgMiggQEAAAAQGTQwAAAAACKDNTAA+iIMQ3meK8/zJFPyrPZ/477E81yF\nYdjzPqphqPm5OdmOraASyCu7LccV5ue1is0CUPeEMC8IZMiQ59fG+J6vUDzRAKw/GhgAfRH4vs6U\nz9RW4JqGCkap65xysaggCHreR75cVvxbr2ksk1bMtmXGW5/irKkpBdfslkZGet42MOy6JYQV8wUZ\nhqH05fcNyuWSLNuWY/exSABDgQYGQN9YllX7vgbTkON0/wTG9zz5vreqfYymUhrPZBS3bVlxq+WY\nkQ4RrQDa65QQZtmODEP13wd+5+9zAYC1Yg0MAAAAgMiggQEAAAAQGTQwAAAAACKDNTAABqparSqX\nzbb8XbFQ1EK5pMpioDRhRsCGqYZh0/OwWCjKMNSUOlYulSRTSiZSMs3Bvf+5lGgo1ZIKXbd12mAj\n13VJHgS2EBoYAAOVy2ZVOPx1jaVTK36X9APZlUDT+byCbeOkhgEbJF8ua/FfvilzfFxS7bknQzKt\nK0EYThAov7Cg3P67NbFjx6BKrScaptIZBb4nM1eUY7cO7FhSKBRlO44SyUSfqgSwkWhgAAzcWDql\niczK5iTwfVUqgQqriFIGsDZjySvPw8D3JUOyrCsZyEHgS4YxqPKaWJYlx6mlnjkJR47dOavZc1eX\nZghgc2MNDAAAAIDIoIEBAAAAEBk0MAAAAAAigwYGAAAAQGTQwAAAAACIDBoYAAAAAJFBAwMAAAAg\nMmhgAAAAAEQGDQwAAACAyKCBAQAAABAZNDAAAAAAIoMGBgAAAEBk0MAAAAAAiAwaGAAAAACRQQMD\nAAAAIDJoYAAAAABEBg0MAAAAgMiID7oAYKsLw1Ce59X/7XmeXNftOs9xHBmGsZGlAUCkhWEo3/O7\njvOCQIYMeX5trG3Z4vQKRBcNDLDBPM/TW+dPy7YtSdIF95LezU51nOP7gT60+6eUSCT6USIARFIl\nCDR1zlUymew4rpgvyDAMpV0pqAR6//UTcmy7T1UCWG80MEAf2LYl53IzYjt2/WcAwNWJW3HZttNx\njGU7Mgx1HQcgGlgDAwAAACAyaGAAAAAARAYNDAAAAIDIoIEBAAAAEBk0MAAAAAAigwYGAAAAQGTQ\nwAAAAACIDBoYAAAAAJFBAwMAAAAgMuKDLgBAd2EYyvO8Vc9zHEeGYWxARQAAAINBAwNEgOd5OvnO\nRdmW3fMcP/B1ywd2KZFIbGBlAAAA/UUDA0SEbdlyaEYAAMCQYw0MAAAAgMiggQEAAAAQGTQwAAAA\nACKDBgYAAABAZLCIH9iEwjCU67r1f7uuK89zO8y4wiY6GcAWU61WlctmJUnFQlGGIfmer3KpJJmS\nV75yftw2MSHT5P1ZYCujgQE2Id/z9ePyu8qkU5Ikzw90rlyQVXE6zqsEgW7adhNpZQC2lFw2q8Lh\nr2ssnVLSDyRDMi1LThBIhiEzXns5M18qS3fv08SOHQOuGMBGooEBNinLsq40IqYp2/Fl250bGADY\nqsbSKU1kRhT4vmRIlmUrCHzJMGTFrfq46gBrBNAfPX3GeurUKe3du1fPPfecJOn8+fN64IEHdP/9\n9+uP/uiPFATBhhYJAAAAAFIPDczCwoIef/xx7dmzp37bk08+qQceeEBf+9rXdOONN+rIkSMbWiQA\nAAAASD00MI7j6Omnn9aOhr8n/cEPfqC77rpLknTXXXfpe9/73sZVCAAAAACXdV0DY5qmbNtuum1h\nYUGWVft70+3bt2tmZmZjqgOwKmEY1tPKPM9tSjJrx3VdheFGVwZgK6iGoQqX08CWa0wHkyTLtmSa\nsc7bq1aVz+Xqc1qlikm1RfzjnKcAXHbVi/jDHl/5nDhx4mp3hXXA49B/nufpgntJtnPljYCTJ091\nnFMsFCVTyqQzkiQ/8DWbD2RZdsd55WJRby2eVDKZUhD4+vG0JTveZU65pLhtKZPOrGo/MiRdjmtO\npdIdx3eaMz83px3FoqwW55JKUFFlsaKFUknxyqIKTue6SqWSbEnFmKm45ykeb3+KK5VK9e0t7Wf5\nnFKppDAWb7lfd2FBMgxVKosdxzXdB+WyZNkqFPJdjyOMxeXETFWCQHHLWnEs7fZZqVRqP4SSjM7H\n0Di+ft85dtf7LTAMFe3auEpQkQx1rW9pP8vndDuOpe0ulMuSFe9439XGWPUx3WpzYmbTPpbPaVXb\n8rq61dY4vnF77WprdRxN22tTX6u6lo611eO6fPyKx6tFfZVKRRdmZhQeeVH22NiK2sKgotCQyvG4\n8uWy5j92u0a3bet4fjj/3nvK/N9jMkZGJEmLl+sqLzuOi5cuyciMyFbYVNvy4yiWSpo9e0bzxULT\n/KXzTyqdURD4Ks5Zsruc53zP11zikhynP+EpXJ83Bx6HaFhTA5NOp+X7vmzb1oULF7Rr166uc267\n7ba17Arr6MSJEzwOA+C6rt7NTtUTxU6ePKVbbvlwxzn53LxkmhodrV3UPd/XexcKXVPICvm8DEPK\njIzK9z2975oROXbni3Tjvla7H8MwJNNQOpXpOL7TnGxmROYbJzWSGVkxJ/B9VSqBkr6vtJPQyMho\nx32ky2VZoZRJpxW37aZkoiYzM0qn0/XtLe1n+Zx0uaxULN5yv/FYTDKkZDLdcVyjVCqlpGX1dByp\nWFyZTKbewCxvKtvtcymVSdVQMqS073esbWl82vdr910m07GBTZfLsiVlRkZkxa2mRKhO9TWmRS3N\ncV1X6XS643EsPR7J1LxSXe675Py80g1jutWWyWRWJFg1zml1H7dKvepUW+P4xu21q63VcTRtr019\nrepaOtZWj2vj+EIhv+JxaFVfEPhKlssacxLa3SKmuHFOtljQ6PU3aHzn9o7nh1hoKLnjbV0zPtH2\n/pWkimG0vO+Wjw8MQ6kbblwRo7yWc6Pnunr/xE1K9CGWnuvz5sDjsDn00kSu6Zue7rjjDh09elSS\ndPToUX384x9fy2YAAAAAYFW6fgLz+uuv60tf+pKy2axisZgmJyd16NAhHThwQM8//7yuu+467du3\nrx+1AgAAABhyXRuYn/3Zn9U//dM/rbj92Wef3ZCCAAAAAKCdq17ED2D1wrC2ML8dLwhkyJDn18b4\nnq9QRPAAQBTUEiG9nsd7nqeFhQVJl9cJ9shxnFWNB7YKGhhgAPzA17s/ybZdZF7MF2QYhtKXk0TL\n5ZIs21aXkCsAwCbgeZ5OvnOxa9LZknNzvsxTZ2UYZj19shs/8HXLB3b1JWQA2GxoYIABseJW27Qv\ny3ZkGKr/PvDbf1oDANh8bMuup092HWs7tWbHNHqeAwyzNaWQAQAAAMAg0MAAAAAAiAwaGAAAAACR\nQQMDAAAAIDJYxA9sUWEYyve6L/5vjGxez7jmarWqXDZb/3exUJRhXI4INSWvXItYy2WzGichGkCf\n9Hxu9AO5rlufI/Uecey6LtH3wAaigQG2qEoQaOqcq2Qy2XFcY2TzesY157JZFQ5/XWPplCQp6QfS\n0rXfMGTGa6ef4syMMiOj0sjI1e8UALro9dzoe56qxZwcJ6FCMb+qiONCMS/bcZRIdN4HgLWhgQG2\nsLgVbxvVvKQxsnm945rH0ilNZGqNSeD7TQ3M0nfg5Eqldd0nAHTTy7kxDCXHSchJJOR57qoijj3P\nXY8yAbTBGhgAAAAAkUEDAwAAACAyaGAAAAAARAZrYAAAwLqqhqHm5+aaEgdbmZ+bUzLcOmldtYQz\nT57n1Y7d6rzOZonvewrDUIZ6SzkDhh0NDAAAWFf5clmxf31Vzvh4PXGwlWD6nPzR0T5WtrF8z9NU\nbkr+5UX/BaO3kJKL7kVd518rJ9lbSAAw7GhgAADAuhtNpTSRydQTB1uZSeb6WFF/xC1LUlhLLXN6\n+wQm3qHJA7ASa2AAAAAARAYNDAAAAIDIoIEBAAAAEBk0MAAAAAAig1VjiJQwDGvxlKvgOI4Mg2jK\nbqrVquYuZbvGnlarVZWKRZmmWbtf24zPZbMa3zrpqACwqYRhKNdtf65uh2sitgIaGESK53k6+c5F\n2Zbd03g/8HXLB3YpkSCasptcNivvpX/WaDrdMfb0vZkZWaG0Y3xb7QbDaDm+ODOjzMioNDKyUSUD\nwNDyfU8/njmvTDq1ijmBPrT7p7gmIvJoYBA5tmXL4eS7IXqJPc2VSrJCaSKTqd1gGC3H50q9ff8B\nAGBtLMvieoihxBoYAAAAAJFBAwMAAAAgMmhgAAAAAEQGa2CwpfUjpaVbMprruvL8QDJr7xf4gS/f\n8xWKiC4A2KwWFxc1/ZOzsp2EioW8ZEqFdL7l2ImJ7TJNU57nSuHWObcvXUPXkv6ZSCRIO8OGoYHB\nlub7nt76n5Iy6Uzvc1aZXNYtGc3zXJ0rF2Q7viRpNh/InM7Ksm05vYWpAQD6bPbCRXkv/R9NjI5p\nMQgkQ/JaBJbMl0s6v++zGt++XeViUZZtbZkX7p7n6fVTZ3W+fF6W1T7cpVFQCXT9zhHdesMtpJ1h\nw9DAYMuz7I1PaemWjGZVHNm2U/vZsjumfAEANodtmYx2jo0pCPy2iYuxmKmqbctxHPmr/KQiCmzL\nViqdkeM4PY33fa/nZgdYK9bAAAAAAIgMGhgAAAAAkUEDAwAAACAyWAODoRWGYcu/V/Y8t21yWXg5\nXaZxgWYtoaV90tmgU2mq1apy2Wzb3xcLRRmGFPi+RrZOeA4AREY9zdKUPKu3tSae5ymRXt1Je7XJ\nnPUEMpOLAzYXGhgMLd/zNJWbUnzZYsPA92TminLslYsQC4WiDNNUJp2q3+b5gc6VC7IqrS86S6k0\nGx0k0E4um1Xh8Nc11lBzo6RfS9eZy+WUSLUeAwDYOJUg0HTxJ0oprYJR6mlObv6S/ldm+6r243u+\nflx+t+ka1onnBzo7f07pTGZg1zCgFRoYDLW4Za1IVjEMyUk4cuyVGcee60mm2XwiN03Zjl9PGVtu\nM6TSjKVTmsiMtPxd4PuSIZV8v89VAQCWxONx2Y7Tc9rXWpO+LGsVb6iZJoli2JRYAwMAAAAgMmhg\nAAAAAEQGDQwAAACAyKCBAQAAABAZLOLHhqpHQ67yd47jNEUVL3FdV6E2Ns6xFq/cekG7FwQyZMhr\nWPDue/6G19RKq3jkpUhk3/NVLpUkU/IXPI2TgAkAQy8MpcDzm65hnQzq+gZ0QwODDeV5nt46f1p2\ni0hizw/0P9NZWfFlMcZBoBvHbpTjrExJKRTzsh1HiURyw2quBIGmzrlKJlfuo5gvyDAMpRti9Mvl\nkizblrMytGxDtYpHXopENi1LThBIhqHs3JwyI6PSSOsUMgDAcPArgc6cm9O2Hr8KplwuqVKpqMdg\nNKBvaGCw4ex234FimkqnMyvihz3Pk+MkWs7p9IWR6yluxVvGIlu2I8NQ0++CAcYPL49HXopEtixb\nQeBLhqHSJohxBgBsDlbcahv7v1zg+/LUn+susBqsgQEAAAAQGTQwAAAAACKDBgYAAABAZLAGpkdB\nEKx6TiwWk2n23iN2SuXqpF1iVz+1q911XXl+ILW4H9Yz3aSWHLZy/57nSabkWSv/3tfz3FokCwBg\nS6iG4Yp0Rqk5obFYKEimIS/deW3H/Nyckpv4GhGGobzA6zlRTOpPqthSkqfrrm7tzGZ4LTMIa3nt\nN6z3VSMamB6EYag3p07JTq4uhmPCHtXunbt7Ht8psasd3w/0od0/pUSrRfJ95HmeTr5zUbZlL7vd\n1blyQbaz8gS7nuldvudpKjeluNV835UXaheqglFauf9iUVa7gAEAQOTky2Ut/ss3ZY6PN93emNA4\ne+6cUvG4Rnfu7LitYPqc/NHRjSz3qlSCQGfP+XIXe39tcvHCnKxVvMZYi0oQ6Mx8WfEg1zJNtBU/\n8HXLB3YN/LXMILR7/dTOMN9XjWhgehS34kqssoExqqvvjtsmdkWAbdkta7cqTsvEk/VO74pblpxl\nWY+VwJdMY8Xtklp+YgMAiLaxZHM6o9Sc0DiTzCltWSvGLDeTzG1kmesibpk9J4pJkhXrz8u+uBVv\nmyaKldq9fkJ7rIEBAAAAEBk0MAAAAAAigwYGAAAAQGSwBgabTi2Rozm9pFqtKpu9pGIhL5lSIZ1v\n+r3vuZqrzF1exG/INGvrj8qlUi2FrLxye6ViUaZpyvea1+I0zqlWq03ba0yyWT4+mUh1TZ2rVqua\nn5uTZZgt62pXW6vjyGWzGt+8ATkAgAbVarVlQpok5XM5xQ1TQSXQQrGsxutOO7m5OY1ObNuASvsv\nDMNVpZaFl9PhVpvEtdb0riinxG5VNDBD4t2pab13IaexqXNtx5w5/WPNvf4fkqSwWtX2iW1q9bzz\nLUufvv/zG1WqAt/XmfIZpdKZ+m1zly6p/PWXlLFsyZC8eHOKymIQKBYzNZ3LKRmPa+flBBonCCTD\nkBlv/q/+3syMrFDaMb5N5rLkssY5783MNG2vMcmmcXx+YUG5/XdrYseOjseWy2Zl/+trcsbHW9bV\nrrZWx1GcmVFmZFQa6bwQFQAweLlsVoXDX9dYOrXid9fN5eQ4tmK2rem5uabrTluXLin/K/9b1177\nvg2quH9839Nb/1NSpuG630mhmJdhmD2Pl64uvSvKKbFbFQ3MkPAXJdNKSWay7ZhirqT3V2o/VyqL\nGl9YaPnOwVSpvFFl1lnLEsVs21ZiZEQjjiMZhqxlDcxSwkzJ95WKxevpMkHgtxyfK5VkhdJEJiNr\nWXRh45xcqdS8vYYkm+XjezWaSmkik2lZV7vaWh1HrrQyGhoAsHmNpVcmpEmS4QdKJBzFbVslz2u6\n7rTjlsua36hCB2A1X2vgeW4tYbSPzUGUU2K3ItbAAAAAAIiMNX8C89hjj+n111+XYRh6+OGHdeut\nt65nXQAAAACwwpoamOPHj2tqakqTk5N6++239cgjj2hycnK9awMAAACAJmv6E7Lvf//7+tSnPiVJ\nuvnmm5XP51Xi7/EBAAAAbLA1fQIzOzurn/7pn67/e3x8XLOzs0qn0+tW2GazGCzKLfUe8SdJMcNY\nVSyg67ry/WBV+/D9oKd9LJQLKs7PKT8/237/QVk/ytZ+H1YXNVZ1ZWjl4vR8PKb//u//brrN8zyd\nvVBYsSjd933NeDOKt1isvrBQlmEYSiSagwXKpZJMw1QidSVucn5uTsn5ebl2bVF7bFl612IQSDKU\nzee1EIvLiNV688VKpeX4bD4vW1LMNBWzlm2rYc6K7V3eT+OcxUpF8wsLCs6eValYXHGcjcczPzen\nsFBQPBZrWVe72lodx/Lalte3NKfVuHb3nW0YMk2zZV2t6lv679HuOFrdd8vndKpvMQhUqVaVKxRU\n8fy2x7C8tlCh4rFY2+PIFYsyZTTVVqlWV8zpVNtSpKbjel3v4/p+S2V58bguzLWOUl2+32pYVWVx\nUXEztuL/abt9Lj3uCkO1ek4s1/j/pN1zYvl+G/+ftHpOtKqv8f/w0hzP95RdWOh4HEuPR65YkBe3\nZDvNoRuNcsWivHhc1uXzRLfaqmG1aR/L57R8jrV4Lnaqrd35pF1trY6jaXtt6lvtua5xfLlUWvE4\ntDvXdXouLq+tl/PJ8vuu03G0uu+Wj2/7vGiY0+n+bVdbu7okKV8ua+Hy+X/pfB8a4Yrr29J1LAhW\nXufz+Xk5fkLxWKzn80m2WFTF9WpfL9CjBc+VYZg9zymXS3JdT+Yq3u8ul0taXKzWjsnr7TVQoViQ\nYZhStbfvBljteKmWQpbLqWMqWD6fVy6XW3G767oqlsryVvEaLQgCuanux++6rvzA7zpuyWrGbmVG\nuBSmvQqPPvqo7rzzTn3yk5+UJN1333167LHHdNNNN7Ucf+LEiaurEgAAAMBQuO222zr+fk2fwOza\ntUuzs1feyb948aJ27ty55iIAAAAAoBdrWgOzZ88eHT16VJL05ptv6pprrlEqtfKLmQAAAABgPa3p\nE5iPfvSj+shHPqL9+/crFovp0UcfXe+6AAAAAGCFNa2BAQAAAIBBWNOfkAEAAADAINDAAAAAAIgM\nGhgAAAAAkdHXBmZ2dlY///M/r+PHj/dzt7gsm83qC1/4gn7rt35L9913n/7zP/9z0CUNpcXFRR04\ncED33Xef9u/frx/+8IeDLmkoHTt2TB/72Mf02muvDbqUofTYY49p//79uvfee/XGG28MupyhderU\nKe3du1fPPffcoEsZWgcPHtT+/ft199136+WXXx50OUPJdV09+OCDeuCBB/S5z31Or7766qBLGlqe\n52nv3r168cUXO45bUwrZWj3xxBO64YYb+rlLNHjppZf067/+6/rMZz6j48eP68knn9ShQ4cGXdbQ\n+cd//EclEgn93d/9nU6fPq2HHnpIhw8fHnRZQ+XMmTP627/9W/3cz/3coEsZSsePH9fU1JQmJyf1\n9ttv65FHHtHk5OSgyxo6CwsLevzxx7Vnz55BlzK0jh07ptOnT2tyclK5XE779u3T3r17B13W0PnW\nt76lW2+9Vb/3e7+n6elp/e7v/q7uvPPOQZc1lL7yla9o27ZtXcf1rYH5t3/7N42MjOiDH/xgv3aJ\nZX7nd36n/vP09LR27949uGKG2Gc/+1l95jOfkSRNTExofn5+wBUNn927d+upp57SQw89NOhShtL3\nv/99fepTn5Ik3Xzzzcrn8yqVSkqn0wOubLg4jqOnn35azzzzzKBLGVq33367fuZnfkaSNDo6qoWF\nBYVhKMMwBlzZcPnVX/3V+s/T09O69tprB1jN8HrnnXf07rvv6hOf+ETXsX35E7IgCPSXf/mXevDB\nB/uxO3QwOzur3/zN39TTTz/N4zEg8XhcjuNIkv7mb/5Gv/ZrvzbgioaPbduDLmGozc7OamJiov7v\n8fFxzc7ODrCi4WSaJs+FATNNU8lkUpJ0+PBhfeITn6B5GaD9+/fri1/8oh5++OFBlzKUDh48qAMH\nDvQ0dt0/gTl8+LBeeOEFGYZRfxfhF3/xF3Xvvfcqk8lIkvjqmY3X6nH4wz/8Q+3Zs0cvvPCCvv3t\nb+vAgQP8CdkG6/Q4PPfcc/rRj36kr371q4Muc0vr9Bhgc+CagGH3yiuv6B/+4R+4Jg/Y5OSkTp06\npT/+4z/WSy+9NOhyhsqLL76o22+/Xdddd52k7teFdW9g7r77bt19991Nt91777367ne/q7/6q7/S\nmTNn9MYbb+jJJ5/UzTffvN67x2WtHocf/OAHmp+f19jYmH7pl35JX/ziFwdU3fBo9ThItRfVr776\nqr7yla8oFosNoLLh0e4xwODs2rWr6ROXixcvaufOnQOsCBic73znO3rmmWd06NCh+hu96K//+q//\n0vbt23Xttdfqwx/+sBYXF5XNZps+KcbGeu211/Tee+/pm9/8ps6fPy/HcbR7927dcccdLcf3ZQ3M\n3//939d/fuihh/Qbv/EbNC8D8PLLL+vkyZP67d/+bb311lv1Lhf9dfbsWT3//PN67rnnZFnWoMsZ\nerz733979uzRU089pXvuuUdvvvmmrrnmGqVSqUGXBfRdsVjUE088ob/+67/WyMjIoMsZWv/+7/+u\n6elpPfzww5qdndXCwgLNS599+ctfrv/81FNP6X3ve1/b5kXqcwoZBusP/uAPdODAAb3yyivyS08l\nAwAAAOpJREFUfV9/9md/NuiShtILL7yg+fl5feELX6j/SdOzzz6reJynY7+8/PLL+vM//3NdvHhR\nx44d01/8xV/oyJEjgy5raHz0ox/VRz7yEe3fv1+xWEyPPvrooEsaSq+//rq+9KUvKZvNKhaLaXJy\nUl/72tc0NjY26NKGxje+8Q3lcjk9+OCD9evBwYMHCdnps3vvvVcPP/ywPv/5z8vzPP3pn/7poEtC\nF0bI248AAAAAIqKvX2QJAAAAAFeDBgYAAABAZNDAAAAAAIgMGhgAAAAAkUEDAwAAACAyaGAAAAAA\nRAYNDAAAAIDI+P9YiD/K+sU6WgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "mu = 0\n", + "sigma = 1\n", + "\n", + "# Create two identical models\n", + "m_1 = np.random.normal(mu,sigma,1000)\n", + "m_2 = np.random.normal(mu,sigma,1000)\n", + "\n", + "# Combine them\n", + "m_cm = (m_1 + m_2)/2\n", + "\n", + "# Plot their distribution over 1000 trials\n", + "plt.hist(m_1, bins=50, alpha=0.2);\n", + "plt.hist(m_2, bins=50, alpha=0.2);\n", + "plt.hist(m_cm, bins=50, alpha=0.6);\n", + "plt.legend(['Model 1', 'Model 2', 'Combined Model'])\n", + "plt.title('Histogram of Model Outputs over 1000 Trials')\n", + "\n", + "print \"%-39s %-24s\" % ('---- Mean ----', '---- Variance ----')\n", + "print \"%-15s %-24s %-15s %-15s\" % ('Model 1:', \n", + " np.round(np.mean(m_1),decimals=3), \n", + " 'Model 1:', \n", + " np.round(np.std(m_1)**2,decimals=3))\n", + "print \"%-15s %-24s %-15s %-15s\" % ('Model 2:', \n", + " np.round(np.mean(m_2),decimals=3), \n", + " 'Model 2:', \n", + " np.round(np.std(m_2)**2,decimals=3))\n", + "print \"%-15s %-24s %-15s %-15s\" % ('Combined:', \n", + " np.round(np.mean(m_cm),decimals=3),\n", + " 'Combined:',\n", + " np.round(np.std(m_cm)**2,decimals=3))\n", + "print \"\\nCovariance between models:\", np.cov(m_1, m_2)[1][0]" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "When the identical models are aggreagated, the mean stays the same while the variance of results decreases. How can this be explained? First, let's approach it symbolically:\n", + "\n", + "\n", + "\n", + "Consider two models with the same mean $m$, the same variance $v$, and zero covariance:\n", + "\n", + "$$ models = \\hat{\\theta_1} \\: , \\: \\hat{\\theta_2}$$\n", + "\n", + "$$E[\\hat{\\theta_1}]=E[\\hat{\\theta_2}]=m \\:\\:\\:\\:\\:\\:\\:\\: Var[\\hat{\\theta_1}] = Var[\\hat{\\theta_2}] = v \\:\\:\\:\\:\\:\\:\\:\\: Cov[\\hat{\\theta_2},\\hat{\\theta_2}] = 0$$\n", + "\n", + "When averaged, $\\hat{\\theta_{cm}} = \\frac{\\hat{\\theta_1} + \\hat{\\theta_2}}{2}$, \n", + "\n", + "$$\\hat{\\theta_{cm}} = \\frac{E[\\hat{\\theta_1}]+E[\\hat{\\theta_2}]}{2} = m$$\n", + "\n", + "$$Var[\\hat{\\theta_{cm}}] = \\frac{Var[\\hat{\\theta_{1}}]+Var[\\hat{\\theta_{2}}]+2Cov[\\hat{\\theta_{1}},\\hat{\\theta_{2}}]}{4} = \\frac{v}{2}$$\n", + "\n", + "\n", + "\n", + "*Resulting in the combined model keeping the same mean $m$ as its components but seeing a sublinear reduction in variance.*\n", + "#### Caveats\n", + "\n", + "Should the models being aggregated have a covariance = 1, the variability-reducing effect no longer applies. Instead, the $2Cov[\\hat{\\theta_{1}},\\hat{\\theta_{2}}]$ term becomes equal to 2 and makes variance equal to it's original value $v$.\n", + "\n", + "### Averaging $n$ Models\n", + "\n", + "Let's see what happens to the mean and standard deviation when we increase the number of models being combined:" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAz4AAAH6CAYAAADGLZlTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl4jPf+//HXTHbZQ3aioogthNZeKkJIOV0o6lR/VE9P\nnWrrOKctqmhrqW9LN93PaSlaraq2CKEUraUIYmlDpbVLSCKLJQnJ/P5IzZESkphkJpPn47p6Xea+\n577v9z3zcXVePsttMJlMJgEAAACAHTNauwAAAAAAqGwEHwAAAAB2j+ADAAAAwO4RfAAAAADYPYIP\nAAAAALtH8AEAAABg9wg+AGxWRESEnnrqqau2P/fcc4qIiLBCRRWTmJio6Ojoa+7bt2+fhg0bpri4\nOMXGxmrw4MFKTEyUJI0cOVJxcXHq06ePIiIiFBsbqz59+mjgwIGSpKFDh+qOO+5QXFycunfvrsGD\nB+vbb7+tknuKiIjQhAkTSmzbunWrhg4darFrREdHa8eOHRY73/WcPXtWd999t2JjY5WdnV1i31tv\nvaWIiAgdPHiwxPbU1FQ1bdpUs2fPLte10tLSytR+K3L/SUlJGj58uGJjY9WrVy8NHz5cO3fuLNc5\nrmfcuHF67733rrkvLi5OmZmZFrtW8+bNdeLECYudDwAcrV0AAFzPgQMHdP78edWqVUuSdOnSJe3d\nu1cGg8HKlZVPafU+9thjmjp1qrp27SpJSkhI0OOPP67169fr3XffNb+vadOmmjdvngICAkoc/8wz\nz6hfv36SpJ9//lnPPvusUlNT9eijj1bSnfzPtm3blJycXOJHvC19LyaTqcz1JCcnKycnR99///1V\n+wwGg0JCQrRs2TKNHj3avH358uUKDg6uUG2V8Tn98ssvevTRRzV9+nRz0F67dq0effRRLVy4UA0b\nNrT4Na8UHx9v0fPZUlsCYB/o8QFg09q1a6dVq1aZX//4449q2bJlifd899136tevn3r27KkRI0Yo\nKytLkpSXl6fRo0erd+/eiomJ0YwZM8zHDB06VHPmzNGQIUPUtWtXjRkz5prXz8jI0COPPKI+ffoo\nJiZGc+bMMe+Ljo7W559/rvvvv1933HFHifO/8847uvPOO3Xfffdpy5Yt1zx3Zmam0tPT1apVK/O2\n2NhYLV26VC4uLiXeazKZdKPnTTdr1kyzZ8/Wu+++q7Nnz5bY98orr2jKlCnm12fOnFFUVJTOnj2r\n+fPnKy4uTnFxcRo4cKBSUlKue53LxowZo6lTp15z3+zZs0v0CM2ePVvPP/+8pOLP/oMPPtDgwYPV\nqVMnLViwQO+995769Omjvn376vjx4+bjNm3apHvuuUfdu3fX66+/bt5e2nc+e/ZsTZw4UQMHDtTc\nuXOvquunn37Sfffdp7i4OA0aNEj79u3TyZMn9fTTTys9PV1xcXHmc12pc+fOWrFiRYltK1asUKdO\nncyvs7Ozze2tb9+++vDDD837vvzyS0VHR+vuu+/W0qVLr/qsevfurejoaE2bNu2q77mwsFATJkxQ\n7969FRsbqyeffFLnzp27qsb33ntPDzzwQInexejoaL311lvy8/Mz19yvXz/FxcVp2LBhOnr0qLmG\nyZMn67HHHlOXLl30zDPPaP369erfv7/uuOMOrV+/3nzOkydP6sEHH1R0dLRGjRqlvLw8ScW9gGlp\nadq6dasGDx6sWbNmKS4uTjExMdq+fbskqaCgQFOmTFFsbKx69Oih999/33ze9evXq1evXurbt68+\n/vjjq+4PAG4WwQeATevTp4+WL19ufr18+XL16dPH/Pro0aN69tln9frrr2v16tVq3769Jk6cKEn6\n9NNPlZubq5UrV2rJkiVasmRJiaFD33//vebMmaOEhAT99NNP1xwS9M477ygkJEQrVqzQxx9/rJkz\nZyotLc28f/v27Vq0aJEWL16sefPmKS0tTQcPHtTcuXP11VdfafHixfrll1+ueW9+fn5q2bKlhg4d\nqi+//FLHjh2TJPn7+1f486pfv75CQkKUlJRUYntsbGyJ3ozvv/9eHTt2lMFg0JtvvqnFixcrPj5e\njz32mNatW3fD6xgMBsXGxkpSiWD65/eUJjExUZ9++qmmTZumV199VcHBwVqxYoXCw8O1ePFi8/uS\nk5P19ddfa/Hixfrss8+0f//+637nUvEP6A8//FDDhg0rcc3z589r9OjRmjhxouLj4zVixAiNGTNG\nwcHBmjFjhkJCQhQfHy8fH5+r6g0MDJS/v792794tSTpy5IgcHR0VFBRkfs/MmTPl7e2tlStXasGC\nBfrss8+0Y8cO5eTkaOrUqfrvf/+rb775RqmpqeZjvv76ayUkJGjx4sX67rvvdOTIEX366aclrv3j\njz/q2LFjWrlypRISEhQREaFdu3ZdVeO2bdvUrVu3q7Z36NBBvr6+OnnypCZOnKh33nlH8fHx6tat\n21Wf2/Tp07Vs2TKtXLlSGzZs0OLFi/XYY4+VCHEbN27U7NmztWbNGmVnZ2vRokWSSn7fP//8s6Ki\nohQfH68HHnjA3Hv54Ycf6rffftPy5cu1fPlyJSQkaP369SoqKtKECRP0wgsvaNmyZZKKAx8AWBLB\nB4DNMhgMat++vX799VdlZWUpPz9fu3btUocOHcz/Kv7DDz+offv25mE8gwYN0tq1a2UymfTwww/r\nnXfekSR5enqqUaNG5n/hlorDgLOzs9zc3HTLLbfo5MmTV9Xw/PPPm3su6tWrJ39//xLn6Nu3ryQp\nICBA/v7+Sk1N1fbt29WuXTv5+fnJYDDoL3/5S6n3+NFHH6lXr16aN2+eevbsqX79+mn16tU39bl5\neHgoNze3xLbIyEiZTCbt379fkrR69WrFxcXJxcVFBoNBixYtUkZGhqKjozVixIgyX2vcuHF65ZVX\nVFBQUK4au3fvLqPRqMaNGysvL88coho3bqxTp06Z33f58/Xz89Ptt9+uXbt2Xfc7l6RWrVrJ29v7\nqmsmJSUpODhYrVu3liT16tVLWVlZ5sB5I3FxceYf5cuXL1dcXFyJ/Rs2bNCQIUMkSd7e3urZs6c2\nbtyopKQkNWjQQA0aNJAk3XvvveZj1q1bp/79+8vd3V1Go1EDBgy46vv39fVVSkqKVq9erQsXLugf\n//iHOnfufFV92dnZqlOnTqn1b9y4UR06dFC9evUkSffff7+2bt2qoqIiSVJUVJR8fX3l4+Mjf39/\n8/DLP38nXbt2lY+PjwwGg3r27GkOYVf2VHl4eKh79+6SinsiL8/VWbdunYYMGSJHR0e5urrq7rvv\n1qpVq3To0CEVFBSoY8eO5s/oRj2cAFBezPEBYNMu/7iKj49X7dq11alTJzk4OJj/dTk3N1fbtm0z\n/wg1mUzy9vbWmTNnlJubq+nTp+v333+X0WhUamqq+vfvbz63p6en+c9Go/Ga/8K8e/duzZo1SydP\nnpTRaNTp06dL/CC78hwGg0GFhYXKzs6Wh4eHebuXl1ep9+fh4aFRo0Zp1KhRyszM1OLFizVmzBh9\n8803Cg8Pr8AnJh0/fly1a9e+anuvXr20du1ahYWFaceOHZo5c6YcHR01d+5cvfvuu3rzzTcVERGh\niRMnqnHjxmW6VrNmzXT77bfr448/VlRUVJlrdHd3lyQ5ODhIklxdXc2vr/weLg/Rkoo/6+zsbJlM\nplK/c0nXDD1S8fC+P38Xnp6eZZ6Q37t3b/Xv31/jxo3TypUr9eGHH+qLL74w78/MzCxxbS8vL50+\nffq67SE3N1cfffSRvvjiC5lMJhUVFZW4Z6k4tD7//POaN2+exo4dq+7du2vy5MklzikVB6S0tDRz\nsPmzzMzMEtf28PCQyWQyf26XvxOp+Hu4PK/uz383rvWd/NmVfy8cHBzM4SonJ0fTpk3TrFmzZDKZ\ndPHiRbVq1eqqz6i07xAAbgbBB4DNi4uL0xtvvCE/Pz8NHjy4xL6AgAB16tRJb7zxxlXHPf3002rR\nooV5FaoHHnig3Nd++umn9fDDD2vQoEGSZP5X8Ovx8vIqMcemtB/WaWlpOn78uNq0aSOp+Afl3/72\nN61YsUIHDx6sUPDZvn27CgoKFBkZedW+2NhYTZ06VbfeeqvatWtn/mEbERGhN954Q5cuXdKHH36o\nSZMm6bPPPivzNf/5z3/qvvvuU926dc3b/vxj+Vo/jsviyuOys7Pl4+MjJyenUr/z66ldu7b5R/6V\n56xdu3aJeUWl8fPzU3h4uBYtWiQvL6+rFpqoU6eOsrKyzMPfsrKyVKdOHXl5eZXogbuyPQQEBCg6\nOlp//etfr3vtXr16qVevXsrJydG4ceP0n//8p8RCC5LUvn17rVy5UrfddluJ7V999ZWaNGmiOnXq\nlBgil52dLaPRKF9f3xve+5WunAOVnZ1drpASEBCgRx555KoheSkpKSX+zmRkZLC4AQCLY6gbAJt1\nuWclKipKaWlp+vXXX9WuXbsS+7p06aLExETz8LPdu3dr2rRpkop/PDVt2lRS8TCfw4cPX3NS+PWc\nOXNGzZo1kyQtWbJEeXl5On/+/HWPiYqKUmJios6cOaPCwsKrJrNfdvLkSf3jH//Q3r17zdt2796t\n1NTUqxZwKIvk5GQ999xzGj169FWLI1yuKyMjQ1999ZV5ntSBAwf01FNP6eLFi3J0dFSLFi1kNN74\nfw1X9nr5+/vrwQcf1FtvvVVi26+//iqTyaTMzExt2LChTOf6s+XLl8tkMikjI0OJiYm67bbbrvmd\nl7bIwpUiIyOVkZFhnv+0bNkyBQUFKTQ09IbHXnbXXXdp9uzZuuuuu67ad+edd+rzzz+XVBxuVq9e\nrTvvvFMtWrTQoUOHdOTIEUnF83ou69Gjh7799lvzAgGff/55if1ScXC5PGTTy8tL4eHh1wwFI0eO\n1NKlS0scv3r1as2aNUseHh7q3LmzEhMTzUP7Fi5cqM6dO5fp+77SDz/8oNzcXBUWFuq7777T7bff\nXuZje/TooS+++EJFRUUymUx699139eOPP6p+/fpydHTUtm3bzPdM8AFgafT4ALBZV/7w6dmzZ4nA\ncXmfv7+/XnrpJY0aNUqXLl2Su7u7xo8fL6n4h+D06dP19ttvKyYmRqNGjdKbb76p5s2bX/WjqrQf\nWU899ZQef/xx+fr6atCgQRo0aJAmTJigTz/9tNRzREREaPDgwbr33nvl6+urvn376sCBA1edu3Xr\n1poyZYpeeOEFnT17VkVFRapTp45ef/31q5ZJLq2+V155Re+++64uXLggLy8vjRo1yry89bX06NFD\nixcv1qxZsyQVz9+oW7eu+vbtK2dnZ7m7u2vSpEmSpFmzZik0NNTc23W9eoYPH64vvvjCvL1Pnz5a\nunSpevbsqfDwcPXu3dvc01HWz95gMCgyMlIDBgzQmTNnNHz4cHMvWGnf+fW4ubnp9ddf1wsvvKC8\nvDz5+fnptddeu+FxV+rVq5deeukl9erV66p9o0eP1uTJk9WnTx85ODjo73//u1q0aCFJevbZZzVs\n2DC5u7uX+DxjYmJ08OBB3XvvvTIYDAoLCzOHuMufS48ePTR+/HjFxsbK0dFR9evX18svv3zV9W+9\n9VZ9/PHHevXVV/X222/L2dlZYWFhmjt3rurXry9JmjJlikaOHKnCwkLVrVtXL7300jXv83qho3v3\n7ho1apSOHTumyMhI3XfffTc85rK//vWvOn78uDk4tmjRQsOGDZOjo6NefPFFjRs3Ti4uLurfv7+5\nRxIALMVguonZg8nJyXriiSc0bNiwq7rpt2zZotdee00ODg5q0KBBmf41DgAAAAAqQ4WHul24cEEz\nZsy45soykjRp0iS9+eab+vTTT3X27NnrDnMAAAAAgMpU4eDj4uKi999/v9SlMxcvXqzAwEBJxRNC\nr/VAOAAAAACoChUOPkajUc7OzqXuv7ws5alTp7Rp06ZrPlQNAAAAAKpCpS5ukJGRoZEjR2ry5Mk3\nXO4yMTGxMksBAAAAYAfatm1boeMqLficPXtWf/vb3/Svf/3L/CTmG6noTQDllZiYSHtDlaLNoSrR\n3lCVaG+oSjfTWVJpz/F5+eWXNXz48FIXPwAAAACAqlLhHp+kpCRNmDBBmZmZcnBw0MKFC9W/f3/V\nrVtXXbp00bfffqsjR46Yn+vQr18/3X///ZasHQAAAADKpMLBp1WrVqU+jVwqfpI2AAAAYC0mk0n5\n+fnWLgMV5OLiUqaHI5dVpQ11AwAAAKwpPz+f4FNNVcZ3V6mrugEAAADW5OLiIldXV2uXARtAjw8A\nAAAAu0fwAQAAAGD3CD4AAAAA7B7BBwAAAKgkx48fV0REhPbs2VNi+4ABAzRu3LgyneP8+fOKjo4u\ndf/WrVv15JNPXnPfzp071bRpUyUnJ5e96GuwxH1YG8EHAAAAqERhYWFasWKF+fWJEyeUk5NT5uNN\nJtMNl3Uubf/y5csVFxen+Pj4Ml+vNDd7H9bGqm4AAABAJYqMjNSWLVvMrxMSEtSlSxdduHBBkvTT\nTz/ptddek5OTk4KCgjRt2jTl5+frySefVEFBgdq0aWM+dvv27eb3BgcH66WXXir1ukVFRVq3bp0W\nLFigoUOHasyYMcrKytKgQYOUkJAgSfr666+1f/9+3XPPPRo7dqy8vLzUokULZWZmavr06eW6j2vV\nZjAY9OyzzyotLU15eXkaNWqUunXrpqFDh6pz587asmWLsrKy9N577ykoKOjmP+zrIPgAAACgRvho\n6T5tTDpu0XN2bhWqh/s1v+57nJycFBERod27dysyMlLff/+9RowYoZUrV0qSJk+erDlz5igwMFBT\npkzR0qVLlZeXp8aNG2vs2LGKj4/X8uXLJUlTp07V3Llz5eXlpVdeeUUrVqxQYGDgNa+7adMmRURE\nKDAwUCEhIUpKSlKrVq0UEhKilJQUNWzYUGvWrNGIESP09ttva9SoUerRo4dGjx4tNze3ct/Hn2tb\nuXKlOnXqpC5duuiee+7RsWPH9OSTT6pbt26SJE9PT82ZM0czZ87UqlWr9NBDD1X4eygLgg8AAABQ\nyXr37q34+HgFBATIx8fHHCyys7NlNBrN4aVdu3baunWrJOn222+XJLVv316SlJGRoUOHDmnUqFEy\nmUzKy8uTn59fqcFn2bJliomJkSTFxMRo6dKlatWqlWJiYrR27VrVq1dPBw8eVOvWrZWSkqKoqChJ\nUnR0tDZv3lyu+yitNi8vL+3Zs0eff/65jEajsrOzzedq27atJCkoKEhZWVkV/3DLiOADAACAGuHh\nfs1v2DtTWTp27KiZM2cqJCREPXv2NG83GAwqKioyv7548aKMRqMKCwtlNBZPx7+839nZWYGBgfrk\nk09KnPtyULpSQUGB1q5dq3379mnu3Lm6ePGicnJyNGHCBPXs2VOjR49Wo0aN1KVLF0nF84guX+96\n84lKuw8nJ6dr1vb1118rOztbn332mc6cOaMBAwaY9zk6/i+KmEymUq9pKSxuAAAAAFQyJycnNWvW\nTIsXL1b37t3N2728vGQ0GpWamiqpOMS0bNlSDRo0MK+gdnlejaenpwwGg1JSUiRJ8+fP14EDB655\nvTVr1qhDhw5aunSplixZomXLlik8PFxbtmxRQECADAaDli1bptjYWEnFCxfs3btXkrRhw4YK3cef\na9u/f7/OnDmjunXrSiqeE3Tx4sXyf3gWQvABAAAAqkDv3r0VHBwsDw+PEttffPFFjRkzRg899JAK\nCwt111136e6779auXbs0fPhwHTp0yPzeKVOmaNy4cXrwwQe1Y8cONWjQ4JrXio+PV//+/Utsu/fe\ne82ru0VHR2v79u267bbbJEkjR47UjBkz9Mgjj6hOnTpycHAo9338ubbw8HD16tVLa9eu1UMPPSQ3\nNzcFBQXp7bffvuEqdZXBYKqKfqUySExMNI/zAyob7Q1VjTaHqkR7Q1Wy5faWl5cnSXJ1dbVyJbYv\nKSlJbm5uaty4sT744ANJ0qOPPmq1ekr77m6mvTHHBwAAAKjhnJ2dNX78eLm6usrNzU0zZ860dkkW\nR/ABAAAAarimTZvqyy+/tHYZlYo5PgAAAADsHsEHAAAAgN0j+AAAAACwewQfAAAAAHaPxQ0AAACA\nSnL8+HH16NFDixYtUsuWLc3bBwwYoEaNGmn69Ok3PMf58+fVt29frV279pr7t27dqvnz5+vNN9+8\nat/OnTs1ZMgQLVmyRBERERW/EUkLFizQt99+K2dnZ+Xn5+uf//ynmjRpoqeeekqSlJycrPr166tW\nrVrq16+fHB0d9cYbbygsLExFRUXy8/PTM888Y36gaVUj+AAAAACVKCwsTCtWrDAHnxMnTignJ6fM\nx5tMphs+8LO0/cuXL1dcXJzi4+NvKvgcP35cixYt0ldffSWj0ahDhw7p+eef17x58zRv3jxJ0kMP\nPaRJkyapYcOGkqQlS5YoLi5OzzzzjCRp48aNeuSRR8zhqaoRfAAAAIBKFBkZqS1btphfJyQkqEuX\nLrpw4YIk6aefftJrr70mJycnBQUFadq0acrPz9eTTz6pgoICtWnTxnzs9u3bze8NDg7WSy+9VOp1\ni4qKtG7dOi1YsEBDhw7VmDFjlJWVpUGDBikhIUGS9PXXX2v//v265557NHbsWHl5ealFixbKzMws\n0RuVm5urgoIC5efny83NTbfccos58FxmMplkMplKradz585q166dvvvuO8XFxZXvQ7QAgg8AAABq\nhHm7FmvL0R0WPWeHem00tHX/677HyclJERER2r17tyIjI/X9999rxIgRWrlypSRp8uTJmjNnjgID\nAzVlyhQtXbpUeXl5aty4scaOHav4+HgtX75ckjR16lTNnTtXXl5eeuWVV7RixQoFBgZe87qbNm1S\nRESEAgMDFRISoqSkJLVq1UohISFKSUlRw4YNtWbNGo0YMUJvv/22Ro0apR49emj06NFyc3Mrca6I\niAi1bNlSPXr0ULdu3dS1a1f16tVLDg4O5fq8mjdvroMHD5brGEthcQMAAACgkvXu3Vvx8fFKTU2V\nj4+POVhkZ2fLaDSaw0u7du30888/67ffflNUVJQkqX379pKkjIwMHTp0SKNGjdLQoUO1detWnTp1\nqtRrLlu2TDExMZKkmJgYLV261PzntWvXqqCgQAcPHlTr1q2VkpJivl50dPQ1zzdjxgzNnz9fTZs2\n1X/+8x89/PDD5f4czp07J6PROhGEHh8AAADUCENb979h70xl6dixo2bOnKmQkBD17NnTvN1gMKio\nqMj8+uLFizIajSosLDQHhMv7nZ2dFRgYqE8++aTEubdu3XrV9QoKCrR27Vrt27dPc+fO1cWLF5WT\nk6MJEyaoZ8+eGj16tBo1aqQuXbpIKh6mdvl6pc0XKigoUHh4uMLDw/Xggw+qT58+OnnypIKDg8v8\nOezdu1d9+/Yt8/stiR4fAAAAoJI5OTmpWbNmWrx4sbp3727e7uXlJaPRqNTUVEnFIaZly5Zq0KCB\n9uzZI0nm+UGenp4yGAxKSUmRJM2fP18HDhy45vXWrFmjDh06aOnSpVqyZImWLVum8PBwbdmyRQEB\nATIYDFq2bJliY2MlFS/AsHfvXknShg0brjrfokWLNG7cOPMcnpycHJlMJtWuXfu6933lnJ/169fr\n999/L7VHqbLR4wMAAABUgd69e+vMmTPy8PAosf3FF1/UmDFj5OjoqLCwMN111106d+6cHn/8cQ0f\nPrzE4gZTpkzRuHHj5OzsrICAAA0aNEg7d+686lrx8fEaMGBAiW333nuv4uPj1aFDB0VHR2vevHl6\n9dVXJUkjR47UhAkTNGfOHDVq1Ei5ubklju3fv79+//13DRw4ULVq1VJhYaEmTJhQYnW2a/UUrVy5\nUvv27dPZs2dVp06day65XVUMpustvVCFEhMT1bZtW2uXgRqC9oaqRptDVaK9oSrZcnvLy8uTJLm6\nulq5EtuXlJQkNzc3NW7cWB988IEk6dFHH7VaPaV9dzfT3ujxAQAAAGo4Z2dnjR8/Xq6urnJzc9PM\nmTOtXZLFEXwAAACAGq5p06b68ssvrV1GpWJxAwAAAAB2jx4fAAAA2K38/Hxrl4AKyM/Pl4uLi0XP\nSfABAACAXbL0D2dUHRcXF4IPAAAAUBYGg4EV3WDGHB8AAAAAdo/gAwAAAMDuEXwAAAAA2D2CDwAA\nAAC7R/ABAAAAYPcIPgAAAADsHsEHAAAAgN0j+AAAAACwewQfAAAAAHaP4AMAAADA7hF8AAAAANg9\ngg8AAAAAu0fwAQAAAGD3CD4AAAAA7B7BBwAAAIDdI/gAAAAAsHsEHwAAAAB2j+ADAAAAwO7ZVPAp\nKiqydgkAAAAA7JBNBZ/cgrPWLgEAAACAHbqp4JOcnKyePXtqwYIFV+3btGmT7r//fg0ePFjvvPNO\nmc6Xk0/wAQAAAGB5FQ4+Fy5c0IwZM9S5c+dr7p86dapmz56tzz77TBs3blRKSsoNz5mdl1vRcgAA\nAACgVBUOPi4uLnr//fdVp06dq/YdPXpUPj4+CgwMlMFgULdu3bRly5YbnpMeHwAAAACVocLBx2g0\nytnZ+Zr70tPT5efnZ37t5+enU6dO3fCcOfn0+AAAAACwPMequIjJZCrT+5J/PyD/HM9KrgYolpiY\naO0SUMPQ5lCVaG+oSrQ3VAeVEnwCAgJ0+vRp8+u0tDQFBATc8DgPP0+1bdu2MkoCSkhMTKStoUrR\n5lCVaG+oSrQ3VKWbCdmVspx1aGiozp07pxMnTujSpUtat26dunTpcsPjshnqBgAAAKASVLjHJykp\nSRMmTFBmZqYcHBy0cOFC9e/fX3Xr1lVMTIwmTZqkMWPGSJL69u2r+vXr3/CcLG4AAAAAoDJUOPi0\natVKS5cuLXX/bbfdpoULF5brnDksZw0AAACgElTKULeKYlU3AAAAAJXBpoJPbsE5FRYVWrsMAAAA\nAHbGpoKPVBx+AAAAAMCSbC74MM8HAAAAgKXZXvBhng8AAAAAC7O54MOzfAAAAABYms0Fn5w8nuUD\nAAAAwLJsLvjQ4wMAAADA0mwu+OTk0+MDAAAAwLJsL/iwqhsAAAAAC7Op4GMwGFjVDQAAAIDF2VTw\n8XL2YI7RCAVkAAAgAElEQVQPAAAAAIuzreDj6skcHwAAAAAWZ1vBx8VD5wrO61JRobVLAQAAAGBH\nbCr4eLt4SpJy6fUBAAAAYEE2FXy8/gg+2azsBgAAAMCCbCv4uBYHH1Z2AwAAAGBJthV8XDwkEXwA\nAAAAWJZNBR9vc48Pc3wAAAAAWI5NBZ/LPT7M8QEAAABgSTYVfC6v6kaPDwAAAABLsqngY17VjTk+\nAAAAACzIpoJPLWc3ORiMymWoGwAAAAALsqngYzQY5eniQY8PAAAAAIuyqeAjFc/zYY4PAAAAAEuy\nueDj5eqh8xcv6GLhRWuXAgAAAMBO2F7w+WOBg9z8c1auBAAAAIC9sNngwzwfAAAAAJZic8HH2/Xy\ns3wIPgAAAAAsw+aCj5eLhyQpmyWtAQAAAFiIDQafyz0+rOwGAAAAwDJsOPjQ4wMAAADAMmwu+Jjn\n+DDUDQAAAICF2FzwMc/xoccHAAAAgIXYXPCp5eQmB6MDc3wAAAAAWIzNBR+DwSAvFw+GugEAAACw\nGJsLPpLk7eJJjw8AAAAAi7HJ4OPl4qkLl/JUUHjR2qUAAAAAsAO2GXxcWdIaAAAAgOXYZvD5Y2U3\n5vkAAAAAsASbDD7e5oeYMs8HAAAAwM2zyeBjfpYPPT4AAAAALMAmg4+3Kz0+AAAAACzHJoOP1x9D\n3bJZ3AAAAACABdhm8GFVNwAAAAAWZJvBh1XdAAAAAFiQTQYfN0dXORkdmeMDAAAAwCJsMvgYDAZ5\nuXgyxwcAAACARdhk8JEkL1cPenwAAAAAWITtBh8XT+Vfylf+pQJrlwIAAACgmrPZ4OPtwspuAAAA\nACzDZoPP5ZXdslnZDQAAAMBNst3gY36WD/N8AAAAANwc2w0+DHUDAAAAYCE2G3y8XQk+AAAAACzD\nsaIHTp8+XUlJSTIYDBo/frxatmxp3rdgwQItXbpUDg4OatGihcaNG1fu8zPHBwAAAIClVCj4bNu2\nTYcPH9bChQuVkpKi5557TgsXLpQknT17Vv/973+1Zs0aGQwGjRgxQrt371ZkZGS5rvG/Vd2Y4wMA\nAADg5lRoqNvmzZsVExMjSWrYsKFycnJ07tw5SZKzs7NcXFx09uxZXbp0SXl5efL29i73NS73+DDU\nDQAAAMDNqlDwSU9Pl5+fn/m1r6+v0tPTJRUHnyeeeEIxMTHq0aOH2rRpo/r165f7Gi6OLnJ2cFJO\nHj0+AAAAAG5Ohef4XMlkMpn/fPbsWb3zzjtatWqV3N3d9f/+3//TgQMH1Lhx4xueJzExscRrV4OL\nTudmXLUdsATaFaoabQ5VifaGqkR7Q3VQoeATEBBg7uGRpFOnTsnf31+S9Ntvv6levXrm4W1t27bV\n3r17yxR82rZtW+K1f8ZqHc05oTZt2shgMFSkVOCaEhMTr2pvQGWizaEq0d5QlWhvqEo3E7IrNNSt\nc+fOSkhIkCTt27dPgYGBqlWrliQpNDRUv/32mwoKCiRJe/fuVVhYWIWK83L1UEHhReVfyq/Q8QAA\nAAAgVbDHJyoqSs2bN9fgwYPl4OCgiRMnasmSJfL09FRMTIxGjBihoUOHytHRUVFRUbrtttsqVJzX\nFSu7uTq5VugcAAAAAFDhOT5jxowp8bpJkybmPw8cOFADBw6seFV/MD/LJz9XAR51bvp8AAAAAGqm\nCg11qyrerjzLBwAAAMDNs+ngc3moW3Yez/IBAAAAUHHVIvjwEFMAAAAAN8PGg0/xHJ8cenwAAAAA\n3ASbDj7M8QEAAABgCTYdfMxzfBjqBgAAAOAm2HTwcXF0loujC3N8AAAAANwUmw4+UvE8n5w8hroB\nAAAAqDibDz7eLp7Kyc+VyWSydikAAAAAqimbDz5eLh66WHRJFy7lWbsUAAAAANWU7QcfVnYDAAAA\ncJNsP/hcfogpz/IBAAAAUEE2H3y8LwcfVnYDAAAAUEE2H3y8XDwkSdn0+AAAAACoIJsPPt7M8QEA\nAABwk2w++Jh7fBjqBgAAAKCCbD/40OMDAAAA4CbZfvD5Y3GD7LwcK1cCAAAAoLqy+eDj7OAkb1cv\npZ09be1SAAAAAFRTNh98JCnMO1inzmUo72KetUsBAAAAUA1Vi+BTzytEknQ056SVKwEAAABQHVWL\n4BPmEypJOpp9wsqVAAAAAKiOqkXwqedd3ONzhOADAAAAoAKqRfCp6xUsSTqafdzKlQAAAACojqpF\n8HFzclWAe20dyWaODwAAAIDyqxbBRyoe7padl6OcvFxrlwIAAACgmqlWwUding8AAACA8qs2wSfM\nm5XdAAAAAFRMNQo+fzzLh+ADAAAAoJyqTfAJ8QyUg8HIUDcAAAAA5VZtgo+jg6OCPQN1NPuETCaT\ntcsBAAAAUI1Um+AjFQ93u3ApTxnnz1i7FAAAAADVSLUKPv9b2Y0HmQIAAAAou2oafJjnAwAAAKDs\nqlXwCfNhSWsAAAAA5Vetgk+Ae205OzjR4wMAAACgXKpV8DEajKrnFaLjOakqLCq0djkAAAAAqolq\nFXwkqZ5PiC4VXVLq2dPWLgUAAABANVHtgk8YK7sBAAAAKKdqF3wur+zGAgcAAAAAyqraBh8WOAAA\nAABQVtUu+Pi6esvD2V1Hswg+AAAAAMqm2gUfg8Gget4hSj17WgWXCqxdDgAAAIBqoNoFH0mq5x0s\nk0w6lpNq7VIAAAAAVAPVMviEeYdKYmU3AAAAAGVTTYMPK7sBAAAAKLtqGXzqegdLIvgAAAAAKJtq\nGXw8nN1V282XJa0BAAAAlEm1DD5S8QIHmReydLbgnLVLAQAAAGDjqnHwKZ7ncyz7pJUrAQAAAGDr\nqn3wYWU3AAAAADdSbYPP/5a0Zp4PAAAAgOurtsGnrleQDDLoKEPdAAAAANxAtQ0+zo7OCvLw15Hs\n4zKZTNYuBwAAAIANq7bBR5Lq+YToXMF5ncnLtnYpAAAAAGxYhYPP9OnTNXjwYD3wwAPas2dPiX2p\nqakaMmSIBg4cqMmTJ99sjaUK+2OBAx5kCgAAAOB6KhR8tm3bpsOHD2vhwoWaMmWKpk6dWmL/yy+/\nrBEjRuiLL76Qg4ODUlNTLVLsn5lXdssi+AAAAAAoXYWCz+bNmxUTEyNJatiwoXJycnTuXPGDRE0m\nkxITExUdHS1Jev755xUUFGShcku6vLIbPT4AAAAArqdCwSc9PV1+fn7m176+vkpPT5ckZWZmqlat\nWpo6daqGDBmiWbNmWabSawjy8Jej0ZHgAwAAAOC6HC1xkitXVTOZTDp16pSGDRumkJAQPfroo1q/\nfr26det2w/MkJiaW+9p+jl46nHVM27Zvk9FQrddqQBWrSHsDbgZtDlWJ9oaqRHtDdVCh4BMQEGDu\n4ZGkU6dOyd/fX1Jx709oaKjq1q0rSerYsaMOHjxYpuDTtm3bctey8eJu/Xh4q+o1qa8gz4ByH4+a\nKTExsULtDago2hyqEu0NVYn2hqp0MyG7Ql0knTt3VkJCgiRp3759CgwMVK1atSRJDg4Oqlu3ro4c\nOWLe36BBgwoXeCOXV3Y7wnA3AAAAAKWoUI9PVFSUmjdvrsGDB8vBwUETJ07UkiVL5OnpqZiYGI0f\nP15jx46VyWRS48aNzQsdVIYrg0+7uq0r7ToAAAAAqq8Kz/EZM2ZMiddNmjQx/zksLEyffvppxasq\nh3DfMEnSL6d/rZLrAQAAAKh+qv1qAD5u3mrgU0+/nD6ovIt51i4HAAAAgA2q9sFHkloHN9elokva\ne2q/tUsBAAAAYIPsIvhEBTeXJO08uc/KlQAAAACwRXYRfBrVbiB3JzftPLmvxDOFAAAAAECyk+Dj\nYHRQZFAzpZ/P1PGcVGuXAwAAAMDG2EXwkRjuBgAAAKB0dhN8Wgc1kyTtPLnXypUAAAAAsDV2E3x8\n3LzVwLeefkk/qAssaw0AAADgCnYTfKTi4W6FRYUsaw0AAACgBDsLPi0kSTtPMNwNAAAAwP/YVfBp\n5NdA7s61tDOVZa0BAAAA/I9dBR+j0ahWQc2Ucf6MjuWctHY5AAAAAGyEXQUfSYoKurysNcPdAAAA\nABSzu+DTKvjystY8zwcAAABAMbsLPj6uXmroW1/Jpw/q/MUL1i4HAAAAgA2wu+AjSa2Dm6vQVKS9\naSxrDQAAAMBOg09U8OV5Pgx3AwAAAGCnwedWv1vk4eyunSf3sqw1AAAAAPsMPsXLWjdV5oUsHc0+\nYe1yAAAAAFiZXQYfSYoKbiGJ4W4AAAAA7Dj4tApqKoMMPM8HAAAAgP0GH29XL4X7hWl/egrLWgMA\nAAA1nN0GH6l4dbdCU5H2pCVbuxQAAAAAVmTnweePeT4nGO4GAAAA1GR2HXwa+taXp7O7dqbuY1lr\nAAAAoAaz6+BTvKx1M525kK3DWcetXQ4AAAAAK7Hr4CNJbUNbSpJ+OPyTlSsBAAAAYC12H3zahbaW\nt6uX1vy2UXkX86xdDgAAAAArsPvg4+TgpNhbu+r8xQtad2iLtcsBAAAAYAV2H3wkqWfDO+RkdFT8\ngbUqMhVZuxwAAAAAVaxGBB9vVy/dUb+dUs+e1o4Te6xdDgAAAIAqViOCjyTFNY6WJC0/sNbKlQAA\nAACoajUm+IT5hKplYIT2nTqgQ2eOWrscAAAAAFWoxgQfSbqrcQ9J9PoAAAAANU2NCj6tg5spxDNQ\nG49sV9aFbGuXAwAAAKCK1KjgYzQYFdc4WpeKLinh4AZrlwMAAACgitSo4CNJ3W7pIA9nd61K2aCC\nSwXWLgcAAABAFahxwcfF0VkxDbsoN/+sfji81drlAAAAAKgCNS74SFLvW++Ug8Go+ANrZTKZrF0O\nAAAAgEpWI4OPXy0fdazXVkdzTmpPWrK1ywEAAABQyWpk8JGku5pcXtp6jZUrAQAAAFDZamzwaehX\nXxF1GmrnyX06lnPS2uUAAAAAqEQ1NvhI/+v1iT/wvZUrAQAAAFCZanTwuT2klQLca2vDoS080BQA\nAACwYzU6+BiNRt0dEauCwot6e+snKjIVWbskAAAAAJWgRgcfSYpp2EVRwc2VlPqz4g+stXY5AAAA\nACpBjQ8+BoNBI9s9JG9XLy3Y/bV+P3PU2iUBAAAAsLAaH3wkycfVS4+3e0iFRYV6Y/N/lXcp39ol\nAQAAALAggs8fWgc3112Ne+hEbprm7PjC2uUAAAAAsCCCzxWGRN6tBj71tPb3Tdp8NNHa5QAAAACw\nEILPFZwcnPRUx4fl4uCsD7YtUPq5TGuXBAAAAMACCD5/EuIVpGFR9+vcxQt6c8tHKiwqtHZJAAAA\nAG4SwecaosM7q0PdNkpOT9FXP6+wdjkAAAAAbhLB5xoMBoMevX2Iatfy1Zc/xyv5dIq1SwIAAABw\nEyocfKZPn67BgwfrgQce0J49e675npkzZ2ro0KEVLs6aPJzd9WSH4ZKkN7d8pJy8XCtXBAAAAKCi\nKhR8tm3bpsOHD2vhwoWaMmWKpk6detV7UlJStH37dhkMhpsu0lqa+jfS/c37Kv18pl7d+L4uFV6y\ndkkAAAAAKqBCwWfz5s2KiYmRJDVs2FA5OTk6d+5ciffMmDFD//rXv26+Qiu7r1lvdahXPN/nw8TP\nZDKZrF0SAAAAgHKqUPBJT0+Xn5+f+bWvr6/S09PNr5csWaKOHTsqODj45iu0MqPBqMfb/T818K2n\n73/fpPgDa61dEgAAAIBycrTESa7sBcnOztY333yjjz76SCdOnChXD0liou0+NLS3dxd9kvO1Ptm1\nWOfTchXuXs/aJeEm2XJ7g32izaEq0d5QlWhvqA4qFHwCAgJK9PCcOnVK/v7+kqQtW7YoIyNDQ4YM\nUX5+vo4ePaqXX35ZY8eOveF527ZtW5FyqkzdW+tp8tpZWpa+XtNaP6tQryBrl4QKSkxMtPn2BvtC\nm0NVor2hKtHeUJVuJmRXaKhb586dlZCQIEnat2+fAgMDVatWLUlSbGysli5dqoULF2r27Nlq1qxZ\nmUJPddCodgM9dvtQXbiYpxk/vKOz+edufBAAAAAAq6tQj09UVJSaN2+uwYMHy8HBQRMnTtSSJUvk\n6elpXvTAXt1xSzsdzTmhr39J0GubP9S4rk/I0ehg7bIAAAAAXEeF5/iMGTOmxOsmTZpc9Z7Q0FB9\n8sknFb2EzRrc8i86lpOq7ceTNHfnIo1oO9jaJQEAAAC4jgo/wLQmMxqMeqL9MIV5hyrh4Hqt/HWd\ntUsCAAAAcB0Enwpyc3LVM3eMlJeLhz7a8bkSfl1v7ZIAAAAAlILgcxMC3Gtr4p2j5e3iqf/uWKhv\nk1dbuyQAAAAA10DwuUlhPqF6IXqM/Nx8ND/pK32xd1m5nl0EAAAAoPIRfCwgxCtIL0b/SwHutfXl\nvuWan/QV4QcAAACwIQQfCwnwqKMXo/+tUM8gLd3/nf67Y6GKTEXWLgsAAACACD4W5VfLR5Oj/6n6\n3qFadXCD3ts6X0VFhB8AAADA2gg+Fubt6qVJ3f+phn71te7QZr2x5SNdKiq0dlkAAABAjUbwqQQe\nLu56/s6n1NT/Vm0+mqjpG95Sbv5Za5cFAAAA1FgEn0pSy8lN47s+obYhLbUnbb/Grn5Zh84cs3ZZ\nAAAAQI1E8KlELo7OerrLYxrQPE6nz2Vowpr/04+Ht1m7LAAAAKDGIfhUMqPBqIEt+unpLo/JweCg\nN7d8pE92LVYh834AAACAKkPwqSK3h7bStJ7PKsQzUMv2f6dpG95SDvN+AAAAgCpB8KlCoV5Bmhbz\nrG4LidSetP0at2q6Dp05au2yAAAAALtH8KlitZzd9O8uf9fAFn11+nymJqx5Rd//tkkmk8napQEA\nAAB2i+BjBUaDUQOa36VnuoyUo9FR726bp7d+mqMLF/OsXRoAAABglwg+VnRbaKT+r9d4NfK7RT8e\n3qpnV03Tb5lHrF0WAAAAYHcIPlYW4FFHL/T4t+6O6KXUs6f13Jr/U/yBtQx9AwAAACyI4GMDHI0O\n+murezW+6xNyd3LTnJ2L9H8/vqtcVn0DAAAALILgY0NaBzfTK7ET1DKwiRJP7NHTCVP186lfrV0W\nAAAAUO0RfGyMr5u3nuv6pAa3/Iuy8nL0wrrXND/pKxVcKrB2aQAAAEC1RfCxQUajUfc166PJ3cco\noFZtfZu8Wk+vmqr96SnWLg0AAAColgg+NizCv6Fe6T1BcY26KzX3tCaumam5O79UPr0/AAAAQLkQ\nfGycq6OLhrUZqBeixyjIw1/LD6zR0wlTmPsDAAAAlAPBp5qI8L9Vr8Q+p35NYpR2Ll2Tv5+ljxI/\nVx4PPQUAAABuiOBTjTg7Omto6/56KfrfCvUM0sqD6/SvhCnadjyJ5/4AAAAA10HwqYYa1wnXjNjx\nuqdprDLPn9ErP76naRtm60ROqrVLAwAAAGwSwaeacnZw0pDIe/RK7wmKDGyqpNSf9a+EKZqftEQX\nGP4GAAAAlEDwqebqegXruW5P6N+d/y4/V299m7xKo+Mn64dDWxn+BgAAAPyB4GMHDAaD2tVtrdf6\nTNKA5nfp7MXzeuunjzVp7UwdOnPU2uUBAAAAVkfwsSPOjs4a2KKvXuszSe1CWys5PUXPrpqut7Z8\nrFPnMqxdHgAAAGA1jtYuAJYX4F5b/+7yd+1O/UXzk77SD4e3avPRHep1a1fd16yPvFw8rF0iAAAA\nUKXo8bFjkUFN9XKvcXqyw3D5unkr/sBaPbH8eX318wrlXcq3dnkAAABAlaHHx84ZDUZ1qd9O7etG\naXXKD1r88wot3POtEn5drwHN71L38E5yNDpYu0wAAACgUtHjU0M4OTgprnG03rrrRfVvFqfzFy/o\nw8RP9e+VL2nrsV2sAAcAAAC7RvCpYWo5uWlQy356864X1bPhHUo9e1qvbnxfE9e8qv3pKdYuDwAA\nAKgUBJ8aytfNW3+7bYhm9X5e7UJba3/Gb3p+zat6deP7OpGbZu3yAAAAAItijk8NF+IVpH93+buS\nT6doftJX2npsl7Yf362Yhl00oPld8nH1snaJAAAAwE0j+ECSFOHfUC/1+Le2Ht+lT3d/rVUHN2jD\noZ/U69ZuimvcXX5uPtYuEQAAAKgwgg/MDAaD2teNUtuQSK397Ud9uS9e3yav0vIDa3RH/Xb6S5Oe\nqusdbO0yAQAAgHIj+OAqjkYH9bq1m+5s0Ek/HPpJS/d/p3W/b9a63zerTXAL/SWip5r6N5LBYLB2\nqQAAAECZEHxQKmcHJ/Vo2EXdwzsp8cQefZu8WjtO7tWOk3t1q98t6tskRm1CWsjV0cXapQIAAADX\nRfDBDRkNRt0e2kq3h7bS/vQUfZu8WtuP79brm/8jR6OjmtQJV2RgU0UGNVUDn3oyGlksEAAAALaF\n4INyaVKnoZ7u0lAnclL1/e+btTv1F+07dUD7Th3QZ3u+kYezu1oENlFkYFO1Cmoqf/fa1i4ZAAAA\nIPigYkK8gvTXVvfqr63uVU5ervacStbu1GTtTv1FW47u0JajOyRJt/jU/aO3qLXq+4QyLwgAAABW\nQfDBTfNy9VTnsNvVOex2mUwmnchN0+7UX7Tj5F7tPbVfh7KOadG+5fJ3r63bQ1upXWgrNanTUA5G\nB2uXDgAAgBqC4AOLMhgMCvUKUqhXkPo07q7zFy9o18l92no8STtP7FX8gbWKP7BWni4eigyMUEO/\n+gr3DdMtvvVUy8nN2uUDAADAThF8UKlqObmpU9ht6hR2my4WXtS+U79q2/Fd2n58tzYe2a6NR7ab\n3xvsEaAGfmEK9w1TuG893ep3i1ydXK1YPQAAAOwFwQdVxsnBSa2Dm6l1cDONaDtYp86m67czR4r/\nyzyi388c0aYj27XpjzDkaHRUU/9b1Sa4haJCWijYI4A5QgAAAKgQgg+swmgwKsgzQEGeAeoUdpsk\nyWQyKe1cun4/c0QpmYe1JzVZe9KK/5u760sFevgrKri52gS3UDP/RnJ2dLbyXQAAAKC6IPjAZhgM\nBgV5+CvIw18d67WVWkmZF7K06+TP2nlyr3an/qKVv67Tyl/XydnBSc38G6llYFO1DGyiMJ9QGQ08\nPwgAAADXRvCBTfNz81F0eCdFh3fSpcJLSk5P0c6Te7Xz5D7tSv1Zu1J/liR5unioZUATtQyMUMug\npgrg+UEAAAC4AsEH1Yajg6NaBDZRi8AmGtq6vzIvZGlv2n7tSUvW7rRftOloojYdTZQkBXr4q2Vg\nhCIDI9Q8oLE8XTysXD0AAACsieCDasvPzUddb2mvrre0Nz8/qDgEJWvfqf36LuUHfZfygwwyqIFv\nveLeoMAIRdRpaO3SAQAAUMUIPrALVz4/qHejO1VYVFi8QEJasvae2q/k9BT9duaIvkleJSejo4Jd\n/LXf6ahu9btFjWo3kK+bt7VvAQAAAJWowsFn+vTpSkpKksFg0Pjx49WyZUvzvi1btui1116Tg4OD\nGjRooKlTp1qkWKCsHIwOalwnXI3rhKt/8zjlXcpX8ukU7Un7RXvSknUo65iO/HLS/P7abr66tfYt\nalT7Ft3qd4vCfcN4hhAAAIAdqVDw2bZtmw4fPqyFCxcqJSVFzz33nBYuXGjeP2nSJH3yyScKDAzU\nU089pQ0bNqhr164WKxooL1dHF/MzhCRp49ZN8gzz1cHMQzqYcUi/Zh7ST8d26qdjO83HBLrXUZhP\nqOr7hCrMO1RhPqEKcveX0cjqcQAAANVNhYLP5s2bFRMTI0lq2LChcnJydO7cObm7u0uSFi9eLA+P\n4snkfn5+ysrKslC5gGW4OrgoMqipIoOaSip+hlDG+TM6mHlIv2b8rkNZR3Uo67i2HU/StuNJ5uOc\nHZxUzytE9X1CFe4XpnDf+grzCZWzg5O1bgUAAABlUKHgk56erhYtWphf+/r6Kj093Rx8LoeeU6dO\nadOmTRo9erQFSgUqj8FgUB13P9Vx91OHem0kFYeh7LwcHck+ocNZx3U4+5iOZp3Q4ezjSjlzWGt/\n3yRJcjAYVdc7RA186yncN0zhvmEK8KgjL2cPeocAAABshEUWNzCZTFdty8jI0MiRIzV58mR5e5dt\n4nhiYqIlygHKpDztLUS+CnH0Vcc6LVVYu0gZBWeUmp+htPx0pean63j2SR3OOqZ1v282H2OQQbUc\nXFXL4f+3d+dhUpV3vsC/Z629V7qafRECREAFYhjsEBUYHZ+od/IYHSTCEyfJPDPyTMZJQiTgg8mM\nSFwYww1wo8bksozTkTB6iTcRY+bCmMCIAQHRAUWgZet9q679LPePs1RVL9I03TQcvp/nKc6pOlWn\n3nPqpbq+9TvnrQBCUgAhOeDOlynFKFdLUKJE+MOrVxG+x9GlxP5GlxL7G10J+hR8otEoGhsb3ev1\n9fWoqKhwr3d0dOCb3/wmvvOd72D27Nm9Xu/MmTP70hyiC7Zv375+7W+6oeNMey2Ot3yCky2n0JRs\nRVuqHW2pGFpT7WjINHf7OEmUMCwcdUekG1k0FMMjlRgSLEPEF4YgCP3WRhpc/d3niD4N+xtdSuxv\ndCldTMjuU/CpqqrCunXrcN999+H9999HZWUlgsGgu/xHP/oRHnzwQVRVVfW5YURXEkmUMLrEGgAB\n47qG/YyWQWs6hrZUO1qSbTgbq8OZ9lr3crr9XJfHKKKMsmApygMlKAuWYkiwFGWBEpT4ixBUAggq\nAQQUv3WR/fDJKqtHRERERD3oU/CZPn06pkyZggULFkCSJKxcuRKvvPIKIpEIvvCFL2D79u345JNP\n8PLLL0MQBNx111249957+7vtRFcMVVYRlcsRDZV3WWaaJlqSbTgTs0LQ2VgdmhOtaEq2oDnRiv9u\nOAYTXQ8n7UyAAL/iQ4mvCEMjUQwLV2BoJIqh4SiGRSowJFgGSZQGYvOIiIiILnt9Psfn29/+dsH1\nSZMmufOHDh3qe4uIrjKCIKAsWIKyYAmmVU7uslzTNbSk2tCUaEVzsgWtqXYksykktRQS2RSS2WTB\ntCXZinfPHca7ndYjiRKioXKUBUoQUcMI+0KIqCFEfGF7as0X+cIo9kXgk3081I6IiIg8o18GNyCi\ngQZ0NY0AACAASURBVCNLMipC5ajoplrUk45MHLWxBtR21ONcrB7nOhpQZ0/Pxep7tQ5VUlDsL0Kx\nL4IifwTFvgiK/RFUBK22RMPlGBIs41DeREREdEVg8CHyoLAawoTyECaUj+2yTDN0dGTiiKU7EEvH\nc/P2tD3dgfZ0DG2pGNrSMZxsPQ3N0Hp8rtJAMaLBclSEhyAaKkNFsBzR8BBEQ+UoD5ZB5uF1RERE\ndBlg8CG6ysiihBJ/EUr8Rb26v2maSGoptKdiaEm1oSHejPp4E+rjjWiIN6E+3oSPmk/iaNPxLo8V\nBAHlgVKrQmRXrZxpRagc5YESnndERERElwSDDxF9KkEQ3FHkhkai+GxF1/voho6mZCvqO6ww1JBo\nQn2HPY034UjDMfx3w0ddHicKIsqDpVYYCpajJFCEkBJEWA0i7AvZ8yHruhrkeUdERETUZww+RHTR\nnIETuhu1DrAGaGhMNKMh0WxXiRpRH7fmG+JN+KD+I5j48LzP45NUlASKUeovsqfFKPEXoTRQjLJA\nCYZFoigPlnJYbyIiIuqCwYeIBpwsydbQ2pFot8uzehaNiRa0p2PoyCTQkY4jnk2gIxO3rmcS6Eh3\noM0+3O5o03GYZvdDfPskFcMjlRhRNBTD7R+FHVE0FJXhCg7EQEREdBVj8CGiQadICoZFohjWQzDq\nzDAMtKVjaLV/ELY11YamREvuh2FjtTjReqrL42RRRkD2wS/74Ff88Ms+BGQ//IoPYSXo/mBsebDU\nugRKEVD8PLyOiIjIAxh8iOiKI4oiSgPFKA0UY1zpqC7LDdNAY7zZ/VHY0+21aIg3IpVNI6mlkdRS\naE62IpVNQTeNT30uv+xDeaAUZcFilAZKUNbNpcRfBFHk4XVERESXMwYfIvIcURCtIbXDQzB92NQe\n72eaJjRDQ1JLI5buQHOyFU2JFnfalGxFc6IFTYkWnInV9rgeQRBQ4i9Cmb8EpcESlPmLURYsQWne\nNKWnYZomq0dERESDhMGHiK5agiBAkRQokoIiXxgjiob2eN+MnkVLshXNyVa0JNvQnGxFc8K67tz2\nSdsZfNxS0+M6/tcn1XbVyK4e+a1paaAIYTXsjl4XUoMIKUFWkYiIiPoRgw8RUS+okoLKcAUqw92M\n520zTRMdmXguGCVb0WzPnzxXA91noiXZhiMNH8NE94Mz5AsqAYTsMGQN6x1CRA0h7Mtdt5aFUeyP\noMgXRlAJsKpERETUDQYfIqJ+IggCIr4wIr4wRpeMKFi2b98+zJw5E4D1u0fOwAxOtcgaxc4ayS6e\nSSBuj2YXzyRwtr0OaT3TqzZIooQiNYwiXxhF/jAivgiCsh+qpECVVWsqKVAl1b4o1iAPih8B2W9P\nrcEffJLKEEVERJ7B4ENEdIlJouSOHNdbGT1rh6G4O8x3LB1HR6YDsXQc7ekOtKdj9rQD9fEm1LSd\nuah2CoJgjYAn+eCTVfhkH3yS6s77JTUXmpQAgnZ4CqoBa6oE4Jd9UCQZiqRAFa3QJUsyf2uJiIgu\nOQYfIqIrgCopUO2R7Horq2fRnu5ASksjo2eR0TPI6FmktUze9QxSWhrJrDXaXTKbQlJLIZVNIaml\nkcqmkNIzSGsZtKVjSGsZGOcZCa83ZFGGIslu1UmVFPjceRWqrMInKSjyRVAWKLF/pLbYni9BQPFf\ndBuIiOjqwuBDRORRiqRcUFWpN0zThG7oSOlpZLRsQVhKZJNIZnNTK0ClkTGyyOpZZHRrmjU0ZJzw\nZVi3t6didhjL9ur8J7/sQ2mgGEW+CCK+MIrUkH2YYQgR1TrcsMg+7DCihhBUA6wyERFd5Rh8iIio\n1wRBgCzJCEsyoPb/+p0hxtNOlSkVQ0uqDc2JVrSkrMEinHOjWpNtqOto7FUFShAERFQnFFkhKaD4\nIQoiJEGCJIgQRdG+LkISJfgkFRFfCGHnMWoIYV8IRWoYqjwAG09ERAOKwYeIiC4b+UOMh9XQeStW\nhmkgkU0ilo4jZp/f1JGJu+c6daQ7EMtYy2LpONozHTjbUQfTPH9V6dOokoKgEkBA8SMoB+BXfNZ5\nTrIffsXnnt/kXHyyCr/s7+Y2H/yyH7IoXVR7iIjo/Bh8iIjoiiUKoju097BItFePMUwDiUwSCS0F\nwzSsi2FAN3UY9qF8hmkgqaXsASTs4JSJoyMdd4OUdVhfCs2J1l6PutcTWZTzgpB1yQ9WAcWfu674\n4ZN8UGUFiqjkjdSnuKExqaegGToDFRFRHgYfIiK6qoiCiLDPOmytv+iG7p7TlMgmkdRSSGvWwBHW\nJYVU/nV30Ih03n3SSGtpxNIdqO9oRNbQLqpN//PEFiiSgqAzTLkTnmQ/JNE5vE+CKAiQBKnwML+C\nEFZYqfLLqjVKnx2yVNEOXKLMH90lossagw8REdFFkkTJrTz1F03XkNBSSOYNGpGwp84IfZm8QSPy\np7WNtfCF/Uhk7cEnsim0pNqR1tL91r7uSKJkByG5MBRJshWUxLzAJHWeV6FKcg9hK3dxHiOxmkVE\nF4jBh4iI6DIkSzKKJGt0uguV/4O5+XRDR0pLQzd06PZhfrp7uJ91m3WfTF6lKt3loumaO1pfVteQ\nNZzgpSGjZ6ypYY36156OIWNoyOrZ/tgtLkkQ3eHQew5ShctUSYVfVt2pz/2NKtUeTl2FLEqQRRmy\nJOfmRQmKHeg4OiDRlYvBh4iI6CohiRJCanBQnts0TWTtAORUpjJGFhkt6wYn63emcgErme0avJzf\noHJClvO4eCaBFnuZ3g+/NdUTn/3Dvc6AFc5hgT7ZB0WUoYhyp/CUu02xrzsXRZQhSxIUUYYkShAg\nQhQE+yJCcKYQIItywflcTrCTRAmCIAzY9hJ5CYMPERERDThBENwP7QNNN/TCcKVbASujZ+yh0tPu\nkOlpzbotpaWhGRqyugbN0KAZOrJGbl7Ts0jrWaTyzt9qSjRbFbQBDFrnIwgCVLFwcAtVlHPzkgxZ\ntAKScz6XJFhDt4uiPZy7KMIv+xGQfQgofvdQw4DiQ0D2wyf7CqpfUt68LEgXPUoi0aXC4ENERESe\nItkfzv2K/5I8n6ZrbnDKD0z5IUpzbitYprvz1qiCBkzTtKYw7VEHTRj271vln8dVeJ5Xxj780Kqo\nJTIJZAyrInapQol04n93f36XKAMC3NETnW1yttcwTXdQDStQWWGqIFzZ1TNVVCBLcq6y5sxLil0R\ns0KedVuusiYKQkHwE+3gJ4lWNQ2AWzVzrkOw5n2S6g5Pz8E7rnwMPkREREQXwf1R38uQU/3SC87n\nsoZvd647wS2lpZHUUu4hhslsyh2hUHfCm6m7gc26TUdLWwv8wYAVyuxzv1JaGu2ZDmT1LEwgV2Wy\nRw8U3YsAzT73zFm381yXm0A3IyQqkgxFVKyA5oYtyT68UYYk5m+35AYuURAhi7JbVctV2azKm1/x\nQxUVCILAQxn70eX5v5SIiIiILppTSRlIPQ2mcTGcyleuKpa1zhEzNGi6Zp8vZg2s4VTWCub1XHXN\nMJ3qmQ7dyBvUw7Aqaybsqpg7Md02pPWMNUS9PaJiMptCeyqG2lj9JTvEMT8kWuFJsA9VtA5b7Dw0\nvWQfxugMyOGMqOiENKcaZrr7JS8U2xcAVqCTZKiiDFnqXEmTugS5/Epa7tw22X5eZ94e+t49h02A\nIIgQIbghz6niDQQGHyIiIiK6rAjOh3hRgg/qYDenC2ewDq3gnLBs3mGNOrK6lgtcpuGGLitoWMvd\n6pqWQiqbQjJvPpsf2gzdnc8PKbq9zKnqGfYPMGumAc2+7UqjSApWzfsexpaO7Pd1M/gQEREREV2A\nSzlYx8UwDMMdTTF/CHrN0Nxw6VaQ8i4ArAqaUz3Ts+45as7jrSBmBTLdDlzu4ZOdqm5Odc6p1rnV\nJpgwTeti2Oe1BWQfygLFA7I/GHyIiIiIiDxIFEX4ROu3qgjg8BREREREROR5DD5EREREROR5DD5E\nREREROR5DD5EREREROR5DD5EREREROR5DD5EREREROR5DD5EREREROR5DD5EREREROR5DD5ERERE\nROR5DD5EREREROR5DD5EREREROR5DD5EREREROR5DD5EREREROR5DD5EREREROR5DD5EREREROR5\nDD5EREREROR5DD5EREREROR5DD5EREREROR5DD5EREREROR5DD5EREREROR5DD5EREREROR58mA3\nYDCZpol3PqjD4eNNGDusCJPHlmJYeQiCIAx204iIiIiIqB9dlcHHMEy8/f45VP/uQxw/01awrDis\nYtLoMkweW4rJY8vwmZEl8Puuyt1EREREROQZV9UnesMwsfu9s/jl7z7EyXPtEATgizeMwLwbR+N0\nfQxHalpwpKYZez+oxd4PagEAoihg/IhizJgUxYzJUUwaXQpJ4hGCRERERERXkqsi+OiGiT8cOINf\nvvkhTtXFIArALTNH4r55EzGqMgIAmDE5irvt+ze1Ja0QdLIZR2ta8NGpFnx0qhW/fPNDhPwyrp9Y\ngRmTopg+KYpoaXDwNoyIiIiIiHrF08EnndXx//50Cq/uOoYzDXGIooB5N47CffMmYnhFuMfHlRcH\nUHVdAFXXDQcAJFJZvHesEfuO1mP/kXrsPnQOuw+dAwCMqgxj4uhSlBcHMKTYj/KSAMqL/BhSEkBR\nSHXPFzJNE+msjlg8i1gig1g8g/ZEBolUFgGfjEhQRSSkosie+lWJ5xoREREREfWTPgef1atX4+DB\ngxAEAcuXL8e0adPcZbt378azzz4LSZLwxS9+EQ899FC/NLa3mtqS+L9/PIHX99QglshAEgXcNmsM\n7p33GQwtD13w+oJ+BbOmDsOsqcNgmibONcax70g99h+tx6FjjThV19Ht42RJRFmRD5puIpbIIKsZ\nvX5OWRJRFFJQHPZh2JAQRlSEMXxIGCOjYQyvCKMopF7wdgymRCqL2qYEzjXGcbaxA+ca4wCAUZUR\njB4awZihRSgv9l902NN1AxnNcPe1IACCPSPY1wFA082Lep6+Mk0Tmm5CFAVIIoMtERER0aXSp+Dz\nzjvvoKamBtXV1fj444+xYsUKVFdXu8tXrVqFn//854hGo3jggQdw++23Y/z48f3W6J4cO9WK//PW\nx/jDgTPQdBORoIJ7530GX6oah/LiQL88hyAIGF5hhY+75lyDrKajoSWJprYUGtusaVNrEk3tKTS2\nJtHcnoIiixgzrMiq5gRVREKKW9kJ+hUk01pBFSgWz6A9nkEskcHZxjhOnG3v0o5IUMHwijAqS4MI\nBRWEAwpCfgWh/GlAhigKSGd0pDI60lkd6YyOdEZz58MBBdGyIKJlQVSWBi9qIIesZqC2KY5TdTGc\nru/AmQYr4JxrjKO1I33exwf9MkZXRjB6aBFGD43Ap0hIpLLoSGYRT2aRSGl581lksgYymo5M1kBW\n05HRDBhG7wNN5NcNGFLiR3lxAOXFuemQ4gBCARmGARimCd2w1qvbF8MwkdUMpDM6Mpq1HzNZe//a\n+zWZ1pBIafbUart1PeuGLlEUIEsiFFmEIomQJQGKLEEUBQCm+/yGacI0THsekEQBkaCKcFCxpgHF\nrRhGggp8irUOURQgCkKXeUUWocoiVEWCqkhQZBE+e6oqVqXRCYmsOhIREZFX9OlT7p49ezB//nwA\nwPjx49He3o54PI5QKIRTp06hpKQElZWVAICbb74Z//Vf/zVgwac1lsZ7Hzfi//7xBN4/3gTAOvzs\n7jnjccvMkfCrA3s0nyJLbhAaCKZpork9hbMNcZxpsMKEM3/sVCuO1rT06/MVh1VES60gFC0NIqBK\nkCQRsv3BPH/eMEycbcwFndqmOPROwUMUBVSWBnHNiGIMGxLKXezK2ye1MXxS246aOmv64alWHDnP\nNokCEPAr8KsSVFlCKKBAlUUocu7DuywJEAQBpmnCNJ19CZiwrjc1tyJrKqht6j5Y9hdBAAI+GUGf\njJKID8MrQgioMgzTCk+abhRMM5oOXTfd0GEFFkCSReu6IEDTDTS0JnHy3MC1u6dtEQQ7rEkCZCew\nyaIb4GRJdMOUKktQlFzIcgKWT5HgU2X4VAl+VYLfnvepEgKqjIDf2l8Bn3X71R6+TLsDX+37gYiI\n6GL1KRU0NjZi6tSp7vXS0lI0NjYiFAqhsbERZWVl7rKysjKcOnWqV+v93k/ewthhRRgzrMidhgOK\nuzyr6fj4TBs+rGnB0ZoWHP2kBXXNCXf5jMlR/I854zF9UoVnPiQIgmBXIgKYNmFIwTJdN9ASSyOe\nsqog7iWlIZ60KiWGYcJvf6j0qRJ8iuxeVxUJsXgG9S0J1DUnUN+cQH1LAifOtuOjU60X1M5wQMHE\n0aUYGQ1jZDSCUZVhjIiGES0NQv6UUfBGVUZQdf1w93pWM3C2oQOf1MagGwZCAQVBv1XRCvqtKlbA\nJ1/067tv3z7MnDkTgHUYXlObVaFrakuhqS2JeEqDZB+OJnYzVSTR3Z+qIrr702dXUYJ+q51+VbYr\nOP1PN0zEk/Y5Y4kMOhJZtMczSGd1mKZVmTKcSpFTrbIDVzavWpbR9LzruhUQ7ZAIIC84WqExP6w5\n88m0Bk0rPMywP4h2cAz4rEAECAXbZORtp2k6VTQnoAuQxMLAbr1mUrdTURCQTFtVulTaqtolMxpS\n9nUTpvv65l5rET7V6gOSKEIUrDYIggBBACRBgCBaFbSaU2149/RhuyqYq7o606yWq1xar5Fuh2Fr\nf3au1KmKPS/ntsGvyvD78ubt/+sAoOt21VI3oBsmNN2Arlv70AmsPiV//RJUubBvO8+T39dlSbD7\njFWRNPNeG6fv5P/fcSqP+ZzHZO02OX1L0632anabs5q93DDs2zv17276fP4257Y9V8nt0na73aZh\nQjNMZJzXwX09cv9fBAgQRRRslySKEEXYfU+EouSqus4XAM6XBGbecwJw2+NUeg3dhO5si72tut12\nURSgynn9wOmPigRFlnDuTBxx8XTBa+m8booiuuvM39da3v53tjWTLayqZ7I6NN3Mtdtur5k3dcJ6\n4WtceN15C+9cYRYAd5vz37fy94Xz5ZvsfBEni5DsarYoCoDVLLdv5T9/59e6YJ8buS8ZnMOkRXvG\nuc3pG4bZfX8XBQGS1PnvhujOm52fM6+/mcj1JUFAl/8z1nsL7OXWl2JC3rwoWu91kv0+KDrvf/bt\nor3TnfW7X7A524iuX7BYi4Tca9bpfs7ys80ZlJ1tK2iXlPde2Hl/dH5PcJ42109yHcb5u2Pk/d/N\nvQ/k9des/f6ZzfXVjGbA0Dv9Teq0jZpuFLwXO+/RmayBdFaHYZpd9h3s18qZivZ+FES487mjLVCw\n3aIA9/Vw3gpz/dW5ntt+Afb9nPvb+zzXR3LvOd19bnHa1+W6JBR8aekegZJ33f1/6faV3P9T52/d\nlaZfyiHdvcn1ZllnR2qa8d8nmwtuKwpKiBbLSGYM1LZkkd9/A6qICcP8GDlExbWjA4gWKzDjp7B/\nf++ClteIACIAIn4AfgClPdzRBJAGzDQQBhAuAa4pAXCND4APhlmCjqSBtoSGrGYdcqWbJnQDeR8m\nrFWVRWQMKZIR8on2fwADQBuQbMO5GuBcTd+2xR0rLwmkkkCqfwtbAKzw01mpBJSWdXPnnhgA0oCe\nBpKwLoNFAFAsAOjT6V+ifVHOd8fzMu2+Yn2Qsj48OvNZ3URWsy+6iYw7byCjmchkrdvSWQPprImM\nZk3T2SyaWjPWBwP7D7bzB8h5IxZFq3+mNeeDk91fTaff9m17BAFQJOu5srq13r6LdXurJFrPYf0h\nEiCLAnx+AbIkQRJlCAKg6bD3oY5kSkMsbu1D60PoxbRpcIii9dqZJvr82gwWSQRkyfqD7xySan2Q\nHeSGdfZ21/c4ogHzev1gt4AGQbd/k8XC86oF+x87Lrv3E4X8L4/ghsSgKuKuWaWIBKR+b2+fgk80\nGkVjY6N7vb6+HhUVFe6yhoYGd1ldXR2i0Wiv1vur1XfiVF0MNbXtOHkuhppz7Th5rh3HzqUgiQLG\njSjBpNGlmDSmFJNGl2LYkNAVmTZp8OVXfOjqYJp2kMro9nlvhVUXwzCtwxL9VqUu4LOrJ0rh4Xa6\nbn0LmMkaBed2ud/65p+blXf9xPFjuG7atV0qTap7Xlfft0vTDaQyOlJpe7vs7UvZ2wrA/XbP+vY3\nVw0TRQGaZlU20u43/DrS9vZl8s5dc+bdbc/oyOqG+8fL+fbY+YZXFISCb9OtKgsKzptzznVzKnOK\nJLptld1vrzvdlr8ted9iSkLXbzQlUSyYys6371LuW9D8b76dtgNwK2GqLEKxp7Ikfurr5fQD3TCh\nabnKSa4iqrsVU/fbdqDg22KnPc72Od8OO6+dKAgwTLOgD2Y1p19alw+PHcfwEaO6vGZO5cr5RliW\nRWufSIK9763XQrUrR6pSeNiqc0ixUyXIfdjJtRsorOg4nDkTuQqy04et26z5ztWA/CqaIMCtDnau\nUDlVgM6VC6cq4VQsxG76aedzGp325bfV+eY/v/LSuQpjmp2qjEZh9arz65xbhxOk86qWnSr3ptG5\nulZYrcqvCOr2l06GbkCz21NQlYNTncurOpq518fZB7n9UVg9Mzstr62tQ0U0WlBxdR7TXdWuc5W2\ngFAwsd+/Ct8LnHnn/SO/qqkqVj91/t86X1Lkb0vuCiDLAnyK3O2RANZ5r3Arm4D9BYfdZ/Ord+62\ndqoi5r8ndNl208wLB4UbLjivhfN6GdbUev7C59QL1mu4Ff4ubehUJXeP4NAM9/+Ue0SHZub1k8Jp\nd/3Tmoe7rbn/47n/S8jre057soYBPVtYoferEsZNmIwxQ4vQne6+uO6tPgWfqqoqrFu3Dvfddx/e\nf/99VFZWIhi0vqMfMWIE4vE4zp49i2g0ip07d2LNmjW9Wq+qSBg/sgTjR5YU3N6RyECxS/RERH0h\nCIJ7uBYufHBHlySJCEoigv4Le5zRcQoTOr239QdBEOwPoxIi/FmxQSeKAkQIkCUM6t+skFGHmTPH\nDdrz09Vl3740Zs6cdv47Eg2yPgWf6dOnY8qUKViwYAEkScLKlSvxyiuvIBKJYP78+Xjsscfw7W9/\nGwBw5513YsyYMRfVyHDwyhq6mYiIiIiILi99PsfHCTaOSZMmufOf+9znCoa3JiIiIiIiGkw9D7dF\nRERERETkEQw+RERERETkeQw+RERERETkeQw+RERERETkeQw+RERERETkeQw+RERERETkeQw+RERE\nRETkeQw+RERERETkeQw+RERERETkeQw+RERERETkeQw+RERERETkeQw+RERERETkeQw+RERERETk\neQw+RERERETkeQw+RERERETkeQw+RERERETkeQw+RERERETkeQw+RERERETkeQw+RERERETkeQw+\nRERERETkeQw+RERERETkeQw+RERERETkeQw+RERERETkeQw+RERERETkeQw+RERERETkeQw+RERE\nRETkeQw+RERERETkeQw+RERERETkeQw+RERERETkeQw+RERERETkeQw+RERERETkeQw+RERERETk\neQw+RERERETkeQw+RERERETkeQw+RERERETkeQw+RERERETkeQw+RERERETkeQw+RERERETkeQw+\nRERERETkeQw+RERERETkeQw+RERERETkeQw+RERERETkeQw+RERERETkeQw+RERERETkeQw+RERE\nRETkeQw+RERERETkeQw+RERERETkeQw+RERERETkeQw+RERERETkeQw+RERERETkeQw+RERERETk\neQw+RERERETkeQw+RERERETkeQw+RERERETkeQw+RERERETkeXJfHqRpGpYtW4azZ89CkiSsXr0a\nI0eOLLjPb37zG/ziF7+AJEmYNWsW/vEf/7FfGkxERERERHSh+lTxee2111BcXIyXXnoJf/u3f4s1\na9YULE+lUnjmmWewceNGVFdXY8+ePfj444/7pcFEREREREQXqk/BZ8+ePZg/fz4A4KabbsL+/fsL\nlvv9fmzfvh3BYBAAUFJSgtbW1otsKhERERERUd/0Kfg0NjairKwMACAIAkRRhKZpBfcJh8MAgKNH\nj+Ls2bO44YYbLrKpREREREREfXPec3y2bt2KX/3qVxAEAQBgmiYOHTpUcB/DMLp97MmTJ/Hd734X\na9asgSRJ523Mvn37etNmon7B/kaXGvscXUrsb3Qpsb/RlUAwTdO80Ad9//vfx5133omqqipomoZ5\n8+Zh165dBfepra3FN7/5TTz99NOYPHlyvzWYiIiIiIjoQvXpULeqqiq8/vrrAID/+I//wKxZs7rc\nZ8WKFXjssccYeoiIiIiIaND1qeJjGAZWrFiBmpoa+Hw+/OhHP0JlZSWef/55zJo1C8XFxfjyl7+M\nadOmwTRNCIKABx98ELfeeutAbAMREREREdGn6lPwISIiIiIiupL06VA3IiIiIiKiKwmDDxERERER\neR6DDxERERERed55f8fnUli9ejUOHjwIQRCwfPlyTJs2bbCbRB7z1FNPYf/+/dB1HX/zN3+DadOm\nYenSpTBNExUVFXjqqaegKMpgN5M8JJ1O484778SSJUvwZ3/2Z+xvNKC2b9+OF198EbIs41vf+hYm\nTZrEPkcDIpFI4JFHHkFbWxuy2SyWLFmCCRMmsL9Rvzty5Aj+/u//Hl/72tfw1a9+FbW1td32s+3b\nt2PTpk2QJAn33nsvvvKVr/S4zkGv+LzzzjuoqalBdXU1Hn/8caxatWqwm0Qe8/bbb+PYsWOorq7G\nCy+8gCeeeAJr167FAw88gC1btmD06NHYtm3bYDeTPGbDhg0oKSkBAKxduxaLFi1if6MB0draivXr\n16O6uhrPPfccfv/737PP0YB55ZVXcM0112DTpk1Yu3YtVq1axb+p1O+SySSefPJJVFVVubd1976W\nTCaxYcMGbNy4EZs2bcLGjRvR3t7e43oHPfjs2bMH8+fPBwCMHz8e7e3tiMfjg9wq8pIbb7wRiOdv\nPwAADFBJREFUa9euBQAUFRUhkUjgnXfewdy5cwEAt956K3bv3j2YTSSPOX78OE6cOIGbb74Zpmni\nnXfecYfzZ3+j/rZ7925UVVUhEAhgyJAh+Kd/+ifs3buXfY4GRFlZGVpaWgAAbW1tKCsr499U6nc+\nnw/PPfcchgwZ4t7W3fvawYMHcd111yEUCsHn82HGjBnYv39/j+sd9ODT2NiIsrIy93ppaSkaGxsH\nsUXkNaIoIhAIAAB+9atf4ZZbbkEymXTL8OXl5WhoaBjMJpLHPPXUU1i2bJl7nf2NBtKZM2eQTCbx\nd3/3d3jggQewZ88epFIp9jkaEHfccQdqa2tx2223YfHixXjkkUf4Hkf9ThRFqKpacFvnflZfX4+m\npqaCHFFWVvap/e+yOMcnH39WiAbKm2++iW3btuHFF1/Ebbfd5t7OPkf96dVXX8WNN96I4cOHd7uc\n/Y36m2ma7uFuZ86cweLFiwv6Gfsc9aft27dj6NCheP7553H06FGsWLGiYDn7G10KPfWz8/W/QQ8+\n0Wi0oMJTX1+PioqKQWwRedFbb72F559/Hi+++CLC4TBCoRAymQxUVUVdXR2i0ehgN5E8YteuXTh9\n+jTeeOMN1NXVQVEUBINB9jcaMEOGDMH06dMhiiJGjRqFUCgEWZbZ52hA7N+/H3PmzAEATJo0CXV1\ndQgEAuxvNOA6f3arrKxENBotqPDU1dVh+vTpPa5j0A91q6qqwo4dOwAA77//PiorKxEMBge5VeQl\nHR0dePrpp/HTn/4UkUgEADB79my33+3YscN9Eye6WM8++yy2bt2KX/7yl/jKV76CJUuWYPbs2Xj9\n9dcBsL9R/6uqqsLbb78N0zTR0tKCRCLBPkcDZsyYMThw4AAA6zDLYDCIm266if2NBlx3n92uu+46\nHD58GB0dHYjH43j33Xcxc+bMHtchmJdBTfJf/uVfsHfvXkiShJUrV2LSpEmD3STykJdffhnr1q3D\n2LFjYZomBEHAk08+iRUrViCTyWD48OFYvXo1JEka7KaSx6xbtw4jR47EF77wBXzve99jf6MB8/LL\nL2Pr1q0QBAEPPfQQpk6dyj5HAyKRSGD58uVoamqCrut4+OGHMW7cODzyyCPsb9RvDh48iEcffRTN\nzc2QJAnFxcV48cUXsWzZsi797I033sDPfvYziKKIRYsW4Utf+lKP670sgg8REREREdFAGvRD3YiI\niIiIiAYagw8REREREXkegw8REREREXkegw8REREREXkegw8REREREXkegw8REREREXkegw8R0SA6\nc+YMJk+ejNdee63g9rlz5/bL+idPngzDMPplXT154403MH/+fGzbtq3g9mXLluGWW27pcv+//uu/\nxuLFiy/oOW6++WacPXu2x+V79+7FwoULe72+hoYGLF26FH/5l3+JhQsX4qtf/Sr27NlzQW3qSU/7\n/Dvf+Q7q6+svev0//vGPsW7duoteDxHR1YbBh4hokI0dOxbr1q1DIpFwbxMEoV/W3V/r+TS7du3C\nN77xDdxzzz1dnjsQCBQEioaGBtTV1V3wc/RmOy5kW5csWYIZM2bg1VdfxUsvvYTHHnsMS5cuxalT\npy64bb1tx5o1axCNRi96/URE1DfyYDeAiOhqV1FRgTlz5mD9+vVYunRpwbJXXnkFu3fvxtNPPw0A\nWLRoER566CFIkoSf/vSnqKysxOHDh3H99dfjM5/5DH7/+9+jtbUVL7zwAiorK2GaJjZs2IC3334b\n8XgcTz31FCZMmICjR4/iySefhKZp0DQNK1euxOTJk7Fo0SJ89rOfxQcffIDNmzcXfIjfuXMnNmzY\ngEAggEAggB/+8Ic4cOAAdu3ahf3790OSJNx7770F7f/zP/9zvPrqq5g9ezYA4LXXXsOtt96KQ4cO\nAQCampqwYsUKxONxZLNZfOMb38D8+fPR1NSEhx9+GIZh4Nprr0X+b20/++yz2L9/P9LpNG688cYu\n+2zjxo349a9/7bbz6aefRnFxsbt8z549EEUR999/v3vbxIkT8dvf/haRSASGYeCJJ57A4cOHIYoi\nZs2ahX/4h3/A3r17L2qfz507Fxs3bsSf/vQn7N69G4Zh4MSJExgxYgR+8pOfAAC2bNmC119/HZqm\n4ZprrsEPfvADqKqKZ599Fjt37sSwYcMQCAQwfvz4Pvc3IqKrFSs+RESDTBAEPPjgg9i1axdOnjzZ\n7fLuvPfee1i+fDm2bduGX//61ygtLcWmTZswZcoU7Nixw73fxIkTsXnzZixcuND9gP3d734XP/zh\nD7Fp0yasXLkSy5cvd+8fCoWwZcuWgudNpVJ49NFHsW7dOmzcuBFz5szB2rVrcfvtt2POnDn4+te/\n3iX0AMDs2bNx4MABpFIpAMBvfvMb3HHHHe7ytWvX4vOf/zw2b96MDRs24Ac/+AESiQQ2bdqEG264\nAf/6r/+KL3/5y+4hYq+//jrq6+uxefNmvPzyy6ipqcHOnTsLnvMnP/kJnn/+eWzevBmLFy/uUmH6\n6KOPMHXq1C5tjUQiAIDf/va3OH36NKqrq7Flyxb88Y9/xJ/+9KeL3uf5Dhw4gNWrV+Pf//3fceTI\nERw5cgSHDh3C7373O2zZsgXV1dWIRCLYunUrTp48iddeew3btm3D+vXrUVNT02V9RER0fqz4EBFd\nBhRFwdKlS/H444/jZz/7WUGFoyfjx493P6yXlJRg+vTpAIDKykrEYjH3fjfddBMAYPr06fjFL36B\n5uZmnDhxAitWrHCfJ5FIuPPOevKdPHkSFRUV7qFan//851FdXX3eNsqyjLlz52LHjh2YMmUKysvL\nUVJS4i4/dOiQe25OWVkZhg4diuPHj+Po0aNYsGABAODaa691t/Ptt9/Gu+++i8WLF8M0TcTjcZw+\nfRoTJ05013nvvffi61//Om6//Xb8xV/8BcaOHVvQJkmSPvW8p4MHD7r7TBRFzJw5E++99x6mTJnS\n533e2XXXXQdVVQEAQ4cORWtrKw4fPoxTp06525ZKpaAoCj788ENMmTIFsmz9yf7c5z53vt1ORETd\nYPAhIrpM3Hzzzaiursabb77pVls6V3uy2aw7L0lSwbL86/nBKX8dgiBAVVWoqopNmzZ12w5FUbq9\nPX+dpmn2+pyau+++G8888ww+/vhj3H333QXLOq/DMAyIothlmaZpAABVVfFXf/VXePDBBwset3fv\nXnf+kUcewblz57Bz504sWbIEy5Ytw5w5c9zlEydOxNatW7u088MPP8SoUaO63S7ntr7u8846r8c0\nTaiqirlz5+LRRx8tWLZjxw53nwAY8MEqiIi8ioe6ERENsvwPzMuXL8eaNWuQyWQAAOFwGOfOnQNg\nnQ9z7NixC16/M7jAvn37MHHiRITDYYwcORK7du0CAJw4cQLr16//1HWMGzcOzc3NqK2tBQDs3r0b\nN9xwQ6+e/7Of/SxaWlrw1ltvYd68eQXLrr/+evzhD38AANTV1aGxsRHjxo3D+PHj8e677wKwKjDJ\nZBIAMHPmTLzxxhvQdR0AsH79enzyySfu+mKxGNatW4ehQ4fi/vvvx8KFC93ziRw33ngjwuEwXnjh\nBfe2jz76CA899BDq6upw/fXXY/fu3QCswLV3715cf/31vdpWR+d93hszZszAf/7nf7qDXLz00ks4\nePAgxo8fjw8++ACapiGbzRaEPCIi6j1WfIiIBll+RWDUqFG4/fbb8dxzzwEAqqqq8POf/xwLFizA\nNddcgxkzZpx3HflkWcaxY8fwb//2b2htbXUHSXjyySfx+OOP44UXXoCmafj+97//qevx+XxYtWoV\nHn74YaiqimAwiCeeeKLX23jHHXfg+PHj8Pl8Bbd/61vfwvLly7Fr1y5ks1n88z//MwKBABYvXoyH\nH34YX/va1zBhwgSMGjUKAHDbbbfh4MGDWLBgASRJwpQpUzBq1Cg3kEUiEcTjcdxzzz0oLi6GoihY\ntWpVl/Y899xzWL16Ne666y6UlJTA5/Phxz/+McaOHYsxY8bgwIEDuP/++2GaJm677TZMnz69S+Do\n7T5/5plnPvX+zu1Tp07FwoULsWjRIvj9fkSjUdxzzz3w+XyYN28e7rvvPgwfPhzXXnttr/c7ERHl\nCGZvDiQnIiIiIiK6gvFQNyIiIiIi8jwGHyIiIiIi8jwGHyIiIiIi8jwGHyIiIiIi8jwGHyIiIiIi\n8jwGHyIiIiIi8jwGHyIiIiIi8rz/D74Mnsa1jKCIAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Number of identical models\n", + "n = 100\n", + "\n", + "# Initizalize n models\n", + "models = np.array([np.random.normal(mu,sigma,1000) for _ in range(n)])\n", + "\n", + "combined_models = [np.mean(models[0:i+1], axis=0) for i in range(n)]\n", + "means = np.mean(combined_models,axis=1)\n", + "stds = np.std(combined_models,axis=1)\n", + "\n", + "plt.plot(means);\n", + "plt.plot(stds);\n", + "plt.legend(['Model Avg Mean', 'Model Avg STD']);\n", + "plt.xlabel('Number of Models Combined');\n", + "plt.title('Mean and STD vs. Number of Models Combined');" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As more models are added the mean predicted value is stationary and the prediction variability decreases. \n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Intuition: Perspective\n", + "\n", + "The theory and simulation above demonstrate the benefits of simply averaging uncorrelated models; in both cases, as more models are averaged the mean stays the same but variance decreases sublinearly. Model combination gets its power from the diversity of uncorrelated models ensuring that different features of the problem are represented. But what are these \"features\" that data apparently has? And how do combinations of diverse models help reveal them?\n", + "\n", + "An interesting analogy is to think of a model as a specific \"view\" of the world, having its own perspective and unique insights into the problem at hand. Data can have many \"dimensions\" and rarely will one model encapture every single one; only by approaching it from many \"views\" can we understand its structure.\n", + "\n", + "Consider a 3-dimensional object, such as a cylinder. To fully understand what this object is we require multiple perspectives from distinct viewpoints, as from each viewpoint alone you only see a 2-d projection of the space the cylinder takes up. To illustrate the limitations of attempting to understand a multi-dimensional structure from a single \"view\", imagine looking at a cylinder from a specific viewpoint to the side and trying to decipher what it could be:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAAIJCAYAAACflB2mAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xuc1nPe+PH3NUVoadVKkXUjNQ5ldbKV3ZaV8yl0WqK9\nk3XYVk5pSBvLRm7cKufDhiLKKcSu1hYWk8aPjZWVKGodKkVn5fv7Yz8zt9E0hXRNzfP5eHg86rq+\n13W9r/mMmXn1PUwuy7IsAAAAiIJ8DwAAAFBVCCQAAIBEIAEAACQCCQAAIBFIAAAAiUACAABIBBLA\nGkyePDkKCwtj+PDh+R7lW3n22WfjwAMPjL333jv+8Ic/fG+vc+CBB8Yvf/nLddq2R48esccee3xv\ns3wb8+fPj969e0ezZs2iZcuW+R7nOyksLIyTTz4532Os0ezZs6OwsDCKiorWaftv8rkFsL7UzPcA\nAN+33/zmNzFp0qQYNWpUpT8AZ1kWBxxwQHz66acxadKkaNy4cQwdOjR22223DTjt+pFlWRQVFcXy\n5cvj4osvjsLCwnV63EsvvRRjx46N//f//l/MmzcvcrlcNGjQIPbbb7848cQTY/fdd/9Oc5199tkx\nf/787/Qc66KkpCRmzZoVnTp1Wuu2t99+ezz33HPRuXPn2G+//b732daX0s/ndV3b78uLL74Y9913\nX7z11lvxySefxBdffBHbbrtt7LnnntGlS5c48MADy7atV69eDB06NHbcccc8TgxQOYEEbPK6du0a\nkyZNigcffLDSQHruuefiww8/jKOPPjp++MMfRkTEwQcfvKHGXK/mzZsX8+bNi8MOOyy6d+++1u1X\nrFgRAwYMiHHjxkWjRo3iyCOPjF133TW+/PLL+Ne//hWPPfZY3H///XHmmWdGnz59vvVcrVq1+taP\n/SbGjBkTc+bMWadA+te//hW5XC4GDBgQtWrV2gDTfXcrVqyIwYMHx+WXX57XQLrzzjtjyJAhsdtu\nu0WnTp1ip512iuXLl8eMGTPikUceiYkTJ8a5554bp512WkREbLHFFhvt/1NA9SGQgE3eL37xi9h+\n++3jqaeeigEDBsRWW21V4XZjx46NXC4XXbp02cATrn/Lli2LiP/8QLouLr/88hg3blx06dIlBg4c\nGDVrlv/28Nvf/jb69u0bN9xwQ2y99dbRs2fP9T3yejV16tSoV6/eOm27fPnyiIi1xtHKlStX+7jk\ny7Rp02LlypV5neGzzz6L6667Ln784x/H2LFjY8sttyx3f48ePaJTp05x0003Rbdu3WKbbbbJ06QA\n34xzkIBNXkFBQZxwwgmxdOnSeOKJJyrcZsGCBfG3v/0tdtttt7K9HGs6B2n27NlRVFQUP/vZz2Lv\nvfeO/fffP84777yYMWNG2TY/+9nP4phjjlntdY444ogoLCyMSZMmlbv9iSeeiMLCwnjssccqfS8f\nffRRXHLJJXHAAQfE3nvvHfvtt1+cdtppMWXKlLJtioqK4qCDDopcLhcPP/zwWs/5ePvtt+OBBx6I\n5s2bx6WXXlphBNSuXTuuu+66qF+/fgwdOjQ+++yzCmc7++yzY7/99ot99tknTjjhhHjuuefKbdOj\nR48K93iMHTs2OnfuHD/5yU9i3333jeOOOy5GjhwZWZattu348eOjW7duse+++0aLFi3i9NNPj3/+\n858R8X9rNmPGjLI/r+m9l95f+rErLCwsOz+qf//+UVhYGNOnT4/evXvHPvvsE48//njZY1977bU4\n/fTT46c//Wnsvffe0aFDhygqKorZs2eXe42TTjopmjVrFsuXL4+BAwdG27ZtY999941evXrFhx9+\nGEuXLo1BgwZF+/bto1WrVtGjR4/417/+VeG8pYqKiqJLly6Ry+Wif//+sccee8TLL7+82lr87ne/\nK1uL7t27xxtvvLHac02ZMiV69+4dbdq0iebNm8fBBx8cQ4YMqXB9v+69996LL774Ilq0aLFaHEVE\nbL/99jFs2LC4/fbby0J9Tecgvfjii9G5c+fYZ599Yr/99ovzzjsvPvnkkwpf98svv4w77rgjjj76\n6GjevHm0bNkyunfvvtb/dwDWlUACqoXOnTtHLpeLBx98sML7H3nkkfjiiy+ic+fOlT7PBx98EMcf\nf3w8//zz0a1bt/jjH/8Y3bp1i7///e/RpUuXeOeddyIiYv/994+33347Pv/887LHzps3L955552o\nXbt2uaCJiCguLo6CgoJo3779Gl977ty5ccIJJ8Tjjz8ehx56aFx++eXRu3fvePfdd6Nnz57x/PPP\nR8R/figfNGhQZFkW++23XwwbNixOOumkNT7vww8/HLlcLnr27Bm5XG6N2/3gBz+Ibt26xdKlS+PP\nf/5zufu++OKLOPXUU2ObbbaJfv36xRlnnBFz5syJM844I15//fVy2379Na688soYMGBANGjQIC65\n5JLo379/1K9fPy6//PIYOHBguW3vuOOOOPfcc6NevXoxaNCgOPfcc+Ptt9+O7t27x+uvvx677757\nDB06NLIsi913373S9166bek5ZsOGDYvrr7++bMZcLhdDhw6NevXqxeDBg2PfffeNiP/8MH/SSSfF\nW2+9Fb/+9a/jiiuuiGOOOSaeeuqp6Nq1a3z88cfl3muWZTFgwIBYsWJFXHjhhXH44YfH3//+9ygq\nKopzzjknFi1aFBdccEF07tw5SkpK4rzzzlvjGkT8Z31PPPHEsj9ff/310bhx47L7lyxZEieffHJs\nv/32MWDAgOjZs2dMnTo1+vTpUy44J0yYEKecckrMmzcvfve738Vll10W7dq1i7vvvjt69OgRK1as\nqHSO7bbbLiL+E5offfRRhdu0bNkyWrZsGZtvvvkan+f111+P0047LWbPnh1nnHFGXHjhhVG7du3o\n1atXfPHFF6tt37dv37j22mtjr732issuuyzOPffcyOVyccEFF8TNN99c6cwA6yQDqCZ+85vfZIWF\nhdn06dNXu+/II4/Mmjdvni1YsKDstuLi4qxp06bZsGHDym4766yzspYtW2bvv/9+ucdPmzYt23PP\nPbMzzzwzy7IsGzduXFZYWJj97W9/K9vmiSeeyPbaa6/soosuyrp27Vru8YccckjWqVOnSucfOHBg\nVlhYmD3xxBPlbp8zZ07WvHnz7PDDDy+77YMPPsiaNm2a9e/fv9LnzLIsO+mkk7LCwsLsk08+Weu2\nU6ZMyZo2bZoVFRWV3XbAAQdkhYWF5T5OWZZlL7zwQta0adPs7LPPXu21Sr355ptZ06ZNsz/84Q+r\nvVafPn2ywsLC7M0338yyLMvmzZuX7b333tkpp5xSbrsZM2Zke+yxR9arV6+y25o2bZr16NFjre+n\nopmyLMv69++fNW3aNPvv//7v1bY/9NBDs3322SebPXt2uduffPLJrGnTptmgQYNWe+6vfryyLMuO\nOOKIrLCwMDvvvPPK3X7aaadlhYWFq31+fd1DDz2UFRYWZg8//HC525s2bZoVFhZmDz74YLnbSz93\npkyZkmVZli1fvjxr3759dvzxx2crVqwot+3IkSOzpk2bZiNGjKh0hizLst/97ndZYWFh1qZNm+zy\nyy/Pnnvuuezzzz9f4/YVfV6eddZZWWFhYVZcXFxu2xtuuCFr2rRpduCBB5bdNmHChKxp06bZnXfe\nWW7bL7/8MuvSpUu29957Z/PmzVvr3ACVsQcJqDa6du0aWZbF2LFjy90+derUePvtt+OQQw6JOnXq\nrPHxy5Yti4kTJ0bLli2jTp068fnnn5f917Bhw9h9991j8uTJERHRrl27iIhyhz4VFxdHkyZNok2b\nNvHGG2+UnfvyySefxHvvvRc/+9nPKp3/r3/9a2yzzTZx2GGHlbu9YcOG0bZt25gxY0a8//776/4B\nSebOnRsFBQXxox/9aK3bNmjQoOwxX/f1c7fatm0bP/zhD6O4uHiNz/fkk09GLpeLQw89tNzH8/PP\nP49DDjkksiwre/zTTz8dK1eujKOOOqrcc+yyyy5x3333rfOlo9dV6VxfNWPGjHj33Xdj//33jx12\n2KHcfQcffHBsvfXWMXHixNWe67jjjiv396ZNm0ZErHYRidLDD9d0eNm6qF279mrPW/p6pXu3pkyZ\nEnPnzo2DDz44li1bVu7jfsABB0RBQUHZ53JlrrnmmujVq1esWLEiRo4cGaeeemq0adMmjjvuuLju\nuuti1qxZa32Ol156KerVqxdt2rQpd3u3bt1W23b8+PGRy+XikEMOKTfzokWLomPHjrFy5cp45ZVX\n1vqaAJWpGmebAmwAHTp0iAYNGsSjjz4a5513Xtm5NmPGjIlcLhddu3at9PHvvfderFy5Mp599tlo\n3br1aveXHjq2aNGiqFevXjRp0iRKSkrK7i8uLo4OHTpE69at44svvohXXnkl2rZtGy+99FLkcrmy\nqKrI559/HnPnzo0WLVpUeBjcLrvsEpMmTYr33nsvdtppp3X6eJQqKCio8FyfipRuV1BQ/t/Xttlm\nm6hfv/5q2zdq1CjeeOONWLZsWYUXjHjnnXciy7I1HgaXy+Xi3//+d0T851ypiKjw/e2zzz7rNP83\n1ahRo3J/Lz3P7KuHtJUqKCiIH//4x/HPf/4zVqxYUe6wsq9f1rr0vq/fvtlmm0VEfKcLMOy4446r\nfY5sueWWkWVZWZRPnz49IiKuvfbauPbaa1d7jq9+3CtTs2bNOP/88+PMM8+MSZMmRUlJSUyZMiXe\neuutePPNN+O2226Lvn37ll3F7usWLFgQixYtKgu4r6pbt27Z1SRLzZgxI7IsK3fp8G8zN0BlBBJQ\nbZRerOGGG26IZ555Jg4++OBYvnx5PPnkk7Hrrruu9ZeELl68OCL+c37Rmn7gi/i/q6G1a9cuRo4c\nGcuXL48FCxbEe++9FxdccEHssMMO0bBhw3j55Zejbdu2MXny5Nhyyy0rff0lS5ZERFR4MnzE/12t\nbunSpZW+h4rUr18/ZsyYEf/+97+jYcOGlW774Ycflj3mq2rXrl3pXGsKpMWLF0cul4trr712jXuw\nSs91Kf3hvjQiNoSvv6/SdVjTlRBL3+OSJUvKBdKazsGp7Nycb2tdPj6lH/fevXuvcc/lN7nk+VZb\nbRWHHXZY2d7N+fPnx+OPPx7Dhg2L6667Llq0aFHhJd7XdrXFr9++ePHiKCgoiBEjRqzxfLmvRy3A\nNyWQgGrlhBNOiJtuuinGjh0bBx98cDz11FPx+eefr9Pv9in9YbmgoKDCPUhf1759+xgxYkS88sor\nZYexlf6Q2KJFi7LD7yZPnhxt2rSp9BLSpT+Ql/6A/nWlYbSmUKnMvvvuGy+99FK88MILcfzxx1e6\nbenerq//sLumMCu9fU1hVzpvo0aNolmzZpW+dt26dSMi1ukKa9+X0nUojeWvK32/awqoqqJ27dqR\nZVnUqVNnnT6Xv6m6devGySefHFtttVUMGDAgnn322QoDqTTC1nRBiCVLlsTWW2+92tyNGzcu+3wA\nWN+cgwRUKw0aNIif/exn8cILL8SCBQti3LhxscUWW8Sxxx671sfusssuUbNmzZg6dWqsWrVqtfvn\nz59f7u+tW7eOzTbbLEpKSqK4uDgaN25cdo5Tq1at4h//+Ed88MEHMXPmzLWef7T11lvHdtttV3aI\n0deVHjJVekW2b6JTp06Ry+XizjvvrPCqYaWWLFkSDzzwQNSpU2e1X/a5YMGC+PTTT1d7zAcffBD1\n6tVb496Ixo0bR5ZlFZ43smTJknI/ODdq1CiyLCt7r1/1zDPPbJDLPJceWlfRpbhXrVoVM2fOjEaN\nGn0ve4bWp9133z0iYo3n61S0ll83duzYuOCCCyoN1tK9OWsK6G233Ta23HLLCs+d++ijj1Z77tKP\nf0Vzf/755xX+fwnwTQkkoNrp2rVrrFq1Ku6///4oLi6OQw45ZJ1+iWWtWrXigAMOiE8//TQefvjh\ncve9//778ctf/jIuvfTSctu3aNEiXn311SguLi53EnqrVq1i+fLlZYcKVXb+UalDDz00Pvvss9V+\nl9N7770XxcXF0axZs7KLKHwTO+20U/Tq1StmzJgRF1xwQdmhbF+1ePHi6Nu3b3zyySfRv3//Cg+J\nGjNmTLm/P/vss7Fw4cJK31vpRRDuu+++1fYiDBkyJH7605+W/fD885//PGrWrBmPPPJIuR+ES3//\n0lcv4V5QULDWy1R/G//1X/8VTZs2jRdeeCE++OCDcveNGzcuFi9eHIcccsh6f92vKz1vrKK1WpOv\nHpLWqlWrqFevXkyaNCnefffdctuNHz8+9t9//zX+zrBS06dPj8ceeyyuuuqqCu9ftWpV3HPPPZHL\n5WL//fdf4/O0bt06Pvroo3jttdfK3X7//fevtu1hhx0WWZbFXXfdtdo/FJx//vnRoUOHNe7dA1hX\nDrEDqp0OHTrE9ttvHzfeeGOsWrVqtauvVaZfv34xZcqUuPTSS+Odd96JPffcMz744IMYNWpU1KhR\nY7ULPbRr1y5uuummWLZsWblDmXbfffeoU6dOPPTQQ9GwYcPYZZdd1vraZ555Zvz1r3+NSy65JKZN\nmxaNGzeOf//73zF69OioWbNmXHLJJev+Qfiac845J5YsWRL33ntvvPbaa3HUUUfFrrvuGlmWxdtv\nvx2PPfZYfPrpp1FUVFTh3rYGDRrE+PHjY/bs2bHPPvvEnDlz4p577olatWpFr1691vi6hYWFccop\np8Tdd98d3bp1i65du0bNmjVj4sSJMWHChDjmmGPKLsqw/fbbx1lnnRVDhw6Nnj17RqdOnWLx4sUx\ncuTIKCgoiAsvvLDseRs1ahSvv/56DB8+PBo2bLjWQwe/iUsuuSR69eoVJ598cnTv3j222267mDZt\nWtx3332x8847x29+85v19lprUrpnZuTIkbF06dJo0aJFNG/evNLHfDUoNttssxg0aFCcc8450aNH\nj+jZs2dst912MXXq1HjggQdi1113jV/84heVPl+fPn3i1VdfjYceeqjsc2bHHXeMlStXxuzZs+PJ\nJ5+Md955J44//vjo0KHDGp+nd+/e8fzzz8dvf/vbOOmkk+JHP/pRvPrqq/Hqq6+udhGLAw88MDp2\n7BgTJkyInj17xjHHHBMrV66Mxx9/PF5++eU488wzv9VhpgBfJZCAauerF2to3LhxpRdHKP2FoaV2\n2mmnGDt2bAwfPjyeeOKJuOeee2KbbbaJNm3axJlnnhlNmjQp9/j27dvHddddF7lcbrVzPVq0aBET\nJ06MI488cp3m3nbbbeOBBx6IoUOHxuOPPx5z586t9LW/PntlCgoK4pJLLomjjz46Ro8eHU8++WR8\n8sknUVBQEA0bNoxDDz00evToET/+8Y/XONvNN98cV1xxRVx11VWxfPnyKCwsjPPOO6/CK5R9VVFR\nUTRp0iTuv//+uPLKK+PLL7+MnXfeOfr16xennHJKuW3POOOMaNiwYYwcOTL+8Ic/lJ3XNXz48LLD\nxiIiLrzwwrj00kvjtttuiw4dOqw1kNb14xTxn70v9957bwwbNixuv/32WLJkSdSvXz+6du0aZ5xx\nRrlzZip77m/yml/XsmXLOP7442P8+PFx0003xaBBg8oCaV1fr2PHjjFixIi49dZb47bbbovFixeX\nvY91CY3atWvHqFGj4sEHH4w///nPcc8998SCBQvKLhnfrFmz6NevX/z85z9fbY6vztK6deu44YYb\nYvjw4XHjjTfGlltuGW3bto3bb789zjrrrNUO97v++utjxIgR8cgjj8Rll10WuVwuGjduHFdcccVq\nl1MH+DZy2bpe23UDWrZsWfTv3z/mzZsXK1asiDPOOGOt/5IFQNXXo0ePmDJlSrz55pv5HgUAKlQl\n9yA988wz0axZs+jVq1fMmTMnfv3rXwskgE3A4sWL13hJZwCoCqpkIB1++OFlf54zZ85afy8HAFXb\nK6+8Es8991xMmzZtrefKAEA+VclAKtWtW7f4+OOP4+abb873KAB8BxMmTIgRI0bETjvtFBdddFG+\nxwGANaqS5yB91bRp06Jfv34xbty4SrcrKSnZQBMBAAAbq8ouzhRRRfcgvf7661GvXr1o2LBhFBYW\nxqpVq2L+/Plr/a3Za3uzfL9KSkqsQRVgHaoG65B/1qBqsA5Vg3XIP2tQNazLTpUq+Ytip0yZEn/6\n058iImLu3LmxdOnStcYRAADAd1UlA6l79+4xb968OPHEE+P000+P3//+9/keCQAAqAaq5CF2tWrV\nimuuuSbfYwAAANVMldyDBAAAkA8CCQAAIBFIAAAAiUACAABIBBIAAEAikAAAABKBBAAAkAgkAACA\nRCABAAAkAgkAACARSAAAAIlAAgAASAQSAABAIpAAAAASgQQAAJAIJAAAgEQgAQAAJAIJAAAgEUgA\nAACJQAIAAEgEEgAAQCKQAAAAEoEEAACQCCQAAIBEIAEAACQCCQAAIBFIAAAAiUACAABIBBIAAEAi\nkAAAABKBBAAAkAgkAACARCABAAAkAgkAACARSAAAAIlAAgAASAQSAABAIpAAAAASgQQAAJAIJAAA\ngEQgAQAAJAIJAAAgEUgAAACJQAIAAEgEEgAAQCKQAAAAEoEEAACQCCQAAIBEIAEAACQCCQAAIBFI\nAAAAiUACAABIBBIAAEAikAAAABKBBAAAkAgkAACARCABAAAkAgkAACARSAAAAIlAAgAASAQSAABA\nIpAAAAASgQQAAJAIJAAAgEQgAQAAJAIJAAAgqZnvASozZMiQeOWVV2LVqlVx2mmnRceOHfM9EgAA\nsAmrsoFUXFwc06dPj9GjR8eCBQuiU6dOAgkAAPheVdlAat26dTRv3jwiIrbZZptYunRpZFkWuVwu\nz5MBAACbqiobSAUFBbHllltGRMSYMWOiQ4cO4gjYKGRZFosWLYqFCxfme5RqzRpUDVmW5XsEgG8k\nl1Xxr1wTJkyI2267Le644474wQ9+sMbtSkpKNuBUAGu2aNGiGDu2Vmy+ee18jwJ5tWLF4jjhhOWV\nfv8G2NBatmxZ6f1Vdg9SRMRzzz0Xt95661rjqNTa3izfr5KSEmtQBViH/Fu4cGGMGzcrmjZtlu9R\nqrWZM2fGzjvvnO8xqrWlSxdGxKu+JlUBvjfknzWoGtZlp0qVDaRFixbF1VdfHSNGjIitt9463+MA\nAADVQJUNpPHjx8eCBQuib9++ZRdnGDJkSDRo0CDfowEAAJuoKhtIXbp0iS5duuR7DAAAoBopyPcA\nAAAAVYVAAgAASAQSAABAIpAAAAASgQQAAJAIJAAAgEQgAQAAJAIJAAAgEUgAAACJQAIAAEgEEgAA\nQCKQAAAAEoEEAACQCCQAAIBEIAEAACQCCQAAIBFIAAAAiUACAABIBBIAAEAikAAAABKBBAAAkAgk\nAACARCABAAAkAgkAACARSAAAAIlAAgAASAQSAABAIpAAAAASgQQAAJAIJAAAgEQgAQAAJAIJAAAg\nEUgAAACJQAIAAEgEEgAAQCKQAAAAEoEEAACQCCQAAIBEIAEAACQCCQAAIBFIAAAAiUACAABIBBIA\nAEAikAAAABKBBAAAkAgkAACARCABAAAkAgkAACARSAAAAIlAAgAASAQSAABAIpAAAAASgQQAAJAI\nJAAAgEQgAQAAJAIJAAAgEUgAAACJQAIAAEgEEgAAQCKQAAAAEoEEAACQCCQAAIBEIAEAACQCCQAA\nIBFIAAAASZUOpGnTpkXHjh1j1KhR+R4FAACoBqpsIC1dujSuuuqqaN++fb5HAQAAqokqG0i1atWK\nW265JX70ox/lexQAAKCaqLKBVFBQEJtvvnm+xwAAAKqRmvkeYH0qKSnJ9wjVnjWoGqxDfi1atCgi\n6sbMmTPzPUq1Zw3ya9myz+InP/E1qaqwDvlnDTYOm1QgtWzZMt8jVGslJSXWoAqwDvm3cOHCGDdu\nVuy88875HqVamzlzpjXIs6VLF0bEfF+TqgDfG/LPGlQN6xKpVfYQOwAAgA2tyu5Beu2112LAgAEx\nf/78qFGjRowePTpGjhwZderUyfdoAADAJqrKBtI+++wTjz32WL7HAAAAqhGH2AEAACQCCQAAIBFI\nAAAAiUACAABIBBIAAEAikAAAABKBBAAAkAgkAACARCABAAAkAgkAACARSAAAAIlAAgAASAQSAABA\nIpAAAAASgQQAAJAIJAAAgEQgAQAAJAIJAAAgEUgAAACJQAIAAEgEEgAAQCKQAAAAEoEEAACQCCQA\nAIBEIAEAACQCCQAAIBFIAAAAiUACAABIBBIAAEAikAAAABKBBAAAkAgkAACARCABAAAkAgkAACAR\nSAAAAIlAAgAASAQSAABAIpAAAAASgQQAAJAIJAAAgEQgAQAAJAIJAAAgEUgAAACJQAIAAEgEEgAA\nQCKQAAAAEoEEAACQCCQAAIBEIAEAACQCCQAAIBFIAAAAiUACAABIBBIAAEAikAAAABKBBAAAkAgk\nAACARCABAAAkAgkAACARSAAAAIlAAgAASAQSAABAIpAAAAASgQQAAJAIJAAAgEQgAQAAJDXzPcCa\nDB48OF577bXI5XJx0UUXRbNmzfI9EgAAsIlb6x6kOXPmxIoVK9b5CV9//fUoKir6TkO9/PLLMXPm\nzBg9enRcfvnlccUVV3yn5wMAAFgXaw2kAw88MI499tiYNm3aOj3h7Nmz45FHHvlOQ7344otx0EEH\nRUTEbrvtFp999lksXrz4Oz0nAADA2qzTOUgzZsyILl26xN133/19zxMREXPnzo26deuW/X3bbbeN\nuXPnbpDXBgAAqq91CqS+ffvGLrvsEoMHD47TTz89Pv300+97rnKyLNugrwcAAFRP63SRhl133TXG\njBkTV155Zdx7771xzDHHxFVXXRVt27b9XoaqX79+uT1GH3/8cWy33XZrfVxJScn3Mg/rzhpUDdYh\nvxYtWhQRdWPmzJn5HqXaswb5tWzZZ/GTn/iaVFVYh/yzBhuHdb6K3eabbx4DBw6Mdu3axcUXXxy9\nevWKU089Nc4+++yoUaPGeh2qffv2MXz48OjSpUu88cYbsf3228dWW2211se1bNlyvc7BN1NSUmIN\nqgDrkH/xD+VOAAARIklEQVQLFy6MceNmxc4775zvUaq1mTNnWoM8W7p0YUTM9zWpCvC9If+sQdWw\nLpH6jS/zfdBBB8Vee+0V559/ftx6660xefLkuOaaa2LHHXf8VkNWZN9994299torunXrFjVq1IiB\nAweut+cGAABYk2/1e5AaNmwY99xzTwwbNixuueWWOOaYY+LSSy+NI444Yr0Ndu6556635wIAAFgX\n63SRhgofWFAQZ599dvzpT3+KrbbaKs4///woKiqKJUuWrM/5AAAANphvHUil9ttvv3j00UejQ4cO\n8fDDD8ell166PuYCAADY4NYaSJ06dVrr+UXbbrtt3HzzzdG/f/9YuXLlehsOAABgQ1rrOUiDBw9e\n5yfr2bNntGvXLt54443vNBQAAEA+fKuLNFSmSZMm0aRJk/X9tAAAAN+773wOEgAAwKZCIAEAACQC\nCQAAIBFIAAAAiUACAABIBBIAAEAikAAAABKBBAAAkAgkAACARCABAAAkAgkAACARSAAAAIlAAgAA\nSAQSAABAIpAAAAASgQQAAJAIJAAAgEQgAQAAJAIJAAAgEUgAAACJQAIAAEgEEgAAQCKQAAAAEoEE\nAACQCCQAAIBEIAEAACQCCQAAIBFIAAAAiUACAABIBBIAAEAikAAAABKBBAAAkAgkAACARCABAAAk\nAgkAACARSAAAAIlAAgAASAQSAABAIpAAAAASgQQAAJAIJAAAgEQgAQAAJAIJAAAgEUgAAACJQAIA\nAEgEEgAAQCKQAAAAEoEEAACQCCQAAIBEIAEAACQCCQAAIBFIAAAAiUACAABIBBIAAEAikAAAABKB\nBAAAkAgkAACARCABAAAkAgkAACARSAAAAIlAAgAASKpsIBUXF0e7du1i0qRJ+R4FAACoJqpkIM2a\nNSvuueeeaNWqVb5HAQAAqpEqGUgNGjSI4cOHR+3atfM9CgAAUI1UyUDafPPN8z0CAABQDdXM9wBj\nxoyJsWPHRi6XiyzLIpfLRZ8+faJ9+/bf+LlKSkq+hwn5JqxB1WAd8mvRokURUTdmzpyZ71GqPWuQ\nX8uWfRY/+YmvSVWFdcg/a7BxyHsgde7cOTp37rxenqtly5br5Xn4dkpKSqxBFWAd8m/hwoUxbtys\n2HnnnfM9SrU2c+ZMa5BnS5cujIj5viZVAb435J81qBrWJVKr5CF2X5VlWb5HAAAAqokqGUhPP/10\nHHXUUfHMM8/EZZddFscff3y+RwIAAKqBvB9iV5GOHTtGx44d8z0GAABQzVTJPUgAAAD5IJAAAAAS\ngQQAAJAIJAAAgEQgAQAAJAIJAAAgEUgAAACJQAIAAEgEEgAAQCKQAAAAEoEEAACQCCQAAIBEIAEA\nACQCCQAAIBFIAAAAiUACAABIBBIAAEAikAAAABKBBAAAkAgkAACARCABAAAkAgkAACARSAAAAIlA\nAgAASAQSAABAIpAAAAASgQQAAJAIJAAAgEQgAQAAJAIJAAAgEUgAAACJQAIAAEgEEgAAQCKQAAAA\nEoEEAACQCCQAAIBEIAEAACQCCQAAIBFIAAAAiUACAABIBBIAAEAikAAAABKBBAAAkAgkAACARCAB\nAAAkAgkAACARSAAAAIlAAgAASAQSAABAIpAAAAASgQQAAJAIJAAAgEQgAQAAJAIJAAAgEUgAAACJ\nQAIAAEgEEgAAQCKQAAAAEoEEAACQCCQAAIBEIAEAACQCCQAAIBFIAAAAiUACAABIBBIAAEBSM98D\nVGTVqlVx8cUXx6xZs+LLL7+Mfv36RYsWLfI9FgAAsImrkoH06KOPxhZbbBH33ntvTJ8+PYqKimLM\nmDH5HgsAANjEVclAOvroo+OII46IiIi6devGwoUL8zwRAABQHVTJQKpZs2bUrPmf0e6666448sgj\n8zwRwDezYsXiWLrUP+7k07Jln1mDPFu27PN8jwDwjeWyLMvyOcCYMWNi7NixkcvlIsuyyOVy0adP\nn2jfvn2MGjUqJk6cGDfffHPUqFGj0ucpKSnZQBMDVC7Lsli8eHG+x4AqoXbt2pHL5fI9BkCZli1b\nVnp/3gNpTcaMGRN/+ctf4sYbb4zNNttsrduXlJSs9c3y/bIGVYN1qBqsQ/5Zg6rBOlQN1iH/rEHV\nsC7rUCUPsXv//ffj/vvvj1GjRq1THAEAAKwPVTKQxo4dGwsXLozevXuXHXZ35513lp2XBAAA8H2o\nksVxzjnnxDnnnJPvMQAAgGqmIN8DAAAAVBUCCQAAIBFIAAAAiUACAABIBBIAAEAikAAAABKBBAAA\nkAgkAACARCABAAAkAgkAACARSAAAAIlAAgAASAQSAABAIpAAAAASgQQAAJAIJAAAgEQgAQAAJAIJ\nAAAgEUgAAACJQAIAAEgEEgAAQCKQAAAAEoEEAACQCCQAAIBEIAEAACQCCQAAIBFIAAAAiUACAABI\nBBIAAEAikAAAABKBBAAAkAgkAACARCABAAAkAgkAACARSAAAAIlAAgAASAQSAABAIpAAAAASgQQA\nAJAIJAAAgEQgAQAAJAIJAAAgEUgAAACJQAIAAEgEEgAAQCKQAAAAEoEEAACQCCQAAIBEIAEAACQC\nCQAAIBFIAAAAiUACAABIBBIAAEAikAAAABKBBAAAkAgkAACARCABAAAkAgkAACARSAAAAIlAAgAA\nSAQSAABAIpAAAAASgQQAAJAIJAAAgEQgAQAAJAIJAAAgqZnvASoyf/78uPDCC2P58uWxcuXK6N+/\nfzRv3jzfYwEAAJu4KrkHady4cXHsscfG3XffHeecc05cf/31+R4JAACoBqrkHqSePXuW/XnOnDnR\noEGD/A0DAABUG1UykCIi5s6dG6effnosWbIk7rrrrnyPAwAAVAO5LMuyfA4wZsyYGDt2bORyuciy\nLHK5XPTp0yfat28fERHPPvts3HXXXXHHHXdU+jwlJSUbYlwAAGAj1rJly0rvz3sgVWTy5MnRtGnT\nqFOnTkRE/PSnP42XXnopz1MBAACbuip5kYann346HnnkkYiIeOutt2KHHXbI80QAAEB1UCX3IH36\n6afRv3//WLJkSaxYsSIuvvhil/kGAAC+d1UykAAAAPKhSh5iBwAAkA8CCQAAIBFIAAAAySYVSHPn\nzo02bdrEyy+/nO9RqqX58+dH79694+STT45f/epX8Y9//CPfI1VLq1ativ79+8evfvWr6NatW7zy\nyiv5HqlaKi4ujnbt2sWkSZPyPUq1NHjw4OjWrVt07949pk6dmu9xqq1p06ZFx44dY9SoUfkepdoa\nMmRIdOvWLTp37hxPP/10vseplpYtWxZ9+/aNHj16RNeuXWPixIn5HqnaWr58eXTs2LHsatlrUnMD\nzbNBXH311bHTTjvle4xqa9y4cXHsscfGEUccES+//HJcf/31a/0Fv6x/jz76aGyxxRZx7733xvTp\n06OoqCjGjBmT77GqlVmzZsU999wTrVq1yvco1dLLL78cM2fOjNGjR8c777wTF198cYwePTrfY1U7\nS5cujauuuqrsF7+z4RUXF8f06dNj9OjRsWDBgujUqVN07Ngx32NVO88880w0a9YsevXqFXPmzIlf\n//rX8Ytf/CLfY1VLN954Y/zwhz9c63abTCC99NJLsfXWW0eTJk3yPUq11bNnz7I/z5kzJxo0aJC/\nYaqxo48+Oo444oiIiKhbt24sXLgwzxNVPw0aNIjhw4dHUVFRvkepll588cU46KCDIiJit912i88+\n+ywWL14ctWvXzvNk1UutWrXilltuiVtvvTXfo1RbrVu3Lvs1Kdtss00sXbo0siyLXC6X58mql8MP\nP7zsz3PmzImGDRvmcZrqa8aMGfHuu+9Ghw4d1rrtJnGI3RdffBE33XRT9O3bN9+jVHtz586NE044\nIW655RbrkSc1a9aMWrVqRUTEXXfdFUceeWSeJ6p+Nt9883yPUK3NnTs36tatW/b3bbfdNubOnZvH\niaqngoIC/y/kWUFBQWy55ZYRETFmzJjo0KGDOMqjbt26Rb9+/eKiiy7K9yjV0pAhQ6J///7rtO1G\ntwdpzJgxMXbs2MjlcmX/CrL//vtH9+7d4wc/+EFERPjVTt+/itahT58+0b59+xg7dmw8++yz0b9/\nf4fYfc8qW4dRo0bFP//5z7j55pvzPeYmrbI1oGrwPYHqbsKECfHQQw/5npxno0ePjmnTpsX5558f\n48aNy/c41cojjzwSrVu3jh122CEi1v59YaMLpM6dO0fnzp3L3da9e/d4/vnn409/+lPMmjUrpk6d\nGtdff33stttueZpy01fROkyePDkWLlwYderUiZ///OfRr1+/PE1XfVS0DhH/+aF94sSJceONN0aN\nGjXyMFn1saY1IH/q169fbo/Rxx9/HNttt10eJ4L8ee655+LWW2+NO+64o+wfktmwXn/99ahXr140\nbNgwCgsLY9WqVTF//vxye7r5fk2aNCk++OCD+Mtf/hIffvhh1KpVKxo0aBBt27atcPuNLpAqct99\n95X9uaioKI477jhxlAdPP/10vPnmm3HKKafEW2+9VVbpbFjvv/9+3H///TFq1KjYbLPN8j1OtWfv\nxYbXvn37GD58eHTp0iXeeOON2H777WOrrbbK91iwwS1atCiuvvrqGDFiRGy99db5HqfamjJlSsyZ\nMycuuuiimDt3bixdulQcbWDXXXdd2Z+HDx8ejRo1WmMcRWwigUTVcOaZZ0b//v1jwoQJsWLFihg0\naFC+R6qWxo4dGwsXLozevXuXHfJ15513Rs2a/nffUJ5++ukYOnRofPzxx1FcXBzDhg2LBx98MN9j\nVRv77rtv7LXXXtGtW7eoUaNGDBw4MN8jVUuvvfZaDBgwIObPnx81atSI0aNHx8iRI6NOnTr5Hq3a\nGD9+fCxYsCD69u1b9v1gyJAhLqK0gXXv3j0uuuiiOPHEE2P58uXx+9//Pt8jsRa5zD9vAgAARMQm\nchU7AACA9UEgAQAAJAIJAAAgEUgAAACJQAIAAEgEEgAAQCKQAAAAEoEEwEZt1apV0a1bt9hjjz2i\nuLi4wm2WL18ehxxySDRv3jymTZu2gScEYGMikADYqNWoUSOuvvrqqF27dhQVFcWiRYtW2+Z//ud/\nYtasWXHuuedGYWFhHqYEYGMhkADY6O20004xcODAmDNnTlx66aXl7ps8eXKMHDky2rZtGz179szP\ngABsNAQSAJuEo48+Oo466qh4/PHH46mnnoqIiCVLlkRRUVFss802MXjw4DxPCMDGIJdlWZbvIQBg\nfVi0aFEce+yxsWjRohg3blzccMMN8cADD8T1118fBx98cL7HA2AjIJAA2KS89tprceKJJ8Yuu+wS\nb7/9dhx33HHxxz/+Md9jAbCREEgAbHKuueaauO2226J27drx7LPPRu3atfM9EgAbCecgAbBJWb58\neUycODFq1KgRS5YsifHjx+d7JAA2IgIJgE3K4MGDY/r06fG///u/sfvuu8fgwYPj/fffz/dYAGwk\nBBIAm4y//vWvMXr06DjhhBOiY8eOcdVVV8WKFSuiX79+4YhyANZFjUGDBg3K9xAA8F19/PHHceqp\np0b9+vXjhhtuiM022yy22267+PLLL2PcuHGx2WabRatWrfI9JgBVnIs0ALDRy7IsevbsGVOmTIm7\n7747WrZsWXbfypUro0uXLvH222/H/fffH3vuuWceJwWgqnOIHQAbvdtuuy2Ki4ujZ8+e5eIoIqJm\nzZpx5ZVXRkREv379YsWKFfkYEYCNhEACYKM2derUGDp0aDRp0iT69u1b4TZNmjSJ3/72t/HOO+/E\n1VdfvYEnBGBj4hA7AACAxB4kAACARCABAAAkAgkAACARSAAAAIlAAgAASAQSAABAIpAAAAASgQQA\nAJAIJAAAgOT/A7BsFUyIEMnLAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.fill_between([-1,0,1], -2, 2, facecolor='blue', alpha = 0.4);\n", + "plt.xlim(-4,4);\n", + "plt.ylim(-3,3);\n", + "plt.xlabel(\"X\", fontsize=20);\n", + "plt.ylabel(\"Z\", fontsize=20);\n", + "plt.title('View of Object from the Side', fontsize=20);" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "From this perspective alone we have no information on the object's presence in the $Y$ dimension; our only conclusion can be that the 3-d object is constrained in the $X$ and $Z$ dimensions by [-1,1] and [-2,2]. \n", + "\n", + "Beyond that, we can not tell if the shape is a prism, cylinder, or any number of possible objects that fit those constraints. The \"variability\" of our understanding is high, and can only be diminished by supplementing our current perspective with an additional \"view.\" \n", + "\n", + "Let's add another view by looking at the same object, this time from above instead of from the side:" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false, + "scrolled": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAAIJCAYAAACflB2mAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl4VPWhxvH3zJKE7AuEBAKRNVFZCgkisomCoIBeVBYX\nqrdctdrro+jjghWXqrXLbb1Favdqr6JsVkVRqlRBFIoSEBHZQlgSCJBAAklIMtu5f3CSGhIgQCZn\nknw/z5PnITPnzLwzJ8zMO+d3fscwTdMUAAAAAEAOuwMAAAAAQKigIAEAAACAhYIEAAAAABYKEgAA\nAABYKEgAAAAAYKEgAQAAAICFggQA5+iLL75QZmam5s6da3eUc/Lpp5/qiiuuUJ8+ffTMM88E7X6u\nuOIKXXnllY1advr06brwwguDluVcHDlyRHfccYf69u2rrKwsu+MEzd69e5WZmanZs2fbHQUAbOWy\nOwAA2O2uu+7SypUrNW/evNN+ADZNU6NGjVJJSYlWrlypnj17as6cOerRo0czpm0apmlq1qxZqq6u\n1o9//GNlZmY2ar1//etfWrx4sTZs2KDDhw/LMAylpKRo8ODBuuWWW9SrV6/zynXffffpyJEj53Ub\njZGTk6O9e/dq0qRJZ1z2z3/+s1atWqXJkydr8ODBQc8WDH/729/0/PPPy+VyacWKFWrfvr3dkQAg\nZFGQALR5U6dO1cqVK/Xmm2+etiCtWrVKBw4c0LXXXqv4+HhJ0lVXXdVcMZvU4cOHdfjwYV199dW6\n6aabzri8x+PR448/riVLligtLU0TJkxQ9+7dFQgEtH37dr377rtasGCB7rnnHt17773nnCs7O/uc\n1z0bixYt0v79+xtVkLZv3y7DMPT4448rPDy8GdI1vUWLFikhIUGlpaX6+9//rjvvvNPuSAAQshhi\nB6DNu/zyy9WxY0ctW7ZMx48fP+VyixcvlmEYmjJlSjOmC46qqipJUkRERKOWf/bZZ7VkyRJNmTJF\ny5Yt08yZM3Xddddp0qRJeuSRR/SPf/xDw4YN029/+1u98sorQUzeNDZt2tToZaurqyXpjOXI5/Od\nV6ZgWbdunXJzc3XLLbcoOTlZixcvtjsSAIQ0ChKANs/hcOjGG29UZWWlli5d2uAypaWl+uSTT9Sj\nR4/avRynOgZp3759mjVrloYPH64+ffpo2LBhevDBB5WXl1e7zPDhw3XdddfVu5/x48crMzNTK1eu\nrHP50qVLlZmZqXffffe0j+XgwYOaPXu2Ro0apT59+mjw4MG68847tW7dutplZs2apdGjR8swDL31\n1lvKzMzUrFmzTnmbO3bs0MKFC9WvXz89/fTTcrnqDz6IiorSCy+8oOTkZM2ZM0fHjh1rMNt9992n\nwYMHq3///rrxxhu1atWqOstMnz69weF+ixcv1uTJk/W9731PAwYM0PXXX6/XXntNpmnWW/b999/X\ntGnTNGDAAA0cOFA//OEP9e2330r69zbLy8ur/fepHnvN9TXPXWZmZu3xUY8++qgyMzOVm5urO+64\nQ/3799d7771Xu+7GjRv1wx/+UJdeeqn69OmjkSNHatasWdq3b1+d+7j11lvVt29fVVdX64knntCQ\nIUM0YMAAzZgxQwcOHFBlZaWeeuopDR06VNnZ2Zo+fbq2b9/eYN5TWbBggQzD0NVXX62xY8cqPz9f\na9asOe0669at080336wBAwYoKytLd999t/bu3VtvuZUrV+q2227ToEGD1LdvX40ePVo//elPVVpa\nKkkqLy9X3759NXHixAbvp+bv76WXXqq9bMuWLbr33ns1ZMgQ9enTR6NGjdKTTz6pQ4cOndXjBoBz\nRUECAEmTJ0+WYRh68803G7z+7bffltfr1eTJk097OwUFBbrhhhv02Wefadq0afrpT3+qadOm6fPP\nP9eUKVO0c+dOSdKwYcO0Y8cOlZWV1a57+PBh7dy5U1FRUXUKjSStXbtWDodDQ4cOPeV9FxcX68Yb\nb9R7772ncePG6dlnn9Udd9yhXbt26fbbb9dnn30m6cSH8qeeekqmaWrw4MF68cUXdeutt57ydt96\n6y0ZhqHbb79dhmGccrno6GhNmzZNlZWV+sc//lHnOq/Xq//6r/9SbGysHn74Yd19993av3+/7r77\nbn3zzTd1lj35Pn72s5/p8ccfV0pKimbPnq1HH31UycnJevbZZ/XEE0/UWfYvf/mLHnjgASUlJemp\np57SAw88oB07duimm27SN998o169emnOnDkyTVO9evU67WOvWbbmGLMXX3xRv/nNb2ozGoahOXPm\nKCkpSc8//7wGDBggSVqzZo1uvfVWbdu2Tf/5n/+p5557Ttddd52WLVumqVOn1vmgbxiGTNPU448/\nLo/Ho0ceeUTXXHONPv/8c82aNUszZ85UeXm5HnroIU2ePFk5OTl68MEHT7kNTnb06FF9+OGHuuii\ni9SjRw9NnDhRpmlq0aJFp1xn586deuCBBzRo0CA9+eSTuv766/Xpp5/q9ttvr93zKJ0orXfddZeO\nHDmiu+++W88884wuv/xyzZs3T7feequqq6sVHR2tyy+/XLm5udq1a1e9+1q2bJkMw6j9smD9+vWa\nNm2aduzYoTvuuEPPPfecxo0bpyVLlmjatGkqKSlp9GMHgHNmAgBM0zTNu+66y8zMzDRzc3PrXTdh\nwgSzX79+Zmlpae1la9euNTMyMswXX3yx9rIf/ehHZlZWlpmfn19n/a1bt5oXXXSRec8995imaZpL\nliwxMzMzzU8++aR2maVLl5oXX3yx+dhjj5lTp06ts/7YsWPNSZMmnTb/E088YWZmZppLly6tc/n+\n/fvNfv36mddcc03tZQUFBWZGRob56KOPnvY2TdM0b731VjMzM9MsKio647Lr1q0zMzIyzFmzZtVe\nNmrUKDMzM7PO82Saprl69WozIyPDvO++++rdV40tW7aYGRkZ5jPPPFPvvu69914zMzPT3LJli2ma\npnn48GGzT58+5m233VZnuby8PPPCCy80Z8yYUXtZRkaGOX369DM+noYymaZpPvroo2ZGRob5gx/8\noN7y48aNM/v372/u27evzuUffPCBmZGRYT711FP1bvu7z5dpmub48ePNzMxM88EHH6xz+Z133mlm\nZmbW+/s6lZdfftnMyMgwX3nllTr5+vbta5aUlNRZds+ePWZGRoaZmZlprlu3rs51v/rVr8zMzExz\nwYIFpmmaZmVlpZmdnW2OGDHCrKioqLPsH/7wBzMjI8N8+eWX6zzu3//+93WWKysrM/v06WPedNNN\ntZdNmDDBHD16tFlWVlZn2eXLl5sZGRnmz372s0Y9bgA4H+xBAgDL1KlTZZpmvWM0Nm3apB07dmjs\n2LGKi4s75fpVVVVasWKFsrKyFBcXp7Kystqf1NRU9erVS1988YUk6bLLLpMkffnll7Xrr127Vr17\n99Yll1yizZs31x77UlRUpN27d2v48OGnzf/Pf/5TsbGxuvrqq+tcnpqaqiFDhigvL0/5+fmNf0Is\nxcXFcjgcjZr5LCUlpXadk5187NaQIUMUHx+vtWvXnvL2PvjgAxmGoXHjxtV5PsvKyjR27FiZplm7\n/kcffSSfz1dvOFe3bt30xhtvnHYY4bmoyfVdeXl52rVrl4YNG6ZOnTrVue6qq65STEyMVqxYUe+2\nrr/++jq/Z2RkSFK9SSRqhh8WFRU1KuPChQvlcrk0YcKE2suuu+46eb1evf322w2u071793qTlVx9\n9dV1nus1a9aorKxM48ePV2RkZJ1lb7jhBknSJ598IkkaNWqUoqKi6u1V/Oijj+T1enXttddKOrHn\naseOHRo5cqRM06yzrbOzsxUTE1P7/wcAgolZ7ADAMnLkSKWkpOidd97Rgw8+WHuszaJFi2QYhqZO\nnXra9Xfv3i2fz6dPP/1UgwYNqnd9zdCx8vJyJSUlqXfv3srJyam9fu3atRo5cqQGDRokr9er9evX\na8iQIfrXv/4lwzBqS1VDysrKVFxcrIEDBzY4DK5bt25auXKldu/erS5dujTq+ajhcDgaPNanITXL\nORx1v3+LjY1VcnJyveXT0tK0efNmVVVVNThhxM6dO2Wa5imHwRmGocLCQkknjpWS1ODj69+/f6Py\nn620tLQ6v9ccZ9azZ896yzocDnXt2lXffvutPB6PwsLCaq/r3LlznWVrrjv5crfbLalxE0KsW7dO\neXl5Gj58uJKSkmovv/baa/Wb3/xGixYt0u23315vvYamaq95TmuOodq1a5cMw2hw2aSkJMXExGj3\n7t2STkxuMXr0aC1ZskQFBQW1z9myZcvkdrtrC33N8NN58+bptddeq3e7393WABBMFCQAsNRM1vDb\n3/5WH3/8sa666ipVV1frgw8+aPBb9ZNVVFRIOnF80emmUa6ZDe2yyy7Ta6+9purqapWWlmr37t16\n6KGH1KlTJ6WmpurLL7/UkCFD9MUXX6hdu3anvf+a2ffatWvX4PU15aOysvK0j6EhycnJysvLU2Fh\noVJTU0+77IEDB2rX+a6oqKjT5jpVQaqoqJBhGPr1r399yj1YHTp0kPTv2eZqSkRzOPlx1WyHk/eq\n1Kh5jMePH69TkL777+861eWNMX/+fBmGoUGDBtWZYME0TWVmZmrr1q1av369Bg4cWGe9hrZVzd9s\nzXN8pr+38PDwOn9rEyZM0DvvvKMPP/xQP/jBD1ReXq7Vq1drxIgRtXtla/7/3HDDDQ1OYCLVPz4N\nAIKBggQA33HjjTfqd7/7nRYvXqyrrrpKy5YtU1lZWaPO7VPzwdLhcDS4B+lkQ4cO1SuvvKL169fX\nDmOrmSFv4MCBtcPvvvjiC11yySUNzh5Xo+YD+ammKa/5sHqqonI6AwYM0L/+9S+tXr26dvjUqdTs\n7Tr5fEanKmY1l5/qg3ZN3rS0NPXt2/e0952YmChJDc6g11xqtkPNh/2T1TzeUxWoplIzOYMkvfDC\nC/r1r39d5/qaorFo0aJ6Bem7EzGcfFlNwWvM31tsbGzt75dddpkSExNrC1LNcMia4XXSv7d1u3bt\nGvX/BwCChWOQAOA7UlJSNHz4cK1evVqlpaVasmSJIiIi9B//8R9nXLdbt25yuVzatGmT/H5/veuP\nHDlS5/dBgwbJ7XYrJydHa9euVc+ePWu/Tc/OztbXX3+tgoIC7dmz54zHH8XExKhDhw7Ky8trcDhc\nbm6uJNXOyHY2Jk2aJMMw9Ne//lVer/eUyx0/flwLFy5UXFxcvRPolpaWNjgDWUFBgZKSkk55jqGe\nPXvKNE2tX7++wfvzeDy1v6elpck0zdrH+l0ff/zxGadIbwo1Q+samorb7/drz549SktLO689Q43x\n1ltvyePxaMyYMfrNb36jOXPm1Pn53//9X0VFRWnZsmUqLy+vs27NULfv2rNnj6R/D7Xr0aOHTNNs\n8HEePHhQFRUV6t69e+1lTqdT48aN09dff63i4mItW7ZM0dHRGjVqVO0yNc9dQ9taqv//BwCChYIE\nACeZOnWq/H6/FixYoLVr12rs2LF1vg0/lfDwcI0aNUolJSV666236lyXn5+vK6+8Uk8//XSd5QcO\nHKivvvpKa9eu1SWXXFJ7XXZ2tqqrq/XKK6+c8fijGuPGjdOxY8fqnctp9+7dWrt2rfr27Vs7icLZ\n6NKli2bMmKG8vDw99NBDtcOsvquiokL333+/ioqK9OijjzY4XO7kqaU//fRTHT169LSPrWYShDfe\neKNOGZKkX/ziF7r00ktrJ54YMWKEXC6X3n777ToFteb8S9+dwt3hcNS7vaZwwQUXKCMjQ6tXr1ZB\nQUGd65YsWaKKigqNHTu2ye/3ZDXnPrr//vt11VVX1fsZO3asrr/+elVVVWnJkiV11t22bZu+/vrr\nOpctXbq0zt/hpZdeqvj4eL333nv1CtYbb7zR4AQW48ePl2maWrZsmdasWaOxY8fWKYrdu3dX7969\n9e2339aZvESScnJyNGzYML388svn/dwAwJkwxA4ATjJy5Eh17NhRL730kvx+f73Z107n4Ycf1rp1\n6/T0009r586duuiii1RQUKB58+bJ6XTWm+jhsssu0+9+9ztVVVXVGVbUq1cvxcXF6e9//7tSU1PV\nrVu3M973Pffco3/+85+aPXu2tm7dqp49e6qwsFDz58+Xy+XS7NmzG/8knGTmzJk6fvy4Xn/9dW3c\nuFETJ05U9+7dZZqmduzYoXfffVclJSWaNWtWg3vbUlJS9P7772vfvn3q37+/9u/fr1dffVXh4eGa\nMWPGKe83MzNTt912m/7v//5P06ZN09SpU+VyubRixQotX75c1113Xe1ejY4dO+pHP/qR5syZo9tv\nv12TJk1SRUWFXnvtNTkcDj3yyCO1t5uWlqZvvvlGc+fOVWpq6hmHDp6N2bNna8aMGfr+97+vm266\nSR06dNDWrVv1xhtvKD09XXfddVeT3VdDvvzyy9qZ9L67F+dkt9xyi1599VUtWrRIN998c+3l2dnZ\nuu+++zRp0iR16dJFGzdu1MKFC5Wenq5rrrlG0oly/+Mf/1iPPPKIbr75Zt14442KiorShg0b9Oab\nbyorK6vezHxZWVlKTU3V7373O3m93gZPHvvkk09qxowZuueee3TbbbcpPT1d27dv1xtvvKGOHTtq\n/PjxTfQsAcCpUZAA4CTfnayhZ8+ep50coeaEoTW6dOmixYsXa+7cuVq6dKleffVVxcbG6pJLLtE9\n99yj3r1711l/6NCheuGFF2oPpv+ugQMHasWKFXWmaD6dhIQELVy4UHPmzNF7772n4uLi0973ydlP\nx+FwaPbs2br22ms1f/58ffDBByoqKpLD4VBqaqrGjRun6dOnq2vXrqfM9vvf/17PPfecfv7zn6u6\nulqZmZl68MEHa6e0PpVZs2apd+/eWrBggX72s58pEAgoPT1dDz/8sG677bY6y959991KTU3Va6+9\npmeeeab2uK65c+fWmXHtkUce0dNPP60//elPGjly5BkL0tlMDpCdna3XX39dL774ov785z/r+PHj\nSk5O1tSpU3X33XcrJiamUbd9rhMS1Ow9+v73v3/a5dLT0zV8+HCtWrVK33zzjWJiYmQYhvr166f7\n779f//M//6OXX35ZLpdLo0eP1mOPPVZnj8/EiROVkJCgP/7xj5ozZ448Ho86d+6se+65R3feeaec\nTme9+7zmmmv0l7/8RampqRo8eHC967OysjR//ny99NJLev3113Xs2DElJiZq7Nix+u///u8GZ0IE\ngKZmmI2duxUAgCCbPn261q1bpy1bttgdBQDQRnEMEgAgZFRUVDR4/BIAAM2FIXYAANutX79eq1at\n0tatW9WvXz+74wAA2jAKEgDAdsuXL9crr7yiLl266LHHHrM7DgCgDWs1xyDl5OTYHQEAAABAiDvd\n5EtSK9uDdKYHi+DKyclhG4QAtkNoYDvYj20QGtgOoYHtYD+2QWhozE4VJmkAAAAAAAsFCQAAAAAs\nFCQAAAAAsFCQAAAAAMBCQQIAAAAACwUJAAAAACwUJAAAAACwUJAAAAAAwEJBAgAAAAALBQkAAAAA\nLBQkAAAAALBQkAAAAADAQkECAAAAAAsFCQAAAAAsFCQAAAAAsFCQAAAAAMBCQQIAAAAACwUJAAAA\nACwUJAAAAACwUJAAAAAAwEJBAgAAAAALBQkAAAAALBQkAAAAALBQkAAAAADAQkECAAAAAAsFCQAA\nAAAsFCQAAAAAsFCQAAAAAMBCQQIAAAAACwUJAAAAACwUJAAAAACwUJAAAAAAwEJBAgAAAAALBQkA\nAAAALBQkAAAAALBQkAAAAADAQkECAAAAAAsFCQAAAAAsFCQAAAAAsLjsDnA6v/jFL7R+/Xr5/X7d\neeedGjNmjN2RAAAAALRiIVuQ1q5dq9zcXM2fP1+lpaWaNGkSBQkAAABAUIVsQRo0aJD69esnSYqN\njVVlZaVM05RhGDYnAwAAANBahewxSA6HQ+3atZMkLVq0SCNHjqQcAQAAAAgqwzRN0+4Qp7N8+XL9\n6U9/0l/+8hdFR0efcrmcnJxmTAUAAACgJcrKyjrt9SE7xE6SVq1apT/+8Y9nLEc1zvRgEVw5OTls\ngxDAdggNbAf7sQ1CA9shNLAd7Mc2CA2N2akSsgWpvLxcv/zlL/XKK68oJibG7jgAAAAA2oCQLUjv\nv/++SktLdf/999dOzvCLX/xCKSkpdkcDAAAA0EqFbEGaMmWKpkyZYncMAAAAAG1IyM5iBwAAAADN\njYIEAAAAABYKEgAAAABYKEgAAAAAYKEgAQAAAICFggQAAAAAFgoSAAAAAFgoSAAAAABgoSABAAAA\ngIWCBAAAAAAWChIAAAAAWChIAAAAAGChIAEAAACAhYIEAAAAABYKEgAAAABYKEgAAAAAYKEgAQAA\nAICFggQAAAAAFgoSAAAAAFgoSAAAAABgoSABAAAAgIWCBAAAAAAWChIAAAAAWChIAAAAAGChIAEA\nAACAhYIEAAAAABYKEgAAAABYKEgAAAAAYKEgAQAAAICFggQAAAAAFgoSAAAAAFgoSAAAAABgoSAB\nAAAAgIWCBAAAAAAWChIAAAAAWChIAAAAAGChIAEAAACAhYIEAAAAABYKEgAAAABYKEgAAAAAYKEg\nAQAAAICFggQAAAAAFgoSAAAAAFgoSAAAAABgoSABAAAAgIWCBAAAAAAWChIAAAAAWChIAAAAAGCh\nIAEAAACAhYIEAAAAABYKEgAAAABYKEgAAAAAYKEgAQAAAICFggQAAAAAFgoSAAAAAFgoSAAAAABg\noSABAAAAgIWCBAAAAAAWChIAAAAAWChIAAAAAGChIAEAAACAhYIEAAAAABYKEgAAAABYKEgAAAAA\nYKEgAQAAAICFggQAAAAAFgoSAAAAAFgoSAAAAABgoSABAAAAgIWCBAAAAAAWChIAAAAAWChIAAAA\nAGChIAEAAACAhYIEAAAAABYKEgAAAABYKEgAAAAAYKEgAQAAAICFggQAAAAAFgoSAAAAAFgoSAAA\nAABgCemCtHXrVo0ZM0bz5s2zOwoAAACANiBkC1JlZaV+/vOfa+jQoXZHAQAAANBGhGxBCg8P1x/+\n8Ae1b9/e7igAAAAA2oiQLUgOh0NhYWF2xwAAAADQhhimaZp2hziduXPnKiEhQbfccstpl8vJyWmm\nRACAUGCaprxerzwej6qqfPJ4/PJ6TXm9PpmmUWdZh0MKD3fK7XYqLMyh8HC3wsLC5HK5bEoPALBL\nVlbWaa9vVe8MZ3qwCK6cnBy2QQhgO4QGtsP583g8OnSoVAcPVqqiQjp+/N8/VVWSx2PI5wtTIBAu\npzNMDodTDodLTueJt7Y9e/YoPT1dkhQIBGSafvn9PgUCPplmtZzOarlcPoWHSxERUlSUFBl54icm\nxlDnzrGKj4+VwxGygy1aBP4vhAa2g/3YBqGhMTtVWlVBAgC0PIFAQMXFpcrPL1NJiamSEunoUUOV\nlWEyjHiFhSU3uJ7LdeKnMU6UHIecTrd1SUztdV7viZ+ysrqZPJ5jcjr3KTrar/h4KSnJUFKSU+np\niYqMjDy3BwsACHkhW5A2btyoxx9/XEeOHJHT6dT8+fP12muvKS4uzu5oAIDz4PV6tWvXIRUW+lRU\nJBUXG/J44hURkV5nufBwmwLqRKGKiIiXFK/qaungwRM/fr9PXu8RxcQcUocOUvv2UrduMUpOTpRh\nGGe8XQBA6AvZgtS/f3+9++67dscAAJwn0zRVUFCkXbuOq7BQKi52y+FIrt2b43CcGOLWEjidLjmd\nyfJ6pf37T/ysW1emiIi9SkkxlZpqKCOjvaKjo+yOCgA4RyFbkAAALZff79f27YXavdunggKpujq5\ndqic232GlVuYsLAYBQIx2r9f2rfP1OrVRWrfvkhpaVJmZpw6dEiwOyIA4CxQkAAATSIQCCg394C2\nb69Wfr5Tppkil+vE6RraylkbDMNQeHiyysqkLVukjRtLFRu7S127Sv36JSoxkWHiABDqKEgAgPNy\n4MARbdp0VHv2OFRdnSK3O1xOp92pQkNYWLyqquK1fbv0zTeH1b79LnXrZmjAgE6c6w8AQhQFCQBw\n1vx+vzZt2qetW30qLk5SWFg3Sa1v+FxTCgtL0rFjSdqwIaD16wuVnl6t/v1j1blze7ujAQC+g4IE\nAGi08vLjWrv2gHbudMnv7ySn09Vmhs81lRNTjndWQYGUl3dMiYl56tvXrYsv7sw5lwAgBFCQAABn\nVFRUqnXrjmjXrki5XN0liWF0TSAsLFbl5bFatcqjdev26KKLDGVlpcnV2BM8AQCaHK/AAIBTOnSo\nVGvWHFZ+frzCwro3+sSsODsuV5i83m7asCGgjRsLdNFFfl16aReKEgDYgFdeAEA9R44c0+efF2nv\n3gS53T0YRtdMTgyx66pvvglo69YC9ekT0KBBXeRkdx0ANBsKEgCgVmVllVau3Ke8vDi5XD2YdMEm\nDodDgUBXffWVX5s35ys726l+/dJkGIbd0QCg1aMgAQAUCAT0xRd7tXGjS4bRg6F0IcLhcMrvv0Cf\nf16tb7/N07BhcerShVnvACCYeAsEgDYuN/eAPvvsuCoru8rp5G0hFLlc4Sor66ElS0rVtWuurrii\ns6Ki2tkdCwBaJd4JAaCNqqys0vLl+dq7N0Vudwqz0rUAbne8CgvjNW9egQYNCmjAgK52RwKAVoeC\nBABt0MaN+friC0Om2YvjjFqkNK1ZU63c3FxdeWWyEhNj7Q4EAK0GZ6QDgDbk+PEqvfnmdn3+eQeZ\nZprdcXAeXK5wlZT01MKFlVq3bq/dcQCg1WAPEgC0ETt2HNDKlV4FAr2ZhKEVcTg66osvqrV37w6N\nHZvGsUkAcJ7YgwQArZzf79eHH+bqo48iFQh0sTsOgsDlCldxcS+98Uaxduw4YHccAGjR+A4RAFqx\n0tJyvffeAZWXd5fLxXdirV0g0EUffXRMhYV5Gj68G+dNAoBzQEECgFYqL++Qli/3SOopB92ozXC5\nYrV5czsdOrRDEyakKyIi3O5IANCi8JYJAK3QmjW7tWyZWxITMbRFTqdbR4701htvFKqwsMTuOADQ\nolCQAKAjIk4BAAAgAElEQVQVCQQCeu+97dqwIVUuV4LdcWAzr/cCvfOOR9u3c1wSADQWBQkAWgmP\nx6PFi3NVUNBDLhfDqnCCw9FRy5eHKSeHqcABoDEoSADQCpSVHdf8+XtVUtJLDofT7jgIMS5Xotau\nTdTKlTvtjgIAIY+CBAAtXFHRUS1cWKSqqp7MWoZTcrmitXlzmt5/f7tM07Q7DgCELAoSALRgRUVH\n9c47x+T3p9sdBS2AyxWuPXu66913tysQCNgdBwBCEgUJAFqoQ4dK9fbbZZz8FWfF6XRp374eeu+9\nHZQkAGgABQkAWqCDB0v1zjvlMk2m8cbZqylJ775LSQKAk1GQAKCFKSo6qiVLKEc4P06nS/v3nyhJ\nHJMEAP9GQQKAFqS8/LjefbeUcoQmcaIkdddHH+XaHQUAQgYFCQBaCI/Ho7//fb98PiZkQNNxOt3K\nzU3TmjW77Y4CACGBggQALUAgENBbb+1SZWUPu6OgFXK52mnDhkRt2rTP7igAYDsKEgC0AO+/n6uS\nEs5zhOBxuWL12WcRyss7ZHcUALAVBQkAQtzq1buUn3+BHA6n3VHQyjmdSVq+3KeSkjK7owCAbShI\nABDCdu06pI0b4+V0htkdBW1GJy1delB+v9/uIABgCwoSAISo8vLjWr68Wk5ngt1R0MaUl3fXhx/m\n2R0DAGxBQQKAEBQIBLRkSYFMs4vdUdAGORwO5eV11ldf5dsdBQCaHQUJAELQxx/n6dgxZqyDfdzu\nSK1ZE679+4/YHQUAmhUFCQBCzI4dB7RtWzKTMsB2TmeyPvywVD6fz+4oANBsKEgAEEI8Ho8+/bRK\nbnes3VEASVJV1QVauXKP3TEAoNlQkAAghPzzn3vl86XbHQOo5XA4tG1bgvbtO2x3FABoFhQkAAgR\nu3YdUl5eB04Gi5DjciXq44+PKhAI2B0FAIKOggQAIcDn8+mTTyrkdsfZHQVoUEVFuj77bLfdMQAg\n6ChIABACVqzYI4+HoXUIXQ6HU5s3x+rAgRK7owBAUFGQAMBmhYVHtG1bghwOXpIR2pzO9lqxgmm/\nAbRuvBsDgM3WrCmV251odwygUY4c6aStW/fbHQMAgoaCBAA22rXrkAoLO9gdA2g0l6udvvyySqZp\n2h0FAIKCggQANlq7tlxud4zdMYCzUlaWpq++yrc7BgAEBQUJAGyyZct+HT6cancM4Ky5XGHasCEg\nv99vdxQAaHIUJACwgWma+vLLKrnd7eyOApwTj6eLvvySvUgAWh8KEgDY4Kuv8lVR0cXuGMA5czic\n+vprhzwej91RAKBJUZAAoJkFAgFt2BCQ0+m2OwpwXkyzi9as2Wd3DABoUhQkAGhmmzfvU3V1Z7tj\nAOfNMAzt2OFQIBCwOwoANBkKEgA0s23bfOw9Qqvh9XbSt99yXiQArQcFCQCaUUnJMR04wLTeaD2c\nTre2bfPaHQMAmgwFCQCa0VdfHVZYWHu7YwBNqrAwWqWlZXbHAIAmQUECgGYSCAS0c6dhdwygyYWF\nddCGDcV2xwCAJkFBAoBmsm1boTyeTnbHAIIiL89gsgYArQIFCQCaydatHrlcYXbHAIKiurqTtm8v\ntDsGAJw3ChIANINjx8q1f3+U3TGAoHG5wrR1KyeNBdDyUZAAoBls2FAktzvZ7hhAUO3bF6Wysgq7\nYwDAeaEgAUCQmaapvDwmZ0Dr53Yna8OGQ3bHAIDzQkECgCCrqKhQWRnnPkLbUFzMRwsALRuvYgAQ\nZAUFpXK74+yOATSLY8fsTgAA54eCBABBVlLil9PpsjsG0CzKy13y+Xx2xwCAc0ZBAoAg4xt1tCWB\nQJyKi0vtjgEA54yCBABBRkFCWxIREa3CQmayA9ByUZAAIMiOHrU7AdC8+FIAQEtGQQKAIKqurtbx\n4+F2xwCaFQUJQEtGQQKAIDpwoFROZ7zdMYBmRUEC0JJRkAAgiA4dqpLbHWF3DKBZHTtmyDRNu2MA\nwDmhIAFAEPFNOtoirzdGx46V2R0DAM4JBQkAgoiChLYoLCxW+/YxOwmAlomCBABBREFCW+RwOFVS\nErA7BgCcEwoSAASJ3+9XebnT7hiALfhyAEBLRUECgCA5cuSo/P5Yu2MAtqAgAWipKEgAECSFheUK\nD4+xOwZgCwoSgJaKggQAQXL0qCnDMOyOAdiiqqqdKisr7Y4BAGeNggQAQcI36GjLHI44FRaW2h0D\nAM4aBQkAguQosxyjDXO7w3X4sMfuGABw1ihIABAEpmmyBwltHl8SAGiJKEgAEASVlZXyeKLtjgHY\nii8JALREZyxIzzzzjI4fP94cWep4/vnnNW3aNN10003atGlTs98/AJyPgwcr5HbH2R0DsBUFCUBL\ndMaCNG/ePE2cOFGfffZZc+SRJH355Zfas2eP5s+fr2effVbPPfdcs903ADSFsjLJ6XTZHQOwVVmZ\nUz6fz+4YAHBWzliQHnroIR05ckR33HGHHn30UR1thgHFa9as0ejRoyVJPXr00LFjx1RRURH0+wWA\nplJR4bQ7AmA704xXaWm53TEA4KycsSDNmDFDS5cu1YgRI/T2229r/Pjx+uCDD4Iaqri4WImJibW/\nJyQkqLi4OKj3CQBNqbycggSEh0fp8OFqu2MAwFlp1CQNnTp10h/+8Ae98MILkqQHHnhAP/rRj3To\n0KGghqthmmaz3A8ANBUKEiAZhqHycoaaAmhZDPMs20d5ebl+9atfacGCBYqOjta4cePkcNTtWYZh\n6MknnzznUHPnzlVycrKmTJkiSRo9erSWLFmiyMjIU66Tk5NzzvcHAE3t738vl3SB3TEA23Xpsk2D\nBiXZHQMAamVlZZ32+rP+Wic6OloPPvig9u7dq88//1wLFy6st8z5FqShQ4dq7ty5mjJlijZv3qyO\nHTuethzVONODRXDl5OSwDUIA2yE0/OMfH6t9+3S7Y7Rpe/bsUXo628BuERGbeU0KAbw32I9tEBoa\ns1PlrAvShx9+qOeee06HDh3S5Zdfrttuu01OZ9MOJRkwYIAuvvhiTZs2TU6nU0888UST3j4ABFtU\nVMDuCIDtPJ5Kde7stjsGAJyVRhekwsJC/eQnP9GKFSsUHx+vX/7yl5owYULQgj3wwANBu20ACLbo\naL/8frtTAPYyzVIlJnLCZAAtyxkLUiAQ0N/+9je9+OKLOn78uCZOnKjHHntMCQkJzZEPAFqk6OiA\nSkoC9Y7RBNqSyEiPwsLC7I4BAGfljAXpxhtv1JYtW5SSkqIXXnhBI0eObI5cANCidejQTgcPHlNE\nRLzdUQDbxMbanQAAzt4ZC9KWLVt0yy23aObMmYqKimqOTADQ4sXERMnlOiaJgoS2i4IEoCU6Y0Ga\nN2+eBg4c2BxZAKDVcDgciokxVVlpdxLAPnFxdicAgLN3xsHxlCMAODd8e462zO/3KTGRk8QCaHk4\nehgAgoSChLbM6z2qTp3YhQSg5aEgAUCQUJDQloWFlXPsMoAWiYIEAEGSkhIpj+e43TEAW8TFSYZh\n2B0DAM4aBQkAgiQ5OV6mWWp3DMAW7EEF0FJRkAAgSNxut6KjvXbHAGxBQQLQUlGQACCI+JCItsg0\nTcXFMbwOQMtEQQKAIKIgoS2qri5Tamq03TEA4JxQkAAgiChIaIuczqNKTGSKbwAtEwUJAIIoKckt\nv5/jkNC2REcH5HQ67Y4BAOeEggQAQdSpU7y8XmayQ9vCnlMALRkFCQCCKDIyUuHhnAsJbQsFCUBL\nRkECgCCL41AMtDH8zQNoyShIABBkfJuOtsTrrVJycoTdMQDgnFGQACDIKEhoSwKBUnXsGG93DAA4\nZxQkAAiyuDhDgUDA7hhAs4iMrFZ4eLjdMQDgnFGQACDIOneOlcdzzO4YQLNgjymAlo6CBABBFh8f\nq/Dwo3bHAJpFYqJpdwQAOC8UJAAIMofDoW7dGGKH1s/jKVXfvkxhB6BloyABQDPo1y9OHg8njEXr\n1qFDiZKTE+yOAQDnhYIEAM0gJSVR7duX2B0DCJpAwK9evZx2xwCA80ZBAoBm0rOng9ns0IrtV79+\nnewOAQDnjYIEAM2kf/9OMs19dscAguKCC3xyuVx2xwCA80ZBAoBm4na71a2bz+4YQJPzeo+pXz/m\n9wbQOlCQAKAZ9e0bwzmR0OokJBxWp05JdscAgCZBQQKAZtS5c3slJBy2OwbQZAKBgHr14uMEgNaD\nVzQAaGa9ehlM1oBWwzT3q3//VLtjAECToSABQDP73vc6yTD22x0DaBIXXOBRWFiY3TEAoMlQkACg\nmYWFhenCCz3sRUKL5/Md0NChHe2OAQBNioIEADa47LKucrkK7I4BnJeMjOOKjY2yOwYANCkKEgDY\nwOVyqV+/gPx+pv1GyxQIFOiyyzgxLIDWh4IEADbJzu6qiIh8u2MAZy0QCOjii71q1y7C7igA0OQo\nSABgE4fDoexst3w+j91RgLPidOZryJAudscAgKCgIAGAjfr06azYWI5FQsvh9/v0ve+dGCYKAK0R\nBQkAbGQYhi65pJ283uN2RwEapV27fGVlsfcIQOtFQQIAm/XunarU1H12xwDOyOst09Ch7eRw8PEB\nQOvFKxwAhICrruos06QkIbSlpx9Ur14pdscAgKCiIAFACIiOjtSgQX75fFV2RwEaZBh7NXo0Q+sA\ntH4UJAAIEQMHdlWHDkz7jdDj9VZo6FCXIiLC7Y4CAEFHQQKAEHLVVakKBArtjgHU0bnzfl10ESeF\nBdA2UJAAIITExUUrK8vDuZEQQgo0Zkya3SEAoNlQkAAgxGRnd1Vy8m67YwDy+Y5pxAinoqLa2R0F\nAJoNBQkAQoxhGJowIV0u1267o6AN8/t9yswsUmZmqt1RAKBZUZAAIARFRIRr3LhY+f1FdkdBG5WQ\nkKfLL+9mdwwAaHYUJAAIUZ06JWrw4Ep5vcftjoI2xuHYq4kTu3BCWABtEq98ABDCBg7sqvT0AgUC\nAbujoI3w+Y5ozJhIjjsC0GZRkAAgxI0b110xMbl2x0Ab4PNV6JJLypWe3t7uKABgGwoSAIQ4l8ul\nSZO6Kixsl91R0Ir5/R5deOEBZWd3tTsKANiKggQALUBkZISuu669DKPA7ihohQIBv7p02a1Ro3rY\nHQUAbEdBAoAWIiEhRuPHRyoQOGh3FLQipmkqMTFX11zT0+4oABASKEgA0IJ06pSo0aMln++w3VHQ\nSkRG5mrSpO7MWAcAFl4NAaCF6dmzo6680iu/n5KE89OuXa4mT+4qt9ttdxQACBkUJABogTIyUnTF\nFV75/cV2R0ELFRmZq8mTuygiItzuKAAQUihIANBCZWSk6MorfZQknLXIyB2aPLkr5QgAGkBBAoAW\nrHfvFI0Z45fff8juKGgBTNNUVNR2TZ6crvDwMLvjAEBIoiABQAvXs2dHjR/vkLTP7igIYX6/T0lJ\n2zV1anfKEQCcBgUJAFqBrl3b64YbYuRycTJZ1Of3V6lbt126/vpecrlcdscBgJBGQQKAViIpKVZT\np6YoMnKHTNO0Ow5ChM93TP36FWrcuF5M5Q0AjcArJQC0IlFR7TRtWjelpu6Qz1dldxzYLBA4qBEj\nyjR0aDe7owBAi0FBAoBWxuVy6dpre2vgwAPy+Y7YHQc2cbt3adKkcPXp09nuKADQolCQAKCVuvTS\nC3T11T4ZRoHdUdCMfD6PkpK26+abO6tjx3i74wBAi0NBAoBWrFu3ZE2ZEq+YmB3y+712x0GQ+XyH\n1a/fPl1/fS9mqgOAc0RBAoBWLi4uWtOm9VTfvvny+Q7bHQdBYJqm3O5duvZaadiwbjIMw+5IANBi\nMdcnALQBhmFo2LDuuuCCw/roozx5PHyIbi18vnJ163ZAo0eny+122x0HAFo89iABQBuSlpak6dO7\nqkePPPl8JXbHwXkwTVMOx25dcUWZrr66J+UIAJoIe5AAoI1xuVwaPbqHMjMPa8WKnSorS5fTydtB\nS+Lzlapnz8MaNaorxQgAmhjviADQRqWlJenmmxO0evUeffNNOzkcKXZHwhn4/V5FR+dr5MhYde3a\nw+44ANAqUZAAoA1zOBwaNqyb+vWr0MqVudq7t73cbqaGDjWmacowCpSdHVBW1gVyOBghDwDBQkEC\nACg2NkoTJ/ZUfn6xPvtsp0pKOsvlirA7FiT5fEXq3btMI0akKSyMqbsBINgoSACAWl26tNdNN7XX\n5s37tH59tcrK0uRy8aHcDj7fYaWnH9WQIe2VmNjB7jgA0GZQkAAA9Vx8cWdddJGpTZsKtH69V8eP\nU5Sai8dzRF26lOiyy5LUoUN3u+MAQJtDQQIANMgwDPXr10V9+gS0efM+ff21V6WlKXK7I+2O1ip5\nvQfUrdtxZWcnKDmZCRgAwC4UJADAaTkcDvXt20V9+0o7dx7Qhg0HdPBggtzuBLujtXiBQEDSPvXq\n5dUll3RUTAwzCQKA3ShIAIBG69EjRT16SEVFpfrqq13atculQKCTHA6n3dFaFK+3TPHxxerd26Hv\nfa8T5zICgBBCQQIAnLUOHeI1Zky8fD6fvv56n3bs8KuoKEZhYe3tjhay/H6fDGO/unb1q2/faHXp\n0s3uSACABlCQAADnzOVyaeDArho4UCotLdPXX+/S7t3S0aOJCg+Pszue7QKBgPz+A+rUqVo9e7p0\n4YWd5HLx1gsAoYxXaQBAk4iPj9GIETEaMUI6ePCItm3brYIC6fDhaIWHt509S36/T6ZZqM6d/era\n1aGLLuqo8PBwu2MBABopZAvS2rVrNXPmTD3//PMaOXKk3XEAAGehY8dEdeyYKEk6erRMW7fuVmGh\ndPCgQ15vB4WFtbM5YdMxTVMez2HFxZUrNVVKS3OpV69U9hQBQAsVkq/ee/fu1auvvqrs7Gy7owAA\nzlNcXIwGD46RdGLIWX5+kfLzD6moyFRRkaGqqnhFRLSc4Xh+v09eb7Hi46vUvr2UnGyod+8kxca2\nnb1kANCahWRBSklJ0dy5czVr1iy7owAAmpDD4VB6ekelp5/43TRNFReXas+e3SopkUpLDZWUSFVV\nUXK74+R02ju7W3V1hQzjqKKjvUpIMJWQILVv71T37h0UERFhazYAQHCEZEEKC+Ns7QDQFhiGoQ4d\nEtShQ91zKlVUVKiwsEhHjnh17JhUXi5VVkoVFVJVlVN+f4QMI0Jud4SczrN/KzNNUz6fRz5flRyO\narlcVWrXzlRkpBQVJUVHS7GxUkpKlNq378A03ADQhhimaZp2Bli0aJEWL14swzBkmqYMw9C9996r\noUOHatasWRo3blyjjkHKyclphrQAALv5/X5VV1erstKjigqfKiv98vkMBQKG/P4TPye/szkcplwu\nUw6H5HSacrulyEinoqPDFB4eprCwMBmGYc8DAgA0q6ysrNNeb/sepMmTJ2vy5MlNcltnerAIrpyc\nHLZBCGA7hAa2g/3YBqGB7RAa2A72YxuEhsbsVHE0Q47zYvMOLgAAAABtSEgWpI8++kgTJ07Uxx9/\nrJ/85Ce64YYb7I4EAAAAoA2wfYhdQ8aMGaMxY8bYHQMAAABAGxOSe5AAAAAAwA4UJAAAAACwUJAA\nAAAAwEJBAgAAAAALBQkAAAAALBQkAAAAALBQkAAAAADAQkECAAAAAAsFCQAAAAAsFCQAAAAAsFCQ\nAAAAAMBCQQIAAAAACwUJAAAAACwUJAAAAACwUJAAAAAAwEJBAgAAAAALBQkAAAAALBQkAAAAALBQ\nkAAAAADAQkECAAAAAAsFCQAAAAAsFCQAAAAAsFCQAAAAAMBCQQIAAAAACwUJAAAAACwUJAAAAACw\nUJAAAAAAwEJBAgAAAAALBQkAAAAALBQkAAAAALBQkAAAAADAQkECAAAAAAsFCQAAAAAsFCQAAAAA\nsFCQAAAAAMBCQQIAAAAACwUJAAAAACwUJAAAAACwUJAAAAAAwEJBAgAAAAALBQkAAAAALBQkAAAA\nALBQkAAAAADAQkECAAAAAAsFCQAAAAAsFCQAAAAAsFCQAAAAAMBCQQIAAAAACwUJAAAAACwUJAAA\nAACwUJAAAAAAwEJBAgAAAAALBQkAAAAALBQkAAAAALBQkAAAAADAQkECAAAAAAsFCQAAAAAsFCQA\nAAAAsFCQAAAAAMBCQQIAAAAACwUJAAAAACwUJAAAAACwUJAAAAAAwEJBAgAAAAALBQkAAAAALBQk\nAAAAALBQkAAAAADAQkECAAAAAAsFCQAAAAAsFCQAAAAAsFCQAAAAAMBCQQIAAAAACwUJAAAAACwU\nJAAAAACwUJAAAAAAwEJBAgAAAAALBQkAAAAALBQkAAAAALBQkAAAAADAQkECAAAAAIvL7gAN8fv9\n+vGPf6y9e/cqEAjo4Ycf1sCBA+2OBQAAAKCVC8mC9M477ygiIkKvv/66cnNzNWvWLC1atMjuWAAA\nAABauZAsSNdee63Gjx8vSUpMTNTRo0dtTgQAAACgLQjJguRyueRynYj2t7/9TRMmTLA5EQAAAIC2\nwDBN07QzwKJFi7R48WIZhiHTNGUYhu69914NHTpU8+bN04oVK/T73/9eTqfztLeTk5PTTIkBAAAA\ntFRZWVmnvd72gnQqixYt0ocffqiXXnpJbrf7jMvn5OSc8cEiuNgGoYHtEBrYDvZjG4QGtkNoYDvY\nj20QGhqzHUJyiF1+fr4WLFigefPmNaocAQAAAEBTCMmCtHjxYh09elR33HFH7bC7v/71r7XHJQEA\nAABAMIRk45g5c6ZmzpxpdwwAAAAAbYzD7gAAAAAAECooSAAAAABgoSABAAAAgIWCBAAAAAAWChIA\nAAAAWChIAAAAAGChIAEAAACAhYIEAAAAABYKEgAAAABYKEgAAAAAYKEgAQAAAICFggQAAAAAFgoS\nAAAAAFgoSAAAAABgoSABAAAAgIWCBAAAAAAWChIAAAAAWChIAAAAAGChIAEAAACAhYIEAAAAABYK\nEgAAAABYKEgAAAAAYKEgAQAAAICFggQAAAAAFgoSAAAAAFgoSAAAAABgoSABAAAAgIWCBAAAAAAW\nChIAAAAAWChIAAAAAGChIAEAAACAhYIEAAAAABYKEgAAAABYKEgAAAAAYKEgAQAAAICFggQAAAAA\nFgoSAADA/7dzt6E1/g8cxz9zNsPcCyMeaFluosQUEx4Y5a5ZG2eECU9ELWntjJgnxkaMuc+9cWYj\nliRDc1McQzE3kyGbTlqnZRqzMef34H+10n8/fvXz29c51/v16GznevCuq9PZ51zXDgBYGEgAAAAA\nYGEgAQAAAICFgQQAAAAAlhC/3+83HfE7PHjwwHQCAAAAgD/c6NGjf/p80AwkAAAAAPi3uMUOAAAA\nACwMJAAAAACwMJAAAAAAwMJAAgAAAAALAwkAAAAALAwkAAAAALAE1UDy+XwaO3asysrKTKfYUm1t\nrZYvX65FixZp/vz5evz4sekkW2publZ6errmz58vp9Ophw8fmk6yJY/Ho/Hjx+vGjRumU2wpKytL\nTqdTycnJKi8vN51jWxUVFYqLi1N+fr7pFNvKzs6W0+lUUlKSSkpKTOfY0pcvX5SamqqFCxdq3rx5\nKi0tNZ1kW42NjYqLi9P58+d/elxoG/W0iZycHA0cONB0hm0VFxcrPj5eM2bMUFlZmXJzc3Xo0CHT\nWbZz4cIFdejQQadOnVJlZaVcLpcKCwtNZ9lKVVWVTpw4oTFjxphOsaWysjK9fftWbrdbr1690tq1\na+V2u01n2U5DQ4O2bNmi2NhY0ym25fF4VFlZKbfbrQ8fPmjOnDmKi4sznWU7169f14gRI7R06VJ5\nvV4tWbJEkydPNp1lS3v27FH37t1/eVzQDKS7d++qS5cuio6ONp1iWykpKS2PvV6vIiMjzcXY2OzZ\nszVjxgxJUs+ePVVXV2e4yH4iIyOVl5cnl8tlOsWW7ty5oylTpkiSoqKi9PHjR3369EkRERGGy+wl\nPDxc+/fv14EDB0yn2FZMTIxGjhwpSeratasaGhrk9/sVEhJiuMxepk+f3vLY6/WqX79+Bmvs6/Xr\n13rz5o0mTZr0y2OD4ha7r1+/au/evUpNTTWdYns+n0+JiYnav38/58OQ0NBQhYeHS5KOHTummTNn\nGi6yn/bt25tOsDWfz6eePXu2/NyjRw/5fD6DRfbUrl07XguGtWvXTh07dpQkFRYWatKkSYwjg5xO\np9LS0pSRkWE6xZays7OVnp7+j44NuCtIhYWFKioqUkhISMunIBMmTFBycrI6d+4sSfL7/YYrg19r\n52HVqlWKjY1VUVGRbt68qfT0dG6x+4/97Dzk5+fr2bNn2rdvn+nMoPazc4A/A+8JsLurV6/q3Llz\nvCcb5na7VVFRoTVr1qi4uNh0jq2cP39eMTEx6t+/v6Rfvy8E3EBKSkpSUlLSD79LTk7W7du3deTI\nEVVVVam8vFy5ubmKiooyVBn8WjsP9+7dU11dnbp166aJEycqLS3NUJ19tHYepP/90V5aWqo9e/bI\n4XAYKLOPvzsHMKdPnz4/XDGqqalR7969DRYB5ty6dUsHDhzQoUOHWj5IRtt68uSJevXqpX79+mnI\nkCFqbm5WbW3tD1e68d+6ceOG3r17pytXruj9+/cKDw9XZGSkxo0b1+rxATeQWnP69OmWxy6XSwkJ\nCYwjA0pKSvT8+XMtXrxYL168aFnpaFvV1dUqKChQfn6+wsLCTOfYHlcv2l5sbKzy8vI0d+5cPX36\nVH379lWnTp1MZwFtrr6+Xjk5OTp69Ki6dOliOse27t+/L6/Xq4yMDPl8PjU0NDCO2tj27dtbHufl\n5WnAgAF/O46kIBlI+DOsWLFC6enpunr1qpqampSZmWk6yZaKiopUV1en5cuXt9zydfjwYYWG8nJv\nKyUlJdq5c6dqamrk8Xi0a9cunT171nSWbYwaNUrDhw+X0+mUw+HQ+vXrTSfZ0qNHj7Ru3TrV1tbK\n4XDI7Xbr5MmT6tatm+k027h06ZI+fPig1NTUlveD7OxsvkSpjSUnJysjI0MLFixQY2OjNmzYYDoJ\nv46aKFAAAAK4SURBVBDi5+NNAAAAAJAUJN9iBwAAAAC/AwMJAAAAACwMJAAAAACwMJAAAAAAwMJA\nAgAAAAALAwkAAAAALAwkAAAAALAwkAAAAa25uVlOp1NDhw6Vx+Np9ZjGxkZNmzZNI0eOVEVFRRsX\nAgACCQMJABDQHA6HcnJyFBERIZfLpfr6+v87ZuvWraqqqtLq1as1ZMgQA5UAgEDBQAIABLyBAwdq\n/fr18nq92rhx4w/P3bt3TydPntS4ceOUkpJiJhAAEDAYSACAoDB79mzNmjVLFy9e1OXLlyVJnz9/\nlsvlUteuXZWVlWW4EAAQCEL8fr/fdAQAAL9DfX294uPjVV9fr+LiYu3evVtnzpxRbm6upk6dajoP\nABAAGEgAgKDy6NEjLViwQIMGDdLLly+VkJCgTZs2mc4CAAQIBhIAIOhs27ZNBw8eVEREhG7evKmI\niAjTSQCAAMH/IAEAgkpjY6NKS0vlcDj0+fNnXbp0yXQSACCAMJAAAEElKytLlZWV2rFjhwYPHqys\nrCxVV1ebzgIABAgGEgAgaFy7dk1ut1uJiYmKi4vTli1b1NTUpLS0NHFHOQDgn3BkZmZmmo4AAODf\nqqmp0bJly9SnTx/t3r1bYWFh6t27t75//67i4mKFhYVpzJgxpjMBAH84vqQBABDw/H6/UlJSdP/+\nfR0/flyjR49uee7bt2+aO3euXr58qYKCAg0bNsxgKQDgT8ctdgCAgHfw4EF5PB6lpKT8MI4kKTQ0\nVJs3b5YkpaWlqampyUQiACBAMJAAAAGtvLxcO3fuVHR0tFJTU1s9Jjo6WitXrtSrV6+Uk5PTxoUA\ngEDCLXYAAAAAYOEKEgAAAABYGEgAAAAAYGEgAQAAAICFgQQAAAAAFgYSAAAAAFgYSAAAAABgYSAB\nAAAAgIWBBAAAAAAWBhIAAAAAWP4C8bN3bvt4PJcAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "X = np.linspace(-1,1,50)\n", + "plt.fill_between(X, -np.sqrt(1-X**2), np.sqrt(1-X**2), facecolor='blue', alpha = 0.4);\n", + "plt.xlim(-4,4);\n", + "plt.ylim(-2.5,2.5);\n", + "plt.xlabel(\"X\", fontsize=20);\n", + "plt.ylabel(\"Y\", fontsize=20);\n", + "plt.title('View of Object from Above', fontsize=20);" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "After adding this second view we can be positive that the shape, if not a cylinder, is restricted to the space of\n", + "a cylinder with a unit circle base an height ranging from [-2,2].\n", + "\n", + "Individually, neither of these perspectives would provide a particularly enlightening idea of the shape being looked at. With the first view, we had no information on the object in the $Y$ dimension, and in the second view we gained no information on the $Z$ dimension. When combined, however, we can make conclusions based on all three dimensions and the size of the set of possible shapes is drastically reduced. \n", + "\n", + "This is the idea behind model ensembling; the aggregation of multiple perspectives yields a more complete view than any of them alone.\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Multifamily Real Estate Example\n", + "\n", + "Let's bring this analogy of uncorrelated models providing \"perspectives\" to one involving data. Where the cylinder above was a function of space in the $X$,$Y$, and $Z$ dimenseions, let's consider house pricing data, with possible explanatory variables `Number Of Stories`, `Total area`, `Type`, and `Year Built`. Note that `Type` is a classifier.\n", + "\n", + "The data was aggregated by user 'dmikebishop' on [DataWorld](https://data.world/dmikebishop/commercial-real-estate-for-sal). To use exterior data, store it as a CSV in the `data` folder in research and use the `local_csv` function to pull it into a Pandas DataFrame." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "collapsed": false, + "scrolled": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0QAAAHrCAYAAADvzF08AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XtclGX+//E3Mxy+NXgChIdsh23dNcrCFfKbhzygiUi5\nhV88tIl5aN2HB6iWLFEzczddtLYs8/QNW003PNABy6TcTu7SioHRsrvmL9c1xQREUREUhev3hw/n\nKwJycGAG5vX8y7nmnvt6X7cw13y47/saD2OMEQAAAAC4IYuzAwAAAACAs1AQAQAAAHBbFEQAAAAA\n3BYFEQAAAAC3RUEEAAAAwG1REAEAAABwWxREaFYhISGaO3dutbasrCzFxcU5rI/BgwcrJyfHYfu7\nJD09XSNHjlR0dLSGDRumxMREHT582P78n//8Z91zzz167rnnarz20KFDmjp1qoYPH66oqCiNHDlS\nO3bssD+/efPmRucpKCjQiBEjmjYYAECrMX/+fA0fPlzDhw/XHXfcocGDB2v48OGKjo5WWVnZVV/b\nkPnl+++/V2hoqKPiAq2ep7MDoO3bvXu39u7dq5CQEHubh4eHExNVZ4ypkWfjxo1as2aNli9frq5d\nu0qS3nzzTT300EN677335Ofnp08++USjR49WQkJCjX0++eSTevDBB7VixQpJ0tdff62JEydq+/bt\nCggI0OLFizVq1KhGZQwKCtLWrVuvYaQAgNZg/vz59n8PGTJEL7zwgnr27Fnv686fP68XXnihQfPL\ntczDtc2bQGvGGSI0u9/85jd6/vnna31u2bJl1c4gLVu2TM8884wkKS4uTqtXr9bYsWPVt29fbdiw\nQStXrtTw4cN1//33Kz8/3/66zMxMPfjgg4qIiNDLL79sb9+xY4dGjBihoUOHavLkySopKbH3M2/e\nPI0ePVpr166tlskYo1dffVXPPfecvRi6lCcsLExr167VunXrlJGRodTUVM2bN6/GuPbt26cePXrY\nH//85z/Xxx9/rKCgIE2aNEmnT59WdHS08vPz9cMPP2jy5MmKiorSiBEj9O6770qS8vPz1b9/fyUn\nJysuLk75+fnq3r17tWMVFRWlwYMHa+HChbr0HcsffvihRowYoejoaD3wwAPavXt3Pf9DAABXZYyx\nv79fkp+fr0mTJtnnjffff1+SNHHiRJ06dUrR0dE6evSo9u/fr7Fjx2r48OEaNmyYtm3bVm9/l+bN\nqKgoxcbGat++fZKkL7/8UuPGjdNjjz2mp59+WpL00Ucf2efYKVOm6NSpU5Kk8vJyJSQkKCoqyl7Q\nAS7NAM0oJCTEGGPMuHHjTEZGhjHGmF27dpm4uDhjjDGvvvqqmTt3rn37yx+PGzfOTJkyxVRWVppP\nP/3U/PznPzfvvvuuMcaY+Ph4s3TpUmOMMREREWb69OnGGGOKi4vNf//3f5u9e/ea77//3oSFhZnv\nvvvOGGPMqlWrTHx8vL2fAQMGmJKSkhqZv/vuO9OjR49ax/POO++Yhx56yBhjzKxZs8yKFStq3S4h\nIcEMHjzYrFu3zt7/JYcPHzbdu3e3P548ebJZvXq1McaY/Px8c9ddd5n8/Hz7dpfGfPnr3nnnHXP/\n/feb0tJSU1lZaX7961+b9evXG2OM6d27t/nhhx+MMcZ88803ZtGiRbVmBAC4voiICJOdnV2tbcKE\nCWbNmjXGGGMOHTpkwsPDzdGjR83BgwdNaGiofbvJkyeb//3f/zXGGPPll1+an//856aqqqrGdpec\nP3/ehIeHm9zcXGOMMUuXLjWPPvqoMcaYzMxM06NHD/PVV18ZY4w5cOCACQsLM//+97+NMcYsX77c\nPPHEE8aYi/PtlClTjDHGlJSUmF69etn3CbgizhChRSQlJWnJkiWqqKho1OsiIiJksVjUrVs3nT17\nVsOGDZMkdevWTYWFhfbt7r//fkmSn5+fevXqpa+//lo7d+7U3XffbT/LM2bMGH3yySf2v7T16NFD\nHTp0qNFnSUmJOnXqVGsef39/nTx5st7cS5Ys0bhx4/T+++/rF7/4hYYMGaLU1NQa250/f16ZmZl6\n6KGHJEnBwcG6++679be//U2SVFlZqXvvvbfG6z777DP9z//8j2w2mywWi2JjY/Xxxx9LkgICAvTW\nW2/pyJEjuvPOOzVr1qx68wIAWoeKigr97W9/09ixYyVJN9xwg+666y77vHG51atXa8KECZKk8PBw\nnT17VseOHatz356ensrMzLTfXxQeHq5Dhw7Zn7fZbAoPD5ck7dy5U/369dMtt9wi6eIce+le2SlT\npuiVV16RJHXo0EFdu3atth/A1XAPEVrE7bffrl69eumNN95o0HXQl9hsNkmS1WqVJP3Xf/2X/XFl\nZaV9Oz8/P/u/27Vrp5MnT8oYo927dys6OlrSxcsOOnTooBMnTkhSrcWQJHXq1KnOCaO4uLhaX3Xx\n9vbWxIkTNXHiRJWWlurDDz/UwoULdeONN+rHP/6xfbtLxZWvr6+9rX379iouLraP89IxuNzp06e1\nZs0abdq0ScYYVVVV2XMtX75cy5cv18iRIxUcHKykpCT16tWr3swAANd34sQJeXp66rrrrrO3dejQ\nQcePH6+x7eeff65Vq1appKTEfs9PVVXVVfe/du1apaen6/z58zp37py8vb2r9XPJqVOn9OWXX1ab\nY9u1a6dTp06puLhYycnJOnDggCwWi44ePVpvv4AzURChxTzxxBMaOXKkbrjhBnubxWKpVtg05OxL\nbS5/3cmTJ9WxY0d5eXmpb9++Wrp0aaP2dcsttyg4OFiffvqpIiIiqj33ySefqG/fvld9fUlJif71\nr3+pT58+ki4WO6NGjdLOnTu1b9++agVRp06dZLFYdPr0abVr187++oCAgKv2ERgYqMGDB+vhhx+u\n8dyNN96oRYsWSZLeeecdJSYm6osvvqh33AAA19epUydVVlbqzJkz9j+YlZSUyN/fv9p2FRUVevzx\nx7VixQr17dtX586dq3Zva22++uorrV27VmlpaQoKCtIXX3xR5z3AgYGBGjBggF588cUaz8XHxys8\nPFwrV66UJI0ePbopQwVaDJfMoVmZy24E7dy5s8aNG6dXX321Wtv/+3//T8YYHT9+/Kof3M0VN5Ve\n7oMPPpAxRsXFxcrOztZdd92le+65R9nZ2fbT9N98802db+yX8/Dw0BNPPKHf/va3+te//mVvX79+\nvf75z3/WWoRcrry8XDNmzNDOnTvtbQcPHtQ333yju+66S56enqqqqlJZWZmsVqvuuece++V033//\nvbKzs+1F15VjvvR4yJAhSk9P19mzZyVdXBXv3Xff1fHjxzVp0iSVlpZKkkJDQ2Wx8GsOAG2Ft7e3\n+vbtq02bNkmS/vOf/+jrr79Wnz595OnpqcrKSp09e1alpaU6f/68unfvLmOM1q5dK29vb/uy3bXN\nqcXFxercubOCgoJUVlam9957r85lvgcMGKBdu3bZFzjas2ePkpOTJUnHjx/X7bffLkn64osvdPjw\n4XqXCweciTNEaFZXLss5ceJEbdq0yd4+fPhwbd26VUOHDtVPfvITRUVF2U/7X/naupb49PDwUGho\nqGJjY3XixAlNnDhRP/nJTyRJv/3tbzVjxgxduHBBNptNs2fPblDuqKgoGWM0Z84clZeXq6qqSnfc\ncYfWr1+v9u3bX/W1Xbp00apVq7R06VI9//zzMsbI19dXs2fP1p133iljjMLCwhQREaFVq1bpueee\n05w5c/T222/L29tbzz//vIKCgpSfn1/nMbj33nv13XffKSYmRh4eHrrpppv0/PPPy8/PTwMGDFBs\nbKw8PT3l5eWlhQsXNmjMAADXU9vct2DBAj3zzDPatGmTvL29tWjRInXu3FlVVVW68847NXDgQL3+\n+uuaMGGCfvGLX8jf31/Tpk1TRESEfvWrX2nFihW17nfgwIFKTU3VkCFD1KVLFyUlJembb75RYmKi\nYmNjq20bFBSk5557TlOnTlVlZaV8fX01Z84cSdLUqVP1u9/9TkuXLtWwYcM0depUvfzyy7rtttv4\n/iO4JA9ztT+7Szp79qxmzZql4uJiVVRUaOrUqQoJCdHMmTNljFHnzp21ePFieXl5KT09XevWrZPV\natWoUaNq/PIAAOBqFi9erJycHFVWVmrKlCn65JNPlJeXZ19cZfLkyRo4cCBzHAC0UfUWRNu2bbN/\nT8qRI0c0ceJEhYWFadCgQRo2bJheeukldenSRQ888IBiYmKUlpYmT09PxcbGasOGDfX+NR0AAGfZ\ntWuXUlJStHr1apWUlCgmJka9e/dWVFSUBg4caN+uvLycOQ4A2qh6by6Ijo7W5MmTJUlHjhxRly5d\ntHv3bg0ePFjSxWWRMzMzlZubq9DQUNlsNvn4+CgsLEw5OTnNmx4AgGvQq1cv+8Ir7du3V1lZmaqq\nqmrcX8EcBwBtV4PvIRo7dqwKCwu1YsUKTZo0SV5eXpIufi9LYWFhjeWI/fz8VFRU5PjEAAA4iMVi\nsS9fvHnzZg0aNEgWi0Xr16/XG2+8oYCAAM2dO1fHjh1jjgOANqrBBVFqaqr27t2rJ598stpfzuq6\n4q6eK/EkSdnZ2Q3tHgBQj0tfmIjG27Fjh95++22lpKQoLy9PHTt2VEhIiFavXq1ly5bV+P60hsxx\nEvMcADhKc85x9RZEeXl58vf3V5cuXRQSEqKqqirZbDZVVFTI29tbBQUFCgoKUmBgYLW/lhUUFDTo\nCzhdcQLPzs4mVwO5YiaJXI3lirlcMZPk2rnQNDt37tTq1auVkpIiX19f9e7d2/7ckCFDNH/+fEVF\nRenTTz+1tzd0jpNcc55zFFf9fXCktj7Gtj4+iTG2Bc09x9V7D9FXX32lN954Q5J07NgxlZWVqU+f\nPtq+fbskKSMjQ/3791doaKjy8vJUWlqqM2fOaM+ePW36PwYA0PqVlpZqyZIlWrlypf3LkRMSEvTt\nt99KkrKystStWzfmOABow+o9Q/TQQw9p9uzZevjhh3Xu3DnNnz9f3bt311NPPaVNmzYpODhYMTEx\nslqtSkxM1KRJk2SxWBQfHy9fX98mB/sg4zPt+ce/m/z6a1FYWKAPP8+VuXBWzzw1zSkZAADNb9u2\nbSopKdHjjz8uY4w8PDw0cuRIJSUlyWazyWazaeHChfLx8XHoHAcAcB31FkQ+Pj568cUXa7SvWbOm\nRltkZKQiIyMdEiwnb7+yjgQ4ZF+N568D+VJl8d+d1D8AoCWMHj1ao0ePrtH+4IMP1mhz5BwHAHAd\n9V4yBwAAAABtFQURAAAAALdFQQQAAADAbVEQAQAAAHBbFEQAAAAA3BYFEQAAAAC3RUEEAAAAwG3V\n+z1EAACg6V7/Y2qL93lPn7sUcutPW7xfAGiNKIgAAGhG7/39uhbv88zZLymIAKCBuGQOAAAAgNui\nIAIAAADgtiiIAAAAALgtCiIAAAAAbouCCAAAAIDboiACAAAA4LYoiAAAAAC4LQoiAAAAAG6LgggA\nAACA26IgAgAAAOC2KIgAAAAAuC0KIgAAAABui4IIAAAAgNuiIAIAAADgtiiIAAAAALgtz4ZstHjx\nYuXk5KiyslJTpkzRJ598ory8PHXq1EmSNHnyZA0cOFDp6elat26drFarRo0apdjY2GYNDwAAAADX\not6CaNeuXfruu++UmpqqkpISxcTEqHfv3nryySc1cOBA+3bl5eVavny50tLS5OnpqdjYWEVGRqp9\n+/bNOgAAAAAAaKp6C6JevXopNDRUktS+fXuVlZWpqqpKxphq2+Xm5io0NFQ2m02SFBYWppycHA0a\nNMjxqQEAAADAAeq9h8hisei6666TJG3evFmDBg2SxWLR+vXr9cgjjygxMVEnTpzQsWPH5OfnZ3+d\nn5+fioqKmi85AAAAAFyjBt1DJEk7duzQ22+/rZSUFOXl5aljx44KCQnR6tWrtWzZMvXs2bPa9lee\nQapLdnZ2re2FhYWSAhoar1lUnK+oM5+zuFoeyTUzSeRqLFfM5YqZJNfNBQAAGq9BBdHOnTu1evVq\npaSkyNfXV71797Y/N2TIEM2fP19RUVH69NNP7e0FBQU1iqTahIeH19q+7bOv9Z8jDUnXfLy9vOvM\n5wzZ2dkulUdyzUwSuRrLFXO5YibJtXMBAIDGq/eSudLSUi1ZskQrV65Uu3btJEkJCQn69ttvJUlZ\nWVnq1q2bQkNDlZeXp9LSUp05c0Z79uxxyQ8NAABcbvHixRo7dqxGjRqljz/+WEePHlVcXJzGjRun\nJ554QufPn5ckpaenKzY2VmPGjNGWLVucnBoA4Cj1niHatm2bSkpK9Pjjj8sYIw8PD40cOVJJSUmy\n2Wyy2WxauHChfHx8lJiYqEmTJslisSg+Pl6+vr4tMQYAAJqkrpVUx40bp2HDhumll15SWlqaHnjg\nAVZSBYA2qt6CaPTo0Ro9enSN9gcffLBGW2RkpCIjIx2TDACAZlbbSqq7d+/WggULJEkRERFas2aN\nfvzjH7OSKgC0UfVeMgcAQFt1+UqqW7Zs0aBBg1ReXi4vLy9Jkr+/vwoLC1VcXMxKqgDQRjV4lTkA\nANqqHTt2KC0tTSkpKdWudKhrxdSGrqTqLEeOHGmxhTbcYUGPtj7Gtj4+iTHi6iiIAABu7cqVVG02\nmyoqKuTt7a2CggIFBQUpMDCw2hmhhq6k6izBwcEtsrCRq6666EhtfYxtfXwSY2wLmrvY45I5AIDb\nqm0l1T59+igjI0OSlJGRof79+7OSKgC0YZwhAgC4rdpWUk1OTtacOXO0ceNGBQcHKyYmRlarlZVU\nAaCNoiACALitulZSXbNmTY02VlIFgLaJS+YAAAAAuC0KIgAAAABui4IIAAAAgNuiIAIAAADgtiiI\nAAAAALgtCiIAAAAAbouCCAAAAIDboiACAAAA4LYoiAAAAAC4LQoiAAAAAG6LgggAAACA26IgAgAA\nAOC2KIgAAAAAuC0KIgAAAABui4IIAAAAgNuiIAIAAADgtiiIAAAAALgtz4ZstHjxYuXk5KiyslJT\npkzRnXfeqZkzZ8oYo86dO2vx4sXy8vJSenq61q1bJ6vVqlGjRik2Nra58wMAAABAk9VbEO3atUvf\nffedUlNTVVJSopiYGPXu3Vvjxo3TsGHD9NJLLyktLU0PPPCAli9frrS0NHl6eio2NlaRkZFq3759\nS4wDAAAAABqt3kvmevXqpaVLl0qS2rdvr7KyMu3evVuDBw+WJEVERCgzM1O5ubkKDQ2VzWaTj4+P\nwsLClJOT07zpAQAAAOAa1FsQWSwWXXfddZKkLVu2aNCgQSovL5eXl5ckyd/fX4WFhSouLpafn5/9\ndX5+fioqKmqm2AAAAABw7Rp0D5Ek7dixQ2lpaUpJSVFkZKS93RhT6/Z1tV8pOzu71vbCwkJJAQ2N\n1ywqzlfUmc9ZXC2P5JqZJHI1livmcsVMkuvmAgAAjdeggmjnzp1avXq1UlJS5OvrK5vNpoqKCnl7\ne6ugoEBBQUEKDAysdkaooKBAPXv2rHff4eHhtbZv++xr/edIA0fRTLy9vOvM5wzZ2dkulUdyzUwS\nuRrLFXO5YibJtXMBAIDGq/eSudLSUi1ZskQrV65Uu3btJEl9+vRRRkaGJCkjI0P9+/dXaGio8vLy\nVFpaqjNnzmjPnj0u+aEBAAAAAC6p9wzRtm3bVFJSoscff1zGGHl4eCg5OVlz5szRxo0bFRwcrJiY\nGFmtViUmJmrSpEmyWCyKj4+Xr69vS4wBAAAAAJqk3oJo9OjRGj16dI32NWvW1GiLjIysdn8RAAAA\nALiyei+ZAwAAAIC2ioIIAAAAgNuiIAIAAADgtiiIAAAAALgtCiIAgFvbu3evhg4dqg0bNkiSkpKS\nNGLECI0fP17jx4/X559/LklKT09XbGysxowZoy1btjgzMgDAgRr0xawAALRF5eXlSk5OVr9+/aq1\nP/nkkxo4cGC17ZYvX660tDR5enoqNjZWkZGRat++fUtHBgA4GGeIAABuy8fHR6tWrVJAQMBVt8vN\nzVVoaKhsNpt8fHwUFhamnJycFkoJAGhOFEQAALdlsVjk7e1do339+vV65JFHlJiYqBMnTujYsWPy\n8/OzP+/n56eioqKWjAoAaCZcMgcAwGUeeOABdezYUSEhIVq9erWWLVumnj17VtvGGOOkdA1z5MgR\nZWdnt0hfLdWPM7X1Mbb18UmMEVdHQQQAwGV69+5t//eQIUM0f/58RUVF6dNPP7W3FxQU1CiSXElw\ncLDCw8ObvZ/s7OwW6ceZ2voY2/r4JMbYFjR3scclcwAAXCYhIUHffvutJCkrK0vdunVTaGio8vLy\nVFpaqjNnzmjPnj1t+sMHALgTzhABANxWbm6u5s6dq+PHj8tqtSo1NVUJCQlKSkqSzWaTzWbTwoUL\n5ePjo8TERE2aNEkWi0Xx8fHy9fV1dnwAgANQEAEA3FaPHj20devWGu1Dhw6t0RYZGanIyMiWiAUA\naEFcMgcAAADAbVEQAQAAAHBbFEQAAAAA3BYFEQAAAAC3RUEEAAAAwG1REAEAAABwWxREAAAAANwW\nBREAAAAAt0VBBAAAAMBtURABAAAAcFsNKoj27t2roUOHasOGDZKkpKQkjRgxQuPHj9f48eP1+eef\nS5LS09MVGxurMWPGaMuWLc2XGgAAAAAcwLO+DcrLy5WcnKx+/fpVa3/yySc1cODAatstX75caWlp\n8vT0VGxsrCIjI9W+fXvHpwYAAAAAB6j3DJGPj49WrVqlgICAq26Xm5ur0NBQ2Ww2+fj4KCwsTDk5\nOQ4LCgAAAACOVm9BZLFY5O3tXaN9/fr1euSRR5SYmKgTJ07o2LFj8vPzsz/v5+enoqIix6YFAAAA\nAAeq95K52jzwwAPq2LGjQkJCtHr1ai1btkw9e/asto0xpkH7ys7OrrW9sLBQ0tXPSjW3ivMVdeZz\nFlfLI7lmJolcjeWKuVwxk+S6uQAAQOM1qSDq3bu3/d9DhgzR/PnzFRUVpU8//dTeXlBQUKNIqk14\neHit7ds++1r/OdKUdI7j7eVdZz5nyM7Odqk8kmtmksjVWK6YyxUzSa6dCwAANF6Tlt1OSEjQt99+\nK0nKyspSt27dFBoaqry8PJWWlurMmTPas2ePS35oAAAAAIBL6j1DlJubq7lz5+r48eOyWq1KTU1V\nQkKCkpKSZLPZZLPZtHDhQvn4+CgxMVGTJk2SxWJRfHy8fH19W2IMAAAAANAk9RZEPXr00NatW2u0\nDx06tEZbZGSkIiMjHZMMAAAAAJpZky6ZAwAAAIC2gIIIAAAAgNuiIAIAAADgtiiIAAAAALgtCiIA\nAAAAbouCCAAAAIDboiACAAAA4LYoiAAAAAC4LQoiAAAAAG6LgggAAACA26IgAgAAAOC2KIgAAG5t\n7969Gjp0qDZs2CBJOnr0qOLi4jRu3Dg98cQTOn/+vCQpPT1dsbGxGjNmjLZs2eLMyAAAB6IgAgC4\nrfLyciUnJ6tfv372tqVLlyouLk7r16/XTTfdpLS0NJWXl2v58uVau3at1q1bp7Vr1+rUqVNOTA4A\ncBQKIgCA2/Lx8dGqVasUEBBgb8vKylJERIQkKSIiQpmZmcrNzVVoaKhsNpt8fHwUFhamnJwcZ8UG\nADgQBREAwG1ZLBZ5e3tXaysvL5eXl5ckyd/fX4WFhSouLpafn599Gz8/PxUVFbVoVgBA8/B0dgAA\nAFyVMaZR7a7iyJEjys7ObpG+WqofZ2rrY2zr45MYI66OgggAgMvYbDZVVFTI29tbBQUFCgoKUmBg\nYLUzQgUFBerZs6cTU15dcHCwwsPDm72f7OzsFunHmdr6GNv6+CTG2BY0d7HHJXMAAFymT58+ysjI\nkCRlZGSof//+Cg0NVV5enkpLS3XmzBnt2bOnTX/4AAB3whkiAIDbys3N1dy5c3X8+HFZrValpqYq\nJSVFs2bN0saNGxUcHKyYmBhZrVYlJiZq0qRJslgsio+Pl6+vr7PjAwAcgIIIAOC2evTooa1bt9Zo\nX7NmTY22yMhIRUZGtkQsAEAL4pI5AAAAAG6LgggAAACA26IgAgAAAOC2KIgAAAAAuK0GFUR79+7V\n0KFDtWHDBknS0aNHFRcXp3HjxumJJ57Q+fPnJUnp6emKjY3VmDFjtGXLluZLDQAAAAAOUG9BVF5e\nruTkZPXr18/etnTpUsXFxWn9+vW66aablJaWpvLyci1fvlxr167VunXrtHbtWp06dapZwwMAAADA\ntai3IPLx8dGqVasUEBBgb8vKylJERIQkKSIiQpmZmcrNzVVoaKhsNpt8fHwUFhamnJyc5ksOAAAA\nANeo3oLIYrHI29u7Wlt5ebm8vLwkSf7+/iosLFRxcbH8/Pzs2/j5+amoqMjBcQEAAADAca75i1mN\nMY1qv1J2dnat7YWFhZICan2upVScr6gzn7O4Wh7JNTNJ5GosV8zlipkk180FAAAar0kFkc1mU0VF\nhby9vVVQUKCgoCAFBgZWOyNUUFCgnj171ruv8PDwWtu3ffa1/nOkKekcx9vLu858zpCdne1SeSTX\nzCSRq7FcMZcrZpJcOxcAAGi8Ji273adPH2VkZEiSMjIy1L9/f4WGhiovL0+lpaU6c+aM9uzZ45If\nGgAAAADgknrPEOXm5mru3Lk6fvy4rFarUlNTlZKSolmzZmnjxo0KDg5WTEyMrFarEhMTNWnSJFks\nFsXHx8vX17clxgAAAAAATVJvQdSjRw9t3bq1RvuaNWtqtEVGRioyMtIxyQAAAACgmTXpkjkAAAAA\naAsoiAAAAAC4LQoiAAAAAG6LgggAAACA26IgAgAAAOC2KIgAAAAAuC0KIgAAAABui4IIAAAAgNui\nIAIAAADgtiiIAAAAALgtCiIAAAAAbouCCAAAAIDboiACAAAA4LYoiAAAAAC4LQoiAAAAAG6LgggA\nAACA2/J0dgAAAFxNVlaWHnvsMf3sZz+TMUa33nqrHn30Uc2cOVPGGHXu3FmLFy+Wl5eXs6MCAK4R\nBREAALX47//+by1dutT+OCkpSXFxcYqMjNRLL72ktLQ0jR071okJAQCOwCVzAADUwhhT7XFWVpYi\nIiIkSRF1wLC2AAAgAElEQVQREcrMzHRGLACAg3GGCACAWuzfv1/Tpk3TyZMnNX36dJ09e9Z+iZy/\nv7+KioqcnBAA4AgURAAAXOHmm2/WjBkzNHz4cB06dEjjx4/XhQsX7M9fefYIANB6URABAHCFoKAg\nDR8+XJJ04403KiAgQHl5eaqoqJC3t7cKCgoUGBjo5JR1O3LkiLKzs1ukr5bqx5na+hjb+vgkxoir\noyACAOAKW7du1cGDBzVjxgwVFxeruLhYI0eO1Pbt2/WLX/xCGRkZ6t+/v7Nj1ik4OFjh4eHN3k92\ndnaL9ONMbX2MbX18EmNsC5q72GtSQcRypACAtmzw4MFKTEzUQw89JGOMnnvuOYWEhOjpp5/Wpk2b\nFBwcrJiYGGfHBAA4QJPPELEcKQCgrbLZbFq5cmWN9jVr1jghDQCgOTW5IKptOdIFCxZIurgc6Zo1\nayiIAABoYaaqUoUFP2jfvn3N3tfBgwfVrl07++OuXbvKarU2e78A4EhNLohYjhQAANdz5uRR7fi+\nTJkHd7RMh+8flSSVnSzUm4t+qW7durVMvwDgIE0qiBy5HGldN0kVFhZKCmhKPIepOF/hcit2uFoe\nyTUzSeRqLFfM5YqZJNfNBVxyfYdA+Xb6kbNjAECr0KSCyJHLkda1Isa2z77Wf440JZ3jeHt5u9SK\nHa64gogrZpLI1ViumMsVM0munQsAADSepSkv2rp1q5YtWyZJNZYjleTyy5ECAAAAgNTEM0QsRwoA\nAACgLWhSQcRypAAAAADagiZdMgcAAAAAbQEFEQAAAAC3RUEEAAAAwG1REAEAAABwWxREAAAAANwW\nBREAAAAAt0VBBAAAAMBtURABAAAAcFsURAAAAADcFgURAAAAALdFQQQAAADAbVEQAQAAAHBbFEQA\nAAAA3JanswMAAIDWz1RV6cCBA07pu2vXrrJarU7pG0DrR0EEAACuWfnpIs1bfUzXd9jfov2WnSzU\nm4t+qW7durVovwDaDgoiAADgENd3CJRvpx85OwYANAoFEQAAaLWa+1K9gwcPql27djXauUwPaDso\niK7CVFVp3759zo7Bmy4AAHVokUv13j9a7SGX6QFtCwXRVZSdPq64pD/p+g6BzsvAmy4AAFfFpXoA\nrgUFUT14kwUAAADaLr6HCAAAAIDboiACAAAA4LYoiAAAAAC4LYffQ7Ro0SLl5ubKw8NDs2fP1p13\n3unoLgAAcArmOABoexxaEO3evVsHDx5Uamqq9u/frzlz5ig1NdWRXQAA4BTMcQDQNjm0IPryyy91\n7733Srr43TmnTp3SmTNnZLPZHNkNAAAtjjkOzlZZWan9+x37fUt1ffHs5fg+RLR1Di2Ijh07pjvu\nuMP+uFOnTjp27FirnizKThY6vf9L38DdkDetluaKmSRyNZYr5nLFTJLr5kLza01znDPmrvLTxyV5\nuEW/l8/NLenAgQOa+cJ7+i9fPwfvOafOZ86WHteSJx/QLbfc4uA+W447vG83dYx8z+VFzfo9RMaY\nerfJzs6utT160M8V7ehAjRbn7AB2p0+f1s0336zTp087O0o1rphJIldjuWIuV8wkuW4utLyGzHGS\nNP+XNzRzkiu1dH+X3O1m/arF3wsCAgL0xu8nt2ifl7Tm9z13eN9u6hjr+hzubhxaEAUGBurYsWP2\nx4WFhercuXOd24eHhzuyewAAmk1j5ziJeQ4AWgOHLrvdr18/ZWRkSJL+8Y9/KCgoSNdff70juwAA\nwCmY4wCgbXLoGaKePXuqe/fuGjt2rKxWq+bNm+fI3QMA4DTMcQDQNnmYhl4EDQAAAABtjEMvmQMA\nAACA1oSCCAAAAIDboiACAAAA4Laa9XuIrmbRokXKzc2Vh4eHZs+erTvvvNNZUSRJWVlZeuyxx/Sz\nn/1Mxhjdeuutmjt3rlMz7d27V/Hx8ZowYYIefvhhHT16VDNnzpQxRp07d9bixYvl5eXl1ExJSUnK\ny8tTp06dJEmTJ0/WwIEDWzSTJC1evFg5OTmqrKzUlClTdOeddzr9WNWW65NPPnHq8Tp79qxmzZql\n4uJiVVRUaOrUqQoJCXH6saotV0ZGhkv8bEnSuXPndP/992v69Onq3bu304/XlZl27drlMscKF7na\nHHc1DZ1r0tPTtW7dOlmtVo0aNUqxsbG6cOGCZs2apSNHjshqtWrRokW64YYbtHfvXs2fP18Wi0W3\n3nqrnn32WUnS66+/royMDFksFk2bNq3Ffk4bOke0xjE25n29NY7vkoa8D7fW8dX2GfTRRx9tU2OU\npPT0dKWkpMjT01MJCQm69dZbXWeMxgmysrLMr3/9a2OMMd99950ZM2aMM2JUs2vXLpOQkODsGHZl\nZWVmwoQJ5tlnnzXr1683xhgza9Ysk5GRYYwx5g9/+IN56623XCLTZ5991qI5rvS3v/3N/OpXvzLG\nGHPixAkzaNAgM2vWLLN9+3ZjjHOO1dVyOfN4ffDBB+b11183xhiTn59vIiMjXeJY1ZXL2T9bl/zh\nD38wsbGx5p133nH672FdmVzlWME157i6NHSuKSsrM8OGDTOlpaXm7Nmz5v777zcnT54077zzjlmw\nYIExxpi//OUv5vHHHzfGGBMXF2fy8vKMMcb85je/MV988YU5dOiQGTlypLlw4YIpLi42UVFRpqqq\nqtnH2NA5orWOsaHv6611fJfU9z7cmsdX22fQtjbGEydOmMjISFNWVmaKiorMM88841JjdMolc19+\n+aXuvfdeSVLXrl116tQpnTlzxhlRqjEutOCej4+PVq1apYCAAHtbVlaWIiIiJEkRERHKzMx0eiZX\n0KtXLy1dulSS1L59e5WVlWn37t0aPHiwJOccq7pyVVVVOfXnLDo6WpMnX/yW8yNHjqhLly4ucaxq\nyyW5xu/kv//9bx04cEADBw6UMUa7d+926u9hbZkk1zhWuMhV57jaNHSuyc3NVWhoqGw2m3x8fBQW\nFqbs7OxqY+3bt6/27Nmj8+fP6/Dhw+revbskafDgwcrMzNSuXbs0YMAAWa1W+fn56Uc/+pG+++67\nZh9jQ+eI1jrGhr6vt9bxSQ17H27N45Nqvoe3td/DzMxM9evXT9ddd50CAgK0YMEClxqjUwqiY8eO\nyc/Pz/64U6dO1b7921n279+vadOm6eGHH3bKh5zLWSwWeXt7V2srLy+3X5rj7++voqIip2eSpPXr\n1+uRRx5RYmKiSkpKWjTTpVzXXXedJGnLli0aNGiQ04/Vlbk2b96sQYMGyWKxOP14SdLYsWP11FNP\nKSkpySWO1ZW5Zs+eLUnasGGD04/V4sWLNWvWLPtjVzhel2fy8PCQ5BrHChe56hxXm4bMNYWFhSou\nLq42Jj8/PxUVFVUbq4eHhzw8PHTs2DF17Nix2rZX20dza8gc0drHKF39fb21j6++9+HWPj6p5mfQ\ns2fPtqkx5ufnq7y8XFOnTtW4ceP05ZdfutQYnXYP0eVc4S+bN998s2bMmKHhw4fr0KFDGj9+vD7+\n+GN5errEIarBFY6ZJD3wwAPq2LGjQkJCtHr1ar366qt65plnnJJlx44dSktLU0pKiiIjI+3tzj5W\nO3bs0Ntvv62UlBTl5eW5xPFKTU3V3r179eSTT1Y7Ps4+Vpfnmj17ttOP1bvvvqtevXopODi41ued\ncbyuzGSMcanfQ9Tk7N+ra1FX9qu1e3h4NGjMLX1cGjtHtLYxNvZ9vbWMr6nvw61lfFLtn0EvXLhQ\nb47WNEZjjEpKSvTaa68pPz9f48ePd6mfU6ecIQoMDKz217LCwkJ17tzZGVHsgoKCNHz4cEnSjTfe\nqICAABUUFDg105VsNpsqKiokSQUFBQoMDHRyIql3794KCQmRJA0ZMkT79u1zSo6dO3dq9erVev31\n1+Xr6+syx+rKXM4+Xnl5efrhhx8kSSEhIaqqqnKJY3VlrsrKSnXr1s3pP1uff/65tm/frjFjxmjL\nli1avny5rr/+eqcer8szbd68WStWrJAxxunHCv/HFee4xrjyPSEoKEiBgYHV/sJ6efulsV64cMF+\nc/TlZymvto+W+v2pb45ozWNsyPt6ax5fQ96HW/P4pNo/g546dapNjTEgIEA9e/aUxWLRjTfeKJvN\n5lI/p04piPr166eMjAxJ0j/+8Q8FBQXp+uuvd0YUu61bt2rZsmWSpOLiYh0/flxBQUFOzXSlPn36\n2I9bRkaG+vfv7+REUkJCgr799ltJ0u7du9WtW7cWz1BaWqolS5Zo5cqVateunSTXOFa15XL28frq\nq6/0xhtvSLp4WU9ZWZn69Omj7du3S3Lesaot17PPPuv0n62XXnpJmzdv1saNGxUbG6vp06c7/Xhd\nnmnUqFGaNm2a3nrrLacfK/wfV5zjGqO298/Q0FDl5eWptLRUZ86c0Z49exQeHq5+/frZfx8++eQT\n3X333bJarfrJT36inJwcSdJHH32k/v376+6779bnn3+uCxcuqKCgQIWFhfrpT3/a7ONp6BzRWsfY\n0Pf11jq+hr4Pt9bxSTU/gxYXF2vkyJFtaoz9+vXTrl27ZIzRiRMnXO7n1MM46Vz+H/7wB2VlZclq\ntWrevHm69dZbnRHD7syZM0pMTNTJkydljNH06dOdWnDk5uZq7ty5On78uKxWqzp06KCUlBTNmjVL\nFRUVCg4O1qJFi2S1Wp2aKSEhQStWrLBX+gsXLqx23WZL2LRpk5YtW6Yf//jH9lOoycnJmjNnjtOO\nVV25Ro4cqXXr1jnteJ07d06zZ8/W0aNHde7cOcXHx6t79+566qmnnHqsrsw1Y8YMXX/99fr973/v\n1J+tyy1btkw33HCD7rnnHqcfryszBQcHu9SxguvNcXVpzFzz0Ucf6fXXX5fFYlFcXJzuu+8+VVVV\nac6cOTp48KB8fHz0+9//XkFBQdq/f7/mzZsnY4x69Oihp59+WtLFe93S09Pl4eGhJ554QnfffXez\nj7Exc0RrHGNj3tdb4/guV9/7cGsdX22fQUNCQvT000+3mTFKF38XN2/eLA8PD02bNk133HGHy/w/\nOq0gAgAAAABnc8olcwAAAADgCiiIAAAAALgtCiIAAAAAbouCCAAAAIDboiACAAAA4LYoiAAAAAC4\nLQoiAAAAAG6LgggAAACA26IgAgAAAOC2KIgAAAAAuC0KIgAAAABui4IIAAAAgNuiIAIAAADgtiiI\nAAAAALgtCiIAAAAAbouCCAAAAIDboiACAAAA4LYoiAAAAAC4LQoiAAAAAG6LgggAAACA26IgAgAA\nAOC2KIgAAAAAuC0KIgAAAABui4IIAAAAgNuiIAIAAADgtiiIAAAAALgtCiIAAAAAbouCCAAAAIDb\noiACAAAA4LYoiNBqvfvuu7r//vtVVVVVrX3y5Mlavnx5s/T5/fff67bbblN0dLSGDx+uqKgo/eY3\nv9Hp06frfe2TTz6pL774Qt9//71CQ0MlSefOnVN6enqzZAUAtA1ZWVmKjIx02P7i4uLUv39/RUdH\nKyoqSvfff7/WrVtX5/YTJ07Uv/71L4f1D7gaCiK0Wg8++KA6duyo9evX29t27Nihw4cP61e/+pVD\n+jDG1Gjz9vbWtm3b9OGHH+rDDz+Uh4eHXnvttXr39cILL2jAgAGSJA8PD0nS3//+dwoiAEC9Ls0b\njvLUU09p27Zt2r59u/74xz9q7dq1+stf/lLrtm+88YZuu+02h/YPuBIKIrRqzzzzjFasWKETJ06o\noqJCycnJmjdvnry8vCRJH330kUaMGKGhQ4dqypQpOnXqlCSpvLxcCQkJioqK0pAhQ/TCCy/Y9/nL\nX/5Sr7zyiu677z79/e9/v2r/Hh4euuuuu3To0CFJ0ubNm/Xoo4/an9+8ebO9OPvlL3+pbdu22Z8r\nLCzU448/rpycHI0fP94xBwQA0KZVVFTo2WefVVRUlO677z4lJyfb/3i3c+dODRo0SPfdd582bdqk\nu+66S0eOHKl3nwEBAYqKitJf//pXSdLgwYO1YsUKRUVFKT8/X4MHD1ZOTo6ki1dnDBs2TFFRUXrq\nqad0/vx5SRf/IHlpvp08ebJKSkqa6QgAjkdBhFbt1ltv1YgRI/TSSy9pzZo1uu2229SvXz9J0sGD\nB5WUlKRXXnlFH3/8sXr27Kn58+dLkt58802dO3dO27dv19tvv61Nmzbpm2++se/3n//8pz744AP7\npW11KS0t1fbt2zVkyBB7W0P/ihcYGKjHHntM4eHhV71UAQCAS/74xz+qoKBAH374od5++2199dVX\nev/991VVVaWkpCT97ne/0wcffKD//Oc/Ki8vb/B+L1y4IG9vb/vjo0ePavv27frRj35kb8vPz9fi\nxYu1YcMGbd++XWfPntWbb76pQ4cO6emnn9bLL7+sjz/+WHfffbfmzZvn0HEDzcnT2QGAa5WQkKDo\n6GhduHBB77zzjr39iy++UL9+/XTLLbdIksaMGaNBgwZJkqZMmaJz585Jkjp06KCuXbvq0KFD9gJo\n4MCBdfZXUVGh6OhoGWN09OhR3XHHHfb9AgDQnD7//HNNnjxZHh4e8vHx0YgRI/TXv/5Vt99+u86f\nP6977rlH0sX7hN54440G7fPQoUPKyMjQsmXL7G21zWt//etfFRYWpoCAAEkXLwX39PRUamqq7r77\nbnXt2lXSxfn2lVdekTHG4Zf6Ac2Bggitnq+vr2JiYlRYWKigoCB7+6lTp/Tll18qOjpa0sX7gdq1\na6dTp06puLhYycnJOnDggCwWi44ePVptcYYOHTrU2d+le4gu2bZtm0aPHl2tDQCA5nD8+HG1b9/e\n/rh9+/YqLi7WqVOnqrUHBgbWeh/sJUuWLNGKFStUVVWlDh06aNasWbrjjjvsz9c2D544cULt2rWz\nP750Run06dPavXt3tfm2Q4cOOnHihPz8/Jo+WKCFUBChTfDy8pKnZ/Uf58DAQA0YMEAvvvhije3j\n4+MVHh6ulStXSpJGjx7d5L6jo6O1YMEC/fvf/5bVaq1WWF26ZwkAAEcICAiodn9OSUmJAgIC5Ovr\nqzNnztjbi4qKrnp2ZubMmRoxYkSj+u7UqZP27Nljf1xaWqpz584pMDBQffv21dKlSxu1P8BVcA8R\n2qwBAwZo165dys/PlyTt2bNHycnJki7+he3222+XdPHSusOHD6usrKxB+73yL267d+/W+fPnFRwc\nrM6dO+vAgQOqqKhQWVmZPvroo6vuw8vLq0FLdgMAIF28lG3Lli2qqqpSWVmZ0tPTNWjQIN18882q\nrKzU7t27JUlvvfWWwy9XGzhwoPbs2aMjR47IGKNnn31WaWlpuueee5SdnW1fYOibb77R888/79C+\ngebEGSK0WUFBQXruuec0depUVVZWytfXV3PmzJEkTZ06Vb/73e+0dOlSDRs2TFOnTtXLL7+s2267\nrd4J5MKFC9UuC2jfvr1WrVql9u3bq2/fvrrtttsUFRWlG264QUOHDtWuXbskVV9s4dK/w8PD9eKL\nL6p///7auXNncxwGAEAbEhcXp8OHD+u+++6TxWLR8OHDNWzYMEnSs88+q6efflodOnTQhAkTZLFY\nap3T6pvnrnz+0uOgoCAtWLBA48ePl9VqVWhoqCZMmCBvb2/99re/1YwZM3ThwgXZbDbNnj3bQSMG\nmp+HudoFpnXYsmWL3nvvPXl4eMgYo3/84x/atm2bZs6cKWOMOnfurMWLF9uXPgYAwFXt3btX8fHx\nmjBhgh5++GH98MMPmj17ti5cuCAvLy8tWbJE/v7+Sk9P17p162S1WjVq1CjFxsY6OzpQp/LycoWF\nhWn37t3y9fV1dhzApTWpILrc7t27tX37dpWVlSkiIkKRkZF66aWX1KVLF40dO9ZROQEAcLjy8nJN\nmzZNN998s372s5/p4Ycf1qxZszRw4EANHz5cGzZs0A8//KDp06crJiZGaWlp8vT0VGxsrDZs2FDt\nJnbA2WJjYzVp0iRFR0dry5Yt+uMf/6j333/f2bEAl3fN9xC99tprmjZtmrKyshQRESFJioiIUGZm\n5jWHAwCgOfn4+GjVqlX2ZYSli5cdXboEyc/PTyUlJcrNzVVoaKhsNpt8fHwUFhZm/6JKwFXMnj1b\nq1atUlRUlFJTU/X73//e2ZGAVuGa7iH6+9//ri5dusjf31/l5eX2S+T8/f1VVFTkkIAAADQXi8VS\n7csoJem6666TJFVVVelPf/qTpk+frmPHjlVbPtjPz495Di4nLCxM7733nrNjAK3ONRVEmzdv1siR\nI2u0N/QqvOzs7GvpHgBwmfDwcGdHaDOqqqo0c+ZM9enTR717965x2RHzHAC0rOac466pIMrKytK8\nefMkSTabTRUVFfL29lZBQYECAwMbtA9XnMCzs7PJ1UCumEkiV2O5Yi5XzCS5di44TlJSkm655RZN\nmzZN0sXvNbv8jFBBQYF69uzZoH254s9LQ7nqz3tjtPYxtPb8UvUx7Nu3T7/+/Q75dvpRs/ZZeiJf\nq2bdq27dul3zvtra/0Fr1NxzXJPvISosLJTNZrN/GWafPn2UkZEhScrIyFD//v0dkxAAgBaUnp4u\nb29vzZgxw97Wo0cP5eXlqbS0VGfOnNGePXta9YcLAMD/afIZoqKiIvn7+9sfx8fH6+mnn9bGjRsV\nHBysmJgYhwQEAKC55Obmau7cuTp+/LisVqtSU1NVVVUlHx8fxcXFycPDQz/96U81b948JSYmatKk\nSbJYLIqPj2cpYwBoI5pcEHXv3l2rV6+2P+7cubPWrFnjkFAAALSEHj16aOvWrQ3aNjIyUpGRkc2c\nCADQ0q552W0AAAAAaK0oiAAAAAC4LQoiAAAAAG6LgggAAACA26IgAgAAAOC2rumLWQG4t8rKSu3f\nv79Z9n3w4EG1a9fuqtt07dpVVqu1WfoHAADugYIIQJPt379fcUl/0vUdApung/eP1vlU2clCvbno\nlw75FnIAAOC+KIgAXJPrOwTKt9OPnB0DAACgSSiIAKARKisrtW/fPqf1z2WCAAA4FgURADTC4cOH\nFZ+8rfkuE7wKLhMEAMDxKIgAoJG4TBAAgLaDZbcBAAAAuC0KIgAAAABui4IIAAAAgNuiIAIAAADg\ntiiIAAAAALgtCiIAAAAAbouCCAAAAIDbavL3EKWnpyslJUWenp5KSEjQrbfeqpkzZ8oYo86dO2vx\n4sXy8vJyZFYAAAAAcKgmnSEqKSnRa6+9ptTUVK1atUp//vOftXTpUsXFxWn9+vW66aablJaW5uis\nAAAAAOBQTSqIMjMz1a9fP1133XUKCAjQggULlJWVpYiICElSRESEMjMzHRoUAAAAABytSZfM5efn\nq7y8XFOnTtXp06c1ffp0nT171n6JnL+/v4qKihwaFAAAAAAcrUkFkTHGftlcfn6+xo8fL2NMtecb\nKjs7uykRmh25Gs4VM0nkaqym5Dp48GAzJGm4vLw8nT592qkZWpo7jhkAgObUpIIoICBAPXv2lMVi\n0Y033iibzSZPT09VVFTI29tbBQUFCgwMbNC+wsPDmxKhWWVnZ5OrgVwxk0Suxmpqrnbt2knvH22G\nRA1zxx13qFu3bi3ap7OLwLrG7KqFdmuwd+9excfHa8KECXr44Yd19OjRWhcJSk9P17p162S1WjVq\n1CjFxsY6OzoAwAGadA9Rv379tGvXLhljdOLECZWVlalPnz7avn27JCkjI0P9+/d3aFAAABytvLxc\nycnJ6tevn72ttkWCysvLtXz5cq1du1br1q3T2rVrderUKScmBwA4SpMKoqCgIA0bNkyjR4/Wr3/9\na82bN08JCQl69913NW7cOJ06dUoxMTGOzgoAgEP5+Pho1apVCggIsLfVtkhQbm6uQkNDZbPZ5OPj\no7CwMOXk5DgrNgDAgZr8PUSjR4/W6NGjq7WtWbPmmgMBANBSLBaLvL29q7WVl5dXWySosLBQxcXF\n8vPzs2/j5+fH4kEA0EY0uSAC4BoqKyu1f//+a9rHwYMHL94P1EgHDhy4pn4BV1fXIkFtYfGghmrt\n+aXWP4bWnl/6vzG05H2YjlyEpi39H6AmCiKgldu/f7/ikv6k6zs0bCGTOjVhcYTiw/+S/w23XVu/\ngIux2WzVFgkKCgpSYGBgtTNCBQUF6tmzZ4P254oLqTSUqy4E0xitfQytPb9UfQwtuRiPoxbeaWv/\nB61RcxdzFERAG3B9h0D5dvpRi/dbdrKgxfsEmlufPn2UkZGhESNG2BcJCg0N1dy5c1VaWioPDw/t\n2bNHc+bMcXZUAIADUBABANxWbm6u5s6dq+PHj8tqtSo1NVUpKSmaNWuWNm7cqODgYMXExMhqtSox\nMVGTJk2SxWJRfHy8fH19nR0fAOAAFEQAALfVo0cPbd26tUZ7bYsERUZGKjIysiViAQBaUJOW3QYA\nAACAtoCCCAAAAIDboiACAAAA4LYoiAAAAAC4LQoiAAAAAG6LgggAAACA26IgAgAAAOC2KIgAAAAA\nuC0KIgAAAABui4IIAAAAgNuiIAIAAADgtiiIAAAAALgtCiIA+P/t3X9UlHX+9/HXgECC+IsfFv7a\nstDusDJuN41IYV3Ntm+7tGmmYLa1neOPtF8mStkutWthyXKWzNigc8q7JY3VzFPgaTu5eighKIvu\n1BVp1uTmp4IoKArX/YfH2URAHGaumWGej7/gmvH6vC4+n5nxPdfnuj4AAMBrURABAAAA8Fr97PlH\nRUVFWrZsma677joZhqGxY8fqkUce0fLly2UYhsLCwpSWliY/Pz9H5wUAAAAAh7GrIJKkn//858rI\nyLD9vnLlSiUlJWn69OlKT09XXl6e5syZ45CQAAAAAOAMdk+ZMwzjgt+LiooUFxcnSYqLi1NhYWHv\nkgEAAACAk9l9hqi8vFyLFi1SY2OjFi9erFOnTtmmyIWEhKi2ttZhIQEAAADAGewqiEaPHq0lS5Zo\n5syZOnz4sObPn6+zZ8/aHu949qg7JSUl9kRwOnL1nDtmkrwnl9Vqdej+PElZWZmamppcHcNU3njM\nAEX9BKcAAB+kSURBVAA4k10F0bBhwzRz5kxJ0siRIxUaGqqysjK1trbK399f1dXVCg8P79G+oqOj\n7YngVCUlJeTqIXfMJHlXruDgYGl7lUP36SmioqIUGRlpapuuLkC7OmZ3/QIAAAB3Z9c1RB9++KEy\nMzMlSfX19aqvr9e9996r/Px8SVJBQYFiY2MdlxIAAAAAnMCuM0Tx8fF66qmn9MADD8gwDP3xj3/U\nuHHjtGLFCm3atEkRERFKSEhwdFYAAAAAcCi7CqKgoCBt2LDhou05OTm9DgQAAAAAZrH7LnMAAPRV\nzc3NWrFihRobG3XmzBktXrxY1157LQuQAx7CaG9XRUWFQ/ZltVrPXa/bjTFjxsjX19ch7cF8FEQA\nAHSwZcsWXXPNNXriiSdUU1OjBx98UDfffLMSExM1Y8YMFiAH3FxLU61WZ9UpcFC5Y3bYzc2Lmhtr\n9M6auabf5AeOQ0EEAEAHQ4cO1f79+yVJjY2NGjp0qIqLi5Wamirp3ALkOTk5FESAGwscFK4BQ4a7\nOgY8gF13mQMAoC+bOXOmqqqqNH36dM2fP18rVqxQS0sLC5ADQB/EGSIAADrYtm2brrzySmVlZWn/\n/v1KSUm54PG+sAB5T3l6fsnzj8HT80v/PQZXr+XmLJ6waHZfGEfOQkEEAEAHpaWltvX0xo4dq+rq\navXv37/PLEDeU+66yPXl8PRj8PT80oXH0FcXE3fFQuGXw9PHkbOLOabMAQDQwejRo/X1119Lko4c\nOaLAwEDddtttLEAOAH0QZ4gAAOjg/vvv16pVq5SUlKS2tja98MILuvrqq1mAHAD6IAoiAAA6CAwM\n1F/+8peLtrMAOQD0PUyZAwAAAOC1KIgAAAAAeC0KIgAAAABei4IIAAAAgNeiIAIAAADgtSiIAAAA\nAHgtCiIAAAAAXouCCAAAAIDXoiACAAAA4LUoiAAAAAB4rV4VRKdPn9Yvf/lLbd26VVVVVUpKSlJi\nYqKeeOIJnTlzxlEZAQAAAMApelUQrV+/XoMHD5YkZWRkKCkpSRs3btSoUaOUl5fnkIAAAAAA4Cx2\nF0SHDh1SRUWFpkyZIsMwVFxcrLi4OElSXFycCgsLHRYSAAAAAJzB7oIoLS1NycnJtt9bWlrk5+cn\nSQoJCVFtbW3v0wEAAACAE/Wz5x9t3bpVEydOVERERKePG4bR432VlJTYE8HpyNVz7phJ8p5cVqvV\nofvzJGVlZWpqanJ1DFN54zEDAOBMdhVEO3fu1I8//qgdO3aourpafn5+CgwMVGtrq/z9/VVdXa3w\n8PAe7Ss6OtqeCE5VUlJCrh5yx0ySd+UKDg6Wtlc5dJ+eIioqSpGRkaa26eoCtKtjdtcvAAAAcHd2\nFUTp6em2nzMzMzVixAiVlpYqPz9f99xzjwoKChQbG+uwkAAAAADgDA5bh2jp0qXaunWrEhMTdfz4\ncSUkJDhq1wAAAADgFHadIfqpJUuW2H7Oycnp7e4AAAAAwDQOO0MEAAAAAJ6GgggAAACA16IgAgAA\nAOC1KIgAAAAAeC0KIgAAAABeq9d3mQMAoC/atm2bsrOz1a9fPy1dulRjx47V8uXLZRiGwsLClJaW\nJj8/P1fHBAD0EmeIAADooKGhQa+99ppyc3P1xhtv6J///KcyMjKUlJSkjRs3atSoUcrLy3N1TACA\nA1AQAQDQQWFhoWJiYtS/f3+FhoYqNTVVRUVFiouLkyTFxcWpsLDQxSkBAI7AlDkAADo4cuSIWlpa\ntHDhQjU1NWnx4sU6deqUbYpcSEiIamtrXZwSAOAIFEQAAHRgGIZt2tyRI0c0f/58GYZxweM9VVJS\n4oyIpvH0/JLnH4On55f+ewxWq9XFSZyjrKxMTU1Nro7Rrb4wjpyFgggAgA5CQ0M1YcIE+fj4aOTI\nkQoKClK/fv3U2toqf39/VVdXKzw8vEf7io6OdnJa5ykpKfHo/JLnH4On55cuPIbg4GBpe5WLEzle\nVFSUIiMjXR2jS54+jpxdzHENEQAAHcTExGjPnj0yDEPHjh1Tc3OzJk+erPz8fElSQUGBYmNjXZwS\nAOAInCECAKCDYcOGacaMGZo9e7YsFotWr16tqKgoPfPMM9q0aZMiIiKUkJDg6pgAAAegIAIAoBOz\nZ8/W7NmzL9iWk5PjojQAAGdhyhwAAAAAr0VBBAAAAMBrMWUOgEcy2ttVUVFheruVlZXiuyQAAPoO\nCiIAHqmlqVars+oUOKjc1Hbrf9yvkBHXm9omAABwHrsKolOnTik5OVn19fVqbW3VwoULNW7cOC1f\nvlyGYSgsLExpaWm2Fb0BwBkCB4VrwJDhprbZ3FhtansAAMC57CqIPv30U40fP14PP/ywKisr9dBD\nD+mWW25RYmKiZsyYofT0dOXl5WnOnDmOzgt0q62tTeXl5bJarecWfzPRmDFj5Ovra2qbAAAA6B27\nCqK77rrL9nNlZaWuuuoqFRcXKzU1VZIUFxennJwcCiKYrry8XEkr31XgoHBTV8JubqzRO2vmuvUq\n1QAAALhYr64hmjNnjmpqavT666/rd7/7nW2KXEhIiGprax0SELhcrphGBQAAAM/Uq4IoNzdX+/bt\n09NPPy3DMGzbf/ozAAAAALgruwqisrIyhYSE6KqrrtK4cePU3t6uoKAgtba2yt/fX9XV1QoPD+/R\nvkpKSuyJ4HTk6jl3ymS1Wl3WdllZmZqami75PEf/vVx5zDBfT8cZAADoGbsKoi+//FKVlZVatWqV\n6urq1NzcrNjYWOXn5+uee+5RQUGBYmNje7Sv6OhoeyI4VUlJCbl6yN0yBQcHm3rt0E9FRUVd8hoi\nZ/y9XHnMMF9X48ydvpgAAMCT2FUQPfDAA1q1apXmzZun06dP6w9/+INuuOEGPfPMM9q0aZMiIiKU\nkJDg6KwAAAAA4FB2FUQBAQF69dVXL9qek5PT60AAAAAAYBYfVwcAAAAAAFehIAIAAADgtSiIAAAA\nAHgtCiIAAAAAXouCCAAAAIDXoiACAAAA4LUoiAAAAAB4LQoiAAAAAF7LroVZAQAA0De0tbWpvLzc\nafu3Wq0KDg6WJFVUVDitHcBeFEQAAABerLy8XEkr31XgoHDnNbK9SpJU/+P3ChlxvfPaAexAQQQA\nQBdOnz6tu+++W4sXL9akSZO0fPlyGYahsLAwpaWlyc/Pz9URAYcIHBSuAUOGO72d5sZqp7cBXC6u\nIQIAoAvr16/X4MGDJUkZGRlKSkrSxo0bNWrUKOXl5bk4HQDAESiIAADoxKFDh1RRUaEpU6bIMAwV\nFxcrLi5OkhQXF6fCwkIXJwQAOAIFEQAAnUhLS1NycrLt95aWFtsUuZCQENXW1roqGgDAgbiGCACA\nDrZu3aqJEycqIiKi08cNw+jxvkpKShwVyyU8Pb/k+cfg7PxWq9Wp+/cGZWVlampqcnWMbnn668CZ\nKIgAAOhg586d+vHHH7Vjxw5VV1fLz89PgYGBam1tlb+/v6qrqxUe3rM7ckVHRzs5rfOUlJR4dH7J\n84/BjPzBwcG2u8DBPlFRUYqMjHR1jC71hdeBM1EQAQDQQXp6uu3nzMxMjRgxQqWlpcrPz9c999yj\ngoICxcbGujAhAMBRuIYIAIAeWLp0qbZu3arExEQdP35cCQkJro4EAHAAzhABANCNJUuW2H7Oyclx\nYRIAgDPYXRClpaWptLRUbW1tevTRRzV+/HgWrAMAAADgUewqiPbs2aODBw8qNzdXDQ0NSkhI0KRJ\nk5SYmKgZM2YoPT1deXl5mjNnjqPzwgO0tbWpvLzcJW1XVFS4pF0AAAB4JrsKookTJ+rGG2+UJA0c\nOFDNzc0qLi5WamqqpHML1uXk5FAQeany8nIlrXxXgYN6dgcmR6r/8XuFjLje9HYBAADgmewqiHx8\nfNS/f39J0vvvv6+pU6dq9+7dLFgHm8BB4RowZLjp7TY3VpvepiQZ7e09OjtltVrP3d7UgTgrBgAA\nYL9e3VThk08+UV5enrKzszV9+nTb9r6wYB25eq5jJm9c4K2lqVars+oUOKgHUwUdvNYDZ8W8iycs\n/gcAgCexuyDatWuXsrKylJ2drQEDBigoKKjPLFjnrotXuWOuzjJ56wJv3nZWDK7R1eJ/7vhlCQAA\nnsCudYhOnDihtWvXasOGDbbpP5MnT1ZBQYEksWAdAAAAAI9g1xmijz76SA0NDXr88cdlGIYsFote\nfvllpaSk6L333lNERAQL1gEAAABwe3YVRLNnz9bs2bMv2s6CdQAAAAA8Sa9uqgD3ZdZaQJ3dNY27\nngEAAMBTUBD1UaauBdThBgrc9QwAAACegoKoD+OuZwAAAED37LrLHAAAAAD0BRREAAAAALwWBREA\nAAAAr0VBBAAAAMBrURABAAAA8FoURAAAAAC8FrfdBgAAAOxktLebtij9mDFj5Ovra0pb3oSCCAAA\nALBTS1OtVmfVKXBQuVPbaW6s0Ttr5ioyMtKp7XgjCiIAAACgFwIHhWvAkOGujgE7cQ0RAAAAAK9F\nQQQAAADAazFlDgCATqSlpam0tFRtbW169NFHNX78eC1fvlyGYSgsLExpaWny8/NzdUwAQC9REAEA\n0MGePXt08OBB5ebmqqGhQQkJCZo0aZISExM1Y8YMpaenKy8vT3PmzHF1VABALzFlDgCADiZOnKiM\njAxJ0sCBA9Xc3Kzi4mLFx8dLkuLi4lRYWOjKiAAAB6EgAgCgAx8fH/Xv31+S9P7772vq1KlqaWmx\nTZELCQlRbW2tKyMCAByEKXMAAHThk08+UV5enrKzszV9+nTbdsMweryPkpISZ0Qzjafnlzz/GJyd\n32q1OnX/cJyysjI1NTXZ9W89/XXgTL0qiPbt26fHHntMCxYs0Lx581RVVcUFpwCAPmHXrl3KyspS\ndna2BgwYoKCgILW2tsrf31/V1dUKDw/v0X6io6OdnNR5SkpKPDq/5PnHYEb+4OBgaXuVU9uAY0RF\nRdm1MGtfeB04k91T5lpaWvTyyy8rJibGti0jI0NJSUnauHGjRo0apby8PIeEBADATCdOnNDatWu1\nYcOGc/9ZlDR58mQVFBRIkgoKChQbG+vKiAAAB7G7IAoICNAbb7yh0NBQ27aioiLFxcVJ4oJTAIDn\n+uijj9TQ0KDHH39cSUlJmj9/vhYuXKgtW7YoMTFRx48fV0JCgqtjAgAcwO4pcz4+PvL3979gGxec\nAgD6gtmzZ2v27NkXbc/JyXFBGgCAMzntpgo9veDUXS/w8vRcXCAJ9E29uaAWAABczKEFkT0XnLrj\nBV7ueuHZ5eTiAkmgb+rqglp3/RIHAAB359B1iLjgFAAAAIAnsfsM0d69e/Xss8/q6NGj8vX1VW5u\nrrKzs5WcnKz33ntPERERXHAKAAAAwK3ZXRDddNNN+vDDDy/azgWnAAAAADyFQ6fMAQAAAIAnoSAC\nAAAA4LWcdtttAACAvqatrU3l5eWmtVVRUXHuzrFOVFFR4dT9A+6OgggAAKCHysvLlbTyXQUOuvTS\nIr1V/+P36h8cosCPapzeTsiI653aBuDOKIgAAAAuQ+CgcA0YMtzp7TQ3VpvSVnNjtVP3D7g7riEC\nAAAA4LUoiAAAAAB4LabMAQAAj9fVzQ6sVqtDb0rADQiAvoeCCAAAeLxub3awvcph7XADAqDvoSAC\nAAB9AjcgQF9mtLfbfYbSnjOlY8aMka+vr13teRoKIgAAAMDNtTTVanVWnQIH2bkO1mWcKW1urNE7\na+YqMjLSvrY8DAURAAAA4AHMuuW7t+EucwAAAAC8FgURAAAAAK/lFVPm/vrG/9GhyoYeP//YsWMa\nsu0Lh7Q97bb/pV/NiHPIvgAAAAA4llcURD9UHdfBEyN6/g/8Rqj+hGPaHmP9f47ZEQAAAACHY8oc\nAAAAAK9FQQQAAADAa1EQAQAAAPBaDr+GaM2aNdq7d68sFotWrVql8ePHO7oJAABcoq98xn204zMV\nlhy45PPq6uq0ZUdJr9qaGXeLYib9717tAwCcyaEFUXFxsaxWq3Jzc1VeXq6UlBTl5uY6sgkAAFyi\nL33G/d8D/9HeumE9eOYwHamzvx2jvU1XfLZLYUMH2r+THqqoqHB6GwD6JocWRJ9//rmmTZsmSRoz\nZoyOHz+ukydPKigoyJHNAABgOj7jLt/Jxip9+J9G/fPAJ05vq/7H7xUy4nqntwOg73FoQVRXV6eo\nqCjb70OGDFFdXZ3LPyzaW5tkafyux88/feq0Aq4IcEjbR2sDdODApacl9ITValVwcHCPnltRUaHm\nxhqHtHu5WpqOSrJ4VdveeMze2rYrj9lVr2mc466fcfbwtbT36HOxt5+HlqY6Sc4/O3SeGa8RM98D\nzGqLY/KMtsw8Jm/7vHHqOkSGYVzyOSUlvZub3BOJ9/7C6W10p6mpySH7GT16dI/3FRoaqvWr/sch\n7V6+W13Urivb9sZj9ta2XXnM595PzHjfxKX15DNOMudz7nLdMWm87pjkmdc/dc2s16aZ7wEck/u3\nY2Zb5n7+eNPnjUMLovDwcNXV/XeycU1NjcLCwrp8fnR0tCObBwDAaS73M07icw4APIFDb7sdExOj\ngoICSdJ3332nYcOGKTAw0JFNAADgEnzGAUDf5NAzRBMmTNANN9ygOXPmyNfXV6tXr3bk7gEAcBk+\n4wCgb7IYPZ0EDQAAAAB9jEOnzAEAAACAJ6EgAgAAAOC1KIgAAAAAeC2nrUO0b98+PfbYY1qwYIHm\nzZun4uJipaenq1+/fgoMDNTatWsvWGT0ySefVEBAgNasWaOzZ88qOTlZlZWV8vX11Zo1azRixAjT\nMu3bt08pKSmyWCyKj4/XokWLnJbpcnKlp6erqKhIhmFo2rRpeuSRR0zNdejQIa1evVoWi0VXX321\n/vCHP8jHx0fbtm3T22+/LV9fX82aNUv33XefW+T66KOP9NZbb8nX11e33nqrnnjiCdPGVleZzjNj\nvF9OLleP+a5ymTnm09LSVFpaqra2Nj366KMaP368li9fLsMwFBYWprS0NPn5+Zk+3nuay8zxjs6d\nPn1ad999txYvXqzf/OY3tu3x8fGKiIiQxWKRxWLRK6+8ovDwcBcmvVhRUZGWLVum6667ToZhaOzY\nsXr22WdtjxcWFio9PV2+vr664447tGjRIhemvdil8ntCH0jStm3blJ2drX79+mnp0qWaMmWK7TF3\n7wOp+/ye0Afvv/++PvjgA1ksFhmGoe+++06lpaW2x929Dy6V3xP6oLm5WStWrFBjY6POnDmjxYsX\n6/bbb7c97rQ+MJygubnZWLBggfH8888bGzduNAzDMO69917jhx9+MAzDMDZs2GBkZWXZnr97925j\n1qxZRnJysmEYhrFlyxYjNTXV9tjjjz9uaqZZs2YZ33//vWEYhvHkk08ap06dckqmy8l14MAB4/77\n7zcMwzDa29uNmTNnGnV1dabmWrhwobFr1y7DMAwjMzPT2L59u9Hc3GzMmDHDOHHihHHq1Cnj7rvv\nNhobG12eq6WlxYiLizNOnjxpGMa5Pj148KBpY6uzTOeZMd4vN5erx3xnucwc81988YXx+9//3jAM\nwzh27JgxdepUIzk52cjPzzcMwzDWrVtn/P3vfzd9vPc0l5njHV1bt26dcd999xlbtmy5YHt8fLzR\n0tLiolQ9s2fPHmPp0qVdPn7XXXcZVVVVRnt7uzF37lzj4MGDJqa7tEvl94Q+OHbsmDF9+nSjubnZ\nqK2tNZ577rkLHnf3PrhUfk/og58qKiqyvX+e5+598FOd5feEPti4caOxbt06wzAMo7q62rjzzjsv\neNxZfeCUKXMBAQF64403FBoaatsWGhqqo0ePSpIaGxs1ZMgQSVJra6s2bNighQsX2p77+eefa9q0\naZKk22677YLq1tmZ6uvr1dLSonHjxkmSXn31VQUEBDgl0+XkGjhwoM6cOaPW1ladOnVKvr6+uuKK\nK0zNZbVaNX78eFtbu3fv1t69e3XjjTcqKChIAQEBuuWWW1RSUuLyXFdccYW2bdtmWyNk8ODBamho\nMG1sdZZJMm+8X04udxjzneUyc8xPnDhRGRkZkqSBAwequblZxcXFio+PlyTFxcWpsLDQ9PHe01xm\njnd07tChQ6qoqLjgG/HzDMOQ4QE3dO0q4+HDhzV48GANGzZMFotFU6ZM0RdffGFyukvr7m/sCX1Q\nWFiomJgY9e/fX6GhoUpNTbU95gl90F1+yTP64Kdee+21C84+eEIf/FTH/JJn9MHQoUN17NgxSef+\nDzx06FDbY87sA6cURD4+PvL3979g24oVK7RkyRLNnDlTX331lX77299KkrKyspSYmKigoCDbc+vq\n6mx/AIvFIh8fH509e9aUTEeOHNHAgQO1cuVKzZ07V2+//bbTMl1OrmHDhmnmzJmKj4/XL37xC82d\nO1dBQUGm5oqMjNRnn30m6dx/4uvr6y9oXzo3kGtra12eS5IGDBggSdq/f78qKyt18803mza2uspk\n1ni/nFzuMOY7y2XmmPfx8VH//v0lnZtyMHXqVLW0tMjPz0+SFBISopqaGtXX15s+3i+Vq7a2VpJ5\n4x2dS0tLU3JycpePP//885o7d67WrVtnYqrLU15erkWLFmnevHkqLCy0be/sfb6mpsYVEbvVVf7z\n3L0Pjhw5opaWFi1cuFCJiYn6/PPPbY95Qh90l/88d++D87799ltdddVVCgkJsW3zhD44r7P857l7\nH8ycOVNVVVWaPn265s+ff8H7qjP7wLSbKrzwwgt67bXX9PHHH2vChAl69913ZbVatX//fs2YMaPb\nirW9vd20TIZh6MiRI1q5cqVycnL0j3/8QwcPHjQtU1e5Dh8+rIKCAn366afasWOH3n33XdtZJLNy\nLV++XNu3b9fDDz+s06dPyzAMWSyWC57TVT+aneu8H374QU8//bReffVV+fr6mpars0yuHu9d5XKH\nMd9ZLleM+U8++UR5eXl67rnnLuijrvrLrPHe01yuGu/ebuvWrZo4caIiIiIkXdwvy5YtU3JysjZu\n3KgDBw5ox44drojZrdGjR2vJkiVav369XnrpJaWkpHRZPLvjN8yXyu8JfWAYhhoaGrR+/XqtWbNG\nq1at6va57uZS+T2hD87bvHmz7r333m6f4459cF5X+T2hD7Zt26Yrr7xSO3bs0FtvvXXRmcafcmQf\nmFYQ7d+/XzfffLOkc1M3vvnmG+3cuVP/+c9/NGfOHKWmpmrnzp3Kzs5WeHi46urqJMn2htavn+Pv\n/9Ax07fffquQkBBde+21GjhwoK644grdcsst+ve//21apq5yffvtt7rpppvk7++vAQMGKDIyUgcO\nHDA1V0REhP72t78pOztb1157rYYPH67w8HDbN9SSVF1drWHDhrk8lyRVVVXpscce09q1azV27FhJ\nMi1XZ5k+++wzl473rnK5w5jvLJfZY37Xrl3KysrSm2++qQEDBigoKEitra2SLhzXZo/3S+U6f0Gs\nK8e7t9u5c6fy8/N1//33a/PmzXr99dcv+Hb817/+tYYOHSofHx/dcccdOnDggAvTdu78GVlJGjly\npEJDQ1VdXS1JnY57d7sQu7v8kmf0QWhoqCZMmCCLxaKRI0cqKCjI9iWQJ/RBd/klz+iD84qKijRh\nwoQLtnlCH5zXWX7JM/qgtLRUsbGxkqRx48apqqrKVvg4sw9MK4jCwsJUXl4u6dypvNGjR2v+/Pn6\n4IMPlJubq+eff15TpkzRww8/rJiYGOXn50uSPv30U916662mZBo1apRGjBihkydP6vjx42pvb9f3\n33+va665RjExMfr444+dnqmrXKNHj1ZZWZkk6cyZMzpw4IBGjhxp2t9Kkv7617/qX//6lyTpgw8+\nUHx8vG688UaVlZXpxIkTOnnypL766itFR0e7PJckpaSk6Pnnn7ddGyPJtFwdM8XFxenBBx906Xjv\nLFd8fLxbjPnO/l5mjvkTJ05o7dq12rBhg+3ul5MnT1ZBQYEkqaCgQLGxsaaP957mklw73r1denq6\nNm/erPfee0+zZs3SokWLNHnyZEnn+jAxMVGnT5+WJH355Ze67rrrXBm3Ux9++KEyMzMlSfX19Tp6\n9KiGDRsmSRo+fLhOnjypyspKnT17Vp999tkFd31yB93l95Q+iImJ0Z49e2QYho4dO6bm5mbb9CBP\n6IPu8ntKH0hSTU2NgoKCLvryyBP6QOo6v6f0wejRo/X1119LOjcNMzAw0DYbyZl9YDGccM5v7969\nevbZZ3X06FH5+vpq0KBBSk1Ntd0edvDgwfrzn/9sm/Munatmt2zZojVr1qi9vV0pKSmyWq0KCAjQ\nSy+9ZHtjMyPTN998oxdffFE+Pj66/fbbtWTJEqdkutxcmZmZ2r17tywWi+666y4lJSWZmutPf/qT\nXnzxRZ09e1a33nqrVqxYIUnasWOH3nzzTfn4+CgpKUm/+tWvXJ7rhx9+UEJCgsaPH2+b2vfQQw9p\nypQppoytrv5W5zl7vF9uLleP+a5ymTXmN23apMzMTP3sZz+zjZeXX35ZKSkpam1tVUREhNasWSNf\nX19Tx3tPcx0+fNi08Y7uZWZmasSIETIMQ8HBwZo2bZreeecd5eXlKSgoSNdff/0Ft4N2FydPntRT\nTz2lxsZGGYahRYsWqb6+3nYMX375pV555RVJ0p133qkFCxa4NnAHl8rvCX0gnXvNb968WRaLRQsX\nLlRDQ4PH9IHUfX5P6YPvvvtOGRkZysrKkiRt2bLFo/qgu/ye0AfNzc1atWqV6uvr1dbWpmXLlqmy\nstLpfeCUgggAAAAAPIFpU+YAAAAAwN1QEAEAAADwWhREAAAAALwWBREAAAAAr0VBBAAAAMBrURAB\nAAAA8FoURAAAAAC81v8HSuHwAt2lBSQAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Pulling in DataFrame and dropping blank values\n", + "fields = ['Price', 'Number Of Stories', 'Total area', 'Type', 'Year Built']\n", + "data = local_csv('loopnetlistingswithbrokers (3).csv')[fields]\n", + "data = data[data != ' '].dropna()\n", + "\n", + "# Formatting values into integers\n", + "data['Total area'] = data['Total area'].str.replace(' SF', '').str.replace(',','')\n", + "data['Price'] = data['Price'].str.replace(',','').str.replace('$', '')\n", + "data = data[[i.isdigit() for i in data['Price']]]\n", + "for i in [0,1,2,4]:\n", + " data[fields[i]] = data[fields[i]].astype(int)\n", + "\n", + "# Restricting the real estate to only multifamily properties\n", + "data = data[data['Type'] == 'Multifamily']\n", + "\n", + "# Using log price transforms the price distribution to a more normal one\n", + "# Normally distributed independent variables are a linear regression assumption\n", + "data['log Price'] = np.log10(data['Price'])\n", + "\n", + "data.ix[:, data.columns != 'Price'].hist(bins=10);" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's begin by attempting to model `log Price` using only `Year Built` as our explanatory variable. We'll also define a linear regression plotting function to make this step simpler as we repeat it for the other data dimensions." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "rsquared 0.0190269927541\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0oAAAHxCAYAAABTSExyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3X10XOVh5/HfSDOyrJdlJNsjLGHLG4EJiJc6cixeLPvg\nuPZxQ0ugvDQJ5nizp6eNIU3rtAlpE3xC49MtkFASQ1MvSd2cJnAaTs3Lbk3IdkPW4PUYhMLaEOwi\nEtuMbMnYGvBIljQjzf4xaDy61ozuaOa+zXw/5/gcX83bc+c+M/P87vNyfclkMikAAAAAQFqF0wUA\nAAAAALchKAEAAACAAUEJAAAAAAwISgAAAABgQFACAAAAAAOCEgAAAAAY+K188uHhYX3lK1/R+++/\nr3g8rrvvvlsrV65M37537149/PDDqqys1KpVq7R582YriwMAAAAApljao7Rr1y595CMf0Q9/+EM9\n8sgj2rZt25Tbt23bpu3bt+uJJ57Qyy+/rN7eXiuLAwAAAACmWBqUGhsbNTg4KEl6//331djYmL7t\n2LFjCgaDampqks/n0+rVq7Vv3z4riwMAAAAAplg69G7Dhg3atWuX1q1bpzNnzmjHjh3p2957770p\nwamxsVHHjh2zsjgAAAAAYIqlQenZZ5/VhRdeqB07duitt97S17/+df3kJz+Z9r7JZHLG5+vu7i52\nEQEAAACUmI6OjoKfw9Kg9Nprr6mrq0uS9NGPflQnTpxQMpmUz+dTKBTSyZMn0/ft7+9XKBSa8TmL\nsdOAGd3d3dQ32Io6BztR32An6hvsVKzOFUvnKLW2tuqXv/ylJCkSiaimpkY+n0+S1NLSoqGhIfX1\n9SmRSOjFF1+csiIeAAAAADjF0h6lO+64Q3/5l3+pjRs3anx8XPfff7927dql+vp6rV27Vlu3btWW\nLVskSTfeeKNaW1utLA4AAAAAmGJpUKqpqdHf/d3fZb19+fLlevLJJ60sAgAAAADkzdKhdwAAAADg\nRQQlAAAAADAgKAEAAACAAUEJAAAAAAwISgAAAABgQFACAAAAAAOCEgAAAAAYEJQAAAAAwICgBAAA\nAAAGBCUAAAAAMCAoAQAAAIABQQkAAAAADAhKAAAAAGBAUAIAAAAAA4ISAAAAABgQlAAAAADAgKAE\nAAAAAAYEJQAAAAAwICgBAAAAgAFBCQAAAAAMCEoAAAAAYEBQAgAAAAADghIAAAAAGBCUAAAAAMCA\noAQAAAAABgQlAAAAADAgKAEAAACAAUEJAAAAAAwISgAAAABgQFACAAAAAAOCEgAAAAAYEJQAAAAA\nwICgBAAAAAAGBCUAAAAAMCAoAQAAAIABQQkAAAAADAhKAAAAAGBAUAIAAAAAA4ISAAAAABgQlAAA\nAADAwO90AQAAAAA7jY3FFQ4PKBbzq64uoc7OkKqqAk4XCy5DjxIAAADKSjg8oGi0RYlEk6LRFoXD\nA04XCS5EUAIAAEBZicX8ObcBiaAEAACAMlNXl8i5DUgEJQAAAJSZzs6QgsGI/P5+BYMRdXaGnC4S\nXIh+RgAAAJSVqqqAurpanC4GXI4eJQAAAAAwICgBAAAAgAFBCQAAAAAMCEoAAAAAYMBiDgAAAIDB\n2Fhc4fCAYjG/6uoS6uwMqaoq4HSxYCN6lAAAAACDcHhA0WiLEokmRaMtCocHnC4SbEaPEgAAAMpW\ntp6jaFR6441TGhmpUHX1hNrbnS4p7EaPEgAAAMpWtp6jI0cGNDQ0T+PjDRoamqcjR+hRKjf0KAEA\nAKBsxWL+abcXL16gWCyikRG/qqsTWrx4gRPFg4MsDUpPPfWUnnnmGfl8PiWTSb3xxht67bXX0rev\nWbNGzc3N8vl88vl8euihhxQKhawsEgAAAJBWV5dQNDp1W5IaGnxqb29J/z0YjNhdNDjM0qB06623\n6tZbb5UkvfLKK3r++een3O7z+fT444+rurraymIAAAAA0+rsDCkcjkyZo5Tr7ygftg29e/TRR/Wt\nb31ryt+SyaSSyaRdRQAAAACmqKoKqKurxfTfUT5sCUoHDhzQwoULNW/evPNu27p1q959910tX75c\nW7ZssaM4AAAAAJCTL2lDl859992n3/3d39XHP/7xKX9/5pln1NXVpWAwqM2bN+uWW27RunXrsj5P\nd3e31UUFAAAA4HEdHR0FP4ctPUr79+/Xfffdd97fb7rppvT/V61apcOHD+cMSlJxdhowo7u7m/oG\nW1HnYCfqG+xEfYOditW5Yvl1lAYGBlRbWyu/37j0Ykx33nmnRkdHJUmvvvqqLrnkEquLAwAAAAAz\nsrxH6eTJk1PmJu3atUv19fVau3at1q9frzvuuEO1tbW67LLLtH79equLAwAAAAAzsjwotbe3a8eO\nHentm2++Of3/jRs3auPGjVYXAQAAAADyYvnQOwAAAADwGtuuowQAAAC4wdhYXOHwwJSLyVZVBZwu\nFlyGHiUAAACUlXB4QNFoixKJJkWjLQqHB5wuElyIoAQAAICyEosZV2NmkBXOR1ACAABAWamrS+Tc\nBiSCEgAAAMpMZ2dIwWBEfn+/gsGIOjtDThcJLkQ/IwAAKDtM5i9vVVUBdXW1OF0MuBw9SgAAoOww\nmR/ATOhRAgAAZYfJ/MhHZg/knDlnJUmjo3PpjSxx9CgBAICyw2R+5COzB3L//nrt3x+gN7IMEJQA\nAEDZYTI/8pHZ4zgyUqGREf+0t6G0cGQBAEDZYTI/8lFXl1A0mvp/dfWEpMSU21CaCEoAAABADp2d\nIYXDEcVifq1YMTlHqT89RwmliaAEAAA8gSW94RR6IMsTc5QAAIAnsKQ3ADsRlAAAgCewpDcAO/EN\nAwAAPCFzQv3kNmbGkEVgdghKAADAEzIn1Jf6JPpihpvJIYuSFI1K4XCE+TaACQQlAADgCeU0ob6Y\n4YYhi8Ds8EkBAJQdhiJZi/e3cMUMNwxZBGaHxRwAAGWH1dOsxftbOGOYKSTcdHaGFAxG5Pf3KxiM\nlPSQRaCY6FECAJQdhiJZi/e3cMWcj1VOQxaBYuKbCwBQdhiKZC3e38IRbgDnEZQAAGWnnFZPc0K+\n7y9zmgC4EUEJAFB2OFtvrXzfX5avBuBGLOYAAAAcxZwmAG7ENxEAOGxy2FFPz7CGhyMMO0LZYU5T\naZluKCXgRfQoAYDDJocdjY8vZClllCWWry4tLA+PUkGPEgA4jGFH5YEFC7Jjzlhpme47rabGocIA\nBaBHCQAcVswLS8K9OMte+sbG4tqzJ6Ldu/u1Z09EY2Nxp4vkCL7TUCoISgDgsMlhR5WVxxl2VMLo\nOSx9hOEUhlKiVPAtDQAOmxx2VFNzQh0dDD8qVSxY4A2FDJEkDKeU4lBKhs6WJ3qUAACwAWfZC2fH\n0LZCeoUYcla66C0sT+V5qgMAAJuV4ll2u9lxYdpCeoU6O0MKhyMsi12C6C0sTxxlAADgCWYaq4UO\nkSpkiCRhuHQxdLY8EZQAAIBpTs7VMNNYLbTXiV6h8mOmTlMvyhNBCQAAmGbH8LdszDRWCx0iRa9Q\n+clWp1nAAQQlAABgmpNzNcyEGIZIIV/Z6rSTJwXgDqx6BwAATHP7ym6sLoh8ZavTLOAAjjgAADDN\n7XM1GDpXuqwaCpdZp+fMOat4XNq9u1+9vX1qbm5UIJB6DbedFID1CEoAAMA0goi7lNM8GquGwmXW\n6T17IunXaG6ep76+A2pra3blSQFYj6AEAADgUeU0jybfoXCzCZGZzxkI+NXW1qwNG5pmX2h4GnOU\nAAAAPMqr82jGxuLasyei3bv7tWdPRGNj8Rkfk+/8uMkQmUg0KRptUTg8UPTXQGkjKAEAAHiUVxv2\nswkx+S7UMZsQyWIgyOSN0w4AAAA4j9sX18hmNiEm3/lxs1kqnjl4yERQAgB4XjlNaIcz7K5jZl/P\nqw17O6535dUQCfcgKAEAPK+cJrTDGXbXsVKv03aEGK+GSLgHQQkA4HlendCO4rOq5yezTsXjce3b\nd9rS3qVSr9NOhBh6npEvFnMAAHieVye0o/iyLRIwm1XWMmXWqcOHBzQ+3pzXQgT5ok4X32wWkJhU\naP2BNxGUAACex0pVmJStJ6aQRrI0tY5VVg5q6dILsr5mMVCnzTMbYgrppSu0/sCbSqsfFwBQlpiL\nUFxeHqKUbZEAY6M4GpX27ImY3sfMOpZ6jXPPZ0VvD3XaPLPzuQpZQKLUh0JievQoAUAZYzgJpuPl\ns+fZemKMjeIjR2a/j/T2uIvZEFPIccusP/F4XL29fXxvlgHiMACUsVJfWQuz44Wz59l6vbL1xBhX\nWRsbC+qNNyIaGfGrujqhyy9PFvwasymv1Y/1OjP7nq2naLrHzvb7LbP+HDnSp+bmK5VI+PneLHH0\nKAFAGfNCgxj288JCAvn2ek2Gmw0bmtTV1aLjx6MaGmrR+HiThoZadPToyYJfo5jltaocXmNm37P1\nFBXzfcusP21tzQoEzn1X8r1ZujiyAFDGKivP6OmnY4rFqlRXN6bf//2kpCaniwWHeeFCnYWG/NbW\nkGKxUxoZqVB19YRaW1P7mNkLcfDgabW1hRQIBGb1GsUqbzmf0DCz79l6+Kx63+y4WC7cwdJP2lNP\nPaVnnnlGPp9PyWRSb7zxhl577bX07Xv37tXDDz+syspKrVq1Sps3b7ayOAAAgzffPK2RkRZNTPg1\nMlKhN9+MaN06p0sFpxW6kIAdQ8UKbawGg1J7+7yM7YikqcNRx8f9Onx4QO3t5xZxcKK85dwwd+P7\n5oUTCSgOS4PSrbfeqltvvVWS9Morr+j555+fcvu2bdv0gx/8QKFQSHfeeafWr1+vtrY2K4sEAMhw\n5ky9Fi9uydj+wMHSoFTYMfet0MZqtsdn9josXXqBenuPy+8vvEFcSHnLuWHuxveNFQnLh219t48+\n+qi+9a1vpbePHTumYDCopqbUEI/Vq1dr3759BCUAsFFDw4j6+6duF1u5TkQv1/2W7BkqVmhjNdvj\nM3shAgG/rrmmQV1dhQ9HLaS85dwwd8v7Vs6f53Jmy2IOBw4c0MKFCzVv3rku7vfee0+NjY3p7cbG\nRg0MlM/kRACYNLlE98svD9u+1OymTZeqqalHVVW/UlNTjzZturTor+GWieh2L4Xulv12ghcWg8iG\npb8xnczP88mTTdqx4yDLg5cBW3qUfvKTn+iWW27JeZ9k8vxlOafT3d1djCIBplDfYIeenqjOnGmV\ntFCvvnpWhw79Hy1bFrTt9a+9VpKGJUmHDv0q533j8YQOHoxpeLhKNTVjuuKKuimrP02np2dY4+Nn\n09uVlcdVU3Oi0GLn7dz7nGL1++yW/c7Fqu+4QCCh/v630vVkwYI6dXe7a99zqalJ/YvHE/rhD9/K\nq74jOy//pmZ+nt95Z0gjI0nF42ckWf9dAufY8mnfv3+/7rvvvil/C4VCOnny3FKc/f39CoVmPmvT\n0dFR9PIB0+nu7qa+wRYDA/1KJJr09ttv6+KLL5bfX6+ODneuPLdnT0RNTeeGssTjEV1zTe6hLcPD\nkfR8FUkKBueqo8P+YUST7/Mkq99nt+x3NlZ/x11zTXGex8khT7Op75ie139TMz/P778/qOrqYV18\ncWrbzd/Z5apYodzyoXcDAwOqra2V3z81k7W0tGhoaEh9fX1KJBJ68cUXtXLlSquLAwCu4+QwpXyH\no81m7olbhjLZ/T67Zb+9zskhjOW8LLdb2D1kNpvMz/P8+b/R0qXnPs9eGlqK/Fj+iT958uSUuUm7\ndu1SfX291q5dq61bt2rLli2SpBtvvFGtra3ZngYAStbkykyVlccVDM61tUGd7+pks1lu1y0T0e1e\nOcwt++11hYSVQnujynlZbrewYwVFMzI/z2NjjefVK5Qmy4NSe3u7duzYkd6++eab0/9fvny5nnzy\nSauLAACuNvkDXFNzIuvQLKuGH+XbCPXyMsW5ggsrWjnL+P4vW9agnp5BxWJ+HTp0VLFYUonEHFVX\nT2jFirMzP+GHcjWyzRxzL9f3UmFVr14hn3lOgpQP+pABwEWy/XhnNvhOnkxox44DamtrLrhRn+8Z\n81JtILjlrHW5Mr7/O3f2qLV1mSQpFpOOHevTwoXNkvLr0cnVyM52zAnN7mJVrx6feZhhy/LgAABz\nss3HyGzgHT78vt57r7koczayzaNxy7wAuzAXxVnG93twsDr9/0SiSgsXNqujo0nt7S0aHZ1r+nlz\nzUvLdszLeVl3N7Jqrl+hQzrL6fuxnPFLAAAOmzyD3dMzrNHR02prCykQSJ3BnvzxzjyrOjJSoerq\n7A2+fGTrISq3s63MRXGW8f3PvPBxdfWEMnuS8jk2uYbOZTvmpRKai9kzlu257Oh9s6oXO9/PfOa+\n9vb2qbn5CgUCgbL4fixn3vz0A0AJmQwl4+NnNT7eoMOHB9TenvrRnfzxzmzwzZ+f+pGeZEWjvlQa\ni2YxF8VZxvf/hhsuVU9PantyTtLoaH/exyZXIzvbMXd7aDYbTop5siPbc3n5hEq+n/nMfe3v9+vA\ngcNauLBZ1dUTam+3o8RwQmn/8gGABwwOJvXmmxH19n6g1taAKitPy++f+uNt94pLbm8sFlupzr3y\niune/66uGttfU7I/NOfbK2M2nBTzZEe25/LyCZV8P/OZ+zYwENUHH8xXKNSgoSHpyJEeSXx/lCLv\n1GgAKFFHj57U0NAyJZM+jY42q6nptDZsyH7xQjsa9aXYw8IkfZhhd2jOt1fGbDgp5smObM9ViidU\nsn1PzJlzVq+/fkojIxUaGZHq6o6qslKqrk5o8eIFThcbFiEoAYDDWltDisVOqaJiULW1c9Ta6nwo\n8XIPi5mVA702TAilK99eGbPhpJgnO7I9VymeUHnppYj27w9oZESqrpbi8YjWrFny4a0jkvyqrh7R\nokULdPXVqRNawWDEqeLCYgQlAHBYMCi1t8/TnDmDuvjiebb+6JZiL0u2QOTlYULlphTrZTb59sqY\nDSfFPNmR7bnyfQ0vHNfu7jMaGrpSkjQ0JHV3H9CaNdLo6Fy1t6eCUTw+T729b8nvz3/eHLyFXwkA\ncNhkw6ey8riCwbm2/uiWYi9LtkBUisOESlUp1sts8u2V8XJvrzeOq2/a7czvj0DAr2uuaVBXV/Yh\n0igNBCWgCLxwlgyYTin2smQLRKU4TKhUlWK9zMbLwSdfXjiuHR112r//1IeXYZhQR0edJL4/ypX7\naijgQd44Swa3ylwePHWBS/vqTyn2smRr0JRTg9Tr3FIvOQlWXG45rrmsXNmiQCB1zOfMSS1Nv3t3\nP8e/TBGUgCLwwlkyuJeT9acUz5JOXUqdhq5R5gWOh4cjrnxP3FIvOQlWXG45rrlkfn/s2RPh+Jc5\nWnNAEXjhLBncy8n6U+q9LDR0z+dkD6ZZbgm7nAQrLq9933D8wREHisALZ8ngXk4u5lDqMhs28Xhc\n+/adLvveJa81/syE3ULDVObjJ4dbjY7OVW9vn5qbGxUIpJ6Lk2DOsio0Z3teToLC3d+OgEd47SwZ\n3GWy/tTUnFBHB/WomDIbOocPD0hqViIxz9O9S4U2Fr3W+DMT7ArtOcx8/OuvRyRVq719npqb56mv\n74Da2podPQnGENIUq3qIsz1vtpOgHI/yQVACAJSszIZOZeWg2to+mr7N7T0p2RTaWPRaD6aZYFdo\nL1nm/UdG/JIqJKWWgW5ra9aGDc4uA+21IaTTBYlisKo3NNvzZjsJ6rXjgdnz5q8EAAAmZDZ0Ug3u\ncz97bu9JyabQxqLXejDNDG0utJcs8/HV1QllNo+mey67exRKYbhkTU3hz5t5nOLxhI4c6dPu3Sp4\nuGW+Qyy9djwwexxZAEBZKJW5hF4bOlcoM0ObzRzbXOEm8/ErVsQlxTU6msj6XNl6FHK9RiHhKtcx\nd+MwsOmCRDGCUuZxOnKkT83NVyiRCBQ83DLfIZbl9hksZwQlAEBZKJW5hKUS+IrJzLHNNVwq37qR\nrUch12sUMlwr1zF34zAwq4JE5nHavVtKJM4FwkKGW+Y7xJLPYPkgKAEASpYbz7YXqlQC32wUcjxz\nDZfK93mzBYFcr1HIcK1cx9yNw8CmCxIHDpwo6msUc7hlvo8v589guXH+0wQAgEXceLYds/fSSxHt\n3x/QyIhUXS3F4xGtWbPE1GNzNYzzrSfZehRyvYZVvSzZntfJkwR2BIlCe3XyfXwpnnTBzAhKAOBh\ns/nxLqcffDeebc+lnI7NbHR3n9HQ0JWSpKEhqbv7gNasMffYXA3jwcGk3nwzopERv6qrE7r88mTO\n58oWBHK9hlXDtbI9rxtPEhSzfhcaxvJ9fOb7efJkQjt2TJ3TxOe0NLn7FwMAysBk46GnZ1jDw5G8\nfnRn0xhyYwPKKl6bdF1Ox2Z2fDNsZ5erYXz06EkNDS2TlApgR4/2SLoo79Lleg2relmyPa8bTxJ4\nuX5nvn+HD7+vkZFmtbY2eW4/kB/nPzUAUOYmhxP19tZqeDi/4USzaQy5sQFlFa9Nurbj2BQSzJ3W\n0VGn/ftPaWSkQtXVE+roqCvK87a2hhSLnXve1lZ315NsClny2g5e/u7JPOmSqifn3k8v7Qfyw5EF\nAIdNDidKJn0aGmrOazjRbHpMvNbLUgivTbq249hMntUfHz+raLTFU2fDV65sUSCQOXSrOOUOBqX2\n9nkZ25GiPK/dClny2g5e/u7JPOkyf35qafJJXtoP5IegBACOm/1wotn0mHitl8WMUpnbY8ex8fJZ\nfauCb6l8JgpZ8toOrn+fV66U3nln2puqJHV9+P+kpLGxCSWT0v/7+6f1W+s77CohbOadb0cAKFGT\nw4kqKgZVWzsnr+FEs2k4eq2XxQwvz33IZMex8cJZfbuDb6l8Jtx+bK16nyfrS0XPG1p+/12qqqrI\n43RT/nyS5lRVSJJWhEYkD56UgTkEJQBw2ORwopqa01q2LFi04UTlxMu9JHabPKtfWXlcweBc953V\nV+kEX7u5vsfGjCVLpLGxvB6SHJvQx5Op4JJUhcbGJtJBxtTjda6HyOeTuaC1e7d09dV5lRPewy8J\nADhs8ixrTc0JdXTQGJwNt59JdxMv1DeC7+y4omesu1v63d89789XxuNSwJqel2Qy93ZW77wjVVfr\npT2RdDCXUnPUHH8f4Qp88wBAGWNuD9yI4OuwRYuk8XGnSzGzLVukP/9zvVJg0CGYIxtqAgCUsVIZ\n4uSKM+koGoJvgX75S+l3fsfpUpjz1lvSf/pPBT1FofVlzpyzev31cxccXrEiXlB5UDoISgBQxjiT\nCjci+Epqbna6BOb8zu9Ijz8+490OdHero6Ow1eGy9YAXp75US6pQqmlMUEIKv4gA4DCrLgBqZlid\nk0OcCh32VyrDBu0w3XsFi/3qV9InPuF0Kcz55S+lkPvrhFU94KOjc6dcR2t0lKGeSCEoAUij4ekM\nqy4AaqZR4eQQp0IbPaUybNAO071XNTXZ7893wYcuukiamHC6FDP7yEekl15yuhSWs6oHnDlxyIag\nBCCNhqczrPrxN/O8Tg5xikalN944pZGRClVXT6i9Pb/HF/N9K/VgMN17lSsoee27IOvxO3ZM6ux0\nunjm7NkjtbU5XQpXsyrQMCcO2RCUAKQxX8UZVv34u/0s6ZEjAxoaWiZJGhqSjhzpkWS+MV7M/fNa\nMMhXvu+Vq74LPvUpaf/+nHfJvI6OJCV9E1Ie19Epmr4++18zi1IM/1YFGubEIRtaQQDS3N6wLlVW\nXQDUybOkZhppixcvUCx2bqWpxYsX5PUaxdw/VwUDC0z3Xh04cCLr/Yv6XXD6tHTFFbN/fBaZFwlN\nxCdU6a+Qz6f0dl4XD530/PPSVVcVvaxOKMXwT6CB3UrrlwBAQRh+4AyrLgBqplFh1VlnM420hgaf\n2tunXvskH8VsNJX6SYJs71W242/8LrjuJw9Id/zEsvJlhh6fTwr4fTp7NqGJpE8VvqTm1vhV4fNN\nud94YlwVlYFUOJKUSEwoEKjQt7bs1bFjQ1q4cH56qec1a5aYrute7onJLPvBg4Nqa2tSIJBq6s0U\n/mez315+r7IpxX3C7BGUAKRxtq78FHrWOVujwkwPjZt6vJYta1BPTwmfJIjFpKVLp/zpynhcyWTl\ntEPWqiR1WVykbKFn3327teud06qvvyF936amHt1zzzK9lHFh0e7uflVX+9XePk/xeEK9vW/piisW\nKPLsYTU2Xqfx8UoNDUnd3Qe0Zo35uu7lnpjMso+PJ3T48Pvp1dxmCv+z2W8vv1fZlOI+YfYISgBQ\nxgodcvbSSxHt3x/QyIhUXS3F4xGtWbPEVA+Nk8Hc2Bjq6fFAY+jBB6WHHy7qUyaTubdnZc4c6de/\nnvFu2UKPJJ16Zb/q68/dd3CwWtLU+lldndDISJUkKRDw65prGtTV1aSDB0/qgw8qM17Jd95jp9vO\n9ncvDcPMLOvSpSH19r4lvz9hKvzPZr+9/F5lKqQnDqWNow8AZazQIWfd3Wc0NHSlJE05e293b5GZ\n4TJTG0On1dYWUiCQuo8tjaGxMWnJEutfJw+Tc3oytyUp/swz2jfSbOnwo2yhR5LmzRtK/z+RiOvM\nmRPavbtRvb19am5uVCAQ0NKlIfX1HZTfPzaljnV01Gn//nOrKXZ01EkyX9fnzDmr118/9/gVK84W\nc7dnxexwsMx9DAQCuuaaRnV1NZl6jczHxuNxHTnSp927Zfr1Jre9qJCeOJQ2ghIAlLHCA41xmnxq\nu5DeotnMETAzXGZqY8ivw4cH0nOkTDeGnnhC+tKX8tyj2THO28lrUQK/X2Nv9+Z8Hw90d+vKK6/S\nfuOFaKsC2pfR22PV8KNUIEkt5uH3xxUMvi2/f7Hq6hK6776P6cc/7tHgYLXOnDmh6667TonEHDU3\nz1Nf3wG1tTUrGEzoxhuvOK9urFzZokAgc59S5c6vro8o1UTKr5Hs5Jw/qbDPc+ZjjxzpU3PzlUok\n/Ja9npsMDib15pvn6qLfP2C6Jw6ljaAEAGWs0OFv2c7eF2I2cwTMDAGKxfzS+Lh++78u0tqkNJ5I\nyB9IrZQWCPg0Gk/OLpRY5P997TEdXfSp9HYwmOcFeU2EnWzH374hVdWSKuT3+3XVVdKaNed6P+65\nJ7V0/O4mxAMaAAAgAElEQVTdjUok5khKDbFra2vWhg3Ze0my7VOuuj61t/GMli79aLq3cXS03/Te\nWDW/xezxKOTznPnY3bulROLca1jxem5y9OjJ9KUKxselYHAwZx1D+SAoAQBmLdvZ+0LM2Cjct0+6\n5ZYpf1ozNqFkxqIEvmmuo5N5H59PClRVaM6H9xnNuC2ZTPXkzCn0OjwXXii99tqsH963u39Kh0a+\nYaWQsGPHkKrR0bnp4U2p7elfY+qQsISpIWH5Kkpvo85/j6NRac+eSME9THYPcSuVIXVmtbaGFIud\nO+HT2kovElIISgDgIl5bmnZWZ5QnJqRNm6T/9b+mvdlM6Dm/HBXnDVPL5z7JpBSPT0hJn+RLKjD5\nlv/kJ9L11+e3fx8aG4srnNFITq2sN2j62BbaWC3k8VYNqcqs35nzjYzly7zfnDlx1db+RqOjcz8c\nEnaFEolAUXtspg69GlFl5Wn5/fnvu/E9P3JkQFKqp6KQ8i5b1qCdO1NDERsaRnTDDZfm/Rx2vt50\n32NuFgxqSmif6VIFXvuexuwRlADARTyzNO0bb0i//duWPLWZ0GPaunXSP/6j5PPJJ2lOlrs9vr1H\n/f3L0tuTy1EXwngsd+7sUWur+UZzoWHFzOOzNfisGlKV+Z5kzjcyli/zfmfPJj6831ydPVu8IYGZ\n+/6///d/aO7cVfL7KzU+LjU1nZ7V0Cvje55MTr2I8mzL29MzqNbWZWptndyOqKurZlbPZcfrTfc9\nVmNdcQuW72fNM9/TKBhBCQBcxLa5IcmktHmz9Mwz1jx/AXzS1GFv//N/Sstyh5bMpaal/OfzLF68\nQLFYqkehujqhxYsXzPygGRiP3eBgdbrhOd3tRnbM/5hNg6+Qs+nRqPTGG+eGOLW3h6YNJJn3O378\ntBYsCKm1tamgYXFGmfteV5fQyZO/0cKFjQUNvTIesz17IkUZwmb3MtyFvt50j3dzUMr3s1Yqy6Jj\nZhxZAHCRvIZLHT0qrV2bupiom23YIP33/y5VFDjnJ4dCGy4NDb5041uaeeiNGcZj2dAwct7tVjIT\ngmbzvhVyNv3IkYH0pPmhIenIkR5J5z82836DgxM6frxXfn+N/P6E/P73ZjUszihzuN3JkwNasGCR\nOjoaJBXn+EvFG8Jo95LlTgz79NJwtswVG6urE1qxIu50kWARghIAOCWZlF5/Xfrxj6V//mddGY8r\nEAgUb9hZMT33nNTR4XQpsiq0YWfFnBzjc95ww6Xq6bFvKWUzIWg271shodRsz93ChUEdONCjWKxa\nkcg7uvDCj2l8vOHDFcn6irIiWeZKZ42NjYrFXpLff3lRj01xewVnt2S5lH8IsWLY54EDJ3I+xkwA\ntyNMmX+N1IqNqWNCUCpVBCUAKMTQUGr42o9/XNAKZ5POG3ZWLLfcIj3yiFRZWfzndki2Cf+zadhZ\nMcxtuue0cl6JkZkQNJsGcSGh1GzP3fHjUYVCyxQKSfH4hRoZ+aUqKyuKNixSmrrSWW3thK67bqlr\nl4ROrRDYlLFtfslyKf9ewEI/D7N5vJkAbsfcIDOvYXbFRngfQQkA3nxT+tGPUhcTHRmZ+f5FMN3F\nRGf0059KV15pedm8IrNBk0ikGt2Z1+Epd2ZC0GwatMW6qGmux2aGmIaG01qwYKk6OpoUj8d19OhB\n7d4dKLhHIXOls9Sy40e1e7c9w77y7RkxG06zPW8x59RY1atjZh/tmBtkVU8svImgBMD7hodTQ8Oe\neELav9/p0kzv5pulz3xGuvZaqaJiyuID8XhqVa+JiZiWLfuIq8fmu4mXJ1TbMYTIqsUginVR01ym\nhph69fUdkN/v/3B58CuVSPjzHp4Viw1r585D6SWvb711kZ56KrUE9qlTJ3TttZ1KJGp08mRCO3ZM\nXY1vtscmW1ny7RkxGzCzPa+Zhr3ZOmlVr46ZfSxmQMm2v1b1xMKbvPOrAqC0vfVWavjaE0+khrO5\nzUc+kgo6t94qhQr/Ucxs1B8+/L5GRpp1wQVnFI22sNSsSV4+q/vSSxHt31//4eR8v+LxiNasWeJ0\nsVwjsyEaDCZ0441XqKoqoN27pUTi3Gcnn+FZO3ceSi8B398v/bf/9nN94hM3qLVV6u6+UL/+9aDa\n22vSn8fW1qaCg0C2suQb8s0GzMznicfj2rfvtOmhqWYDkFUnKMzsYzEDSrb9JQQhE0EJQFpBZ7lH\nRqT/8T9SQef//l9rCzpbv/d70qc/La1c6fhcncxGfqqxnGrkZzZu3L7yk9OK2aCxe8Wt7u6YhoaW\nSEqdF+juPq41ayx7Oc/J1mg2s9pY5tLifv+o/P7Uce3pGVUolJDfn2r6nDpVm35MdfWERkZSf8/8\nPEqFBYFsocKqkJ/5vIcPD0hqViIxz9TQVLMByKqym/kMFrOX1Mz+xuNxvfRSZErAnE2PILyLoAQg\n7dWfv6OKngF1bf9D+c9+oKRvQnLLqmuStGRJKujcdpt04YVOl6YgmY38+fP71Nx8hY4cOTKlcWPm\nB9hLS+rOlh0XRbW/4ZOcYbu8nT79vu6//zWdOlWrhoao1q9fpIqKRh06dFKJxGJJVcq22ljm0uJv\nv31UH3xQqZGRKp08WaHR0VP6z/85FRbmzTvXc7106QUfDu9T+vM4qZAgkC1UWNVrkfm8lZWDamv7\naPq2mQKf2QBkVdnt/gxm29/Mcrz++ilJI2pvbyqoRxDeZfmRffbZZ/X9739ffr9ff/Inf6LVq1en\nb1uzZo2am5vl8/nk8/n00EMPKVSEIS1A2RofT40pOXo09e/YsXP/P3pUOn4858M/Njqh1HKnKUkr\n2m6f/GQq7KxaJfnL98cls5E/NtaocHhA7757XJWVDXk1bsrhzKYd+2h3w6ejo17795/rGenoqC/6\na3g5RN9//2s6fvwGSdLBg6f0m9/06g//8DJFo1J1tV9XX5263tF0q41lLkF+6tQJ1dd/ROPjDWpr\nu0yvvPJT+XyLNW/ekO6990r9x3+cP7xv8vNYjCCQLVTYMX8sFQTO1eOZAp/ZAGRV2e3+DGbb38zX\nHRmZXP57apm8POwX+bG0FkajUT366KN6+umnNTQ0pO985ztTgpLP59Pjjz+u6upqK4sBeMvQ0PQh\nZ3Lbwvk7Pt/UcOTzTXOnlhbps59N9eq0lFaD3CmTDY+amhMaHm7Iq3FTDmc27dhHuxs+K1e2KBAY\nUCwm1dVJnZ3F/yx5OURnDotLJCr0wQepZdWrqxMaGalK3zbdccpcgvzIkdOamEh9kZ0+/YEuuWS5\nbrlliSTpP/5j+vejmEHAqlBhRr49P06WVbL/M5htfzPLUV09oczrVlndIwj3sfQXde/evbr++us1\nd+5czZ07V/fff/+U25PJpJKWnLIGHDQxMbVXxxh6+vrsLU9Li9TaKi1aJC1ePPXfggVSxbkeJN9Y\nXPuNZ1I9cgbayybP/Pf0DOuKK/K7HlBqzsapD+dVTGjFirM2ldo+djSg7G742NEo9XKIbmh4XwcP\nfqBEokKx2Adqbj4jSVq6NKS+voPy+8eyHqfMY3n11WcUi81VIpFQRcWg2trOXYMp8/3I1vvm5V45\nO+pYMd8ft4SPzHJMfp+Ojvbb0iMI97H0WzMSiejs2bP6/Oc/rzNnzujuu+/WtddeO+U+W7du1bvv\nvqvly5dry5YtVhYHsNZ/+S+p69wUW13d1JCTGXoWLZJqincBS778nTF55n98/KyGhpbM4npAI0p9\nnZfm8A87GlClWPezBczMYD48HHGs8Z+rkb1uXYt+85vX9cEHtWpufl9dXQH5/f1Thshlk3ksP/GJ\nyWF00vz5cTU3n7tIaGbgztb7ZqZXzsthqlDF7LV0y2fQLeWAO/iSFnbp7NixQz09PXrsscf07rvv\n6q677tLPf/7z9O3PPPOMurq6FAwGtXnzZt1yyy1at25d1ufr7u62qqhAwS769rfV8MIL094WX7BA\nYxdemPrX1HTu/xdeqERj45ReHZSfl18e1vj4wvR2ZeVxXX+9uQBcyGNR2uLxhA4ejGl4uEo1NWO6\n4oo6BQJ+9fREdeZMa/p+9fVHtGxZ0Pby5SqHFfU62/uR6/XMlMMt76cT+P6Bm3V0dBT8HJb2KM2f\nP1/Lli2Tz+fTokWLVFtbq9OnT6uxsVGSdNNNN6Xvu2rVKh0+fDhnUJKKs9OAGd3d3fnVtx/9KOtN\nVZJqs96Kcjc8nLr47Ntvv62LL75YweBcdXSYO6M5+dhJ+Ty23JTjmf9rrjn/bwMD/UokmtL1ze+v\nV0dH9h5Mq963yXJMyixHIfU6V3kz34/M+1VU9Omii5akg9Pk65kpR679cJId9T2f49Td3a0rr7yq\nJD6DxosXb9p0qerqCIhuUqzOFUtPY19//fUKh8NKJpMaHBzU8PBwOiTFYjHdeeedGh0dlSS9+uqr\nuuSSS6wsDgC4UmdnSMFgRJWVxxUMRvIaWjb52NSwpPweW24mhwklEk0fXth3wOkiOcI4x2umOV9W\nvW+5ylFIvTZb3sz7NTdf8eHy4FNfz0w58n0/7WJHfc/3OJXKZ3Dy4sVjY5epv3+Zdu485HSRYBFL\ne5Sampq0fv163X777fL5fPr617+uXbt2qb6+XmvXrtX69et1xx13qLa2VpdddpnWr19vZXEAwJUy\nV73LtzeI8fTmeXlxg2KanPOVCuZzZ2zcWvW+5Zp7Vki9NlvezL8HAgG1tTVrw4apPUFmyuGWRQiM\n7Kjv+R6nUvkMDg5W59xG6bC8ht5+++26/fbbp71t48aN2rhxo9VFAACUoHyHFnHtk5R8g7lV75tV\nId9seYu1X249WeHG+u7GMs1GQ8OI+vunbqM0MYMcAOBJ+Q7jYZiieWNjce3ZE9Hu3f2Kx1NL1nvl\nfTN7nEu9Prhx/9xYptnYtOlSNTX1qKrqV2pq6tGmTZc6XSRYxJt9ngCAspfvMB63nvl3o8xlnxMJ\nzWLJeueYPc6lXh/cuH9uLNNs1NXV6J57ljldDNiAHiUAgCe5dRJ9KSiVuSQAUAiCEgDAk0plGI8b\nEUIBgKF3AACPKpVhPG7k1pXcAMBOBCUAADAFIRQACEoAAACwQb5L+gNOMzVH6cUXX9Q///M/S5KO\nHj2qZDJpaaEAAABQWvJd0h9w2oxB6cEHH9RTTz2lf/3Xf5UkPffcc/rmN79pecEAAABQOlhNEV4z\nY1B65ZVXtH37dtXW1kqS7r77br3xxhuWFwwAAAClg9UU4TUzBqU5c+ZIknw+nyRpfHxc4+Pj1pYK\nAAAAJYUl/eE1M/Z5fuxjH9O9996rgYEB/eM//qN++tOfasWKFXaUDQAAABm8vCACqynCa2YMSn/2\nZ3+m559/XnPnztWJEyf0uc99TuvWrbOjbAAAAMgwuSCCJEWjUjgcIXwAFpkxKA0PD2tiYkJbt26V\nJD3xxBMaGhpKz1kCAACAPVgQAbDPjHOUvvKVr+i9995Lb589e1Zf/vKXLS0UAAAAzseCCIB9ZgxK\n0WhUd911V3r7c5/7nD744ANLCwUAAIDzsSACYJ8Z+2vj8bh6e3vV1tYmSTp48KDi8bjlBQMAAMBU\nLIgA2GfGoPTVr35Vmzdv1pkzZzQ+Pq7Gxkb97d/+rR1lAwAAAABHzBiUrr76av30pz/V4OCgfD6f\ngsGgHeUCAAAAAMdkDUr/8A//oD/6oz/SX/zFX6QvNpvpgQcesLRgAAAAAOCUrEHp8ssvlyRdd911\nthUGAAAAANwga1Dq6uqSJJ04cUKf//znbSsQAAAAADhtxuXBe3t7deTIETvKAgAAAACuMONiDocO\nHdInP/lJXXDBBQoEAkomk/L5fHrxxRdtKB4AAAAA2G/GoPS9733PjnIAAFBSxsbiCocHFIv5VVeX\nUGdnSFVVAaeLBRtRBwBvyxmUfvGLX+idd95RR0eHrrrqKrvKBACA54XDA4pGUxcGjUalcDjChULL\nDHUA8Lasc5S++93v6u///u81MDCgr33ta3r22WftLBcAAJ4Wi/lzbqP0UQcAb8v6iX3ppZf0ox/9\nSH6/X2fOnNEXvvAF/d7v/Z6dZQMAYAovDWWqq0soGp26jdJmrJ9z5sSVyDjs1AHAW7L2KFVVVcnv\nT+Wo+vp6jY+P21YoACgnY2Nx7dkT0csvD2vPnojGxuJOF8m1JocyJRJNikZbFA4POF2krDo7QwoG\nI/L7+xUMRtTZGXK6SLCYsX5Kog4AHpa1R8nn8+XcBgAUx2Tjanz87IeNf+YxZOOloUxVVQGOY5kx\n1sfR0blas6bJodIAKFTWX5je3l59+ctfzrr9wAMPWFsyACgTXmr8O43hbHAz6idQWrL+Gv/5n//5\nlO1rr73W8sIAQDmicWVeZ2dI4XBkyhwlwC2on0BpyRqUbr75ZjvLAQBla7JxVVl5XMHgXBpXOTCc\nDW5G/QRKC+M7AMBhk42rmpoT6uigkQUAgBtkXfUOAAAAAMoVQQkAAAAADGYcenfFFVecdw2lyspK\nLVmyRFu3btXHP/5xywoHAAAAAE6YMSh99atfVVVVldauXatkMql///d/15kzZ7R8+XJ985vf1L/8\ny7/YUU4AAADPGhuLKxwemLIiXlVVwOliAchhxqF3zz//vG677TY1NDSosbFRt912m/bs2aOrrrpK\nfj9rQQAAAMxk8sLSiUTThxeWHnC6SABmMGPSGR0d1RNPPKGOjg5VVFTowIEDOnXqlF5//fXzhuQB\nAADgfFxYGvCeGT+lDzzwgL773e/qxz/+sSYmJtTW1qYHHnhAiURC27Zts6OMAAAAnsaFpQHvmTEo\nLVmyRN/61rc0ODioiooKXXDBBXaUCwAAoGRMXlg6c44SAHebMSh1d3frK1/5ioaGhpRMJhUMBvXg\ngw/qyiuvtKN8AAAAnjd5YWkA3jFjUPr2t7+txx57TEuXLpUkvfnmm9q2bZt+9KMfWV44AAAAAHDC\njKveVVRUpEOSJF1++eWqrKy0tFAAAAAA4CRTQemFF15QLBZTLBbTv/3bvxGUAAAAAJS0GYfefeMb\n39Bf//Vf66/+6q/k8/n0W7/1W/rGN75hR9kAAEAJsfuiq1zkFUAhTK169/3vf9+OsgAAAJcrJHxM\nXnRVkqJRKRyOWLrAgd2vB6C0ZA1Kn/nMZ+Tz+bI+kMUcAAAoP4WED7svuspFXgEUIus3xp/+6Z/a\nWQ4AAOABhYQPuy+6ykVeARQi67fbihUr7CwHAADwgELCh90XXc31eoUMIWTuE1Ae6IMGAACmFRJ2\n7L7oaq7XK2QIIXOfgPJAUAIAAKbZHXasUsgQQuY+AeVhxusoAQAAlBrjkMF8hhAW8lgA3mF5UHr2\n2Wd100036fd///f1i1/8Yspte/fu1W233aY/+IM/0GOPPWZ1UQAAACSlhhAGgxH5/f0KBiN5DSEs\n5LEAvMPSvuJoNKpHH31UTz/9tIaGhvSd73xHq1evTt++bds2/eAHP1AoFNKdd96p9evXq62tzcoi\nAQAAFDSEsFSGHwLIzdIepb179+r666/X3LlzNX/+fN1///3p244dO6ZgMKimpib5fD6tXr1a+/bt\ns7I4AAAAAGCKpT1KkUhEZ8+e1ec//3mdOXNGd999t6699lpJ0nvvvafGxsb0fRsbG3Xs2DEriwMA\nAGAblhEHvM3SoJRMJhWNRvXYY4/p3Xff1V133aWf//znWe9rRnd3dzGLCOREfYPdqHOwE/XNWj09\nUZ0505rePnTo/2jZsqCDJXIW9Q1eY2lQmj9/vpYtWyafz6dFixaptrZWp0+fVmNjo0KhkE6ePJm+\nb39/v0KhmSdDdnR0WFlkIK27u5v6BltR52An6pv1Bgb6lUg0pbf9/np1dDTleETpor7BTsUK5ZbO\nUbr++usVDoeVTCY1ODio4eHh9HC7lpYWDQ0Nqa+vT4lEQi+++KJWrlxpZXEAAABswzLigLdZ2qPU\n1NSk9evX6/bbb5fP59PXv/517dq1S/X19Vq7dq22bt2qLVu2SJJuvPFGtba2zvCMAAAA3tDZGVI4\nHJkyRwmAd1h+Kenbb79dt99++7S3LV++XE8++aTVRQAAALAdy4gD3mZ5UAIAAHAbVqQDMBNL5ygB\nAAC4UTg8oGi0RYlEk6LRFoXDA04XCYDL0KMEAADKTizmz7kNe9HDBzeiRwkAAJQdVqRzF3r44EYE\nJQAAUHY6O0MKBiPy+/sVDEZYkc5h9PDBjaiFAACg7LAinbvU1SUUjU7dBpxGUAIAAHCZcpuzwzWn\n4EYEJQAAAJeZnLMjSdGoFA5HSroHjB4+uBFBCQAAYJas6vlhzg7gPD51AAAAs2RVz4/ZOTvlNkQP\nsBOr3gEAAMySVT0/ZlflY1ltwDr0KAEAAEzDTG+NVau1mZ2zwxA9wDr0KAEAAEzDTG+N09dj4sK5\ngHU47QAAKDvM64AZZnprnF6tjWW1AesQlAAArmJHiCm3pZcxO164CKrTQQ0oZQy9AwC4ih2T05nX\nATOcHlYHwFn8MgAAXMWOEOOFngI4j94aoLzRowQAcBU7JqfTUwAAmAk9SgAAV7Fjcjo9BUDpYHEW\nWIWgBABwFUIMgHywOAuswtA7AAAAeBaLs8AqBCUAAAB4FhfdhVUISgAAAPAsFmeBVeibBAAAgGcx\nrxFWoUcJAAAAAAwISgAAAABgwNA7AABQMK5lA6DU0KMEAAAKNnktm0SiSdFoi8LhAaeLBAAFoUcJ\nAAAUjGvZFBc9dIDz6FECAIeNjcW1Z09EL788rD17IhobiztdJCBvXMumuOihA5xHUAIAh002iMbH\nF9IggmdxLZvioocOcB6fOgBwGA0ilAKuZVNcdXUJRaNTtwHYix4lAHAYQ5YAGNFDBziP05YA4LDO\nzpDC4YgqK48rGJxLgwgAPXSACxCUAMBhkw2impoT6uigYQQAgBsw9A4AAAAADAhKAAAAAGBAUAIA\nAAAAA4ISAAAAABgQlAAAAADAgKAEAAAAAAYEJQAAAAAwICgBAAAAgAFBCQAAAAAMCEoAAAAAYEBQ\nAgAAAAADghIAAAAAGBCUAAAAAMDA73QBAAAASt3YWFzh8IBiMb/q6hLq7AypqirgdLEA5ECPEgAA\ngMXC4QFFoy1KJJoUjbYoHB5wukgAZkBQAgAAsFgs5s+5DcB9CEoAAAAWq6tL5NwG4D6czgAAwATm\nmKAQnZ0hhcORKfUHgLsRlADAYZMN8J6eYQ0PR2iAu9TkHBNJikalcDiirq4Wh0sFr6iqClBfbBCL\nDWvnzkMaHKxWQ8OINm26VHV1NU4XCx7F0DsAcNhkA3x8fCGTvF2MOSaA++3ceUj9/cs0NnaZ+vuX\naefOQ04XCR5m6bf8/v379cUvflGXXHKJksmkLr30Un3ta19L375mzRo1NzfL5/PJ5/PpoYceUihE\nVzSA8kID3Bvq6hKKRqduA3CXwcHqnNtAPiz/NV6xYoUeeeSRaW/z+Xx6/PHHVV1NJQZQvmiAewNz\nTAD3a2gYUX//1G1gtiwPSslkMudtuW4HgHKwbFmDdu7s0aFDpxQInNENN1zqdJFs4bXFEZhjArjf\npk2XaufOnilzlIDZsjwo9fb2avPmzXr//fd1991367rrrpty+9atW/Xuu+9q+fLl2rJli9XFAQDX\n6ekZVGvrMsXjb6u19WL19ETU1VX6k49ZHAFAsdXV1eiee5Y5XQyUCF/Swi6d/v5+vfbaa9qwYYOO\nHTumu+66Sz/72c/k96fy2TPPPKOuri4Fg0Ft3rxZt9xyi9atW5f1+bq7u60qKgA45uWXhzU+vjC9\nXVl5XNdfX/pBqVz3GwBgvY6OjoKfw9IepaamJm3YsEGStGjRIs2fP1/9/f1qaUmdMbzpppvS9121\napUOHz6cMyhJxdlpwIzu7m7qG2wxPBxRNNqit99+WxdffLGCwbnq6Cj9npXJ/Z5ULvvtFnzHwU7U\nN9ipWJ0rli4P/txzz2n79u2SpFOnTun06dNqamqSJMViMd15550aHR2VJL366qu65JJLrCwOALhS\nZ2dIwWBElZXHFQxGymaRgMn99vv7y2q/4X2x2LC2b+/RX//1r7R9e49isWGniwTAApb2KK1Zs0Zf\n+tKX9OlPf1rJZFJbt27Vc889p/r6eq1du1br16/XHXfcodraWl122WVav369lcUBAFeaXCSgpuZE\nWfWosDgCvGryWj2S1N8v7dzZw7wYoARZGpRqa2v1ve99L+vtGzdu1MaNG60sAgAAQFFxrR6gPFg6\n9A4AAKDUGK/Nw7V6gNJEUAIAAMjDpk2XqqmpR1VVv1JTUw/X6gFKlOXXUQIAACglXKsHKA/0KAEA\nAACAAUEJAAAAAAwISgAAAABgQFACAAAAAAMWcwAASJLGxuIKhwcUi/lVV5dQZ2dIVVUBp4sFAIAj\n6FECAEiSwuEBRaMtSiSaFI22KBwecLpIAAA4hqAEAJAkxWL+nNsAAJQTghIAQJJUV5fIuQ0AQDkh\nKAEAJEmdnSEFgxH5/f0KBiPq7Aw5XSQAABzDuAoAgCSpqiqgrq4Wp4sBAIAr0KMEAAAAAAYEJQAA\nAAAwICgBAAAAgAFBCQAAAAAMCEoAAAAAYEBQAgAAAAADghIAAAAAGBCUAAAAAMCAoAQAAAAABgQl\nAAAAADAgKAEAAACAAUEJAAAAAAwISgAAAABgQFACAAAAAAOCEgAAAAAYEJQAAAAAwICgBAAAAAAG\nBCUAAAAAMCAoAQAAAIABQQkAAAAADAhKAAAAAGBAUAIAAAAAA4ISAAAAABgQlAAAAADAgKAEAAAA\nAAYEJQAAAAAwICgBAAAAgAFBCQAAAAAMCEoAAAAAYEBQAgAAAAADghIAAAAAGBCUAAAAAMDA73QB\nAABAcYyNxRUODygW86uuLqHOzpCqqgJOFwsAPIkeJQAASkQ4PKBotEWJRJOi0RaFwwNOFwkAPIug\nBABAiYjF/Dm3AQDmEZQAACgRdXWJnNsAAPMISgAAlIjOzpCCwYj8/n4FgxF1doacLhIAeBZ98gAA\nlCE/qwIAAA53SURBVIiqqoC6ulqcLgYAlAR6lAAAAADAgKAEAAAAAAYEJQAAAAAwICgBAAAAgIGl\nizns379fX/ziF3XJJZcomUzq0ksv1de+9rX07Xv37tXDDz+syspKrVq1Sps3b7ayOAAAAABgiuWr\n3q1YsUKPPPLItLdt27ZNP/jBDxQKhXTnnXdq/fr1amtrs7pIAAAAAJCT5UPvksnktH8/duyYgsGg\nmpqa5PP5tHr1au3bt8/q4gAAAADAjCwPSr29vdq8ebM++9nPau/evem/v/fee2psbExvNzY2amBg\nwOriAAAAAMCMLB1619raqnvuuUcbNmzQsWPHdNddd+lnP/uZ/P7zXzZbz5NRd3d3sYsJZEV9g92o\nc7AT9Q12or7BaywNSk1NTdqwYYMkadGiRZo/f776+/vV0tKiUCikkydPpu/b39+vUCg043N2dHRY\nVl4gU3d3N/UNtqLOwU7UN9iJ+gY7FSuUWzr07rnnntP27dslSadOndLp06fV1NQkSWppadHQ0JD6\n+vqUSCT04osvauXKlVYWBwAAAABMsbRHac2aNfrSl76kT3/600omk9q6dauee+451dfXa+3atdq6\ndau2bNkiSbrxxhvV2tpqZXEAAAAAwBRLg1Jtba2+973vZb19+fLlevLJJ60sAgAAAADkzfJV7wAA\nAADAawhKAAAAAGBAUAIAAAAAA4ISAAAAABgQlAAAAADAwNJV7wAAACCNjcUVDg8oFvOrri6hzs6Q\nqqoCThcLQA70KAEAAFgsHB5QNNqiRKJJ0WiLwuEBp4sEYAYEJQAAAIvFYv6c2wDch6AEAABgsbq6\nRM5tAO5DUAIAALBYZ2dIwWBEfn+/gsGIOjtDThcJwAzo9wUAALBYVVVAXV0tThcDQB7oUQIAAAAA\nA4ISAAAAABgQlAAAAADAgKAEAAAAAAYEJQAAAAAwICgBAAAAgAFBCQAAAAAMCEoAAAAAYEBQAgAA\nAAADghIAAAAAGBCUAAAAAMCAoAQAAAAABgQlAAAAADAgKAEAAACAAUEJAAAAAAwISgAAAABgQFAC\nAAAAAAOCEgAAAAAYEJQAAAAAwICgBAAAAAAGBCUAAAAAMCAoAQAAAIABQQkAAAAADAhKAAAAAGBA\nUAIAAAAAA4ISAAAAABgQlAAAAADAgKAEAAAAAAYEJQAAAAAwICgBAAAAgAFBCQAAAAAMCEoAAAAA\nYEBQAgAAAAADghIAAAAAGBCUAAAAAMCAoAQAAAAABgQlAAAAADAgKAEAAACAAUEJAAAAAAwISgAA\nAABgQFACAAAAAAOCEgAAAAAYEJQAAAAAwICgBAAAAAAGfqtfYHR0VDfeeKPuvvtufepTn0r/fc2a\nNWpubpbP55PP59NDDz2kUChkdXEAAAAAYEaWB6XHHntMwWDwvL/7fD49/vjjqq6utroIAAAAAJAX\nS4fevfPOO/r1r3+t1atXn3dbMplUMpm08uUBAAAAYFYsDUoPPPCA7r333qy3b926VZ/5zGf07W9/\n28piAAAAAEBeLBt69/TTT+vjH/+4mpubJem83qMvfvGL6urqUjAY1ObNm/XCCy9o3bp1Mz5vd3e3\nJeUFpkN9g92oc7AT9Q12or7BaywLSr/4xS/07rvv6oUXXtCJEyc0Z84cXXjhhbr22mslSTfddFP6\nvqtWrdLhw4dnDEodHR1WFRcAAAAA0iwLSg8//HD6/9u3b9dFF12UDkmxWEx//Md/rO9///uaM2eO\nXn31Va1fv96qogAAAABAXixf9S7Trl27VF9fr7Vr12r9+vW64447VFtbq8suu4ygBAAAAMA1fEmW\nngMAAACAKSxd9Q4AAAAAvIigBAAAAAAGBCUAAAAAMLB1MYdc3nrrLX3hC1/Qpk2b9NnPflavvPKK\nHn74Yfn9ftXU1OjBBx9UfX29nn32Wf3whz9UZWWlbrvtNt16661KJBK699571dfXp8rKSv3N3/yN\nLrroIqd3CS5mtr61t7ero6NDyWRSPp9P//RP/6Tx8XHqG/JirG/vvPPO/2/v/kOquv84jj/vzXvt\nom3urpTM/YjV6I/pWhHWXEPbIMY2iAyqxV2RVBSDLdMS3FyzWsuom5sbzdUoaxVh5FZQhkXMmkal\nSP5jLCoI+qEWstt13dLP/ogudbvte53HuvZ9Pf4898c5R1688O35nCNFRUXYbDaGDx/O8uXLsdvt\n6jexRKR5U7+JFUpKSmhoaKCrq4v58+eTmppKfn4+xhiGDBlCSUkJDodD/SaWiTRzlnSciQJ+v9/M\nmTPHfPnll2b79u3GGGOmTp1qLly4YIwxZuPGjaa8vNz4/X4zefJk4/P5zN9//20++OAD09HRYfbu\n3WuKi4uNMcYcO3bMfPbZZ0/sXCT6RZo3Y4wZP378Q59X3qQnwuVt4cKFpra21hhjTFlZmdm/f7/6\nTSwRad6MUb9J79XX15t58+YZY4y5ceOGyczMNAUFBebgwYPGGGPWr19vdu7cqX4Ty0SaOWOs6bio\nWHoXGxvLjz/+yODBg4PbBg8ezPXr1wHo6Ojgueeeo6mpibS0NOLi4oiNjWXMmDGcPn2auro63n33\nXQDefPNNGhoansh5SP8QSd7cbjcAJsxDIZU36Ylwebt48SKpqanA3QwdO3ZM/SaWiDRvoH6T3hs3\nbhylpaUAPPPMM/j9fk6ePMmkSZMAyMrK4o8//lC/iWUizRxY03FRMSjZ7XacTucD25YtW8Ynn3zC\ne++9R2NjI9nZ2bS1tQV/gQVwu920trY+sN1ms2G327lz585jPQfpPyLJ29SpUwG4desWeXl5zJw5\nky1btgAob9Ij4fL26quvcvToUeBuabe3t6vfxBKR5g3Ub9J7drsdl8sFQGVlJZmZmXR2duJwOAB4\n/vnnuXbtGu3t7eo3sUQkmWttbQWs6bioGJTCWbFiBd9//z0HDhzgjTfeYMeOHQ+9J9ykCNDd3d3X\nhydPmUflraCggBUrVvDzzz+zb98+mpubH/qs8iY9lZ+fz/79+8nJyeHWrVvB9dP3U7+JVcLlDdRv\nYp2amhr27NnDF1988UB3ParH1G/SW5FkzoqOi9pBqaWlhdGjRwN3L42dOXOGpKSk4JQIcPXqVZKS\nkkhMTKStrQ0gOBXGxETNcyqkHwiXN4Dp06fjcrlwuVyMHz+es2fPKm/Sa8nJyfz0009s3ryZESNG\nMGzYMBITE9Vv0ifC5Q3Ub2KN2tpaysvL2bRpE/Hx8cTFxREIBIAHe0z9Jlb5X5lLTEwErOm4qB2U\nhgwZwrlz5wA4c+YML774ImlpaTQ3N+Pz+bh58yaNjY2MHTuWjIwMDh48CMCRI0dIT09/kocu/VC4\nvJ0/f55FixbR3d1NV1cXjY2NjBw5koyMDA4cOAAob/LffPfdd/z+++8A/Prrr0yaNEn9Jn0mNG9Z\nWVnqN7GEz+dj7dq1bNy4kUGDBgEwYcIEqqurAaiurmbixInqN7FMpJmzquNs5lHXPx+jpqYmPv/8\nc65fv86AAQN49tlnKS4uDj7eLyEhga+//pr4+HgOHTrEpk2bsNvteDwe3n//fbq7uyksLOTixYvE\nxsbyzTffkJSU9KRPS6JUT/K2bt06jh8/jtPpJCsriwULFihv0iPh8rZq1SpWrlzJnTt3SE9PZ9my\nZQDqN+m1nuRN/Sa9tXv3bsrKynj55ZeDS4jXrFlDYWEhgUCA5ORkVq9ezYABA9RvYomeZM6KjouK\nQUlERERERCSaRO3SOxERERERkSdFg5KIiIiIiEgIDUoiIiIiIiIhNCiJiIiIiIiE0KAkIiIiIiIS\nQoOSiIiIiIhICA1KIiLSp8rLy8nLy3tgW1VVFbNnz7Z8X2+//TYzZszg448/ZsaMGXz66afcvHnz\nXz9TWVlJVVUVXV1djBo1CgC/309NTY3lxyciIv2HBiUREelTc+fOpaWlhVOnTgHw119/8e2331Jc\nXGz5vux2O16vl4qKCnbt2oXT6aSqqupfPzNt2jSmTJkCgM1mA6C5uZnDhw9bfnwiItJ/aFASEZE+\nFRMTw/LlyykuLqarq4vS0lKys7N56aWXAKirq8Pj8eDxeMjJyeHy5csAVFdXM336dObMmYPH4+HK\nlSsAfPTRR6xevZpZs2Y9tC9jDPf+j3ogEKC9vZ2UlBQA8vPzg0PT/VePNmzYQFlZWfA7Ojs7KSoq\nora2Fq/X20c/FRERiXYxT/oARETk6Td27FjS0tIoKiqiqamJvXv3AneXuH311VdUVlYSHx/PoUOH\nKCkpwev14vP52LBhA0OHDuWHH35gx44d5ObmAjBo0CB++eWXsPvKzc3F4XBw6dIlXnvtNTIyMsK+\n797Vo1Aul4ucnBwaGhpYvHixBWcvIiL9kQYlERF5LPLy8njnnXcoLS3F4XAA0NLSQltbG4sWLQpe\nDbr3mtvtZunSpQC0trYybty44HeNGTPmkfvxer0MHToUgG3btrF06VLWr1/fV6clIiJPKQ1KIiLy\nWCQkJJCQkBBccgfgdDp54YUXqKioeOC9gUCAJUuW8Ntvv5GSksLWrVv5888/g6/fG6bCubf0DuDD\nDz8MLqu7/wpSIBDo9fmIiMjTTfcoiYjIY3P/EAPwyiuvcO3aNc6dOwdAfX09e/bswefz4XA4SE5O\nprOzk8OHD/+n4ebkyZOMHDkSgPj4+OD9T/X19f96fHa7ndu3b/d4fyIi8vTQFSUREXlsQu8LGjhw\nIGvXrqWgoICBAwdis9lYuXIlbrebyZMnk52dTVJSEvPnz6egoICamppH3lt07/tzc3NxOp3BZXyr\nVq0C7j7dbvHixZw4cYK33nqLuLi4Rx7f66+/jtfrpaioqE+eziciItHPZkL/vCciIiIiIvJ/Tkvv\nREREREREQmhQEhERERERCaFBSUREREREJIQGJRERERERkRAalEREREREREJoUBIREREREQmhQUlE\nRERERCTEP1Yty/2VF4YbAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "def linreg_r2(X,Y, plot):\n", + " # Running the linear regression\n", + " Xc = sm.add_constant(X)\n", + " model = regression.linear_model.OLS(Y, Xc).fit()\n", + " params = model.params\n", + " Y_hat = np.sum(params*Xc, axis = 1)\n", + " \n", + " # Plot results\n", + " if plot:\n", + " plt.scatter(X, Y, alpha=0.3) # Plot the raw data\n", + " plt.plot(X, Y_hat, 'r', alpha=0.9); # Add the regression line, colored in red\n", + " return model.rsquared, Y_hat\n", + "\n", + "print 'rsquared', linreg_r2(data['Year Built'], data['log Price'],plot=True)[0]\n", + "plt.xlabel('Year Built');\n", + "plt.ylabel('log Price');" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Using only `Year Built` in our model explained only 1.9% of the variation on `log Price`. Using only one dimension to try and understand a multi-dimensional dataset is equivalent to trying to categorize a 3-d object as a cylinder by only approaching it from a single perspective. It can not be done. In this model alone we ignore many features of the data and it can be improved by adding another dimension or 'view'.\n", + "\n", + "Let's see what `log Price` looks like from the perspective of `Number Of Stories`:" + ] + }, + { + "cell_type": "code", + "execution_count": 145, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "rsquared 0.0561128798813\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAz8AAAHxCAYAAABDKAKuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3X10lPWd///XZCaTm5mQSYITIYVQgSKC1jRI2kL0K2VJ\n7dr11HrXFqzfnna3RXdd7W677ap8y677/a2rvdmqp3WtZfvbqrXdL6Juq7b9Sn/c6KAxWkAEgTXA\nEBIIGZKZyWRuf3+ECXIb4crkmuu6no9zPMcrkwzvOR/IXK95f25cuVwuJwAAAACwuRKzCwAAAACA\n8UD4AQAAAOAIhB8AAAAAjkD4AQAAAOAIhB8AAAAAjkD4AQAAAOAInkI+eTwe1ze/+U0dOXJEqVRK\nt956qxYuXDjy+KJFizR58mS5XC65XC7df//9CgaDhSwJAAAAgEMVNPysXr1aF1xwge644w719PTo\ni1/8on7zm9+MPO5yufToo4+qvLy8kGUAAAAAQGGnvdXW1qqvr0+SdOTIEdXW1h73eC6XE2esAgAA\nABgPrlyB08ef//mf691339XAwIAeeeQRXXzxxSOPLVq0SPPmzdO+ffs0b9483XnnnYUsBQAAAICD\nFXTa2zPPPKPzzz9fjzzyiN5++23dfffd+uUvfzny+O23367W1lYFAgEtX75cL774opYsWXLa52tv\nby9kuQAAAABsoLm5+ZRfL2j4ef3119Xa2ipJuvDCC3XgwAHlcjm5XC5J0jXXXDPyvZdffrl27Nhx\nxvAjnf6FwHzt7e2MT5FjjIob41PcGJ/ixvgUN8anuNltfM7UMCnomp/Gxka98cYbkqRwOKzKysqR\n4BONRrV06VINDQ1Jkl577TXNnDmzkOUAAAAAcLCCdn5uvPFGffvb39ayZcuUyWS0cuVKrV69WlVV\nVVq8eLHa2tp04403yufzafbs2WpraytkOQAAAAAcrKDhp7KyUt///vdP+/iyZcu0bNmyQpYAAAAA\nAJIKPO0NAAAAAIoF4QcAAACAIxB+AAAAADgC4QcAAACAIxB+AAAAADgC4QcAAACAIxB+AAAAADgC\n4QcAAACAIxB+AAAAADgC4QcAAACAIxB+AAAAADgC4QcAAACAIxB+AAAAADgC4QcAAACAIxB+AAAA\nADgC4QcAAACAIxB+AAAAADgC4QcAAACAIxB+AAAAADgC4QcAAACAIxB+AAAAADgC4QcAAACAIxB+\nAAAAADgC4QcAAACAIxB+AAAAADgC4QcAAACAIxB+AAAAADgC4QcAAACAIxB+AAAAADgC4QcAAACA\nIxB+AAAAADgC4QcAAACAIxB+AAAAADgC4QcAAACAIxB+AAAAADgC4QcAAACAIxB+AAAAADgC4QcA\nAACAIxB+AAAAADgC4QcAAACAIxB+AAAAADgC4QcAAACAIxB+AAAAADgC4QcAAACAIxB+AAAAADgC\n4QcAAACAIxB+AAAAADiCp5BPHo/H9c1vflNHjhxRKpXSrbfeqoULF448vnHjRn3ve9+T2+3W5Zdf\nruXLlxeyHAAAAAAOVtDOz+rVq3XBBRfoZz/7mX7wgx/o3nvvPe7xe++9Vw8++KCeeOIJbdiwQbt2\n7SpkOQAAAAAcrKDhp7a2Vn19fZKkI0eOqLa2duSxvXv3KhAIqL6+Xi6XS1dccYVeeeWVQpYDAAAA\nwMEKOu3tqquu0urVq7VkyRINDAzokUceGXns0KFDx4Wh2tpa7d27t5DlAAAAAHCwgoafZ555Ruef\nf74eeeQRvf3227r77rv1y1/+8pTfm8vl3tdztre3j2WJGGOMT/FjjIob41PcGJ/ixvgUN8anuDll\nfAoafl5//XW1trZKki688EIdOHBAuVxOLpdLwWBQBw8eHPne7u5uBYPBUZ+zubm5YPXCmPb2dsan\nyDFGxY3xKW6MT3FjfIob41Pc7DY+ZwpyBV3z09jYqDfeeEOSFA6HVVlZKZfLJUlqaGhQLBbT/v37\nlU6ntXbt2uN2ggMAAACAsVTQzs+NN96ob3/721q2bJkymYxWrlyp1atXq6qqSosXL9aKFSt05513\nSpKuvvpqNTY2FrIcAAAAAA5W0PBTWVmp73//+6d9fN68eXryyScLWQIAAAAASCrwtDcAAAAAKBaE\nHwAAAACOQPgBAAAA4AiEHwAAAACOQPgBAAAA4AiEHwAAAACOQPgBAAAA4AiEHwAAAACOQPgBAAAA\n4AiEHwAAAACOQPgBAAAA4AiEHwAAAACOQPgBAAAA4AiEHwAAAACOQPgBAAAA4AiEHwAAAACOQPgB\nAAAA4AiEHwAAAACOQPgBAAAA4AiEHwAAAACOQPgBAAAA4AiEHwAAAACOQPgBAAAA4AiEHwAAAACO\nQPgBAAAA4AiEHwAAAACOQPgBAAAA4AiEHwAAAACOQPgBAAAA4AiEHwAAAACOQPgBAAAA4AiEHwAA\nAACOQPgBAAAA4AiEHwAAAACO4DG7AACAvSSTKYVCPYpGPfL702ppCcrrLTW7LAAA6PwAAMZWKNSj\nSKRB6XS9IpEGhUI9ZpcEAIAkwg8AYIxFo54zXgMAYBbCDwBgTPn96TNeAwBgFsIPAGBMtbQEFQiE\n5fF0KxAIq6UlaHZJAABIYsMDAMAY83pL1draYHYZAACchM4PAAAAAEcg/AAAAABwBMIPAAAAAEdg\nzQ9wAg5oBAAAsCfCDwzLh4WOjrji8bDlw8L69WFt2lSlRKJE5eUepVJhLVo0zeyyAAAAYBDT3mBY\n/jT3TGaSLU5zb2+PKharUyZTo1isTu3tUbNLAgAAwBgg/MAw+53mnhvlGgAAAFZU0LvUX/3qV1qz\nZo1cLpdyuZy2bt2q119/feTxRYsWafLkyXK5XHK5XLr//vsVDHIYntX4/WlFIsdfW1lzc5U2bQor\nkfCovDyt5uYqs0sCAADAGCho+Lnuuut03XXXSZJeffVVPf/888c97nK59Oijj6q8vLyQZaDAWlqC\nCoXCcru7FAhUWP4094ULG1Ra2qNoVPL7pZYWDmsEAACwg3Gbn/TQQw/pgQceOO5ruVxOuRxTiqwu\nf5p7ZeUBNTdbPyhwOj0AAIA9jUv42bx5syZNmqS6urqTHluxYoX27dunefPm6c477xyPcgAAAAA4\nkCs3Dq2Xe+65R5/+9Kd12WWXHff1NWvWqLW1VYFAQMuXL9e1116rJUuWnPZ52tvbC10qAAAAAItr\nbm4+5dfHpfOzadMm3XPPPSd9/Zprrhn5/8svv1w7duw4Y/iRTv9CYL729nbGp8gxRsWN8SlujE9x\nY3yKG+NT3Ow2PmdqmBR8q+uenh75fD55PCduhxzV0qVLNTQ0JEl67bXXNHPmzEKXAwAAAMChCt75\nOXjw4HFrfVavXq2qqiotXrxYbW1tuvHGG+Xz+TR79my1tbUVuhwAAAAADlXw8DNnzhw98sgjI9ef\n+cxnRv5/2bJlWrZsWaFLAAAAAIDx2+oaAMZKMplSKNSjaNQjvz+tlpagvN5Ss8sCAABFruBrfgBg\nrIVCPYpEGpRO1ysSaVAo1GN2SQAAwAIIPwAsJxo9cQMVmtgAAGB0hB8AluP3p894DQAAcCqEH8AB\nksmU1q0La8OGuNatCyuZTJldkiEtLUEFAmF5PN0KBMJqaQmaXRIAALAA5ooADpBfI5PJDB5dIxNW\na2uD2WWdM6+31NL1AwAAcxB+gBPYcSexSETaurVXu3cPaWioV3PmmF0RAADA+GPaG3ACO+4k1tnZ\no1isTtlsjWKxOnV2Wv81AQAAnC06P8AJ7LiT2NSp5ykaDcvl6pbPl9PUqeeZXRIAAMC4s/5dHTDG\n/P60IpHjr62upsalOXMaVFY2qBkzGhQIhM0uCQAAYNwx7Q04gR13Esu/Jre7yzavCQAA4GzR+QEc\nIL87WmXlATU3s0saAABwJjo/wAnsuOEBAAAA6PxgDOS3hu7oiCseD1t+a+j8ttCJRInKy7NsCw0A\nAGATdH5g2LEDNCfZolOS3xY6k2FbaAAAADuh8wPD7LY1dH5b6ETCo/LyNNtCA2fJjgcFAwDswdp3\nqSgKdtsaOr8tdB7bQgNnJ98NloankYZCYbW2stEGAMB8THuDYXbbRtmOW10D48lu3WAAgH3wjgTD\n7LaNcv71ADg3dusGAwDsg84PDEsmU1q3LqwNG+Jaty6sZDJldkkATET3FABQrOj8wLBju70NHt3t\njfn9gJPRPQUAFCs6PzCM+f0AAACwAu5SYZjd5vezTW/xY4wAAMC5oPMDw+y221t+Gl86XW+LQ1vt\nyG5jxLo5AADGB+EHhuXn9y9YUKnW1gbLfwLPNL7iZ7cxOrZubpItwhwAAMWK8APD7Pap9YnT9qw+\njc+O7DZGdgtzAAAUK8IPDFu/PqwNG8q1ZUutNmwo1/r1YbNLMqSpqUadnR16441t6uzsUFNTjdkl\n4QR220rZbmEOAIBixceLMGzTpiPatq1WBw74NTRUKumIFi0yu6pz19HRp8bGJjU25q/Dam2tNLco\nHMduWym3tAQVCuXXzVVYPswBAFCsCD8wrLOzX4nEBOVyKSUSE9TZ2W92SYYwBQnjLR/mKisPqLnZ\nPqEOAIBiw10dDKuv96i9/TX19rpUV/ffmj3b2n+tysoG9eabYSUSHpWXpzV/vrXXMAEAAGCYte9S\nURQOHYrK779I6XRcfn+lDh16y+ySDEmlUvrv/44pGi2T3z+kpiav2SUBAABgDLDhAQyrq5ukKVPK\nNXFiiaZMKVdd3SSzSzLkj39MKBicowsumKFgcI7++MeE2SUBAABgDND5gWHnnZdSNlun0tIhTZpU\np/PO22N2SQa5RrkGAACAFdH5gWGf//wFGhh4Sfv3v6mBgZf0+c9fYHZJhjQ3++Xz9crt7pPP16vm\nZr/ZJeEE+bOlfvObblucLQUAAMYHnR8YtnVrVJ/4xJVqbNypGTNmaOvWsFpbq80u65wtXNig0tIe\nRaMe+f1ptbRYf/etZDKlUKhHHR1xxePD5+J4vaVml3XOQqEeRSLD4xKJSKFQ2FZbXwMAgMIg/MAw\nu20NbbczZKRjYSGTGVQk0mD5sNDXl9Nbbx3bke+ii3JmlwQAACzA2nepKAp+f1qRyPHXVpbvkhzr\n/Fi7SyLZL6Du2XNQsViTJCkWk/bs6ZD0AXOLAgAARY81PzCspSWoQCB/On3Y8qfT57sk6XT90S5J\nj9klGXZiILV6QG1sDB63Lqux0dp/5wAAwPiw9se/QAHYrUsiDQfUUCgfUCssH1ADAWnOnLr3XIdN\nrMY4u63JAgCgWNH5gWHr14e1YUO5tmyp1YYN5Vq/3to3onbrkkjH1jEtWFCp1tYGy99Y57uNHk+3\nrbqNmcwk23QbAQAoRtb/SBuma2+PKhabpmx2SLFYndrbu7RokdlVnbs5c/xaufIl9fb6VFcX0z33\nfMTsknACu21KYcduIwAAxYjODwwbGorr1Vd3qKPjkF59dYeGhuJml2TI44/vVlXVlZo2bb6qqq7U\n44/vNrsk2Jwdu40AABQjPl6EYT09ESWT05XNRpVM+tXT867ZJRly6FCp9uzpVzJZIq83K7fb2lPE\nUPzstibLbliTBQD2QfiBYVVVQXm9EUlD8nrTqqqy9o1bJHJQicRcSVIiMXwNFFJ+Gl9l5QE1N9tn\nOp9d2O2cLACwtD17pJ/9THrsseEbtVN59tnT/jjhB4bt2bNdL7+cVSJRo927+3TeeSWSLjW7rHP2\n0Y826PHHX1J/v08TJsT00Y9a/ybHbp9c2/EsJhQv1mQBwBhLpaQXXpB++lPp5ZfH9Y/mNzgMW7fu\niDKZpXK5pExGWrfuP8wuyZBDh2L68IevfM91h4nVjA27fXKdfz2SFInI8q8Hxc1uBzkDwJh5P12Y\nIkP4gWGDg+fJ7e5TLie53cPXVtbYGFQ02qtEokTl5VlbHKDZ15fTW2+FtWtXv4aGwrroopzZJRli\nt0/i7daZsxvWZAGwtVRK1evWSf/0T+PehTmjhgbpi1+UbrpJmjjx7H62vf20DxX0juFXv/qV1qxZ\nI5fLpVwup61bt+r1118feXzjxo363ve+J7fbrcsvv1zLly8vZDkoEJ/voGKxicpkcnK5XPL5rL1G\nxm4HaErSnj0HFYs1KZdzKRabrD17OiR9wOyyzpndPom3W2fObliTBcASDHRhpqZSUmmBPnT71Kek\nW26RFiyQXK7C/BlnoaDh57rrrtN1110nSXr11Vf1/PPPH/f4vffeq8cee0zBYFBLly5VW1ubpk+f\nXsiSUADXXfch/fu/b1As5pfPF9V1133I7JIMyX/K+971JFaX72aVlPTJ5yuzfDfLbmNkt04WAOAc\nmbgW5oyMdGGKzLi9wz700EN64IEHRq737t2rQCCg+vp6SdIVV1yhV155hfBjQbW11frkJ6eqqyui\nSZOmq7Z2j9kl4QT5blZZWZ9mzKizRTfLTuzWyQIAx8t3YVatkuJFdP7habowm9vb1dzcbF5d42hc\nws/mzZs1adIk1dUdm0p06NAh1dbWjlzX1tZq796941EOxlxU27bt0OHDUiTSo9mzrX3jtn59WJs2\nlSqRkMrLpVQqrEWLppldliF2W7NgtzGy2/gAgC3QhbGlcQk/v/zlL3Xttdee8Xtyufe3ALv9DAuY\nYI5XXtmv/v4W5XKl6u9P6ZVXQpYep6efPqB4vElSRpJL+/dvVXV1r9llGZJKpbV9e1SSV9u3v63S\n0n0qLbXu1Co7jlFlpbRgQaWkA9q8+YDZ5eA0rPy7zQkYn+Jm1viUHjiguueeU91zz6mkiHYk61+w\nQIc+/WnFPvzhc1sL09k5/N8Yccq/n3G5+9m0aZPuueee474WDAZ18OCxhfHd3d0KBkf/tNMpLTkr\nSSb7dN550xSN9svvn6Bkcqelx+n//t8t6u+fPHI9YcJhNTfPNbEi49atC6u+vkE7d+5Uff0MpVJh\nS59fZMcxkobfeKz8byfPrucw2WV87IrxKW6Gx2esujBjvajfQBdm4tH/ioHd/v2cKcgVPPz09PTI\n5/PJ4zn+j2poaFAsFtP+/fsVDAa1du3a49YEwTo+8IES7dzZKymq0tKUPvCBErNLMqS52a9Nm45t\ndd3c7De7JMN6epJ68cUOvftuTNOmDWjJkoDZJRlixzGyE85hAnBaFlsLA/spePg5ePDgcWt9Vq9e\nraqqKi1evFgrVqzQnXfeKUm6+uqr1djYWOhyUACLF0/Qxo2/V2+vX6lUVF/96gVml2TIpZfW6Jln\nXldvr091dTFdeulHzC7JsJde2ql33rlIkUhcqVSlSkvf0mc/+0Gzyzpn8+cH9dZb25VKlcvvT2j+\n/Flml4T3YPc6wObOoQtzcSG3Us5jLQzeh4K/I82ZM0ePPPLIyPVnPvOZkf+fN2+ennzyyUKXgAJb\nv75PweAnVVoaU02NT+vXh3TDDWZXde4ef3y3qqquVFVV/rpDt93WZG5RBvX3exSJSEeOeEaurWzT\nph5Fo1OVyZQoGs1q06YeS294YDfsXgdYBF0Y2Ex+2nVl5em/x9p3QCgKvb1+SSlJSUneo9fWdfCg\nW3v2hJVMeuT1plVS4ja7JMP6+5Py+RqUy/XL55ug/v4tZpdkSCjUp7ffLh0Zo1yuj/BTROx2DhNQ\n1Ip1R7JJk6T/+T9HujBO2koZ5slPu66sPP3GQYQfGDY42KVDh6YqGs0ok0koEOgyuyRDDh4Ma/Pm\nciWTpfJ6U/L5wpIuMbssQ+bNq9P69V2KxQbl88U0b17d6D9UxN59N6K9e6crnS6Rx5NVefkOs0vC\ne3i9pazxAc7W229LK1dKa9eaXcnx6MLAQt7PNGvCDwybNes8tbeH1d/vVSaT1KxZ55ldkiGJhFvR\naJmGhrwqKytRImH9zs/HPz5RHk9Wu3ZFNH16mebPt/Zc6ExGikQOKpn0yutNKpMxuyIA0HAXZtUq\nacUKsys53gldGMCuTpx2fSqEHxi2bVtcU6e2jmx1vW3bC2aXZMiBAyWqr298z/U7JlYzNvIbBLjd\nh+X3uyy/QYDbLQUCk5ROu+Tx5OR27zG7JAB2QhcGsKT8tOszIfyYwG5nYAQClerv75cUU2np8LWV\nNTRI7e1hJZNueb0ZXXih2RUZ19HRp8bGJqVSO9XYOEMdHWG1tlp3nKZNCyiR6BtZ8zNtmrW37gbG\nk93eg04r34X5X/9Lep8HqY+bG26Q/vZvh99wAIyZ/LTr9nbW/BQVu52BMXeuRwcO7JXLlZTX69Xc\nudb+azV9epnefHO3kkmfPJ6Ypk8vM7skwyIRaevWXu3ePaShoV7NmWN2Rca0tNTI5So/es6PR/Pn\n15hdkiH5m9GOjrji8bB9b0ZRFCz3HvQ+uzDjspXyewWD0ne+I33601KJtc+3A5zE2nepFmW3MzAu\nvnii3nknKSmlxkavLr7Y6vOJ/Zo9e6qSyRJ5vVlJ1p9S1dnZo1isSdnskGKxOnV2dkgq4pudUSxc\n2KDS0vd+cm3d1yIduxnNZAYViTQU/80oLM2U9yC6MACKhLXvui3KbmdgZLMTdPXV9dq5c6dmzJih\nbLbb7JIMGX5fTmj4n0e66N6nz8WkSQFt3tyhvXtjcru7demlTBMrJnb7QATFzdB70Pbtw92OYlsL\nEwxqz7JlmnHHHXRhAJwR77AmsNsZGCUl/XruuUPq7Izp7be36tprvZLqzS7rnFVUpCVVSSqRlFVF\nxX6TKzKuqyuiYLBJmcx+BYOT1dXVYXZJhqxfH9amTVUj095SqbClz/mx2wciKG4tH56gg1/+iup+\n/6xcLsnrLaKwYKALc6S9neADYFSEHxPY7QyMbdsiSiQuUDYbUSIR0LZtu9XWZnZV52769MlKJFJH\nb6yzmj59stklGdbYGFQ02quSkj75fGVqbLR24G5vjyoWmyZJisWk9vYuLVpkbk1G5D8Qcbu7FAhU\nWP4DEYyTDRuk668/6x/z6uik17ICBYVgcHir52uuIYwAKDqEHxjW1ZXTtm1vqbe3RJHIfp1/vrU3\nCPD5UpLKT7i2Nvu9phPnIlp7bmL+A5HKygNqbrbPByN4H4aGpNtvl555xuxKTsZaGAA2RPiBYevW\nbdO2bUuUSrnV05ORx/OipPlml2XQsTU/9pFQLjek4ddmbc3NVdq0KaxEwqPy8rSam6vMLskQdnuz\ngXPswoyLv/xL6RvfGD4gCwAcjvADwzo7vUqnB5TJeORypdXZ6TW7JEOGhio0Z079e66tvYGDdOw1\nlZUNasaMBsu/pmO7vUl+v9jtDWMjFpOuuELaf+p1fuO+lfJ7TZggPf20bHHwGACYiPADwxKJqFyu\nRrndWblcJUok/mB2SYYMb+CwX9Foufz+hK691i8rb+Ag2W9Bvd3WzbHb2xh7+mlp+XKzqzg1ujAA\nYCreYWFYba1bnZ1vKZMpl9udUG2ttd/Ut2zpVWfnJA0OlqqiolJbtnSprW2m2WUZ0tRUo1WrOrR9\ne69KSwd05ZWzzC4J72G3cDomRunCmIouDABYFuEHhk2fXqXDh/0aGvKorMyj6dOtvf7irbek6upG\nVVfnr7vMLWgMdHT0qbGxSanUTjU2zlBHR1itrZVml4WjbL3b2zPPSF/9qtlVnNqf/In02GPvuwuz\nub1dzc3NBS4KAFBIhB8T5Bc3v/ecHysvbq6rq1Vt7SENDLhVVZVRXV2t2SUZ4nYP6uDBXqXTJfJ4\nsqquHjS7JMOYVlXcin63t2hUmjVLRXvi75o10mWXmV0FAMACuAMyQX5xsyRFIrL84uahoX5VVFym\nTCahiopyDQ393uySDJk2rUTr1m1WPO5XZWVUixdb/5yKsrJBvflmWLt29WtoKKz5862+1TXOyS9+\nId1xh9lVnNpZdmEAADgXhB8T2O1T+A9+sEFbt27X4KBHZWVpffCD1g1ykrRz55AymZmSvMpkktq5\n8x2zSzJscHBIGzf2KxzOqbu7VxdfbO2zmBwtGh1ea5LNml3JqT31lLRwodlVAABwSta+67ao4d3E\nDikaLZPfP6Rrr/XKyruJvfvuAU2c+GcqL++X3z9B775bhIf1nYW33krI4/mgPJ789WZzCxoDzz13\nSBUVC1RX16uKijo999wG/emfWnfTA1tMHX3sMemuu477kqlbKb9XU9PwVDIPbxEAAHvhnc0E27ZF\nlEhcoGy2RIlEVtu27VZbm9lVnbtZs6ZoYGCH4vGEfL5yzZo1xeySDKmpKVU8fmzNT01NEdyMGpRK\n5c54bTVFM3V0YGB4LUyx+sUvpNZWs6sAAKBoEH5MMDDg19Spde+57jGxGuMmTkyrvv585XJ9qq+v\n0cSJ280uyZBPfCKg3/2u9+hW1yl94hMBs0sybO5crzo6wnK5IiovT2juXGsfRBuJSFu39iqRKFF5\neVZz5hh8wp/+VPr7vx+T2sYcXRgAAMYM76YmqKlJqLv7+Gsrmz07oG3bdkmKqbz8sGbPtnZY+NKX\nLtK+fa+rt9enurqYvvSlj5hdkmFf/vJcrVq1XVu29Gru3KRuuWWu2SUZ0tnZo1isSdLwcTCdnR3S\nwITi7sL87GfS4sVn/Ba2UgYAoLAIPya45ZZZWrWqQ3195aqpSeiWW4r4hu19yGYn6OqrZ2rnzp2a\nMWOGstnu0X+oiL3xRp/OP/8SBQLDXYU33ujTokXVZpdliN9fqdtua1J7e7uam5vMLufM3kcX5suJ\njFJpl5ST5JJKPTnpn8Zhl7ApU6QNG+jCAABgUbyDmyB/I2oXdjudvr09qlhsmqThrkJ7e5cWLTK3\nJqPyGwR0dMQVj4cLv0FAgdfCuEpcKi09tgW5y3WWO5+9jy4MAACwH8IPDLPf6fQnbgZg7c0BJGn9\n+rA2bSrVrl0+xeNSKhXWokXTRv/BIl0L4/WWKFod1IZ/+S/5qof/Dspqu70BAIBxR/iBYUV/Ov1Z\nuuSScv2f/9OhaLRcfn9CCxf6zS7JmFhMzZ/9uOalpWw2q5KSEpW40pK/SP75//u/Dx9weRZckqok\nfbIgBQEAALsqkrsfWNm4T6kqsHQ6q64utwYG3KqqciudLpLDJH/xC+mOO87pR0syKaUzbmWzWeVy\nksszxt1yqyL/AAAgAElEQVSsyZOll18ujjNqgDFmt99xAOBkhB8YtnZtp/7zP13q7KzS1q0JDQ52\nasmSGWaXdc7WrDmgaHSuMpkSRaNZrVmzZewOBI3FpIsuklKpsXm+98nlGu76ZLOSlJXLdZpvPIcu\nDGB3+XOlMplBRSIN5p0rBQAwjPADw1av7lYkskDZbK8ikTqtXr3B0uFn375+HTokpdPDm3qVl/ef\n/E0GujAFd/HF0n/913E7kj34/3Ro27bpOnCgT+efX6PZs3fp7/7OPptuAIUUjXrOeA0AsA5+g8Ow\naDShd97ZpSNHMqqujmjOHIucW3SaLsz/e3hImcyxKS3uHSlpctl4Vyc98YR0xRVj8lTpdE7d3TEd\nPJiRyxXTzJnW38QBGC9229ESAJzsfYWftWvXat++fVq6dKn27NmjKVOmyHXaeTNwmv7+XkUitYrH\nXcrlcurv7x3fAp56Svrrvx6zp/N6S5RManhtjGv4+pxdfLH03HOmr4Xp6TmkZLJRuVxSyaRXPT2H\nTK0HsBL77WgJAM41avj5l3/5F3V2dmr//v1aunSpnn32WR0+fFh33333eNRnS/nFs9GoR35/2vKL\nZzOZUu3dG1U67ZfHE9VFF53Da4nFpLlzpaGhsS/wLHk8Lg0lUsrmSlTiysrjcUuPPy79j/9hdmnn\nrKqqTl7vHpWUpOT1HlZVVZ3ZJQGWYbcdLQHAyUYNP6+++qqeeuopLVu2TJJ066236qabbip4YXaW\nXzwrSZGILL949g9/6FFJyWfk8WR0fe4/9cCv/1yafKvZZZ3swgulF14YtQvz1S/+p9asmapk0i+v\nN6prPr1H/27h4CNJsVi/qquvVDbbq+rqOsViL5ldEgAAwLgbNfyUlQ2vdchPc8tkMspkMoWtyuaK\nfvHs4KD0hS9Ir7zyvr59R2xQudzdGj595ehcsUL6+c+lK68s2NP/5jcJZbOXyeORslnpN7/ZUbA/\na7xceul5+t3vnlNvb7nq6hK66qppZpcEAAAw7ka96/7IRz6iv/u7v1NPT49++tOf6oUXXtD8+fPH\nozbbGrfFs7/7nXTzzYV57vfI5TKSSk+4HsWsWdKLL5q+FuZUUqmskskB5XIlcrmycruL5JwfA9as\neUeDg1cql8tocNCtNWte0i23zDW7LAAAgHE1avi544479Pzzz6uiokIHDhzQl770JS1ZsmQ8arOt\n/OLZ9675Oa3BQemmm6RXXx2/As/Gs89q7p90qK9vtiSfpJhqarbp8P4vm13ZOauu7tfg4LuSyiUl\nVF19iq2uLWbPnjJlMiWSMspkSrRnjwm71wEAAJhs1PATj8eVzWa1YsUKSdITTzyhWCwmn89X8OLs\nbOqq76n+6f+QyyWVGtlNbCxce630/e8fdy7M2RgaCkmaJMkraYKGht4cy+rG3ac+dZGeeGKLhobq\nVFbWq0996iKzSzLM6x1SZeUElZTEVV5eKa/X/I0lYF9229QFAGAfo97tfvOb39Rll102cj04OKhv\nfOMbeuihhwpamJ2tXx/WZb/8D6VyGl4mo4zKvG7jT/zcc9JHPmL8ec5SKpWSFFa+85M64dwcq+np\nOaIpU65VJiO53VJPz2/MLsmwq6+u0X/8x4uKx8tUVjakq6+uMbsk2JjdNnWxG8IpACcbNfxEIhHd\n/J51I1/60pf00kvsFGVEKHRYtRPmqLF369Hwkz0Wfq6/XnrggXPuwpihpMQr6cOSSiRlVVKyxeSK\njKmsrJPHc1jZrEceT1qVldbfFnrevAbt2ZNUZ2dMjY0TNW+e1+ySYGNFv6mLwxFOATjZqO9IqVRK\nu3bt0vTp0yVJW7Zssfwn+2b77/8+ojs/9JTS6RJ5PFnNmPFHPfJI4XYvK7Rs1ispouFpb8mj19bl\n8+U0c+ak91y/Y2I1YyObnaCrr67Xzp07NWPGDGWz3WaXBBsbt01dxkm+U9LREVc8HrZ8p4RwCsDJ\nRv2N961vfUvLly/XwMCAMpmMamtr9c///M/jUZtt5XIuRSIuJZMl8npzyuUKvDV0gVVWxnTkiEeS\nW5JHlZUxs0syZMmSat1//3+pv79aEyYc0U03fcDskgyz280oittZbepiAflOSSYzqEikwfKdEn4f\nAHCyUcPPhz/8Yb3wwgvq6+uTy+VSIBAYj7psLZMZ0sDAXiWT5fJ6E8pkrL34vKysQm53hzKZCXK7\n+1VWVmF2SYZ0diY1Y8ZHj4bTrDo7d5tdkmH5m1G3u0uBQIXlb0btxm6dBa+31NLh4ER265TYLZwC\nwNk47W/wH//4x/qLv/gL/e3f/u3IAafvdd999xW0MDs7cCCubNavXM6rbNajAwfiZpdkSHW1V7HY\nQqXTw0uVqqufNrskQ/r6yiQlNPzPI3302tryN6OVlQfU3Gyfm1K7sFtnwW7s1imxWzgFgLNx2vBz\n0UXD2/t+/OMfH7dinCKTKZNUKZfLI8lz9Nq6Jk3yad++PyqT8amkJKZJk6y9Dfrevbv161+7NTRU\nqbKyuD796d2SLjG7LNiY3ToLdkPnFOOJ3fiAwjrtO2xra6sk6cCBA/ra1742bgU5gdeblc9XO7KV\nstebNbskQ3p6DimV+qgymeFOSU/PVrNLMmT9+sM6cmRQ2ayUSAxq/frDZpdkWDQa16pV27VlS59e\nfrlDt9wyS35/pdll4Si7dRbshs4pxhO78QGFNerHi7t27VJnZ6caGxvP6Q945pln9JOf/EQej0d/\n9Vd/pSuuuGLksUWLFmny5MlyuVxyuVy6//77FQza/xO1lpagUqlODQ6WqqIiZflPEbu6ypTN7lcu\nV65sNqGuLmt3srq6XHK5Piy3O3+92dyCxsCqVdvV3d2kdHq/ursna9WqDt12W5PZZeEoOgsA8ugE\nA4U16r+o7du360//9E9VXV2t0tJS5XI5uVwurV27dtQnj0Qieuihh/T0008rFovpX//1X48LPy6X\nS48++qjKy8sNvQir+fjHg/J4SpVIeFRentb8+dbeGnpoaFDZ7MWSXMpmcxoaes3skgxxubJKpw8p\nv+anrMzanTlJOniwVHv29Kqra1CpVK9KSphCUUzoLADIoxMMFNao4edHP/rROT/5xo0btWDBAlVU\nVKiiokIrV6487vFcLqdcLnfOz29VCxc2qLS0R9Go5PdLLS3WvtlJpyWpU/lzftIW/z1dX59VZ+dB\n5XLlcrkSqq+3fvg5cuSgEom5kqREok5HjvzR5IoAAKfCbnxAYZ0x/PzhD3/Q7t271dzcrEsuOfsF\n3+FwWIODg/ra176mgYEB3XrrrfrYxz523PesWLFC+/bt07x583TnnXee9Z9hRXbbaaey0qX+/j2S\nqiUdUWWltc8tmj9/mqRBJZOS1zt49NraPvaxKfr5zzeptzet8nKPPvaxKWaXBAA4BbvdIwDF5rTh\n54c//KE2bNigpqYm3XXXXfryl7+sP/uzPzurJ8/lcopEInr44Ye1b98+3XzzzXrppZdGHr/99tvV\n2tqqQCCg5cuX68UXX9SSJUvO/dXAFOl0TNIsSaWSzlc6be2uwmWXVcvjaVAy6ZHXm1ZTU9jskgzr\n6upTTc2FGhrqU01Njbq6tptdEgAAwLg7bfhZv369fv7zn8vj8WhgYEB/+Zd/edbhZ+LEiWpqapLL\n5dKUKVPk8/l0+PBh1dbWSpKuueaake+9/PLLtWPHjlHDT3t7+1nVUIxSqbS2bIkqHveqsjKpuXP9\nKi218oLGgKQuSX5JUUkBS4/TJZcMatOmdTpypFqBwBFdcskkS78eSdq+vUvvvCMNDZVpYKBHlZVd\nln9NdsW4FDfGp7gxPsWN8SluThmf095xe71eeTzDD1dVVSmTyZz1ky9YsEDf/va39ZWvfEWRSETx\neHwk+ESjUX31q1/VT37yE5WVlem1115TW1vbqM/Z3Nx81nUUm3XrwqqvP9bSTqXC+uhHrdviTqXW\nqaTko8rlMnK53EqlXrH0OK1bF9bnPndsY47S0rDlF6E/+mhcU6Zcpr6+XtXU1ElaZ+kxsqv29nbG\npYgxPsWN8SlujE9xs9v4nCnInTb8uFyuM16/H/X19Wpra9MNN9wgl8ulu+++W6tXr1ZVVZUWL16s\ntrY23XjjjfL5fJo9e/b7Cj92YLdtLKurgzp8+DXlchVyuQZVXW3txZl2Gx9JmjrVp3g8LJcrovLy\nhKZOtfZBtAAAAOfitHd1u3bt0je+8Y3TXt93333v6w+44YYbdMMNN5zysWXLlmnZsmXvt1bbsNs2\nljNnpvT22+crmXTJ663WzJnWPuTUbuMjSS0ttXK5JK93SNOnS/Pn15pdEgAAwLg7bfj5m7/5m+Ou\nT9ylDeeuqalGq1Z1qK+vXDU1CV155SyzSzLkjjsu0Xe+84Z6e8tVV5fQHXec/c6AxcSO24zmt1ev\nrIypqcn626sDAACci9OGn8985jPjWYejdHT0qbGxSY2N+euwWlsrzS3KAL9/sv73/27Szp07NWPG\nDHk83WaXZIgdtxnlEE0AAACpxOwCnMhua0pOnBZmh2liAAAAsB/CjwnsFhZaWoIKBMJyu7sUCIRt\nMU0MAAAA9mPtloNF2W1NCVOqAAAAYAWjhp+5c+eedMaP2+3WtGnTtGLFCl122WUFK86u7LamJJlM\nKRTqUUdHXPH4cOfH6y01uywAAADgOKOGn29961vyer1avHixcrmcfv/732tgYEDz5s3TP/7jP+qp\np54ajzpRxEKhHkUiDcpkBhWJNCgUCtsq3AEAAMAeRl3z8/zzz+v6669XTU2Namtrdf3112vdunW6\n5JJL5PEwaw7228ABAAAA9jTqXerQ0JCeeOIJNTc3q6SkRJs3b1Zvb6/efPPNk6bDwZnseCgoAAAA\n7GfU8HPffffphz/8oR5//HFls1lNnz5d9913n9LptO69997xqBFFLr+Bw/BubxWW38ABAAAA9jRq\n+Jk2bZoeeOAB9fX1qaSkRNXV1eNRFwAAAACMqVHX/LS3t2vx4sX61Kc+pba2Nn3yk5/U5s2bx6M2\nWMSxDQ8mHd3woMfskgAAAICTjNr5+e53v6uHH35YH/rQhyRJb731lu699179/Oc/L3hxsAY2PAAA\nAIAVjNr5KSkpGQk+knTRRRfJ7XYXtChYy4kbHLDhAQAAAIrR+wo/L774oqLRqKLRqH79618TfnCc\nlpagAoH8hgdhNjwAAABAURp1ftJ3vvMd/cM//IP+/u//Xi6XS5deeqm+853vjEdtsAivt1StrQ2q\nrDyg5mYONwUAAEBxel+7vf3kJz8Zj1oAAAAAoGBOG34+//nPy+VynfYH2fAAAAAAgJWcNvz89V//\n9XjWAQAAAAAFddrwM3/+/PGsAwAAAAAKatTd3gAAAADADjiNEoZFo3GtWrVdW7b06eWXO3TLLbPk\n91eaXRYAAABwHDo/MGzVqu3q7m5SOn2RurubtGrVdrNLAgAAAE5C+IFhfX3lZ7wGAAAAigHT3mBY\nRUVEGzZsVU9PUsFgnxYv7je7JEOSyZRCoR5Fox75/Wm1tATl9ZaaXRYAAAAMovMDw4bPg/JL8kny\nn/F8KCsIhXoUiTQona5XJNKgUKjH7JIAAAAwBuj8wLB4vFqXXdaorq79mjRpsuLxuNklGRKNes54\nDQAAAGui8wPDamoSZ7y2Gr8/fcZrAAAAWBPhB4bdcsss1dd3yON5S/X1w1tdW1lLS1CBQFgeT7cC\ngbBaWoJmlwQAAIAxwHweGOb3V+q225rU3t6u5uYms8sxzOstVWtrg9llAAAAYIzR+QEAAADgCIQf\nAAAAAI7AtDcYlj8Xp6Mjrng8zLk4AAAAKEp0fmBY/lycTGYS5+IAAACgaBF+YBjn4gAAAMAKCD8w\njHNxAAAAYAWEHxiWPxfH7e7iXBwAAAAULeYnwbD8uTiVlQfU3Mz5OAAAAChOdH4AAAAAOALhBwAA\nAIAjEH4AAAAAOAJrfmDY4cNHtHLl69qxI6EPfegl3XPPR1RbW212WQAAAMBx6PzAsJUrX1dX15VK\np+erq+tKrVz5utklAQAAACch/MCw3l7fGa8BAACAYsC0NxMkkymFQj2KRj3y+9NqaQnK6y01u6xz\nVlNzRFu29KuvL6l0ul9z5x4xuyQAAADgJHR+TBAK9SgSaVA6Xa9IpEGhUI/ZJRmyZEmD/P43VVKy\nQ37/m1qyhLN+AAAAUHzo/JggGvWc8dpq3O46feUrF2nnzp2aMWOG3O5us0sCAAAATlLwzs8zzzyj\na665Rp/97Gf1hz/84bjHNm7cqOuvv1433XSTHn744UKXUjT8/vQZr63Gbq8HAAAA9lTQ8BOJRPTQ\nQw/pySef1I9//GP9/ve/P+7xe++9Vw8++KCeeOIJbdiwQbt27SpkOUWjpSWoQCAsj6dbgUBYLS1B\ns0syJP963O4uW7weAAAA2FNB51tt3LhRCxYsUEVFhSoqKrRy5cqRx/bu3atAIKD6+npJ0hVXXKFX\nXnlF06dPL2RJRcHrLVVrq33WxeRfT2XlATU32+d1AQAAwF4KGn7C4bAGBwf1ta99TQMDA7r11lv1\nsY99TJJ06NAh1dbWjnxvbW2t9u7dW8hyiobddnsDAAAArKCg4SeXyykSiejhhx/Wvn37dPPNN+ul\nl1467fe+H+3t7WNZoik6OiIaGGgcud6+/f9TU1PAxIrGjh3Gx+4Yo+LG+BQ3xqe4MT7FjfEpbk4Z\nn4KGn4kTJ6qpqUkul0tTpkyRz+fT4cOHVVtbq2AwqIMHD458b3d3t4LB0deKNDc3F7LkcdHT0610\nun7k2uOpUnNz/Rl+whra29ttMT52xhgVN8anuDE+xY3xKW6MT3Gz2/icKcgVdMODBQsWKBQKKZfL\nqa+vT/F4fGSqW0NDg2KxmPbv3690Oq21a9dq4cKFhSynaLA7GgAAADD+Ctr5qa+vV1tbm2644Qa5\nXC7dfffdWr16taqqqrR48WKtWLFCd955pyTp6quvVmNj4yjPaA8tLUGFQuHj1vwAAAAAKKyCn655\nww036IYbbjjlY/PmzdOTTz5Z6BKKjt12e8tv4NDREVc8HmYDBwAAABSlgh9yCvsLhXoUiTQok5mk\nSKRBoVCP2SUBAAAAJyl45wf2F4lIW7f2avfuIQ0N9WrOHLMrAgAAAE5G5weGdXb2KBarUzZbo1is\nTp2ddH4AAABQfOj8wLCpU89TNBqWy9Utny+nqVPPM7skAAAA4CR0fmAYW3cDAADACgg/GCPlcrnK\nJJWbXQgAAABwSoQfGBaNeiQllMsNSUocvQYAAACKC3epJsifi/PeQ06tfC7Onj0HFYs1KZdzKRab\nrD17OiR9wOyyAAAAgOPQ+TFB/lycdLreFufiNDYG5fP1qqSkTz5frxobg2aXBAAAAJyE8GOCE6eF\nWX2amM+XOuM1AAAAUAwIPyaw5+5ox9b8AAAAAMWI8GOCpqYadXZ26I03tqmzs0NNTTVml2SI3TpZ\nAAAAsCfCjwk6OvrU2NikSy+drcbGJnV09JldkiHDGx40KJc7X7FYg/bsOWh2SQAAAMBJ+IjeBHbr\nlDQ2BhWN5jc8KGPDAwAAABQla991W5Tfn1Ykcvy1lQUC0pw5dSor69OMGXUKBMJmlwQAAACchGlv\nJmhpCSoQCMvj6VYgEFZLi7U7Jfk1TNu3v2uLNUwAAACwJzo/JvB6S9Xa2mB2GWMmv4YpldqpxsYZ\n6ugIq7W10uyyAAAAgOPQ+YFhdlvDBAAAAHsi/MAwe55bBAAAALsh/MCw/Bomt7vLFmuYAAAAYE/M\nT4Jh+TVMlZUH1Nxsn7VMAAAAsBc6PwAAAAAcgc6PCZLJlEKhHkWjHvn9abW0BOX1lppdFgAAAGBr\ndH5MEAr1KBJpUDpdr0ikQaFQj9klGZJMprRuXVgbNsS1bl1YyWTK7JIAAACAk9D5MYHdtobOh7lM\nZvBomAtb+hwjOnMAAAD2ROfHBHbbGtquYc4unTkAAAAMI/yYIL81tMfTbYutoQlzAAAAsALu6kyQ\n3xraLlpaggqF8uf8VNgizEUix18DAADA+gg/MMxu5/zkw9x71/wAAADA+gg/wAns1pkDAADAMNb8\nAAAAAHAEwg8AAAAARyD8AAAAAHAEwg8AAAAARyD8AAAAAHAEwg8AAAAARyD8AAAAAHAEwg8AAAAA\nRyD8AAAAAHAEwg8AAAAARyD8AAAAAHAEj9kFOFEymVIo1KNo1CO/P62WlqC83lKzywIAAABsjc6P\nCUKhHkUiDUqn6xWJNCgU6jG7JAAAAMD2CD8miEY9Z7wGAAAAMPa46zZBWdmg3nwzrETCo/LytObP\nT5ldEgAAAGB7hB/TlGu48eaRZO3wk1/D1NERVzweZg0TAAAAihLhxwRDQxWaM6fuPddpE6sxbv36\nsDZtqtLu3bWKx8uVSoW1aNE0s8s6Z2xIAQAAYE8FDT+bNm3S7bffrpkzZyqXy2nWrFm66667Rh5f\ntGiRJk+eLJfLJZfLpfvvv1/BYLCQJRUFvz+tSOT4aytrb48qFpumbHZIsVid2tu7tGiR2VWdu/yG\nFJIUiUihUFitrQ0mVwUAAACjCt75mT9/vn7wgx+c8jGXy6VHH31U5eXlhS6jqLS0BBUKhY/rLFhb\nbpRra2FDCgAAAHsq+F1dLnf6G+FcLnfGx+3K6y21VSehublKmzaF5XJ1y+fLqbm5yuySDCkp6ddz\nzx1SNFomv39I117rlVRvdlkAAAAwqOBbXe/atUvLly/XF77wBW3cuPGkx1esWKHPf/7z+u53v1vo\nUlAgCxc2aMEC6eKLY1qwYPjayrZtiyiROF/ZbJ0SifO1bVtk9B8CAABA0XPlCth66e7u1uuvv66r\nrrpKe/fu1c0336zf/va38niGG05r1qxRa2urAoGAli9frmuvvVZLliw57fO1t7cXqlRgxL/9W5/S\n6YtGrj2et/SVr9SYWBEAAADORnNz8ym/XtBpb/X19brqqqskSVOmTNHEiRPV3d2thobhzsA111wz\n8r2XX365duzYccbwI53+hcB87e3tthifl1/uUHf35JHr+vpuNTc3mVjR2LHLGNkV41PcGJ/ixvgU\nN8anuNltfM7UMCnotLdnn31WDz74oCSpt7dXhw8fVn398NqJaDSqpUuXamhoSJL02muvaebMmYUs\nBwUSjcb14IMd+rd/69ODD3YoGo2bXZIht9wyS/X1HfJ6t6m+vkO33DLL7JIAAAAwBgra+Vm0aJG+\n/vWv63Of+5xyuZxWrFihZ599VlVVVVq8eLHa2tp04403yufzafbs2WpraytkOSiQVau2q7u7Sen0\nfnV3T9aqVR267Tbrdkr8/kpL1w8AAIBTK2j48fl8+tGPfnTax5ctW6Zly5YVsgSMg76+8jNeAwAA\nAMWg4Lu9wf5qahJnvAYAAACKAeEHhuXXyHg8b7FGBgAAAEWLo+thWH6NzPBOIayVAQAAQHGi8wMA\nAADAEQg/AAAAAByBaW8wLJlMKRTqUUdHXPF4WC0tQXm9pWaXBQAAAByHzg8MC4V6FIk0KJOZpEik\nQaFQj9klAQAAACch/MCwaNRzxmsAAACgGBB+YJjfnz7jNQAAAFAMCD8wrKUlqEAgLLe7S4HA8Jof\nAAAAoNgwPwmGeb2lam1tUGXlATU3N5hdDgAAAHBKdH4AAAAAOALhBwAAAIAjEH4AAAAAOALhBwAA\nAIAjEH4AAAAAOALhBwAAAIAjEH4AAAAAOALhBwAAAIAjEH4AAAAAOALhBwAAAIAjEH4AAAAAOALh\nBwAAAIAjEH4AAAAAOALhBwAAAIAjEH4AAAAAOALhBwAAAIAjEH4AAAAAOALhBwAAAIAjEH4AAAAA\nOALhBwAAAIAjEH4AAAAAOALhBwAAAIAjEH4AAAAAOALhBwAAAIAjEH4AAAAAOALhBwAAAIAjEH4A\nAAAAOILH7AJgfclkSqFQjzo64orHw2ppCcrrLTW7LAAAAOA4dH5gWCjUo0ikQZnMJEUiDQqFeswu\nCQAAADgJ4QeGRaOeM14DAAAAxYDwA8P8/vQZrwEAAIBiQPiBYS0tQQUCYbndXQoEhtf8AAAAAMWG\n+UkwzOstVWtrgyorD6i5ucHscgAAAIBTovMDAAAAwBEIPwAAAAAcgfADAAAAwBEKuuZn06ZNuv32\n2zVz5kzlcjnNmjVLd91118jjGzdu1Pe+9z253W5dfvnlWr58eSHLAQAAAOBgBd/wYP78+frBD35w\nysfuvfdePfbYYwoGg1q6dKna2to0ffr0QpcEAAAAwIEKPu0tl8ud8ut79+5VIBBQfX29XC6Xrrji\nCr3yyiuFLgcAAACAQxU8/OzatUvLly/XF77wBW3cuHHk64cOHVJtbe3IdW1trXp6egpdDgAAAACH\nKui0t8bGRt1222266qqrtHfvXt1888367W9/K4/n5D/2dB2iE7W3t491mRhDjE/xY4yKG+NT3Bif\n4sb4FDfGp7g5ZXwKGn7q6+t11VVXSZKmTJmiiRMnqru7Ww0NDQoGgzp48ODI93Z3dysYDI76nM3N\nzQWrF8a0t7czPkWOMSpujE9xY3yKG+NT3Bif4ma38TlTkCvotLdnn31WDz74oCSpt7dXhw8fVn19\nvSSpoaFBsVhM+/fvVzqd1tq1a7Vw4cJClgMAAADAwQra+Vm0aJG+/vWv63Of+5xyuZxWrFihZ599\nVlVVVVq8eLFWrFihO++8U5J09dVXq7GxsZDlAAAAAHCwgoYfn8+nH/3oR6d9fN68eXryyScLWQIA\nAAAASBqH3d4AAPj/27v3oKjqBozjz4IsIqhochkvaWKG+UeZ4y0yUBFsxkbMMcGE0ZoxRWvKkQbx\n7pAK3hXJuwGWCJlE1gym0zA6MJg2meVokWRpAspF5ZKI7PvHmzuAaG/zuh30fD9/sefs/vY5/IbL\ns7+zZwEAaA0oPwAAAABMgfIDAAAAwBQoPwAAAABMwaEXPEDL6upuqaCgVFVVbeThUa8hQ7xltboY\nHfYd3psAAA6ZSURBVAsAAAB4pLHyY4CCglJVVnZTfb2PKiu7qaCg1OhIAAAAwCOP8mOAqqo2970N\nAAAA4MGj/BjAw6P+vrcBAAAAPHiUHwMMGeItT89LatOmRJ6elzRkiLfRkQAAAIBHHudbGcBqddHw\n4d2MjgEAAACYCis/AAAAAEyB8gMAAADAFCg/AAAAAEyB8gMAAADAFCg/AAAAAEyB8gMAAADAFCg/\nAAAAAEyB8gMAAADAFCg/AAAAAEyB8gMAAADAFCg/AAAAAEyB8gMAAADAFCg/AAAAAEyB8gMAAADA\nFCg/AAAAAEyB8gMAAADAFCg/AAAAAEyB8gMAAADAFCg/AAAAAEyB8gMAAADAFCg/AAAAAEyB8gMA\nAADAFCg/AAAAAEyB8gMAAADAFCg/AAAAAEyB8gMAAADAFCg/AAAAAEyB8gMAAADAFCg/AAAAAEyB\n8gMAAADAFCg/AAAAAEyB8gMAAADAFCg/AAAAAEyB8gMAAADAFCg/AAAAAEyB8gMAAADAFCg/AAAA\nAEyhjaOf4ObNmxo7dqxmzZqlsLAw+/aRI0eqa9euslgsslgsWr16tby9vR0dBwAAAIBJObz8JCcn\ny9PT867tFotFO3bsUNu2bR0dAQAAAAAce9rb+fPnVVRUpMDAwLv22Ww22Ww2Rz49AAAAANg5tPwk\nJiYqNjb2nvsXL16syZMna+3atY6MAQAAAACy2By0/JKVlaWysjK98cYbSkpKUrdu3TR+/Hj7/s8+\n+0zDhw+Xp6enoqOj9corrygkJOS+Y548edIRUQEAAAA8QgYOHNjidoe95yc3N1cXL17UoUOHVFxc\nLFdXV/n6+mrYsGGSpHHjxtnv++KLL+qnn3762/Jzr4MAAAAAgL/jsPKzbt06+9dJSUnq3r27vfhU\nVVVpxowZ2rlzp1xdXXXixAmFhoY6KgoAAAAAOP5qb40dOHBA7du3V3BwsEJDQzVp0iS5u7urX79+\nlB8AAAAADuWw9/wAAAAAQGvi0Ku9AQAAAEBrQfkBAAAAYAqUHwAAAACm8NCUnxUrVig8PFwRERE6\nffq00XHQTGJiosLDwzVx4kR99dVXRsdBC27evKnRo0crKyvL6ChoJjs7W+PGjdOECROUm5trdBw0\nUlNTo7feektRUVGKiIjQsWPHjI6Ev5w9e1ajR4/WRx99JEkqLi5WZGSkpkyZonfffVe3bt0yOKG5\nNZ+fy5cva9q0aYqMjNTrr7+usrIygxOaW/P5uePo0aPy9/c3KNW/46EoP998840uXLig9PR0xcfH\n6/333zc6EhopKChQYWGh0tPTtX37di1fvtzoSGhBcnKyPD09jY6BZiorK7V582alp6dr69atOnLk\niNGR0MiBAwfUu3dvpaamasOGDfz9aSVqa2uVkJCggIAA+7YNGzYoMjJSe/bs0eOPP679+/cbmNDc\n7jU/r776qtLS0jRq1Cjt2rXLwITm1tL8SFJdXZ22bdsmb29vg5L9Ox6K8pOfn6/g4GBJkp+fn65f\nv67q6mqDU+GOQYMGacOGDZKkDh06qLa2VlxEsHU5f/68ioqKFBgYaHQUNJOXl6eAgAC5ubmpS5cu\nWrZsmdGR0Ejnzp1VUVEhSbp27Zo6d+5scCJIkqurq7Zu3aouXbrYtx0/flwjRoyQJI0YMUJ5eXlG\nxTO9luZn8eLF9o816dy5s65du2ZUPNNraX4kacuWLYqMjJSLi4tByf4dD0X5uXr1apM/OJ06ddLV\nq1cNTITGnJyc5ObmJknKzMxUYGCgLBaLwanQWGJiomJjY42OgRZcunRJtbW1mjlzpqZMmaL8/Hyj\nI6GRl156ScXFxQoJCVFUVBQ/R62Ek5OTrFZrk221tbX2f9oee+wxXblyxYhoUMvz4+bmJicnJzU0\nNOjjjz/W2LFjDUqHluanqKhIhYWFCgkJeeRfwP5XP+T0QXnUJ+VhdfjwYX366afauXOn0VHQSFZW\nlgYNGqSuXbtK4uentbHZbKqsrFRycrIuXryoqKgoff3110bHwl+ys7Pl6+urbdu26ezZs1q4cKEy\nMzONjoW/we+51qmhoUExMTEaOnSohg4danQcNJKQkKBFixYZHeNf8VCUH29v7yYrPaWlpfLy8jIw\nEZo7evSotm3bpp07d8rDw8PoOGgkNzdXFy9e1KFDh1RcXCxXV1f5+vpq2LBhRkeDpC5dumjAgAGy\nWCzq0aOH3N3dVV5ezulVrcS3336r4cOHS5L8/f1VXFwsm83G6nYr5O7urrq6OlmtVpWUlDzy71t4\nGM2bN09PPPGEZs2aZXQUNFJSUqKioiLNmTNHNptNV65cUWRkpNLS0oyO5hAPxWlvAQEBysnJkST9\n+OOP8vHxUbt27QxOhTuqqqq0atUqbdmyRe3btzc6DppZt26dMjMztW/fPk2cOFHR0dEUn1YkICBA\nBQUFstlsqqioUE1NDcWnFenZs6e+++47Sf89RbFdu3YUn1Zq2LBh9v8VcnJy7KUVrUN2drasVqtm\nz55tdBQ04+Pjo5ycHKWnp2vfvn3y8vJ6ZIuPJFlsD8na8Nq1a3X8+HE5Oztr0aJFeuqpp4yOhL9k\nZGQoKSlJvXr1sr8impiYKF9fX6OjoZmkpCR1795dYWFhRkdBIxkZGcrMzJTFYlF0dLSCgoKMjoS/\n1NTUKC4uTmVlZbp9+7beeecdDR482OhYpnfq1CktWLBA5eXlcnZ2VseOHbVz507Fxsaqrq5OXbt2\n1YoVK+Ts7Gx0VFNqaX4aGhrk6uoqd3d3WSwW9enTxzSnWbU2Lc3Pnj171LFjR0nSqFGjHukrjz40\n5QcAAAAA/h8PxWlvAAAAAPD/ovwAAAAAMAXKDwAAAABToPwAAAAAMAXKDwAAAABToPwAAAAAMAXK\nDwBA0n8/xNPf318HDx5ssn3kyJEPZHx/f381NDQ8kLFu376tjRs3aty4cQoPD1dYWJg2bdpkH//G\njRt6+eWXW/xAxaysLEVERCgqKkoTJkzQkiVLdOvWLUlSbm6url+//o+yREVFiU+NAICHA+UHAGDX\nq1cvJSUlqaamxr7NYrE8kLEf1DiStH79el24cEGffPKJ0tPTlZGRocLCQm3cuFGSdO7cObVr105J\nSUlNHldSUqL169dr9+7dSk1N1f79+1VdXa3Dhw9LklJSUlRZWfmPsqSmpj7QYwMAOE4bowMAAFoP\nLy8vDR8+XJs3b1ZMTEyTfQcOHFBeXp5WrVolSYqMjFR0dLScnZ21ZcsW+fj46IcfftAzzzyjJ598\nUkeOHFFlZaW2b98uHx8f2Ww2JScnq6CgQNXV1UpMTFSfPn107tw5JSQkqL6+XvX19Vq0aJH8/f0V\nGRmpfv366cyZM0pLS7MXjKqqKu3bt09HjhyRi4uLJMlqtWrJkiUKDQ3V9OnTFR8fr0uXLuntt9+2\nFyJJunbtmurr61VTU6O2bdtKkv149u7dqxMnTigmJkbLly9XdXW1Vq5cKRcXF1ksFi1cuFB+fn5N\ncqWmpurpp5/WmTNndPv2bS1btky//fabqqurNXbsWE2dOlU///yzFi5cKFdXV/3555+Kjo5WYGCg\nw+cSAHA3Vn4AAHYWi0XTpk1Tbm6ufv311xb3t+T06dOKi4vT/v379fnnn6tTp05KTU1V//79lZOT\nY79f3759lZaWpsmTJ2vTpk2SpLlz52rp0qVKTU3VokWLFBcXZ7+/u7u79uzZ0+R5z58/L19fX7Vv\n375Jhk6dOsnHx0e//PKL4uLi1Ldv3ybF587zjxkzRsHBwZoxY4Y+/PBDFRcXS5IiIiLUpUsXrV69\nWn5+fnrvvfc0f/58paSkaOrUqVq6dOlduZycnOzZUlNT5ePjo5SUFGVkZOjgwYM6d+6cMjIyFBwc\nrJSUFH3wwQeqqKj4X6YCAOAArPwAAJpwcXFRTEyM4uPjtWPHjv/p/Sx+fn72MuLp6akBAwZIknx8\nfHTjxg37/Z5//nlJ0oABA7R7926Vl5erqKhI8+fPtz9PTU2N/es74zTm5uZ2z0w2m01OTvd/XW/B\nggV68803dezYMeXl5SkpKUmrV69WUFCQ/T43btxQeXm5+vfvL0kaPHiw5syZY9/fUq6CggKVlJSo\noKBAklRXV6fff/9doaGhio2N1R9//KHAwECFhYXdNx8AwHEoPwCAuwQGBio9PV2HDx+2r2w0X/W5\nc5EASXJ2dm6yr/HtxkWl8RgWi0VWq1VWq1Wpqakt5rhzWltjPXv2VGlpqSoqKtSpUyf79srKSpWX\nl6tPnz46derUPY/t5s2b8vLy0vjx4zV+/HhlZmYqIyOjSflpfqw2m63JtpZyWa1WzZo1SyEhIXft\n++KLL5Sfn6+srCxlZ2drzZo198wHAHAcTnsDANg1LipxcXFas2aN6urqJEkeHh66fPmyJKmsrEyF\nhYX/ePz8/HxJ0smTJ9W3b195eHioe/fuys3NlSQVFRVp8+bN9x3DarUqMjJSixcvtmerq6tTfHy8\npk6dKldX13s+dt++fYqOjrY/TpIuXryonj17SpKcnJx069YteXh4yMvLS99//70kKS8vT88++2yL\nY975ng0cOFBffvmlJKmhoUErV67U9evXtWfPHl2+fFlBQUGKj4/X6dOn//b7BABwDFZ+AAB2jVc3\nevToodDQUG3dulWSFBAQoF27dik8PFy9e/fWc88997djNNamTRsVFhZq7969qqystF9oICEhQfHx\n8dq+fbvq6+s1b968+44jSbNnz1ZKSoomTpwoNzc31dXVacyYMZo+ffp9j2/SpEkqLS1VRESEPDw8\nVF9fLz8/P8XGxkqSXnjhBc2cOVMJCQlKSEjQihUr5OzsLGdnZ/t7fprnunP7tddeU2FhocLDw9XQ\n0KCgoCB16NBBvXv31pw5c9S+fXs1NDRo7ty5980IAHAci40PJwAAAABgApz2BgAAAMAUKD8AAAAA\nTIHyAwAAAMAUKD8AAAAATIHyAwAAAMAUKD8AAAAATIHyAwAAAMAU/gP06qrioxDMxgAAAABJRU5E\nrkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "print 'rsquared', linreg_r2(data['Number Of Stories'], data['log Price'], plot=True)[0]\n", + "plt.xlabel('Number Of Stories');\n", + "plt.ylabel('log Price');\n", + "plt.xlim(0,15);" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`Number Of Stories` explains about 5.6% of the variation in `log Price`. While better than `Year Built`, it still provides a mostly incomplete understanding. Let's take a look at the final dimension, `Total area`:" + ] + }, + { + "cell_type": "code", + "execution_count": 146, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "rsquared 0.168804441783\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1AAAAHxCAYAAABjxF1TAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3X94m/V97/+XbEmRbZkoDrHBLjitiyFxaOsqxFDi0KYZ\nGS0r33Y0dGvCWLexNXRjZWu7dqU5Zc05ZwzWdgWuNod2nH7XwVV6rgw4p1B6KLQBFgWMyTcJJQYX\nQiI3Vn5YIbLjSLL1/UOR/CP6cevHLd2Sno/r4iK3Jd1665bu+/68Pz9tsVgsJgAAAABAVnXlDgAA\nAAAAKgUJFAAAAAAYRAIFAAAAAAaRQAEAAACAQSRQAAAAAGAQCRQAAAAAGGQ3c+cTExP60pe+pBMn\nTigSieiWW27R6tWrk4+vXbtW7e3tstlsstlsuuuuu9Ta2mpmSAAAAACQN1MTqO3bt+td73qXPv/5\nzysQCOiP/uiP9Pjjjycft9lsuv/+++VyucwMAwAAAACKwtQufC0tLRobG5MknThxQi0tLXMej8Vi\nYh1fAAAAAJXCFjM5g7n55pv15ptv6uTJk9q2bZsuvfTS5GNr167VypUrdejQIa1cuVK33XabmaEA\nAAAAQEFM7cL36KOP6rzzztO2bdv06quv6vbbb9fDDz+cfPzWW29Vf3+/PB6PNm/erCeffFJXX311\n2v0NDAyYGS4AAACAKuD1ek3bt6kJ1EsvvaT+/n5J0iWXXKLDhw8rFovJZrNJkq677rrkc9esWaOh\noaGMCZRk7sEAKsnAwADnAyDOBSCBcwGIM7vRxdQxUJ2dnXr55ZclSX6/X42NjcnkKRQKaePGjTp9\n+rQk6cUXX9RFF11kZjgAAAAAUBBTW6BuuOEGfeUrX9GmTZs0NTWlO+64Q9u3b1dzc7PWrVun9evX\n64YbblBTU5OWLVum9evXmxkOAAAAABTE1ASqsbFR3/rWt9I+vmnTJm3atMnMEAAAAACgaEztwgcA\nAAAA1YQECgAAAAAMIoECAAAAAINIoAAAAADAIBIoAAAAADCIBAoAAAAADCKBAgAAAACDSKAAAAAA\nwCASKAAAAAAwiAQKAAAAAAwigQIAAAAAg0igAAAAAMAgEigAAAAAMIgECgAAAAAMIoECAAAAAINI\noAAAAADAIBIoAAAAADCIBAoAAAAADCKBAgAAAACDSKAAAAAAwCASKAAAAAAwiAQKAAAAAAwigQIA\nAAAAg0igAAAAAMAgEigAAAAAMIgECgAAAAAMIoECAAAAAINIoAAAAADAIBIoAAAAADCIBAoAAAAA\nDCKBAgAAAACDSKAAAAAAwCASKAAAAAAwiAQKAAAAAAwigQIAAAAAg0igAAAAAMAgEigAAAAAMIgE\nCgAAAAAMIoECAAAAAINIoAAAAADAIBIoAAAAADCIBAoAAAAADCKBAgAAAACDSKAAAAAAwCASKAAA\nAAAwiAQKAAAAAAwigQIAAAAAg+xm7nxiYkJf+tKXdOLECUUiEd1yyy1avXp18vHnn39e3/zmN1Vf\nX681a9Zo8+bNZoYDAAAAAAUxtQVq+/btete73qUf/vCH+va3v62tW7fOeXzr1q2655579OCDD+q5\n557T8PCwmeEAAAAAQEFMTaBaWlo0NjYmSTpx4oRaWlqSjx08eFAej0dtbW2y2Wy66qqrtHPnTjPD\nAQAAAICCmNqF75prrtH27dt19dVX6+TJk9q2bVvysaNHj85JqFpaWnTw4EEzwwEAAACAgpiaQD36\n6KM677zztG3bNr366qu6/fbb9fDDD6d8biwWM7TPgYGBYoYIVDTOByCOcwGI41wAzGdqAvXSSy+p\nv79fknTJJZfo8OHDisVistlsam1t1ZEjR5LPHR0dVWtra9Z9er1e0+IFKsnAwADnAyDOBSCBcwGI\nM7siwdQxUJ2dnXr55ZclSX6/X42NjbLZbJKkjo4OjY+Pa2RkRNFoVM8888ycGfoAAAAAwGpMbYG6\n4YYb9JWvfEWbNm3S1NSU7rjjDm3fvl3Nzc1at26dtmzZottuu02SdO2116qzs9PMcAAAAACgIKYm\nUI2NjfrWt76V9vGVK1fqoYceMjMEAAAAACgaU7vwAQAAAEA1IYECAAAAAINIoAAAAADAIBIoAAAA\nADCIBAoAAAAADCKBAgAAAACDSKAAAAAAwCASKAAAAAAwiAQKAAAAAAwigQIAAAAAg0igAAAAAMAg\nEigAAAAAMIgECgAAAAAMIoECAAAAAINIoAAAAADAIBIoAAAAADCIBAoAAAAADCKBAgAAAACDSKAA\nAAAAwCASKAAAAAAwiAQKAAAAAAwigQIAAAAAg0igAAAAAMAgEigAAAAAMIgECgAAAAAMIoECAAAA\nAINIoAAAAADAIBIoAAAAADCIBAoAAAAADCKBAgAAAACDSKAAAAAAwCASKAAAAAAwiAQKAAAAAAwi\ngQIAAAAAg+zlDgBAdQmHI/L5AgqF7HK7o+rra5XT6Sh3WAAAAEVBCxSAovL5AgoGOxSNtikY7JDP\nFyh3SAAAAEVDAgWgqEIhe8ZtAACASkYCBaCo3O5oxm0AAIBKRgIFoKj6+lrl8fhlt4/K4/Grr6+1\n3CEBAAAUDX1rABSV0+lQf39HucMAAAAwBS1QAAAAAGAQCRQAAAAAGEQCBQAAAAAGkUABAAAAgEFM\nIgEAAABUmHA4Ip8voFDILrc7qr6+VjmdjnKHZQqrfVZaoAAAAIAK4/MFFAx2KBptUzDYIZ8vUO6Q\nTGO1z0oCBQAAAFSYUMiecbuaWO2zmvruP/nJT/TII4/IZrMpFotp3759eumll5KPr127Vu3t7bLZ\nbLLZbLrrrrvU2sqimwAAAEAmbndUweDc7Wpltc9qagJ1/fXX6/rrr5ckvfDCC3riiSfmPG6z2XT/\n/ffL5XKZGQYAAABQVfr6WuXz+eeMC6pWVvusJWv/uvfee3X33XfP+VssFlMsFitVCAAAAEBVcDod\n6u/vKHcYJWG1z1qSBGrPnj06//zztXjx4rMe27Jliw4dOqSVK1fqtttuK0U4AAAAAJAXW6wETUBf\n+9rX9Hu/93u67LLL5vz9kUceUX9/vzwejzZv3qxPfOITuvrqq9PuZ2BgwOxQAQAAAFQ4r9dr2r5L\n0gK1a9cufe1rXzvr79ddd13y32vWrNHQ0FDGBEoy92AAlWRgYIDzARDnApDAuQDEmd3oYvo05oFA\nQE1NTbLb508/GNLGjRt1+vRpSdKLL76oiy66yOxwAAAAACBvprdAHTlyZM7Yp+3bt6u5uVnr1q3T\n+vXrdcMNN6ipqUnLli3T+vXrzQ4HAAAAAPJmegLV09Ojbdu2Jbc//vGPJ/+9adMmbdq0yewQAAAA\nAKAoqnfJYgAAcJZwOCKfLzBnPRWn01HusACgYpg+BgoAAFiHzxdQMNihaLRNwWCHfL5AuUMCgIpC\nAgUAQA0JheZP6kRnFADIBQkUAAA1xO2OZtwGAGRGtRMAADWkr69VPp9/zhgoACinShubSQIFAEAN\ncTod6u/vKHcYAJCUGJspScGg5PP5LX2dIoFCUVRazQEA1AKuzQAqQaWNzWQMFIqCWZ0AwHq4NgOo\nBJU2NpMECkVRaTUHAFALuDYDqAR9fa3yePyy20fl8fgtPzaTKymKwu2OKhicuw0AKC+uzQAqQaWN\nzaQFCkVRaTUHAFALuDYDQPHRAoWisGrNAQOoAdQyq16bAaCS0QKFqsYAagAAABQTLVCoamYOoKZ1\nCwAAoPbQAoWqZua0mLRuAQAA1B5aoGBYJba49PW1yufzz4m5WJgeGAAAoPZQ4oNhiRYXSQoGJZ/P\nb/nByWYOoGZ6YAAAgNpDFz4YRovLXEwPDAAAUHtquwSMnNDiMhfTAwMAANQeWqBgGC0uAAAAqHW0\nQMEwWlwAAABQ62iBAgAAAACDaIEqQCVO6w0AAADkinLvDFqgCsBCquYLhyPascOvxx8f1Y4dfoXD\nkXKHBAAAUHMo984ggSoA03qbj5MVAACg/Cj3zqjdT14ETOttPk5WpENXAgAASody7wxKowXo62uV\nz+efU4BDcXGyIp1E66QkBYOSz+dnlkgAljK/oqe3d5EGB8eo+EFFotw7gwSqAEzrbT5O1uKoxtYa\nWicBWN38ip4HHhhUZ2dvcpuKH1QSyr0zKHHA0jhZi6MaW2tonQRgdfMrdsbGXOrsTP84gMrAmYuS\nq8bWkGIx69hUY2sNrZOoNlwbq8/8ip5FiybPehxA5an8UhQqTjW2hhSLWcemGltrrNA6SYEXxcS1\nsfrMr+j50Icu1uAgFT9ApSOBQslVY2tIsZh1bGitMQcFXhQT18bqk6qip7+/sUzRACgWrs4ouWps\nDSkWs46NFVprqhEFXhQT10YAqAzc7VFytIakx7GpLBR4UUy9vYv0wAODGhtzadGiSX3oQxeXOySg\nptAtG0aRQCElMy8itIakx7GpLCS8KKbBwTF1dvYmZ2kbHPTT3QsoIbplwygSKKTERQTIrhgJLzWe\nSKBLKFBenIMwqq7cAcCauIgApZGorIhG2xQMdsjnC5Q7JJTJ/C6gdAnNLhyOaMcOvx5/fFQ7dvgV\nDkfKHRIqGOcgjCKBQkpcRIDSoLICCX19rfJ4/LLbR+Xx+OkSagAVECgmzkEYxZ0aKTG242y13tWq\n1j+/WZiIAgmMgcwdFRAoJs5BGMWVBilxETlbrY8Lq/XPb5Zqrqwg6YbZqIAAUA4kUIBBtV7TWeuf\n3yxmVVZYIXkh6YbZqrkCAkBcyvvZ7pel665L/6LHHjM1JkpAgEG1XtNZ658/H+VMYqyQvJB0w2z0\nlgCsy/A9cOdO6ROfSLufWHhal8Vmpm2I2aYlZ3mnceBuhoqQa0HUjIJrrdd01vrnz0c5kxgrJC8k\n3QBQY158UfrYxyQVL/GJxTJvlwMJFCpCrgVRMwquudR0WqH7VLFR05u7ciYxVkheSLoBoIK9/LL0\nkY/k/fJiJT42mzStOv3iu69pekGDPB4DZbqBgfzezKCaSaDMLNBarbBstXjSMRpnOBzRzp3HNT5u\nl8sVVXd3a9aCaLlr363QfaqWWeUcKGcSY4XkhaQ7Nav8PgtRDZ+h1vEd1pg9e6T160v6ljbb3KTJ\nZpv14GuvSU1NxvYTjuhFX0B1obd1jvu4JSrjaiaBMrNAa7XCstXiScdonD5fQFNT7ZqaWqzxcWlo\nyK8rr8y873LXvpc7gat1VjkHypnEkLxYl1V+n4Wohs9Q6/gOK9jgoPTRj5Y7ihn790vNzWf92RaO\naNe8JF15JOlWvJ/VTKkuXYG2GDUw8/cdDEo7dvjLVqtTKYV3o3GGQnZ1dy/U0NAxTU7Wqb5+TH19\nF2fcd7lr38udwNU6q5wDVrzoo/ys8vssRDV8hmKo5FYcvkOLKEPLUEa//rW0cGFRdlXN90BTz5af\n/OQneuSRR2Sz2RSLxbRv3z699NJLyceff/55ffOb31R9fb3WrFmjzZs3mxZLugJtMWpg5u/7wIGA\npN6C9lmIVJ/Vihd5o0mG2x1VNGpXT89iSZLHM5E19nKftOVO4GodCSysrBp+n9XwGYqhkltx+A5N\n8Oqr0tq15Y5ixp490uLF5Y6iKpmaQF1//fW6/vrrJUkvvPCCnnjiiTmPb926VT/4wQ/U2tqqjRs3\nav369erq6jIllnQF2mLUwMzfdyy2pOB9FiLVZ7XiRd5oklGJyUi5E7haV4m/GdSOavh9VsNnKIZK\nbsXhO8zi9delNWvKHcWMgQHp/PPLHQXOKNmZfu+99+ruu+9Obh88eFAej0dtbW2SpKuuuko7d+40\nLYFKV6BNVwOTS4vN/H3v2OEvawtQqs9qxYu80SSDZKQ2FPMc4TcDK6uG32c1fIZiqORWnJr6Dt98\nU/rAB8odxYwXXpA6auTYV6mSlKL37Nmj888/X4tnNSMePXpULS0tye2WlhYdPHiwFOHMka4G5tln\n/dq1y6HJScnlkiIRv9auXZr3PvNtASpWobKSL/IwxordNHNhxVZSAMiEVpwyOHhQ6usrdxQznn9e\nWrq03FGgxEqSQD388MP6RIYVhiUpZnBy+AET5nVvbIz/J0l79hyWJP3HfxzWxESvpClJNo2M7NPC\nhcfy3ufg4ISmpk4lH6+v/60aGw9n3c/gYFAnT3Ymt/fv/5V6ez2G40hwOKIaHX1VExNONTaGtWSJ\nWwMD2d+/1CKRqPbuDSXjXLHCLYejtK1lVojBqNnnQ7F+K+WS7zkCSObcGwAjUpUhyqmSzgX70aNa\ntnFjucNI2n///Qq/4x25vejYsfh/qCklKRXu2rVLX/va1+b8rbW1VUeOHEluj46OqrU1e82N1+st\nenyp/OIXe/X22+3J7XPOOS6vd0Xe+5uY8Cdr1yXJ42mQ15u9dj0QGFU02pbcttub5fW2ZXhFepdf\nntfLTJOqxcTnC6itbea4RCJ+XX55aVshduzwlz0GIwYGBuacD8X8rZRDvucIMP9cAGpVWc+FQEB6\n3/tyf53DpJ4STz0lLVuW00suNScSlIHZFQmmJ1CBQEBNTU2y2+e+VUdHh8bHxzUyMqLW1lY988wz\nc8ZIlUKmLk9er1u7dsWnzXa5puX1ugt6r3yb+au5612qLltWGKuVSwxW6jZX6b8VusIAgEUcPy6t\nyL/SuOh+/nOpp6fcUQBJppdOjxw5Mmfs0/bt29Xc3Kx169Zpy5Ytuu222yRJ1157rTo7O9PtxhSZ\nxlysXt0hh2N2wbiwmvBMgzUzFcJTFSqtVGgvRKpEpdRJQKpjmUsMVhm3Ew5HFIlE9OqreyXF5PU2\nF/ybLbVyDmgu9TlVLecwUAycDyYLBqXly8sdxYz/83+k3t5yRwEUxPQEqqenR9u2bUtuf/zjH0/+\ne+XKlXrooYfMDiGtRAE+EolqaOiEIpG3JSl58U4U5sy+uGcqhKcqVMZn+St/ob1QqRKVUrdCpDr2\nucRghRYzKf45xseX6pJL4tsOh58CSA5KnQhbJfEGrIDzIQcnT0oXp19I/tJIxLwucak8+qi0cmXp\n3g85o4LCHNYcGV8iiQL80NAJjY8vVlPTpILBjrMu3mZf3HMthM9+PBKJaOfO4xV5YqRKVErdCpHq\n2OcSg5HWqlJcvKySyFWqUh+/XN+PGyCqWc1ev8bHpYsuKncUM/7X/5KuuKLcUaDIqKAwR41cpVJL\nFOAjkbe1YMFJRaPSwMCompqOzymgmH1xz7Xb2uznDw0FJLUrGl1ccSeG0UTFzMJjoV0GjbRWmXXx\nikSi2rEj/t7DwyNqb2+R40zNY6WNfyq3UncdzfX9uAFWBxLh1Cp9/KYk6dQpyaR1LPPy0EPWWgQW\nZVOzFRQmq9mjOPtGtmjRpILBBp0+vVSSNDVll88XSBZQCr24Z7tp5tptbfbz6+vH1NV1SfKxSpnw\nIBdmFh4L7TJoJAk06+K1d28oOVtge/tijYzsUVdXOxMw5KHUXUdzfT9ugNWBRDg1y00gc/q09M53\nljeG2f7t36S1aw09dQ8zUpqqEstRVVFBYUE1exeefSNrb1+sffv+U21tC+VyTau7e6FCoZkfWKEX\n92w3zVy7rc1+fvzEmPkayznhgVkXFjMLj6XoMmjWxWtiwpn8t8NhV1dXu665pnKmLbeSUncdzfX9\nuAFWBxLh1Ew9/yIRqcQTVGV0//3SRz5S7iiQp0qsBLFcBUWVqNmr9+wbl8Nh17vetUiXXLIo+bfZ\nBZRCL+7pbprhcETPPuvXwMBJSTZ5vW6tXt2RU9JhpQkPzLqwVHrh0ayLV2NjeM52pR0XGGelG2Al\n1sBaRaVfy8rOasnQd78rfexj5Y4CJVSJlSDlnOG2mln/mzfJ/BuZ1+uWwzFTQOntXZQcX1JoISHd\nTdPnC2jXLofGx+NLt+3adUwORyDv1qhMwuGIhodHdPSo5HJF1d3dKo8n/5t3qkKUWRcWKxUe82HW\nxWvFCrcikco9LjDOSjfAZ5/1a9cuhyYnJZcrvtD02rVLyx1WRaj0a1lRTU1JF1xQ7ihmfOtb0oYN\n5Y4CFkclCBJqNoE6+0Y2t+WnmFOFp7tphkJ2TU7OPG9yss602gyfL6D29ksVCp3Q5KRTIyN7de21\n+S+Sl6q1ye2WKRcWKxUercThsOvyyzkuKK2BgZPJSp/xcWlgYI/R4Rk1r2qvZdPT0jveUe4oZtx9\nt/QHf1DuKFCFqARBQs0kUKlaTDLdyMbGYnrlFb8mJ+1yuaJavjyW93unu2m63VG5XPFCiCS5XNOm\n1WaEQnY5HHb19MQXNbbbwwV1u0nV2vThD7dwYalxdO+qBbYs26hoVkuGvvEN6TOfKXcUgKQqrgRB\nzmomgcp1fM5bbx3R+Hh8pezxcemttwYlFfem0tfXqkjEr4GBPUqMgerrM+fEzNTsnE+hN9X+5l9Y\nwuFI0bpBojJU4gBbK7NiQur1urVr1zFNTtbJ5ZqW1+suazzIIBaTOix0/m3ZIv35n5c7CgAoWM0k\nULmOz+nsbFUoNFNI6OwsfmuK0+nQ2rVLS9L9JVOzcz6F3nKufwTrqsQBtlZmxXNo9eoOORyBOd2f\nUQKxWHxq7XA4+3NL4XOfk77ylXJHAQBlUTOlm1wH/nk8SnZ3i2/7ixpPqWuWM7UO7d07pq6uNjkc\n8Z+DkUJvMdY/smLtOnI3+3ustAV9rf4btGJCSheWIrn0UunYsXJHEXfzzdJ/+S/ljgIAKkb578Yl\nUshitWaM5ylHzfLZBd1L5XDYNTUV1dDQiWTCWKxCb7akNdMxsELB1goxVIL5a6pV0oK+Vmzhma1Y\nMz7xWzbZBz4gvflmuaOI+6M/kv7bfyt3FAAKwDXb+momgSpksVozlKNmeXZh8ehRKRSKJ03d3a0a\nHn5Vdnu0qIXebElo4jNHIhENDQUUibw963XlL9haIYZKMH9NtUpa0NeKLTyzFasih99yDj70IWn/\n/nJHEbdhQ3x6bQA1hWu29VmrtFBDyrGWwOzCocsV1eSkU5LkcDh0+eUt6u8vbqE3WxKaOAZDQwGN\nj3eoqcmlYHBxssCYLvZCGa3ZsXrh2irM+C2n+o4kFb1GzuprehSrIqdmf8sf/ag0OFjuKOI+9rH4\nwqsAkEXNXrMrCN9ImZRjLYHZhcXu7laNjOyV3R4uW1erxDGIRN5WU5NL3d0LJSl5TMwq2Bqt2bFC\n4TpTIjE4OKETJ96UJJ0+3VC2Zn4zfsupvqP4v4tbI1cra3pY4bdcsOuvl55/PuVDl0YiksP47z4m\nKRyeViwm2WyS01mX22Ts69ZJP/xhLq8AAMOq4ppd5UigyqQcA7FnFxY9nqiuvXZFWfvUzj4GweDM\nhB2JgqxZBVujNTtWKFxnSiSmpk5p165mSZPq6WkrWzO/Gb9lI99RMWrkamVCBCv8lufYtEl66qmy\nvX08eaqTJB1dvka/2Xp3TfwOAFQGy12zcRYSKFlzsJ4ZMVm1sJjqQmFmrEZrdooRQ6HfY7ZEYnKy\nTrNP42pp5k/3HVEjlx9Tz/2bb5b+9/82Z9+5ev/7DcXyi8dHFY3OdFm2h0bNjKrqWPGeCVQTq5bX\nMKM6SlsFKveMeKluQLU0gLDUF4pS1uwU+j1mSyRcrmlJ0bMer3TpvqNCvjcKfQbceqv08MNF3WXe\n3eVWrJCefNLQe+wZGJDX6zUcE91jClNL9ycASKXqEygjhSYj3YWy7SeXwlk4HNG2bXt19Gi7XK6o\nurvjs87NvgExgNA8pUzYCl0LK1MiUV//W61aFd/f6dOjVdXMn+47KuR7q7lC39/9nSXG6YTD0xo/\n95167p/+U1J8Tb1yH3e6xxSmVu5PVLoASKc6r3qzGCk0GamNzLafXApnPl9AR48u1dTUIo2PS0ND\nfjU0zP0qUsWU78Wcm0D5FLIWlpQ5kWhsPCyvd6kpcVejii70bdki/Y//Ue4o4s47T+GdPsPXlPnd\n5axw3OkeU5haacGruUoXAIaV/05mMiOFJiO1kdn2k0vhLBSyy+Wa1vh4fHty0n7WDShVTPlezLkJ\nlI/RtbDSbaN4LFPo++//XfqXfynPe8+3cKH061/n/DLfDr/ha4pljjuKplZa8Lg+A0in6q8GRm7e\nRmojs+3H7Y7qyJGohoZOaHKyTueeO6JwuCVlrazbHVV392INDR1LPrevb0XWmPK9mAeD0r598fdy\nuabV02PoZSgCo2thzd6GOUwp9G3dKt17b+H7KYaGBun11+MDjUyWy7WoVgrbtaRWWvC4PgNIp+oT\nqGLdvLPtp6+vVdu27dHkZHxcU3v7irPGNc3d16gaGhL7MjadeL4X8wMHAhof75UkjY9LBw4MSqr+\nm18loHBZOlkLff/8z9Jdd5UuoGz8/pIkQ/lYsOCUdu+eqZRZtepU2ufWSmEb1YfrM4B0qj6BKtbN\nO9t+nE6Hurra1dmZva9/vjHlezG/8MIlCoX8mpy0y+WK6sILl+T83rWklGPGKFya5O674/9ZxaFD\nUl1duaMosknFbyHUyqM6cX0GkE7VJ1ClZHZzf74X80WLbOrpmXmdx+MvZlhVhzFjFnPffdI3vlHu\nKGYcPCjV15c7irI6fbpBPT1ts7atuY4SE+gAAMxAAlVEVm3ut2pcVmX1gcOJQuHg4IQmJvyVVSj8\n/vel228vdxQz3npLslvr+60ElTI2hMoQAIAZKDkUkVWb+60aVy5KWZNs9cJholA4NXVKwWBH+QqF\n//Zv0he/WPr3TefNNyWns9xR1IRKqZSxemUIAKAycTfJU6JAPzYW01tvHVFnZ6s8HhWlYG8kWai1\nrimlrEm2euHQlELhj38s/fVfF76fYnnjDWnBgnJHgTQqpVLG6pUhQLFUdM8EoALVVAJVaNIx+/XD\nwyNqb1+hoaH4DHeh0DH19Cw+q2AfDkf07LN+DQyEJMXk9TZr9eqOjO9rJFmota4ppaxJtnrhMGuh\n8PHHpT/5k9IGlcnrr0uNjeWOAjXI6pUhQLFYpmcCUCNqKoFKl3QYTaxmv/7oUadCoYAmJ+OHcHIy\nPsPW/IK9zxfQrl3NGh9fKknatcsvhyP19OYJRpKFWuuaUrM1yT/7mfTHfzznT6slhcPT+lAkKofD\nLqezhLNLh+J0AAAgAElEQVS77d8vNTeX7v2AAli9MgQollorEwDlVlNnWLoLjM8X0JEjbWcWwXVq\n9+69uvnms9dmmv16l2s6OS34+Hh8Wzq7YB8K2RUKTengQb/CYbtcruNavnxRxjiNJAu1llBURU3y\n009Ln/50wbuxSVrgrJPNZpPTUUDy9OtfSwsXFhwPMFumCqla63oMlEqtlQmAcjOUQD3zzDM6dOiQ\nNm7cqLfeeksXXHCBbBZd4DGTdBeYUMiuoaETGh9fLEk6ejScchHc2a/v7l6okZE9uvDCJXrrrcEz\nY6D8ZxXs3e6ojhwJanKyR5I0PW3XW2+9JekdaeM0kixURUKRA8vVJD/7rLRhQ7mjmLFvn7QonphT\nSEU5ZepeXGtdj4FSSZQJ6ut/K4+noerLBEC5ZU2g/umf/kkHDhzQyMiINm7cqMcee0zHjx/X7Vaa\nitigxAUmGJQOHAgoFluiHTv8WrAgosnJmZp4lyuasvl7dtLi8UR17bWJVqq5ydDsCSZ+85sRnTp1\nWm+//YpaWxfooovc6uxsnfO8+QVdI8lC4jmh0IQeeGC/nnnmbTU0BGWz2TQxsVCLFk3qppsults9\nM/aEgnUaL7wgXXdduaOY8fLLUmv2m9+egQF5vd6z/l4NhdR8f6v8xssvU1ciuhkB5kiUCRobD8vr\nrazrPVCJst69XnjhBf34xz/Wpk2bJEm33HKLPvWpT5kemBkSF5gdO/ySeiVJR45E9dZbL2l09C1N\nTp6vri6nurvb5XYH0r4+m0QB9pVX/BofX6WGhn1auXK5mpriE00kFrI1UtCdXSBcsOCUpPgilol/\nP/ywXxMTS9Xe3qrnnhuS5NZll3VqdFR64IFBfe5zvWfFlen9KlXiOGnPa1r1tU/J6ayTJdpIBwak\n888v6VtWQyE1399qNf/GK0WmrkR0MwIAVIOsJasFZ6YSTnTZm5qa0tTUlLlRmWx2gTI+7qlTv/M7\nLRoaCqi+fkxLlgQKav5O7D8xwcSSJUvU1ORXJPK2PJ5J9fYu0o4dfj3zzNtyOKTu7lY5HI6UBd3Z\nBcLdu/2SXOrpWazdu49JmtTbb1+oaLRDIyN+nTq1QNJMbfvYmCvt5061XQhTav7375c+9CFDT42F\np/S+sE2K2RS2SdKUFjjrc37LmOITNMRiks2muYmYz6dw23mWb+GohkJqvr/VakgeK12q7sWJ60O8\n9X9QF164RIsW2YrSzSgcjmhwMKhAYNSy5yQAoLpkLV28//3v19/93d8pEAjoX//1X/Wzn/1Mq1at\nKkVspomPS4rqlVeO6Ze/HJPDEZDdfqGWL+9QQ4NdfX0tBa3xlCjAJiaYcLvr1dMT30eiBSwY7JDD\n4dL4+GINDfnV09ORsqA7uwAYT8jqzvy7TtGodPLkbzU25tSCBcfldMZUXz8T36JFkynjmr2di/lJ\nUm/vIg0Ojs2a1v1SORz21DX/v/mNtHp1Tu+Xi0g4pljsTMIUsykSjmpBpjVV//M/pc7Os/787Jnv\nJsHjmfs5fLMet2oLRzWMj8v3t1oNyWOlS9VSv2PWedPZ2XHWeVUIny+gkyc7FY22WfacBABUl6wJ\n1Oc//3k98cQTamho0OHDh/WZz3xGV199dSliM01fX6u2bduj4WG36uvr1Nh4hV57LSC7PaArr5zf\nBS/9Gk+Z9u/z+bV8eSzlBBOJpKi7e6GGho6daZlSyoLu7AKhyxVV4itzuab1xhsBLVvWq927j2p6\nul7vfvcBdXVNaGJiIjkGKlVc+RasE8elIXBAl33xCk1FI7rMHk/YVoenJZvkSM4KNy0tKGx67Uyt\nQbMf+//u265fvOHS+PhMd8VzztmjL3zh0pzfM1sLRiW0cFhuwo085PtbrYbksRqZed5UwjkJAKgu\nWe80ExMTmp6e1pYtWyRJDz74oMbHx9XU1GR6cGZxOh3q6mrX6KhdkUidDh8+rhMnjmnZspj6+pbr\nqaeOS1LWNZ6k9F3XZgqwZ8+2l0iKHA77mTFRkykLvOFwRBMTE/rpT3coHHZo2bKY3vOeJZqaimrV\nqlOKxaTTp0P64Aed6u7uVkPDYl1zTVvGz33W+4yMSCtXGjlsuuz0tBItYJI0HbMp2UnOJik2M+oo\n70kan35aujie+GVqDZr/mMu1S5I/ObW815vfWkWZWjDC4YiGh0d09KhTLte0ursXyuMpfgtHYmKQ\nsTFXyslAakG+SWA1JI9Wl093XTNbBufvi1ZHwJqY5AfVJGsC9aUvfUmXXXZZcvvUqVP64he/qHvv\nvdfUwMzmdkcVCIQUiXTJ44kqFBrRgQMT8vkCWrAgomhUWdd4klIPWo/Xgqe/SBitJff5AhocbNS5\n5/ZLkqLRY2pomFR//0yStGvXtCYn6zQ0dEKr3/2W1N6bcl/FYLNJsdjMdp1tZsNur9P0VERSfbK1\nSP/3/0rLl2fc51kX1He2KtHzLpfZvLq6OuTxSKGQ5HZLfX2ZC9HpLuSZvhufL6D29hXJBZRHRvbo\n2mtXZHyffDzwwH6NjvYqGo3o9dcD2rdvUH/4h0u52RSIm3dx5DNRh5ktg319rdq//1ey25tpdQQs\njEl+UE2yJlDBYFA33nhjcvszn/mMnn76aVODKoW+vlY999xe7d+/V6Ojx3Xuud1avNiuYPBcNTW9\nKY8nfRe82UIhuyKR6JnJKOrU1DSmSCSi8fGlklJfJAzVkr/9ti77f7x6X1iKnWn1sSkmhzOW7Bp3\nZXhKl4Vt8f5sNsnpjEl5TJxgyE9/KtvyHu2aNwbqhTNjoPItkGa6oOYym1difFmh75vpuwmF7HI4\nHOrpiT9ut8uUAnhi8o+RkYAmJzsUjU4rGOzI+WZDwjCX1W/elfJ95dNlzsyWQafTod5ej7ze9K3v\nVlYp3ztQKLrboppk/fVGIhENDw+rq6tLkrR3715FIhHTAzOb0+nQlVe2qqenQwMDo5qaalNT0zFJ\n8WnC165N3IzTL3ib6NI1MDCp6Wm32tub5XIt0sDAmC65ZOZ5p46eltrbc47RZtOZrnGJP8TmdI2L\nxWyzxhxJsdh0xv0lxg29+LUfarq3J+cbtVNnJyn9/XPXmdqxw59TQSDTBTVTrXWhNdr5XMjz7YaU\nawFp0aJJjY5K4bD9zPuEDcc4m9UThlKz+s27Ur4vJuoorkr53oFCce1ANclagvjyl7+szZs36+TJ\nk5qamlJLS4v+8R//sRSxmS5RCG9qOq6pKbu6u+OL6S5YcCp9InDqlHQmmYyFp/Un03X69GRUitXJ\nVjelBQscmopGZXfMHFqbbUqnZUs9NXYGTmedpClFwvGLjMNpk9NZn0yEopFp/WTT/6tzPvwhORz2\nrDNbzRk3ZMKNOp+CQOKCGolEktPIpx5LNlehNdr5XMjzTdpyPS433XSxHnhgUL/97bjq60P68Iff\nYThGaSZhMzJNfi2x+s3b6gleAhN1FFelfO9Aobh2oJpkvVK/973v1c9+9jONjY3JZrPJ4/GUIq6S\ncNqk/n+9XaufeGLObG/SrCmxJcVs04o5686aES7xb7u9TrFYnaam4kmNrS4mm21KsZhNNltMkci0\nYtP10pnnhsPTWuBMMUPdz38u9fQkN22SFpz5b7bElMCRSESHhwI6MvyqLr98UdaLkdk36nz2n7ig\n7tx5XFK7urouUTBoN70WNp8Leb5J2+zjEIlEtXNn5m6PbnejPve53lktV8G8Erb50+RnrBioAVa/\neVs9wUtgoo7iqpTvHSgU1w5Uk7Ql3O9973v68z//c33hC19ILqI725133mlqYDmLxaTRUen115P/\nxX7wg/SLos5ik+YkNJOn53aFi8USU2bXzdlOTKpgt9fp9Omp5M7q6x3a90//U+//49/Rjh1+PfVU\no6amFkmSmpr8eu977Rlny8smUSBPjMex2+1zJpZIx+wbdT77T1xQQyG7otHFyb+bXQtbygv57OMy\nNHRC0iJDa9YUmrDNnyY/EpGOHGk7M17Pqd279+rmm1fUTBJl9Zu31RM8mIPvHQAqT9pS6vIzs6d9\n4AMfKFkwebvnHsX+6389K1lKlfSkbPmZZ/5sc/vu/jcF2i5VNNqWnDDi1Knfqrn5pF577bSiUZfs\n9kmtXdunxsYGSZLdPiopXph1uaY1Ph7f1+SkveDEJd9EyOwbdab9ZxsHtGDBKe3ePTMN+apVlT/O\nLmH2camvD6ira2aAXLpEcfbxWrDglKT42DwjLUfppsl//PFRDQ2d0Ph4PFE9ejSsZ5/1J7v31WKr\nVL5yHddm5PlWT/BgDr53AKg8aROo/v741NmHDx/WZz/72ZIFlJclS85Klk45GlUXHp/ztJH3XaVn\nrvpjHVJncn0dp9NxVsHGJiVnm0sUXvcOBDQ1ZVc0GtXp020KBN7Sm292S3LowgvPUSAwqDfemFBP\nTzyBSiQ1bndU3d2LNTR0TJOTdTr33BH19RU29fX8RKW3d5GhrlmpbtTFnAEqU0HAyDigaNSuAwdO\nSbLJ5Tqi1as7qqIwP/u4xJObmc+ULvmdfbx27z4maVI9PdlbraT0iazbHdXkpDP5PJcrqoGBkC65\nJP57ZAC7cZl+z6nOKSYKAACgemTtJzU8PKwDBw6os7Mzrzd49NFH9f3vf192u11/9Vd/pauuuir5\n2Nq1a9Xe3i6bzSabzaa77rpLra15tIrccIN+cc4HFY3OdGOz20fPFFZnCilPPfW0msMfkhTv7ffA\nA4N673tb5xRsnn32zTk18pGIND6+VF1d8UkO3njjoC66KKolS5ZoeLhOiYVllyxZovr6Ednt0TmF\n1njhaVQNDYnCVOFdpuYnKjtmTQ6Ra+GsVAW7bOOjTp9ukN1u1zvesfRMLC75fIG8YrHytMBGWwFn\nH5/4Qs7p18CaL10i29fXqt279+ro0bBcrqi6u1s1PHw87fsivUy/51TnFBMFoFSsfP0DgGqR9S6+\nf/9+ffSjH9XChQvlcDgUi8Vks9n0zDPPZN15MBjUvffeq//4j//Q+Pi4/uVf/mVOAmWz2XT//ffL\n5XIV9CGk1N3a5hdWPZ4lmjozVCkajWpw8LTGxt6Ww+FSd/dCORx2DQyE1NV1iV555ZiGh6MKBIZ0\nxRUNWr58sXp6OlRfP6ZLLunQvn1+OZ3TkhKL7Nrk9TbL4YgqFLLL5wuknUku2w0u1xtgIYWzUhXs\nsnU7TNU6km8shSSFRo59IQUUo911Zh+v+ELOc9fAyofT6dDNN6+YFXtAHk9zsntpIfuuNZl+z6nO\nKSYKQKnQ2gkA5staQv3ud7+b986ff/55XXnllWpoaFBDQ4PuuOOOOY/HYjHFZg82KkCqmv35hdXd\nuwMajQ9N0sjICblczXI4zjkzU9kx9fQslhTT0NAJvfZagyYn23T69Em99ppddvsJ9fQsltfrlsMR\nX2TX5fqNJiedqq+vk9fbLEmGblzZbnC53gALKZyVqmCXreUlVeuI2x3I670KSQqNHPtSFFBmH69V\nqxJjoEYLHrs2/5yIJ4MMYM9Vpt+zkcocjjPMQmsnAJgv45X1l7/8pX7zm9/I6/XqPe95T8479/v9\nOnXqlD772c/q5MmTuuWWW3TFFVfMec6WLVt06NAhrVy5UrfddlvO75FgpGb/ppsu1v33v6A9e6Z1\n9OgJXXbZcr3znS164w3/mZnKJuX1NutXv6pTOJzomrdAR47s0/S0S273W7rppovldicWj527yO7j\nj4/O2U5348p2g8v1BlhI4awYBbtiDJBP1TqSbyEz16Rwdvx7946pq6tNjjPreKU69qUooGQ6XokF\niwcHJzQx4Tdt3Fo1MKs7U6bjZqQyBzALrZ0AYL60Jb/vfOc7eu6559Tb26uvfvWr+tM//VN97GMf\ny2nnsVhMwWBQ9913nw4dOqQbb7xRTz/9dPLxW2+9Vf39/fJ4PNq8ebOefPJJXX311fl/mllSFZzc\n7kZ5ve3q6op3wRsf79AbbxxTT0+HPB6pv79D4XBEr7yyVwcOuDU93aipKYeWLOnRsmVSZ+diDQ76\n1d/fmPI9jd64sj0v1xnpCimcFaNgV6wWmXSx5FoIzjUpnB3/1FR8lsV4a2Tq77DcBZREvFNTpxQM\ndtBFJ4NydGciWUI50doJAOZLm0A9++yz+tGPfiS73a6TJ0/qL//yL3NOoM4991z19vbKZrPpggsu\nUFNTk44fP66WlhZJ0nXXXZd87po1azQ0NJQ1gRoYGDD03oODQZ08OTPxxf79v1Jvr0eDgxOamjql\n+vqIgsFDOnz4hMbGTqmt7Rzt3/+qVqxwa+VKyeF4Q6+8Mq3XXz8lh6NNr73WLL//kN75zjE1Nh5O\n7jcSiWrv3pAmJpyqqwvpjTd2anx8oRYuHNe1156rgYHDZ8XmcEQ1OvqqJiacamwMa8kS95znvfba\nMfn9bTp92q4FC6J67bVRLVx4zNDnLsTsz9LYGNaKFe5kS0ym5wwOhjU1dSr5nPr63845RoVK911m\n0tgY/0+S9uzJHEviNyFJ9fURHTz4shobz0n53UjZvz8jjBxrI/G+/vrrRT/elWz+cX377TrZbOb9\nNmEdRu8NtSCX6x+qD+cCYL60JTan0ym7Pf5wc3OzphKzL+Tgyiuv1Fe+8hX92Z/9mYLBoCYmJpLJ\nUygU0l/8xV/o+9//vhYsWKAXX3xR69evz7pPr9dr6L0DgdF5s/I1y+tt08TEzIx1l1wiHTgwqM7O\n3uTzIpF4DfXll8e377lnUKOjM487nYPyeme2d+zwq60tvr99+45pyZJJffCDidpnv7ze1DXRif2n\ni729fe6Mgl5v/gvvGjX7s0jxY3H55R1Zn9PbOzP2S5I8noa0nzsf6b7LYpn9m5Ckyy8/J2sLQqbv\nzwgjxzqdRLyvv/663v3udxf9eFey+cd1cnJQnZ3vTm5zrKrTwMCA4XsDUM04F4A4sysS0iZQNpst\n47YRbW1tWr9+vTZs2CCbzabbb79d27dvV3Nzs9atW6f169frhhtuUFNTk5YtW2YogTIqXTer+d0b\nYrElc143fzzLhRcuUSg0053uwgvTPz/X6aZzjd1sRsb2pHrOhz/cYmqXEbOPRzm6vBQyjioRb339\nb+XxNNBFZ5b5x7Gzs1UeD92ZAABA8aQttQ0PD+uLX/xi2u0777zT0Bts2LBBGzZsSPnYpk2btGnT\nJqOx5iRdoTj1Gkozr5tfOF+0yKaentmtK/45j7vdUR05El8j6sCBCTmdIUUiLXI4HHkX9MvVh91I\nopLqOWaP+TD7eJRjzEohSWEi3sbGw7SmzDP/uCbGNgIAABRL2gTqb//2b+dsz589z+qMFoqNTK+d\n7fFt2/ZqcnKpurrsks7R8PCruvzylrwL+uUahG4kUSlHclfpg/JTTYLBQG9zcFwBAIDZ0iZQH//4\nx0sZR9kYmV472+NdXe3q7FyU/JvdLvX3mz9mqdiMJCqVnsyUQ7qZ4DiOxcfvEwAAmK2u3AFUg/nd\nr1h3A7OxsCUAAED1IIEqgr6++EB1u31UHo+fbkOYgwQbAACgelAVXgR0G0ImjMsBAACoHlkTqBUr\nVpy1BlR9fb2WLl2qLVu26LLLLjMtOOQn1aQFTqej3GHVLBJsAACA6pE1gfryl78sp9OpdevWKRaL\n6amnntLJkye1cuVKfeMb39CPf/zjUsSJHKSbtAAAAABAYbKOgXriiSf0yU9+UosWLVJLS4s++clP\naseOHXrPe94ju50egFbEpAUAAACAObKWrE+fPq0HH3xQXq9XdXV12rNnj44dO6bdu3ef1bUP1lDI\nIq0AAAAA0suaQN155536zne+o3//93/X9PS0urq6dOeddyoajWrr1q2liBE5YtICAAAAwBxZE6il\nS5fq7rvv1tjYmOrq6rRw4cJSxIUClHvSAiaxAAAAQLXKOgZqYGBA69at00c+8hGtX79ev/u7v6s9\ne/aUIjZUqMQkFtFom4LBDvl8gXKHBAAAABRF1haof/7nf9Z9992n7u5uSdIrr7yirVu36kc/+pHp\nwaEyMYkFAAAAqlXWFqi6urpk8iRJy5cvV319valBobLNn7SCSSwAAABQLQwlUE8++aRCoZBCoZB+\n+tOfkkAho76+Vnk8ftnto/J4/ExiAQAAgKqRtW/V17/+df3DP/yD/v7v/142m03ve9/79PWvf70U\nsaFClXsSCwAAAMAshmbh+/73v1+KWAAAAADA0tImUH/4h38om82W9oVMIgEAAACg1qRNoP76r/+6\nlHEAAAAAgOWlTaBWrVpVyjgAAAAAwPKyzsIHAAAAAIirmRVOw+GIfL6AQiG73O6o+vpa5XQ6yh3W\nWSolTgAAAKAW1UwLlM8XUDDYoWi0TcFgh3y+QLlDSqlS4gQAAABqUc0kUKGQPeO2VVRKnAAAAEAt\nqpnSudsdVTA4d9uoUnarSxUn3fqqA98jAABA5auZFqi+vlZ5PH7Z7aPyePzq62s1/NpSdqtLFSfd\n+qoD3yMAAEDlq5kWKKfTof7+jrxeW8pudanipFtfdeB7BAAAqHw10wJViPnd/XLp/lcN74/i4HsE\nAACofCRQBhTS/a8a3h/FwfcIAABQ+ehDZEAh3f+q4f1RHHyPAAAAlY8WKAAAAAAwiAQKAAAAAAyi\nC1+FYk0hAAAAoPRogapQrCkEAAAAlB4JVIViTSEAAACg9EigKhRrCgEAAAClRwJVoVhTCAAAACg9\n+n1VKNYUAgAAAEqPFigAAAAAMIgECgAAAAAMIoECAAAAAIMYAzVLLovTmvVcAAAAANZFC9QsuSxO\na9ZzAQAAAFgXCdQsuSxOa9ZzAQAAAFgXJfkzwuGIhodHNDpqVyAQ1JIlC3XeeSMKh1tSdrdzu6MK\nBudup5PLcwEAAABYFy1QZ/h8AbW3r1AgcFhvv+3WkSMH1d6+Im13u1wWsmXRWwAAAKA60AJ1Rihk\nl8Ph0Pnnt6u1dZHq6yWHw5G2u10uC9my6C0AAABQHUxvgXr00Ud13XXX6fd///f1y1/+cs5jzz//\nvD75yU/qU5/6lO677z6zQ8ko0a3O5Zo+8//onL8DAAAAgKkJVDAY1L333quHHnpI3/ve9/TUU0/N\neXzr1q2655579OCDD+q5557T8PCwmeFklOhm19Mzqba2QS1fHqO7HQAAAIA5TO3C9/zzz+vKK69U\nQ0ODGhoadMcddyQfO3jwoDwej9ra2iRJV111lXbu3Kmuri4zQ0prbjc7utsBAAAAOJupCZTf79ep\nU6f02c9+VidPntQtt9yiK664QpJ09OhRtbS0JJ/b0tKigwcPmhlOWix0CwAAAMAIUxOoWCymYDCo\n++67T4cOHdKNN96op59+Ou1zjRgYGChmiJKkwcGgTp7sTG7v3/8r9fZ6iv4+QLGZcT4AlYhzAYjj\nXADMZ2oCde6556q3t1c2m00XXHCBmpqadPz4cbW0tKi1tVVHjhxJPnd0dFStrdnHG3m93qLHGQiM\nKhptS27b7c3yetsyvAIov4GBAVPOB6DScC4AcZwLQJzZFQmmTiJx5ZVXyufzKRaLaWxsTBMTE8lu\nex0dHRofH9fIyIii0aieeeYZrV692sxw0po/0x4z7wEAAABIxdQWqLa2Nq1fv14bNmyQzWbT7bff\nru3bt6u5uVnr1q3Tli1bdNttt0mSrr32WnV2dmbZozn6+lrl8/nnjIECAAAAgPlMX0h3w4YN2rBh\nQ8rHVq5cqYceesjsELKy4kK3TGwBAAAAWI/pC+kiPz5fQMFgh6LRNgWDHfL5AuUOCQAAAKh5prdA\nVSIrtP6EQvaM2wAAAABKjxaoFKzQ+sPEFgAAAID1kEClYIXWn76+Vnk8ftnto/J4/ExsAQAAAFgA\n/cJScLujCgalSCSioaGA6uvHSt6Vz4oTWwAAAAC1jhaoFBKtP8PDr0pyqavrEiZyAAAAAEALVCqJ\n1p9QyK5odHHy79m68llh8gkAAAAA5qEFKoNcJ3Lw+QI6cqRNu3fb9dRTjdq2ba/C4YiZIQIAAAAo\nIRKoDHKdyCEUsmto6ITGxxdramqRjh5tp9sfAAAAUEWqrgtfMbvR5TqRg9sd1eSkM7ntckVZvwkA\nAACoIlXXAlXONZz6+lp17rlvqr5+VE1NfnV3t7J+EwAAAFBFqq55ZHaLTyQS0XPPBbRz55ikmLze\nZq1e3WHaxA5Op0M337xiVgtYgPWbAAAAgCpSdQlUYg0nSRoaCuiNN85Ra2uXJGnXLr8cjoCp6yux\nfhMAAABQvaquC9/siR/q68e0ZMnC5GOTk3bGJAEAAADIW9VlE7NbgNzuqJ57zqbx8fhjLldUbncZ\ngwMAAABQ0aougZqtr69VkYhfAwO/VWIMVF/f3O51LH4LAAAAwKiqTqCcTofWrl2qtWvTPycxa58k\nBYOSz+dnDBMAAACAlKpuDFSu5o+JYowUAAAAgHRqPoGav04T6zYBAAAASKfmE6jZs/Z5PH7WbQIA\nAACQVs33V2PdJgAAAABG1XwLFAAAAAAYVTUtUExHDgAAAMBsVZNAmTEdOUkZAAAAgNmqJoEyYzry\nbEkZCRYAAABQW6pmDJQZ05FnS8oSCVY02qZgsEM+X6Dg9wQAAABgXVWTQJkxHXm2pIxFeAEAAIDa\nUjUlfjOmI+/ra5XP55/TRW82tzuqYHDuNgAAAIDqVTUJlBmyJWXZEiwAAAAA1YUEqgAswgsAAADU\nlqoZAwUAAAAAZiOBAgAAAACDSKAAAAAAwCASKAAAAAAwiAQKAAAAAAwigQIAAAAAg0igAAAAAMAg\nEigAAAAAMIgECgAAAAAMIoECAAAAAINIoAAAAADAIHu5A6h04XBEPl9AoZBdbndUfX2tcjod5Q4L\nAAAAgAlogSqQzxdQMNihaLRNwWCHfL5AuUMCAAAAYBISqAKFQvaM2wAAAACqR1WV9svRnc7tjioY\nnLsNAAAAoDpVVQKV6E4nSUeORLRt2151dbWbmkz19bXK5/PPSdoAAAAAVKeqSqBmd5975RW/hocX\n6TuHGIYAABNcSURBVOhRp1wuuyIRv9auXVr0Viqn06H+/o5ihA8AAADA4kxNoHbt2qVbb71VF110\nkWKxmC6++GJ99atfTT6+du1atbe3y2azyWaz6a677lJra/4tOLO70w0PhzQ9faGmps7R+Lg0MPBb\nrV07t5UqGJR8Pj8JEAAAAABDTG+BWrVqlb797W+nfMxms+n++++Xy+UqynvN7k7nco3J41k269GY\nJCZ9AAAAAJA/07OHWCyW8bFMj+dqdne6BQtOadeuw5qctMvlisrrbZaUetKHcDiiZ5/1a2DgpCSb\nvF63Vq/uYD0nAAAAAHOYnkANDw9r8+bNOnHihG655RZ94AMfmPP4li1bdOjQIa1cuVK33XZb0d53\n9eoOORwBhUKS2y319cUTq1STPvh8Ae3a5dD4+KWSpF27jsnhCNC1DwAAAMActlgxm4DmGR0d1Usv\nvaRrrrlGBw8e1I033qif//znstvjedsjjzyi/v5+eTwebd68WZ/4xCd09dVXp93fwMCAKXE+99yE\n9uxpUix2niSprm5MK1Yc15VXNpryfgAAAADM4/V6Tdu3qS1QbW1tuuaaayRJF1xwgc4991yNjo6q\noyPesnPdddcln7tmzRoNDQ1lTKAkcw7GxIRfExPS+Hi7JKmpaYF6ez3yemmBgnUNDAyYenEAKgXn\nAhDHuQDEmdXoklBn5s4fe+wx3XPPPZKkY8eO6fjx42pra5MkhUIhbdy4UadPn5Ykvfjii7rooovM\nDGeOUGhC99wzqH/4h19rYGBEK1ac0Dnn7NE55+zVqlUnWc8JAAAAwFlMbYFau3at/uZv/kZ/8Ad/\noFgspi1btuixxx5Tc3Oz1q1bp/Xr1+uGG25QU1OTli1bpvXr15sZzhwPPLBfo6O9kqRjxyS7fVBf\n+EJvyd4fAAAAQOUxNYFqamrSd7/73bSPb9q0SZs2bTIzhLTGxlwZtwEAAABgPlO78FnZokWTGbcB\nAAAAYL6aTaBuuulitbUNyun8tdraBnXTTReXOyQAAAAAFmf6OlBW5XY36nOfY8wTAAAAAONqtgUK\nAAAAAHJFAgUAAAAABlV1F75wOCKfL6BQyC63O6q+vlY5nY5yhwUAAACgQlV1C5TPF1Aw2KFotE3B\nYId8vkC5QwIAAABQwao6gQqF7Bm3AQAAACAXVZ1Aud3RjNsAAAAAkIuqTqD6+lrl8fhlt4/K4/Gr\nr6+13CEBAAAAqGBV3afN6XSov7+j3GEAAAAAqBJV3QIFAAAAAMVEAgUAAAAABpFAAQAAAIBBJFAA\nAAAAYBAJFAAAAAAYRAIFAAAAAAaRQAEAAACAQSRQAAAAAGAQCRQAAAAAGEQCBQAAAAAGkUABAAAA\ngEEkUAAAAABgEAkUAAAAABhEAgUAAAAABpFAAQAAAIBBJFAAAAAAYBAJFAAAAAAYRAIFAAAAAAaR\nQAEAAACAQSRQAAAAAGAQCRQAAAAAGEQCBQAAAAAGkUABAAAAgEEkUAAAAABgEAkUAAAAABhEAgUA\nAAAABpFAAQAAAIBB9nIHUEzhcEQ+X0ChkF1ud1R9fa1yOh3lDgsAAABAlaiqFiifL6BgsEPRaJuC\nwQ75fIFyhwQAAACgilRVAhUK2TNuAwAAAEAhqiqBcrujGbcBAAAAoBBVlUD19bXK4/HLbh+Vx+NX\nX19ruUMCAAAAUEWqqo+b0+lQf39HucMAAAAAUKWqqgUKAAAAAMxEAgUAAAAABpFAAQAAAIBBpo6B\n2rVrl2699VZddNFFisViuvjii/XVr341+fjzzz+vb37zm6qvr9eaNWu0efNmM8MBAAAAgIKYPonE\nqlWr9O1vfzvlY1u3btUPfvADtba2auPGjVq/fr26urrMDgkAAAAA8mJ6F75YLJby7wcPHpTH41Fb\nW5tsNpuuuuoq7dy50+xwAAAAACBvpidQw8PD2rx5sz796U/r/2/v7mOqrPs4jn8ujogKGiKe00Rn\nD+bDnKaiQ1N8IKcxXTrTmZHGsqzQQDEnaUE5pyamtbE0h39kNlsPs+EqIXOajQJFpzOHTnMlOEEe\n1B2Q6OTv/sN57pAHr7vO8QD3+/XXuZ5+53sxv158zu86F/n5+d71FRUVioiI8C5HRESovLzc3+UA\nAAAAwD/m11v4+vbtqyVLlig+Pl4XL17UggUL9N1336lDh8Zv29xM1Z2Kiop8XSbQZtEPwC30AnAL\nvQD4n18DlMvlUnx8vCSpT58+ioyMVFlZmaKiouR0OnXlyhXvvmVlZXI6nXcdMzo62m/1Am1JUVER\n/QCIXgBuoxeAW/z9QYJfb+Hbu3evsrKyJEmVlZWqqqqSy+WSJEVFRammpkaXLl2Sx+PRwYMHNW7c\nOH+WAwAAAAD/il9noOLi4rR8+XLNmzdPxhhlZGRo79696tq1qyZPnqyMjAylpqZKkqZPn66+ffv6\nsxwAAAAA+Ff8GqBCQ0O1bdu2ZrePHDlSn376qT9LAAAAAACf8ftT+AAAAACgvSBAAQAAAIBNBCgA\nAAAAsIkABQAAAAA2+fUhEvdCff2fKigol9vdQWFhHsXEONWxY3CgywIAAADQDrX5GaiCgnJdvRol\nj8elq1ejVFBQHuiSAAAAALRTbT5Aud0dWlwGAAAAAF9p8wEqLMzT4jIAAAAA+EqbD1AxMU6Fh5eq\nQ4cyhYeXKibGGeiSAAAAALRTbf5+t44dgxUbGxXoMgAAAAD8H2jzM1AAAAAAcK8QoAAAAADAJgIU\nAAAAANhEgAIAAAAAmwhQAAAAAGATAQoAAAAAbCJAAQAAAIBNBCgAAAAAsIkABQAAAAA2EaAAAAAA\nwCYCFAAAAADYRIACAAAAAJsIUAAAAABgEwEKAAAAAGwiQAEAAACATQQoAAAAALCJAAUAAAAANhGg\nAAAAAMAmAhQAAAAA2ESAAgAAAACbCFAAAAAAYBMBCgAAAABsIkABAAAAgE0EKAAAAACwiQAFAAAA\nADYRoAAAAADAJgIUAAAAANhEgAIAAAAAmwhQAAAAAGATAQoAAAAAbCJAAQAAAIBNBCgAAAAAsIkA\nBQAAAAA2EaAAAAAAwCYCFAAAAADYRIACAAAAAJsIUAAAAABgUwd/v8Eff/yh6dOna/HixZo5c6Z3\nfVxcnHr16iXLsmRZljZt2iSn0+nvcgAAAADgH/N7gPrggw8UHh7eaL1lWcrOzlanTp38XQIAAAAA\n+IRfb+H79ddfdeHCBU2YMKHRNmOMjDH+fHsAAAAA8Cm/BqiNGzcqLS2t2e0ZGRl65plntHnzZn+W\nAQAAAAA+4bdb+L766iuNGjVKvXr1kqRGs00pKSmKjY1VeHi4kpKSlJeXpylTptx13KKiIr/UC7RF\n9ANwC70A3EIvAP7ntwB16NAhlZSUKC8vT5cvX1ZISIjuv/9+jRkzRpI0Y8YM777jx4/X2bNn7xqg\noqOj/VUuAAAAANyV3wLUli1bvK+zsrLUu3dvb3hyu916+eWXtWPHDoWEhOjo0aOaOnWqv0oBAAAA\nAJ/w+1P4/m7Pnj3q2rWrJk+erKlTp2ru3LkKDQ3VoEGDCFAAAAAAWj3L8Cg8AAAAALDFr0/hAwAA\nAID2hAAFAAAAADYRoAAAAADApnv6EIl/Y/369Tpx4oQsy9KqVas0ZMiQQJcE+ERhYaFSUlL0yCOP\nyBijAQMG6IUXXtCKFStkjFHPnj21ceNGBQcHKycnRzt37pTD4dCcOXM0e/ZseTwepaWl6dKlS3I4\nHFq/fr169+6t4uJivfXWWwoKCtKAAQOUkZER6FMFmlVcXKxXX31ViYmJSkhI0OXLl/3WA9nZ2crN\nzVVQUJCSkpI0YcKEAJ898F939sLrr7+uU6dOqXv37pKkhQsXasKECfQC2r2NGzfq2LFj+uuvv7Ro\n0SINGTKk9VwXTBtQWFhoXnrpJWOMMefOnTNz584NcEWA7xQUFJjk5OQG69LS0kxubq4xxpjNmzeb\n3bt3m9raWjN16lTjdrtNXV2dmT59url27ZrZs2ePWbNmjTHGmB9//NEsXbrUGGPM/PnzzalTp4wx\nxqSmppoffvjhHp4VYF9tba1JTEw0GRkZZteuXcYY//XAxYsXzaxZs4zH4zGVlZXmiSeeMDdv3gzA\nWQONNdcLBw8ebLQfvYD27OeffzYvvviiMcaY6upqM3HiRJOWlmb27dtnjAn8daFN3ML3008/afLk\nyZKkhx9+WNevX1dNTU2AqwJ8x9zxMMzCwkJNmjRJkjRp0iTl5+frxIkTGjp0qEJDQxUSEqIRI0ao\nqKioQX889thjOn78uP7880+VlJRo8ODBkqS4uDjl5+ff25MCbAoJCdGHH36oyMhI7zp/9UBBQYHG\njx8vh8OhiIgIRUVF6dy5c/f+pIEmNNULTaEX0N6NGjVK77//viSpW7duqq2t1ZEjRxQXFycp8NeF\nNhGgKioqFBER4V3u3r27KioqAlgR4Fvnz59XUlKSEhISlJ+fr7q6OgUHB0uSevToofLyclVWVjbo\ng4iICF25cqVBf1iWJcuyVFFRofDw8Eb7Aq1RUFCQOnbs2GDdjRs3fN4DLY0BtAZN9YIk7dq1S889\n95yWL1+u6urqRr8X0Qtob4KCgtS5c2dJ0hdffKGJEye2qutCm/kO1N/d+Wk90Jb17dtXS5YsUXx8\nvC5evKgFCxbI4/F4tzf3772l9ZZl0SdoN/zZA/QJWrsZM2YoPDxcAwcO1Pbt25WVlaXhw4c32Ide\nQHu1f/9+ffnll9qxY4emTJniXR/o60KbmIFyOp0NZpzKy8vVs2fPAFYE+I7L5VJ8fLwkqU+fPoqM\njNT169dVX18vSSorK5PL5ZLT6Wzwicjf19/uD4/H4/1y5dWrVxvs63Q67+FZAf9OaGioz3uguTHo\nDbRmo0eP1sCBAyVJjz/+uM6ePSuXy0UvoN07fPiwtm/fruzsbIWFhbWq60KbCFBjx45Vbm6uJOmX\nX36Ry+VSly5dAlwV4Bt79+5VVlaWJKmyslKVlZWaNWuW9u3bJ0nKzc1VbGyshg4dqlOnTsntdqum\npkbHjx9XdHS0xo4d6933wIEDiomJkcPh0EMPPaRjx45JkvLy8hQbGxuYEwT+gTFjxnj/3/dlD8TE\nxOjQoUPyeDwqKytTeXm5+vXrF7DzBO4mOTlZZ86ckXTru4H9+/enF9Duud1uZWZmatu2beratauk\n1nVdsEwbmbPdvHmzCgsL5XA4lJ6ergEDBgS6JMAnampqtHz5cl27dk3GGC1evFgDBw7UypUrVV9f\nr169emn9+vVyOBzKy8tTdna2goKCNH/+fE2bNk03b97U6tWr9dtvvykkJEQbNmyQy+XS+fPnlZ6e\nLmOMHn30Ua1cuTLQpwo06cSJE3rjjTdUVVUlh8Oh++67Tzt27FBaWppfeuCTTz5RTk6OLMvSsmXL\nFBMTE+CfAHBLU72QnJysrVu3KjQ0VKGhoVq3bp0iIiLoBbRrn332mbKysvTAAw94b7975513tHr1\n6lZxXWgzAQoAAAAAAq1N3MIHAAAAAK0BAQoAAAAAbCJAAQAAAIBNBCgAAAAAsIkABQAAAAA2EaAA\nAAAAwKYOgS4AANB+ZWZm6uTJk6qvr9fp06c1fPhwSdLs2bP15JNPNntcTk5Oi9t///13JSYm6sCB\nAz6vGQCAlhCgAAB+s2LFCklSaWmpEhIStHPnzrseU1paqs8//7zFACVJlmX5pEYAAP4XBCgAQEDU\n1NQoPT1dZWVl8ng8euqppzRnzhy99tprOn/+vFatWqW1a9cqPT1dFy5ckMfj0fDhw5WWltbsmLf/\nynxwcLBqamqUmpqqMWPG6L333lNZWZlKSkq0atUqdevWTWvWrFFdXZ1u3Lih1NRUjR49utnjAQC4\njQAFAAiIjz76SD169NC7776ruro6xcfHa9y4cUpOTtbWrVu1bt06VVdXa9CgQVq7dq0kacqUKZo7\nd64cDkeTY165ckXLli3TyJEjdfToUWVmZnoD0KVLl/Txxx9LkhYuXKikpCRFR0ervLxc8+bN0/ff\nf9/i8QAASAQoAECAnDx5UvPmzZMkderUSYMHD9bp06fVpUsX7z7dunVTaWmpnn76aQUHB6uqqkrV\n1dWKjIxscsyePXsqMzNTW7ZsUX19va5fv+7dNmzYMO/rgoIC1dfXe5dvj93S8QAASAQoAEArcfPm\nzUbfa8rJydGZM2e0e/duWZalmTNntjjG22+/7X1ARXFxsVJSUrzbgoODva87deqkrVu3KiwsrMHx\nS5cubfZ4AAAkHmMOALhHjDENlocNG6bDhw9Lktxut4qLizV48GBZliWPxyNJqqys1IMPPijLsnTy\n5EmVlJR4Z47uHE+Sqqqq1K9fP0nS119/3WCW6e9GjBihb775xvseGzZs+J+OBwD8/yJAAQDuiTtn\nlxYsWKDq6mo9++yzWrhwoVJSUuRyudS/f39dvnxZixYt0rRp03TkyBHNnz9f+/fvV2JiotasWaPa\n2tomn8KXmJio1NRUPf/884qJiVHnzp21adOmRvu++eab+vbbb5WQkKBXXnnF+z2n5o4HAOA2yzT1\nER4AAAAAoBFmoAAAAADAJgIUAAAAANhEgAIAAAAAmwhQAAAAAGATAQoAAAAAbCJAAQAAAIBNBCgA\nAAAAsOk/5Hwj6NucW/4AAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "print 'rsquared', linreg_r2(data['Total area'], data['log Price'], plot=True)[0]\n", + "plt.xlabel('Total area');\n", + "plt.ylabel('log Price');\n", + "plt.xlim(0,200000);" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`Total area` was the most insightful dimension, with its model explaining 16.8% of variance. Still, however, this is not a great result as we are still attempting to understand a complex, multidimensional dataset from a single perspective. Let's see if averaging the models, combining information from all 3 dimensions, can produce a more accurate model. \n", + "\n", + "*Note:In the below plot, the blue line is not the model but the line $Y=X$. Points along this line mean the combined model perfectly predicted the observed `log Price`.*" + ] + }, + { + "cell_type": "code", + "execution_count": 147, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "rsquared: 0.185624465575\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0YAAAHsCAYAAAD2PL25AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xt01PWd//HXJDPJhEwgCSSBBIk2NigXbYwSu0jxgqXo\nWlsXq0er1fWUtupqt3Zb3bVqL0qtpbQ9XlrOWmm3/rbH2rW2W3HrrRplGWrIImAhigJmkFwgE5iB\nycwk8/tjmGEmmcnMJHOf5+Ocnvqd6+c73++Qz2ven8/na/D5fD4BAAAAQAErynQDAAAAACDTCEYA\nAAAACh7BCAAAAEDBIxgBAAAAKHgEIwAAAAAFz5jpBiSio6Mj000AAAAAkOVaW1sTfk5OBSNpYjuJ\n7NDR0cHxy1Ecu9zG8cttHL/cxbHLTZfd8Wzwv/+45vIMtgQTNdFiCkPpAAAAAIWHovuumZ3BliAT\nCEYAAAAACl7ODaUDAAAAEuXz+TQ0NBT1/i9//yVNr/B3jX9250XasWOHXC5XupqHCSotLZXBYEjK\naxGMAAAAkPeGhoY0NDSk0tLSiPf/7M6Lwrbnz5+fjmZhEgJB12w2J+X1CEYAAAAoCKWlpUnrRCP/\nMMcIAAAAQMEjGAEAAAAoeAQjAAAAAAWPYAQAAACkwWOPPaa1a9cGt30+nz7zmc+oq6sr6nOuu+46\nbdq0Kbj9wAMP6IknnhjzuIcfflg2my24fdddd02ojbt27dLevXsn9NzxHD16VBdeeGHU+zdv3qzb\nbrstuB3afpvNpocffjjpbRqNxRcAAACANPjHf/xHfeYzn9G1116r2tpaPf300zrzzDPV3Nwc9Tn3\n3Xefvva1r+l3v/ud3nvvPW3ZskVPPfVU2GPuuOMO9ff3y2az6WMf+5heffVV9fT06N5779WFF16o\npUuXxt3GF154QQsWLFBjY+OE9zMSn88Xc1ltg8GgV155Ra+99pp27dqlW265Reeff762bNmi7u5u\n7du3Tz/4wQ+S2q5QBCMAAAAgDUpLS3XzzTdr7dq1uvfee/XEE0/oySeflCTdfvvtGhgYkOQPESUl\nJXr88cfV1NSkiy++WP/+7/8uq9Wqe+65R0VF4YO+Vq9erZtuukkNDQ266qqrtGzZMt10000688wz\ntXTpUl133XVavHixNm3aJLvdrp/97GeaOXOmHnroIW3ZskUjIyO65pprdPrpp+s3v/mNqqurNX36\ndC1cuFCSv2LzjW98Q3PmzFFnZ6euvvpq7dq1S9u2bdM111yja665RlarVWvXrpXJZNLMmTP1wAMP\naGhoSLfddpvcbrfOOuusYHvffPPN4GNnzZql7373u8H7LrjgAh04cEBbt27V6tWrNXXqVO3bt08H\nDhzQ6tWrU3p8CEYAAAAoOL/44w69sdUW+4EJWHxmg/7xsvGvf3TZZZfp17/+te6++25dccUVqqqq\nkiT95Cc/ifqcVatW6dOf/rTOPvtsnXHGGWPu37hxo2655RZt3LhRw8PDevHFF/WjH/1Iv/vd74KP\nqaio0Pr167VmzRr9+c9/1rx58/Tuu+/qP//zP3Xs2DF9+tOf1rPPPqslS5boU5/6VDAUBezcuVOP\nPfaYBgYGdOmll+qVV16Ry+XSbbfdpmuuuUb33Xef1q9fr7q6On3ve9/TH//4R7lcLjU3N+vOO+/U\nc889pz/96U+SpPvvv1+//OUvNXXqVD300EPasGGD6urqgu+1b98+rV69Wq+88opWrFihoqIi3XDD\nDero6NCiRYtiH4gJIhgBAAAAafTP//zP+sY3vhF3BeTgwYMqKSnRrl27Ig5JO//88yVJ5557riTp\nqquukiT9y7/8S/Axra2tkqSZM2fKbrdr+/btOueccyRJZWVlOvXUU7Vnz56obZgzZ46mTp0qo9Go\nGTNmqKamRkePHtWRI0c0ODiooqKiYLhZtGiRNm/eLEnB92hrawvuy549e3TrrbfK5/PJ5XKpuro6\nLBh985vflCTNnTs3+HmlA8EIAAAABecfL5sfs7qTKieddJJqa2tlMpmCt0UbSidJ3/72t3X33Xfr\nL3/5i375y1/qhhtuSPg9jcYT3f5AuPL5fMHb3G73mCF6oYqLiyP+t8/nU1FRkUZGRoK3eTweFRUV\naXh4OPiagftLSkpUV1enX/3qV2GvHwhSmUQwAgAAANIsNJRI0YfSPffccyovL9eiRYs0f/58XXnl\nlbr00ktVU1MzqfdfuHChHnvsMX3xi1+U0+lUd3e3Tj75ZBkMBnk8nnHbO7rtFRUVKioq0oEDBzRz\n5kxt3rxZZ599tgYHB7Vt2zZdfPHFwZX1KioqZDAYtHv3bjU1NenXv/51SofHJYJgBAAAAKRZrBXa\nJOnIkSP66U9/ql//+teSpPLycn3lK1/R6tWr9aMf/WhS73XWWWdp3rx5+vznPy+v16uvf/3rMpvN\nOvvss/XAAw/IYrEEh+aNfo1Ir/ed73xHX/va12Q0GjVnzhxdeumlcjqduuWWW3TjjTeGLb7wve99\nT3fddZdKSkpUW1urq666Sp2dnXHvT6oYfKMjXxbr6OgIjo9E7uH45S6OXW7j+OU2jl/u4thlF5fL\nJUkym80ZbgmSJdoxneh3jwu8AgAAACh4BCMAAADkvS9//6VMNwFZjmAEAAAAoOCx+AIAAADy2mV3\nPKvpFUYNDQ1luilIoqGhIZWWlibt9agYAQAAIO8dcnh1+9rX4378jh07UtgaJENpaWlSgxEVIwAA\nAOSty+54VpLk80nr77s0oeeygl1hoWIEAAAAoOARjAAAAJCXAtUiSfrjmssz2BLkAoIRAAAAgIJH\nMAIAAEDeoVqERBGMAAAAABQ8ghEAAADyCtUiTATBCAAAAEDBIxgBAAAgb1AtwkQRjAAAAAAUPIIR\nAAAA8gLVIkwGwQgAAABAwSMYAQAAIOdRLcJkEYwAAAAAFDyCEQAAAHIa1SIkA8EIAAAAQMEjGAEA\nACBnUS1CshhT+eJPP/20nn32WRkMBvl8Pu3YsUNbtmwZ87g1a9bo//7v//Qf//EfqWwOAAAAAESU\n0mC0cuVKrVy5UpL017/+Vc8///yYx+zevVtvvvmmTCZTKpsCAACAPEO1CMmUtqF0jzzyiG6++eYx\ntz/44IO644470tUMAAAAABgjpRWjgG3btmnWrFmaPn162O3PPPOMPv7xj2vWrFnpaAYAAADSyO32\nyGrtlcNhlMXiVVtbrUpKkjNKiGoRki0twei3v/2trrjiirDbBgcH9eyzz+oXv/iF9u/fL5/PF9dr\ndXR0pKKJSBOOX+7i2OU2jl9u4/jlrkI/dp2ddh050hjc3rXrNbW0VCb9fVL1ORf68Ss0aQlGmzdv\n1j333BN226ZNm3Tw4EFdc801Ghoa0gcffKDvf//7uvPOO8d9rdbW1lQ2FSnU0dHB8ctRHLvcxvHL\nbRy/3MWxk3p7e+T11gW3jcYKtbbWjfOM+KSjWsTxy10TDbQpD0a9vb0qLy+X0Rj+VsuXL9fy5csl\nSTabTXfddVfMUAQAAIDcYbF4ZbeHbwPZKuWLL/T19YXNLXrmmWf04osvpvptAQAAkGFtbbWqrLTJ\naOxRZaVNbW21k35N5hYhVVJeMZo/f77WrVsX3P7sZz875jENDQ361a9+leqmAAAAII1KSkxasqQh\n080A4pK25boBAACAyaBahFQiGAEAAAAoeAQjAAAAZD2qRUg1ghEAAACAgkcwAgAAQFajWoR0IBgB\nAAAAKHgEIwAAAGQtqkVIF4IRAAAAgIJHMAIAAEBWolqEdCIYAQAAACh4BCMAAABkHapFSDeCEQAA\nAICCRzACAABAVqFahEwgGAEAAAAoeAQjAAAAZA2qRcgUghEAAACAgkcwAgAAQFagWoRMIhgBAAAA\nKHgEIwAAAGQc1SJkGsEIAAAAQMEjGAEAACCjqBYhGxCMAAAAABQ8ghEAAAAyhmoRsgXBCAAAAEDB\nIxgBAAAgI6gWIZsQjAAAAAAUPIIRAAAA0o5qEbINwQgAAABAwSMYAQAAIK2oFiEbEYwAAAAAFDyC\nEQAAANKGahGyFcEIAAAAQMEjGAEAACAtqBYhmxGMAAAAABQ8ghEAAABSjmoRsh3BCAAAAEDBIxgB\nAAAgpagWIRcQjAAAAAAUPIIRAAAAUoZqEXIFwQgAAABAwSMYAQAAICWoFiGXEIwAAAAAFDyCEQAA\nAJKOahFyDcEIAAAAQMEjGAEAACCpqBYhFxGMAAAAABQ8ghEAAACShmoRchXBCAAAAEDBIxgBAAAg\nKagWIZcRjAAAAAAUPIIRAAAAJo1qEXIdwQgAAABAwSMYAQAAYFKoFiEfEIwAAAAAFDyCEQAAACaM\nahHyBcEIAAAAQMEjGAEAAGBCqBYhnxCMAAAAABQ8ghEAAAASRrUI+YZgBAAAAKDgEYwAAACQEKpF\nyEcEIwAAAAAFj2AEAACAuFEtQr4iGAEAAAAoeAQjAAAAxIVqEfIZwQgAAABAwSMYAQAAICaqRch3\nBCMAAAAABY9gBAAAgHFRLUIhIBgBAAAAKHgEIwAAAERFtQiFgmAEAAAAoOARjAAAABAR1SIUEoIR\nAAAAgIJHMAIAAMAYVItQaAhGAAAAAAoewQgAAABhqBahEBGMAAAAABQ8ghEAAACCqBahUBGMAAAA\nABQ8Yypf/Omnn9azzz4rg8Egn8+nHTt2aMuWLcH7N23apLVr16q4uFinnHKK7r///lQ2BwAAAOOg\nWoRCltJgtHLlSq1cuVKS9Ne//lXPP/982P333nuvfvWrX6murk633367XnvtNX3iE59IZZMAAAAA\nYIyUBqNQjzzyiNasWRN22+9+9ztZLBZJUnV1tex2e7qaAwAAgBBUi1Do0jLHaNu2bZo1a5amT58e\ndnsgFPX29mrjxo1aunRpOpoDAAAAAGEMPp/Pl+o3ueeee3TZZZfpnHPOGXPfwYMHtWrVKn3961/X\nxz/+8XFfp6OjI1VNBAAAKFj3/b/uE/99zewMtgRIjtbW1oSfk5ahdJs3b9Y999wz5naHw6EvfvGL\nuuOOO2KGooCJ7CSyQ0dHB8cvR3HschvHL7dx/HJXTh27kGCUM21OsZw6fggz0WJKyofS9fb2qry8\nXEbj2Az2/e9/XzfeeKMWL16c6mYAAAAgAuYWAX4prxj19fWFzS165plnVFFRofPOO09/+MMftG/f\nPj311FMyGAy67LLLdOWVV6a6SQAAAAAQJuXBaP78+Vq3bl1w+7Of/Wzwv996661Uvz0AAACioFoE\nnJCWVekAAAAAIJsRjAAAAAoQ1SIgHMEIAAAAQMEjGAEAABQYqkXAWAQjAAAAAAWPYAQAAFBAqBYB\nkRGMAAAAABQ8ghEAAECBoFoEREcwAgAAAFDwCEYAAAAFgGoRMD6CEQAAAICCRzACAADIc1SLgNgI\nRgAAAAAKHsEIAAAgj1EtAuJDMAIAAABQ8AhGAAAAeYpqERA/ghEAAACAgkcwAgAAyENUi4DEEIwA\nAAAAFDyCEQAAQJ6hWgQkjmAEAAAAoOARjAAAAPII1SJgYghGAAAAAAoewQgAACBPUC0CJo5gBAAA\nAKDgEYwAAADyANUiYHIIRgAAAAAKHsEIAAAgx1EtAiaPYAQAAACg4BGMAAAAchjVIiA5CEYAAAAA\nCh7BCAAAIEdRLQKSh2AEAAAAoOARjAAAAHIQ1SIguQhGAAAAAAoewQgAACDHUC0Cko9gBAAAAKDg\nEYwAAAByCNUiIDUIRgAAAAAKHsEIAAAgR1AtAlLHGM+DBgYG1N3drYULF2pkZERFReQpAAAKgdvt\nkdXaK4fDKIvFq7a2WpWUmDLdLABIupgJ57//+7911VVX6a677pIkffe739Vvf/vblDcMAABkntXa\nK7u9QV5vnez2BlmtvZluUsGiWgSkVsxg9MQTT+jZZ59VVVWVJOmb3/ymnnrqqZQ3DAAAZJ7DYRx3\nGwDyRcxgVFFRobKysuC22WyWyUQJHQCAQmCxeMfdRnpQLQJSL+bPPlVVVXrmmWc0NDSkHTt26Lnn\nnlN1dXU62gYAADKsra1WVqstbI4RAOSjmMHo29/+tn784x/L6XTq7rvvVmtrq773ve+lo20AACDD\nSkpMWrKkIdPNKGhUi4D0iBmMpk6dquuvv1733HOPJOntt99WZWVlyhsGAAAAAOkSc47R2rVr9fOf\n/zy4/fOf/1w//OEPU9ooAAAAUC0C0ilmMLJarVq9enVw+yc/+YnefPPNlDYKAAAAANIpZjDyeDxy\nu93BbafTqeHh4ZQ2CgAAoNBRLQLSK+Yco6uvvlqXXHKJFixYoJGREW3btk233nprOtoGAAAAAGkR\nMxhdeeWVWrx4sbZt2yaDwaC77rpLs2bNSkfbAAAAChLVIiD9ogajV199VUuXLtXTTz8ddvsbb7wh\nSVq5cmVqWwYAAAAAaRI1GO3atUtLly5VR0dHxPsJRgAAAMlHtQjIjKjBaNWqVZKk5cuX6/zzz09X\newAAAAAg7WKuSvfLX/5SXq83HW0BAAAoaFSLgMyJufhCRUWFLr30Us2bN08mkyl4+w9+8IOUNgwA\nAAAA0iVmMLrgggt0wQUXpKMtAAAABYtqEZBZ4wajwcFBNTc3q6mpSWazOV1tAgAAAIC0ijrH6IUX\nXtAll1yib33rW1qxYoW2b9+eznYBAAAUDKpFQOZFrRg9/vjj+v3vf6+amhq98847WrNmjX72s5+l\ns20AAAAAkBZRK0Ymk0k1NTWSpI9+9KNyOp1paxQAAEChoFoEZIeowchgMIy7DQAAAAD5IupQut7e\nXj399NPB7b6+vrDtlStXprZlAAAAeY5qEZA9ogajlpYWdXR0BLc/9rGPhW0TjAAAAADki6jBaPXq\n1elsBwAAQEGhWgRkl6hzjAAAAACgUBCMAAAA0oxqEZB9CEYAAAAACl7UOUYB11133Ziluo1Go04+\n+WR96UtfUl1dXcoaBwAAkG+oFgHZKWbFaMmSJaqtrdW1116ra6+9VjNnztTChQtVX1+vO++8Mx1t\nBAAAAICUilkx2rhxo9avXx/cXr58uVatWqV169bp1VdfTWXbAAAA8grVIiB7xawYHTx4ULt37w5u\nd3d3q7u7WwcOHNCRI0dS2jgAAAAASIeYFaPbb79dN954o4aGhmQwGFRUVKRvfOMb2rFjh770pS+l\no40AAAA5j2oRkN1iBqNly5Zp2bJlGhgYkM/nU1VV1ZjFGAAAAAAgl8UMRr29vfrxj3+sbdu2yWAw\n6GMf+5i++tWvqrq6Oh3tAwAAyHlUi4DsF3OO0T333KP58+frRz/6kX74wx/qIx/5iP71X/81HW0D\nAAAAgLSIWTE6duyYrr322uB2c3OzXn755ZQ2CgAAIF9QLQJyQ8yK0bFjx9Tb2xvcPnDggNxud0ob\nBQAAAADpFLNidPPNN+uKK65QTU2NfD6fDh06pPvvvz8dbQMAAMhpVIuA3BEzGJ1//vl68cUXtWfP\nHknSKaecotLS0rhe/Omnn9azzz4rg8Egn8+nHTt2aMuWLcH7N27cqLVr16q4uFif+MQndPPNN09s\nLwAAAABgEqIGo5/85CfjPvH222+P+eIrV67UypUrJUl//etf9fzzz4fdf//99+sXv/iFamtr9fnP\nf17Lly9XU1NTPO0GAADIavf9v+7gf1MtArJf1DlGxcXF4/4vUY888khYReiDDz5QZWWl6urqZDAY\ntHTpUm3atGliewEAAAAAkxC1YnTrrbcm7U22bdumWbNmafr06cHb+vv7w66FVF1drQ8++CBp7wkA\nAJApzC0Cck/MVemS4be//a2uuOKKcR/j8/nS0RQAAAAAGCPm4gvJsHnzZt1zzz1ht9XW1qqvry+4\n3dPTo9ra2piv1dHRkfT2IX04frmLY5fbOH65jeOXW0LnFt13zWyOXw7j2BWWlAej3t5elZeXy2gM\nf6uGhgY5nU7t379ftbW1+stf/qI1a9bEfL3W1tZUNRUp1tHRwfHLURy73Mbxy20cvxwUEow4drmL\n717ummigjRqMTjvtNBkMhoj3FRcXa/v27XG9QV9fX9jcomeeeUYVFRVatmyZ7r33Xn3ta1+TJP39\n3/+9GhsbE2k7AABAVgmdW3TfNbMz2BIAiYoajHbs2CGfz6ef/exnmjt3rs4991wNDw9r48aNev/9\n9+N+g/nz52vdunXB7c9+9rPB/z777LP1m9/8ZoJNBwAAAIDkGHe5bqPRKKvVqosvvlgVFRWqrKzU\nJZdcos7OznS2EQAAIOsleyU6t9uj9nabNmzoUXu7TW63Z9KvCSC6mHOMjh07pt/85jdqbW1VUVGR\ntmzZokOHDqWjbQAAAAXLau2V3d4gSbLbJavVpiVLGjLcKiB/xQxGDz30kB5++GE9+eSTkqRTTz1V\nDz74YMobBgAAkCtScd0ih8M47jaA5Ir5DTvllFP00EMPqb+/P67ltAEAADB5FotXdnv4NoDUiXmB\n1//93//VsmXLdP3110uSHnjgAb3yyispbxgAAEAuSEW1SJLa2mpVWWmT0dijykqb2tr4gRpIpZjB\naO3atXrqqadUU1MjSfryl7+sxx57LOUNAwAAKGQlJSYtWdKgFSvqtGRJg0pKTJluEpDXYgajKVOm\naMaMGcHt6upqmUx8MQEAAFJVLQKQfjHnGJnNZm3evFmSNDg4qD/96U8qLS1NecMAAAAAIF1iVozu\nvfdePf7449q2bZs++clPqr29Xd/97nfT0TYAAICsRbUIyC8xK0b79u3Tz3/+87DbXnzxRTU0sI4+\nAAAAgPwQNRh1d3frgw8+0IMPPqg777xTPp9PkuT1evXAAw9o2bJlaWskAABANqFaBOSfqMGor69P\nzz33nGw2mx555JHg7UVFRbr66qvT0jgAAAAASIeowailpUUtLS1aunSpLrroIhkMBkn+ipHRyJWX\nAQBAYaJaBOSnmIsveL1efeUrXwluX3PNNXr++edT2igAAAAASKeYwWj9+vV66KGHgtuPP/64fvGL\nX6S0UQAAANmIahGQv2IGI5/Pp4qKiuB2RUWFiopiPg0AAAAAckbMyUILFizQV7/6VS1atEg+n0/t\n7e1asGBBOtoGAACQNagWAfktZjC6++679Yc//EFvvfWWDAaDLrvsMq1YsSIdbQMAAACAtIgajHp7\ne1VbW6vu7m6dddZZOuuss4L32Ww2nXTSSWlpIAAAQKZRLQLyX9Rg9OCDD2rNmjX6whe+MOY+g8Gg\nl156KaUNAwAAAIB0iRqM1qxZI0l6+eWX09YYAACAbEO1CCgMUYPRXXfdNe4TV69enfTGAAAAAEAm\nRF13OzCvqKioSIODgzrttNPU3NysgwcPqqysLJ1tBAAAyAiqRUDhiFoxuvLKKyVJL7zwgtatWxe8\n/YYbbtAtt9yS+pYBAAAAWc7t9shq7ZXDYZTF4lVbW61KSkyZbhYmIOaVWj/88EMdPnw4uO10OvXB\nBx+ktFEAAACZRrUI8bBae2W3N8jrrZPd3iCrtTfTTcIExbyO0dVXX62LL75Ys2fPlsFgUHd3t778\n5S+no20AAABZYcOGHqoBiMjhMI67jdwR88hde+21uvzyy7V37175fD7NmTNHU6dOTUfbAAAAMiK0\nWrTq/Mvl9Up2u2S12rRkSUMGW4ZsY7F4ZbeHbyM3xRxKNzg4qEceeURPPPGEFixYoDfffFOHDh1K\nR9sAAACyCtUAjNbWVqvKSpuMxh5VVtrU1lab6SZhgmIGo7vvvluzZs1Sd3e3JMntduub3/xmyhsG\nAACQCaHVom985uyw+6gGYLSSEpOWLGnQihV1WrKkgaGWOSxmMDp06JCuv/56mUz+g/ypT31KLpcr\n5Q0DAADINKoBsbndHrW327RhQ4/a221yuz2ZbhIwIXHVgz0ejwwGgySpv79fR48eTWmjAAAAMiHS\nSnTMKRpfYFU2iXlYyG1xLb6wcuVK9fX16ctf/rK2bdumf/u3f0tH2wAAAJDlWJUN+SLmmXvJJZfo\nrLPOUmdnp0pKSvSd73xHtbWUkQEAQH7hukUTw6psyBcx5xjddtttmjlzplasWKGLLrqIUAQAAIAg\n5mEhX8SsGM2ZM0dPP/20WlpaVFJSErz9pJNOSmnDAAAA0oVq0cQFVmUDcl3MYPTcc8+Nuc1gMOil\nl15KSYMAAAAAIN1iBqOXX345He0AAADICKpFAKRxgpHD4dCjjz6q9957T+ecc46+8IUvyGhklREA\nAAAA+Sfq4gv33XefJOmqq67Su+++q4cffjhdbQIAAEgLqkUAAqKWgGw2m374wx9Kkj7xiU/ohhtu\nSFebAAAAACCtolaMQofNFRcXp6UxAAAA6UK1CECoqMHIYDCMuw0AAAAA+SLqULrOzk6df/75we2D\nBw/q/PPPl8/nk8Fg0F/+8pc0NA8AACD5qBYBGC1qMHr++efT2Q4AAAAAyJiowaihgSsYAwCA/EO1\nCEAkXJgIAAAAaeN2e2S19srhMMpi8aqtrVYlJaZMNwuIvvgCAABAvqFalHlWa6/s9gZ5vXWy2xtk\ntfZmukmAJIIRAAAA0sjhMI67DWQKwQgAABQEqkXZwWLxjrsNZArBCAAAAGnT1larykqbjMYeVVba\n1NZWm+kmAZJYfAEAABQAqkXZo6TEpCVLWP0Y2YeKEQAAAICCRzACAAB5jWoRgHgQjAAAAAAUPIIR\nAADIW1SLAMSLYAQAAACg4BGMAABAXqJaBCARBCMAAAAABY9gBAAA8g7VIgCJIhgBAAAAKHgEIwAA\nkFeoFgGYCIIRAAAAgIJHMAIAAHmDahGAiTJmugEAACB93G6PrNZeORxGWSxetbXVqqTElOlmAUDG\nEYwAAMhBEw04Vmuv7PYGSZLdLlmtNi1Z0pDq5qYF1SIAk8FQOgAAclAg4Hi9dbLbG2S19sb1PIfD\nOO42ABQqghEAADloogHHYvGOu52rqBYBmCyCEQAAOWiiAaetrVaVlTYZjT2qrLSpra02Fc0DgJxD\n/RwAgBzU1lYrq9UWNscoHiUlpryZUxRAtQiZwEIm+YdgBABADsrHgAPkknxeyKRQMZQOAADkLKpF\nyBQWMsmHRICLAAAgAElEQVQ/BCMAAAAgQfm6kEkhIxgBAICcRLUImcRCJvmHmh8AAACQIOb55R+C\nEQAAyDlUi9Ivm1Zhy6a2IH8wlA4AACALud0etbfbtGFDj9rbbXK7PRltT2AVNq+3TnZ7g6zWXtqC\nvEIwAgAAOaVQqkXZ1vnPplXYsqktyB+cRQAAAJMUaWjXZGVb599i8cpuD9+mLcgnVIwAAEDOyNZq\nUSqqO9m2HHQ2rcKWTW1B/qBiBAAAMEmRqjtTpkzuNdvaamW12pJahZqMbFqFLRvawgIQ+YdgBAAA\nckK2Vouk1AztyobOP6ILVAklyW6XrFYbxyvHpXwo3R/+8Addfvnl+od/+Ae9+uqrYfc9+eSTuvrq\nq3Xttddq9erVqW4KAABASjC0q/Bk2xwwTF5Kj6Ddbtcjjzyi3//+93I6nfrpT3+qpUuXSpIcDoce\nf/xxvfTSSzIYDLrpppv01ltv6YwzzkhlkwAAQA7K5mqRRHWnELEARP5JaTDauHGjFi9erLKyMpWV\nlek73/lO8L6SkhKVlpbK4XCorKxMLpdL06ZNS2VzAAAA8h5zX9Ij2+aAYfJSGoxsNpuOHTumr3zl\nKzpy5IhuueUWffzjH5fkD0b/9E//pGXLlslsNuvTn/60GhsbU9kcAACQg7K9WpRtmPuSHlQJ809K\ng5HP55Pdbtejjz6q7u5uXX/99XrllVck+YfSPfroo/rzn/+s8vJyfeELX1BXV5eam5vHfc2Ojo5U\nNhkpxvHLXRy73Mbxy20cvxNy7bOYSHs9Hq+2b3fo6NESTZni1oIFFplM8XfZOjuPanj4WHC7uPhD\nTZlyIOF2IPfON0xOSoPRjBkz1NLSIoPBoJNOOknl5eU6dOiQqqur9d577+mkk04KDp9rbW3V9u3b\nYwaj1tbWVDYZKdTR0cHxy1Ecu9zG8ctthX78crlaNNFj195uU13diUqEx2PTuefGX5k4etQWrBhJ\nUmVlmVpbqWwkqtC/e7lsooE2pavSLV68WFarVT6fTwMDAzp69Kiqq6slSQ0NDXrvvffkdrslSdu3\nb9ecOXNS2RwAAICsN9nVzlghD5iYlFaM6urqtHz5cn3uc5+TwWDQt771LT3zzDOqqKjQsmXLdNNN\nN+m6666T0WhUS0uLzj777FQ2BwAApECqJvvncrVoMia72hlzX4CJSfmC65/73Of0uc99LuH7AABA\nbmCyf3JlarUzVrNDoeNKVAAAYFJScaHLdFeLsikUZKrik28BN5uOKXJDSucYAQCA/Dd6qFcuXugy\nEAq83jrZ7Q2yWntT/p5ut0ft7TZt2NCj9nab3G5Pyt9zPKkIuJmUiWOK3EYwAgAAk5Lsyf6ZmFuU\niVCQbR33fAi4ofIt6CH1OEMAAMCk5MNk/8kueDAR2dZxz9TcplTJxDFFbiMYAQCArJGplegyEQpS\n0XGfzLyafAi4ofIt6CH1CEYAAKDgZSIUpKLjnm8LKExGvgU9pB7BCAAAZIWJVItyeeWxyXbcI+17\ntg3PA3IJiy8AAICclW0LGKRTpH3PtwUUgHQiGAEAgIyb6NyiQq6QRNr3ZK8QCBSSwvnXAwAA5J1C\nXnks0r7n67yaXB4yidxBxQgAgByVbRcInajJrERXyBWSQtr3Qh4yifShYgQAQI5iBbLCXnmskPa9\nkIdMIn04qwAAyFH50FnM1HWLClWuDkkr5CGTSB+G0gEAkKNYgQyJGm9IWjYPzSykYYPInNz7aQkA\nAEhKzQVC04lqUfqNV2XM5qGZhTBsMFerefmEYAQAQI4qhM5ivsiWTu94Q9LyYWhmLsvmYFooOOMB\nAEDaRaoWZUt4SEU7UtXpTbSt41UZmceTWQTTzGOOEQAAyArZsiRzKtqRqk5vom0NVBlXrKjTkiUN\nYSGKeTyZxZzBzCOKAgCAtIo2tyhbfjFPRTtSVY1JZlsZmplZuT5nMB8QjAAAQFbIlqFcqWjH6E5v\nS0uV2tttkx6uly2fGSaPYJp5BCMAAJA2461Ely2/mKeiHaM7ve3ttjFzjvzvm9jcpmz5zIB8QDAC\nAKAAZMvCBuPJll/M09GOSEPgJrJAQ7Z8ZkA+IBgBAFAAsmEp4NBq0Tc+c7bcbk9C4SwXwl28Ig2B\ny5Y5VkCh4hsHAEAByLZOt38FtcTCWTLCXSBcDQz4tG9fnxoba1VZqbSHrEhD4Pz7d+IxpaXHkjIP\nCUB8CEYAABSATE/SD60WrTrfP7co0XCWjHAXCFdvv22T09kih+Og5s+fnvYKWqQhcKPDksejjFf5\ngEJCMAIAoABMdpJ+KoaxJRrOkhHuAmHK5Qr8f1HY7ekS7fMMDT4bNvSEPSfTVT4g3/ENAwAgR0wm\nnEx2kv5khrGNnlvkcPRMKJwlYwW2QLgym71yOiWzeSR4eyzJDIfxfJ7JrPLl0/wsIFUIRgAA5IhM\nLqCQrDlKibQ3Umd+svsbCFfz5vm0b1/n8TlGtrhCVjI//3g+z2QuxZ0Ni28A2Y5gBABAjkg0nCSz\nSjDR6sV41y2KJRWd+fDK2eyoj4v02YV+3h6PV5s2DUz4s43n80zmUtzZtvgGkI2KMt0AAAAQn9Gd\n51jhJBAsvN6646vA9crt9qi93aYNG3rU3m6T2+2J673b2vyVFaOxJ+4Ky2RlsjMf6bML/by7ugY1\nPFwVdn8i0v15JnruAIWInwsAAMgRiQ6tStZFRCV/9SKwpHTgdWJVSSZTLZImN8cm3mpZtMdF+uwu\nuqg6+PkXF/eqqem0sPsTEa0alKq5QMkclgfkK4IRAAA5ItGhVYlcRNThOKr163dpYMCsqiqXbrhh\nriyWKWGPTfc8lcl05uNta7THRfrsQj9///2msPuTIVJ7QgPpRMNSMoflAfmKYAQAQA6Kp7IQz0VE\nAx369et3qaenRZLU0yOtX9+pW29tCXu9eIa2Bdr1g9+/GbxtItUiKf6qSktLlTo7B6LOB4rW1ki3\nB7ZjhbJUVWCSWeUDkBiCEQAAOSieznI8FxENdOgHBsxhjxu9LcU3tO1Eu94cc1+yjN739es7VV+/\nUF1dg3K5SrR163bNm1clr1fyeDzq6upVcfFAxAAZbZ9iVVhSVYFJpMoHILlYfAEAgBw00c5yoEO/\nYkWdlixpCIaEqipX2ONGb0vxLRjgcBi17i8n5hbdvOzcuNqViNGrw3V2uvXHP3brb38zaWhoqvr7\n6yVJlZU27d69U5JZTU2nRVwkIROLSownUntYOAFID35yAAAgB1ksXvX1eY9XSYo0Y8Z+ud3VE56o\nf8MNc7V+fWfYHKPR4qmSpKMTH1pV6eoalNFYosOHp2lkZKr27z+s00/3amioTBdeWCeHwyivd3rw\nuaMDZLIrP6HD/Gw2uxYu9CR0TBKp8gFILoIRAAA5qK2tVuvWbZPLVS+z2av6+gWyWnsn3Mm3WKaM\nmVM0EaFzi5afMkcDAz61t9vGXTAg0ZXYQoNCcXGvLrxwrl5+eZcOH3arqOiQmptPlcXSe3y/Jr6y\n3URYrb3q66tVV1evdu+uksu1XatWLZjUynIsnACkB8EIAIAcVFJiUlNTvRob64K3RRtOl6oloGNp\nbPQHrVgLBiS6uMDY1eGmaPnyBcfnEg2rpqY3WFVJd7XF4TCqq6tXTmeDfD6D+vvLJhVYAaQPwQgA\ngBwVbzUkXauahV636OZl58ob0pzx5kBNZnGB0OCzeLHU1jY3LPRNttqSaKi0WLxyuU6032weYbEE\nIEfwTQUAIEfFWw2ZTPCYaLUpkSFskxnuluphZomGyra2Wm3dul39/SUqK+tTc/N8WSw9KWsfgOQh\nGAEAkEGTGeYWbyiIN3hEasvrr9u0eXOFXK4imc1GeTw2XXjhyWOeG1ot+uOay4+/VnxD2EIDXmnp\nMR096tFDD22TZFBrq0Xnneffx0wMB0w0VJaUmLRqlX++V2fnYdXU9LBYApAjCEYAAGRQOoa5xVtZ\nitQWq3VAO3ea5HYbVVLilc83EDEYjTY6tLndHrW32yIGm9DHtrfbtHmzSU7nRyVJmzcflMnUe7xN\n6b/I6USqWYH9mTLlgFpbC3tuUbLmt2VqnhwKC9cxAgAgg1J98c5EOpSR2rJv3xG5XA0aGamTy9Wg\nffuOjHne6GpRJIHQ5fXWRbyeUOh7hs7RcbmK5HAYx7TNbveHqA0betTebpPb7Yn8AUxS4LpCPl+3\ndu/+q954o18PPbRNL7+8J2XvmU/iPe7peh1gPFSMAADIoEgVicleCyf0+bt371d9/UKZTMaYlZZI\nbWlsnKajRw/K7S5SScmIGhunTWg/4w2AFotXZrM0OOjV/v2DKipyaMaMQ5o3rypsMYe9e3slxbfq\n3WQEqj8vv7xHf/tbtQ4frlNJyYiGhgZkMk18tblsr4Akq33JCv6p/gEBkKgYAQCQUYGKhNHYo8pK\n2/Fhbyd+HT9ypDHhX8dDn9/fX6+ursHgfeN1KCO1ZdGiaTr9dGnuXOn006VFi8KDUTzVIin+C7/6\n39Mju32jiooOqalJqq9fIElhbZszpybseanuKHd0OHT4cLVGRixyuaZq9273pN4z2ysgyWpfsi74\nm44LBwPEbQAAMijSAgrx/joe7Vf9gQGf3n7bJpfLqA8/3K+amhOvP16HMlJbzjuvQSZT6HtMrEIS\n7zynkhKTLrzwZA0NlcnrPXGNpqGhMl14YV1wv9et267+/nKZzSNqbp6myspUd5R9KikZkcsV2PZO\nqnOe7RWQZLUvWdeRSvf1qFCYsutbCABAAQoNOKWlx7RrV6/sdsls9qq42JPw9Yn27euT0+kfZlZd\nPV0OR7uMRt+EOpTjrXwXWi363epLoi6uEOt1Ihlv0QOrtVf19QvkcPTK5TJq//5t+vu/X5DAXo0v\nUuBsba3Q0NAR7d79oYaHPSov75fdPk/t7bYJDTMrLT2mrVsPHl/tb0SLFh1LWvuTYTJLqIdK1nLq\nqV6WHZAIRgAAZNSJ6sfJMptH5PWWSaqT2WyUy1WiY8feVFvbJRGfG+1X/cbGWjkc/k53efmI/u7v\nmrViRV2kl0iaZK+uN16FwOEwymQyaf58/+sbjUrq/JxI+xKonLW21hyft3WBpNjztsbnkr8rFl/o\nSOe8pNFLqHs80oYNPZN+32yfW4XCRjACACCDrNZe9ffXa3i4Sk6n1N29V42NZp155nRJ0vvvV0ft\nOEb7Vb+yUpo/f3rw9spKW/C/k9UxHT23aMOG8IuYTnZo2HgVgmj7ncoFA0Lbs2GD5PUaoz4+HkND\nZZo/P3SoYOyLwMZ7TalkGL2EerJCbzqWpwcmisUXAADIIIfDKLM5tGLgC9ueMsU95jmBawLZ7dLe\nvZ3y+bpVXr5HHo9HGzb0yOPxqLx8T9giCoHnrVu3XS+9ZNTWrV719dUmbdJ/OibHR9rv0P1L14IB\nydjXibxGR4dDTuf04yF6ujo6HGH3Bz6fZC9hnsz5UNk+twqFjbMRAIAMsli8am6uVVeXf7GEM8/s\n0xln1GhoyD9sqabGMuY5ob+6NzY2HK8ImYK3eb3+KlFgsYLQ5/X3nxysTnV12VRWlnhXINJKdMma\nHD9e1SfSfodWG5LV6W5pqdL69Z0aGDCrqsqlCy6YG3Z/MvZ1Yq/hG3c7VdWYZM03SvZrAclGMAIA\nIIMCy3OXlQU6yB8LG/7V0XFgzHMiXex0584BOZ1Tgqu0RQoF/urUiJxO/7bLZYzYMZ3IkLRkTY4f\nr3MfK/gk2umOtp+dnQNqbGxRY6P/cZ2dNi1ZMiX4vGTs60Reo7W1Qps3+wO02exVa2tF2P2pqsYk\nc0U4VpdDNiMYAQCyXj5P2J5IBzkQADwer7q6BrV3726NjExXdfVUDQ8Xq6vroBYvHhsK/NWp6erq\n8i/MMGPGfrW1LRjz+Xo8HjmdJ0saG07ivW7RRLjdHm3aFD3gxVrJLdFOd7QQlq3DvU4snS5ZLBqz\ndPpEqjHxfLeSuSIcq8shm2XHNx0AgHHk84TtREOf2+3R0aNH9dxzr2nvXq8aGqZq+vSTNDw8Szt2\ndKiiolpTp36oW29tHfP6paUeVVZ268wzy46/1wKVlJjGTK7fuXObTjvtxHumKxhYrb0aHq4KGeoX\nKeD5V3Lzeo/prbf65HSatHdvr+bMqVFVlSGh0BwtAEUKGNkQzmOFiolUY/L5uwUkimAEAMh62foL\nfjIk2jF9/XWb/uu/HDp8eKHc7kEdOzZNAwN75HJNV3n5R/WRj1SpvLxMnZ0DamszHV8KvF5ms1fN\nzf55ORaLVw6HUVZrr9raaiN8noawrUDlIZXVIsl/XJubq4PzrYqLe9XWdiKhha7ktmOHTXb7qdqx\nY0ROZ4scDpvmz29IqGMfrcISKWAkO0CMDlotLVXq7ByYVPCaSDUmW75b2RA8gfz5ywIAyFv5PGE7\n0nyh0Aulmkzh+9rRcUSHD9drZKRKXq/0t799qI9+1KTDh9/SjBnlKi8/qubmWjkch8IWWxgc9Op/\n/mebhoedOvXU09XcPE1er1FWq00Wi8I+39ZWi0ym9M8D8Q+V6w2bQxPaOQ49D/yPGZHLVSSv16td\nuwbkchlVXn4o7k716ADU0lIV8tlLF110Yqn0ZAeI0UFr/fpONTa2BLfTVbnJlu8WlStkA4IRACDr\n5fOE7dEd0717eyWd6CB3d2+Xx3Ni34eHR1RS4pXLJUkeSRaVlTk1bdosnXRScfCip6Wlx7Rp0xHt\n3XtUIyNHNTxcrOHhepnNh+V0Ttfbb/fIaDTK4zmsxYvLVF6+R0NDgSF2DWOCRaqrRSeY5b+aiPH4\n/p0Qeh7MmLFf9fUL1dU1qPffH5RUpeHhOg0P+yth8XSqR1dYXn55jzZvNsnlksxmhV0nKNkBYnSw\nGhgwBxd7iHR/skSuVGX+u5UtlSsUNs46AEDWS/eE7XiH9SRj+M/o0Ofz1YTd/7e/eTV7doM8Hq+2\nbh3U++8fkslUKmmHTCaXzjqrRCtWnCbJoN27d8po7Dm+gII0PFyvmTMrtX+/UwcOvKumplKddJJF\nQ0PS7t0uzZ7dqPJyl5zOhojLe6ebf6ic/8K0Ho9XHR0fBpctD3y2gfPA7a6W1dojk0nau/c9TZ8+\nV+XlB48v2DCx0NLRcURO50JJktMpdXRs04UX+u+LFs4neg6MDlpVVa4x96fC6MqMf8W9zFdmsqVy\nhcJGMAIAYJR4h/UkY/jP6NAXuIBpgMFQLEnq6hqU0zldNTUflcViUHHxgM45p0j19afLZPL/OT/3\n3Cq1tVXLau3VG28ck8FQpvLyfp1ySommTDmmiy9eePy1bCoq+lDl5UY1N9fK4/Fo06ZDxy+cOnYh\ng3RVi0I7x11d/iqQ/2KtYz/b0M+tslKy22vDXmdiDFG3o4XziZ4DoUGrtPSYmpsrtHXrdkk+tbZW\njFlxLlmytTKTz1Vh5I7s+DYAAJBF4u08pqKTObqDOG9ekSTJ5fL/v8Vi0Pz5DTIajbroIn/VJLQz\n+frrNm3ebNJ773k1MmLURz/qVWtrlcrLGyTZ1NFxRMXFBi1cWKxZs6rU1dWrXbsGVFJSpKGhYg0N\nhS9kMLqD+sc/2lRZqZRMjg/d9+LiXjU1nVh4YbzP1r/fe9TRcUSSQa2tFrndnoTb19pq0ebNJ5YD\nb20de3Hd0SZ6DpSUmIKLOmza5NDwcJWamxtlMplkMtlStvBAtlZmWMYb2YBgBADAKPF2HlPRyRzd\nQTSZuuXx2FRePqDh4aPBCs/evfuPv2f4IgGB4WAzZ9Zq//5evf/+B1q61D9vyGrtVVPT6erqGtTh\nw9Ibb7youXP/TlKFqqtna/fuLs2ePVMul7974HAY9Q93PRdsS3X/2dq6tVhnnjlzUpPjow0/C913\n/2cbvvDCeJ+ZyWTSaaedGAYXCHWJDHM7cZ2gwONj799kzoFAtcnpnKLh4Sp1dfkDaSqrOFRmgOgI\nRgCQgHQuKcvytZkTb+cxFZ1Mt9uj11+3BasfU6cO6sYbzwrp5B/S7t3+hQe8XmOE4Vv+4V9Go0lz\n5jRo6tSB4H0Oh1FdXYMaHPTPO+rrm63q6kE1NVk0NFSs4WGf9u2zqahoQGazV4sWhS9+8MEHZvl8\nH+rMM2dOqvMez/CzRD9bh8MYvOCty1Wk8vKBcS9UGyr8uxYeNCM/5sT3caLnQOjFbD/88JCqqyuC\ngTSVVZzQSlXoku382wIQjABM0OjOW2urReedN3Ylq3yTziVlWb42c+Id1pOM4T+jO9wej0ebN5uC\niwDs2zccXGUt8F4bNkhe74k/4aEhJTAczOHwqa9vUOXlHrW3+6snFotXLleJ9u93yuWaKrPZoMOH\nqyW5VVraI7t9tzyeU1RTUya326C1f9oafN0jHZ/Q8HCV+vp2S5pc5z2e4WeJfrYWi39xCqfTv3jD\n8PBRdXQcinqh2tDPPRA0TaZIQdPPau1VX1/d8eBVoq1bt2vVqgUTPgdCL2ZbXT1Vhw7t0amnHlVl\nZeqrOPzbAkRGMAIwIVZrb1jnbfPmgzKZ4lsiN5elc+Jytk6STlShV75i7f/oTurOndvkcp3oGA8N\nGccc+8DwrUCFpLi4N/jageFgmzYNyGKpUnPzHNntpuDQsq1bt+uddypkNh/RnDlzdfjwLvl8ZlVV\nuXTGGWfJYPC3xWbbLYVMsTEYXCov/1AzZw6psnLs3KNEpGIIYltbrTZt2qniYu/xi9nWavfugTHv\nGxD6uff3Sw7HYHBFvEjftUC1LRC8+vvdwcAazzk++jEDAz41N9cFL2Z76qlHdfvtp6Xlu5Ev/7YA\nycY3AcCEOBzG49dR8XO5igrij2s6Jy5n6yTpRKXy1+lcCF2x9n/s98Ygs9krp9O/VVrqHXPsA8O3\n3nijX++/P6Kamhq98caJ6+4sWeKfp+L1nlh+2+EwqqTEpFWrFkjarv7+CpnNA/r4xxeopqZXDke1\nHI4T77vfsj34XM+O0+XzHVRjo0FXXDFz0scvFUMQS0pMOvfcatntJ/Y52oVq/cPYDsnp9F9I1mj0\nyOWaFnxe6OcdOMe2bx/Qrl3FmjlzqoxGk8xmb/DYxXOOj37Mvn2damycHbzuVGWlN23nbr782wIk\nW/73YgCkhMXildmsYCfKbB4piD+u6Zy4nC+TpFP563QuDAmKtf+jO6n+ldA86ujYJsmg2bN71NY2\nL+w5geFbmzYdUm3tmZLGXncnWuc3EI5OBMre4JyT5ubaYAUjVF1duYqK3DrllEqZTOHzjqTEA2qq\nViAb+50ZO7zX7fZo3brtevvtao2MGFVfP13l5d2aMWOPjEb3mO9a4BxraqrTu+/u1YEDOzV3brWa\nm2tlsfRKiu8cH31bY2OtKisz8/3Ol39bgGQjGAGYkLa2Wnk8tmDnrbXVkrLrbiRLMqoLyerQhbal\ntPSYJP/FLaOt0JXMfUi3VP46nQtDgmLtf7TOfCDgdHQMjXOMT1xnx+v16L337NqwwX9B1JaWKnV2\nhnd+oy0y4HZ75PF4tHv3LhUX+9Rx5L3g604/WC2jyaaZM+slRf6MJxNQk3lOx/P9tFp71d9fr5kz\nZxy/8G235s1zBOcLjRbYX5PJqOXLG7V7904tWHAiUErxneOjH1NZqYyFeJbGBiLLvr8gAHKCv+N2\ncrDzlguyqboQ2patWw9Kcmn+/MgXsoz2vEzvQ7xS+et0LgwJStb+RwoQZ5xRqv/6rx1yOEp15MiH\nam1tCl4QtbNz7Lnhv3js2PPHau2V03lycKGC1w6cCEalpfVyucwyGBrkdPqHgEmzw153MgF1vHM6\n0dAUz+MdDv/wueHhYs2ZM1XFxcM691xT1NcNPcdMJqPOPbdKS5bUhT1m9MVaPR5pw4Ye2Wx2LVzo\nr7B5PB7t3Jk7PyQBhYhgBEAOx1GtX79LAwP+Cdg33DBXFsuUTDcr6TJdXQjttG3fPqCmpjqZTMbj\nF+6MvMLYaJneh4lI5a/TuTAkKNb+xxN2A8O/+vvrgwsLWK29MhgMksySSuTxWGQ4UUCKazhXYHtg\nwKe337bJ4fBp67GO4P03Lr5EnZ2H1d19SMXFAzKbR9TYeGKeTviqbtNlMiW+3PR453SiPwTE83iL\nxRs2ZHDGjP1qa1sQ9TXjOcdCj3Fo+Dxy5IisVv9wu9DgGbiAay5WgIF8lv1/UQGk3Pr1u9TT0yJJ\n6umR1q/v1K23tmS4VcmX6epCaKdteNi/mtj8+dNlNo9IOtGW8dqVqn3I1Q5aPgwJiifs+od/nazh\n4SoNDnr1P/+zTbNnm7V//yFVV7epttYoo7FI77/vUcvxr26kc6O09Ji2bvUHgtDrFO3b1yens0Uf\nfGCTZpx4fFdXr0pLjSopcUiaKsmr8nJPsE2B87m+vlr7929TU1N9zIA6+lwrLfXIG9LU0HYn+kNA\nPI8PzKcqKwuc65GH0AUkeo4lMt8oFyvAQD4jGAHQwIB53O18kYnqQrQqkX8p4Z0yGr1atCgwx6gn\nZrtStQ/JHM6ExMQTdv3Dv0bkdEr79w/q2LE6Sce0e3eZjEabWlpmq76+Vnb7/8poNMc4N8ySAlVK\nj9xujxwOqbv7HR2a8XbwUW1VbXr33XdVVDQin69SXm+gOuUJtinAZDKpqaleK1aEDzGLZPS5Vl6+\nJ+oiBIn+EBDP41Mdpi0Wr/r6/D98vPfekEymI5o3rypi+Mu1CjD/FiDfZfc3EEBaVFW51NMTvp0M\n2fZHNBPVhWhVIpPJv7Tw6LkKsaRqH6J10Nxujx59tFNbt1ZIMqqpqSS4JDSSI56wa7F4NWeORU8+\n2amdOz3yenvU1na6ampq1Ndn14ED72nu3Cm6+OI5uvDCupALMDsk+dTaWqHzzmvQ0FBZ8Fo9kjQ0\n5JXV2iuvt14jI2WSTgQjo3FYp556ugYHversdOn9999XU5NFzc3lwTb5r6XkUVdXr4qLB+L6no8+\n14aGynThhZG/B4n+EBDt8ZP9tyje5wcWsXjhBevxC+geVn39Ikm2iOEv01XsRFHhQr4jGAHQDTfM\n1WQh/XIAABazSURBVPr1nWFzjJKBP6LhncDQKlGqK1ahHbnABPDxOoLROmhWa6+2bi3T0aOnS5Le\neeewSkv35tSiG9ku1uqDNptdV199un7729d14EC5pBJJ5+idd4Y1f75XTU1ezZ7t1eLFCk7o91+A\nuUJO58mSpI0b9+jtt7fr2DGjhoeNam6eJpPJ30kPnKOHZrwSfP/FNSeruHhATU2naf36t+V0niHJ\nLLu9Tq+99oquuOLkYAjZtOmQvN5aeb01eumlEm3duj3qCm9SYmEg0R8Coj0+3n+LAp+73S7t3dur\nOXNqVFVlkMfjCX6W4z0/sIhFXd00DQ9XyW63ymQyRQ1/uTBHLlSuVbiARHFGA5DFMiUlc4r4Izp6\nRauJVYkmIrQjGJgAPl4Hs6WlKiwcX3CBPxz7j9mJGf1ud1HYNiYvUjXi9ddt2rzZJJdLOnjQoo98\npFdHj07RlCmnqrR0unp6emW398tkKtby5f4LtAbmzviHbR6Sw1EXXIxh926HGhtP1hlnWPT22za9\n8MJOfeQjU9XaWnF8js+0sDadeebM4+euUVOmTJPDcVhFRYdkNhs1bVpN2GNdLqO6u/tVXd0so9Gk\n/n73uOdbusJAtGGsUvR/iwLfmx07DsrpbJHDYdP8+Q3auXNbcOGE8Z4fuD0w7NHl8ofDaOEv1+bI\n5VqFC0hU4fVSEFW2DXtC7uOPaOZ+EU40lHZ2DqixsUWNjYFtm5YsmSKLxaumJoveeeeg3O4iTZ16\n6PgFSJEskaoZHR1H5HQulCQdOzasjo6DMpkMMpm8koyaMaNaDsdOFRVN0f792/XJT84dNWzTqL6+\nA6qtDZxvPpnNIzKZTDIaTaqrm6fTTquS0+mf49Nx5LVge25cfEnIRV9tqqrqVmmpUfX1p8poNKmm\nZl9Yu00msw4fLpXL1as5cxpkNnvHPd/SFQaiDWOVov9bFGi3f6VIhVzoNvzHAIvFG/FvZuDfvObm\naerqOqiysg9VWWmLcA2p3Pwbm2sVLiBRBCMEMewJycYf0cz9IpxoKI0WpAIX8i0t3a/A9VfOO49/\nF5Jp9Gc/MOBTV9chvf/+3yQZVVJyRE1NBn32s3V66qkj2rNni9zuQZ17boMuvbRJJpMxeCHXgObm\naZK6VVy8XZJPZ555THPm+KtC/hXpRoKPHRoqC3v/QNAKnLvz51v0ne9sUXe3TdOnO/XP/3xWWLub\nm6fp3Xff0969h1RUNKCmJotKSz0JfQbRQsNkwsREhrEGvjeBio/Z7P/enHFGqd55J7yiGulv5ujK\n65VXVkZcxjtX/8bmWoULSBTBCEEMe0IkbrdHnZ129fb2JNwx4Y9o5oSG0oqKvWpr+8S4j48WpLLl\nQr758Gt7NKM/+337+iSVa2SkUV6vQUeP7lVZ2RH93d/Vq6trlxoby7R//zFdcMHJYUPDRl+IdPHi\nGaNWFuyRw+G/bk99/cLg+z364qbgf686/3JJJyqGkrRjh0MXXXRB8DE7dti0ZMm04PuZTEadfPI0\nFRd7NGtWvYzGEUlHEvoMov0wN5kf7CYyjDXwvZk/X9q7t1Nz5tSostImj8c0pqIa6W/m6Mrrrl0v\nacmSE/ePfjyA7MK3EkG5NOwpnztJ2cZq/f/t3X1QVGX/x/HPsgsJiOKGbKHIdJNY6q9iyEGH0PmZ\nmTbd08OUNqZMTU0Fls7YZI1plOV0p/50nNJGZ+ofmh6khsJmshpHq5HCEZ91jCkfwQDlwYBVFDi/\nP7h3cWlZHmThLOf9+kfcc3b32r3Od/f6nu+5rq1SfX2SmptdIXuW04quTUpLSsq6jA+zV/cGc0W7\nY5UhIcGpigqHrly5pCtXwtTQUK/k5ATvoDshoVllZb/ru+/+0rhxMUpJGa7Y2OaAfRgREe6dg5SQ\nMEI///yLhg8fqZEj/Vd2rh20+xvQe1ZfO368rSJlt1/V/ff/j8LD246zpqaefX80NDi8q9tdvuxQ\ndHSN0tPjryuZ6M0x7Xsyp/34+u67Sp/9OiaiknwWsvBwuyN8tofKdyxgVSRG8DL7wOhag3mQZDac\n5bQGs1f3Ai0nHuonSTpWGU6f3q+hQ+M1ZkzbfJi6ugjFxra/5tLSi3I6U1RRcVyXL0fq3LnDevDB\niV32oedzs7S0WjEx/6vIyHJ9f3Kvd7unWiT5zqE5cqTmHyvZeVZf8yxIcPr0fm9S5Ll/Twwd2qyD\nB6vU2Ng+R6q4uEpDh6rXyURfHtP+khp/35meFe08oqKueP8Ope9YwKoY4cDL7AOjazFY7z8dByKD\n6SznYBhUW0Wg5cRD5SRJZ8dbx8+vMWNGaujQqyopOSzJptGjK5WePt476L58OUwOR7jGjXNqwgSX\nHA5167jtfGGBNh1/Z8fz3iYnx6u0tEp//vmXJk8eofT0eO3YUeNz36Sk+E5/pLU70tPj9dtvv8tu\nj9KQIa1KSRmuhoZm3Xuv0xTJhL+kxt93Zsf9Ro5sX6gklL5jAasK+miysLBQH330kRwOhxYtWqRp\n06Z5t1VUVGjJkiVqbm7W+PHj9eabbwa7ORgkuCSh/6Snx+v333+WwxETsmc5OxuQBmNQTbLV9zpe\ntpWWFuP9vZ5QOknS2fHW8fNsxAibMjPb53WVlDRdcylcuaKja9XS4lZKSvuPhHaH53kcjiadPFmu\nmrj2atG2/3voH/t73svw8HBNmDBKDofDO0enY5ujo69K6v1xHhERrsmTR6iuboRPe82STHS3HR33\nKympCGazAPSxsGA+eF1dnTZu3KjPP/9cmzdv1o4dO3y2/+c//9EzzzyjrVu3ym63q6KCDxB0T3p6\n29lJh6PSuxQqgiMiIlwTJw71Xj9fXFylK1d6tuLUQPMMSNvmSbVN6JaCM6ju7LnQe+2XbU3Ubbe1\nzWPxJJuhVNEMtPJfdz7PPIPuxYvHKSNDioys6dHnX/vz/KUhQy53uX+g97ZjmyVd93HP5zqAgRbU\nU2tFRUXKyMhQZGSkIiMjtXLlSu82wzBUUlKi9evXS5JWrFgRzKZgkDHLWUSrOHKkQS6X75nua39M\n0uyVkc4GpMGoPIZSBSNUBHpPQ2neRqCV/3ryedbbzz/P/RoaHNp9vn0lupwZk/3u7++99a2ISvfe\n61RERLjfxQl62z4AGChB/cYuLy/XpUuXlJ2drfr6ei1cuFBTpkyRJNXU1CgqKkqrVq3SsWPHdPfd\nd2vJkiXBbA6AXrp2ZSVJ3spRqMzt6GxAGoxBNZd59r1A72koDaaDcbx5EpXaWkNnzpz/71wfBTxR\n0d0qm7/3trPf4unL457LUQEMFJthGEawHnzLli3av3+/Nm3apLKyMmVlZWnnzp2SpAsXLui+++7T\ntm3blJCQoOeee04LFizwmYPUUUlJSbCaCiCA/fvrVF+f5P1/TMxpud0Ramm5WZLU3NyisrKTSk6O\nVlTUFU2cONT7+ypmcPVqs44caZDbHRH09vXnc1kF72nnPLF54kS1Ll1KVGTkef3rX9GKiTmt1NRY\nv/d589My798P3T60R+/n7t1ub9xLkmGc1bBhrfr77zBVVv4tl2u4hg1rua4+8vd509lrAYDOpKWl\n9fg+Qf1miYuLU2pqqmw2mxITExUdHa2amho5nU6NGDFCo0aN0ujRoyVJU6ZM0R9//BEwMZJ69yJh\nDiUlJfRfH+uvM6tXrxbr6tXIa55nqk/F6OjRat1881Ddcsuo/+5frsmTzXUWf7L/q4VC/rm6YzDE\nntne0/4UqP+qqirV3OzSxYsxamlxyW6P1K23jpDDEaO0tE5+zPSaxOjZZ+/tUVvc7vaKkSSdPl0v\nlytVLpc0dmzbynbXW8HzvCaPgK/F5AZD7FkZ/Re6eltMCeriCxkZGSouLpZhGKqtrZXb7ZbT6ZQk\n2e12jR49WmfOnJEkHT16VLfcckswmwMMOv010T883KHMzFGaPdulzMxR3hWyPBOl7fZz3hWyJObV\nAP3Fc8nakCGef1t9bu/o3y9/4/3b30p0Xem4QEJSku/lgH0R+6G0oAaAwSWooxeXy6X7779fc+bM\nkc1m04oVK1RQUKCYmBjNmDFDy5Yt02uvvSbDMJSSkqLpnrVJAXTLQE70v3b+Qdv8gt7/uONgwdwI\n9DfPvKXx4w2dObPf+3tCwVqEouO8o7Y5R+3b+yL2Q2lBDQCDS9BHUXPmzNGcOXP8bhszZow+/fTT\nYDcBGLTMMtGfgUybUFqQAoODb6IyOuC+11st8icYsR+MBTU4aQGgO7jeBQhhZklIQmllsGBiqW5Y\nTajEPictAHQH39pACAuVQYlVmKWCB3QUjGpRKOGkBYDuCOriCwBgJR0nplv1kkLAbFjQAUB3cMoE\nAPoIFTyYkdWrRZJ5LjsGYG4kRgAAYFDjpAWA7uBSOgAABimqRQDQfSRGAAAAACyPxAgAgEGIahEA\n9AyJEQAAAADLIzECAGCQoVoEAD1HYgQAAADA8kiMAAAYRKgWAUDvkBgBAAAAsDwSIwAABgmqRQDQ\neyRGAAAAACyPxAgAgEGAahEAXB8SIwAAAACWR2IEAECIo1oEANePxAgAAACA5ZEYAQAQwqgWAUDf\nIDECAAAAYHkkRgAAhCiqRQDQd0iMAAAAAFgeiREAACGIahEA9C0SIwAAAACWR2IEAECIoVoEAH2P\nxAgAAACA5ZEYAQAQQqgWAUBwkBgBAAAAsDwSIwAAQgTVIgAIHhIjAAAAAJZHYgQAQAigWgQAwUVi\nBAAAAMDySIwAADA5qkUAEHwkRgAAAAAsj8QIAAATe/PTMu/fVIsAIHhIjAAAAABYHokRAAAmxdwi\nAOg/JEYAAAAALI/ECAAAE6JaBAD9y2YYhjHQjeiukpKSgW4CAAAAAJNLS0vr8X1CKjECAAAAgGDg\nUjoAAAAAlkdiBAAAAMDySIwAAAAAWB6JEQAAAADLIzECAAAAYHkkRgAAAAAszzHQDehMU1OTHnzw\nQS1cuFAPP/yw9/bp06crISFBNptNNptNa9euVXx8/AC2FNfas2ePFi9erLFjx8owDI0bN07Lly/3\nbi8qKtL69etlt9s1depU5eTkDGBr0VFX/Uf8mVthYaE++ugjORwOLVq0SNOmTfNuI/bML1D/EXvm\n9uWXX+qbb76RzWaTYRg6evSo9u3b591O/JlXV31H7Jmb2+3Wq6++qosXL+rq1atauHCh7rnnHu/2\nHseeYVLr1q0zHnvsMaOgoMDn9unTpxuXLl0aoFahK8XFxcaiRYs63f7AAw8YFRUVRmtrqzFv3jzj\njz/+6MfWoStd9R/xZ161tbXGzJkzDbfbbZw/f95YsWKFz3Ziz9y66j9iL3Ts2bPHWLlypc9txF9o\n8Nd3xJ65ffLJJ8a6desMwzCMyspKY9asWT7bexp7pryU7sSJEzp58qTP2TIPwzBk8Ju0ptZZ/5w9\ne1axsbFyuVyy2WyaNm2afvvtt35uHboSKL6IP/MqKipSRkaGIiMjFRcXp5UrV3q3EXvmF6j/JGIv\nlGzcuNHnrDTxFzo69p1E7Jmd0+lUbW2tJOnixYtyOp3ebb2JPVMmRqtXr9Zrr73W6fbc3FzNmzdP\n69at68dWobv+/PNP5eTk6Mknn1RRUZH39gsXLvgcsE6nU1VVVQPRRATQWf95EH/mVF5erkuXLik7\nO1vz58/Xr7/+6t1G7JlfoP7zIPbM7/Dhw7r55pt14403em8j/kKDv77zIPbMa/bs2aqoqNDMmTOV\nlZXlkz/0JvZMN8fo66+/1qRJk5SQkCDpn2evFy9erMzMTMXGxionJ0c//PCDZs6cORBNhR9JSUl6\n8cUXNXv2bJ09e1ZZWVn68ccf5XD881DjDIz5dNV/xJ95GYahuro6bdq0SWVlZcrKytLOnTs73Rfm\n0lX/EXuhIT8/X48++mjAfYg/c+qs74g9cyssLNRNN92kLVu26Pjx41qxYoXy8/P97tud2DNdxein\nn37S9u3bNXfuXOXn5+vDDz/0OXP20EMPyel0KiwsTFOnTlVpaekAthYduVwuzZ49W5KUmJiouLg4\nVVZWSpLi4+N1/vx5776VlZVMYDSZQP0nEX9mFhcXp9TUVNlsNiUmJio6Olo1NTWSiL1QEKj/JGIv\nVOzZs0epqak+txF/ocFf30nEntnt27dPmZmZkqTbbrtNFRUV3gSoN7FnusRo/fr1ys/P1xdffKHH\nH39cOTk5mjJliiSpoaFB8+fPV1NTkyRp7969Gjt27EA2Fx1s27ZNH3zwgSSpurpaNTU1crlckqRR\no0apsbFR586dU3Nzs3bt2uWzcggGXqD+I/7MLSMjQ8XFxTIMQ7W1tXK73d5LCIg98wvUf8ReaKiq\nqlJ0dPQ/rpAg/syvs74j9swvKSlJBw4ckNR2SXJUVJRsNpuk3sWezTBxTfeDDz7Q6NGjZRiGYmJi\nNGPGDOXl5emrr75SdHS0br/9dp+lhDHwGhsb9fLLL+vixYsyDEM5OTmqrq729t/evXu1du1aSdKs\nWbP01FNPDWyD4aOr/iP+zG3r1q3Kz8+XzWZTdna26urqiL0QEqj/iD3zO3r0qDZs2KAtW7ZIkgoK\nCoi/EBGo74g9c3O73Vq2bJmqq6vV0tKixYsX69y5c72OPVMnRgAAAADQH0x3KR0AAAAA9DcSIwAA\nAACWR2IEAAAAwPJIjAAAAABYHokRAAAAAMsjMQIAAABgeSRGAIB+sWfPHs2bN++6H6egoEAZGRnK\nysrSggULNHfuXL3//vt+9/3ll1+0efPm635OAMDg5+h6FwAA+obnF8mvV0ZGhlavXi1Jam5u1vz5\n83XHHXdo2rRpPvtlZmYqMzOzT54TADC4kRgBAPrdqVOnlJubq9bWVrW2tmrJkiVKS0vTqVOntHTp\nUt1www2aNWuW3n33XR05ciTgYzkcDqWmpurEiRO69dZb9cILL2jcuHFKTk7WTTfdpKKiIq1Zs0YH\nDx7Uu+++q/DwcMXGxuq9995TVFSU1q9fr3379qmpqUmTJk3SK6+80k/vAgDATLiUDgDQ795++209\n+eSTysvLU25url599VVJ0vvvv69HHnlEeXl5ioiIUEtLS5ePVV9fr927dystLU2SdPLkSb300kvK\nzs6W1F6lWrp0qVatWqW8vDxNmjRJu3bt0vbt21VZWam8vDxt3bpVp0+f1q5du4LzogEApkbFCADQ\n7w4dOqQNGzZIklJSUtTY2Kja2lqVlpbq+eeflyTNmDFDb7zxht/77969W1lZWTIMQ3a7Xc8++6zu\nuOMOlZeXa/jw4UpKSvLZv7a2VvX19UpOTpYkZWVlSZLeeustHThwwPtYjY2NKisrC9bLBgCYGIkR\nAKDfdZxrZBiGwsLC1NraqrCwMO9tnbl2jlFH4eHhfp/PX/UpIiJCc+fO1dNPP92T5gMABiEupQMA\n9Lu77rpLP//8syTp2LFjio2N1fDhw5WcnKzDhw9Lknbs2NGrx/aXUMXGxsrpdHrnK3388cf67LPP\nlJaWpu+//96bNG3cuFFnzpzp1fMCAEIbFSMAQL9bvny5cnNz9fnnn6ulpUVr1qyRJOXk5Gjp0qUq\nLCxUZmam7HZ7jx+7s5Xv3nvvPb3zzjsKDw/XsGHDtHr1akVHR+vgwYN64oknZLfbNWHCBCUmJl7X\nawMAhCabEehaBQAA+tGRI0fU0tKiO++8U4cOHdKyZcv07bffDnSzAAAWQMUIAGAaQ4YM0euvvy67\n3a7m5mbl5uYOdJMAABZBxQgAAACA5bH4AgAAAADLIzECAAAAYHkkRgAAAAAsj8QIAAAAgOWRGAEA\nAACwvP8HPsMxM4K+9LMAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "combined = (linreg_r2(data['Total area'], data['log Price'],plot=False)[1]\n", + " + linreg_r2(data['Number Of Stories'], data['log Price'],plot=False)[1]\n", + " + linreg_r2(data['Year Built'], data['log Price'],plot=False)[1])/3\n", + "\n", + "plt.scatter(data['log Price'],combined, alpha = 0.3);\n", + "plt.plot(data['log Price'],data['log Price'], label='Y=X **not model**')\n", + "plt.ylim(6.5,7.5);\n", + "plt.xlabel('log Price');\n", + "plt.ylabel('Predicted log Price');\n", + "plt.legend();\n", + "\n", + "print 'rsquared:', np.corrcoef(combined,data['log Price'])[0][1]**2" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "By taking a simple equally weighted average of all the models we saw $R^2$ increase to 18.6%. While still indicative of a poorly fit model, the result is still interesting considering the $R^2$ values of the individual single-dimension models were 1.9%, 5.6%, and 16.9% respectively. The $R^2$ of the combined model was higher than any of the single models alone.\n", + "\n", + "Simply averaging the model outputs ignores some of the interplay between variables which can be better captured by using a multiple linear regression. Let's run a single multiple linear regression model on the pricing data:" + ] + }, + { + "cell_type": "code", + "execution_count": 181, + "metadata": { + "collapsed": false, + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "rsquared: 0.188016012536\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0YAAAHsCAYAAAD2PL25AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3X98m3W9//9n1qRL1xbSbmtdCys4KJMOP5Zy6Dhj/Bhw\ndob8UM5AbqiIH44I6FE/wlFABARBfh6OHuHovgLT89HDV/GMDWWoDJECLoOyA904UBmwsZS129qM\nJVvWpMvnj5o0aZPmR3Pluq7kcb/dvHldTZO8misZ72de1/V+O6LRaFQAAAAAUMammV0AAAAAAJiN\nYAQAAACg7BGMAAAAAJQ9ghEAAACAskcwAgAAAFD2nGYXkIvu7m6zSwAAAABgcR0dHTnfx1bBSMrv\nj4Q1dHd3c/xsimNnbxw/e+P42RfHzn4OHozq/H9eE99/4r7zTawG+cq3mcKpdAAAAICUFIpuueQw\nEyuBGQhGAAAAKHv7QmGzS4DJCEYAAAAoe5/61pPxbU6hK08EIwAAAJS1HbuDZpcACyAYAQAAoKx9\n4Y6n49t0i8oXwQgAAABlq+etXfHtow471MRKYDaCEQAAAMrWDf/+Qnz7/v9zmnmFwHQEIwAAAJSl\ntX9+N7597uIPm1YHrIFgBAAAgLL04GOvxrev+MRxJlYCKyAYAQAAoOwkhqKvfupjJlYCqyAYAQAA\noOwknkZ35oktptUB6yAYAQAAoKx86Z5n4tt3f3mxiZXASghGAAAAKCvbduyNb3/kyHoTK4GVEIwA\nAABQNs69ZnV8++Eb/87ESmA1BCMAAACUpdl1VWaXAAshGAEAAKAsJHaLfnXHx02sBFZEMAIAAEDZ\ncU93ml0CLIZgBAAAgJKX2C1afc95JlYCqyIYAQAAoKRFo9Gk/WnTHCZVAisjGAEAAKCknXftmvj2\nE/edb2IlsDKCEQAAAEpWOHLQ7BJgEwQjAAAAlKwLvvlEfJtuESZDMAIAAEBJ8u89YHYJsBGCEQAA\nAErSZ295Kr5NtwiZEIwAAABQct7p2xPfrp3hMrES2AXBCAAAACXnK/c9G9/+xW1nm1cIbINgBAAA\ngJLy4mt98e2TjptjYiWwE4IRAAAASsr3fvpSfPuGy040sRLYCcEIAAAAJeM/f/dGfPtzHz/WxEpg\nNwQjAAAAlIxf/P7N+PbyJUebWAnshmAEAACAkvCdn6yPb3/7f3eaWAnsiGAEAACAkvDy//THt09s\n+5CJlcCOCEYAAACwvX+47jfx7R/+8+kmVgK7IhgBAADA9obDI/Htlg8dYmIlsCuCEQAAAGzt3GtW\nx7d/fusyEyuBnRGMAAAAUDIOqa40uwTYFMEIAAAAtpXYLVp197kmVgK7cxr54I899phWr14th8Oh\naDSqzZs365VXXpnwe/fdd5/++7//W//xH/9hZDkAAAAoYc4KvvNH/gwNRsuXL9fy5cslSS+99JKe\neuqpCb+zZcsWvfzyy3K5XEaWAgAAgBKT2C164r7zTawEpaBosfqBBx7Q1VdfPeHnd911l6655ppi\nlQEAAIAScPBg1OwSUGKKEox6eno0Z84czZw5M+nnq1at0kknnaQ5c+YUowwAAACUiPP/eU18m24R\nCsHQU+lifvWrX+mCCy5I+tmePXu0evVqPfzww+rr61M0ml3q7+7uNqJEFAnHz744dvbG8bM3jp99\nceyMsX/4YNK+Ua8zx6+8FCUYbdiwQTfddFPSz9avX6/du3frkksu0YEDB/Tee+/pzjvv1HXXXTfp\nY3V0dBhZKgzU3d3N8bMpjp29cfzsjeNnXxw74xTj2iKOn33lG2gND0YDAwOqrq6W05n8VEuXLtXS\npUslST6fT9dff33GUAQAAIDytm3HB2aXgBJl+DVGO3fuTLq2aNWqVXr66aeNfloAAACUoC/d88f4\nNtcWoZAM7xi1tbVpxYoV8f1PfvKTE36nublZP/vZz4wuBQAAADb2557349sOh4mFoCSxChYAAABs\n4Y6VG+Lba+6lW4TCIhgBAADA8n7+1Bvx7RM+0mhiJShVBCMAAABY3qN/eDO+ffM/LjSxEpQqghEA\nAAAsLXF67kvP/oiJlaCUEYwAAABgGxee0Wp2CShRBCMAAABYVmK36MsXfszESlDqCEYAAACwhaUL\nW8wuASWMYAQAAABLSuwW3f9/TjWxEpQDghEAAAAs76jDPGaXgBJHMAIAAIDlJHaLfnHbMhMrQbkg\nGAEAAMDSamdUml0CygDBCAAAAJaS2C1afc95JlaCckIwAgAAgGVEo9Gk/WnTHCZVgnJDMAIAAIBl\nnHftmvj2E/edb2IlKDcEIwAAAFhC6EDE7BJQxghGAAAAsIQLb/htfJtuEYqNYAQAAADTbR/Ya3YJ\nKHMEIwAAAJjuqrueiW/TLYIZnGYXAAAAgImGh8PyegcUCDhVUxNRZ2eDKitdZpdliD/39JldAkDH\nCAAAwIq83gH5/c2KRBrl9zfL6x0wuyTD3LHypfg23SKYhWAEAABgQYGAc9L9UvH/re4xuwRAEsEI\nAADAkmpqIpPul4o1z70d36ZbBDMRjAAAACyos7NBHo9PTme/PB6fOjsbzC6p4C6//Q/x7Q83HWpi\nJQCTLwAAAFhSZaVLixc3m12GoQYG98W3v3/NaeYVAoiOEQAAAExw7jWr49sXndlqYiXAKIIRAAAA\nTPXZZR8xuwSAU+kAAACQv3zWW0rsFt38jwuNLhHICh0jAAAA5G2q6y2d8JFGgyoDckMwAgAAQN5y\nXW8psVv0k2+dZUhNQD4IRgAAAMjbVNZbaqyfUehygLwRjAAAAJC3XNZbSuwW/frOc4pRHpA1Jl8A\nAABA3vJdb6nSVWFANcWXz+QTsCY6RgAAADBcYrfoifvON7GSwprq5BOwDoIRAAAADDUyctDsEgyT\n6+QTsC6CEQAAAAz1iW88Ed8upW6RNLXJJ2AtBCMAAAAYZufQfrNLMFQuk0/A2uj1AQAAwDD/+7u/\nj2+XWrdIyn/yCVgPHSMAAAAY4oVX+8wuAcgawQgAAACGuPNnL8W3S7FbhNJCMAIAAEDB/eujr5hd\nApATghEAAAAKbt1L78W36RbBDghGAAAAKKjExVwBuyAYAQAAwDB0i2AXBCMAAAAUTGK3qLrKZWIl\nQG4IRgAAADDEo9892+wSgKwRjAAAAFAQid2i8075sImVALkjGAEAAKDgvnD+cWaXAOSEYAQAAIAp\nS+wW3fKFhSZWAuSHYAQAAICC6pjfaHYJQM4IRgAAAJiSxG7RT29eamIlQP4IRgAAACiY+kPcZpcA\n5IVgBAAAgLwldosev+c8EysBpoZgBAAAgLxEo9Gk/YppDpMqAaaOYAQAAIC8nHftmvj2E/edb2Il\nwNQRjAAAAJCz4P6w2SUABUUwAgAAQM4uvvHJ+DbdIpQCghEAAABy8sbWQbNLAAqOYAQAAICc/PMP\nuuLbdItQKghGAAAAyNp//fEvZpcAGIJgBAAAgKw98pvX49t0i1BKCEYAAADIylf/5VmzSwAMQzAC\nAABAVt727Ylv0y1CqSEYAQAAIKNzr1ltdgmAoQhGAAAAyAndIpQighEAAAAmldgt+nDzoSZWAhjH\naXYBAAAAVjU8HJbXO6BAwKmamog6OxtUWekyuyxTff/rp5ldAmAIOkYAAABpeL0D8vubFYk0yu9v\nltc7YHZJRZfYLfr8OW0mVgIYi2AEAACQRiDgnHS/3Fxw+lFmlwAYhmAEAACQRk1NZNL9UpfYLbr3\nK4tNrAQwHsEIAAAgjc7OBnk8Pjmd/fJ4fOrsbDC7JNMc01JvdgmAocq7HwwAADCJykqXFi9uNrsM\nUyR2i/7/2882sRKgOOgYAQAAYFIz3OU9Ex/KA8EIAAAASRK7RSzminJBMAIAAEBcOHLQ7BIAU3CN\nEQAAAOIu+OYT8W0jukUsmguromMEAAAASZJvZ8Dw52DRXFiVoR2jxx57TKtXr5bD4VA0GtXmzZv1\nyiuvxG9fv3697r//flVUVOjII4/U7bffbmQ5AAAAmMSVd66Lbxt1bRGL5sKqDH0nLl++XMuXL5ck\nvfTSS3rqqaeSbr/55pv1s5/9TI2NjfrqV7+q5557TqeccoqRJQEAACCF363fWpTnqamJyO9P3ges\noGin0j3wwAO6+uqrk37261//Wo2NjZKk+vp6+RM/JQAAACiaH/7qv+PbRs5Ex6K5sKqi9C57eno0\nZ84czZw5M+nnNTU1kqSBgQG9+OKL+trXvlaMcgAAAJDghgdfKNpzlfOiubA2RzQajRr9JDfddJPO\nPfdc/c3f/M2E23bv3q0rrrhC1157rU466aRJH6e7u9uoEgEAAMrWLb/YPrZ9yWEmVgIURkdHR873\nKUrHaMOGDbrpppsm/DwQCOgLX/iCrrnmmoyhKCafPxLW0N3dzfGzKY6dvXH87I3jZ192OXaJi7lK\njLVi7HL8MFG+zRTDrzEaGBhQdXW1nM6JGezOO+/U5z//eS1atMjoMgAAAJCBkdcWAVZneMdo586d\nSdcWrVq1SrW1tTr55JO1Zs0abdu2Tb/85S/lcDh07rnn6sILLzS6JAAAAGhitwgoZ4YHo7a2Nq1Y\nsSK+/8lPfjK+/dprrxn99AAAAMgC3SKUu6JN1w0AAADrSOwW/e1H55hYCWANBCMAAIAyd/3nTjS7\nBMB0BCMAAIAyk9gt+sZnTzCxEsA6CEYAAABlbPHHWGwVkAhGAAAAZSWxW/TQjWeZWAlgLQQjAACA\nMtVQN8PsEgDLIBgBAACUicRu0eP3nGdiJYD1EIwAAADKQDQaTdqvmOYwqRLAmghGAAAAZeC8a9fE\nt1nMFZiIYAQAAFDi9gQOmF0CYHkEIwAAgBL3mZufim/TLQJSIxgBAACUsA2bd5hdAmALBCMAAIAS\ndtvD3vg23SIgPYIRAABAibrv591mlwDYBsEIAACgRD37yvb4Nt0iYHIEIwAAgBKUuJgrgMwIRgAA\nACWObhGQGcEIAACgxNAtAnJHMAIAAChhdIuA7BCMAAAASgjdIiA/BCMAAIASRbcIyB7BCAAAoEQk\ndovOWXSkiZUA9kMwAgAAKEFfvOCjZpcA2ArBCAAAoAQkdovuuGqRiZUA9kQwAgAAKDHHHTXL7BIA\n2yEYAQAA2Fxit+jR755tYiWAfRGMAAAASkh1lcvsEgBbIhgBAADYWGK3iOm5gfwRjAAAAGwqHBkx\nuwSgZBCMAAAAbOqCb/4mvk23CJgaghEAAIANbX3/A7NLAEoKwQgAAMCGvnzvH+PbdIuAqSMYAQAA\n2Mx//fEts0sASg7BCAAAwGYe+c3m+DbdIqAwCEYAAAA2cvntfzC7BKAkEYwAAABsZGBwX3ybbhFQ\nOAQjAAAAm0hczBVAYRGMAAAAbIhuEVBYBCMAAAAboFsEGItgBAAAYDN0i4DCIxgBAABYXGK3qHl2\njYmVAKWLYAQAAGAjP7ruDLNLAEoSwQgAAMDCErtFX/zkcSZWApQ2ghEAAIBNnHPyh80uAShZBCMA\nAACLSuwW/ZhT6ABDOc0uAAAA5G54OCyvd0CBgFM1NRF1djaostJldlkwUBOTLgCGyqpjNDQ0pJ6e\nHknSwYMHDS0IAABk5vUOyO9vViTSKL+/WV7vgNklocASu0WP332uiZUA5SFjMPrNb36jT33qU7r+\n+uslSbfddpt+9atfGV4YAABILxBwTroPe4tGo0n7FRVc/QAYLeOn7JFHHtHq1atVV1cnSfrmN7+p\nX/7yl4YXBgAA0qupiUy6D3s779o18W0WcwWKI2Mwqq2tVVVVVXzf7XbL5eIcZgAAzNTZ2SCPxyen\ns18ej0+dnQ1ml4QCGfogZHYJQFnK2Hevq6vTqlWrdODAAW3evFlPPvmk6uvri1EbAABIo7LSpcWL\nm80uAwa49Du/i2/TLQKKJ2PH6Dvf+Y56enoUDAZ144036sCBA/rud79bjNoAAADKyjMvbzO7BKBs\nZewYHXLIIbr00kt10003SZJef/11eTwewwsDAAAoN/f/58b4Nt0ioLgydozuv/9+/fjHP47v//jH\nP9a9995raFEAAADl5trvP2d2CUBZy9gx8nq9evTRR+P73//+93XxxRcbWhQAAEC5eXPbUHybbpH1\nschy6cnYMQqHwxoeHo7vB4NBjYyMGFoUAABAOUlczBX2wCLLpSdjx+jiiy/W2WefrQULFujgwYPq\n6enRl7/85WLUBgAACoxvua2PbpE9sMhy6cl4BC+88EItWrRIPT09cjgcuv766zVnzpxi1AYAAAos\n9i23JPn9ktfrY9pvk9Etsqeamoj8/uR92FvaYPSnP/1Jp556qh577LGkn7/wwguSpOXLlxtbGQAA\nKDi+5bY2ukX20dnZIK/Xl9R9hb2l/dfwzTff1Kmnnqru7u6UtxOMAACwH77ltha6RfbFIsulJ20w\nuuKKKyRJS5cu1WmnnVasegAAgIH4ltu6xneLuB4MKK6M/fOf/vSnOvnkk+V00moHAMDu+JbbOhK7\nRSce+6EJt3M9GFBcGdNObW2tPv7xj+vYY4+VyzX2LcXdd99taGEAAADl4tuXd074GdeDpUc3DUbI\n+Ak7/fTTdfrppxejFgAAAFtKNVCfTGK36JpLjk/5O1wPlh7dNBhh0mC0Z88etba2at68eXK73cWq\nCQAAwFZSDdRnzMjuvqd1HJ7y51wPlh7dNBgh7bvoD3/4g2655RY1NjZqaGhI//Zv/6YFCxYUszYA\nAABbSDVQTxeMErtF//c7f5/2MbkeLD26aTBC2mD00EMP6fHHH9fs2bP1l7/8Rffdd59+9KMfFbM2\nAAAAW8h3oH5ozXSDKio8K13XQzcNRkgbjFwul2bPni1JOvrooxUMBotWFAAAgJ2kGqj39OyY8HuJ\n3SK7LeZqpet66KbBCGmDkcPhmHQfAAAAo7IZqIeG7X26F9f1oNSlfUcPDAzosccei+/v3LkzaX/5\n8uXGVgYAAFBCLrz+t/Ftu3WLJK7rQelLG4za29vV3d0d3//Yxz6WtE8wAgAAyE7PW7vMLmHKuK4H\npS5tMPre975XzDoAAABK1g3//kJ8247dIonrelD6ppldAAAAQCm75z9eNrsEAFkgGAEAABjouf/2\nxbft2i0CygHBCAAAwCCJ03MDsLaM8yx+9rOfnTBVt9Pp1BFHHKEvfvGLamxsNKw4AACAUkG3CLC2\njMFo8eLF6u3t1VlnnSVJWrdunebMmaPa2lpdd911euSRR9Le97HHHtPq1avlcDgUjUa1efNmvfLK\nK/HbX3zxRd1///2qqKjQKaecoquvvroAfxIAAID5bvnFdrNLAJCDjMHoxRdf1MqVK+P7S5cu1RVX\nXKEVK1boT3/606T3Xb58eXxa75deeklPPfVU0u233367Hn74YTU0NOgzn/mMli5dqnnz5uXxZwAA\nAFgX3aLSMzwcltc7kDR9eWWly+yyMAUZrzHavXu3tmzZEt/fvn27tm/frh07dmjv3r1ZP9EDDzyQ\n1BF677335PF41NjYKIfDoVNPPVXr16/PsXwAAADr4dqi0uf1Dsjvb1Yk0ii/v1le74DZJWGKMnaM\nvvrVr+rzn/+8Dhw4IIfDoWnTpukb3/iGNm/erC9+8YtZPUlPT4/mzJmjmTNnxn+2a9cu1dfXx/fr\n6+v13nvv5fEnAAAAWBfdotIUCDgn3Yf9ZDyCZ555ps4880wNDQ0pGo2qrq5uwmQMmfzqV7/SBRdc\nMOnvRKPRrB6ru7s7p+eGtXD87ItjZ28cP3vj+NnL+GuLOH72Ndmx8/n8SWdP1dZuVXc315XZWcZg\nNDAwoH/9139VT0+PHA6HPvaxj+lrX/taUrcnkw0bNuimm25K+llDQ4N27twZ3+/v71dDQ0PGx+ro\n6Mj6eWEt3d3dHD+b4tjZG8fP3jh+NpQQjPLpFnHtijVk+uwdd9z443QKx8ki8v0yIuM1RjfddJPa\n2tr0L//yL7r33nv14Q9/WDfccEPWTzAwMKDq6mo5nckZrLm5WcFgUH19fYpEInr22Wd18skn5/4X\nAAAAWETitUUnHFWd12Nw7Yo9VFa6tHhxs5Yta9Tixc2EohKQsWO0f/9+ffrTn47vt7a26plnnsn6\nCXbu3Jl0bdGqVatUW1urM888UzfffLO+/vWvS5LOOecctbS05FI7AACAZZ1zYl1e9+PaFcAcWQWj\ngYGB+GluO3bs0PDwcNZP0NbWphUrVsT3P/nJT8a3TzjhBD366KO51AsAAGBJid2if/naKfpg4O28\nHqemJiK/P3kfgPEyBqOrr75aF1xwgWbPnq1oNKrBwUHdfvvtxagNAADAlo4+vE7deZ4B19nZIK/X\nl3SNEQDjZQxGp512mp5++mm9++67kqQjjzxS06dPN7ouAAAA20jsFq26+9wpPVbs2hUAxZU2GH3/\n+9+f9I5f/epXC14MAACA3YxfcsRZkXFuKwAWlDYYVVRUFLMOAAAAWzrv2jXxbSss5sp030B+0gaj\nL3/5y8WsAwAAwHb6B/eZXcIEsem+Jcnvl7xeH6fmAVmg1wsAAJCnf7z9D/FtK3SLJKb7BvJFMAIA\nAMjDqmffMruElMZP781030B2CEYAAAB5ePiJzfFtq3SLpNHpvj0en5zOfnk8Pqb7BrKUtrc6f/58\nORyOlLdVVFRo06ZNhhUFAABgZf/wzSfMLiEtpvsG8pM2GG3evFnRaFQ/+tGPdMwxx2jhwoUaGRnR\niy++qHfeeaeYNQIAAAsrx1nQhiMH49tW6hYByF/aU+kqKirkdDrl9Xp11llnqba2Vh6PR2effbY2\nbtxYzBoBAICFxWZBi0Qa5fc3y+sdMLskQyUu5gqgdGScpmT//v169NFH1dHRoWnTpumVV17R4OBg\nMWoDAAA2UM6zoNEtAkpHxn+57rnnHv3whz/Uz3/+c0nSUUcdpbvuusvwwgAAgD3U1ETk9yfv2022\npwPSLQJKV8ZgdOSRR+qee+7Rrl271NDArCYAACBZZ2eDvF5fUqiwm3wWRaVbBJSWjMHoz3/+s771\nrW+psrJSTz31lO644w6ddNJJOv3004tRHwAAsLhSmAUtm9MB6RYBpS3jOkb333+/fvnLX2r27NmS\npCuvvFL//u//bnhhAAAAxZLroqh0i4DSkzEYzZgxQ7NmzYrv19fXy+Uq7Sk4AQBAecm0KGpit6ja\nXT6TSwDlJOMn2+12a8OGDZKkPXv26Le//a2mT59ueGEAAACZFGoNpVxOB3z09o/n/PgArC9jx+jm\nm2/WQw89pJ6eHv3d3/2durq6dNtttxWjNgAAgEkVYw2lxG7R1f/w0YI/PgBryNgx2rZtm3784x8n\n/ezpp59Wc7O9L7IEAAD2V+w1lJb97ZGGPj4A86T912P79u167733dNddd+m6665TNBqVJEUiEd1x\nxx0688wzi1YkAABAKkavoZTYLfrZzUsL+tgArCVtMNq5c6eefPJJ+Xw+PfDAA/GfT5s2TRdffHFR\nigMAAJhMMddQqjvEbdhjW0GhrtcC7CptMGpvb1d7e7tOPfVUnXHGGXI4HJJGO0ZOJ7OxAAAA8xm5\nhlJit8iI6bmtFkTyWeQWKCUZJ1+IRCK66qqr4vuXXHKJnnrqKUOLAgAAMFPoQGFPyUulGBNH5KLY\n12sBVpMxGK1cuVL33HNPfP+hhx7Sww8/bGhRAAAAZrrwht/Gt41azNVqQSTXRW6BUpMxGEWjUdXW\n1sb3a2trNW1axrsBAADY0sv/01+U57FaEMm0yC1Q6jJ+NbFgwQJ97Wtf04knnqhoNKquri4tWLCg\nGLUBAAAU3Xd+sj6+bVS3SCruxBHZMPJ6LcAOMgajG2+8UWvWrNFrr70mh8Ohc889V8uWLStGbQAA\nAEV1/YPPF+25CCKAtaQNRgMDA2poaND27dt1/PHH6/jjj4/f5vP5dPjhhxelQAAAgGLZtGV3fNvI\nbhEA60kbjO666y7dd999+tznPjfhNofDoXXr1hlaGAAAQDElTs8N+7PadOiwvrTB6L777pMkPfPM\nM0UrBgAAwAroFtkf6zIhV2mD0fXXXz/pHb/3ve8VvBgAAAAz0C0qPVabDh3Wl3be7dh1RdOmTdOe\nPXs0f/58tba2avfu3aqqqipmjQAAAEVDt6g0WG06dFhf2uh84YUXSpL+8Ic/aMWKFfGfX3bZZfrS\nl75kfGUAAABFQLeoNFltOnRYX8ae4vvvv68PPvhAhxxyiCQpGAzqvffeM7wwAACAYqNbVDqYDh25\nyhiMLr74Yp111lk67LDD5HA4tH37dl155ZXFqA0AAMBQdIsAxGQMRp/+9Kd1/vnna+vWrYpGo5o7\nd268ewQAAFAq7NYtYjpqoLDSTr4Qs2fPHj3wwAN65JFHtGDBAr388ssaHBwsRm0AAACGSewWndp+\nmImV5Cc2HXUk0ii/v1le74CGh8Pq6vJp7dp+dXX5NDwcNrtMwDYyBqMbb7xRc+bM0fbt2yVJw8PD\n+uY3v2l4YQAAAMVy7Wc6zC4hZ6mmo04VlgBkJ2MwGhwc1KWXXiqXa7Q1+/d///cKhUKGFwYAAGCU\nxG7RPf+02MRK8pdqOmrW7gHylzEYSVI4HJbD4ZAk7dq1S/v27TO0KAAAgGKZf0S92SXkpbOzQR6P\nT05nvzwenzo7G1i7B5iCrCZfWL58uXbu3Kkrr7xSPT09+ta3vlWM2gAAAAousVv0X3eda2IlU5Nq\nOmrW7gHylzEYnX322Tr++OO1ceNGVVZW6tZbb1VDAx8yAABgP9FoNGnf5czq5BnbYO0eIH8Zg9FX\nvvIV/eAHP9CyZcuKUQ8AAIBhzrt2TXzbbtNzG43pv1HuMgajuXPn6rHHHlN7e7sqKyvjPz/88MMN\nLQwAAKCQ3t8VNLsES4vNaCdJfr/k9froPqGsZAxGTz755ISfORwOrVu3zpCCAAAAjHDF956Obxe7\nW2SHbgwz2qHcZXzHP/PMM8WoAwAAwDD/+fs3TX1+O3Rjamoi8vuT963CDsES9pf2isNAIKC7775b\nV155pR566CFFItb5cAAAAOTiF797I75txrVFdujGpJr+2ypYuBbFkDYY3XLLLZKkT33qU3rrrbf0\nwx/+sFjrR4H5AAAgAElEQVQ1AQCAMjQ8HFZXl09r1/arq8un4eFwQR43cXpus9hhfaHYjHbLljVq\n8eJmS3Vk7BAsYX9p31U+n0/33nuvJOmUU07RZZddVqyaAABAGSrG6WZmzUTH+kJTY+XT/FA60gYj\np3PspoqKiqIUAwAAypcRXQErdIsk1heaKoIliiHtvzgOh2PSfQAAgEIyuivAukX2RbBEMaQNRhs3\nbtRpp50W39+9e7dOO+00RaNRORwOPfvss0UoDwAAlItCdwWs0i2yEmZ3A9JLG4yeeuqpYtYBAADK\nnJFdAbpFo+wwbThglrTBqLmZDwkAALAnukWpMbsbkF7a6boBAABKAd2iMXaYNhwwC8EIAACUlMRu\nUbWbjkgiKy/iCpiNfy0AAEDJevT2j5tdgqUwuxuQHsEIAACUjMRu0dX/8FETK5kcs8MB1kMwAgAA\nJWnZ3x6Z1/2KEVqYHQ6wHq4xAgAAJSGxW/Szm5fm/Tix0BKJNMrvb5bXO1CI8pIwOxxgPQQjAABQ\ncuoOced932KEFmaHA6yHYAQAAGwvsVs01em5ixFamB0OsB76tgAA2BQX8I8KHShscOnsbJDX60t6\nXQuN2eEA6yEYAQBgU1zAP+rCG34b3y7EYq7pQgtBFChtnEoHAIBNcQG/9PL/9BftuYoxKQMA8xCM\nAACwKS7gl77zk/Xx7UJ0iyZDEAVKG8EIAACbKvcL+G948IWiPh9BFChtfNUBAIBNlfsF/D1bdsW3\nje4WScWZlAGAeQhGAADAdhKn5y4WKwZRJoQACodgBAAAbCExBCQqRrfIqpiZECgcghEAALCk8d2Q\ncDisYPAIrXi2+N0iq2JCiNJB9898fHoAALCJchs4je+GvPHGJs2fn/w7du0WFepY1tRE5Pcn78Oe\n6P6Zj1npAACwiamsozM8HFZXl09r1/arq8un4eGwgZUWxsTuR7RkukWFWhOp3GcmLCV0/8zHKw4A\ngE1MZeBkx2+jx3dDOjpq9dxvx/Z//b2zi19UgRRqEGzFCSGQH7p/5qNjBACATUxlHR0rfBuda9dq\nfDfk/t++mnS7nU8jZE0kjEf3z3yG/6u4Zs0aPfTQQ3I6nfrKV76iU089NX7bz3/+cz3xxBOqqKjQ\nggULdP311xtdDgAAtjWVdXSm+m10Ia6JybVrNb4bcvfjL8e37XptUQxrImE8un/mMzQY+f1+PfDA\nA3r88ccVDAb1gx/8IB6MAoGAHnroIa1bt04Oh0OXX365XnvtNX30ox81siQAAGxrKgOnqQ7EC3Eq\n3lS6VonrFp3aflhOz2tFDIIB6zE0GL344otatGiRqqqqVFVVpVtvvTV+W2VlpaZPn65AIKCqqiqF\nQiEdeuihRpYDAEDZmupAvBCn4hXqGoprP9OR1/2k8pvZD0D2DL3GyOfzaf/+/brqqqv0mc98Rn/+\n85/jt1VWVuqf/umfdOaZZ+qMM87Q8ccfr5aWFiPLAQAAeSrENTH5XkOR2C26558W5/y8iQo1GxyA\n0mNoxygajcrv9+vBBx/U9u3bdemll+qPf/yjpNFT6R588EH9/ve/V3V1tT73uc+pt7dXra2tkz5m\nd3e3kSXDYBw/++LY2RvHz96scPxcroj6+9/Qvn2VmjFjWLNn16i7e0fOjzNjxuj/JKmnJ/f7B3e/\no+7d7+R8v5iNG/dpZGR/fL+i4n3NmJF7HdmayrELhyPatCkQf80XLKiRy8WEwsVkhc8eisfQT9es\nWbPU3t4uh8Ohww8/XNXV1RocHFR9fb3efvttHX744fHT5zo6OrRp06aMwaijI//2OczV3d3N8bMp\njp29cfzszUrHb+HC4j9nYrfov+46Vy7n1E522bfPF79WSpI8nip1dBhzrc9Uj11Xl0+NjWO1hcM+\nLVzIdUnFYqXPHnKTb6A19FS6RYsWyev1KhqNamhoSPv27VN9fb0kqbm5WW+//baGh4clSZs2bdLc\nuXONLAcAANhINBpN2p9qKJLsNSWyFaZYB8qJoZ+wxsZGLV26VBdddJEcDoe+/e1va9WqVaqtrdWZ\nZ56pyy+/XJ/97GfldDrV3t6uE044wchyAACAjZx37Zr4dqGm57bTbHAs+AkUl+FfPVx00UW66KKL\ncr4NAACUL9/OgNklmI61joDioicLAAAs58o718W37b6Ya77s1N0CSgHBCACAMpJuHR8rre/zk9Wb\nTHleAOXN0MkXAACAtaRbx8dK6/usfm5LfDvfbtHwcFhdXT6tXduvri6fhofDhSoPQImiYwQAQBlJ\nN9OZ3y9t3rxbodA0ud0H1dY28b65dJXy7UAlTs89FbGgJ43+bV6vz/KnpRnZtbNSRxCwKjpGAACU\nkfEzm8X2t24dUDA4UyMjdQoGZ2rr1okdo1y6SoXoQE3l2qJsp7q2Umcp3WtWiBqt1BEErIqOEQAA\nJS6xWzB9eljV1e/qwIGqpJnO5s6drUDAp1DIKbc7orlzZ094nFzW1clnDZ5CdYuk7Ke6TtdZMqPD\nku41K0T3izWRgMz4VAAAUOISB9aRiOTx+LRkSWPS79TVOdTWNjbY9nh8Ex4nl3V1proGz1Rnost2\nqmsjw0iu0r1mhQg1rIkEZEYwAgCgxGUzsM4mSOSyrk6ua/AUslskZT/VtZFhJFfpXrNChBrWRAIy\nIxgBAFDishlYZxMkcllXZypr8BRz3SIjw0iu0r1mhQg1rIkEZEYwAgDAhnK5Bsbq3YJCd4tyYWQY\nyUe640qoAYxHMAIAwIZyuQbGTgPrYnaLJmPWa2bHacaBUkEwAgDAhkpllrGpdotKbX2eUjmugB2x\njhEAADaUbj0iO3vivvNzXrOn1NbnKcXjCtgFwQgAABvq7GyQx+OT09kvj8dnueuGspHYLTq17TCt\nXduvFSs2aefOxqyDTql1WErhuAJ2Ze9/PQAAKFN2um4oG8fM7lAkIu3aJQUCe9TWNlNS5qCT7+xx\nVj0Fr9SOK2AnBCMAAFB0id2iS08+Pr7tdkcUClXG91MFncRQM316WNXV7+rAgaqcZo9jkgMA4xGM\nAACwKat2PXL1oVnT4l2f1tYG9fVtktM5nDboJIaaSETyeHw6+eR6eb0DWrduMKvXotROwQMwdfwr\nAACATdm165HYLYpNuBBbM8jjieiccxbkHGpyfS3MWMAVgLURjAAAsCk7dj32H5gYQHK9riZVqMn1\ntZjqAq6l0q0DMMb6/4ICAICU7Nj1uOiG38a3813MNVWoGe0Yjf1O7LVIF2CmOsmBXbt1ANIjGAEA\nYFNT7XoU2wuv9RXkcVKFmnSvhVEBxo7dOgCT41MMAIBNWXFq58lOMbvzpy/Ffy/fblE66V4LowKM\nHbt1ACbHAq8AAKBgYh2a8Qu0Xnnn06bUMz6wFCrAsBArUHroGAEAgIJJ16Hx7QzGf1bobtFkjDrd\ncLJuXaxrtnHjPu3b52NiBsAmCEYAAKBgUp1iljg9txEmO33PjNMNY12zkZH9f+2aMTEDYAcEIwAA\nSlixp5VO2aF5fOz2bLpFudZcjBnicqmJiRkAe+KTCgBAiRoeDmvFik3atatJbndEra2j01rnEhpy\nDSnjOzT5dItyDTrFCCLZ1jQ8HNaWLX3atatSu3cH1dISkcfDxAyAHTD5AgAAJhoeDqury6e1a/vV\n1eXT8HC4YI/t9Q5o164jNDLSqGCwWb29AzmHhnSTKeQj22uLcg06Rk2wkE9NXu+AmpoWyO3ep1Bo\nRH19PUzMANgEwQgAABMVMniMFwg45XYfjO+HQs6cQ4PfL23evFvd3UPavHl30vVDmeR7bVGuQacY\nM8RlW1Mg4JTL5VJbW7OOPfYQzZvXxMQLgE1wKh0AACYy8jSwmpqIWltnqrd3t0KhaZo1q0+dnQty\neoytWwcUDLZLkoJBaevWjZJyv34nl5nocp1JrhgTLLS312nlyo0aGnKrri6k008/JuXvsb4RYF8E\nIwAATGTkQHo0YPSrqioWMBbk3L2YO3e2AgGfQiGn3O6I5s6dndX9pjITnRUXrt24cUgtLe1qaYnt\n+7R48YwJv5cY6mprt6qz85QiVwogXwQjAABMlKo7kjjhgc/n13HHhfM6HasQAaOuzqG2trHH8Hh8\nOT9GMdctMkq2nb3E17y7e3va41bs2QIBZEYwAgDARKnCS1eXLz4D2t69e3OeSa6Q8lkgNbFb1N6a\nXYcpE7ODRKE7e8WYYnwqzH69ATMQjAAAsBgrrYMz1a7TrV/824LUYVaQiAUEv3/0+qq5c2errs4x\n5QkerHSMU7F6cAOMwKx0AABYTDGmnzZKYrfojqsWFexxzQoSYwGhWS0t7aqrc2jx4uYpd0+sfoyt\nHtwAI/AuBwDAYsy6gD/V6VOS8j6l6rijZhWstsRT2cLhiLZu7dPatTL8NC+jAkI+pygWE7ProRwR\njAAAsJhsL+AvtFSnT41uZ3dKVWK36L/uOregtSUGia1b+9TUtECRiMvw07yMCghWnHkvkdWDG2AE\nghEAACUm3wvns+mOpOuYRKPRpH2Xs7Bn6ycGibVrpUhk7O8x8jSvcg0IVg9ugBEIRgAAlJh8L5xP\n1x3JpmNy3rVr4ttGT89dzNO8CAhTw+x2sBOCEQAAJSbf62LSdUcydUy2D+zN+NiFHCCXaxfHjpjd\nDnZCMAIAoMTk21FJ1x3JNJC96q5n4tvpukWFHCDTxbEPZreDnfDuBADAptJ1YYrZUfnJ6k1Z/V6u\nA+RMHaZCz6CXDbNPCzP7+fPB7HawE4IRAAA2la4LU8yOyurntsS3J7u2KNcBcqYO01Rn0MtH7DnD\n4bBefXVA69e/qYUL64oWUJ5/3qcNG2oVCk2T2+1UOOzTkiVHGP68U1GokG7HUAj7IRgBAGAh4weA\nLlf6AGH2aUqJ03NnkusAOdPfNpUZ9DJJNwiPPV5v74CCwWZVVMyQ319XtOtmursDCgaPkCQFg1J3\n9/tassTwp52SQoV0rlVCMRCMAACwkPEDwP7+N7RwYerfzec0JaO+ec80E12uA+RMf9tUZtDLJN0g\nPPacodDo8MntPiipmIE0mmG/dJn9JQDKQ2EXGQAAADkbHg6rq8untWv7tX79oMLhcPy2ffsq096v\ns7NBHo9PTme/PB5fVqcpxQb9kUij/P5meb0DedWcS7coH5n+tlS35/N6pJJuEB57/OrqAVVX71Zr\n66GSinfdTEdHraqrfaqo6Fd1tU8dHbVFed7E92dXl0/Dw+HMdyqwVMEYKDTiNgAAJkvsUIyMONXb\nO6C2ttH9GTOG094vn9OUjPjm3Yh1izL9bfnOoJeNdN2o2HOOnhY4oEAgUtTpwk8+uVku14ACAamm\nRursLM6pZIU8jS3fjiVTtKMYCEYAAJgsMZy0th6qLVvel9M5OgCcPbsmq8dIHHBOn75fknTgQNWE\nwWchZgkzsls02cC5WBfgZxqEmzVduFnPW8gwnW/IYop2FAPBCAAAkyWGFZfLqYUL67R4caMkqbt7\nR1aPkTjgfPXV3ZJCamtrTBp8Dg+HFQ6H9cYbmyRF1dFRO+WuQ6xbVKjQMtnAuVgX4DMIT1bIKbe5\nVghWxrsRAACT5XqaUKoQkjjADIWmKfE/8bHbvN4BBYNHaP780Z+7XL6cw0u6blGhQstkA2cG1eYo\n5GlsrGsEK+NfFAAATJZrh2J8CHn++Xe1ZcuQdu2qlNt9UE5nRE7n2IAzNvgsdLBIvLaoUI892cCZ\nQXXhZdPpK2QHjWuFYGUEIwAAbGZ86OjuDmjevAUKBAYUCjnl8WzTRz86WwcO9Gv69P0Kh6W1a/u1\nZUufmppmyuUavX+uwWKya4sKFVomGzgzqC68Yq8PxGmKsDKCEQAANhMLIeFwRL29e/TWW36NjHyg\n1tZGuVxOOZ3SkiWj1yh1dfniA9+mpnr19fVo3rymKQeL8TPRFSq0WHXgXKyJH4qN0xOBMbz7AQCW\nV6qD0nzFQsj69UOS6nTEEYcpGJyp3t7damubmdStSRzoulwuzZvXpGXLGnN+zsRu0efPOXbC7cUI\nNMXubhj53FZ5T3N6IjCGYAQAsDwzB8RWFAshgYBTkUijwuGwent9Coc/kMcTSurWGDHwveD0o6f8\nGPkoVncj0+QWhXhuq7ynOT0RGEMwAgBYHqf7JIsN3DdtGtLISEStrQ1qbW1UX9+AAoF6eb0D8Q7E\n+IFve3udurp8OXUqErtFK2/6O6P/vLSK1d1IFVpqalTQ5zbiPZ1PF8qqpy4CZphmdgEAAGQyfhBa\n7qf7xAbu8+bNl+TWli1vqK+vR01NCxSJNMrvb5bXO5ByoLxx45D8/uak38vFzEOrjPmjstDZ2SCP\nxyens18ej8+w7kaq0FLo5zbiPR17X+R7bIFyV95fuQEAbIHTfcYMD4e1fv2QgsEZcrsPqrX1UFVV\njQ6qI5Gx7kAg4EzZ+ci1U5HYLRo/4UKxFau7kaozVejnNuI9TWcVmBo+MQAAy+N0nzFe74BGRuo0\nMlKnYFDq7d2tRYtGg9H4wXyqgXIup6PtC4ULWrtdFCOIG/GezubYWmXSB7vUhfJCMAIAwES5DggD\nAadaW+vV2+tTKORURcWAOjvnS9KEwfxox2jsvmM/z27Q/6lvPRnfNrtbVExmBPFCBINsjq1VJn0Y\nz6p1obwQjAAAMFGuA8KamogiEZfa2kZ/x+OJxAfQ4++XaqCc7aD/uY3b8/2Tis6O3YbxNYfDYQWD\nR0jKPxhkc2yterqdVetCeeFdBwCAibIdEMYG0kNDUW3btlEtLQ3yeDRpxyfbEJQqWNzzf7vjt1ux\nW5RY85YtfWpqWiCXy2WbbsP4QPzGGz2aP3/sdqOCgVXXLbJqXSgvBCMAAEyUaUAYDkfU1TW6mOvI\nSJ1aWxvV0nKYPJ7cBv+TdVXGD9I/e/NvJ9zXah2YxJp37apUIDAQ76LZoduQWGM4HNbbb/sVDPbL\n7R6dft3jMSYYWHUiE6vWhfJi/X85AAAoYZkGhJs2BdTY2KxgcIZGRurU2+tTW1tzzoP/yU7Ziz1W\nOBxRb+8e7RseG5Rfcdr5luzAJP79bvdBhUJj+8XsNuR7Gl9iIO7tHVBzc6ucTqdCoUr19W3SOecs\nMKReq05kYtW6UF4IRgAAmCjTgHDfvkpJo4P/YFDxAJDr4H98kPL7FV/odfRUtJnq7d2jF3Y+n/G+\nVpAYLFpbD1VfX4+cTuXUbSjEtUn5ThqQGIgrKobU2jpfLtfo6+x0DluuQweUA+v9SwcAAOJmzBiW\nNDr47+3drYqKAXk8o4P4XAb240/Z27p1QFK7JKmpqV59fT0Kh91J9+moXRi/r9XEgoXfL/X1DWju\n3Nk5h5tCzISW76QBiYF49NiY0/ECMIZgBACAhYwPO8cc45Y02llYtCiizs758YF/V5cv64F9Z2eD\nnn/+XXV375Xk0MjI6LUtLpdLLpdL8+Y16cGn1yfdp7p6LIRZTSxYdHX5FAt4uYab8SFmaCga76Jl\nG7IKMWkA19cA1kAwAgDAQsZ3Mfr739A//mPqgX4u3YrKytEANH/+cZKkzZt3q7d3bMKC8QP6b3zi\nhKJPe53PqW1TmeZ5fKjZtm2nHI7cQlYhQg3X1wDWQDACAGAcM9fFGT+wj11jlKq22LVBsWtTMnUr\nEh979NS87XrjjUFJDj23Y0vS75oxUM/n1LapdGzGhxopOdRkE7IINUDpIBgBADBOIa49ydb4EDZ9\neliRhLF97BqjxNp27mxQb++AAoEGvfVWl5YsOVp1dY6kbkWqcJcYIlwup2pqDqql5X9JUlIwMmvd\noqGhqF5/3adQyCm3O6Jjj41mvM9UOjbjQ83oqYljt3OtD1BeCEYAAIwzldOzxsvUfRofwqqr35XH\nMzbQnz27ZkItvb0DCgab5XBIHs8M1dXtmxDcUoW7xAkLtm4d0M6dFQoEdqecic5I6V6Tbdt2Khgc\nPZUtGJS2bdso6bBJH6uQHRuu9QHKG8EIAIBxsj09K5tT7jJ1n8aHrmDQJY9n8toS1+xxuw+mDG6p\nwt34CQsCAZ+CwZlJv/eNT5ygtWv7DT2FMN1r0tLSoEBgt0KhaXK7D6qlpTjBJPk4SmecUZ/T323m\nqZcACodgBADAONl2DrI55S5T92myabRjky8sXJhc26uvbtKuXZVyuw+qtfVQ1dT0x2+PDdI3bRrU\nyIhTra2H/vW0ubFwF6uhtbVBj7ywOv5z18g0PfxwWPPmOXXssY3yevsNOYUw3Wvi8UhtbWNBzePx\nZf2YqcKJpLSBZeK1WsfJ5XLmdepkPqdemhmmCHJAagQjAADGyfb0rGxOucvUfRofwqLR2Um3j598\nobLSpSuuWJAwsO1PCm6xQfq8eaPXIW3Z8r4WLqxL+p1YTS5X8mB4ev+J2newUX/5y245nXtUVTX2\n9xRyMJ3uNUl8LaZP369wWFl3r0avvWpUb+8ehUKVevXVTTr22DoFg0dImhhYEsPMrl1SILBHra2H\nqLd3QOHwB/F6svkb8zn1spjXsVnpuQErIxgBAJCnbE65y9R9SjUBwM6dYfX2DigUcmr//kEND4eT\nBuiTBTe/f3Qq7tHT0dyaP79uwu/Garr78ZfjPzuqaoEGKyMKhaTh4WkKhUb/nkBgn1aufFMbNw7L\n6azUkiXHKBKZMaXBdLrXJPHvymWNJil27dWe+KmBu3YNq7t7QPPnJ/9Oqm23O6JQqDJ+7VZ1tVt+\n/8yk55wsGOYzM14hr2PLlZnPDVjZNLMLAADArjo7G+Tx+OR09svj8aU85S422F+2rFGLFzdn7EB0\ndjaor2+TQqEZcrudmjVrvrzegaxr2rp1QMHgTI2M1CkYnPnXU/NS15SoscajpqYGud0+ud0+zZr1\nrjo7G/STn2zWSy/N01tvfVh/+csxevrp1yVNbTCdzWuS6+B99NqrsWGN2x2R5JjwO6m2W1sbNGvW\nuwqHP1B19W61th464TljXZZIpFF+f3PSMcnmfZCq3sn2jWTmcwNWZvhXBGvWrNFDDz0kp9Opr3zl\nKzr11FPjt+3YsUNf//rXFYlEdOyxx+qWW24xuhwAAAqmEDOipepEzJvXpJaWOknSW28N5RRC5s6d\nrUBgbMrruXNnp/y9c68Zu7bo0duWyrt+h7q731d9fVQf/ahbLleN1q0b1O9/v1czZlSrokIKh2fo\n3XdHw4bRg+lcuzBj114Ny+2OqLW1QR5PWC5X6m5dYtfK44nonHMW/DX8jF3jlOq6rFT72bwPxh/n\n9vY6bdxozgx4zL4HpGZoMPL7/XrggQf0+OOPKxgM6gc/+EFSMLrzzjt1+eWX64wzztBtt92mHTt2\n6EMf+pCRJQEAYCmprveoqVHe6+nU1TnU1tascHj0dLw33/Srq8sRP/VreDis9ev7k+5TPcOtJUuO\n0JIlo/uJp7FJf9HgYFD19dUaHPxA06dn3xWZilwH7xOvvRpQZ2f6Dl2qMJPqOccmsxjSgQMhSdMV\niUzXrFl9Gh7Ofva68cd540bzruthUVogNUOD0YsvvqhFixapqqpKVVVVuvXWW+O3RaNRdXd36/77\n75ckffvb3zayFAAALClVJ+KMM+rjA/Ta2q3q7Dwl68eLDe7Xrx+U1KR58+bL73fGr5fxegd0z+ru\n+O9/4xMnpKwpHI6ot3eP6upmasuWLjU0tOjoo8O64IKjCzqoTnftTj6D96kO+FPdPxYS581r1O9+\nt1XDwx/omGPq1dQ0GsKyfT6u6wGsz9BPpc/n0/79+3XVVVdp7969+tKXvqSTTjpJkjQ4OKgZM2bo\n9ttv1+uvv64TTjhBX//6140sBwAAy0l1yljiAL27e3tOs7/F7hsIOBWJjJ0WFhuIb9sxnPT76WbS\ne/XV0YkM5s71qKbmoI466qAWLmwoeKfIjBnScplhL/b6uFxOzZlTL6lGbW2NSbdlI58JGgAUl6HB\nKBqNyu/368EHH9T27dt16aWX6o9//GP8toGBAV122WVqamrSFVdcoT/96U9Jp9ql0t3dPentsDaO\nn31x7OzNzOMXDke0aVNA+/ZVasaMYS1YUCOXi2/LY1yuiPr734i/PrNn16i7e0fS76Q7fpO9tj6f\nX3v37o3/bm3tVnV3b9ej67fHf7bksDb5fJvU3b096XFdroj6+nZp//45crvDOuqoQzR9+qBmzBhW\nT09ybVO1ceM+jYzsj+9XVLyvGTMK+xwTn9OvvXtb4vtvvvmc2ttTr6qb+Dru3h2UFNJbb43ux17T\nycSOXTbHGdbDf/vKi6H/ZZo1a5ba29vlcDh0+OGHq7q6WoODg6qvr1ddXZ2am5t12GGHSZJOOukk\nvfXWWxmDUUdHh5Elw0Dd3d0cP5vi2Nmb2cevq8unxsaxDkA47NPChVzfkChxAdfxJjt+k722xx03\nvityin60alPS/U84oUqdnaek7JaEw4nXGY0uttrRUfjjtm/f+OepMuR5Eg0M9CsSaYzvO5216uho\nTPm7ia/j//pfTkmH6sCBqvhrOlk3b/yxG3+cWWjV2sz+txP5yzfQGhqMFi1apBtuuEFf+MIX5Pf7\ntW/fPtXX10uSKioqdNhhh2nbtm2aO3euNm/erHPOOcfIcgBgyhjI5I5rK4yT60xpf9iwLb79xH3n\nT/rYsWuV/P7RKcCj0dnq6vKlfM9P5XNR7BnShofD2rKlT7t2VcrtPqjW1kPl8aQ/rc3IiQpYaBWw\nFkP/69TY2KilS5fqoosuksPh0Le//W2tWrVKtbW1OvPMM3XDDTfouuuuUzQaVWtrq5bEpsMBAIsq\n5kCmVEKYkddWlMprlK/p0/fr1Vdji7ke1Ikn7k/7u4nTc2cjFgi6unyS2iWlf89P5XNR7BnSvN4B\nNTUtUCAwuoBuX1+PzjlnQdGePxFfGgDWYvgn8KKLLtJFF12U8ra5c+fqF7/4hdElAEDBFHMgUyrf\nJhvZESiV1yhf4XBY77yzTYGAWzU1IbW312R1v0zdokTZvOetMsDPJigHAk65XC61tY2+T5xOGR6m\n019zo9EAABqISURBVNXFhAyAtfDVBIC8DA+H9fzzPnV375XkUEdHjU4+Of2aIaWimAOZVINNO3ZI\njOwIWGVAXmiJx9nn8+u448Ipj/Nrr4XU0NCuhobYfo+WLp34eOO7RWvX9ie9f2LPNzQU1bZtO9XS\n0iCPZzTUjnalxhaMPfHE8ITHt8oAP5ugbHStqY5durra2+u0cuVGDQ25VVcX0umnH1PQWgDkZprZ\nBQCwJ693QBs2uPTBB8fpgw8WaMOGWnm9A2aXZbjOzgZ5PD45ncYvcjl+wFZTE4kPsCKRRvn9zWXx\nmk8m1WtkN8PDYXV1+bR2bb+6unzxgXXsOO/d2zLJcXZk2J/oitPOn/D+iT3f66871N/frs2b3ePe\nX25JlX/9/4mK+bmYTDZB2ehaUx27dHVt3DiklpZ2fexjH1FLS7s2bhwqaC0AclMaX60BKLpAwKlQ\naGw/FJpWMt/WT6aY10OkOgVt3brBpN8ph9d8MsW+cN8IqboJ2XbCOjpqtGHD2DVGHR0TT6Wb7Nqi\n2OPG/j8Uiv3/tISfO9XWNrYe0oEDE8OnUZ+LXDuk2XSDjP4Mpzp26eoq1Y4nYFd8AgHkpaYmIrdb\nCgZH993ug5b/tt5Kp6El1jJ9+ugF82NTAI/WlWoAZ5VTlqyi2BfuGyHbgXSq98zo725TW1vs1LfJ\nX4tvfOKElO+f2CQOW7cO6uDBKh199LDC4bC2bu3T/v0ujYxE1NraIJfLVdT3XK7XkFkhKKc6dunq\n4vMMWAvBCEBeOjsbFA771N3do9g1RpkGZWaz0oX6ibW8+upuSSG1tTVmrMsKAz8UVqaBdG3tVrW3\nn6QVKzZp164mud0RRSJuOZ0jamtrVkvLYfFTwsYH/3+4/smk55r8/RNSc3Otdu7cIqdzmvr6+tTU\ndJwkqbd3j7ZseUMLF9bH71OMLxpy7ahYISiPP3axtY5S1WW3z7OVvlwCjEAwApCXykqXliw5Qnaa\nZd9Kp60kPvfoaUvOlLeNZ4WBHwor1eA48Th3d2/Xxo1D2rXrCI2M1CkYlLZv/x+1tNTHHyMQcKYM\n/oliM9Glev8cOFCltrbYAqeHyenslyRFIqPvxba2mXI6I1q8eGwR1GJ80WDHjkplpSseUvftq5TX\nO5A2QNjt82ylL5cAIxCMAJQNKw2yEmtxuw9KiiTdhvKRzeA4EHDK7T4YP3VVGp0hLhwOq7d3QBUV\noxftz5vXKJdr9D/tdz/+8oTHSfWNv6S/Lngqud2jp8zFFjz1+6VwOKLe3j2qqBhICm7F+KKhUB2V\nYnU6Ys+zfv2QRkbqVFEx66+TWJRGgLDSl0uAEXhHAygbVjptJbGW2KKcBw70m14XrKmmJqIPf9ij\ndeu2KBCo1MyZ76q9/Qi99tobkpo0b9589fb2q7d3T9JECTGxblG6rlJT03EKBPYoFKpUX9+m+IKn\nXq9PL7ywS++849Ts2Y164YUKhcM+LVlyRFK4j12PtHatMgaPXELKVDoqic+zZcvoaYEulzOrTsf4\nGtvb67Rx41DGmmOvbzA4QyMjdfL7t2v+/NIJEFb6cgkwQml8UgFMSSCwTytXvhlfS+Oyy45RTc0M\ns8sqOLNPW7Hj+fl2rLkUdXY2aMWKTZozp0lO535JR+u11wKSpNbWQ+RyOdXa2qAtW96Q0xnRg0+v\nj9/3wjOOjm9n843//v2jxzf2eXn++QGFQh5t2RJVZWVI0eiQliw5Iincb906GjwikczBo1inYyU+\nz65dUiAwFhrTBZXxHZ/W1npFIi6tXLlRLS3tGWuOPW6suxcKjb6WpRIgrPTlEmAE1jECoJUr31R/\nf7uGhz+i/v52rVz5ptkllSQrr0GUai0dabTmvr46Pf54n370ow/0jW88r0Bgn8nVlp/KSpfmzWtS\nR0ejnE6XDhw4QsFgs0ZGmtTbO/o+crlcWriwXsuWNSbdd7ZjZvyYplr3qaZm9FS5YHCmRkbqNDJS\nl/Te3LZtr0KhZh082KhQqFnbtu2N17R4cbPOOKNe+/c79dpru7V5s0/hcHjSDkmxTsdKfFy3OxKf\nglxKH1TGOj6j/4u9tkNDyes3pas59ritrYequnq3qqreN3Vdp0KLHfNlyxq1eHHpL+iN8kMwAjDh\nP/rj91EYVj4/P11oCwSceuaZN+X3tysS+Yj6+/+G4GySioq9Wr36DT366Nt68snX9d57W3XkkTNU\nUTGUtFhp4rpFlyw8S5FIo3buHO04DQ1FtWXLS9q8+VW98UaPwuGw2tvrVFHRp4qKflVX+9Ta2pD0\n3mxpOVRu925NmzYkt3u3WloOTarL6x3QyEiTRkYa42Fisg5JsRblTXzc1tYGzZr1bsZFXRM7PtLY\nuk51daGk30tXc2zx2Kqq3Vq0KKRLLplFgABsxDr/VQZgmrq6kPr7k/cLgdOwkln5/Px0oa2mJqJA\nYCwoV1YeJDib5PXXB7V9u0vR6OEKh+v13nt79c47g1q0qC5ptrhEb27eK7d7SJFIWJHIEWppqVMo\n5JDk1vz5MxUMShs3+rRwYb38/rHHSHxvnnjiaBAKhSS3e2w/9vl+9tkP5HBENH16WJHIdFVUDKmz\n85i0f0exTsdKfB6PJ6JzzlmQ8d+f2Ge0tfVQ9fbuVkXFgDyeiE4//Rht3Ji55vGn63Z37yjo3wTA\nWAQjALrssmO0cuXGpGuMCoGpXccv5BpWdfW7SQu5WkW60NbZ2aBf/7pX/f2Hq7LyoJqaqgsWnJFe\n4vvG5/PruOPC2ru3VnV19aqpmanBwT0Kh4OqqBhOCiGJ3aJFs09WMDjzr9N79+iYY2olxbogYyeM\nBAJOnXFGfdqwcvLJzXK5Er/gGP0Mxz7fLpdbe/YcqsHBHs2Z06SqqvCkf1uxrvXL53kSw9SiRRF1\nds5XZaUrfmopgNJGMAKgmpoZ+vKX2wv+uFY+daxYEsNhJCJ5PD4tWZL6230zpfsWv7LSpe9+t3PC\n5Bww1vPP+7RhQ61CoWnavXuWnn/ep7q6kCorIzp40KnZs2fK4/Fr4cK6eBdkXyh58B7reoRC0+R2\nf6DW1o9IGr3eJvE//zU1kbxCROzz3Np6qH73u60KBGrldjvV1HScvN5+W34Jku51SPUlT6oFdWO/\nG/uZyzXWeaODDlhf+Y1SABSNlU8dKxa7hMPJBsZGBedclNugsrs7oGDwCEnS/v371d09qKuuOkaR\nyCZt2vSOHI4RHXPM/2vv/mOjKvc8jn+Gdkqh/Cilt8Ui29xUKAYv2juXi6YWNkhYMN74IxpcwAYT\ns0pByGoEg2BXrobw40IIoJFEl6QmKpUFwb2iropWqm0o8tN4uwooFGkRCtt2oPTH2T9qpzNlZvpz\n5jwz8379Ncwczjyd53xnzvf5Puc5ibp8+WaVlLSdpM9+4e+e//8vv/8nSZZnFbakpNFyOqt/Wx6+\nSVKTGhubu1W5DFT5bY9vpzNeN92UosREd5ervgViev/6i+NAS597P1dd/b3uvLPt/1BBB8xn5i80\ngKjA0q72JYf+pmIFO9E0/cQ0mk8q/d901eq0laWEBKdcrtHKzu64L4/Utjz29p3HfLbOyPiDzp07\npqysDM/0t972Z6Dk3ju+U1PPKSPjNs82PT3OA/WvKcelvzjuzqCH250Q8HVTB0mAWEZUAggZu+8b\nZAK7kkPvE826ujqVldUE7QvTE49oPqn099m7XENVXl6la9fiNWjQGblc6UHvy7P34EnP/v7tn9tu\n5pqVlXHD0t29ESi5947v69dT/E4r665A/WvKcekvjtva1rFN++fi/dzgwdd9Xo/1Cjpguuj5ZQEQ\nEtevN+nbby+rpqbayEqC6exKDnuaSJieeETzSaW/z/6ee9J+W/BAqqqq1913/1GffnpJktTU1Kxf\nfvlV9fXDJEnfXjnod789+YyCVWa6k9z39TgP1L+mHJf+/r5An4v3c7/73ZAutwdgDrN++QAYp6ys\nRnV1mb/d38a8SgL862kiYXriEc0nlQMHXtWRI+2LJLTqz3++6nMiXlFxVgkJTk8fVVZeUUrKOEnH\nde1ahtzXO1YJXPrAn1RfX93jzyhYZcZfUtDfU9wmT07TV1+dVkVFnSSHXK4hnhvSmnpcBkoGAy3X\nTQUdMB+JETxMmcsNs5gyYoue8U4khg79SZMnT+n29iYmHtF/UnlNbT/JzWpqalJJSUdftK9s1t5H\nTU3/p+HDr2nSpNv0nwf+7rOXYJ9RsO94f3EebPv+nuKWkOCU0+nU+PF/kCQ1NHiv/GbucQkgunCG\nAw9T5nLDLOG6S30oxWLS76/i0N3tERqBjsPGxkGaMKHjWqCjR49p/PixknxXNvPuo/bvam97/3Z/\n0Pdv/453u69q9+6T2r79jHJyBmr+/Gy/lZlgvwmhGDDxt0+OSwDhNKDrTRArIqkycP1624jqhx9W\nq6SkipvvhdDkyWkaOvQnxcdXKzm5KiJHbNtP8NqmA45WWVmN3U1CDAp0HN442ODw+Zf3ymZSW0wm\nJ1dp2/731RPt3+mffXZSly9PkNudrerqHG3f/g/PPr3jPNhvQigGTKJhEAZAZDP3zBdhZ/Jc7s6o\nboVPQoJTOTnJcrnMuylpd0VS0o8bBav4RVI1sDvLXg8Z0iyXa4gaGjq2817ZTOqoHK3d3bHoQlfV\nIqnjO76+fuBv+2mVJNXWJvqtzAT7Tejc5pycET7T/3rTD0ybA2A3zg7gEUk/SpzooiciKenHjYIN\nhETSIEl3lr2W2pM9/yubtfvLsz2rFkkd3/HDhv0it3uEMjKGS5JGjLgWdHt/vwmd21xSUtXnfmDa\nHAC7cTYJj0j6UeJEN7yampr7PBpsp0hK+nGjYAMhkTRI0t3jsPN3sffKZv50p1rkvd+cnBHavv0f\nqq1N1IgR1zR/fna32hFMJPUDAATCNxciEie64XX8eL3S031Hg9tvcBgJyVI4k/5ImtoVKYINhETS\nIEl/HYe9qRZ5GzJksBYtyulzO3z3GTn9AACBkBghIkVSdSsadL74u74+PqKmMAUSiiQmGj4X0wQb\nCIn1QZLuVov6S6CYifV+ABAdSIwAdKnzxd9DhjRHxdSZUCQx0fC5mCbYQEisDZJ4V4um/WmM53G4\nKpWdY+arr07L6XT+9r7SPfek9Pl9qboCsAvLdQPo0m23DblhKd9oWFo3FElMNHwuiAz//q9/9Ny6\nYNOm73XgQKKuXh0Z0iXpO8dIRUVdvy+Fz/L6AOzCUCaALjmd8brzTt9R+WiYOhOK6yKi4XOBmbyr\nResW50nqSCIaGuLV0jJSlZUXNWHCyJBVKjvHTOd7LoXqRq8AEA582wDolWiYwhSKJCYaPheYb3xm\niqSOpCExsVkNDdK1a20TQUJVqezqnkv9daNXFnIAYAcSIyCCMRe/b0hiECm8q0X/teYvnsftScS4\ncWmqrKxSXFytkpPdIatUdnXPpf54X6quAOxCYgREMFZAA6KfZVk+/3bGd1we7J1E5OZKkydnh3Vw\nJBSDC6HYJ4NIALqDxAiIYKbMxeekAwidl96u8jzuvDw3Vc/uYRAJQHewKh0QwUxZAY1VpIDQqL7k\ntrsJUcGUQSQAZiMxAiLY5MlpNyyjbQdOOoDQeOKVTzyPw30z12hiyiASALNx9gJEMFOm0bCKVBum\nFKI/7fzsf+1uQtRgQQcA3UFiBKDPOOlow3UM6E/b//s7z2OqRX1jyiASALORGAHoM0462jClEP3l\nydX/Y3cTACDmcI0RAPQTrmNAfzn3a8ddU/9jzs02tgQAYgeJEQD0E1MWw0Bk876ZKwAgfJjnAQD9\nhCmF6G97/3a/Kioq7G4GAMQEKkYAABiCahEA2IfECAAAA7ESHQCEF4kRAAAGoFoEAPYiMQIAwDBU\niwAg/EiMAACwmXe16PaxqTa2BABiF4kRAAAGefmpXLubAAAxicQIAAAbeVeL1i7Ks7ElABDbSIwA\nADDErb9PsbsJABCzSIwAALCJd7Xo3VfutbElAAASIwAADDA40Wl3EwAgppEYAQBgA+9qEctzA4D9\nSIwAAAizpuZWu5sAAOiExAgAgDB7aNlez2OqRQBgBhIjAADC6GxNnd1NAAD4QWIEAEAYLVjzmecx\n1SIAMAeJEQAAYfJh6Sm7mwAACIDECACAMHl151HPY6pFAGAWh2VZlt2N6K6Kigq7mwAAAADAcC6X\nq8f/J6ISIwAAAAAIBabSAQAAAIh5JEYAAAAAYh6JEQAAAICYR2IEAAAAIOaRGAEAAACIeSRGAAAA\nAGJevN0NCKSxsVH33XefFi5cqAceeMDz/LRp05SRkSGHwyGHw6H169crLS3NxpbCW3l5uZYsWaKx\nY8fKsixlZ2drxYoVntdLS0u1ceNGxcXFacqUKSooKLCxteisq/4j/sy2Z88evfHGG4qPj9fixYs1\ndepUz2vEnvmC9R+xZ7b33ntP77//vhwOhyzL0okTJ3To0CHP68SfubrqO2LPbG63W8uWLdOVK1fU\n1NSkhQsX6u677/a83uPYswy1YcMG6+GHH7Z27drl8/y0adOsq1ev2tQqdKWsrMxavHhxwNfvvfde\n6/z581Zra6s1Z84c64cffghj69CVrvqP+DNXbW2tNWPGDMvtdlsXLlywVq5c6fM6sWe2rvqP2Isc\n5eXl1qpVq3yeI/4ig7++I/bM9tZbb1kbNmywLMuyqqurrZkzZ/q83tPYM3Iq3cmTJ3Xq1Cmf0bJ2\nlmXJ4p60RgvUP2fOnFFycrLS09PlcDg0depUffPNN2FuHboSLL6IP3OVlpYqNzdXgwYNUmpqqlat\nWuV5jdgzX7D+k4i9SLJ161afUWniL3J07juJ2DNdSkqKamtrJUlXrlxRSkqK57XexJ6RidHatWv1\n/PPPB3y9sLBQc+bM0YYNG8LYKnTXjz/+qIKCAs2dO1elpaWe53/99VefAzYlJUU1NTV2NBFBBOq/\ndsSfmaqqqnT16lUtWLBA8+bN09dff+15jdgzX7D+a0fsme/YsWO66aabNHLkSM9zxF9k8Nd37Yg9\nc82aNUvnz5/XjBkzlJ+f75M/9Cb2jLvGaPfu3Zo0aZIyMjIk3Th6vWTJEuXl5Sk5OVkFBQX6+OOP\nNWPGDDuaCj8yMzO1aNEizZo1S2fOnFF+fr4++eQTxcffeKgxAmOervqP+DOXZVm6fPmyXn31VZ09\ne1b5+fn6/PPPA24Ls3TVf8ReZCguLtZDDz0UdBviz0yB+o7YM9uePXs0atQobdu2Td9//71Wrlyp\n4uJiv9t2J/aMqxh98cUX2rdvn2bPnq3i4mK99tprPiNn999/v1JSUjRgwABNmTJFlZWVNrYWnaWn\np2vWrFmSpDFjxig1NVXV1dWSpLS0NF24cMGzbXV1NRcwGiZY/0nEn8lSU1OVk5Mjh8OhMWPGKCkp\nSZcuXZJE7EWCYP0nEXuRory8XDk5OT7PEX+RwV/fScSe6Q4dOqS8vDxJ0vjx43X+/HlPAtSb2DMu\nMdq4caOKi4v17rvv6pFHHlFBQYHuuusuSVJ9fb3mzZunxsZGSdLBgwc1duxYO5uLTvbu3astW7ZI\nki5evKhLly4pPT1dkjR69Gg1NDTo3Llzam5u1v79+31WDoH9gvUf8We23NxclZWVybIs1dbWyu12\ne6YQEHvmC9Z/xF5kqKmpUVJS0g0zJIg/8wXqO2LPfJmZmTp8+LCktinJgwcPlsPhkNS72HNYBtd0\nt2zZoptvvlmWZWno0KGaPn26ioqKtHPnTiUlJenWW2/1WUoY9mtoaNCzzz6rK1euyLIsFRQU6OLF\ni57+O3jwoNavXy9JmjlzpubPn29vg+Gjq/4j/sy2Y8cOFRcXy+FwaMGCBbp8+TKxF0GC9R+xZ74T\nJ05o06ZN2rZtmyRp165dxF+ECNZ3xJ7Z3G63li9frosXL6qlpUVLlizRuXPneh17RidGAAAAABAO\nxk2lAwAAAIBwIzECAAAAEPNIjAAAAADEPBIjAAAAADGPxAgAAABAzCMxAgAAABDzSIwAAGFRXl6u\nOXPm9Hk/u3btUm5urvLz8/XYY49p9uzZ2rx5s99tS0pK9Prrr/f5PQEA0S++600AAOgf7Xck76vc\n3FytXbtWktTc3Kx58+Zp4sSJmjp1qs92eXl5ysvL65f3BABENxIjAEDYnT59WoWFhWptbVVra6ue\neeYZuVwunT59WkuXLtXAgQM1c+ZMrV69WsePHw+6r/j4eOXk5OjkyZO65ZZb9NRTTyk7O1tZWVka\nNWqUSktLtW7dOh05ckSrV6+W0+lUcnKy1qxZo8GDB2vjxo06dOiQGhsbNWnSJD333HNh+hQAACZh\nKh0AIOz++te/au7cuSoqKlJhYaGWLVsmSdq8ebMefPBBFRUVKSEhQS0tLV3uq66uTgcOHJDL5ZIk\nnTp1Sk8//bQWLFggqaNKtXTpUr3yyisqKirSpEmTtH//fu3bt0/V1dUqKirSjh079NNPP2n//v2h\n+aMBAEajYgQACLujR49q06ZNkqRx48apoaFBtbW1qqys1JNPPilJmj59ul588UW////AgQPKz8+X\nZVmKi4vTE088oYkTJ6qqqkrDhw9XZmamz/a1tbWqq6tTVlaWJCk/P1+S9NJLL+nw4cOefTU0NOjs\n2bOh+rMBAAYjMQIAhF3na40sy9KAAQPU2tqqAQMGeJ4LxPsao86cTqff9/NXfUpISNDs2bP1+OOP\n96T5AIAoxFQ6AEDY3XHHHfryyy8lSd99952Sk5M1fPhwZWVl6dixY5KkTz/9tFf79pdQJScnKyUl\nxXO90ptvvqm3335bLpdLH330kSdp2rp1q37++edevS8AILJRMQIAhN2KFStUWFiod955Ry0tLVq3\nbp0kqaCgQEuXLtWePXuUl5enuLi4Hu870Mp3a9as0csvvyyn06lhw4Zp7dq1SkpK0pEjR/Too48q\nLi5OEyZM0JgxY/r0twEAIpPDCjZXAQCAMDp+/LhaWlp0++236+jRo1q+fLk++OADu5sFAIgBVIwA\nAMZITEzUCy+8oLi4ODU3N6uwsNDuJgEAYgQVIwAAAAAxj8UXAAAAAMQ8EiMAAAAAMY/ECAAAAEDM\nIzECAAAAEPNIjAAAAADEvP8HkhYyyfgweLkAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "def linreg_r2(X,Y, plot):\n", + " # Running the linear regression\n", + " Xc = sm.add_constant(X)\n", + " model = regression.linear_model.OLS(Y, Xc).fit()\n", + " params = model.params\n", + " Y_hat = np.dot(Xc,params)\n", + " \n", + " # Plot results\n", + " if plot:\n", + " plt.scatter(X, Y, alpha=0.3) # Plot the raw data\n", + " plt.plot(X, Y_hat, 'r', alpha=0.9); # Add the regression line, colored in red\n", + " return model.rsquared, Y_hat\n", + "\n", + "\n", + "dimensions = [data['Number Of Stories'],data['Total area'],data['Year Built']]\n", + "mlr = linreg_r2(np.column_stack(dimensions), data['log Price'],plot=False)\n", + "\n", + "print 'rsquared:', mlr[0]\n", + "\n", + "plt.plot(data['log Price'], data['log Price'], label='Y=X **not model**');\n", + "plt.scatter(data['log Price'], mlr[1], alpha=0.3);\n", + "plt.xlabel('log Price');\n", + "plt.ylabel('Predicted log Price');\n", + "plt.ylim(6.45, 7.5);" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This model performed slightly better than the aggregated model explaining 18.8% vs. 18.5% of variation in `log Price`. For more information on regression models with more than one explanatory variable, refer to the [Quantopian Lecture on Multiple Linear Regression](https://www.quantopian.com/lectures/multiple-linear-regression).\n", + "\n", + "Despite our best efforts with the data we were given, the best model or combination of models we could generate only explained 18.8% of the variance in `log Price`. What this means is that the dimensions we were given (`Number Of Stories`, `Total area`, and `Year Built`) were not enough to give us a good understanding of what drives multifamily development prices. While dissapointing, this makes perfect sense as none of our models included important dimensions such as:\n", + "\n", + "* Location desireability\n", + "* Lot size\n", + "* Number of family units\n", + "* Occupancy rate\n", + "* ...and probably many more\n", + "\n", + "Furthermore, oftentimes datasets do not have obvious principal dimensions. In this situation you must develop a set of many possible influencers and whittle it down to only the most significant ones through [dimensionality reduction](https://en.wikipedia.org/wiki/Dimensionality_reduction). " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "*This presentation is for informational purposes only and does not constitute an offer to sell, a solicitation to buy, or a recommendation for any security; nor does it constitute an offer to provide investment advisory or other services by Quantopian, Inc. (\"Quantopian\"). Nothing contained herein constitutes investment advice or offers any opinion with respect to the suitability of any security, and any views expressed herein should not be taken as advice to buy, sell, or hold any security or as an endorsement of any security or company. In preparing the information contained herein, Quantopian, Inc. has not taken into account the investment needs, objectives, and financial circumstances of any particular investor. Any views expressed and data illustrated herein were prepared based upon information, believed to be reliable, available to Quantopian, Inc. at the time of publication. Quantopian makes no guarantees as to their accuracy or completeness. All information is subject to change and may quickly become unreliable for various reasons, including changes in market conditions or economic circumstances.*" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} \ No newline at end of file From 65d3b11b6d3f9debc3305f5a031e69c0c4ecdd30 Mon Sep 17 00:00:00 2001 From: Christopher Fenaroli Date: Tue, 25 Jul 2017 15:31:06 -0400 Subject: [PATCH 2/4] Model Ensembling Lecture Draft 2. --- .../lectures/Model_Ensembling/notebook.ipynb | 642 + .../lectures/Model_Ensembling/preview.html | 16417 ++++++++++++++++ 2 files changed, 17059 insertions(+) create mode 100644 notebooks/lectures/Model_Ensembling/notebook.ipynb create mode 100644 notebooks/lectures/Model_Ensembling/preview.html diff --git a/notebooks/lectures/Model_Ensembling/notebook.ipynb b/notebooks/lectures/Model_Ensembling/notebook.ipynb new file mode 100644 index 00000000..7fc822d3 --- /dev/null +++ b/notebooks/lectures/Model_Ensembling/notebook.ipynb @@ -0,0 +1,642 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#Model Ensembling\n", + "By Chris Fenaroli, Delaney Granizo-Mackenzie, and Max Margenot \n", + "\n", + "Part of the Quantopian Lecture Series:\n", + "\n", + "* [www.quantopian.com/lectures](https://www.quantopian.com/lectures)\n", + "* [github.com/quantopian/research_public](https://github.com/quantopian/research_public)\n", + "\n", + "Notebook released under the Creative Commons Attribution 4.0 License.\n", + "\n", + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## What is Model Ensembling?\n", + "\n", + "Model ensembling is the name for a variety of methods which combine information from many *independent* prediction models to obtain results with more predictive power than any of its components alone. The logic which an ensemble uses to combine them into a final prediction can in some techniques be very complicated, but the benefits of ensembling can be taken advantage of with a method as simple as an equally weighted average of independent predictions.\n", + "\n", + "Ensembling plays a vital role in developing accurate predictive models and even employing basic ensembling techniques can in many cases drastically improve predictive performance. " + ] + }, + { + "cell_type": "code", + "execution_count": 99, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import matplotlib as mpl\n", + "import matplotlib.cm as cm\n", + "import scipy.stats as stats\n", + "import scipy.linalg as linalg\n", + "from statsmodels import regression\n", + "import statsmodels.api as sm" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Why Combine Models?\n", + "\n", + "A common approach to model selection is a \"winner takes all\" process where the best single model is chosen to make predictions. While intuitive and more interpretable than an ensemble, selecting only a single model to base predictions upon has weaknesses as follows:\n", + "\n", + "* Diversifying your prediction through ensembling reduces variance of predictions\n", + "* Should a model begin failing, a large ensemble prevents it from greatly affecting predictions while a single-model approach would be ruined\n", + "* Helps prevent overfitting by not assigning any single approach a significant amount of weight \n", + "\n", + "### Caveats\n", + "\n", + "Important to note is that the benefits of model ensembling will only be seen if the models being combined are at least somewhat independent. Aggregating many very similar models will have a much smaller benefit than aggregating ones with very distinct insights.\n", + "\n", + "Let's define two $I.I.D.$ (independent and identically distributed) standard normal toy models `m_1` and `m_2`, and see what happens to their mean and standard deviation when we average their predictions over 1000 simulations." + ] + }, + { + "cell_type": "code", + "execution_count": 107, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "---- Mean ---- ---- Variance ---- \n", + "Model 1: 0.036 Model 1: 1.02 \n", + "Model 2: 0.045 Model 2: 0.946 \n", + "Combined: 0.041 Combined: 0.486 \n", + "\n", + "Covariance between models: -0.0109611639748\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzAAAAHrCAYAAAAQbnjeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xt0FPX9//HXzt5yJySEAAJ+8QKoRY9QL6ioIHLzVqxF\nrEKrbb+/WhT71QKCQhUrVpRSlGq9I2C1KuIViBda22IriFrU1juogISQ6yabndmdnd8fMSub225C\nAlnyfJyTc9iZz8y8J58Nu6+d+XzW5TiOIwAAAABIAcaBLgAAAAAAkkWAAQAAAJAyCDAAAAAAUgYB\nBgAAAEDKIMAAAAAASBkEGAAAAAApgwADoNMbPHiwiouL45atXr1al19+uSTpscce01133dXiPrZs\n2aKPP/64w2rsSNFoVFOnTtXo0aP1ySefxK1bvXq1Bg8erNdffz1uuWmaGjp0qGbPnt3q4x1zzDHa\nuXNni22mTJmiF154ocl1W7du1fTp0zVmzBhNmDBBkyZN0ssvv5zUsdujn5566ql92r6jbdmyRaNH\nj9bcuXPjln/44YeaPHmyxo0bp0suuUQfffRRbN2yZcs0YcIEjR8/XnPnzlUkEpEkBQIBXX311Ro7\ndqzOO+88rV27ttHxNmzYoPHjx2vChAk6+eSTdcIJJ2jChAmaMGGCnnvuuUbtX331Vd1www0Jz6Op\nv0sA2B88B7oAAEjE5XK1uPzSSy9NuI9Vq1Zp2LBhGjhw4D7X4zhOszV1hOLiYm3evFlbtmyR2+1u\ntL5Pnz568cUXdcYZZ8SW/fWvf1Vubm6bjrcv57Z7925NmTJF06dPj4XKDz/8UNOmTVMwGNT3vve9\nFrff136ybVsLFy7UD37wgzZt356aep5s3LhRv/3tbzV06NBG7a+99lr96le/0qhRo7R+/Xr96le/\n0gsvvKB3331XK1eu1LPPPqusrCxNnz5dK1as0OWXX6477rhDffr00d13363i4mJNnDhRw4YNU8+e\nPWP7PfXUU2PBZunSpSouLtYtt9zSbM2jR4/W6NGjE57f/vwbAIC9cQUGQKeX6Pt2ly5dqhtvvFGS\ntHbtWp133nmaMGGCLrjgAm3cuFFPPPGEnnvuOd15551atmyZHMfR4sWLY59Kz549W6FQSJL0wQcf\naOzYsRo7dqyWLl2qCy64QJs2bdKOHTs0YsQI3X777ZoyZYok6bXXXtN5552nsWPH6vvf/74+/PBD\nSXVvUidPnqwFCxZo9OjRuuiii/Tee+9p6tSpOu2003T33Xc3eR4fffSRLrnkEo0fP14TJ07Uhg0b\nYldfotGozjvvvLhP5esdf/zxevPNN2WaZmzZSy+9pFNPPTX22LIs/frXv9a4ceN0zjnn6Pbbb4/9\nXl9//XWNGTNG5557rh555JG4ff/5z3/W+PHjddZZZ+m6666TZVkt9sWyZct0yimnaNKkSbFlgwcP\n1ty5c7V48eJG/bX344b9tHTpUs2aNUs///nPNWrUKP3whz9UWVmZJGnUqFF6++23Y/uof3zFFVco\nEAhowoQJ2rFjR6Pnw6ZNmxrV3NTzoba2Vn/605/085//PNYuGo3q5JNP1tatW1VcXKyf//znGjt2\nrMaNG6e//e1vktTk82RvhYWFevzxx9W/f/+45R9//LECgYBGjRoVO5/y8nJ9/vnnKioq0oQJE5SV\nlSVJ+v73v69169ZJkoqKijR58uTYvk888UStX7++xT5qaPXq1Zo+fXosEO19dXPPnj366U9/qvHj\nx2v06NFatmxZ3O9NkoLBoK666ipNmDBBY8aM0bx582TbdqtqAIDWIMAASEkNQ039p8Hz58/XAw88\noDVr1ug3v/mN1q9fr8mTJ2vIkCGaOXOmfvzjH2vNmjX6+9//rmeffVYvvfSSqqqqYm/M5s2bpyuu\nuEJFRUXKzs7Wtm3bYscoLy/X4MGDtXLlStm2rTlz5mj+/PkqKirSqFGjtHDhwljbDz74QGPGjNGr\nr74ql8ul+fPn68EHH9Qjjzyi++67r1EQcBxH1157raZMmaK1a9fqlltu0bXXXqtQKKRly5bJ7XZr\nzZo1GjRoUKPfhc/n0/Dhw2NvXGtqavThhx/q+OOPj7VZtmyZiouLtXbtWj3zzDN666239OKLLyoa\njerGG2/UzTffrBdffFGSYm8+33rrLd19991asWKFXnvtNWVnZ+v3v/99i/2yadMmnXnmmY2Wn376\n6SotLdWXX34Z119791/DfpLqQuK8efO0fv169e3bV/fff3+Lx1+wYIE8Ho/WrFmjQw45pNHz4bXX\nXmu0TVPPh0cffVRjxozRxo0bY8Fw06ZNKiws1IABAzRz5kwdc8wxKioq0gMPPKAZM2aosrJSUvzz\npKFDDz1Ufr+/0fJt27apX79+ccv69u2rzz//XFu3bo1b179/f33++eeqqKhQZWVlXBiqX9daGzZs\n0Pz58zVz5kxJ3/bPvffeqz59+mjt2rV65JFHtGjRoiZv58zJydGaNWtUVFQkv9/f6FZHAGhPBBgA\nKWHq1Kmx+/bHjx+v3/3ud02269Gjhx5//HHt3LlTQ4YM0fXXXx9bt/cVh4kTJ8rv98vlcunCCy/U\nhg0bZJqmPvjgA51zzjmS6m5Ni0ajse1t247dWuN2u/X3v/89FhKGDRumr776Kta2W7du+u53vytJ\nOuKII3TCCSfI5/PpyCOPlG3bKi8vj6t7+/bt2rNnjyZMmCBJ+s53vqNDDjlE7733XlK/nwkTJsQC\nyGuvvaaRI0fGhYTXX39dkyZNksvlkt/v13nnnacNGzZo27ZtsixLw4cPlyRNnDgxts1f/vIXjR8/\nXj169JAkXXzxxQnHslRWViovL6/RcsMwlJubq4qKioTnsnc4Pemkk9SnTx9J0pgxY/TOO+8k3H5v\nLT0f6jX3fOjRo4eOPvpobdiwQZL0yiuvaPz48aqtrdXGjRv1ox/9SJLUr18/ffe739Vf//pXSfHP\nk2TV1tY2CjZ+v1+1tbUKhUJx69LS0mLLDcOIu62wfpvWOvTQQxsFKEmaO3du7GpZv379VFBQEPc8\nl6T8/Hy9++672rBhg8LhsG644QYNHjy41TUAQLIYAwMgJaxYsSLuvv7Vq1c3OYj8nnvu0T333KML\nL7xQffr00Zw5c2JBol5ZWZlycnJij7t166bS0lJVVlbKMIzYrToej0f5+fmxdm63W5mZmbHH9eMS\nwuGwTNOMCwx7t3O73crIyIg9Ngyj0S02DWuSpOzsbJWWlqpv374t/3JUN85h7ty5CgQCWrNmja68\n8sq4T+Ib7j8nJyd2zvXnW/+7qBcIBPTKK6/E3sDbtp3w1qDu3btr9+7djZZHo1GVl5fH/T6TsXc9\nOTk5sascyWr4fJg9e7ZOOOGEuDbNPR8kaezYsVq/fn1sXMqjjz6qQCAgx3Fit245jqPa2tpYCGz4\nPElGRkZG3C2AkhQKhZSRkaH09PS4dbW1tbHl0WhUkUhEHo8nbpvWam681JYtW/S73/1OX3/9tQzD\nUElJSaOrn+PGjVNVVZWWLFmirVu36vzzz9f1118vr9fb6joAIBkEGAApIdE4mHr9+vXTbbfdJqku\n5Fx77bWx8Qn1evToEXcloKKiQvn5+crKylI0GpVpmvL7/bJtOzbmoqF33nlHDz74oFatWqXevXvr\njTfeaDSrVGvk5+c3enNeUVERu/qRiMfj0Zlnnqnnn39e27Zt03HHHRcXYJo65x49eignJ0fV1dWx\n5fVv3CWpZ8+emjhxYuy2omSMGDFCr7zyis4///y45a+//roOOeQQHXLIIY0CXEuhZO8rVZWVlbE3\n2m63O+7qWFVVVZPbN3w+XHfddUk/H6S6qz733Xef3n//feXm5qpfv36ybVsej0fPPPOM0tLS4va1\nY8eOZs+lJYcddljs9rp6X3zxhY444ohG67Zt26bDDz9c3bp1U15enr788ksddthhsW1GjBjRphqa\nMmPGDF1xxRW6+OKLJdXdCtiUSZMmadKkSdq9e7euvvpqPfvss51iIgUAByduIQNw0CgrK9MVV1wR\ne0N+7LHHyjDq/pvzer2xN7n1b/RDoZAikYiefvppjRw5UhkZGTriiCNiMzY98cQTse2l+BBVWlqq\n/Px89erVS7W1tVq9enWbbt2p17dvXxUWFmrNmjWSpLffflulpaU69thjGx27Oeecc47uu+8+nX32\n2Y3WnXnmmXr66acVjUYVDAb1/PPP68wzz9Shhx4qj8cTG9z+zDPPxK4kjRo1Sq+88kosxL366qt6\n8MEHW6zhxz/+sbZs2RKbLEGqm5xgwYIFuu666yRJBQUF+uSTT+Q4jsrKyuICxd79VP97qB9zsW7d\nutjVtIKCgtikCWvWrImNKfJ4PLFzbOn50PB30/D5UD+Op7CwUH379tUf//hHjRs3TlJdeDrjjDP0\npz/9SVLdFZE5c+bE6kw2bO/d7vDDD1deXp5eeuklSXX9cMghh+jQQw/V+PHj9dJLL6msrEyRSEQr\nVqzQueeeK0kaP368Hn30UUnSp59+qk2bNumss85K6vjJKC8v19FHHy2pLgCGQiEFg8G4Nvfcc49W\nrVolqS709u3blxnKAHQorsAA6PSSfTOUl5enESNG6KKLLpLH45HX69WCBQskSaNHj9Ydd9yh7du3\na9asWfroo4904YUXSqobZ3HZZZdJkn7961/rxhtv1EMPPaTvfe97KiwsjB1/7zpOP/10Pf744xo9\nerR69eqlOXPmaMuWLbrmmmsaTevc1ID1pixevFjz5s3T0qVLlZGRoSVLlsQ+4U/md3DiiSdKUmwc\nzd6mTJmi7du365xzzpFhGBo/frzGjh0rqW7ig9mzZ8vv9+v73/9+7Bako48+Wv/v//0/TZ06VY7j\nKC8vT/Pnz2+xnqysLK1cuVJ33HGHHnvsMXk8HmVnZ2vOnDkaOXKkpLo33S+88ILOPvtsHXbYYRo3\nblwsJO3dT5mZmTrllFN088036z//+Y8OOeSQ2FWuX/ziF5o3b57+/Oc/a+zYsTriiCMk1b2BHjp0\nqEaOHKn77rtPp59+epPPh72NGzdOH3/8cez5cPLJJ8fNIDZu3DjdfvvtmjVrVmzZr3/9a82bN09P\nPfWUXC6Xzj//fBUWFmrHjh0t9tVNN92kZ555Jnb16IUXXtAFF1yg+fPn684779TcuXN11113qUeP\nHrrzzjsl1Y2HuuKKK3TJJZdIkk477bTYv//v//5Ps2fP1pgxY+T3+7VgwYImxyC11fTp0zVt2jR1\n795dF198sS6++GLdeOON+tOf/hQ7zwsuuECzZ8/Wgw8+KJfLpeOOO04XXHBBu9UAAA25nAQfFQWD\nQc2aNUuVlZUKh8OaNm2ajjjiCM2YMUOO46igoEALFy7kXlcAB6Xhw4dr2bJlTc7+hY6V6DtLAABd\nU8JbyFavXq3DDjtMy5cv15IlS3TrrbdqyZIluuyyy7Ry5Ur1798/dukYAFLdNddcowceeECS9M9/\n/lOSNGDAgANZEgAA2EvCAJOXlxcbRFk/PeamTZtiX7Y1cuRIvfHGGx1bJQDsJ9dcc41effVVjR07\nVgsWLNAdd9whn893oMsCAADfSHgLmST97//+r7Zt26ZAIKD77rtPV155ZWxaza+++kozZ87U448/\n3uHFAgAAAOjaEg7if/7559WrVy/df//9+uijj3TDDTfErU9mtpXNmze3vUIAAAAAXcawYcNaXJ8w\nwLz99tuxOeUHDRqk4uJipaeny7Is+Xw+FRcXx325XFsLQcfbvHkz/dAJ0A8HHn3QOdAPnQP9cODR\nB50D/dA5JHPhI+EYmEMPPVTvvvuupLov6MrIyNApp5yidevWSZKKiora9UuzAAAAAKA5Ca/AXHzx\nxZozZ46mTJki27Z1yy23aMCAAZo1a5aefPJJ9enTRxMnTtwftQIAAADo4hIGmIyMDP3+979vtPzh\nhx/ukIIAAACARBzHkWma7brPUCjUrvtDy/x+f9JfVr23hLeQAQAAAJ2NaZrtGmCOOeaYdtsXEtuX\n/kt4BQYAAADojPx+v9LS0g50GdjPuAIDAAAAIGUQYAAAAACkDG4hAwAAQMrriEH9bR1kjo5FgAEA\nAEDKM01T//18t3xeX7vszwpbOuqwni2OsdmxY4fOOussPfXUUxoyZEhs+UUXXaQjjzxSt912W8Lj\nBINBnXvuuVq/fn2T6zdu3KiVK1fqrrvuilu+c+dOXXXVVTr55JM1c+bMJM/q4ECAAQAAwEHB5/XJ\nv58H9ffv319r166NBZidO3eqqqoq6e0dx0l4laep9XPnztWIESMUDodbV/BBgAADAAAAtNGxxx6r\nf/3rX7HHRUVFOu2001RbWytJevPNN7V48WJ5vV716tVLCxYskGmamj59uizL0tChQ2PbvvXWW7G2\nvXv31i233NLscZcuXap169bpk08+6biT66QYxA8AAAC0kdfr1eDBg7VlyxZJ0l/+8hedccYZsfU3\n3XSTlixZohUrVqhbt2564YUX9Pzzz2vgwIFauXKlBg8eHGt766236t5779WyZcuUl5entWvXNnvc\n9PT0jjupTo4rMAAAAMA+GDdunNasWaOePXsqNzc3Fi4qKytlGIYKCwslSSeeeKI2btwoSTrhhBMk\nSSeddJIkqbS0VNu2bdNVV10lx3EUCoWUl5cX2xbfIsAAAAAA+2D48OFatGiR+vTpo7PPPju23OVy\nKRqNxh6Hw2EZhiHbtmUYdTdC1a/3+XwqLCzU8uXL4/ZdH3jwLW4hAwAAwEHBClsyQ6F2+bHCVtLH\n9Xq9Ovroo7Vq1SqNHDkytjwnJ0eGYWjXrl2S6sLIkCFDNGDAAL333nuSFBs/k52dLZfLpc8++0yS\ntHLlSn388ccJj+04TtJ1Hiy4AgMAAICU5/f7ddRhPdt9n8kaN26cysvLlZWVFbd8/vz5uvbaa+Xx\neNS/f3+dc845qqmp0bRp03T55ZfHDeL/zW9+o9mzZ8vn86lnz566+OKL9c477zQ61q5du/Szn/1M\ngUBApmnqH//4hxYtWqSBAwe2/WRTiMvZD7Ft8+bNGjZsWEcfBgnQD50D/XDg0QedA/3QOdAPBx59\n0DahUEiSWvyeFnRezfVfMn8P3EIGAAAAIGUQYAAAAACkDAIMAAAAgJRBgAEAAACQMggwAAAAAFIG\n0ygDAAAg5TmOI9M023Wffr9fLperXfeJfUeAAQAAQMozTVMf7fpUPp+3XfZnWWEN6nVEi9M079ix\nQ2eddZaeeuopDRkyJLb8oosu0pFHHqnbbrst4XGCwaDOPfdcrV+/vsn1Gzdu1MqVK3XXXXfFLX/0\n0Uf14osvSpImTpyoH/7wh8mc1kGBAAMAAICDgs/nlX8/fy9M//79tXbt2liA2blzp6qqqpLe3nGc\nhFd5Gq7/6quvtHr1aq1evVqRSERjx47V+eef3+hLNA9WBBgAAACgjY499lj961//ij0uKirSaaed\nptraWknSm2++qcWLF8vr9apXr15asGCBTNPU9OnTZVmWhg4dGtv2rbfeirXt3bu3brnlliaP2a9f\nPz322GNyuVzyer1KT09XTU1NlwkwDOIHAAAA2sjr9Wrw4MHasmWLJOkvf/mLzjjjjNj6m266SUuW\nLNGKFSvUrVs3vfDCC3r++ec1cOBArVy5UoMHD461vfXWW3Xvvfdq2bJlysvL09q1a5s9bmZmpiTp\nH//4h/Ly8lRYWNhBZ9j5cAUGAAAA2Afjxo3TmjVr1LNnT+Xm5io9PV2SVFlZKcMwYuHixBNP1MaN\nGyVJJ5xwgiTppJNOkiSVlpZq27Ztuuqqq+Q4jkKhUMJg8u677+qOO+7Q/fff35Gn1+kQYAAAAIB9\nMHz4cC1atEh9+vTR2WefHVvucrkUjUZjj8PhsAzDkG3bMoy6G6Hq1/t8PhUWFmr58uVx+64PPA19\n+OGHmjt3ru6///4udfVF4hYyAAAAHCQsKywzFGqXH8sKJ31cr9ero48+WqtWrdLIkSNjy3NycmQY\nhnbt2iWpLowMGTJEAwYM0HvvvSdJsfEz2dnZcrlc+uyzzyRJK1eu1Mcff9zk8aLRqObMmaO7775b\nvXv3btPvKpVxBQYAAAApz+/3a1CvI9p9n8kaN26cysvLGw2knz9/vq699lp5PB71799f55xzjmpq\najRt2jRdfvnlcYP4f/Ob32j27Nny+Xzq2bOnLr74Yr3zzjuNjvXPf/5TO3bs0Lx582KzmM2YMSNu\nKueDmctxHKejD7J582YNGzasow+DBOiHzoF+OPDog86Bfugc6IcDjz5om1AoJEktfk8LOq/m+i+Z\nvwduIQMAAACQMggwAAAAAFIGAQYAAABAyiDAAAAAAEgZzEIGAOhw0WhUJSUlcctKS0tVXFzcqG1B\nQUHs+xEAAGiIAAMA6HAlJSV6++4/qPte04tGSku19e1349qVV1dr6NXTutyXsgHYd019ULKv+ECl\ncyLAAAD2i+5ZWeqRk/PtAtOMfwwA+6CpD0r2RbIfqHzxxRdasGCBysvLZdu2jj/+eM2cOVM+n69N\nx129erU+/vhjzZo1K275ddddp9tuu63N+/3kk080f/58rVixIm754MGD9fvf/17jxo2LLbvmmmtU\nXl6u5cuXJ7Xvk08+OfaFnA3t2LFD06dP16pVq9pUd1MIMAAAADgoNPqgpINFo1FdffXVmjdvnr77\n3e9KqvsyynvuuUe//OUv27xfl8vVaNmiRYvavL+W9tuvXz+tW7cuFmBM09TWrVuVm5u7T/ttzfrW\nIsAAAAAAbbBhwwYdfvjhsfAiSTNnzoy9YX/00Ue1du1aSdLo0aP105/+VLNnz1ZeXp4++OADlZWV\n6Wc/+5meeeYZVVRUxK6OfPnll/rZz36m3bt360c/+pEuvPBCjRo1Si+99JLmz5+vnj176v3339eu\nXbt055136qijjtJjjz2mF198UW63W6NHj9aPf/xjFRcX65prrpHP59OgQYOaPIdevXrp66+/VigU\nUlpaml5//XUNGzZMn332mSTpo48+0i233CLDMJSZmanbb79dmZmZuu6667Rr1y595zvfie3r008/\njWv729/+tkN+79zUBwAAALTB559/rqOOOipumc/nk9fr1fbt2/Xcc8/p8ccf12OPPaY1a9boq6++\nkiR5PB4tW7ZMAwcO1LvvvqtHHnlEAwcO1JtvvimpLsDcd999evTRR3XXXXdJir+KYVmWHnroIU2Z\nMkXPPvustm/frqKiIj3++ONauXKl1q1bp127dmn58uU655xztHz5cvXs2bPZ8zj99NO1fv16SVJR\nUZHGjBkTW7dgwQLNmjVLy5cv14knnqhHH31U//jHP2Tbtp544gmdf/75qqiokFR39emWW27RI488\nolNOOUUrV65sh99yYwQYAAAAoA1cLpds225y3X//+18dd9xxcrlccrvdGjp0qD788ENJ0rHHHiup\nbpKA+gCUl5enQCAgSRo2bJgMw1Bubq6ysrJUXl4et+/6Kz69evVSIBDQli1b9MUXX2jq1KmaMmWK\namtrtX37dn322Wc6/vjjJUknnXRSs+cwbtw4rV27VpZlqbi4WP3794+t/+yzzzRkyBBJ0oknnqj/\n/Oc/+vzzz2P7PfbYY5WWliZJ2rJli2688UZNmTJFzz//vEpLS1v5G00Ot5ABAAAAbXDYYYc1uspg\nWZa++OILuVwuRaPRuOX1M5p5PN++Bd/73/Uajhlp+HjvbRzHkc/n05lnnqmbb745rt0DDzwQO+be\ntTR0+OGHa+fOnXr55Zd12mmnNdsuHA7LMAw5jhM3O1v9vtPT0xsN/N+xY0ez+2srrsAAAADgoFBe\nXa09VVXt8lNeXZ3weKeeeqq+/vpr/fWvf5VU90b+zjvv1Nq1a3XUUUfp3//+t6LRqCKRiN577z0d\nffTRSZ3Hu+++K8dxVFZWpmAwqNzcXDmO02z7Y445Rm+++aZCoZAcx9Gtt94qy7I0YMAAvffee5IU\nuz2tofr9jhw5UkuXLo27fUySBg4cqH//+9+SpI0bN2rIkCFx+3377bdlWZakuhnN/va3v0mS1qxZ\nE5uZrKXa24IrMAAAAEh5BQUFGnr1tHbb34Bv9tkSl8ulhx56SDfeeKOWLl0qr9erU089VVdddZUk\nadKkSbr00kvlOI5+8IMfqHfv3o22b/hvl8ulAQMGaPr06fryyy917bXXNmrbUO/evTV16lRdeuml\n8ng8Ouuss+Tz+TR16lT98pe/1CuvvKKBAwc2ew6SNG7cOBUVFemwww6Lu2pyww036Oabb5ZhGMrJ\nydFtt90mv9+vp59+WlOmTNGgQYNiU03PmTNH8+bN0wMPPKC0tDQtWrRIgUCg3WchczntHYmasHnz\nZg0bNqyjD4ME6IfOgX448OiD/a+4uFhbH3k0bnrTPSUl6tHgzcGeqioNuPxHfJHlfsTfw4FHH7RN\nKBSSpNj4C6SW5vovmb8HbiEDAAAAkDIIMAAAAABSBgEGAAAAQMpIOIj/6aef1nPPPSeXyyXHcfTB\nBx9ozZo1mjFjhhzHUUFBgRYuXCiv17s/6gUAAAAkSaZpHugS0Eamacrv97dp24RXYC666CKtWLFC\ny5cv1/Tp0zVx4kQtWbJEU6ZM0cqVK9W/f3+tWrWqTQcHAAAA2sLv97f5DXBTPvjgg3bbFxLbl/5r\n1TTKf/jDH7Ro0SJNmjRJ8+fPl1Q3Z/TDDz+syZMnt6kAAAAAoLVcLle7z0DGjGapIekxMO+99556\n9+6t/Px81dbWxm4Zy8/PV0lJSYcVCAAAAAD1kr4C89RTT+nCCy9stDzZr5HZvHlz8lWhw9APnQP9\ncODRB/tXaWmpIqWlUoP71fc0+ACsrLpaVf/+t/Lz8/dneV0efw8HHn3QOdAPqSHpALNx40bNmzdP\nkpSZmSnLsuTz+VRcXKyePXsm3J4vaDrw+KKszoF+OPDog/2vuLhYW99+N+EXWcrv14DjjuOLLPcj\n/h4OPPqgc6AfOodkQmRSt5Dt3r1bmZmZ8njq8s7w4cNVVFQkSSoqKtKIESP2oUwAAAAASE5SAaak\npCTucv4JnwquAAAgAElEQVTVV1+t1atX67LLLlNVVZUmTpzYYQUCAAAAQL2kbiE75phjdP/998ce\nFxQU6OGHH+6wogAAAACgKUnPQgYAAAAABxoBBgAAAEDKIMAAAAAASBkEGAAAAAApgwADAAAAIGUQ\nYAAAAACkDAIMAAAAgJRBgAEAAACQMggwAAAAAFIGAQYAAABAyiDAAAAAAEgZBBgAAAAAKYMAAwAA\nACBlEGAAAAAApAwCDAAAAICUQYABAAAAkDIIMAAAAABSBgEGAAAAQMogwAAAAABIGQQYAAAAACmD\nAAMAAAAgZRBgAAAAAKQMAgwAAACAlEGAAQAAAJAyCDAAAAAAUgYBBgAAAEDKIMAAAAAASBkEGAAA\nAAApw3OgCwAAdD7RaFQlJSVJtS0oKJBh8HkYAGD/IMAAABopKSnR23f/Qd2zslpsV15draFXT1Nh\nYeF+qgwA0NURYAAATeqelaUeOTkHugwAAOJwzR8AAABAyiDAAAAAAEgZBBgAAAAAKYMAAwAAACBl\nEGAAAAAApAwCDAAAAICUQYABAAAAkDIIMAAAAABSBl9kCQDoNKLRqEpKSpJqW1BQIMPgczgA6GoI\nMACATqOipkbFy1aoukd+i+3Kq6s19OppKiws3E+VAQA6CwIMAKBT6Z6ZqR45OQe6DABAJ8W1dwAA\nAAApgwADAAAAIGUQYAAAAACkDAIMAAAAgJRBgAEAAACQMpKahez555/XQw89JI/Ho+nTp2vQoEGa\nMWOGHMdRQUGBFi5cKK/X29G1AgAAAOjiEl6Bqaio0B/+8Ac98cQTuu+++/Taa69pyZIlmjJlilau\nXKn+/ftr1apV+6NWAAAAAF1cwgDzxhtv6NRTT1V6erp69Oih+fPna+PGjRo5cqQkaeTIkXrjjTc6\nvFAAAAAASHgL2Y4dO1RbW6srr7xSgUBA06ZNUygUit0ylp+fr5KSkg4vFADQ+USj0bjXAMdxZJpm\no3YlJSWKRCKyI3ZsmW1HY4/dbrfk6vh6AQCpL2GAcRwndhvZjh07NHXqVDmOE7c+GZs3b257lWg3\n9EPnQD8cePRBy0pLSxUpLZWaCCN721pcLOv3d6uwe66kulASjNTKcMVf4P+qtFQ9s7MUqs2LX168\nXdFoVJneDLndhsrLyxXyeJRmtJxmyqqrVfXvfys/P78NZ4eG+Hs48OiDzoF+SA0JA0yPHj10/PHH\nyzAM9evXT5mZmfJ4PLIsSz6fT8XFxerZs2fCAw0bNqxdCkbbbd68mX7oBOiHA48+SKy4uFhb335X\nPXJyWmxXZlnK8HjVt7DudcCO2AqYgborKnvzeZTh8So//9sAU15Roe65ubJtW9n+bLk97tj+ehQU\ntFyg368Bxx2nwsLCNp0fvsXfw4FHH3QO9EPnkEyITDgG5tRTT9Wbb74px3FUXl6uYDCo4cOHa926\ndZKkoqIijRgxYt+rBQAAAIAEEl6BKSws1NixYzVp0iS5XC7NmzdP3/nOdzRz5kw9+eST6tOnjyZO\nnLg/agUAAADQxSX1PTCTJk3SpEmT4pY9/PDDHVIQAAAAADQn4S1kAAAAANBZEGAAAAAApAwCDAAA\nAICUQYABAAAAkDIIMAAAAABSRlKzkAEAgPbnOI5M02z1dn6/Xy6XqwMqAoDOjwADAMABYpqmPtr1\nqXw+b9LbWFZYg3odobS0tA6sDAA6LwIMAAAHkM/nlZ8wAgBJYwwMAAAAgJRBgAEAAACQMggwAAAA\nAFIGY2AAoAtKNPtVKBSSHbFlR+zYMrfbLXXkxFeOZNu2bJcr7rhNsSO2QqGQHMdhNi4A6GIIMADQ\nBZmmqf9+vls+r6/J9Xv2VKk2aMnnrgs50WhUudnpcnvcHVaTbduqCpqKeqWqmpanFg4ELX3yxR4V\nFhYyGxcAdDEEGADoonxeX7OzX/n9fllut9zu+peJyH6pyXAZchvGXsdtmtvtlreZ8AUAOLgxBgYA\nAABAyiDAAAAAAEgZ3EIGAF1INBpVSUmJQqGQ9uypkt/vb7JdWekeeZz9XBwAAEkgwABAF1JSUqK3\n7/6DctLSVRu0ZLmbHpS/Y/du9c7JkZSzfwsEACABAgwAdDHds7LUPSNTPrfZ7GD58urq/VwVAADJ\nYQwMAAAAgJRBgAEAAACQMggwAAAAAFIGY2AAACnHkWSZIYVCoaS38fv9crlcHVcUAGC/IMAAAFJO\n1La1K7BDBRXp8vu8CdtbVliDeh2htLS0/VAdAKAjEWAAACnJ4/HKn+aX3+c70KUAAPYjxsAAAAAA\nSBkEGAAAAAApgwADAAAAIGUQYAAAAACkDAIMAAAAgJRBgAEAAACQMggwAAAAAFIGAQYAAABAyuCL\nLAEABz3HcRQKhVq9nd/vl8vl6oCKAABtRYABABz0LNPSJ8GtysrMSH4bK6xBvY5QWlpaB1YGAGgt\nAgwAoEvwer3yE0YAIOUxBgYAAABAyiDAAAAAAEgZBBgAAAAAKYMAAwAAACBlEGAAAAAApAwCDAAA\nAICUQYABAAAAkDIIMAAAAABSBgEGAAAAQMogwAAAAABIGQQYAAAAACnDk6jBxo0bdc011+jII4+U\n4zgaNGiQfvrTn2rGjBlyHEcFBQVauHChvF7v/qgXAAAAQBeWMMBI0oknnqglS5bEHs+ePVtTpkzR\nmDFjtHjxYq1atUqTJ0/usCIBAAAAQEryFjLHceIeb9y4USNHjpQkjRw5Um+88Ub7VwYAAAAADSR1\nBeazzz7TL37xC1VWVmratGkKhUKxW8by8/NVUlLSoUUCAAAAgJREgDn00EN11VVXafz48frqq680\ndepURSKR2PqGV2eas3nz5rZXiXZDP3QO9MOB11X7oLS0VJHSUtnBWgVNW4bb3WS7quoqhd1epX/z\nYVXUtmXVuuV2x1+4Ly8vV8jjUZrhkiTZdlS1dkhGg3aVVQGFvV6le+NfdsorKhS1ozLdpiQpEKhS\n1JcWO25zqqoqtX3HV8pMj8rn9SU87+pAtWRIWZlZCdvWs0xL5Wml8vv9SW/TWqZpqjhUKp8/8Tl0\nZF1d9e+hM6EPOgf6ITUkDDCFhYUaP368JKlfv37q0aOH3n//fVmWJZ/Pp+LiYvXs2TPhgYYNG7bv\n1WKfbN68mX7oBOiHA68r90FxcbG2vv2uumdkqqrGlNvd9MtAaW2tMjwedc/tLkmy7YhyMv1ye+ID\nT5llKcPjVY+Cgrp2EVsBMyB3g2DUrbZWGR6vuufmxpaVV1Soe26ubNtWtj9bkpRdWa1snz923OaE\nJfU9pJ8GDx4ovy/xm/+qikrJMJSTk52wbT0zFNKAvEOVlpaW9DatFQqFtLXsC/lbcYz2rqsr/z10\nFvRB50A/dA7JhMiEY2BeeOEFLV26VFLdJ3elpaW68MILtW7dOklSUVGRRowYsY+lAgAAAEBiCa/A\njBo1Stddd50uueQSOY6jm2++WYMHD9asWbP05JNPqk+fPpo4ceL+qBUAAABAF5cwwGRmZuqPf/xj\no+UPP/xwhxQEAF2R4zgyTbNV2/j9frlcrg6qqPNzHEeWaSXV1gyH5ZJLjiMl+ytzHEe1tbUKhUKS\npGg0qj179iTcLjs7W4WFhTIMvisaADpCUrOQAQA6lmma+mjXp/L5kvtSYMsKa1CvIzp0fEZnZ0fC\n+uLrCqWnpydsW10VUMSOKLtbdlJjZqS6wfL/Kf9YJVWmvB6vykvLZL2wRjkZGS3UFFG6P00nXftL\nFRYWJn0uAIDkEWAAoJPw+bytGswNyeP1yOdLPBuX1+eXK9z6q1Ver1eZmV75fH5ZpqXsbt2Ul9X8\nRADhsCWP0fTMbgCA9sH1bQAAAAApgwADAAAAIGUQYAAAAACkDMbAAEAX4TiOQqGQ7Igt2677aY4d\ntWVHDdl2RIbbLTlqsr1t27JdLtkR+9vH0ajkcskwDHXdOdIAAB2FAAMAXYRpmvps91aFrWp5vI6C\nkbCMaNMDzmsjIbkUVsCsVrY/S3bUVkUgLK83fpa06tqwoh6pqqZuCmjbthWMhCVXRDmZfrmZShgA\n0M4IMADQhXh9XkXdbrndbhnuqNzNzJjldhtyG+647zIx3Ibc7viXDbfhltuIX25E3eLSCwCgo/DR\nGAAAAICUQYABAAAAkDIIMAAAAABSBmNgAKCTcRzJClsttjGtsEKhUOyx3++Xy8XAk1TjOI5MKyy1\nYrID0wrLcZwOrAoAOjcCDAB0MlbY0tYdZfJ6vM23MU1Fqyvk96fJCls66rCeSktL249Voj2Ypqlt\nO8uUmZmV9DY1NdX6n9y+Sk9P78DKAKDzIsAAQCfk9Xjl8/mbXe84kt+fJj+hJeUl6uuGLNPswGoA\noPNjDAwAAACAlEGAAQAAAJAyuIUMAID24khR21YoFIqbZKE5oVCIAfkA0EoEGAAA2kk0aqsmHNKX\nFdsV9CYOMKVl5YqEw/uhMgA4eBBgAABoR4ZhyO/3JzXBgtfrlcSgfABoDcbAAAAAAEgZBBgAAAAA\nKYMAAwAAACBlMAYGAFKQ4zgyzbpB4qbZmhmvOrqy1nMk2bYtqW4QvB2NyrYjLW4TsSOqKC+XN80v\nM9jyuefm5bVXqe0qGo2qdE+pKspqEvZLbl6eDIPPHAFAIsAAQEoKW5a+DH6pjMwshS1TRkW1/D5v\ni9sEAtUKd8IZr6K2rcpIlQzDUG0kJLcRVU042OI2X5eXyPuX7fIXFMjwNP9SVlkTlH4wUV6fr73L\n3mdle0pV9uQLyjR8MtL8zbarP4e8Hj32Y3UA0HkRYAAgRXm9Xvn9frlckj/NL3+CN+lmqPPOdmUY\nhtxutwy3W27DLbfb3WJ7l2EoOz1deVlZ8npaDm7R9iy0neVmZijNnZZwxrLOfA4AsL9xPRoAAABA\nyiDAAAAAAEgZ3EIGAOjyotGoyvaUxi0LVAVkhSMKmJLX61NFWZm6JzEJQtRxVNpgX00p3VPaKSdV\nAIDOjgADAOjyyvaU6suHH1duZmZsmWWF5TiOPHbdGJ3qkhJlZedI2dkt7qsyGJTryRflze/eYrsd\nu3cr15+mdE/L418AAPEIMAAASMrNzFT+XuHEsixFo45MW3IbblXU1LRiXxlx+2pKeXW1ZDM8HwBa\nizEwAAAAAFIGAQYAAABAyiDAAAAAAEgZjIEBgINANBrVnt0lLbYJVAVUXlaubvupJgAAOgIBBgAO\nAmWlZSpe8XTcLFoNWVZYe/bsUXpentRCOwAAOjMCDAAcJBrOotWQZVkqrwnux4oAAGh/jIEBAAAA\nkDIIMAAAAABSBreQAUArOI4j0zRbvY0kuVyuZtuEQiGZVlgyDFmmJUfOPtWJOlHHUUVZmTxen+yI\npT0lPvm93kbtSveU8oIIACmC/68BoBVM09R/P98tn9eX9DaB6iq5XIayMrNa2G9IXwcD8vktBYM1\n8vp88id/CDSjKhiUvfZlZWdmyYlGFdycLtNofPPBjt271Tunm9TCGCIAQOdAgAGAVvJ5ffKnpSXd\n3jRDkuFKuI034pfP51fYsva1ROylW3qG8rKyFI1GlZudIXcTAaa8uvoAVAYAaAvGwAAAAABIGQQY\nAAAAACmDAAMAAAAgZTAGBgDQ/hxHth2NPbSj0dhPvehey1xySXJJzL4GAEiAAAMAaHfRaFTVQVNu\nT93LTNC05YpI1bXhWJuQFVV1bVgRKyzJJRlhRaMEGABAy5K6hcw0TZ199tl69tlntWvXLk2ZMkWX\nXXaZ/u///k/hcDjxDgAAXY7LMOQ23N/8GDJi/677Mb5ZbxhuGW5Dhou7mgEAiSX1anHPPfcoNzdX\nkrRkyRJNmTJFK1euVP/+/bVq1aoOLRAAAAAA6iUMMJ9//rm2bt2qM844Q47jaNOmTRo5cqQkaeTI\nkXrjjTc6vEgAAAAAkJIIMAsXLtT1118fe1xbWyuv1ytJys/PV0lJScdVBwAAAAB7aXEQ/7PPPqsT\nTjhBffr0aXK94zDYEgAObo5s25Zt25JLso1I3Fo7asuOGrLtuuW2bYuZxDoXx3Fkmmaz603TVCgU\narTc7/fL5XJ1ZGkA0CYtBpjXX39d27dv18svv6zi4mJ5vV5lZGTIsiz5fD4VFxerZ8+eSR1o8+bN\n7VIw9g390DnQDwdeW/vANE19XW7J5/MnvU11dUCSlJWV3WwbyzJVFimT1+dTMFgjScrIyGy2fbC6\nWnJJGZlZCocteSLVyq6slGHbzW4TDkcUqA7IFQnL7zYUsqIyjKYvxNfU1Mhxe+Q3DFU4FbHlHk/8\ny0ZpValqPR653XXHjUQicfusb1+/v4DfF7d9IFClSDhSN4OypNqaGnkidqN2DdUGg7INl6oDgUY1\nNXceUScqOVaT51xZFVDY61W699t9hcMRRaO2bKduwoHmzmFvlmkqEKiSYdtx+2pKZVVA3qgjj9yy\nwlaz7aprarTnqy9V+c3zKFhTrYyakHJyclrcfz3TNLWjepc8Hm+zbda+8Urc40gkrEOyesnvT/55\njn3D60LnQD+khhb/d128eHHs30uXLlXfvn319ttva926dTr//PNVVFSkESNGJHWgYcOG7Vul2Geb\nN2+mHzoB+uHA25c+CIVC+uyrCvnT0pLepqqyQjJcysnu1mwbMxTSjpqd8vv9qqkOSIZLmRlZzbYP\nVFXJ5ZKysnNkWabSDFPme5+qe3ZLIclSdm1I3dLTlJubq+rasNyGu8m2mcGgMtweZWVlxcKFXC55\nG7wJzg6FlOH2qFu3uolewpbVZPv6/WVnf/umOxCoUnZ2Ttw26cGgMv1pce2akp5RKZ9LysrOblRT\nc+cRjUaV2y1D7iYCTLfaWmV4vOr+zYQ1Ut3vKxp1ZNqS23A3eQ4Nmd5aZUfD6paREbevpnSrrZXL\njiorM6vF51PY5VJGv/7K69FDklQdqNLxA4+KTa6TSCgUUveyL5o9xn//+6GOOmpw/HmEQhqQd6jS\nWvE8R9vxutA50A+dQzIhstVzVk6fPl3PPvusLrvsMlVVVWnixIltKg4AAAAAWivpL7K86qqrYv9+\n+OGHO6QYAAAAAGhJ0gEGANB+otGoykr3xB6bpqnyYKl8Pp+CNTWSIZnBuoHVuXl5zY5VAQCgqyHA\nAMABUFa6R1+tfES5mXUD9W3bljdSK8NtyB8OSy6XDI9HlTVB6QcTY+MfAADo6ggwAHCA5GZmKv+b\nAeG2HVFa2C23261w2IobAB89kEUCANDJcE8CAAAAgJRBgAEAAACQMggwAAAAAFIGAQYAAABAyiDA\nAAAAAEgZBBgAAAAAKYMAAwAAACBlEGAAAAAApAy+yBIA0EU4su2mvxbUjkZjP3svi0aj4rM+AOhc\nCDAAgC4hGo2qOmjK7Wn80hc0bbkiUnVtOLYsYoUVidjypfnlJsMAQKdBgAEAdBkuw5DbcDda7jYM\nGYY7bl3UcMswmr5iAwA4cPhMCQAAAEDKIMAAAAAASBkEGAAAAAApgzEwANDOotGoykr3xB4Hqiol\nwyUrZMaWlZXukcc5ENUh1TmOo1AopFAolFT7UCgkh+cagIMIAQYA2llZ6R59tfIR5WZmSpLCYUty\nSQGPL9Zmx+7d6p2TIynnAFWJVBUJh/XxF6XKDyTXPlBdpbTuYaWlp3VsYQCwnxBgAKAD5GZmKj+7\nLpxYlim5JJ/XH1tfXl19oErDQcDr88ifllwgMc2QJKtjCwKA/YgxMAAAAABSBgEGAAAAQMogwAAA\nAABIGYyBAYB25jiObNuWbUckSbZtSy7JNiKxNnbUlh014tuo8VRRUcdRRVlZo+XVgWq5XJJlWrIs\nU+5IjbJsW3a0+W+Ot6NROU5UdjQq2442eTwAADo7AgwAtDPLslRt1Sgt7JYkRSJhySWF9W2AqY2E\n5FJYNeFgXZtwWIbbkNsdv6+qYFD22pdldO8etzzdqtun4fXKHQ7ry5ISHZKbqzRverN1RaywamvD\n8sqtQDAkw3DLzXV4AECKIcAAQAcwDEPub9JINGpLLlfssSS53YbchvvbNrbd7L66pWcoLys7blnY\nqpua2ev1KRy2VBEMfhNI3M3sRYoabrnchgzDLcNFcgEApCZewQAAAACkDAIMAAAAgJTBLWQAACDG\ncSTTCisUCiW9jd/vl8vl6sCqAOBbBBgAABBjhS1t21mmaHWW/P60pNofdVhPpaUlbgsA7YEAAwAA\n4ng9Xvn9afITSgB0QoyBAQAAAJAyCDAAAAAAUgYBBgAAAEDKYAwMgJTlOI5M02zTdm09RigUkmm2\nPDuTZYYkJX8MHDwc1X1xqR2Nyo5GW2xrR6Ny245a+1ypf06aSc4SZpqm0jJ5PgI4eBBgAKQs0zT1\n0a5P5fN5k97GssKyLKvNxzCtsL4OBuSN+JvdZmfVDmUlePOKg5MTjSoYCstvhFVdG26xbdC05YmE\n1c1p3XMlbFnaae6QlRZJqn1FZan+Jyu/VccAgM6MAAMgpfl83lbPlFSzL8cwDPn8lny+5gOM25N8\noMLBxyXJMNxyG+4W27kNQ3K17U5uj8cjv7/55+DevF6ejwAOLoyBAQAAAJAyCDAAAAAAUga3kAHo\nUuoHQIeSHAAdCoXUijH/QLuLOo4qyspijyvKyyXDJa/b16htbl6eDIPPJgEc3AgwALoUy7S0M7hb\nW8u+SKp9IFAtn9+vtHS+kRwHRlUwKHvtyzK6d5ckdQsGJZdkpGfEtausCUo/mKi8Hj0ORJkAsN8Q\nYAB0OR6vJ+mB/2ao9dM0A+2tW3qG8rKyJUm1hiG5pPT0zEbtmPsOQFfAdWYAAAAAKYMAAwAAACBl\nEGAAAAAApAzGwADo0hxHssJWs+vNcFguuWRadW0s05IjpiUDAOBAIcAA6NKssKWtO8rk9TT9beXV\nVQG5XC5lfjPrcjBYI6/PJ3/jGWwBAMB+kDDAhEIhXX/99SotLZVlWbryyis1ePBgzZgxQ47jqKCg\nQAsXLpTX2/SLPwB0dl6PVz6fv+l1Pr9cLsXWh63mr9YAAICOlzDArF+/XkOGDNFPfvIT7dy5U5df\nfrmGDh2qyy67TGPHjtXixYu1atUqTZ48eX/UCwAAAKALSziIf8KECfrJT34iSdq5c6d69+6tTZs2\nadSoUZKkkSNH6o033ujYKgEAAABArRgDM3nyZO3evVv33nuvrrjiitgtY/n5+SopKemwAgEAQNs5\njiMzbMYmomjICltx65ioAkBnl3SAeeKJJ/Thhx/qV7/6lRzn2//Y9v53SzZv3tz66tDu6IfOgX5o\nH6ZpqjhUKl8rRtRXB6olQ/rvfz+UVPfmbU9VWF5v0/sIVldLLikjM6vucbBGkpSR0fhb0Ovt2rFd\nfWpqFPDU/RcbiUQkSR7Pt//l1tTUyHF7FPim9kg4Irnq2uzdvmG7eg3b19bUyBOxG7VruE1tMCiP\nHZXfbTSqaW/1x/V/863v9Rq2b+48GrZv7jwCgaq4bZI5D0mqDQZlGy5VBwLNnkPD84jYEXlMs8n2\nTdUXCUfitmnuHPYWqq1VMFgrv8ud8BxqampkRCKq9vsVidgJz6F+f6HaWsnlarRNdU2N9nz1pSqr\nA3HL9+wu1iefRZWXn9/sMf6x8b29ziGkaNSWmWM1OzZsb5ZlqrLEJ78/cVs0j9eFzoF+SA0JA8z7\n77+v/Px89e7dW4MHD1Y0GlVmZqYsy5LP51NxcbF69uyZ8EDDhg1rl4LRdps3b6YfOgH6of2EQiFt\nLftC/rS0pLepqqjUR59+oqOOGixJMi1L24sDzb5RC1RVyeWSsrJzJEk11QHJcCkzI6vZY7gdl9I/\n+kzZ32wTDluSyxU301lmMKgMt+fbNpYluSSv1xfXvmG7eg3bpweDyvSnNWrXcJv0YI0y09KVlZXV\nqKa91R+3rt03C5to39x5NGzf1HkEAlXKzs6J2yaZ85Ck9IxK+VxSVnZ2s+fQ8DwikbA8Pl+T7Zuq\nL2xZcds01xd787jdygjWKDMzM+E5ZAaDcoXDysrKVHp684G44XE9brfkUqNtwi6XMvr1V16PHnHL\nM3w+ye1SYWGfJve/ddtWDfifAbHHNdUBWWFLRxYMTOpvywyFdHi/XKW14u8Q8Xhd6Bzoh84hmRCZ\ncAzMW2+9pUceeUSStGfPHgWDQQ0fPlzr1q2TJBUVFWnEiBH7WCoAAAAAJJbwCswll1yiOXPm6NJL\nL5Vpmrrpppt0zDHHaObMmXryySfVp08fTZw4cX/UCgAAAKCLSxhg/H6/Fi1a1Gj5ww8/3CEFAQAA\nAEBzEt5Chv/f3r3GyFXf9x//nDNzzpnb7trrC8b/AG2gpRGlVUSpSt00EIW2SqqormpqaOhFVfKg\nUiUqtZGBiPYZwjyIaFEakExbNTSLgDYlKcjAvwpNlRQcR6I0Bf9jLrbBNvZ6dnYuZ85lZs7/wXjH\nczmzs7ve3dnZeb8eec/8fnO+vz2ec+Y7c77fBQAAALBRkMAAAAAAGBkkMAAAAABGBgkMAAAAgJFB\nAgMAAABgZJDAAAAAABgZA9soAwCaGo2G5i7kJVPyXa/vuPm5OaWjaB0jAwBgfJDAAMASFfJ5+c/9\nmyazWZnJ/qfP8PQZBZOT6xgZAADjgwQGAJZhMpPRdC4nK2n1HXM+XVjHiAAAGC/UwAAAAAAYGSQw\nAAAAAEYGt5AB2FSiSArCoO/jfhgqDAL5QXNM4AeKRME9AACjggQGwKYShIHe/SDft0alXCzpQqmm\n9z8sSZJctyLLtuXY6xklAABYKRIYAJuOlbRk2078Y7Yjy7r0eBj0/7YGAABsPNTAAAAAABgZJDAA\nAAAARgYJDAAAAICRQQ0MgHUTRZF831/WHMdxZBjGGkUEIE7zteotaazve/K85ti1er1y7gDQjgQG\nwLrxfV9vvnNOtrW0ll9BGOhjH92pVCq1xpEBaBcGgU7On1Qmm1vCWF9moSxD0vW7rluT1yvnDgDt\nSGAArCvbsuXwpgLY8CzLkuPEd/NrZxiSk3KkRmNN4+HcAWABNTAAAAAARgYJDAAAAICRwS1kAFZs\nuas9tm8AACAASURBVIW1nucpUrSGEQHjqxFFKuTzPdsLc3OSachKXKof2TI9LdPkM0wAo4kEBsCK\nLbewtlQuynYcpVLpNY4MGD9F11X9hRdlbt3asX3KdSVDMtMZSdJ8xZX27dX09u3DCBMALhsJDIDL\nspzC2qW2ZQWwMlPpjKZzEx3bqqYpGVI6nW1tW9tyewBYW3x/DAAAAGBkkMAAAAAAGBkkMAAAAABG\nBgkMAAAAgJFBAgMAAABgZJDAAAAAABgZJDAAAAAARgYJDAAAAICRwR+yBLAmoihS4Psd23zfl0zJ\nt5y+cyTJMIyL4z15Xv8/ful5ni5OAQAAY4IEBsCaCHxfJwonlLSs1ja3WpJMQyWjEjvHLZclQ8pk\nc5KkMPBlFspybCt2fKlUlu04SqVTq78AAACwIZHAAFgzScuS41z6tqUWBpJpdGxrF/i+DEOtxw1D\nclKOHNuOHe97fux2AACweVEDAwAAAGBkkMAAAAAAGBkkMAAAAABGBgkMAAAAgJFBAgMAAABgZJDA\nAAAAABgZJDAAAAAARgYJDAAAAICRQQIDAAAAYGQkhx0AAAxbo9FQfnY29rFyqSzDkAI/UCGf10S0\nzsEBQ7LY66JdGAbavSO7Lp+IRlGkwPcHjvN9T57ntX52HEeGYaxlaADWEQkMgLE3Pzen+rdf1FQ2\n0/NYOgglQzItS+Xz55XK9I4BNqP5uYIaL7wU+7poVymXlP/iXdq+bXrNYwp8XycKJ5S0rEXHhYEv\ns1CWY1sKglDX77pOqVRqzeMDsD6WlMAcPHhQP/zhD1Wv1/XFL35RN954o/7iL/5CURRpx44dOnjw\noKwBJxMA2MimshlN5yZ6todBIBmSZdkqVCpDiAwYnn6vi3b1RmOdomlKWpYcx1l0jGFITsqRY9vr\nFBWA9TQwgXn11Vd1/PhxzczMqFAoaO/evfqlX/olff7zn9ev//qv6ytf+YqeffZZ7d+/fz3iBQAA\nADDGBt6yevPNN+uRRx6RJE1OTsp1XR05ckSf+tSnJEm33Xabvve9761tlAAAAACgJSQwpmkqnU5L\nkp555hndeuutqlarrVvGtm3bpvPnz69tlAAAAACgZRTxv/zyy3r22Wd16NAh/dqv/VprexQtrSXP\n0aNHlx8dVh3HYWPYLMfB932dmQtk2733oweBr3wtL6vtHnTXbdaQZDLZ2Odzy2XJkDLZnKRmd6Py\nnCXbir+PvVwqS6aUuzhekoIw0GwxlNVnzsI+3n3v3VZMxUJBV5XLsmLOZ7WwJhlSMplUpVJRaBgq\n27aSyf6nz6rrSlZSpVKx+Ry1miR1zKlUKooSSZUcu2c/7eO7x8XFVavVVK1UlKzVe8Z1z6m6rpL1\nhpyE2RNTu4X9OqYptTVv6h7fbx3d4/uto1QqdsxZyjqk5u+4bhoql0qLHov2ddTqNSV9P3Z8XHy1\nsNYxp98a2nnVqly3KsdIDFxDpVKRWaup7Diq1eoD17DwfF61KhlGz5x+8XWPL1cqmj11UvPlUmvM\nwutBar4m3HJZtTDs+7ro2G+5rPkf/1iz57dqLnVhYH3KSiycayT1nFfitJ87Aj9Ys7hW02a5Low6\njsNoWFIC893vflePP/64Dh06pFwup2w2qyAIZNu2PvzwQ+3cuXPgc9x0002XHSwuz9GjRzkOG8Bm\nOg6e5+ntUwU5Md19fM/TB5XTHW8aKuWSZBrKZnI94yWpVCzKMKTcxKSkZhL0kSsm+hbiFgvzkmlq\ncvJSkbEfBHr/w1JsUrWwj5OnTugnf+InWzHNTUwod/yEJgYU8WddV7ak3MSErGT/xiXpzLwylqWJ\ni+sIw0AyjI45WddVJpG8NKZtP+3ju8fFxRWGgdKuq6yT6hnXPSftVpRNpZXL5Xpiarew3+a4ixtj\nxvdbR/f4uHWUSkVNTEx2zFnKOqTm79g2Bh+L9nXUaqGSth07Pi6+MAg65vQ7Fu2SiYQybkXZbHbg\nGrKuKyMMlctllU7HJ/VxsSUTCclQz5x+8XWPDw1Dmauu1vT27ZKaycvC60FqvibK5ZICL1Du7ZOx\nr4t2XhRpx0/9lLZvm9ZPTl+zJt2+Fs41knrOK3Hazx2+561ZXKtlM10XRhnHYWNYShI58Baycrms\nhx9+WF/72tc0MdE8id1yyy06fPiwJOnw4cP6xCc+cZmhAgAAAMBgA7+Bef7551UoFHTPPfcoiiIZ\nhqGHHnpI999/v5566int3r1be/fuXY9YAQAAAIy5gQnMHXfcoTvuuKNn+xNPPLEmAQEAAABAP0su\n4geAUdNoNFTI5zu2lUtlFQsF5WdnJUlupaL5+Tlll9aPBMAqiaJIvu8vaaznefJ9b2HiGkYFYBSQ\nwADYtAr5vEpP/4umspnWtnQQardbkfn2SUmSE4byL1xQuGWrNLF4sTKA1eP7vo6dPS7b7t+EoTU2\nCHXGLSkMQlm2Fds4BMD4IIEBsKlNZTOabuuiFAaBbEPaenFbGAYquO6wwgPGmr3UZMQ0ZTsBX74A\nkLSELmQAAAAAsFGQwAAAAAAYGdxCBmDkNBoN5WcvqFQsSYahwPNaj/lhqLkLZVmWrUI+r63ccgKs\niyiK5LW9FgfxPI9bwgCsCAkMgJGTn72gk098QxnLlgxDkXXpVFZvNJT0ajJNU+Xz55WbmKQ4H1gH\ngR/ox+67yrU1zVhMqVSW7ThKpSnIB7A8JDAARtKWbFYTjiMZhmzrUhejeqMhJxkqYSZUqFSGGCEw\nfixr6R3CfG9pLZQBoBs1MAAAAABGBgkMAAAAgJFBAgMAAABgZFADA4yhKIrk+8u7/9xxHBmGsUYR\nxYuiSIEf9Gz3w1D1RkP1RkOGDNUTjdZj9XpDEq2NgI0sipqvY0OG/KD3Nd4t8ANFvK4BXEQCA4wh\n3/d17Oxx2bY1eLCkIAh1/a7rlFpice5qqYWhTpzxlE6nO7bPXSgr6dWUaJiSDCXrbXNqoUwzoQTf\nLwMbVhAGOnE6L9uylV1C52XXrciy7bUPDMBIIIEBxpRtL71b0DAlraRs2+nYZlm2TNOUaSYkQ0qY\nidZjDaPe/RQANiAracmy7Z7Xd5xwCd/SABgffEYJAAAAYGSQwAAAAAAYGSQwAAAAAEYGNTAAAGDl\nokihH8i3bbqKAVgXJDAAAGDFGo2G3j9X1EQ1kmEYS+4qVqvV5Ayu3weAHiQwAADgsiSSCVm2I8PQ\nkruK+VpCpgMAMaiBAQAAADAySGAAAAAAjAwSGAAAAAAjgwQGAAAAwMgggQEAAAAwMkhgAAAAAIwM\nEhgAAAAAI4MEBgAAAMDI4A9ZAgCATSWKIgV+IEnyg1CeN/iPZkZRJEkyDGPJ+3EcZ1njAawOEhgA\nALCp1MJQJ854SqfTCnxfjXJBjpNadE6pXJRhmMplc0vaRxAG+thHdyqVWvx5Aaw+EhgAALDpJK2k\nbNtRFEmOk5IzINHwfU8yjYHjAAwfNTAAAAAARgYJDAAAAICRwS1kwAYSRZF831/2vM1SSNpoNFQs\nFFrFt26lIpmS73YW4BbyeW2NhhEhMPoaUaRCPt/6eX5uTvncROtnt1JRpVJW6AfK8ToDsAGRwAAb\niO/7Onb2uGzbWvKcIAh1/a7rNkUh6fxcQeG3n9fE1JQkyQlDyTBkJjtPVeXz55WbmJQcZxhhAiOt\n6Lqqv/CizK1bJUnby2WZb7zZetwJQyXDUKfn5xVunZYmJvo9FQAMBQkMsMHYtjXWRaSTmYymL34a\nHIaBZBiykp0JXaFSGUZowKYxlb70OrOiSBNt38CEYaBaGKoUBMMKDwAWRQ0MAAAAgJFBAgMAAABg\nZJDAAAAAABgZ1MAAIyKKmn/5uZsfhPI8L2bG5ulOBgAAsIAEBhgRQRjo3Q/yPQXtge+rUS7IcVI9\n4z/20Z2bojsZAADAAhIYYIRYSUu23dk6OIokx0mNdecyAAAwPqiBAQAAADAySGAAAAAAjAxuIQM2\nqSiK+hb3e54nPwgl0+wYLym26L9fowDP8xQpWqWIAWxmjUZDhXxekuRWKqpUygq8QIHf25xky/S0\nTHN1PmONoki+H38ubOf7vmRKvuXI3iANUJqx+8uaQ/MWjAMSGGCTCgJfx96rKJfN9Tzm+57OuCXZ\nzqU3Dq5bkWGYSqfTvc/Vp1FAqVyU7ThKpXrnAEC7Qj6v0tP/oqlsRk4YKhmGSliWTKuzMcl8xZX2\n7dX09u2rst8wCHTSPalMzLmwnVstSaahuVpB12y5ZkPUFfq+rzffOSfbspc0nuYtGBckMMAmZtlW\n34uwVXM6GgKEQSCZRk+TAKl/o4ClfKoJAAumshlN5yYUhoFqYaikZcmKeXPeWOX9WpYlx+k9t7Wr\nhc1zYDJhLTpuvdmWvSGSKWAjWdL3s2+99ZZuv/12Pfnkk5Kks2fP6u6779bnP/95/dmf/ZnCMFzT\nIAEAAABAWkICU61W9dBDD2nPnj2tbY888ojuvvtuff3rX9fVV1+tZ599dk2DBAAAAABpCQmM4zh6\n7LHHtL3tXtTXXntNt912myTptttu0/e+9721ixAAAAAALhpYA2Oapmy78/7UarUq62LR3bZt23T+\n/Pm1iQ4AAGxojSjS/NycGrVIhqHYrmJSs4h/6wg0LVxq1zLPq6pQUKtgfindv+gQBqyOyy7iX2i9\nOsjRo0cvd1dYBRyHjaHfcfB9Xx96F2Q7vUWtQRhothj2FLyGQaBSsthTfF8ulyRJudxE73MFvvK1\nvKy2DydctyJJymSyPePXYx+SdPaD97W7UlEp2Tw11Wo1SVIy2XmqqlQqihJJOaYpGZ2Pt89ZGFdq\n+33WwppkSKVSsTW+WqkoWat3jOsev/B8oWGobNs9MbWruq5kJTv20b2O7tja9zNoDXHjF1tD+5yq\n6ypZb8hJmLG/2+74Fn7HC/odi+51dI/vt45SqdgxZynrkJq/47ppqFwqLXos2tdRq9eU9P3Y8f3+\nr7TP6beGdl61KtetyjESA9dQqVRk1moqO45qtfrANSw8n1etSobRM6dffN3j48Yt/F+Vmv9fa2HY\n+r8yaB0fzs6q9twLyk1MKjIkt8/xOHfhgozchGxFrX0kLavneJQrFc2eOqn5i+cX6dK5Q41IMjS4\no1jbucYtl5c1R41Ix+pvKp3ODBxfr9eVSqVUq9W0w9nZ84Fvu1pY01U7M32bCcRdF3zf15m5ILa5\nSpwg8DV/3h7YsAD98T5pNKwogclmswqCQLZt68MPP9TOnTsHzrnppptWsiusoqNHj3IcNoDFjoPn\neXo3fyK244wfBHr/w1LPhcz3ff2f7O6eOcX5gmQampyY6n0uz9MHldMdF7lKudlCNJuJa7u89vuQ\npERkKH3sbU1MTEqSwjCQDENWsrMrUNZ1lUkklcvlJEMdSV37nIVxC88nNZOxcqXcsY+06yrrpDrG\ntY9f2EfWdWVLyk1M9MTULp2ZV8ayFl1Hd2zt+xm0hrjxi62hfU7arSibSl/83fX+bvv9jiUteiy6\n19E9Pm4dpVJRExOTHXOWsg6p+Tu2jcHHon0dtVqopG3Hju/3f6V9Tr9j0S6ZSCjjVpTNZgeuIeu6\nMsJQuVxW6XR8Uh8XWzKRkAz1zOkXX/f47nELx6G17osdwtJBoGwqPfhYzM8ra1m6Yut0z+uxXc0w\nWvtdrAtZaBjKXHV1RxvlhXNHo9aQYUi5ATG1n2tKxeKy5qxkH/3Oke18z9O1V22JbXHc77rgeZ7e\nPlVYcheyxfaBwXiftDEsJYlc0V+JuuWWW3T48GFJ0uHDh/WJT3xiJU8DAAAAAMsy8BuY119/XV/+\n8peVz+eVSCQ0MzOjQ4cO6cCBA3rqqae0e/du7d27dz1iBQAAADDmBiYwP//zP69vfetbPdufeOKJ\nNQkIAAAAAPq57CJ+YDNqdqHxlzWH7jIAAABrjwQGiOH7vt5855zsPsWo3YIw0Mc+upPCSQAAgDVG\nAgP0YVv2kju/AAAAYH2sqAsZAAAAAAwDCQwAAACAkcEtZAAAAJeh2fjFW3SM73vyvM4xNH8BVoYE\nBgAA4DKEQaCT7kllsrlFxvgyC2U5tiVJCoJQ1++6juYvwAqQwAAAAFwmy7LkOE7fxw1DclKOHHtp\n3S0B9EcNDAAAAICRQQIDAAAAYGSQwAAAAAAYGdTAACOuX/cb3/clU/Kt3nuyfd+TomhD7QMAJKkR\nRSrk8x3b3EpFMqVGLZJhSIEfSJK2TE/LNPksFhg3JDDAiOvX/catliTTUMmo9Mxxy2VZtiVnid1v\n1mMfACBJRddV/YUXZW7d2trmhGGzCr4RSYZkWpbmK660b6+mt28fYrQAhoEEBtgE4rrf1MJAMo3Y\nrjiB72/IfQCAJE2lM5rOTbR+DsOgI4GxrGYnr8awAgQwVHzvCgAAAGBkkMAAAAAAGBncQgYsURRF\nfW+L8ryqCgXF/kVlx3FkGEbrZ9/35Xlez3YAwObVvIYErZ89P1ChUFAqlVKxWFShUOiZ43mePL/a\n+tnmugFIIoEBlizwfZ0onFDSsnoec8slvZuvK51Od2wPw1BXT10tx7mU2JyZC/TmO+f0sY/ujE14\nAACbTy0MdeKM17pOlItFvV07p3Q2oxMXPpT7/97smeO6FVm2rUwmp1oY6pot19AYBRAJDLAsyZhC\ndqlZzG6bhrKZzi5dvu/LcVIdFxzbdmRfLEAFAIyPpJWUbTevIZbtyHak3MSkMtmcchOTPeMNw+jb\nKAUYZ9TAAAAAABgZJDAAAAAARgYJDAAAAICRQQ0MNoUoiuQv8w8nDrMLWBRF8jyvZ7vnefKDUDJ7\nP1sI/ECRovUIT41GQ4V8vvVzuVSWYaijg05ze0kyDfnZ3rV0z9kyPb22QQMAgLFAAoNNwfd9HTt7\nXLbd2yEsThCEun7XdUPrAhYEvo69V1Eu21307+mMW5LtBD1zFrrROOtQ/1/I51V6+l80lc1IktJB\nKBmS2dWBbfbMGWWSSU3u2NHzHO1z5iuutG+vnBSFqAAA4PKQwGDTsG1rpNpLWn3itWpOq0tNuzDo\nTWrW0lQ2o+ncxKV9G5LV1T3tfLqgrGW1xrXrntNY+5ABAMAYoAYGAAAAwMgggQEAAAAwMriFDFhD\nzeYCnQXuQeA3Gw6Ykm913irm+54UrV2h/kJxflxRvlupNGNyPRXyeW1dxTAaUaRCPi/bcVr7iDM/\nN6f0Gq4fwOaxcF6J034+K5fK2jK9ZX1j62qE0h2TdKnRSaarFhLAYCQwwBoKg0An3ZMdF6h8La9E\ntfnXlUtGpWO8Wy73rY1ZDQvF+RnL6inKd8JQMgyZyaTK5883/yr0RG9ty0oUXVf1F16Uk8u19hEn\nPH1GwWTvX6MGgG4L5xVz69aex9rPZ2FhXvOf+4wmp9YvieluhNIdk9RsdFKsuircece6xQVsFiQw\nwBqzLEuOc+mbFsu2L34TYXRsl6Rgma2gV2Iqm9GE7fQU5YdhIBmGrKSlQqWyyDOscL/pjKYvJjBW\nMr5b3Pl0YdX3C2Dzap5XYpqItJ3PwiBU/He+axxbtjO29pikS41OACwfNTAAAAAARgYJDAAAAICR\nQQIDAAAAYGRQA4MNp9m5a3m1IJ7nrWXzrjXRaDSUn53t2BbXHUyStkxPr2doADBWGo2G5i7kJVNq\n1KLY8/DCOMmQaRo9nc7a56x2J0cpvqtlN8+rqlCQUm2NYBzHkWHEF9tEFy+c/R7vZ7HnXIqVXOcv\nd5/YXEhgsOH4vq9jZ4/LtuMLveOUSmXZjqNUem26d62F+bk51b/9YkeXmnQQ9nQHm6+40r69clJO\n3NMAAC5TIZ+X/9y/aTKblRpRz3l4wfvnzyudTGrH1q0dXcW6z92r3clRiu9q2c0tl/Ruvq50Ot2c\nE4a6eupqOU78tbFULsowTOWW0co5CAN97KM7O5Kk5VrudT4IQl2/67rL2ic2FxIYbEj2MlsJ+97a\nd+9aCz1dai52pWnvDiZJjfUODADGzGTmYqfEiwlM93lYkgqVijKJpKZzE12dzjrP3WvRyVHq7WrZ\nrRYGsk1D2UwzIfF9X46T6ns99X2v2RFzCInBcq/zQDtqYAAAAACMDBIYAAAAACODBAYAAADAyKAG\nBotaj04h3fvwPE9+EEpmfH4d1zXFD0MZMuQHvV1j4sZ7fqBCodC3INDzPHl+tWOb73vaqK3O4jqa\ntXfIWbAWnXEAACvTiCKV8nkVK2Xlc70F/+3n8UQyqURi83/uHEXNRgHt/CCU5y3ega37vcdKO5pW\nq9VlvYehO9pwkMBgUb7v6813zsmOKWaMs5LuJN378H1PZ9ySbKc3GZEk163IMMxWlxVJKhdLMgxD\n2ZjzW/z4ot6unVO6rQNY9xzLtpXJXOrM4pbLsjZo0eH8XEGNF17q6GjW3iFnQaszziJFoACA9VF0\nXemFF7XdsmS+8WbP4wvn8ZIfyPiN2zW9ffO31A/CQO9+kJeVvNShLPB9NcqFvt3U4t57rKSj6Xtz\np2S/n1Guz3uDnv3SHW1oSGAwkG3Za/6mvXsfVs2Rbce/yQ6DQDKNjsct25FhKHZOv/G2o+ab+RiG\nYTQ7s7S90Q+W+UnOeuvpaNbWIWfBWnXGAQCszFQ6o6xjayLmG5hL53FPxSHENixW0uq4ZkeRFu2m\n1s9yO50lk1az0xsJyYa3+b+LBAAAALBpkMAAAAAAGBncQoZVFUVRT6HdoEK67oL5jVos32g0VCwU\nFPi9tTndBfNbpqdl9mlCAABYP40o0vzcnLK5/n9tvpDPa2LjXXaWrdFoaH6u0LoW+b4vo1CX3VU7\n0mg0ZEiqVMqSKZWyzRvU4preTE9v67ieeV5VhYJadR9xc9rFNtLxPHl+ENusJ/AD1Rv1jsY0/dax\nEJvvez3vPTzP6/tWIq5RgCQFtUCBH/Q0BOq3xkENgfoV+FP4f/lIYDaoMAz11qljSg4onj91+qzC\nevNFYNQMXXPlT/Qd+94Hc0rl3tMN1/cfc7mCwNex9yrKZS9dKHzf08n5k7Ks+EK67oL59S6WP3Xs\nmLzXfqBE28mkFtYkQ0q2FcD/+Nw5XWfZmpia6nmO9oL5+Yor7dur6e3b1yV+AEB/RddV4v++InPn\njr5jyufPK5VZWuH2RjY/V5D/reeVm2zWdyaDUIWooUSy8/p7cva80smkprM5yZD8i4/Xw1Ay1Bo/\n71Z0du/ntHXbttZct1zSu/l6qzFOpVyWaZiLNsXpbqRTKZdl27ayEzGd19yKyqWS6t9+sdWYJm4d\n7bGFgS+zUJbTVrBfKpVlO45S6d73EnGNAiQpXwx1+nyppyFQ3BqkxRsChbVQP7F7uiMmicL/1UIC\ns0FFUaSEY8tJL94tysll5ZjNF0G9WpOT6v8Jk53OykwuvRvHSsUlH5lsrqMgvl13wfx6F8vX/EDX\npjJKJhKtbXEF8BesgiYznYXy/cY31j5sAMAS9Tt3L9hMDU7a1xoGgWRIVteHoSWvqkwiqW1Tkx3X\nru7xiYSphm13XL9rYSDbNJS9+KFjFEmGMbgpTratq+fCnL6Nd9TZmCZuHe2xGYbkpBw59qXHfW/x\n9xLdjQKk5vNbtt2zPa4ZkLR4Q6Ag8HtiwupZcQLz4IMP6vXXX5dhGLrvvvt04403rmZcAAAAANBj\nRQnMkSNHdOLECc3MzOjtt9/W/fffr5mZmdWODQAAAAA6rKjK+Pvf/74+/elPS5KuvfZaFYtFVTbR\n168AAAAANqYVfQMzOzurn/3Zn239vHXrVs3Oziqbza5aYGjWZniNxduieKWKwrorSTLqUtGe7Tu2\nPD8nt7JVhUJhyTF4nqdSudjsDLYEpXJJhmFKbXH7vi/XKysM4u9HXSiOi+rNyhG30iwI7Kd7/KA5\ng8YHoa9jhbmOLiu1WijDMJRIXHqJnKtWNFmrx+6jXqtJkhLJpIquq+qpU6qUy3IrFZmGqVQm3xp7\n9oP3FVarKs3Py5+fVxiGl54nDCUZSliX9rvwfHaq2bUkleosInQrFZXniwq6n6stpgX5YlHVRFKN\nRr1nP+3jF8YZCbNvXJJUKJflJ5OyYu7xbZ/T2m/U6Imp8/lK8pOWbMfuu4bLWcdCXBXXVdA2vlAq\nqeYHHeP6rcM2DJmm2XcNS13HYr/jQWuIG7/YGtrnFEpl1YJw4LHo/h3rYo+Lfseiex3d4+PW4VYq\ncmu1jjlLWYfU/B3bpiFnbm7RY9G+jlqjoWQiETu+3/+V9jn9jkU73/dVqLiKGhq4hnyxqESjrkQy\nKWeR+/W797vQ1bF7Tr/4usd3j1s4Dq1112qq1eut/yuDj0XzPGAahuLOE3HxLewjaSZ6xscei4X4\nokjd55XY123ba6j79dgvtoXXdvs+Bq1hYR/d58jF1rDw/6/99Vi1rY5j0D2nEgTKn/5AfrXacT3p\n9uGZ05ooFludPPudu/udk7vHt1/PFlSrbse1KO461657/KA51arbc33sd220y2XZjq2wFqo0L/lt\nx7jsujIU3+kr8ANVKuWemttq1VW14vaMj3sf0VxH//ceYS2U79lSo3NOEISx47E8RhQtv1/tAw88\noFtvvVWf+tSnJEl33XWXHnzwQV1zzTWx448ePXp5UQIAAAAYCzfddNOij6/oG5idO3dqtq0/97lz\n57RjR//2hIOCAAAAAIClWFENzJ49e3T48GFJ0o9+9CNdccUVymyC/ukAAAAANrYVfQPz8Y9/XDfc\ncIP279+vRCKhBx54YLXjAgAAAIAeK6qBAQAAAIBhWNEtZAAAAAAwDCQwAAAAAEYGCQwAAACAkbGu\nCczs7Kx+8Rd/UUeOHFnP3eKifD6vL3zhC/r93/993XXXXfrv//7vYYc0lur1ug4cOKC77rpL+/fv\n1w9/+MNhhzSWXn31Vf3yL/+yXnnllWGHMpYefPBB7d+/X3feeafeeOONYYcztt566y3dfvvtevLJ\nJ4cdytg6ePCg9u/fr3379umll14adjhjyfM83XPPPbr77rv1u7/7u/rOd74z7JDGlu/7uv32Y8xv\nDwAABOxJREFU2/XNb35z0XEr6kK2Ug8//LCuuuqq9dwl2jz33HP6rd/6LX32s5/VkSNH9Mgjj+jQ\noUPDDmvs/Ou//qtSqZT+6Z/+ScePH9e9996rp59+ethhjZWTJ0/qH//xH/ULv/ALww5lLB05ckQn\nTpzQzMyM3n77bd1///2amZkZdlhjp1qt6qGHHtKePXuGHcrYevXVV3X8+HHNzMyoUCho7969uv32\n24cd1tj593//d91444364z/+Y50+fVp/9Ed/pFtvvXXYYY2lr371q9qyZcvAceuWwPzXf/2XJiYm\n9NM//dPrtUt0+cM//MPWv0+fPq1du3YNL5gx9rnPfU6f/exnJUnT09Oan58fckTjZ9euXXr00Ud1\n7733DjuUsfT9739fn/70pyVJ1157rYrFoiqVirLZ7JAjGy+O4+ixxx7T448/PuxQxtbNN9+sn/u5\nn5MkTU5OqlqtKooiGYYx5MjGy2c+85nWv0+fPq0rr7xyiNGMr3feeUfvvvuuPvnJTw4cuy63kIVh\nqL/927/VPffcsx67wyJmZ2f1O7/zO3rsscc4HkOSTCblOI4k6R/+4R/0m7/5m0OOaPzYtj3sEMba\n7OyspqenWz9v3bpVs7OzQ4xoPJmmyWthyEzTVDqdliQ9/fTT+uQnP0nyMkT79+/Xl770Jd13333D\nDmUsHTx4UAcOHFjS2FX/Bubpp5/WM888I8MwWp8i/Mqv/IruvPNO5XI5SRJ/embtxR2HP/3TP9We\nPXv0zDPP6D/+4z904MABbiFbY4sdhyeffFL/+7//q6997WvDDnNTW+wYYGPgmoBx9/LLL+uf//mf\nuSYP2czMjN566y39+Z//uZ577rlhhzNWvvnNb+rmm2/W7t27JQ2+Lqx6ArNv3z7t27evY9udd96p\n//zP/9Tf/d3f6eTJk3rjjTf0yCOP6Nprr13t3eOiuOPw2muvaX5+XlNTU/rVX/1VfelLXxpSdOMj\n7jhIzTfV3/nOd/TVr35ViURiCJGNj37HAMOzc+fOjm9czp07px07dgwxImB4vvvd7+rxxx/XoUOH\nWh/0Yn39z//8j7Zt26Yrr7xSP/MzP6N6va58Pt/xTTHW1iuvvKL3339fL774os6ePSvHcbRr1y7d\ncsstsePXpQbmG9/4Ruvf9957r377t3+b5GUIXnrpJb355pv6gz/4Ax07dqyV5WJ9nTp1Sk899ZSe\nfPJJWZY17HDGHp/+r789e/bo0Ucf1R133KEf/ehHuuKKK5TJZIYdFrDuyuWyHn74Yf393/+9JiYm\nhh3O2PrBD36g06dP67777tPs7Kyq1SrJyzr7yle+0vr3o48+qo985CN9kxdpnbuQYbj+5E/+RAcO\nHNDLL7+sIAj0V3/1V8MOaSw988wzmp+f1xe+8IXWLU1PPPGEkklejuvlpZde0l//9V/r3LlzevXV\nV/U3f/M3evbZZ4cd1tj4+Mc/rhtuuEH79+9XIpHQAw88MOyQxtLrr7+uL3/5y8rn80okEpqZmdHX\nv/51TU1NDTu0sfH888+rUCjonnvuaV0PDh48SJOddXbnnXfqvvvu0+/93u/J93395V/+5bBDwgBG\nxMePAAAAAEbEuv4hSwAAAAC4HCQwAAAAAEYGCQwAAACAkUECAwAAAGBkkMAAAAAAGBkkMAAAAABG\nBgkMAAAAgJHx/wGGR7DaH305HgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Model parameters\n", + "mu = 0\n", + "sigma = 1\n", + "\n", + "# Create two identical models\n", + "m_1 = np.random.normal(mu,sigma,1000)\n", + "m_2 = np.random.normal(mu,sigma,1000)\n", + "\n", + "# Combine them\n", + "m_cm = (m_1 + m_2)/2\n", + "\n", + "# Plot their distribution over 1000 trials\n", + "plt.hist(m_1, bins=50, alpha=0.2);\n", + "plt.hist(m_2, bins=50, alpha=0.2);\n", + "plt.hist(m_cm, bins=50, alpha=0.6);\n", + "plt.legend(['Model 1', 'Model 2', 'Combined Model'])\n", + "plt.title('Histogram of Model Outputs over 1000 Trials')\n", + "\n", + "print \"%-39s %-24s\" % ('---- Mean ----', '---- Variance ----')\n", + "print \"%-15s %-24s %-15s %-15s\" % ('Model 1:', \n", + " np.round(np.mean(m_1),decimals=3), \n", + " 'Model 1:', \n", + " np.round(np.std(m_1)**2,decimals=3))\n", + "print \"%-15s %-24s %-15s %-15s\" % ('Model 2:', \n", + " np.round(np.mean(m_2),decimals=3), \n", + " 'Model 2:', \n", + " np.round(np.std(m_2)**2,decimals=3))\n", + "print \"%-15s %-24s %-15s %-15s\" % ('Combined:', \n", + " np.round(np.mean(m_cm),decimals=3),\n", + " 'Combined:',\n", + " np.round(np.std(m_cm)**2,decimals=3))\n", + "print \"\\nCovariance between models:\", np.cov(m_1, m_2)[1][0]" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Benefits of Ensembling: Symbolic Intuition\n", + "\n", + "When the $I.I.D.$ models are aggregated, the mean stays the same while the variance of results decreases. Can this be explained symbolically? \n", + "\n", + "Consider two models with the same mean $m$, the same variance $v$, and zero covariance:\n", + "\n", + "$$ models = \\hat{\\theta_1} \\: , \\: \\hat{\\theta_2}$$\n", + "\n", + "$$E[\\hat{\\theta_1}]=E[\\hat{\\theta_2}]=m \\:\\:\\:\\:\\:\\:\\:\\: Var[\\hat{\\theta_1}] = Var[\\hat{\\theta_2}] = v \\:\\:\\:\\:\\:\\:\\:\\: Cov[\\hat{\\theta_2},\\hat{\\theta_2}] = 0$$\n", + "\n", + "When averaged they form a combined model $\\hat{\\theta_{cm}}$: \n", + "\n", + "$$\\hat{\\theta_{cm}} = \\frac{\\hat{\\theta_1} + \\hat{\\theta_2}}{2}$$ \n", + "\n", + "$$E[\\hat{\\theta_{cm}}] = \\frac{E[\\hat{\\theta_1}]+E[\\hat{\\theta_2}]}{2} = m$$\n", + "\n", + "$$Var[\\hat{\\theta_{cm}}] = \\frac{Var[\\hat{\\theta_{1}}]+Var[\\hat{\\theta_{2}}]+2Cov[\\hat{\\theta_{1}},\\hat{\\theta_{2}}]}{4} = \\frac{v}{2}$$\n", + "\n", + "*Where the combined model keeps the same mean $m$ as its components but sees a reduction in variance.*\n", + "\n", + "### Importance of Model Independence\n", + "\n", + "Should the models being aggregated have a correlation of 1 (equivalent to a covariance of $v$), the variability-reducing effect no longer applies. Instead, the $2Cov[\\hat{\\theta_{1}},\\hat{\\theta_{2}}]$ term becomes equal to $2v$ in turn making variance equal to it's original value $v$. The significance of this is that the magnitude of the variance remains unchanged should the models being combined be perfectly correlated, illustrating the importance of the models being uncorrelated.\n", + "\n", + "### Averaging $n$ Models\n", + "\n", + "Now let's look at a combined model $\\hat{\\theta_{cm}}$ that is the average of $n$ $I.I.D$ models.\n", + "\n", + "$$\\hat{\\theta_{cm}} = \\frac{\\sum_{i=1}^{n}{\\hat{\\theta_i}}}{n}$$\n", + "\n", + "$$Var[\\hat{\\theta_{cm}}] = \\frac{\\sum_{i=1}^{n}{Var[\\hat{\\theta_i}}] + 2\\sum_{1 \\le i" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Number of identical models\n", + "n = 100\n", + "\n", + "# Initizalize n models\n", + "models = np.array([np.random.normal(mu,sigma,1000) for _ in range(n)])\n", + "\n", + "combined_models = [np.mean(models[0:i+1], axis=0) for i in range(n)]\n", + "means = np.mean(combined_models,axis=1)\n", + "stds = np.std(combined_models,axis=1)\n", + "\n", + "plt.plot(means);\n", + "plt.plot(stds);\n", + "plt.plot(range(n), 1/np.linspace(1,n+1,n), linestyle = '--')\n", + "plt.legend(['Model Avg Mean', 'Model Avg STD', 'Perfect U']);\n", + "plt.xlabel('Number of Models Combined');\n", + "plt.title('Mean and STD vs. Number of Models Combined');" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As more models are added the mean predicted value is stationary and the prediction variability decreases geometrically. Worth noting, however, is that in this simulation the standard deviation did not decrease at the rate perfectly uncorrelated models would. This is a result of the toy models we used having some level of covariance, purely by random chance.\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Benefits of Ensembling: Dimension Intuition\n", + "\n", + "The theory and simulation above demonstrate the benefits of simply averaging uncorrelated models; in both cases, as more models are averaged the mean stays the same but variance decreases. Model combination gets its power from the diversity of uncorrelated models ensuring that different features of the problem are represented. But what are these \"features\" that data apparently has? And how do combinations of diverse models help reveal them?\n", + "\n", + "An interesting analogy is to think of a model as a specific \"view\" of the world, having its own perspective and unique insights into the problem at hand. Data can have many \"dimensions\" and rarely will one model encapture every single one; only by approaching it from many views can we understand its structure.\n", + "\n", + "Consider a 3-dimensional object, such as a cylinder. To fully understand what this object is we require multiple perspectives from distinct viewpoints, as from each viewpoint alone you only see a 2-d projection of the space the cylinder takes up. To illustrate the limitations of attempting to understand a multi-dimensional structure from a single view, imagine looking at a cylinder from a specific viewpoint to the side and trying to decipher what it could be:" + ] + }, + { + "cell_type": "code", + "execution_count": 102, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAAIJCAYAAACflB2mAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xuc1nPe+PH3NUVoadVKkXUjNQ5ldbKV3ZaV8yl0WqK9\nk3XYVk5pSBvLRm7cKufDhiLKKcSu1hYWk8aPjZWVKGodKkVn5fv7Yz8zt9E0hXRNzfP5eHg86rq+\n13W9r/mMmXn1PUwuy7IsAAAAiIJ8DwAAAFBVCCQAAIBEIAEAACQCCQAAIBFIAAAAiUACAABIBBLA\nGkyePDkKCwtj+PDh+R7lW3n22WfjwAMPjL333jv+8Ic/fG+vc+CBB8Yvf/nLddq2R48esccee3xv\ns3wb8+fPj969e0ezZs2iZcuW+R7nOyksLIyTTz4532Os0ezZs6OwsDCKiorWaftv8rkFsL7UzPcA\nAN+33/zmNzFp0qQYNWpUpT8AZ1kWBxxwQHz66acxadKkaNy4cQwdOjR22223DTjt+pFlWRQVFcXy\n5cvj4osvjsLCwnV63EsvvRRjx46N//f//l/MmzcvcrlcNGjQIPbbb7848cQTY/fdd/9Oc5199tkx\nf/787/Qc66KkpCRmzZoVnTp1Wuu2t99+ezz33HPRuXPn2G+//b732daX0s/ndV3b78uLL74Y9913\nX7z11lvxySefxBdffBHbbrtt7LnnntGlS5c48MADy7atV69eDB06NHbcccc8TgxQOYEEbPK6du0a\nkyZNigcffLDSQHruuefiww8/jKOPPjp++MMfRkTEwQcfvKHGXK/mzZsX8+bNi8MOOyy6d+++1u1X\nrFgRAwYMiHHjxkWjRo3iyCOPjF133TW+/PLL+Ne//hWPPfZY3H///XHmmWdGnz59vvVcrVq1+taP\n/SbGjBkTc+bMWadA+te//hW5XC4GDBgQtWrV2gDTfXcrVqyIwYMHx+WXX57XQLrzzjtjyJAhsdtu\nu0WnTp1ip512iuXLl8eMGTPikUceiYkTJ8a5554bp512WkREbLHFFhvt/1NA9SGQgE3eL37xi9h+\n++3jqaeeigEDBsRWW21V4XZjx46NXC4XXbp02cATrn/Lli2LiP/8QLouLr/88hg3blx06dIlBg4c\nGDVrlv/28Nvf/jb69u0bN9xwQ2y99dbRs2fP9T3yejV16tSoV6/eOm27fPnyiIi1xtHKlStX+7jk\ny7Rp02LlypV5neGzzz6L6667Ln784x/H2LFjY8sttyx3f48ePaJTp05x0003Rbdu3WKbbbbJ06QA\n34xzkIBNXkFBQZxwwgmxdOnSeOKJJyrcZsGCBfG3v/0tdtttt7K9HGs6B2n27NlRVFQUP/vZz2Lv\nvfeO/fffP84777yYMWNG2TY/+9nP4phjjlntdY444ogoLCyMSZMmlbv9iSeeiMLCwnjssccqfS8f\nffRRXHLJJXHAAQfE3nvvHfvtt1+cdtppMWXKlLJtioqK4qCDDopcLhcPP/zwWs/5ePvtt+OBBx6I\n5s2bx6WXXlphBNSuXTuuu+66qF+/fgwdOjQ+++yzCmc7++yzY7/99ot99tknTjjhhHjuuefKbdOj\nR48K93iMHTs2OnfuHD/5yU9i3333jeOOOy5GjhwZWZattu348eOjW7duse+++0aLFi3i9NNPj3/+\n858R8X9rNmPGjLI/r+m9l95f+rErLCwsOz+qf//+UVhYGNOnT4/evXvHPvvsE48//njZY1977bU4\n/fTT46c//Wnsvffe0aFDhygqKorZs2eXe42TTjopmjVrFsuXL4+BAwdG27ZtY999941evXrFhx9+\nGEuXLo1BgwZF+/bto1WrVtGjR4/417/+VeG8pYqKiqJLly6Ry+Wif//+sccee8TLL7+82lr87ne/\nK1uL7t27xxtvvLHac02ZMiV69+4dbdq0iebNm8fBBx8cQ4YMqXB9v+69996LL774Ilq0aLFaHEVE\nbL/99jFs2LC4/fbby0J9Tecgvfjii9G5c+fYZ599Yr/99ovzzjsvPvnkkwpf98svv4w77rgjjj76\n6GjevHm0bNkyunfvvtb/dwDWlUACqoXOnTtHLpeLBx98sML7H3nkkfjiiy+ic+fOlT7PBx98EMcf\nf3w8//zz0a1bt/jjH/8Y3bp1i7///e/RpUuXeOeddyIiYv/994+33347Pv/887LHzps3L955552o\nXbt2uaCJiCguLo6CgoJo3779Gl977ty5ccIJJ8Tjjz8ehx56aFx++eXRu3fvePfdd6Nnz57x/PPP\nR8R/figfNGhQZFkW++23XwwbNixOOumkNT7vww8/HLlcLnr27Bm5XG6N2/3gBz+Ibt26xdKlS+PP\nf/5zufu++OKLOPXUU2ObbbaJfv36xRlnnBFz5syJM844I15//fVy2379Na688soYMGBANGjQIC65\n5JLo379/1K9fPy6//PIYOHBguW3vuOOOOPfcc6NevXoxaNCgOPfcc+Ptt9+O7t27x+uvvx677757\nDB06NLIsi913373S9166bek5ZsOGDYvrr7++bMZcLhdDhw6NevXqxeDBg2PfffeNiP/8MH/SSSfF\nW2+9Fb/+9a/jiiuuiGOOOSaeeuqp6Nq1a3z88cfl3muWZTFgwIBYsWJFXHjhhXH44YfH3//+9ygq\nKopzzjknFi1aFBdccEF07tw5SkpK4rzzzlvjGkT8Z31PPPHEsj9ff/310bhx47L7lyxZEieffHJs\nv/32MWDAgOjZs2dMnTo1+vTpUy44J0yYEKecckrMmzcvfve738Vll10W7dq1i7vvvjt69OgRK1as\nqHSO7bbbLiL+E5offfRRhdu0bNkyWrZsGZtvvvkan+f111+P0047LWbPnh1nnHFGXHjhhVG7du3o\n1atXfPHFF6tt37dv37j22mtjr732issuuyzOPffcyOVyccEFF8TNN99c6cwA6yQDqCZ+85vfZIWF\nhdn06dNXu+/II4/Mmjdvni1YsKDstuLi4qxp06bZsGHDym4766yzspYtW2bvv/9+ucdPmzYt23PP\nPbMzzzwzy7IsGzduXFZYWJj97W9/K9vmiSeeyPbaa6/soosuyrp27Vru8YccckjWqVOnSucfOHBg\nVlhYmD3xxBPlbp8zZ07WvHnz7PDDDy+77YMPPsiaNm2a9e/fv9LnzLIsO+mkk7LCwsLsk08+Weu2\nU6ZMyZo2bZoVFRWV3XbAAQdkhYWF5T5OWZZlL7zwQta0adPs7LPPXu21Sr355ptZ06ZNsz/84Q+r\nvVafPn2ywsLC7M0338yyLMvmzZuX7b333tkpp5xSbrsZM2Zke+yxR9arV6+y25o2bZr16NFjre+n\nopmyLMv69++fNW3aNPvv//7v1bY/9NBDs3322SebPXt2uduffPLJrGnTptmgQYNWe+6vfryyLMuO\nOOKIrLCwMDvvvPPK3X7aaadlhYWFq31+fd1DDz2UFRYWZg8//HC525s2bZoVFhZmDz74YLnbSz93\npkyZkmVZli1fvjxr3759dvzxx2crVqwot+3IkSOzpk2bZiNGjKh0hizLst/97ndZYWFh1qZNm+zy\nyy/Pnnvuuezzzz9f4/YVfV6eddZZWWFhYVZcXFxu2xtuuCFr2rRpduCBB5bdNmHChKxp06bZnXfe\nWW7bL7/8MuvSpUu29957Z/PmzVvr3ACVsQcJqDa6du0aWZbF2LFjy90+derUePvtt+OQQw6JOnXq\nrPHxy5Yti4kTJ0bLli2jTp068fnnn5f917Bhw9h9991j8uTJERHRrl27iIhyhz4VFxdHkyZNok2b\nNvHGG2+UnfvyySefxHvvvRc/+9nPKp3/r3/9a2yzzTZx2GGHlbu9YcOG0bZt25gxY0a8//776/4B\nSebOnRsFBQXxox/9aK3bNmjQoOwxX/f1c7fatm0bP/zhD6O4uHiNz/fkk09GLpeLQw89tNzH8/PP\nP49DDjkksiwre/zTTz8dK1eujKOOOqrcc+yyyy5x3333rfOlo9dV6VxfNWPGjHj33Xdj//33jx12\n2KHcfQcffHBsvfXWMXHixNWe67jjjiv396ZNm0ZErHYRidLDD9d0eNm6qF279mrPW/p6pXu3pkyZ\nEnPnzo2DDz44li1bVu7jfsABB0RBQUHZ53JlrrnmmujVq1esWLEiRo4cGaeeemq0adMmjjvuuLju\nuuti1qxZa32Ol156KerVqxdt2rQpd3u3bt1W23b8+PGRy+XikEMOKTfzokWLomPHjrFy5cp45ZVX\n1vqaAJWpGmebAmwAHTp0iAYNGsSjjz4a5513Xtm5NmPGjIlcLhddu3at9PHvvfderFy5Mp599tlo\n3br1aveXHjq2aNGiqFevXjRp0iRKSkrK7i8uLo4OHTpE69at44svvohXXnkl2rZtGy+99FLkcrmy\nqKrI559/HnPnzo0WLVpUeBjcLrvsEpMmTYr33nsvdtppp3X6eJQqKCio8FyfipRuV1BQ/t/Xttlm\nm6hfv/5q2zdq1CjeeOONWLZsWYUXjHjnnXciy7I1HgaXy+Xi3//+d0T851ypiKjw/e2zzz7rNP83\n1ahRo3J/Lz3P7KuHtJUqKCiIH//4x/HPf/4zVqxYUe6wsq9f1rr0vq/fvtlmm0VEfKcLMOy4446r\nfY5sueWWkWVZWZRPnz49IiKuvfbauPbaa1d7jq9+3CtTs2bNOP/88+PMM8+MSZMmRUlJSUyZMiXe\neuutePPNN+O2226Lvn37ll3F7usWLFgQixYtKgu4r6pbt27Z1SRLzZgxI7IsK3fp8G8zN0BlBBJQ\nbZRerOGGG26IZ555Jg4++OBYvnx5PPnkk7Hrrruu9ZeELl68OCL+c37Rmn7gi/i/q6G1a9cuRo4c\nGcuXL48FCxbEe++9FxdccEHssMMO0bBhw3j55Zejbdu2MXny5Nhyyy0rff0lS5ZERFR4MnzE/12t\nbunSpZW+h4rUr18/ZsyYEf/+97+jYcOGlW774Ycflj3mq2rXrl3pXGsKpMWLF0cul4trr712jXuw\nSs91Kf3hvjQiNoSvv6/SdVjTlRBL3+OSJUvKBdKazsGp7Nycb2tdPj6lH/fevXuvcc/lN7nk+VZb\nbRWHHXZY2d7N+fPnx+OPPx7Dhg2L6667Llq0aFHhJd7XdrXFr9++ePHiKCgoiBEjRqzxfLmvRy3A\nNyWQgGrlhBNOiJtuuinGjh0bBx98cDz11FPx+eefr9Pv9in9YbmgoKDCPUhf1759+xgxYkS88sor\nZYexlf6Q2KJFi7LD7yZPnhxt2rSp9BLSpT+Ql/6A/nWlYbSmUKnMvvvuGy+99FK88MILcfzxx1e6\nbenerq//sLumMCu9fU1hVzpvo0aNolmzZpW+dt26dSMi1ukKa9+X0nUojeWvK32/awqoqqJ27dqR\nZVnUqVNnnT6Xv6m6devGySefHFtttVUMGDAgnn322QoDqTTC1nRBiCVLlsTWW2+92tyNGzcu+3wA\nWN+cgwRUKw0aNIif/exn8cILL8SCBQti3LhxscUWW8Sxxx671sfusssuUbNmzZg6dWqsWrVqtfvn\nz59f7u+tW7eOzTbbLEpKSqK4uDgaN25cdo5Tq1at4h//+Ed88MEHMXPmzLWef7T11lvHdtttV3aI\n0deVHjJVekW2b6JTp06Ry+XizjvvrPCqYaWWLFkSDzzwQNSpU2e1X/a5YMGC+PTTT1d7zAcffBD1\n6tVb496Ixo0bR5ZlFZ43smTJknI/ODdq1CiyLCt7r1/1zDPPbJDLPJceWlfRpbhXrVoVM2fOjEaN\nGn0ve4bWp9133z0iYo3n61S0ll83duzYuOCCCyoN1tK9OWsK6G233Ta23HLLCs+d++ijj1Z77tKP\nf0Vzf/755xX+fwnwTQkkoNrp2rVrrFq1Ku6///4oLi6OQw45ZJ1+iWWtWrXigAMOiE8//TQefvjh\ncve9//778ctf/jIuvfTSctu3aNEiXn311SguLi53EnqrVq1i+fLlZYcKVXb+UalDDz00Pvvss9V+\nl9N7770XxcXF0axZs7KLKHwTO+20U/Tq1StmzJgRF1xwQdmhbF+1ePHi6Nu3b3zyySfRv3//Cg+J\nGjNmTLm/P/vss7Fw4cJK31vpRRDuu+++1fYiDBkyJH7605+W/fD885//PGrWrBmPPPJIuR+ES3//\n0lcv4V5QULDWy1R/G//1X/8VTZs2jRdeeCE++OCDcveNGzcuFi9eHIcccsh6f92vKz1vrKK1WpOv\nHpLWqlWrqFevXkyaNCnefffdctuNHz8+9t9//zX+zrBS06dPj8ceeyyuuuqqCu9ftWpV3HPPPZHL\n5WL//fdf4/O0bt06Pvroo3jttdfK3X7//fevtu1hhx0WWZbFXXfdtdo/FJx//vnRoUOHNe7dA1hX\nDrEDqp0OHTrE9ttvHzfeeGOsWrVqtauvVaZfv34xZcqUuPTSS+Odd96JPffcMz744IMYNWpU1KhR\nY7ULPbRr1y5uuummWLZsWblDmXbfffeoU6dOPPTQQ9GwYcPYZZdd1vraZ555Zvz1r3+NSy65JKZN\nmxaNGzeOf//73zF69OioWbNmXHLJJev+Qfiac845J5YsWRL33ntvvPbaa3HUUUfFrrvuGlmWxdtv\nvx2PPfZYfPrpp1FUVFTh3rYGDRrE+PHjY/bs2bHPPvvEnDlz4p577olatWpFr1691vi6hYWFccop\np8Tdd98d3bp1i65du0bNmjVj4sSJMWHChDjmmGPKLsqw/fbbx1lnnRVDhw6Nnj17RqdOnWLx4sUx\ncuTIKCgoiAsvvLDseRs1ahSvv/56DB8+PBo2bLjWQwe/iUsuuSR69eoVJ598cnTv3j222267mDZt\nWtx3332x8847x29+85v19lprUrpnZuTIkbF06dJo0aJFNG/evNLHfDUoNttssxg0aFCcc8450aNH\nj+jZs2dst912MXXq1HjggQdi1113jV/84heVPl+fPn3i1VdfjYceeqjsc2bHHXeMlStXxuzZs+PJ\nJ5+Md955J44//vjo0KHDGp+nd+/e8fzzz8dvf/vbOOmkk+JHP/pRvPrqq/Hqq6+udhGLAw88MDp2\n7BgTJkyInj17xjHHHBMrV66Mxx9/PF5++eU488wzv9VhpgBfJZCAauerF2to3LhxpRdHKP2FoaV2\n2mmnGDt2bAwfPjyeeOKJuOeee2KbbbaJNm3axJlnnhlNmjQp9/j27dvHddddF7lcbrVzPVq0aBET\nJ06MI488cp3m3nbbbeOBBx6IoUOHxuOPPx5z586t9LW/PntlCgoK4pJLLomjjz46Ro8eHU8++WR8\n8sknUVBQEA0bNoxDDz00evToET/+8Y/XONvNN98cV1xxRVx11VWxfPnyKCwsjPPOO6/CK5R9VVFR\nUTRp0iTuv//+uPLKK+PLL7+MnXfeOfr16xennHJKuW3POOOMaNiwYYwcOTL+8Ic/lJ3XNXz48LLD\nxiIiLrzwwrj00kvjtttuiw4dOqw1kNb14xTxn70v9957bwwbNixuv/32WLJkSdSvXz+6du0aZ5xx\nRrlzZip77m/yml/XsmXLOP7442P8+PFx0003xaBBg8oCaV1fr2PHjjFixIi49dZb47bbbovFixeX\nvY91CY3atWvHqFGj4sEHH4w///nPcc8998SCBQvKLhnfrFmz6NevX/z85z9fbY6vztK6deu44YYb\nYvjw4XHjjTfGlltuGW3bto3bb789zjrrrNUO97v++utjxIgR8cgjj8Rll10WuVwuGjduHFdcccVq\nl1MH+DZy2bpe23UDWrZsWfTv3z/mzZsXK1asiDPOOGOt/5IFQNXXo0ePmDJlSrz55pv5HgUAKlQl\n9yA988wz0axZs+jVq1fMmTMnfv3rXwskgE3A4sWL13hJZwCoCqpkIB1++OFlf54zZ85afy8HAFXb\nK6+8Es8991xMmzZtrefKAEA+VclAKtWtW7f4+OOP4+abb873KAB8BxMmTIgRI0bETjvtFBdddFG+\nxwGANaqS5yB91bRp06Jfv34xbty4SrcrKSnZQBMBAAAbq8ouzhRRRfcgvf7661GvXr1o2LBhFBYW\nxqpVq2L+/Plr/a3Za3uzfL9KSkqsQRVgHaoG65B/1qBqsA5Vg3XIP2tQNazLTpUq+Ytip0yZEn/6\n058iImLu3LmxdOnStcYRAADAd1UlA6l79+4xb968OPHEE+P000+P3//+9/keCQAAqAaq5CF2tWrV\nimuuuSbfYwAAANVMldyDBAAAkA8CCQAAIBFIAAAAiUACAABIBBIAAEAikAAAABKBBAAAkAgkAACA\nRCABAAAkAgkAACARSAAAAIlAAgAASAQSAABAIpAAAAASgQQAAJAIJAAAgEQgAQAAJAIJAAAgEUgA\nAACJQAIAAEgEEgAAQCKQAAAAEoEEAACQCCQAAIBEIAEAACQCCQAAIBFIAAAAiUACAABIBBIAAEAi\nkAAAABKBBAAAkAgkAACARCABAAAkAgkAACARSAAAAIlAAgAASAQSAABAIpAAAAASgQQAAJAIJAAA\ngEQgAQAAJAIJAAAgEUgAAACJQAIAAEgEEgAAQCKQAAAAEoEEAACQCCQAAIBEIAEAACQCCQAAIBFI\nAAAAiUACAABIBBIAAEAikAAAABKBBAAAkAgkAACARCABAAAkAgkAACARSAAAAIlAAgAASAQSAABA\nIpAAAAASgQQAAJAIJAAAgEQgAQAAJAIJAAAgqZnvASozZMiQeOWVV2LVqlVx2mmnRceOHfM9EgAA\nsAmrsoFUXFwc06dPj9GjR8eCBQuiU6dOAgkAAPheVdlAat26dTRv3jwiIrbZZptYunRpZFkWuVwu\nz5MBAACbqiobSAUFBbHllltGRMSYMWOiQ4cO4gjYKGRZFosWLYqFCxfme5RqzRpUDVmW5XsEgG8k\nl1Xxr1wTJkyI2267Le644474wQ9+sMbtSkpKNuBUAGu2aNGiGDu2Vmy+ee18jwJ5tWLF4jjhhOWV\nfv8G2NBatmxZ6f1Vdg9SRMRzzz0Xt95661rjqNTa3izfr5KSEmtQBViH/Fu4cGGMGzcrmjZtlu9R\nqrWZM2fGzjvvnO8xqrWlSxdGxKu+JlUBvjfknzWoGtZlp0qVDaRFixbF1VdfHSNGjIitt9463+MA\nAADVQJUNpPHjx8eCBQuib9++ZRdnGDJkSDRo0CDfowEAAJuoKhtIXbp0iS5duuR7DAAAoBopyPcA\nAAAAVYVAAgAASAQSAABAIpAAAAASgQQAAJAIJAAAgEQgAQAAJAIJAAAgEUgAAACJQAIAAEgEEgAA\nQCKQAAAAEoEEAACQCCQAAIBEIAEAACQCCQAAIBFIAAAAiUACAABIBBIAAEAikAAAABKBBAAAkAgk\nAACARCABAAAkAgkAACARSAAAAIlAAgAASAQSAABAIpAAAAASgQQAAJAIJAAAgEQgAQAAJAIJAAAg\nEUgAAACJQAIAAEgEEgAAQCKQAAAAEoEEAACQCCQAAIBEIAEAACQCCQAAIBFIAAAAiUACAABIBBIA\nAEAikAAAABKBBAAAkAgkAACARCABAAAkAgkAACARSAAAAIlAAgAASAQSAABAIpAAAAASgQQAAJAI\nJAAAgEQgAQAAJAIJAAAgEUgAAACJQAIAAEgEEgAAQCKQAAAAEoEEAACQCCQAAIBEIAEAACQCCQAA\nIBFIAAAASZUOpGnTpkXHjh1j1KhR+R4FAACoBqpsIC1dujSuuuqqaN++fb5HAQAAqokqG0i1atWK\nW265JX70ox/lexQAAKCaqLKBVFBQEJtvvnm+xwAAAKqRmvkeYH0qKSnJ9wjVnjWoGqxDfi1atCgi\n6sbMmTPzPUq1Zw3ya9myz+InP/E1qaqwDvlnDTYOm1QgtWzZMt8jVGslJSXWoAqwDvm3cOHCGDdu\nVuy88875HqVamzlzpjXIs6VLF0bEfF+TqgDfG/LPGlQN6xKpVfYQOwAAgA2tyu5Beu2112LAgAEx\nf/78qFGjRowePTpGjhwZderUyfdoAADAJqrKBtI+++wTjz32WL7HAAAAqhGH2AEAACQCCQAAIBFI\nAAAAiUACAABIBBIAAEAikAAAABKBBAAAkAgkAACARCABAAAkAgkAACARSAAAAIlAAgAASAQSAABA\nIpAAAAASgQQAAJAIJAAAgEQgAQAAJAIJAAAgEUgAAACJQAIAAEgEEgAAQCKQAAAAEoEEAACQCCQA\nAIBEIAEAACQCCQAAIBFIAAAAiUACAABIBBIAAEAikAAAABKBBAAAkAgkAACARCABAAAkAgkAACAR\nSAAAAIlAAgAASAQSAABAIpAAAAASgQQAAJAIJAAAgEQgAQAAJAIJAAAgEUgAAACJQAIAAEgEEgAA\nQCKQAAAAEoEEAACQCCQAAIBEIAEAACQCCQAAIBFIAAAAiUACAABIBBIAAEAikAAAABKBBAAAkAgk\nAACARCABAAAkAgkAACARSAAAAIlAAgAASAQSAABAIpAAAAASgQQAAJAIJAAAgEQgAQAAJDXzPcCa\nDB48OF577bXI5XJx0UUXRbNmzfI9EgAAsIlb6x6kOXPmxIoVK9b5CV9//fUoKir6TkO9/PLLMXPm\nzBg9enRcfvnlccUVV3yn5wMAAFgXaw2kAw88MI499tiYNm3aOj3h7Nmz45FHHvlOQ7344otx0EEH\nRUTEbrvtFp999lksXrz4Oz0nAADA2qzTOUgzZsyILl26xN133/19zxMREXPnzo26deuW/X3bbbeN\nuXPnbpDXBgAAqq91CqS+ffvGLrvsEoMHD47TTz89Pv300+97rnKyLNugrwcAAFRP63SRhl133TXG\njBkTV155Zdx7771xzDHHxFVXXRVt27b9XoaqX79+uT1GH3/8cWy33XZrfVxJScn3Mg/rzhpUDdYh\nvxYtWhQRdWPmzJn5HqXaswb5tWzZZ/GTn/iaVFVYh/yzBhuHdb6K3eabbx4DBw6Mdu3axcUXXxy9\nevWKU089Nc4+++yoUaPGeh2qffv2MXz48OjSpUu88cYbsf3228dWW2211se1bNlyvc7BN1NSUmIN\nqgDrkH/xD+VOAAARIklEQVQLFy6MceNmxc4775zvUaq1mTNnWoM8W7p0YUTM9zWpCvC9If+sQdWw\nLpH6jS/zfdBBB8Vee+0V559/ftx6660xefLkuOaaa2LHHXf8VkNWZN9994299torunXrFjVq1IiB\nAweut+cGAABYk2/1e5AaNmwY99xzTwwbNixuueWWOOaYY+LSSy+NI444Yr0Ndu6556635wIAAFgX\n63SRhgofWFAQZ599dvzpT3+KrbbaKs4///woKiqKJUuWrM/5AAAANphvHUil9ttvv3j00UejQ4cO\n8fDDD8ell166PuYCAADY4NYaSJ06dVrr+UXbbrtt3HzzzdG/f/9YuXLlehsOAABgQ1rrOUiDBw9e\n5yfr2bNntGvXLt54443vNBQAAEA+fKuLNFSmSZMm0aRJk/X9tAAAAN+773wOEgAAwKZCIAEAACQC\nCQAAIBFIAAAAiUACAABIBBIAAEAikAAAABKBBAAAkAgkAACARCABAAAkAgkAACARSAAAAIlAAgAA\nSAQSAABAIpAAAAASgQQAAJAIJAAAgEQgAQAAJAIJAAAgEUgAAACJQAIAAEgEEgAAQCKQAAAAEoEE\nAACQCCQAAIBEIAEAACQCCQAAIBFIAAAAiUACAABIBBIAAEAikAAAABKBBAAAkAgkAACARCABAAAk\nAgkAACARSAAAAIlAAgAASAQSAABAIpAAAAASgQQAAJAIJAAAgEQgAQAAJAIJAAAgEUgAAACJQAIA\nAEgEEgAAQCKQAAAAEoEEAACQCCQAAIBEIAEAACQCCQAAIBFIAAAAiUACAABIBBIAAEAikAAAABKB\nBAAAkAgkAACARCABAAAkAgkAACARSAAAAIlAAgAASKpsIBUXF0e7du1i0qRJ+R4FAACoJqpkIM2a\nNSvuueeeaNWqVb5HAQAAqpEqGUgNGjSI4cOHR+3atfM9CgAAUI1UyUDafPPN8z0CAABQDdXM9wBj\nxoyJsWPHRi6XiyzLIpfLRZ8+faJ9+/bf+LlKSkq+hwn5JqxB1WAd8mvRokURUTdmzpyZ71GqPWuQ\nX8uWfRY/+YmvSVWFdcg/a7BxyHsgde7cOTp37rxenqtly5br5Xn4dkpKSqxBFWAd8m/hwoUxbtys\n2HnnnfM9SrU2c+ZMa5BnS5cujIj5viZVAb435J81qBrWJVKr5CF2X5VlWb5HAAAAqokqGUhPP/10\nHHXUUfHMM8/EZZddFscff3y+RwIAAKqBvB9iV5GOHTtGx44d8z0GAABQzVTJPUgAAAD5IJAAAAAS\ngQQAAJAIJAAAgEQgAQAAJAIJAAAgEUgAAACJQAIAAEgEEgAAQCKQAAAAEoEEAACQCCQAAIBEIAEA\nACQCCQAAIBFIAAAAiUACAABIBBIAAEAikAAAABKBBAAAkAgkAACARCABAAAkAgkAACARSAAAAIlA\nAgAASAQSAABAIpAAAAASgQQAAJAIJAAAgEQgAQAAJAIJAAAgEUgAAACJQAIAAEgEEgAAQCKQAAAA\nEoEEAACQCCQAAIBEIAEAACQCCQAAIBFIAAAAiUACAABIBBIAAEAikAAAABKBBAAAkAgkAACARCAB\nAAAkAgkAACARSAAAAIlAAgAASAQSAABAIpAAAAASgQQAAJAIJAAAgEQgAQAAJAIJAAAgEUgAAACJ\nQAIAAEgEEgAAQCKQAAAAEoEEAACQCCQAAIBEIAEAACQCCQAAIBFIAAAAiUACAABIBBIAAEBSM98D\nVGTVqlVx8cUXx6xZs+LLL7+Mfv36RYsWLfI9FgAAsImrkoH06KOPxhZbbBH33ntvTJ8+PYqKimLM\nmDH5HgsAANjEVclAOvroo+OII46IiIi6devGwoUL8zwRAABQHVTJQKpZs2bUrPmf0e6666448sgj\n8zwRwDezYsXiWLrUP+7k07Jln1mDPFu27PN8jwDwjeWyLMvyOcCYMWNi7NixkcvlIsuyyOVy0adP\nn2jfvn2MGjUqJk6cGDfffHPUqFGj0ucpKSnZQBMDVC7Lsli8eHG+x4AqoXbt2pHL5fI9BkCZli1b\nVnp/3gNpTcaMGRN/+ctf4sYbb4zNNttsrduXlJSs9c3y/bIGVYN1qBqsQ/5Zg6rBOlQN1iH/rEHV\nsC7rUCUPsXv//ffj/vvvj1GjRq1THAEAAKwPVTKQxo4dGwsXLozevXuXHXZ35513lp2XBAAA8H2o\nksVxzjnnxDnnnJPvMQAAgGqmIN8DAAAAVBUCCQAAIBFIAAAAiUACAABIBBIAAEAikAAAABKBBAAA\nkAgkAACARCABAAAkAgkAACARSAAAAIlAAgAASAQSAABAIpAAAAASgQQAAJAIJAAAgEQgAQAAJAIJ\nAAAgEUgAAACJQAIAAEgEEgAAQCKQAAAAEoEEAACQCCQAAIBEIAEAACQCCQAAIBFIAAAAiUACAABI\nBBIAAEAikAAAABKBBAAAkAgkAACARCABAAAkAgkAACARSAAAAIlAAgAASAQSAABAIpAAAAASgQQA\nAJAIJAAAgEQgAQAAJAIJAAAgEUgAAACJQAIAAEgEEgAAQCKQAAAAEoEEAACQCCQAAIBEIAEAACQC\nCQAAIBFIAAAAiUACAABIBBIAAEAikAAAABKBBAAAkAgkAACARCABAAAkAgkAACARSAAAAIlAAgAA\nSAQSAABAIpAAAAASgQQAAJAIJAAAgEQgAQAAJAIJAAAgqZnvASoyf/78uPDCC2P58uWxcuXK6N+/\nfzRv3jzfYwEAAJu4KrkHady4cXHsscfG3XffHeecc05cf/31+R4JAACoBqrkHqSePXuW/XnOnDnR\noEGD/A0DAABUG1UykCIi5s6dG6effnosWbIk7rrrrnyPAwAAVAO5LMuyfA4wZsyYGDt2bORyuciy\nLHK5XPTp0yfat28fERHPPvts3HXXXXHHHXdU+jwlJSUbYlwAAGAj1rJly0rvz3sgVWTy5MnRtGnT\nqFOnTkRE/PSnP42XXnopz1MBAACbuip5kYann346HnnkkYiIeOutt2KHHXbI80QAAEB1UCX3IH36\n6afRv3//WLJkSaxYsSIuvvhil/kGAAC+d1UykAAAAPKhSh5iBwAAkA8CCQAAIBFIAAAAySYVSHPn\nzo02bdrEyy+/nO9RqqX58+dH79694+STT45f/epX8Y9//CPfI1VLq1ativ79+8evfvWr6NatW7zy\nyiv5HqlaKi4ujnbt2sWkSZPyPUq1NHjw4OjWrVt07949pk6dmu9xqq1p06ZFx44dY9SoUfkepdoa\nMmRIdOvWLTp37hxPP/10vseplpYtWxZ9+/aNHj16RNeuXWPixIn5HqnaWr58eXTs2LHsatlrUnMD\nzbNBXH311bHTTjvle4xqa9y4cXHsscfGEUccES+//HJcf/31a/0Fv6x/jz76aGyxxRZx7733xvTp\n06OoqCjGjBmT77GqlVmzZsU999wTrVq1yvco1dLLL78cM2fOjNGjR8c777wTF198cYwePTrfY1U7\nS5cujauuuqrsF7+z4RUXF8f06dNj9OjRsWDBgujUqVN07Ngx32NVO88880w0a9YsevXqFXPmzIlf\n//rX8Ytf/CLfY1VLN954Y/zwhz9c63abTCC99NJLsfXWW0eTJk3yPUq11bNnz7I/z5kzJxo0aJC/\nYaqxo48+Oo444oiIiKhbt24sXLgwzxNVPw0aNIjhw4dHUVFRvkepll588cU46KCDIiJit912i88+\n+ywWL14ctWvXzvNk1UutWrXilltuiVtvvTXfo1RbrVu3Lvs1Kdtss00sXbo0siyLXC6X58mql8MP\nP7zsz3PmzImGDRvmcZrqa8aMGfHuu+9Ghw4d1rrtJnGI3RdffBE33XRT9O3bN9+jVHtz586NE044\nIW655RbrkSc1a9aMWrVqRUTEXXfdFUceeWSeJ6p+Nt9883yPUK3NnTs36tatW/b3bbfdNubOnZvH\niaqngoIC/y/kWUFBQWy55ZYRETFmzJjo0KGDOMqjbt26Rb9+/eKiiy7K9yjV0pAhQ6J///7rtO1G\ntwdpzJgxMXbs2MjlcmX/CrL//vtH9+7d4wc/+EFERPjVTt+/itahT58+0b59+xg7dmw8++yz0b9/\nf4fYfc8qW4dRo0bFP//5z7j55pvzPeYmrbI1oGrwPYHqbsKECfHQQw/5npxno0ePjmnTpsX5558f\n48aNy/c41cojjzwSrVu3jh122CEi1v59YaMLpM6dO0fnzp3L3da9e/d4/vnn409/+lPMmjUrpk6d\nGtdff33stttueZpy01fROkyePDkWLlwYderUiZ///OfRr1+/PE1XfVS0DhH/+aF94sSJceONN0aN\nGjXyMFn1saY1IH/q169fbo/Rxx9/HNttt10eJ4L8ee655+LWW2+NO+64o+wfktmwXn/99ahXr140\nbNgwCgsLY9WqVTF//vxye7r5fk2aNCk++OCD+Mtf/hIffvhh1KpVKxo0aBBt27atcPuNLpAqct99\n95X9uaioKI477jhxlAdPP/10vPnmm3HKKafEW2+9VVbpbFjvv/9+3H///TFq1KjYbLPN8j1OtWfv\nxYbXvn37GD58eHTp0iXeeOON2H777WOrrbbK91iwwS1atCiuvvrqGDFiRGy99db5HqfamjJlSsyZ\nMycuuuiimDt3bixdulQcbWDXXXdd2Z+HDx8ejRo1WmMcRWwigUTVcOaZZ0b//v1jwoQJsWLFihg0\naFC+R6qWxo4dGwsXLozevXuXHfJ15513Rs2a/nffUJ5++ukYOnRofPzxx1FcXBzDhg2LBx98MN9j\nVRv77rtv7LXXXtGtW7eoUaNGDBw4MN8jVUuvvfZaDBgwIObPnx81atSI0aNHx8iRI6NOnTr5Hq3a\nGD9+fCxYsCD69u1b9v1gyJAhLqK0gXXv3j0uuuiiOPHEE2P58uXx+9//Pt8jsRa5zD9vAgAARMQm\nchU7AACA9UEgAQAAJAIJAAAgEUgAAACJQAIAAEgEEgAAQCKQAAAAEoEEwEZt1apV0a1bt9hjjz2i\nuLi4wm2WL18ehxxySDRv3jymTZu2gScEYGMikADYqNWoUSOuvvrqqF27dhQVFcWiRYtW2+Z//ud/\nYtasWXHuuedGYWFhHqYEYGMhkADY6O20004xcODAmDNnTlx66aXl7ps8eXKMHDky2rZtGz179szP\ngABsNAQSAJuEo48+Oo466qh4/PHH46mnnoqIiCVLlkRRUVFss802MXjw4DxPCMDGIJdlWZbvIQBg\nfVi0aFEce+yxsWjRohg3blzccMMN8cADD8T1118fBx98cL7HA2AjIJAA2KS89tprceKJJ8Yuu+wS\nb7/9dhx33HHxxz/+Md9jAbCREEgAbHKuueaauO2226J27drx7LPPRu3atfM9EgAbCecgAbBJWb58\neUycODFq1KgRS5YsifHjx+d7JAA2IgIJgE3K4MGDY/r06fG///u/sfvuu8fgwYPj/fffz/dYAGwk\nBBIAm4y//vWvMXr06DjhhBOiY8eOcdVVV8WKFSuiX79+4YhyANZFjUGDBg3K9xAA8F19/PHHceqp\np0b9+vXjhhtuiM022yy22267+PLLL2PcuHGx2WabRatWrfI9JgBVnIs0ALDRy7IsevbsGVOmTIm7\n7747WrZsWXbfypUro0uXLvH222/H/fffH3vuuWceJwWgqnOIHQAbvdtuuy2Ki4ujZ8+e5eIoIqJm\nzZpx5ZVXRkREv379YsWKFfkYEYCNhEACYKM2derUGDp0aDRp0iT69u1b4TZNmjSJ3/72t/HOO+/E\n1VdfvYEnBGBj4hA7AACAxB4kAACARCABAAAkAgkAACARSAAAAIlAAgAASAQSAABAIpAAAAASgQQA\nAJAIJAAAgOT/A7BsFUyIEMnLAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.fill_between([-1,0,1], -2, 2, facecolor='blue', alpha = 0.4);\n", + "plt.xlim(-4,4);\n", + "plt.ylim(-3,3);\n", + "plt.xlabel(\"X\", fontsize=20);\n", + "plt.ylabel(\"Z\", fontsize=20);\n", + "plt.title('View of Object from the Side', fontsize=20);" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "From this perspective alone we have no information on the object's presence in the $Y$ dimension; our only conclusion can be that the 3-d object is constrained in the $X$ and $Z$ dimensions by the rectangle defined by [-1,1] and [-2,2] respectively. \n", + "\n", + "Beyond that, we can not tell if the shape is a prism, cylinder, or any number of possible objects that fit those constraints. The \"variability\" of our understanding is high, and can only be diminished by supplementing our current perspective with an additional \"view.\" \n", + "\n", + "Let's add another view by looking at the same object, this time from above instead of from the side:" + ] + }, + { + "cell_type": "code", + "execution_count": 103, + "metadata": { + "collapsed": false, + "scrolled": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAAIJCAYAAACflB2mAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl4VPWhxvH3zJKE7AuEBAKRNVFZCgkisomCoIBeVBYX\nqrdctdrro+jjghWXqrXLbb1Favdqr6JsVkVRqlRBFIoSEBHZQlgSCJBAAklIMtu5f3CSGhIgQCZn\nknw/z5PnITPnzLwzJ8zMO+d3fscwTdMUAAAAAEAOuwMAAAAAQKigIAEAAACAhYIEAAAAABYKEgAA\nAABYKEgAAAAAYKEgAQAAAICFggQA5+iLL75QZmam5s6da3eUc/Lpp5/qiiuuUJ8+ffTMM88E7X6u\nuOIKXXnllY1advr06brwwguDluVcHDlyRHfccYf69u2rrKwsu+MEzd69e5WZmanZs2fbHQUAbOWy\nOwAA2O2uu+7SypUrNW/evNN+ADZNU6NGjVJJSYlWrlypnj17as6cOerRo0czpm0apmlq1qxZqq6u\n1o9//GNlZmY2ar1//etfWrx4sTZs2KDDhw/LMAylpKRo8ODBuuWWW9SrV6/zynXffffpyJEj53Ub\njZGTk6O9e/dq0qRJZ1z2z3/+s1atWqXJkydr8ODBQc8WDH/729/0/PPPy+VyacWKFWrfvr3dkQAg\nZFGQALR5U6dO1cqVK/Xmm2+etiCtWrVKBw4c0LXXXqv4+HhJ0lVXXdVcMZvU4cOHdfjwYV199dW6\n6aabzri8x+PR448/riVLligtLU0TJkxQ9+7dFQgEtH37dr377rtasGCB7rnnHt17773nnCs7O/uc\n1z0bixYt0v79+xtVkLZv3y7DMPT4448rPDy8GdI1vUWLFikhIUGlpaX6+9//rjvvvNPuSAAQshhi\nB6DNu/zyy9WxY0ctW7ZMx48fP+VyixcvlmEYmjJlSjOmC46qqipJUkRERKOWf/bZZ7VkyRJNmTJF\ny5Yt08yZM3Xddddp0qRJeuSRR/SPf/xDw4YN029/+1u98sorQUzeNDZt2tToZaurqyXpjOXI5/Od\nV6ZgWbdunXJzc3XLLbcoOTlZixcvtjsSAIQ0ChKANs/hcOjGG29UZWWlli5d2uAypaWl+uSTT9Sj\nR4/avRynOgZp3759mjVrloYPH64+ffpo2LBhevDBB5WXl1e7zPDhw3XdddfVu5/x48crMzNTK1eu\nrHP50qVLlZmZqXffffe0j+XgwYOaPXu2Ro0apT59+mjw4MG68847tW7dutplZs2apdGjR8swDL31\n1lvKzMzUrFmzTnmbO3bs0MKFC9WvXz89/fTTcrnqDz6IiorSCy+8oOTkZM2ZM0fHjh1rMNt9992n\nwYMHq3///rrxxhu1atWqOstMnz69weF+ixcv1uTJk/W9731PAwYM0PXXX6/XXntNpmnWW/b999/X\ntGnTNGDAAA0cOFA//OEP9e2330r69zbLy8ur/fepHnvN9TXPXWZmZu3xUY8++qgyMzOVm5urO+64\nQ/3799d7771Xu+7GjRv1wx/+UJdeeqn69OmjkSNHatasWdq3b1+d+7j11lvVt29fVVdX64knntCQ\nIUM0YMAAzZgxQwcOHFBlZaWeeuopDR06VNnZ2Zo+fbq2b9/eYN5TWbBggQzD0NVXX62xY8cqPz9f\na9asOe0669at080336wBAwYoKytLd999t/bu3VtvuZUrV+q2227ToEGD1LdvX40ePVo//elPVVpa\nKkkqLy9X3759NXHixAbvp+bv76WXXqq9bMuWLbr33ns1ZMgQ9enTR6NGjdKTTz6pQ4cOndXjBoBz\nRUECAEmTJ0+WYRh68803G7z+7bffltfr1eTJk097OwUFBbrhhhv02Wefadq0afrpT3+qadOm6fPP\nP9eUKVO0c+dOSdKwYcO0Y8cOlZWV1a57+PBh7dy5U1FRUXUKjSStXbtWDodDQ4cOPeV9FxcX68Yb\nb9R7772ncePG6dlnn9Udd9yhXbt26fbbb9dnn30m6cSH8qeeekqmaWrw4MF68cUXdeutt57ydt96\n6y0ZhqHbb79dhmGccrno6GhNmzZNlZWV+sc//lHnOq/Xq//6r/9SbGysHn74Yd19993av3+/7r77\nbn3zzTd1lj35Pn72s5/p8ccfV0pKimbPnq1HH31UycnJevbZZ/XEE0/UWfYvf/mLHnjgASUlJemp\np57SAw88oB07duimm27SN998o169emnOnDkyTVO9evU67WOvWbbmGLMXX3xRv/nNb2ozGoahOXPm\nKCkpSc8//7wGDBggSVqzZo1uvfVWbdu2Tf/5n/+p5557Ttddd52WLVumqVOn1vmgbxiGTNPU448/\nLo/Ho0ceeUTXXHONPv/8c82aNUszZ85UeXm5HnroIU2ePFk5OTl68MEHT7kNTnb06FF9+OGHuuii\ni9SjRw9NnDhRpmlq0aJFp1xn586deuCBBzRo0CA9+eSTuv766/Xpp5/q9ttvr93zKJ0orXfddZeO\nHDmiu+++W88884wuv/xyzZs3T7feequqq6sVHR2tyy+/XLm5udq1a1e9+1q2bJkMw6j9smD9+vWa\nNm2aduzYoTvuuEPPPfecxo0bpyVLlmjatGkqKSlp9GMHgHNmAgBM0zTNu+66y8zMzDRzc3PrXTdh\nwgSzX79+Zmlpae1la9euNTMyMswXX3yx9rIf/ehHZlZWlpmfn19n/a1bt5oXXXSRec8995imaZpL\nliwxMzMzzU8++aR2maVLl5oXX3yx+dhjj5lTp06ts/7YsWPNSZMmnTb/E088YWZmZppLly6tc/n+\n/fvNfv36mddcc03tZQUFBWZGRob56KOPnvY2TdM0b731VjMzM9MsKio647Lr1q0zMzIyzFmzZtVe\nNmrUKDMzM7PO82Saprl69WozIyPDvO++++rdV40tW7aYGRkZ5jPPPFPvvu69914zMzPT3LJli2ma\npnn48GGzT58+5m233VZnuby8PPPCCy80Z8yYUXtZRkaGOX369DM+noYymaZpPvroo2ZGRob5gx/8\noN7y48aNM/v372/u27evzuUffPCBmZGRYT711FP1bvu7z5dpmub48ePNzMxM88EHH6xz+Z133mlm\nZmbW+/s6lZdfftnMyMgwX3nllTr5+vbta5aUlNRZds+ePWZGRoaZmZlprlu3rs51v/rVr8zMzExz\nwYIFpmmaZmVlpZmdnW2OGDHCrKioqLPsH/7wBzMjI8N8+eWX6zzu3//+93WWKysrM/v06WPedNNN\ntZdNmDDBHD16tFlWVlZn2eXLl5sZGRnmz372s0Y9bgA4H+xBAgDL1KlTZZpmvWM0Nm3apB07dmjs\n2LGKi4s75fpVVVVasWKFsrKyFBcXp7Kystqf1NRU9erVS1988YUk6bLLLpMkffnll7Xrr127Vr17\n99Yll1yizZs31x77UlRUpN27d2v48OGnzf/Pf/5TsbGxuvrqq+tcnpqaqiFDhigvL0/5+fmNf0Is\nxcXFcjgcjZr5LCUlpXadk5187NaQIUMUHx+vtWvXnvL2PvjgAxmGoXHjxtV5PsvKyjR27FiZplm7\n/kcffSSfz1dvOFe3bt30xhtvnHYY4bmoyfVdeXl52rVrl4YNG6ZOnTrVue6qq65STEyMVqxYUe+2\nrr/++jq/Z2RkSFK9SSRqhh8WFRU1KuPChQvlcrk0YcKE2suuu+46eb1evf322w2u071793qTlVx9\n9dV1nus1a9aorKxM48ePV2RkZJ1lb7jhBknSJ598IkkaNWqUoqKi6u1V/Oijj+T1enXttddKOrHn\naseOHRo5cqRM06yzrbOzsxUTE1P7/wcAgolZ7ADAMnLkSKWkpOidd97Rgw8+WHuszaJFi2QYhqZO\nnXra9Xfv3i2fz6dPP/1UgwYNqnd9zdCx8vJyJSUlqXfv3srJyam9fu3atRo5cqQGDRokr9er9evX\na8iQIfrXv/4lwzBqS1VDysrKVFxcrIEDBzY4DK5bt25auXKldu/erS5dujTq+ajhcDgaPNanITXL\nORx1v3+LjY1VcnJyveXT0tK0efNmVVVVNThhxM6dO2Wa5imHwRmGocLCQkknjpWS1ODj69+/f6Py\nn620tLQ6v9ccZ9azZ896yzocDnXt2lXffvutPB6PwsLCaq/r3LlznWVrrjv5crfbLalxE0KsW7dO\neXl5Gj58uJKSkmovv/baa/Wb3/xGixYt0u23315vvYamaq95TmuOodq1a5cMw2hw2aSkJMXExGj3\n7t2STkxuMXr0aC1ZskQFBQW1z9myZcvkdrtrC33N8NN58+bptddeq3e7393WABBMFCQAsNRM1vDb\n3/5WH3/8sa666ipVV1frgw8+aPBb9ZNVVFRIOnF80emmUa6ZDe2yyy7Ta6+9purqapWWlmr37t16\n6KGH1KlTJ6WmpurLL7/UkCFD9MUXX6hdu3anvf+a2ffatWvX4PU15aOysvK0j6EhycnJysvLU2Fh\noVJTU0+77IEDB2rX+a6oqKjT5jpVQaqoqJBhGPr1r399yj1YHTp0kPTv2eZqSkRzOPlx1WyHk/eq\n1Kh5jMePH69TkL777+861eWNMX/+fBmGoUGDBtWZYME0TWVmZmrr1q1av369Bg4cWGe9hrZVzd9s\nzXN8pr+38PDwOn9rEyZM0DvvvKMPP/xQP/jBD1ReXq7Vq1drxIgRtXtla/7/3HDDDQ1OYCLVPz4N\nAIKBggQA33HjjTfqd7/7nRYvXqyrrrpKy5YtU1lZWaPO7VPzwdLhcDS4B+lkQ4cO1SuvvKL169fX\nDmOrmSFv4MCBtcPvvvjiC11yySUNzh5Xo+YD+ammKa/5sHqqonI6AwYM0L/+9S+tXr26dvjUqdTs\n7Tr5fEanKmY1l5/qg3ZN3rS0NPXt2/e0952YmChJDc6g11xqtkPNh/2T1TzeUxWoplIzOYMkvfDC\nC/r1r39d5/qaorFo0aJ6Bem7EzGcfFlNwWvM31tsbGzt75dddpkSExNrC1LNcMia4XXSv7d1u3bt\nGvX/BwCChWOQAOA7UlJSNHz4cK1evVqlpaVasmSJIiIi9B//8R9nXLdbt25yuVzatGmT/H5/veuP\nHDlS5/dBgwbJ7XYrJydHa9euVc+ePWu/Tc/OztbXX3+tgoIC7dmz54zHH8XExKhDhw7Ky8trcDhc\nbm6uJNXOyHY2Jk2aJMMw9Ne//lVer/eUyx0/flwLFy5UXFxcvRPolpaWNjgDWUFBgZKSkk55jqGe\nPXvKNE2tX7++wfvzeDy1v6elpck0zdrH+l0ff/zxGadIbwo1Q+samorb7/drz549SktLO689Q43x\n1ltvyePxaMyYMfrNb36jOXPm1Pn53//9X0VFRWnZsmUqLy+vs27NULfv2rNnj6R/D7Xr0aOHTNNs\n8HEePHhQFRUV6t69e+1lTqdT48aN09dff63i4mItW7ZM0dHRGjVqVO0yNc9dQ9taqv//BwCChYIE\nACeZOnWq/H6/FixYoLVr12rs2LF1vg0/lfDwcI0aNUolJSV666236lyXn5+vK6+8Uk8//XSd5QcO\nHKivvvpKa9eu1SWXXFJ7XXZ2tqqrq/XKK6+c8fijGuPGjdOxY8fqnctp9+7dWrt2rfr27Vs7icLZ\n6NKli2bMmKG8vDw99NBDtcOsvquiokL333+/ioqK9OijjzY4XO7kqaU//fRTHT169LSPrWYShDfe\neKNOGZKkX/ziF7r00ktrJ54YMWKEXC6X3n777ToFteb8S9+dwt3hcNS7vaZwwQUXKCMjQ6tXr1ZB\nQUGd65YsWaKKigqNHTu2ye/3ZDXnPrr//vt11VVX1fsZO3asrr/+elVVVWnJkiV11t22bZu+/vrr\nOpctXbq0zt/hpZdeqvj4eL333nv1CtYbb7zR4AQW48ePl2maWrZsmdasWaOxY8fWKYrdu3dX7969\n9e2339aZvESScnJyNGzYML388svn/dwAwJkwxA4ATjJy5Eh17NhRL730kvx+f73Z107n4Ycf1rp1\n6/T0009r586duuiii1RQUKB58+bJ6XTWm+jhsssu0+9+9ztVVVXVGVbUq1cvxcXF6e9//7tSU1PV\nrVu3M973Pffco3/+85+aPXu2tm7dqp49e6qwsFDz58+Xy+XS7NmzG/8knGTmzJk6fvy4Xn/9dW3c\nuFETJ05U9+7dZZqmduzYoXfffVclJSWaNWtWg3vbUlJS9P7772vfvn3q37+/9u/fr1dffVXh4eGa\nMWPGKe83MzNTt912m/7v//5P06ZN09SpU+VyubRixQotX75c1113Xe1ejY4dO+pHP/qR5syZo9tv\nv12TJk1SRUWFXnvtNTkcDj3yyCO1t5uWlqZvvvlGc+fOVWpq6hmHDp6N2bNna8aMGfr+97+vm266\nSR06dNDWrVv1xhtvKD09XXfddVeT3VdDvvzyy9qZ9L67F+dkt9xyi1599VUtWrRIN998c+3l2dnZ\nuu+++zRp0iR16dJFGzdu1MKFC5Wenq5rrrlG0oly/+Mf/1iPPPKIbr75Zt14442KiorShg0b9Oab\nbyorK6vezHxZWVlKTU3V7373O3m93gZPHvvkk09qxowZuueee3TbbbcpPT1d27dv1xtvvKGOHTtq\n/PjxTfQsAcCpUZAA4CTfnayhZ8+ep50coeaEoTW6dOmixYsXa+7cuVq6dKleffVVxcbG6pJLLtE9\n99yj3r1711l/6NCheuGFF2oPpv+ugQMHasWKFXWmaD6dhIQELVy4UHPmzNF7772n4uLi0973ydlP\nx+FwaPbs2br22ms1f/58ffDBByoqKpLD4VBqaqrGjRun6dOnq2vXrqfM9vvf/17PPfecfv7zn6u6\nulqZmZl68MEHa6e0PpVZs2apd+/eWrBggX72s58pEAgoPT1dDz/8sG677bY6y959991KTU3Va6+9\npmeeeab2uK65c+fWmXHtkUce0dNPP60//elPGjly5BkL0tlMDpCdna3XX39dL774ov785z/r+PHj\nSk5O1tSpU3X33XcrJiamUbd9rhMS1Ow9+v73v3/a5dLT0zV8+HCtWrVK33zzjWJiYmQYhvr166f7\n779f//M//6OXX35ZLpdLo0eP1mOPPVZnj8/EiROVkJCgP/7xj5ozZ448Ho86d+6se+65R3feeaec\nTme9+7zmmmv0l7/8RampqRo8eHC967OysjR//ny99NJLev3113Xs2DElJiZq7Nix+u///u8GZ0IE\ngKZmmI2duxUAgCCbPn261q1bpy1bttgdBQDQRnEMEgAgZFRUVDR4/BIAAM2FIXYAANutX79eq1at\n0tatW9WvXz+74wAA2jAKEgDAdsuXL9crr7yiLl266LHHHrM7DgCgDWs1xyDl5OTYHQEAAABAiDvd\n5EtSK9uDdKYHi+DKyclhG4QAtkNoYDvYj20QGtgOoYHtYD+2QWhozE4VJmkAAAAAAAsFCQAAAAAs\nFCQAAAAAsFCQAAAAAMBCQQIAAAAACwUJAAAAACwUJAAAAACwUJAAAAAAwEJBAgAAAAALBQkAAAAA\nLBQkAAAAALBQkAAAAADAQkECAAAAAAsFCQAAAAAsFCQAAAAAsFCQAAAAAMBCQQIAAAAACwUJAAAA\nACwUJAAAAACwUJAAAAAAwEJBAgAAAAALBQkAAAAALBQkAAAAALBQkAAAAADAQkECAAAAAAsFCQAA\nAAAsFCQAAAAAsFCQAAAAAMBCQQIAAAAACwUJAAAAACwUJAAAAACwUJAAAAAAwEJBAgAAAAALBQkA\nAAAALBQkAAAAALBQkAAAAADAQkECAAAAAAsFCQAAAAAsFCQAAAAAsLjsDnA6v/jFL7R+/Xr5/X7d\neeedGjNmjN2RAAAAALRiIVuQ1q5dq9zcXM2fP1+lpaWaNGkSBQkAAABAUIVsQRo0aJD69esnSYqN\njVVlZaVM05RhGDYnAwAAANBahewxSA6HQ+3atZMkLVq0SCNHjqQcAQAAAAgqwzRN0+4Qp7N8+XL9\n6U9/0l/+8hdFR0efcrmcnJxmTAUAAACgJcrKyjrt9SE7xE6SVq1apT/+8Y9nLEc1zvRgEVw5OTls\ngxDAdggNbAf7sQ1CA9shNLAd7Mc2CA2N2akSsgWpvLxcv/zlL/XKK68oJibG7jgAAAAA2oCQLUjv\nv/++SktLdf/999dOzvCLX/xCKSkpdkcDAAAA0EqFbEGaMmWKpkyZYncMAAAAAG1IyM5iBwAAAADN\njYIEAAAAABYKEgAAAABYKEgAAAAAYKEgAQAAAICFggQAAAAAFgoSAAAAAFgoSAAAAABgoSABAAAA\ngIWCBAAAAAAWChIAAAAAWChIAAAAAGChIAEAAACAhYIEAAAAABYKEgAAAABYKEgAAAAAYKEgAQAA\nAICFggQAAAAAFgoSAAAAAFgoSAAAAABgoSABAAAAgIWCBAAAAAAWChIAAAAAWChIAAAAAGChIAEA\nAACAhYIEAAAAABYKEgAAAABYKEgAAAAAYKEgAQAAAICFggQAAAAAFgoSAAAAAFgoSAAAAABgoSAB\nAAAAgIWCBAAAAAAWChIAAAAAWChIAAAAAGChIAEAAACAhYIEAAAAABYKEgAAAABYKEgAAAAAYKEg\nAQAAAICFggQAAAAAFgoSAAAAAFgoSAAAAABgoSABAAAAgIWCBAAAAAAWChIAAAAAWChIAAAAAGCh\nIAEAAACAhYIEAAAAABYKEgAAAABYKEgAAAAAYKEgAQAAAICFggQAAAAAFgoSAAAAAFgoSAAAAABg\noSABAAAAgIWCBAAAAAAWChIAAAAAWChIAAAAAGChIAEAAACAhYIEAAAAABYKEgAAAABYKEgAAAAA\nYKEgAQAAAICFggQAAAAAFgoSAAAAAFgoSAAAAABgoSABAAAAgIWCBAAAAAAWChIAAAAAWChIAAAA\nAGChIAEAAACAhYIEAAAAABYKEgAAAABYKEgAAAAAYKEgAQAAAICFggQAAAAAFgoSAAAAAFgoSAAA\nAABgCemCtHXrVo0ZM0bz5s2zOwoAAACANiBkC1JlZaV+/vOfa+jQoXZHAQAAANBGhGxBCg8P1x/+\n8Ae1b9/e7igAAAAA2oiQLUgOh0NhYWF2xwAAAADQhhimaZp2hziduXPnKiEhQbfccstpl8vJyWmm\nRACAUGCaprxerzwej6qqfPJ4/PJ6TXm9PpmmUWdZh0MKD3fK7XYqLMyh8HC3wsLC5HK5bEoPALBL\nVlbWaa9vVe8MZ3qwCK6cnBy2QQhgO4QGtsP583g8OnSoVAcPVqqiQjp+/N8/VVWSx2PI5wtTIBAu\npzNMDodTDodLTueJt7Y9e/YoPT1dkhQIBGSafvn9PgUCPplmtZzOarlcPoWHSxERUlSUFBl54icm\nxlDnzrGKj4+VwxGygy1aBP4vhAa2g/3YBqGhMTtVWlVBAgC0PIFAQMXFpcrPL1NJiamSEunoUUOV\nlWEyjHiFhSU3uJ7LdeKnMU6UHIecTrd1SUztdV7viZ+ysrqZPJ5jcjr3KTrar/h4KSnJUFKSU+np\niYqMjDy3BwsACHkhW5A2btyoxx9/XEeOHJHT6dT8+fP12muvKS4uzu5oAIDz4PV6tWvXIRUW+lRU\nJBUXG/J44hURkV5nufBwmwLqRKGKiIiXFK/qaungwRM/fr9PXu8RxcQcUocOUvv2UrduMUpOTpRh\nGGe8XQBA6AvZgtS/f3+9++67dscAAJwn0zRVUFCkXbuOq7BQKi52y+FIrt2b43CcGOLWEjidLjmd\nyfJ6pf37T/ysW1emiIi9SkkxlZpqKCOjvaKjo+yOCgA4RyFbkAAALZff79f27YXavdunggKpujq5\ndqic232GlVuYsLAYBQIx2r9f2rfP1OrVRWrfvkhpaVJmZpw6dEiwOyIA4CxQkAAATSIQCCg394C2\nb69Wfr5Tppkil+vE6RraylkbDMNQeHiyysqkLVukjRtLFRu7S127Sv36JSoxkWHiABDqKEgAgPNy\n4MARbdp0VHv2OFRdnSK3O1xOp92pQkNYWLyqquK1fbv0zTeH1b79LnXrZmjAgE6c6w8AQhQFCQBw\n1vx+vzZt2qetW30qLk5SWFg3Sa1v+FxTCgtL0rFjSdqwIaD16wuVnl6t/v1j1blze7ujAQC+g4IE\nAGi08vLjWrv2gHbudMnv7ySn09Vmhs81lRNTjndWQYGUl3dMiYl56tvXrYsv7sw5lwAgBFCQAABn\nVFRUqnXrjmjXrki5XN0liWF0TSAsLFbl5bFatcqjdev26KKLDGVlpcnV2BM8AQCaHK/AAIBTOnSo\nVGvWHFZ+frzCwro3+sSsODsuV5i83m7asCGgjRsLdNFFfl16aReKEgDYgFdeAEA9R44c0+efF2nv\n3gS53T0YRtdMTgyx66pvvglo69YC9ekT0KBBXeRkdx0ANBsKEgCgVmVllVau3Ke8vDi5XD2YdMEm\nDodDgUBXffWVX5s35ys726l+/dJkGIbd0QCg1aMgAQAUCAT0xRd7tXGjS4bRg6F0IcLhcMrvv0Cf\nf16tb7/N07BhcerShVnvACCYeAsEgDYuN/eAPvvsuCoru8rp5G0hFLlc4Sor66ElS0rVtWuurrii\ns6Ki2tkdCwBaJd4JAaCNqqys0vLl+dq7N0Vudwqz0rUAbne8CgvjNW9egQYNCmjAgK52RwKAVoeC\nBABt0MaN+friC0Om2YvjjFqkNK1ZU63c3FxdeWWyEhNj7Q4EAK0GZ6QDgDbk+PEqvfnmdn3+eQeZ\nZprdcXAeXK5wlZT01MKFlVq3bq/dcQCg1WAPEgC0ETt2HNDKlV4FAr2ZhKEVcTg66osvqrV37w6N\nHZvGsUkAcJ7YgwQArZzf79eHH+bqo48iFQh0sTsOgsDlCldxcS+98Uaxduw4YHccAGjR+A4RAFqx\n0tJyvffeAZWXd5fLxXdirV0g0EUffXRMhYV5Gj68G+dNAoBzQEECgFYqL++Qli/3SOopB92ozXC5\nYrV5czsdOrRDEyakKyIi3O5IANCi8JYJAK3QmjW7tWyZWxITMbRFTqdbR4701htvFKqwsMTuOADQ\nolCQAKAjIk4BAAAgAElEQVQVCQQCeu+97dqwIVUuV4LdcWAzr/cCvfOOR9u3c1wSADQWBQkAWgmP\nx6PFi3NVUNBDLhfDqnCCw9FRy5eHKSeHqcABoDEoSADQCpSVHdf8+XtVUtJLDofT7jgIMS5Xotau\nTdTKlTvtjgIAIY+CBAAtXFHRUS1cWKSqqp7MWoZTcrmitXlzmt5/f7tM07Q7DgCELAoSALRgRUVH\n9c47x+T3p9sdBS2AyxWuPXu66913tysQCNgdBwBCEgUJAFqoQ4dK9fbbZZz8FWfF6XRp374eeu+9\nHZQkAGgABQkAWqCDB0v1zjvlMk2m8cbZqylJ775LSQKAk1GQAKCFKSo6qiVLKEc4P06nS/v3nyhJ\nHJMEAP9GQQKAFqS8/LjefbeUcoQmcaIkdddHH+XaHQUAQgYFCQBaCI/Ho7//fb98PiZkQNNxOt3K\nzU3TmjW77Y4CACGBggQALUAgENBbb+1SZWUPu6OgFXK52mnDhkRt2rTP7igAYDsKEgC0AO+/n6uS\nEs5zhOBxuWL12WcRyss7ZHcUALAVBQkAQtzq1buUn3+BHA6n3VHQyjmdSVq+3KeSkjK7owCAbShI\nABDCdu06pI0b4+V0htkdBW1GJy1delB+v9/uIABgCwoSAISo8vLjWr68Wk5ngt1R0MaUl3fXhx/m\n2R0DAGxBQQKAEBQIBLRkSYFMs4vdUdAGORwO5eV11ldf5dsdBQCaHQUJAELQxx/n6dgxZqyDfdzu\nSK1ZE679+4/YHQUAmhUFCQBCzI4dB7RtWzKTMsB2TmeyPvywVD6fz+4oANBsKEgAEEI8Ho8+/bRK\nbnes3VEASVJV1QVauXKP3TEAoNlQkAAghPzzn3vl86XbHQOo5XA4tG1bgvbtO2x3FABoFhQkAAgR\nu3YdUl5eB04Gi5DjciXq44+PKhAI2B0FAIKOggQAIcDn8+mTTyrkdsfZHQVoUEVFuj77bLfdMQAg\n6ChIABACVqzYI4+HoXUIXQ6HU5s3x+rAgRK7owBAUFGQAMBmhYVHtG1bghwOXpIR2pzO9lqxgmm/\nAbRuvBsDgM3WrCmV251odwygUY4c6aStW/fbHQMAgoaCBAA22rXrkAoLO9gdA2g0l6udvvyySqZp\n2h0FAIKCggQANlq7tlxud4zdMYCzUlaWpq++yrc7BgAEBQUJAGyyZct+HT6cancM4Ky5XGHasCEg\nv99vdxQAaHIUJACwgWma+vLLKrnd7eyOApwTj6eLvvySvUgAWh8KEgDY4Kuv8lVR0cXuGMA5czic\n+vprhzwej91RAKBJUZAAoJkFAgFt2BCQ0+m2OwpwXkyzi9as2Wd3DABoUhQkAGhmmzfvU3V1Z7tj\nAOfNMAzt2OFQIBCwOwoANBkKEgA0s23bfOw9Qqvh9XbSt99yXiQArQcFCQCaUUnJMR04wLTeaD2c\nTre2bfPaHQMAmgwFCQCa0VdfHVZYWHu7YwBNqrAwWqWlZXbHAIAmQUECgGYSCAS0c6dhdwygyYWF\nddCGDcV2xwCAJkFBAoBmsm1boTyeTnbHAIIiL89gsgYArQIFCQCaydatHrlcYXbHAIKiurqTtm8v\ntDsGAJw3ChIANINjx8q1f3+U3TGAoHG5wrR1KyeNBdDyUZAAoBls2FAktzvZ7hhAUO3bF6Wysgq7\nYwDAeaEgAUCQmaapvDwmZ0Dr53Yna8OGQ3bHAIDzQkECgCCrqKhQWRnnPkLbUFzMRwsALRuvYgAQ\nZAUFpXK74+yOATSLY8fsTgAA54eCBABBVlLil9PpsjsG0CzKy13y+Xx2xwCAc0ZBAoAg4xt1tCWB\nQJyKi0vtjgEA54yCBABBRkFCWxIREa3CQmayA9ByUZAAIMiOHrU7AdC8+FIAQEtGQQKAIKqurtbx\n4+F2xwCaFQUJQEtGQQKAIDpwoFROZ7zdMYBmRUEC0JJRkAAgiA4dqpLbHWF3DKBZHTtmyDRNu2MA\nwDmhIAFAEPFNOtoirzdGx46V2R0DAM4JBQkAgoiChLYoLCxW+/YxOwmAlomCBABBREFCW+RwOFVS\nErA7BgCcEwoSAASJ3+9XebnT7hiALfhyAEBLRUECgCA5cuSo/P5Yu2MAtqAgAWipKEgAECSFheUK\nD4+xOwZgCwoSgJaKggQAQXL0qCnDMOyOAdiiqqqdKisr7Y4BAGeNggQAQcI36GjLHI44FRaW2h0D\nAM4aBQkAguQosxyjDXO7w3X4sMfuGABw1ihIABAEpmmyBwltHl8SAGiJKEgAEASVlZXyeKLtjgHY\nii8JALREZyxIzzzzjI4fP94cWep4/vnnNW3aNN10003atGlTs98/AJyPgwcr5HbH2R0DsBUFCUBL\ndMaCNG/ePE2cOFGfffZZc+SRJH355Zfas2eP5s+fr2effVbPPfdcs903ADSFsjLJ6XTZHQOwVVmZ\nUz6fz+4YAHBWzliQHnroIR05ckR33HGHHn30UR1thgHFa9as0ejRoyVJPXr00LFjx1RRURH0+wWA\nplJR4bQ7AmA704xXaWm53TEA4KycsSDNmDFDS5cu1YgRI/T2229r/Pjx+uCDD4Iaqri4WImJibW/\nJyQkqLi4OKj3CQBNqbycggSEh0fp8OFqu2MAwFlp1CQNnTp10h/+8Ae98MILkqQHHnhAP/rRj3To\n0KGghqthmmaz3A8ANBUKEiAZhqHycoaaAmhZDPMs20d5ebl+9atfacGCBYqOjta4cePkcNTtWYZh\n6MknnzznUHPnzlVycrKmTJkiSRo9erSWLFmiyMjIU66Tk5NzzvcHAE3t738vl3SB3TEA23Xpsk2D\nBiXZHQMAamVlZZ32+rP+Wic6OloPPvig9u7dq88//1wLFy6st8z5FqShQ4dq7ty5mjJlijZv3qyO\nHTuethzVONODRXDl5OSwDUIA2yE0/OMfH6t9+3S7Y7Rpe/bsUXo628BuERGbeU0KAbw32I9tEBoa\ns1PlrAvShx9+qOeee06HDh3S5Zdfrttuu01OZ9MOJRkwYIAuvvhiTZs2TU6nU0888UST3j4ABFtU\nVMDuCIDtPJ5Kde7stjsGAJyVRhekwsJC/eQnP9GKFSsUHx+vX/7yl5owYULQgj3wwANBu20ACLbo\naL/8frtTAPYyzVIlJnLCZAAtyxkLUiAQ0N/+9je9+OKLOn78uCZOnKjHHntMCQkJzZEPAFqk6OiA\nSkoC9Y7RBNqSyEiPwsLC7I4BAGfljAXpxhtv1JYtW5SSkqIXXnhBI0eObI5cANCidejQTgcPHlNE\nRLzdUQDbxMbanQAAzt4ZC9KWLVt0yy23aObMmYqKimqOTADQ4sXERMnlOiaJgoS2i4IEoCU6Y0Ga\nN2+eBg4c2BxZAKDVcDgciokxVVlpdxLAPnFxdicAgLN3xsHxlCMAODd8e462zO/3KTGRk8QCaHk4\nehgAgoSChLbM6z2qTp3YhQSg5aEgAUCQUJDQloWFlXPsMoAWiYIEAEGSkhIpj+e43TEAW8TFSYZh\n2B0DAM4aBQkAgiQ5OV6mWWp3DMAW7EEF0FJRkAAgSNxut6KjvXbHAGxBQQLQUlGQACCI+JCItsg0\nTcXFMbwOQMtEQQKAIKIgoS2qri5Tamq03TEA4JxQkAAgiChIaIuczqNKTGSKbwAtEwUJAIIoKckt\nv5/jkNC2REcH5HQ67Y4BAOeEggQAQdSpU7y8XmayQ9vCnlMALRkFCQCCKDIyUuHhnAsJbQsFCUBL\nRkECgCCL41AMtDH8zQNoyShIABBkfJuOtsTrrVJycoTdMQDgnFGQACDIKEhoSwKBUnXsGG93DAA4\nZxQkAAiyuDhDgUDA7hhAs4iMrFZ4eLjdMQDgnFGQACDIOneOlcdzzO4YQLNgjymAlo6CBABBFh8f\nq/Dwo3bHAJpFYqJpdwQAOC8UJAAIMofDoW7dGGKH1s/jKVXfvkxhB6BloyABQDPo1y9OHg8njEXr\n1qFDiZKTE+yOAQDnhYIEAM0gJSVR7duX2B0DCJpAwK9evZx2xwCA80ZBAoBm0rOng9ns0IrtV79+\nnewOAQDnjYIEAM2kf/9OMs19dscAguKCC3xyuVx2xwCA80ZBAoBm4na71a2bz+4YQJPzeo+pXz/m\n9wbQOlCQAKAZ9e0bwzmR0OokJBxWp05JdscAgCZBQQKAZtS5c3slJBy2OwbQZAKBgHr14uMEgNaD\nVzQAaGa9ehlM1oBWwzT3q3//VLtjAECToSABQDP73vc6yTD22x0DaBIXXOBRWFiY3TEAoMlQkACg\nmYWFhenCCz3sRUKL5/Md0NChHe2OAQBNioIEADa47LKucrkK7I4BnJeMjOOKjY2yOwYANCkKEgDY\nwOVyqV+/gPx+pv1GyxQIFOiyyzgxLIDWh4IEADbJzu6qiIh8u2MAZy0QCOjii71q1y7C7igA0OQo\nSABgE4fDoexst3w+j91RgLPidOZryJAudscAgKCgIAGAjfr06azYWI5FQsvh9/v0ve+dGCYKAK0R\nBQkAbGQYhi65pJ283uN2RwEapV27fGVlsfcIQOtFQQIAm/XunarU1H12xwDOyOst09Ch7eRw8PEB\nQOvFKxwAhICrruos06QkIbSlpx9Ur14pdscAgKCiIAFACIiOjtSgQX75fFV2RwEaZBh7NXo0Q+sA\ntH4UJAAIEQMHdlWHDkz7jdDj9VZo6FCXIiLC7Y4CAEFHQQKAEHLVVakKBArtjgHU0bnzfl10ESeF\nBdA2UJAAIITExUUrK8vDuZEQQgo0Zkya3SEAoNlQkAAgxGRnd1Vy8m67YwDy+Y5pxAinoqLa2R0F\nAJoNBQkAQoxhGJowIV0u1267o6AN8/t9yswsUmZmqt1RAKBZUZAAIARFRIRr3LhY+f1FdkdBG5WQ\nkKfLL+9mdwwAaHYUJAAIUZ06JWrw4Ep5vcftjoI2xuHYq4kTu3BCWABtEq98ABDCBg7sqvT0AgUC\nAbujoI3w+Y5ozJhIjjsC0GZRkAAgxI0b110xMbl2x0Ab4PNV6JJLypWe3t7uKABgGwoSAIQ4l8ul\nSZO6Kixsl91R0Ir5/R5deOEBZWd3tTsKANiKggQALUBkZISuu669DKPA7ihohQIBv7p02a1Ro3rY\nHQUAbEdBAoAWIiEhRuPHRyoQOGh3FLQipmkqMTFX11zT0+4oABASKEgA0IJ06pSo0aMln++w3VHQ\nSkRG5mrSpO7MWAcAFl4NAaCF6dmzo6680iu/n5KE89OuXa4mT+4qt9ttdxQACBkUJABogTIyUnTF\nFV75/cV2R0ELFRmZq8mTuygiItzuKAAQUihIANBCZWSk6MorfZQknLXIyB2aPLkr5QgAGkBBAoAW\nrHfvFI0Z45fff8juKGgBTNNUVNR2TZ6crvDwMLvjAEBIoiABQAvXs2dHjR/vkLTP7igIYX6/T0lJ\n2zV1anfKEQCcBgUJAFqBrl3b64YbYuRycTJZ1Of3V6lbt126/vpecrlcdscBgJBGQQKAViIpKVZT\np6YoMnKHTNO0Ow5ChM93TP36FWrcuF5M5Q0AjcArJQC0IlFR7TRtWjelpu6Qz1dldxzYLBA4qBEj\nyjR0aDe7owBAi0FBAoBWxuVy6dpre2vgwAPy+Y7YHQc2cbt3adKkcPXp09nuKADQolCQAKCVuvTS\nC3T11T4ZRoHdUdCMfD6PkpK26+abO6tjx3i74wBAi0NBAoBWrFu3ZE2ZEq+YmB3y+712x0GQ+XyH\n1a/fPl1/fS9mqgOAc0RBAoBWLi4uWtOm9VTfvvny+Q7bHQdBYJqm3O5duvZaadiwbjIMw+5IANBi\nMdcnALQBhmFo2LDuuuCCw/roozx5PHyIbi18vnJ163ZAo0eny+122x0HAFo89iABQBuSlpak6dO7\nqkePPPl8JXbHwXkwTVMOx25dcUWZrr66J+UIAJoIe5AAoI1xuVwaPbqHMjMPa8WKnSorS5fTydtB\nS+Lzlapnz8MaNaorxQgAmhjviADQRqWlJenmmxO0evUeffNNOzkcKXZHwhn4/V5FR+dr5MhYde3a\nw+44ANAqUZAAoA1zOBwaNqyb+vWr0MqVudq7t73cbqaGDjWmacowCpSdHVBW1gVyOBghDwDBQkEC\nACg2NkoTJ/ZUfn6xPvtsp0pKOsvlirA7FiT5fEXq3btMI0akKSyMqbsBINgoSACAWl26tNdNN7XX\n5s37tH59tcrK0uRy8aHcDj7fYaWnH9WQIe2VmNjB7jgA0GZQkAAA9Vx8cWdddJGpTZsKtH69V8eP\nU5Sai8dzRF26lOiyy5LUoUN3u+MAQJtDQQIANMgwDPXr10V9+gS0efM+ff21V6WlKXK7I+2O1ip5\nvQfUrdtxZWcnKDmZCRgAwC4UJADAaTkcDvXt20V9+0o7dx7Qhg0HdPBggtzuBLujtXiBQEDSPvXq\n5dUll3RUTAwzCQKA3ShIAIBG69EjRT16SEVFpfrqq13atculQKCTHA6n3dFaFK+3TPHxxerd26Hv\nfa8T5zICgBBCQQIAnLUOHeI1Zky8fD6fvv56n3bs8KuoKEZhYe3tjhay/H6fDGO/unb1q2/faHXp\n0s3uSACABlCQAADnzOVyaeDArho4UCotLdPXX+/S7t3S0aOJCg+Pszue7QKBgPz+A+rUqVo9e7p0\n4YWd5HLx1gsAoYxXaQBAk4iPj9GIETEaMUI6ePCItm3brYIC6fDhaIWHt509S36/T6ZZqM6d/era\n1aGLLuqo8PBwu2MBABopZAvS2rVrNXPmTD3//PMaOXKk3XEAAGehY8dEdeyYKEk6erRMW7fuVmGh\ndPCgQ15vB4WFtbM5YdMxTVMez2HFxZUrNVVKS3OpV69U9hQBQAsVkq/ee/fu1auvvqrs7Gy7owAA\nzlNcXIwGD46RdGLIWX5+kfLzD6moyFRRkaGqqnhFRLSc4Xh+v09eb7Hi46vUvr2UnGyod+8kxca2\nnb1kANCahWRBSklJ0dy5czVr1iy7owAAmpDD4VB6ekelp5/43TRNFReXas+e3SopkUpLDZWUSFVV\nUXK74+R02ju7W3V1hQzjqKKjvUpIMJWQILVv71T37h0UERFhazYAQHCEZEEKC+Ns7QDQFhiGoQ4d\nEtShQ91zKlVUVKiwsEhHjnh17JhUXi5VVkoVFVJVlVN+f4QMI0Jud4SczrN/KzNNUz6fRz5flRyO\narlcVWrXzlRkpBQVJUVHS7GxUkpKlNq378A03ADQhhimaZp2Bli0aJEWL14swzBkmqYMw9C9996r\noUOHatasWRo3blyjjkHKyclphrQAALv5/X5VV1erstKjigqfKiv98vkMBQKG/P4TPye/szkcplwu\nUw6H5HSacrulyEinoqPDFB4eprCwMBmGYc8DAgA0q6ysrNNeb/sepMmTJ2vy5MlNcltnerAIrpyc\nHLZBCGA7hAa2g/3YBqGB7RAa2A72YxuEhsbsVHE0Q47zYvMOLgAAAABtSEgWpI8++kgTJ07Uxx9/\nrJ/85Ce64YYb7I4EAAAAoA2wfYhdQ8aMGaMxY8bYHQMAAABAGxOSe5AAAAAAwA4UJAAAAACwUJAA\nAAAAwEJBAgAAAAALBQkAAAAALBQkAAAAALBQkAAAAADAQkECAAAAAAsFCQAAAAAsFCQAAAAAsFCQ\nAAAAAMBCQQIAAAAACwUJAAAAACwUJAAAAACwUJAAAAAAwEJBAgAAAAALBQkAAAAALBQkAAAAALBQ\nkAAAAADAQkECAAAAAAsFCQAAAAAsFCQAAAAAsFCQAAAAAMBCQQIAAAAACwUJAAAAACwUJAAAAACw\nUJAAAAAAwEJBAgAAAAALBQkAAAAALBQkAAAAALBQkAAAAADAQkECAAAAAAsFCQAAAAAsFCQAAAAA\nsFCQAAAAAMBCQQIAAAAACwUJAAAAACwUJAAAAACwUJAAAAAAwEJBAgAAAAALBQkAAAAALBQkAAAA\nALBQkAAAAADAQkECAAAAAAsFCQAAAAAsFCQAAAAAsFCQAAAAAMBCQQIAAAAACwUJAAAAACwUJAAA\nAACwUJAAAAAAwEJBAgAAAAALBQkAAAAALBQkAAAAALBQkAAAAADAQkECAAAAAAsFCQAAAAAsFCQA\nAAAAsFCQAAAAAMBCQQIAAAAACwUJAAAAACwUJAAAAACwUJAAAAAAwEJBAgAAAAALBQkAAAAALBQk\nAAAAALBQkAAAAADAQkECAAAAAAsFCQAAAAAsFCQAAAAAsFCQAAAAAMBCQQIAAAAACwUJAAAAACwU\nJAAAAACwUJAAAAAAwEJBAgAAAAALBQkAAAAALBQkAAAAALBQkAAAAADAQkECAAAAAIvL7gAN8fv9\n+vGPf6y9e/cqEAjo4Ycf1sCBA+2OBQAAAKCVC8mC9M477ygiIkKvv/66cnNzNWvWLC1atMjuWAAA\nAABauZAsSNdee63Gjx8vSUpMTNTRo0dtTgQAAACgLQjJguRyueRynYj2t7/9TRMmTLA5EQAAAIC2\nwDBN07QzwKJFi7R48WIZhiHTNGUYhu69914NHTpU8+bN04oVK/T73/9eTqfztLeTk5PTTIkBAAAA\ntFRZWVmnvd72gnQqixYt0ocffqiXXnpJbrf7jMvn5OSc8cEiuNgGoYHtEBrYDvZjG4QGtkNoYDvY\nj20QGhqzHUJyiF1+fr4WLFigefPmNaocAQAAAEBTCMmCtHjxYh09elR33HFH7bC7v/71r7XHJQEA\nAABAMIRk45g5c6ZmzpxpdwwAAAAAbYzD7gAAAAAAECooSAAAAABgoSABAAAAgIWCBAAAAAAWChIA\nAAAAWChIAAAAAGChIAEAAACAhYIEAAAAABYKEgAAAABYKEgAAAAAYKEgAQAAAICFggQAAAAAFgoS\nAAAAAFgoSAAAAABgoSABAAAAgIWCBAAAAAAWChIAAAAAWChIAAAAAGChIAEAAACAhYIEAAAAABYK\nEgAAAABYKEgAAAAAYKEgAQAAAICFggQAAAAAFgoSAAAAAFgoSAAAAABgoSABAAAAgIWCBAAAAAAW\nChIAAAAAWChIAAAAAGChIAEAAACAhYIEAAAAABYKEgAAAABYKEgAAAAAYKEgAQAAAICFggQAAAAA\nFgoSAADA/7dzt6E1/g8cxz9zNsPcCyMeaFluosQUEx4Y5a5ZG2eECU9ELWntjJgnxkaMuc+9cWYj\nliRDc1McQzE3kyGbTlqnZRqzMef34H+10n8/fvXz29c51/v16GznevCuq9PZ51zXDgBYGEgAAAAA\nYGEgAQAAAICFgQQAAAAAlhC/3+83HfE7PHjwwHQCAAAAgD/c6NGjf/p80AwkAAAAAPi3uMUOAAAA\nACwMJAAAAACwMJAAAAAAwMJAAgAAAAALAwkAAAAALAwkAAAAALAE1UDy+XwaO3asysrKTKfYUm1t\nrZYvX65FixZp/vz5evz4sekkW2publZ6errmz58vp9Ophw8fmk6yJY/Ho/Hjx+vGjRumU2wpKytL\nTqdTycnJKi8vN51jWxUVFYqLi1N+fr7pFNvKzs6W0+lUUlKSSkpKTOfY0pcvX5SamqqFCxdq3rx5\nKi0tNZ1kW42NjYqLi9P58+d/elxoG/W0iZycHA0cONB0hm0VFxcrPj5eM2bMUFlZmXJzc3Xo0CHT\nWbZz4cIFdejQQadOnVJlZaVcLpcKCwtNZ9lKVVWVTpw4oTFjxphOsaWysjK9fftWbrdbr1690tq1\na+V2u01n2U5DQ4O2bNmi2NhY0ym25fF4VFlZKbfbrQ8fPmjOnDmKi4sznWU7169f14gRI7R06VJ5\nvV4tWbJEkydPNp1lS3v27FH37t1/eVzQDKS7d++qS5cuio6ONp1iWykpKS2PvV6vIiMjzcXY2OzZ\nszVjxgxJUs+ePVVXV2e4yH4iIyOVl5cnl8tlOsWW7ty5oylTpkiSoqKi9PHjR3369EkRERGGy+wl\nPDxc+/fv14EDB0yn2FZMTIxGjhwpSeratasaGhrk9/sVEhJiuMxepk+f3vLY6/WqX79+Bmvs6/Xr\n13rz5o0mTZr0y2OD4ha7r1+/au/evUpNTTWdYns+n0+JiYnav38/58OQ0NBQhYeHS5KOHTummTNn\nGi6yn/bt25tOsDWfz6eePXu2/NyjRw/5fD6DRfbUrl07XguGtWvXTh07dpQkFRYWatKkSYwjg5xO\np9LS0pSRkWE6xZays7OVnp7+j44NuCtIhYWFKioqUkhISMunIBMmTFBycrI6d+4sSfL7/YYrg19r\n52HVqlWKjY1VUVGRbt68qfT0dG6x+4/97Dzk5+fr2bNn2rdvn+nMoPazc4A/A+8JsLurV6/q3Llz\nvCcb5na7VVFRoTVr1qi4uNh0jq2cP39eMTEx6t+/v6Rfvy8E3EBKSkpSUlLSD79LTk7W7du3deTI\nEVVVVam8vFy5ubmKiooyVBn8WjsP9+7dU11dnbp166aJEycqLS3NUJ19tHYepP/90V5aWqo9e/bI\n4XAYKLOPvzsHMKdPnz4/XDGqqalR7969DRYB5ty6dUsHDhzQoUOHWj5IRtt68uSJevXqpX79+mnI\nkCFqbm5WbW3tD1e68d+6ceOG3r17pytXruj9+/cKDw9XZGSkxo0b1+rxATeQWnP69OmWxy6XSwkJ\nCYwjA0pKSvT8+XMtXrxYL168aFnpaFvV1dUqKChQfn6+wsLCTOfYHlcv2l5sbKzy8vI0d+5cPX36\nVH379lWnTp1MZwFtrr6+Xjk5OTp69Ki6dOliOse27t+/L6/Xq4yMDPl8PjU0NDCO2tj27dtbHufl\n5WnAgAF/O46kIBlI+DOsWLFC6enpunr1qpqampSZmWk6yZaKiopUV1en5cuXt9zydfjwYYWG8nJv\nKyUlJdq5c6dqamrk8Xi0a9cunT171nSWbYwaNUrDhw+X0+mUw+HQ+vXrTSfZ0qNHj7Ru3TrV1tbK\n4XDI7Xbr5MmT6tatm+k027h06ZI+fPig1NTUlveD7OxsvkSpjSUnJysjI0MLFixQY2OjNmzYYDoJ\nv46aKFAAAAK4SURBVBDi5+NNAAAAAJAUJN9iBwAAAAC/AwMJAAAAACwMJAAAAACwMJAAAAAAwMJA\nAgAAAAALAwkAAAAALAwkAAAAALAwkAAAAa25uVlOp1NDhw6Vx+Np9ZjGxkZNmzZNI0eOVEVFRRsX\nAgACCQMJABDQHA6HcnJyFBERIZfLpfr6+v87ZuvWraqqqtLq1as1ZMgQA5UAgEDBQAIABLyBAwdq\n/fr18nq92rhx4w/P3bt3TydPntS4ceOUkpJiJhAAEDAYSACAoDB79mzNmjVLFy9e1OXLlyVJnz9/\nlsvlUteuXZWVlWW4EAAQCEL8fr/fdAQAAL9DfX294uPjVV9fr+LiYu3evVtnzpxRbm6upk6dajoP\nABAAGEgAgKDy6NEjLViwQIMGDdLLly+VkJCgTZs2mc4CAAQIBhIAIOhs27ZNBw8eVEREhG7evKmI\niAjTSQCAAMH/IAEAgkpjY6NKS0vlcDj0+fNnXbp0yXQSACCAMJAAAEElKytLlZWV2rFjhwYPHqys\nrCxVV1ebzgIABAgGEgAgaFy7dk1ut1uJiYmKi4vTli1b1NTUpLS0NHFHOQDgn3BkZmZmmo4AAODf\nqqmp0bJly9SnTx/t3r1bYWFh6t27t75//67i4mKFhYVpzJgxpjMBAH84vqQBABDw/H6/UlJSdP/+\nfR0/flyjR49uee7bt2+aO3euXr58qYKCAg0bNsxgKQDgT8ctdgCAgHfw4EF5PB6lpKT8MI4kKTQ0\nVJs3b5YkpaWlqampyUQiACBAMJAAAAGtvLxcO3fuVHR0tFJTU1s9Jjo6WitXrtSrV6+Uk5PTxoUA\ngEDCLXYAAAAAYOEKEgAAAABYGEgAAAAAYGEgAQAAAICFgQQAAAAAFgYSAAAAAFgYSAAAAABgYSAB\nAAAAgIWBBAAAAAAWBhIAAAAAWP4C8bN3bvt4PJcAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "X = np.linspace(-1,1,50)\n", + "plt.fill_between(X, -np.sqrt(1-X**2), np.sqrt(1-X**2), facecolor='blue', alpha = 0.4);\n", + "plt.xlim(-4,4);\n", + "plt.ylim(-2.5,2.5);\n", + "plt.xlabel(\"X\", fontsize=20);\n", + "plt.ylabel(\"Y\", fontsize=20);\n", + "plt.title('View of Object from Above', fontsize=20);" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "After adding this second view we can be positive that the shape, if not a cylinder, is restricted to the space of\n", + "a cylinder with a unit circle base an height ranging from [-2,2].\n", + "\n", + "Individually, neither of these perspectives would provide a particularly enlightening idea of the shape being looked at. With the first view, we had no information on the object in the $Y$ dimension, and in the second view we gained no information on the $Z$ dimension. When combined, however, we can make conclusions based on all three dimensions and the size of the set of possible shapes is drastically reduced. \n", + "\n", + "This is the idea behind model ensembling; the aggregation of multiple perspectives yields a more complete view than any of them alone.\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Multifamily Real Estate Example\n", + "\n", + "Let's bring this analogy of uncorrelated models providing \"perspectives\" to one involving data. Where the cylinder above was a function of space in the $X$,$Y$, and $Z$ dimenseions, let's consider house pricing data, with possible explanatory dimensions `Number Of Stories`, `Total area`, and `Year Built`. \n", + "\n", + "The data was aggregated by user 'dmikebishop' on [DataWorld](https://data.world/dmikebishop/commercial-real-estate-for-sal). To use exterior data, store it as a CSV in the `data` folder in research and use the `local_csv` function to pull it into a Pandas DataFrame." + ] + }, + { + "cell_type": "code", + "execution_count": 105, + "metadata": { + "collapsed": false, + "scrolled": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0QAAAHrCAYAAADvzF08AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XtclGX+//E3Mxy+NXgChIdsh23dNcrCFfKbhzygiUi5\nhV88tIl5aN2HB6iWLFEzczddtLYs8/QNW003PNABy6TcTu7SioHRsrvmL9c1xQREUREUhev3hw/n\nKwJycGAG5vX8y7nmnvt6X7cw13y47/saD2OMEQAAAAC4IYuzAwAAAACAs1AQAQAAAHBbFEQAAAAA\n3BYFEQAAAAC3RUEEAAAAwG1REAEAAABwWxREaFYhISGaO3dutbasrCzFxcU5rI/BgwcrJyfHYfu7\nJD09XSNHjlR0dLSGDRumxMREHT582P78n//8Z91zzz167rnnarz20KFDmjp1qoYPH66oqCiNHDlS\nO3bssD+/efPmRucpKCjQiBEjmjYYAECrMX/+fA0fPlzDhw/XHXfcocGDB2v48OGKjo5WWVnZVV/b\nkPnl+++/V2hoqKPiAq2ep7MDoO3bvXu39u7dq5CQEHubh4eHExNVZ4ypkWfjxo1as2aNli9frq5d\nu0qS3nzzTT300EN677335Ofnp08++USjR49WQkJCjX0++eSTevDBB7VixQpJ0tdff62JEydq+/bt\nCggI0OLFizVq1KhGZQwKCtLWrVuvYaQAgNZg/vz59n8PGTJEL7zwgnr27Fnv686fP68XXnihQfPL\ntczDtc2bQGvGGSI0u9/85jd6/vnna31u2bJl1c4gLVu2TM8884wkKS4uTqtXr9bYsWPVt29fbdiw\nQStXrtTw4cN1//33Kz8/3/66zMxMPfjgg4qIiNDLL79sb9+xY4dGjBihoUOHavLkySopKbH3M2/e\nPI0ePVpr166tlskYo1dffVXPPfecvRi6lCcsLExr167VunXrlJGRodTUVM2bN6/GuPbt26cePXrY\nH//85z/Xxx9/rKCgIE2aNEmnT59WdHS08vPz9cMPP2jy5MmKiorSiBEj9O6770qS8vPz1b9/fyUn\nJysuLk75+fnq3r17tWMVFRWlwYMHa+HChbr0HcsffvihRowYoejoaD3wwAPavXt3Pf9DAABXZYyx\nv79fkp+fr0mTJtnnjffff1+SNHHiRJ06dUrR0dE6evSo9u/fr7Fjx2r48OEaNmyYtm3bVm9/l+bN\nqKgoxcbGat++fZKkL7/8UuPGjdNjjz2mp59+WpL00Ucf2efYKVOm6NSpU5Kk8vJyJSQkKCoqyl7Q\nAS7NAM0oJCTEGGPMuHHjTEZGhjHGmF27dpm4uDhjjDGvvvqqmTt3rn37yx+PGzfOTJkyxVRWVppP\nP/3U/PznPzfvvvuuMcaY+Ph4s3TpUmOMMREREWb69OnGGGOKi4vNf//3f5u9e/ea77//3oSFhZnv\nvvvOGGPMqlWrTHx8vL2fAQMGmJKSkhqZv/vuO9OjR49ax/POO++Yhx56yBhjzKxZs8yKFStq3S4h\nIcEMHjzYrFu3zt7/JYcPHzbdu3e3P548ebJZvXq1McaY/Px8c9ddd5n8/Hz7dpfGfPnr3nnnHXP/\n/feb0tJSU1lZaX7961+b9evXG2OM6d27t/nhhx+MMcZ88803ZtGiRbVmBAC4voiICJOdnV2tbcKE\nCWbNmjXGGGMOHTpkwsPDzdGjR83BgwdNaGiofbvJkyeb//3f/zXGGPPll1+an//856aqqqrGdpec\nP3/ehIeHm9zcXGOMMUuXLjWPPvqoMcaYzMxM06NHD/PVV18ZY4w5cOCACQsLM//+97+NMcYsX77c\nPPHEE8aYi/PtlClTjDHGlJSUmF69etn3CbgizhChRSQlJWnJkiWqqKho1OsiIiJksVjUrVs3nT17\nVsOGDZMkdevWTYWFhfbt7r//fkmSn5+fevXqpa+//lo7d+7U3XffbT/LM2bMGH3yySf2v7T16NFD\nHTp0qNFnSUmJOnXqVGsef39/nTx5st7cS5Ys0bhx4/T+++/rF7/4hYYMGaLU1NQa250/f16ZmZl6\n6KGHJEnBwcG6++679be//U2SVFlZqXvvvbfG6z777DP9z//8j2w2mywWi2JjY/Xxxx9LkgICAvTW\nW2/pyJEjuvPOOzVr1qx68wIAWoeKigr97W9/09ixYyVJN9xwg+666y77vHG51atXa8KECZKk8PBw\nnT17VseOHatz356ensrMzLTfXxQeHq5Dhw7Zn7fZbAoPD5ck7dy5U/369dMtt9wi6eIce+le2SlT\npuiVV16RJHXo0EFdu3atth/A1XAPEVrE7bffrl69eumNN95o0HXQl9hsNkmS1WqVJP3Xf/2X/XFl\nZaV9Oz8/P/u/27Vrp5MnT8oYo927dys6OlrSxcsOOnTooBMnTkhSrcWQJHXq1KnOCaO4uLhaX3Xx\n9vbWxIkTNXHiRJWWlurDDz/UwoULdeONN+rHP/6xfbtLxZWvr6+9rX379iouLraP89IxuNzp06e1\nZs0abdq0ScYYVVVV2XMtX75cy5cv18iRIxUcHKykpCT16tWr3swAANd34sQJeXp66rrrrrO3dejQ\nQcePH6+x7eeff65Vq1appKTEfs9PVVXVVfe/du1apaen6/z58zp37py8vb2r9XPJqVOn9OWXX1ab\nY9u1a6dTp06puLhYycnJOnDggCwWi44ePVpvv4AzURChxTzxxBMaOXKkbrjhBnubxWKpVtg05OxL\nbS5/3cmTJ9WxY0d5eXmpb9++Wrp0aaP2dcsttyg4OFiffvqpIiIiqj33ySefqG/fvld9fUlJif71\nr3+pT58+ki4WO6NGjdLOnTu1b9++agVRp06dZLFYdPr0abVr187++oCAgKv2ERgYqMGDB+vhhx+u\n8dyNN96oRYsWSZLeeecdJSYm6osvvqh33AAA19epUydVVlbqzJkz9j+YlZSUyN/fv9p2FRUVevzx\nx7VixQr17dtX586dq3Zva22++uorrV27VmlpaQoKCtIXX3xR5z3AgYGBGjBggF588cUaz8XHxys8\nPFwrV66UJI0ePbopQwVaDJfMoVmZy24E7dy5s8aNG6dXX321Wtv/+3//T8YYHT9+/Kof3M0VN5Ve\n7oMPPpAxRsXFxcrOztZdd92le+65R9nZ2fbT9N98802db+yX8/Dw0BNPPKHf/va3+te//mVvX79+\nvf75z3/WWoRcrry8XDNmzNDOnTvtbQcPHtQ333yju+66S56enqqqqlJZWZmsVqvuuece++V033//\nvbKzs+1F15VjvvR4yJAhSk9P19mzZyVdXBXv3Xff1fHjxzVp0iSVlpZKkkJDQ2Wx8GsOAG2Ft7e3\n+vbtq02bNkmS/vOf/+jrr79Wnz595OnpqcrKSp09e1alpaU6f/68unfvLmOM1q5dK29vb/uy3bXN\nqcXFxercubOCgoJUVlam9957r85lvgcMGKBdu3bZFzjas2ePkpOTJUnHjx/X7bffLkn64osvdPjw\n4XqXCweciTNEaFZXLss5ceJEbdq0yd4+fPhwbd26VUOHDtVPfvITRUVF2U/7X/naupb49PDwUGho\nqGJjY3XixAlNnDhRP/nJTyRJv/3tbzVjxgxduHBBNptNs2fPblDuqKgoGWM0Z84clZeXq6qqSnfc\ncYfWr1+v9u3bX/W1Xbp00apVq7R06VI9//zzMsbI19dXs2fP1p133iljjMLCwhQREaFVq1bpueee\n05w5c/T222/L29tbzz//vIKCgpSfn1/nMbj33nv13XffKSYmRh4eHrrpppv0/PPPy8/PTwMGDFBs\nbKw8PT3l5eWlhQsXNmjMAADXU9vct2DBAj3zzDPatGmTvL29tWjRInXu3FlVVVW68847NXDgQL3+\n+uuaMGGCfvGLX8jf31/Tpk1TRESEfvWrX2nFihW17nfgwIFKTU3VkCFD1KVLFyUlJembb75RYmKi\nYmNjq20bFBSk5557TlOnTlVlZaV8fX01Z84cSdLUqVP1u9/9TkuXLtWwYcM0depUvfzyy7rtttv4\n/iO4JA9ztT+7Szp79qxmzZql4uJiVVRUaOrUqQoJCdHMmTNljFHnzp21ePFieXl5KT09XevWrZPV\natWoUaNq/PIAAOBqFi9erJycHFVWVmrKlCn65JNPlJeXZ19cZfLkyRo4cCBzHAC0UfUWRNu2bbN/\nT8qRI0c0ceJEhYWFadCgQRo2bJheeukldenSRQ888IBiYmKUlpYmT09PxcbGasOGDfX+NR0AAGfZ\ntWuXUlJStHr1apWUlCgmJka9e/dWVFSUBg4caN+uvLycOQ4A2qh6by6Ijo7W5MmTJUlHjhxRly5d\ntHv3bg0ePFjSxWWRMzMzlZubq9DQUNlsNvn4+CgsLEw5OTnNmx4AgGvQq1cv+8Ir7du3V1lZmaqq\nqmrcX8EcBwBtV4PvIRo7dqwKCwu1YsUKTZo0SV5eXpIufi9LYWFhjeWI/fz8VFRU5PjEAAA4iMVi\nsS9fvHnzZg0aNEgWi0Xr16/XG2+8oYCAAM2dO1fHjh1jjgOANqrBBVFqaqr27t2rJ598stpfzuq6\n4q6eK/EkSdnZ2Q3tHgBQj0tfmIjG27Fjh95++22lpKQoLy9PHTt2VEhIiFavXq1ly5bV+P60hsxx\nEvMcADhKc85x9RZEeXl58vf3V5cuXRQSEqKqqirZbDZVVFTI29tbBQUFCgoKUmBgYLW/lhUUFDTo\nCzhdcQLPzs4mVwO5YiaJXI3lirlcMZPk2rnQNDt37tTq1auVkpIiX19f9e7d2/7ckCFDNH/+fEVF\nRenTTz+1tzd0jpNcc55zFFf9fXCktj7Gtj4+iTG2Bc09x9V7D9FXX32lN954Q5J07NgxlZWVqU+f\nPtq+fbskKSMjQ/3791doaKjy8vJUWlqqM2fOaM+ePW36PwYA0PqVlpZqyZIlWrlypf3LkRMSEvTt\nt99KkrKystStWzfmOABow+o9Q/TQQw9p9uzZevjhh3Xu3DnNnz9f3bt311NPPaVNmzYpODhYMTEx\nslqtSkxM1KRJk2SxWBQfHy9fX98mB/sg4zPt+ce/m/z6a1FYWKAPP8+VuXBWzzw1zSkZAADNb9u2\nbSopKdHjjz8uY4w8PDw0cuRIJSUlyWazyWazaeHChfLx8XHoHAcAcB31FkQ+Pj568cUXa7SvWbOm\nRltkZKQiIyMdEiwnb7+yjgQ4ZF+N568D+VJl8d+d1D8AoCWMHj1ao0ePrtH+4IMP1mhz5BwHAHAd\n9V4yBwAAAABtFQURAAAAALdFQQQAAADAbVEQAQAAAHBbFEQAAAAA3BYFEQAAAAC3RUEEAAAAwG3V\n+z1EAACg6V7/Y2qL93lPn7sUcutPW7xfAGiNKIgAAGhG7/39uhbv88zZLymIAKCBuGQOAAAAgNui\nIAIAAADgtiiIAAAAALgtCiIAAAAAbouCCAAAAIDboiACAAAA4LYoiAAAAAC4LQoiAAAAAG6LgggA\nAACA26IgAgAAAOC2KIgAAAAAuC0KIgAAAABui4IIAAAAgNuiIAIAAADgtiiIAAAAALgtz4ZstHjx\nYuXk5KiyslJTpkzRJ598ory8PHXq1EmSNHnyZA0cOFDp6elat26drFarRo0apdjY2GYNDwAAAADX\not6CaNeuXfruu++UmpqqkpISxcTEqHfv3nryySc1cOBA+3bl5eVavny50tLS5OnpqdjYWEVGRqp9\n+/bNOgAAAAAAaKp6C6JevXopNDRUktS+fXuVlZWpqqpKxphq2+Xm5io0NFQ2m02SFBYWppycHA0a\nNMjxqQEAAADAAeq9h8hisei6666TJG3evFmDBg2SxWLR+vXr9cgjjygxMVEnTpzQsWPH5OfnZ3+d\nn5+fioqKmi85AAAAAFyjBt1DJEk7duzQ22+/rZSUFOXl5aljx44KCQnR6tWrtWzZMvXs2bPa9lee\nQapLdnZ2re2FhYWSAhoar1lUnK+oM5+zuFoeyTUzSeRqLFfM5YqZJNfNBQAAGq9BBdHOnTu1evVq\npaSkyNfXV71797Y/N2TIEM2fP19RUVH69NNP7e0FBQU1iqTahIeH19q+7bOv9Z8jDUnXfLy9vOvM\n5wzZ2dkulUdyzUwSuRrLFXO5YibJtXMBAIDGq/eSudLSUi1ZskQrV65Uu3btJEkJCQn69ttvJUlZ\nWVnq1q2bQkNDlZeXp9LSUp05c0Z79uxxyQ8NAABcbvHixRo7dqxGjRqljz/+WEePHlVcXJzGjRun\nJ554QufPn5ckpaenKzY2VmPGjNGWLVucnBoA4Cj1niHatm2bSkpK9Pjjj8sYIw8PD40cOVJJSUmy\n2Wyy2WxauHChfHx8lJiYqEmTJslisSg+Pl6+vr4tMQYAAJqkrpVUx40bp2HDhumll15SWlqaHnjg\nAVZSBYA2qt6CaPTo0Ro9enSN9gcffLBGW2RkpCIjIx2TDACAZlbbSqq7d+/WggULJEkRERFas2aN\nfvzjH7OSKgC0UfVeMgcAQFt1+UqqW7Zs0aBBg1ReXi4vLy9Jkr+/vwoLC1VcXMxKqgDQRjV4lTkA\nANqqHTt2KC0tTSkpKdWudKhrxdSGrqTqLEeOHGmxhTbcYUGPtj7Gtj4+iTHi6iiIAABu7cqVVG02\nmyoqKuTt7a2CggIFBQUpMDCw2hmhhq6k6izBwcEtsrCRq6666EhtfYxtfXwSY2wLmrvY45I5AIDb\nqm0l1T59+igjI0OSlJGRof79+7OSKgC0YZwhAgC4rdpWUk1OTtacOXO0ceNGBQcHKyYmRlarlZVU\nAaCNoiACALitulZSXbNmTY02VlIFgLaJS+YAAAAAuC0KIgAAAABui4IIAAAAgNuiIAIAAADgtiiI\nAAAAALgtCiIAAAAAbouCCAAAAIDboiACAAAA4LYoiAAAAAC4LQoiAAAAAG6LgggAAACA26IgAgAA\nAOC2KIgAAAAAuC0KIgAAAABui4IIAAAAgNuiIAIAAADgtiiIAAAAALgtz4ZstHjxYuXk5KiyslJT\npkzRnXfeqZkzZ8oYo86dO2vx4sXy8vJSenq61q1bJ6vVqlGjRik2Nra58wMAAABAk9VbEO3atUvf\nffedUlNTVVJSopiYGPXu3Vvjxo3TsGHD9NJLLyktLU0PPPCAli9frrS0NHl6eio2NlaRkZFq3759\nS4wDAAAAABqt3kvmevXqpaVLl0qS2rdvr7KyMu3evVuDBw+WJEVERCgzM1O5ubkKDQ2VzWaTj4+P\nwsLClJOT07zpAQAAAOAa1FsQWSwWXXfddZKkLVu2aNCgQSovL5eXl5ckyd/fX4WFhSouLpafn5/9\ndX5+fioqKmqm2AAAAABw7Rp0D5Ek7dixQ2lpaUpJSVFkZKS93RhT6/Z1tV8pOzu71vbCwkJJAQ2N\n1ywqzlfUmc9ZXC2P5JqZJHI1livmcsVMkuvmAgAAjdeggmjnzp1avXq1UlJS5OvrK5vNpoqKCnl7\ne6ugoEBBQUEKDAysdkaooKBAPXv2rHff4eHhtbZv++xr/edIA0fRTLy9vOvM5wzZ2dkulUdyzUwS\nuRrLFXO5YibJtXMBAIDGq/eSudLSUi1ZskQrV65Uu3btJEl9+vRRRkaGJCkjI0P9+/dXaGio8vLy\nVFpaqjNnzmjPnj0u+aEBAAAAAC6p9wzRtm3bVFJSoscff1zGGHl4eCg5OVlz5szRxo0bFRwcrJiY\nGFmtViUmJmrSpEmyWCyKj4+Xr69vS4wBAAAAAJqk3oJo9OjRGj16dI32NWvW1GiLjIysdn8RAAAA\nALiyei+ZAwAAAIC2ioIIAAAAgNuiIAIAAADgtiiIAAAAALgtCiIAgFvbu3evhg4dqg0bNkiSkpKS\nNGLECI0fP17jx4/X559/LklKT09XbGysxowZoy1btjgzMgDAgRr0xawAALRF5eXlSk5OVr9+/aq1\nP/nkkxo4cGC17ZYvX660tDR5enoqNjZWkZGRat++fUtHBgA4GGeIAABuy8fHR6tWrVJAQMBVt8vN\nzVVoaKhsNpt8fHwUFhamnJycFkoJAGhOFEQAALdlsVjk7e1do339+vV65JFHlJiYqBMnTujYsWPy\n8/OzP+/n56eioqKWjAoAaCZcMgcAwGUeeOABdezYUSEhIVq9erWWLVumnj17VtvGGOOkdA1z5MgR\nZWdnt0hfLdWPM7X1Mbb18UmMEVdHQQQAwGV69+5t//eQIUM0f/58RUVF6dNPP7W3FxQU1CiSXElw\ncLDCw8ObvZ/s7OwW6ceZ2voY2/r4JMbYFjR3scclcwAAXCYhIUHffvutJCkrK0vdunVTaGio8vLy\nVFpaqjNnzmjPnj1t+sMHALgTzhABANxWbm6u5s6dq+PHj8tqtSo1NVUJCQlKSkqSzWaTzWbTwoUL\n5ePjo8TERE2aNEkWi0Xx8fHy9fV1dnwAgANQEAEA3FaPHj20devWGu1Dhw6t0RYZGanIyMiWiAUA\naEFcMgcAAADAbVEQAQAAAHBbFEQAAAAA3BYFEQAAAAC3RUEEAAAAwG1REAEAAABwWxREAAAAANwW\nBREAAAAAt0VBBAAAAMBtURABAAAAcFsNKoj27t2roUOHasOGDZKkpKQkjRgxQuPHj9f48eP1+eef\nS5LS09MVGxurMWPGaMuWLc2XGgAAAAAcwLO+DcrLy5WcnKx+/fpVa3/yySc1cODAatstX75caWlp\n8vT0VGxsrCIjI9W+fXvHpwYAAAAAB6j3DJGPj49WrVqlgICAq26Xm5ur0NBQ2Ww2+fj4KCwsTDk5\nOQ4LCgAAAACOVm9BZLFY5O3tXaN9/fr1euSRR5SYmKgTJ07o2LFj8vPzsz/v5+enoqIix6YFAAAA\nAAeq95K52jzwwAPq2LGjQkJCtHr1ai1btkw9e/asto0xpkH7ys7OrrW9sLBQ0tXPSjW3ivMVdeZz\nFlfLI7lmJolcjeWKuVwxk+S6uQAAQOM1qSDq3bu3/d9DhgzR/PnzFRUVpU8//dTeXlBQUKNIqk14\neHit7ds++1r/OdKUdI7j7eVdZz5nyM7Odqk8kmtmksjVWK6YyxUzSa6dCwAANF6Tlt1OSEjQt99+\nK0nKyspSt27dFBoaqry8PJWWlurMmTPas2ePS35oAAAAAIBL6j1DlJubq7lz5+r48eOyWq1KTU1V\nQkKCkpKSZLPZZLPZtHDhQvn4+CgxMVGTJk2SxWJRfHy8fH19W2IMAAAAANAk9RZEPXr00NatW2u0\nDx06tEZbZGSkIiMjHZMMAAAAAJpZky6ZAwAAAIC2gIIIAAAAgNuiIAIAAADgtiiIAAAAALgtCiIA\nAAAAbouCCAAAAIDboiACAAAA4LYoiAAAAAC4LQoiAAAAAG6LgggAAACA26IgAgAAAOC2KIgAAG5t\n7969Gjp0qDZs2CBJOnr0qOLi4jRu3Dg98cQTOn/+vCQpPT1dsbGxGjNmjLZs2eLMyAAAB6IgAgC4\nrfLyciUnJ6tfv372tqVLlyouLk7r16/XTTfdpLS0NJWXl2v58uVau3at1q1bp7Vr1+rUqVNOTA4A\ncBQKIgCA2/Lx8dGqVasUEBBgb8vKylJERIQkKSIiQpmZmcrNzVVoaKhsNpt8fHwUFhamnJwcZ8UG\nADgQBREAwG1ZLBZ5e3tXaysvL5eXl5ckyd/fX4WFhSouLpafn599Gz8/PxUVFbVoVgBA8/B0dgAA\nAFyVMaZR7a7iyJEjys7ObpG+WqofZ2rrY2zr45MYI66OgggAgMvYbDZVVFTI29tbBQUFCgoKUmBg\nYLUzQgUFBerZs6cTU15dcHCwwsPDm72f7OzsFunHmdr6GNv6+CTG2BY0d7HHJXMAAFymT58+ysjI\nkCRlZGSof//+Cg0NVV5enkpLS3XmzBnt2bOnTX/4AAB3whkiAIDbys3N1dy5c3X8+HFZrValpqYq\nJSVFs2bN0saNGxUcHKyYmBhZrVYlJiZq0qRJslgsio+Pl6+vr7PjAwAcgIIIAOC2evTooa1bt9Zo\nX7NmTY22yMhIRUZGtkQsAEAL4pI5AAAAAG6LgggAAACA26IgAgAAAOC2KIgAAAAAuK0GFUR79+7V\n0KFDtWHDBknS0aNHFRcXp3HjxumJJ57Q+fPnJUnp6emKjY3VmDFjtGXLluZLDQAAAAAOUG9BVF5e\nruTkZPXr18/etnTpUsXFxWn9+vW66aablJaWpvLyci1fvlxr167VunXrtHbtWp06dapZwwMAAADA\ntai3IPLx8dGqVasUEBBgb8vKylJERIQkKSIiQpmZmcrNzVVoaKhsNpt8fHwUFhamnJyc5ksOAAAA\nANeo3oLIYrHI29u7Wlt5ebm8vLwkSf7+/iosLFRxcbH8/Pzs2/j5+amoqMjBcQEAAADAca75i1mN\nMY1qv1J2dnat7YWFhZICan2upVScr6gzn7O4Wh7JNTNJ5GosV8zlipkk180FAAAar0kFkc1mU0VF\nhby9vVVQUKCgoCAFBgZWOyNUUFCgnj171ruv8PDwWtu3ffa1/nOkKekcx9vLu858zpCdne1SeSTX\nzCSRq7FcMZcrZpJcOxcAAGi8Ji273adPH2VkZEiSMjIy1L9/f4WGhiovL0+lpaU6c+aM9uzZ45If\nGgAAAADgknrPEOXm5mru3Lk6fvy4rFarUlNTlZKSolmzZmnjxo0KDg5WTEyMrFarEhMTNWnSJFks\nFsXHx8vX17clxgAAAAAATVJvQdSjRw9t3bq1RvuaNWtqtEVGRioyMtIxyQAAAACgmTXpkjkAAAAA\naAsoiAAAAAC4LQoiAAAAAG6LgggAAACA26IgAgAAAOC2KIgAAAAAuC0KIgAAAABui4IIAAAAgNui\nIAIAAADgtiiIAAAAALgtCiIAAAAAbouCCAAAAIDboiACAAAA4LYoiAAAAAC4LQoiAAAAAG6LgggA\nAACA2/J0dgAAAFxNVlaWHnvsMf3sZz+TMUa33nqrHn30Uc2cOVPGGHXu3FmLFy+Wl5eXs6MCAK4R\nBREAALX47//+by1dutT+OCkpSXFxcYqMjNRLL72ktLQ0jR071okJAQCOwCVzAADUwhhT7XFWVpYi\nIiIkSRF1wLC2AAAgAElEQVQREcrMzHRGLACAg3GGCACAWuzfv1/Tpk3TyZMnNX36dJ09e9Z+iZy/\nv7+KioqcnBAA4AgURAAAXOHmm2/WjBkzNHz4cB06dEjjx4/XhQsX7M9fefYIANB6URABAHCFoKAg\nDR8+XJJ04403KiAgQHl5eaqoqJC3t7cKCgoUGBjo5JR1O3LkiLKzs1ukr5bqx5na+hjb+vgkxoir\noyACAOAKW7du1cGDBzVjxgwVFxeruLhYI0eO1Pbt2/WLX/xCGRkZ6t+/v7Nj1ik4OFjh4eHN3k92\ndnaL9ONMbX2MbX18EmNsC5q72GtSQcRypACAtmzw4MFKTEzUQw89JGOMnnvuOYWEhOjpp5/Wpk2b\nFBwcrJiYGGfHBAA4QJPPELEcKQCgrbLZbFq5cmWN9jVr1jghDQCgOTW5IKptOdIFCxZIurgc6Zo1\nayiIAABoYaaqUoUFP2jfvn3N3tfBgwfVrl07++OuXbvKarU2e78A4EhNLohYjhQAANdz5uRR7fi+\nTJkHd7RMh+8flSSVnSzUm4t+qW7durVMvwDgIE0qiBy5HGldN0kVFhZKCmhKPIepOF/hcit2uFoe\nyTUzSeRqLFfM5YqZJNfNBVxyfYdA+Xb6kbNjAECr0KSCyJHLkda1Isa2z77Wf440JZ3jeHt5u9SK\nHa64gogrZpLI1ViumMsVM0munQsAADSepSkv2rp1q5YtWyZJNZYjleTyy5ECAAAAgNTEM0QsRwoA\nAACgLWhSQcRypAAAAADagiZdMgcAAAAAbQEFEQAAAAC3RUEEAAAAwG1REAEAAABwWxREAAAAANwW\nBREAAAAAt0VBBAAAAMBtURABAAAAcFsURAAAAADcFgURAAAAALdFQQQAAADAbVEQAQAAAHBbFEQA\nAAAA3JanswMAAIDWz1RV6cCBA07pu2vXrrJarU7pG0DrR0EEAACuWfnpIs1bfUzXd9jfov2WnSzU\nm4t+qW7durVovwDaDgoiAADgENd3CJRvpx85OwYANAoFEQAAaLWa+1K9gwcPql27djXauUwPaDso\niK7CVFVp3759zo7Bmy4AAHVokUv13j9a7SGX6QFtCwXRVZSdPq64pD/p+g6BzsvAmy4AAFfFpXoA\nrgUFUT14kwUAAADaLr6HCAAAAIDboiACAAAA4LYoiAAAAAC4LYffQ7Ro0SLl5ubKw8NDs2fP1p13\n3unoLgAAcArmOABoexxaEO3evVsHDx5Uamqq9u/frzlz5ig1NdWRXQAA4BTMcQDQNjm0IPryyy91\n7733Srr43TmnTp3SmTNnZLPZHNkNAAAtjjkOzlZZWan9+x37fUt1ffHs5fg+RLR1Di2Ijh07pjvu\nuMP+uFOnTjp27FirnizKThY6vf9L38DdkDetluaKmSRyNZYr5nLFTJLr5kLza01znDPmrvLTxyV5\nuEW/l8/NLenAgQOa+cJ7+i9fPwfvOafOZ86WHteSJx/QLbfc4uA+W447vG83dYx8z+VFzfo9RMaY\nerfJzs6utT160M8V7ehAjRbn7AB2p0+f1s0336zTp087O0o1rphJIldjuWIuV8wkuW4utLyGzHGS\nNP+XNzRzkiu1dH+X3O1m/arF3wsCAgL0xu8nt2ifl7Tm9z13eN9u6hjr+hzubhxaEAUGBurYsWP2\nx4WFhercuXOd24eHhzuyewAAmk1j5ziJeQ4AWgOHLrvdr18/ZWRkSJL+8Y9/KCgoSNdff70juwAA\nwCmY4wCgbXLoGaKePXuqe/fuGjt2rKxWq+bNm+fI3QMA4DTMcQDQNnmYhl4EDQAAAABtjEMvmQMA\nAACA1oSCCAAAAIDboiACAAAA4Laa9XuIrmbRokXKzc2Vh4eHZs+erTvvvNNZUSRJWVlZeuyxx/Sz\nn/1Mxhjdeuutmjt3rlMz7d27V/Hx8ZowYYIefvhhHT16VDNnzpQxRp07d9bixYvl5eXl1ExJSUnK\ny8tTp06dJEmTJ0/WwIEDWzSTJC1evFg5OTmqrKzUlClTdOeddzr9WNWW65NPPnHq8Tp79qxmzZql\n4uJiVVRUaOrUqQoJCXH6saotV0ZGhkv8bEnSuXPndP/992v69Onq3bu304/XlZl27drlMscKF7na\nHHc1DZ1r0tPTtW7dOlmtVo0aNUqxsbG6cOGCZs2apSNHjshqtWrRokW64YYbtHfvXs2fP18Wi0W3\n3nqrnn32WUnS66+/royMDFksFk2bNq3Ffk4bOke0xjE25n29NY7vkoa8D7fW8dX2GfTRRx9tU2OU\npPT0dKWkpMjT01MJCQm69dZbXWeMxgmysrLMr3/9a2OMMd99950ZM2aMM2JUs2vXLpOQkODsGHZl\nZWVmwoQJ5tlnnzXr1683xhgza9Ysk5GRYYwx5g9/+IN56623XCLTZ5991qI5rvS3v/3N/OpXvzLG\nGHPixAkzaNAgM2vWLLN9+3ZjjHOO1dVyOfN4ffDBB+b11183xhiTn59vIiMjXeJY1ZXL2T9bl/zh\nD38wsbGx5p133nH672FdmVzlWME157i6NHSuKSsrM8OGDTOlpaXm7Nmz5v777zcnT54077zzjlmw\nYIExxpi//OUv5vHHHzfGGBMXF2fy8vKMMcb85je/MV988YU5dOiQGTlypLlw4YIpLi42UVFRpqqq\nqtnH2NA5orWOsaHv6611fJfU9z7cmsdX22fQtjbGEydOmMjISFNWVmaKiorMM88841JjdMolc19+\n+aXuvfdeSVLXrl116tQpnTlzxhlRqjEutOCej4+PVq1apYCAAHtbVlaWIiIiJEkRERHKzMx0eiZX\n0KtXLy1dulSS1L59e5WVlWn37t0aPHiwJOccq7pyVVVVOfXnLDo6WpMnX/yW8yNHjqhLly4ucaxq\nyyW5xu/kv//9bx04cEADBw6UMUa7d+926u9hbZkk1zhWuMhV57jaNHSuyc3NVWhoqGw2m3x8fBQW\nFqbs7OxqY+3bt6/27Nmj8+fP6/Dhw+revbskafDgwcrMzNSuXbs0YMAAWa1W+fn56Uc/+pG+++67\nZh9jQ+eI1jrGhr6vt9bxSQ17H27N45Nqvoe3td/DzMxM9evXT9ddd50CAgK0YMEClxqjUwqiY8eO\nyc/Pz/64U6dO1b7921n279+vadOm6eGHH3bKh5zLWSwWeXt7V2srLy+3X5rj7++voqIip2eSpPXr\n1+uRRx5RYmKiSkpKWjTTpVzXXXedJGnLli0aNGiQ04/Vlbk2b96sQYMGyWKxOP14SdLYsWP11FNP\nKSkpySWO1ZW5Zs+eLUnasGGD04/V4sWLNWvWLPtjVzhel2fy8PCQ5BrHChe56hxXm4bMNYWFhSou\nLq42Jj8/PxUVFVUbq4eHhzw8PHTs2DF17Nix2rZX20dza8gc0drHKF39fb21j6++9+HWPj6p5mfQ\ns2fPtqkx5ufnq7y8XFOnTtW4ceP05ZdfutQYnXYP0eVc4S+bN998s2bMmKHhw4fr0KFDGj9+vD7+\n+GN5errEIarBFY6ZJD3wwAPq2LGjQkJCtHr1ar366qt65plnnJJlx44dSktLU0pKiiIjI+3tzj5W\nO3bs0Ntvv62UlBTl5eW5xPFKTU3V3r179eSTT1Y7Ps4+Vpfnmj17ttOP1bvvvqtevXopODi41ued\ncbyuzGSMcanfQ9Tk7N+ra1FX9qu1e3h4NGjMLX1cGjtHtLYxNvZ9vbWMr6nvw61lfFLtn0EvXLhQ\nb47WNEZjjEpKSvTaa68pPz9f48ePd6mfU6ecIQoMDKz217LCwkJ17tzZGVHsgoKCNHz4cEnSjTfe\nqICAABUUFDg105VsNpsqKiokSQUFBQoMDHRyIql3794KCQmRJA0ZMkT79u1zSo6dO3dq9erVev31\n1+Xr6+syx+rKXM4+Xnl5efrhhx8kSSEhIaqqqnKJY3VlrsrKSnXr1s3pP1uff/65tm/frjFjxmjL\nli1avny5rr/+eqcer8szbd68WStWrJAxxunHCv/HFee4xrjyPSEoKEiBgYHV/sJ6efulsV64cMF+\nc/TlZymvto+W+v2pb45ozWNsyPt6ax5fQ96HW/P4pNo/g546dapNjTEgIEA9e/aUxWLRjTfeKJvN\n5lI/p04piPr166eMjAxJ0j/+8Q8FBQXp+uuvd0YUu61bt2rZsmWSpOLiYh0/flxBQUFOzXSlPn36\n2I9bRkaG+vfv7+REUkJCgr799ltJ0u7du9WtW7cWz1BaWqolS5Zo5cqVateunSTXOFa15XL28frq\nq6/0xhtvSLp4WU9ZWZn69Omj7du3S3Lesaot17PPPuv0n62XXnpJmzdv1saNGxUbG6vp06c7/Xhd\nnmnUqFGaNm2a3nrrLacfK/wfV5zjGqO298/Q0FDl5eWptLRUZ86c0Z49exQeHq5+/frZfx8++eQT\n3X333bJarfrJT36inJwcSdJHH32k/v376+6779bnn3+uCxcuqKCgQIWFhfrpT3/a7ONp6BzRWsfY\n0Pf11jq+hr4Pt9bxSTU/gxYXF2vkyJFtaoz9+vXTrl27ZIzRiRMnXO7n1MM46Vz+H/7wB2VlZclq\ntWrevHm69dZbnRHD7syZM0pMTNTJkydljNH06dOdWnDk5uZq7ty5On78uKxWqzp06KCUlBTNmjVL\nFRUVCg4O1qJFi2S1Wp2aKSEhQStWrLBX+gsXLqx23WZL2LRpk5YtW6Yf//jH9lOoycnJmjNnjtOO\nVV25Ro4cqXXr1jnteJ07d06zZ8/W0aNHde7cOcXHx6t79+566qmnnHqsrsw1Y8YMXX/99fr973/v\n1J+tyy1btkw33HCD7rnnHqcfryszBQcHu9SxguvNcXVpzFzz0Ucf6fXXX5fFYlFcXJzuu+8+VVVV\nac6cOTp48KB8fHz0+9//XkFBQdq/f7/mzZsnY4x69Oihp59+WtLFe93S09Pl4eGhJ554QnfffXez\nj7Exc0RrHGNj3tdb4/guV9/7cGsdX22fQUNCQvT000+3mTFKF38XN2/eLA8PD02bNk133HGHy/w/\nOq0gAgAAAABnc8olcwAAAADgCiiIAAAAALgtCiIAAAAAbouCCAAAAIDboiACAAAA4LYoiAAAAAC4\nLQoiAAAAAG6LgggAAACA26IgAgAAAOC2KIgAAAAAuC0KIgAAAABui4IIAAAAgNuiIAIAAADgtiiI\nAAAAALgtCiIAAAAAbouCCAAAAIDboiACAAAA4LYoiAAAAAC4LQoiAAAAAG6LgggAAACA26IgAgAA\nAOC2KIgAAAAAuC0KIgAAAABui4IIAAAAgNuiIAIAAADgtiiIAAAAALgtCiIAAAAAbouCCAAAAIDb\noiACAAAA4LYoiNBqvfvuu7r//vtVVVVVrX3y5Mlavnx5s/T5/fff67bbblN0dLSGDx+uqKgo/eY3\nv9Hp06frfe2TTz6pL774Qt9//71CQ0MlSefOnVN6enqzZAUAtA1ZWVmKjIx02P7i4uLUv39/RUdH\nKyoqSvfff7/WrVtX5/YTJ07Uv/71L4f1D7gaCiK0Wg8++KA6duyo9evX29t27Nihw4cP61e/+pVD\n+jDG1Gjz9vbWtm3b9OGHH+rDDz+Uh4eHXnvttXr39cILL2jAgAGSJA8PD0nS3//+dwoiAEC9Ls0b\njvLUU09p27Zt2r59u/74xz9q7dq1+stf/lLrtm+88YZuu+02h/YPuBIKIrRqzzzzjFasWKETJ06o\noqJCycnJmjdvnry8vCRJH330kUaMGKGhQ4dqypQpOnXqlCSpvLxcCQkJioqK0pAhQ/TCCy/Y9/nL\nX/5Sr7zyiu677z79/e9/v2r/Hh4euuuuu3To0CFJ0ubNm/Xoo4/an9+8ebO9OPvlL3+pbdu22Z8r\nLCzU448/rpycHI0fP94xBwQA0KZVVFTo2WefVVRUlO677z4lJyfb/3i3c+dODRo0SPfdd582bdqk\nu+66S0eOHKl3nwEBAYqKitJf//pXSdLgwYO1YsUKRUVFKT8/X4MHD1ZOTo6ki1dnDBs2TFFRUXrq\nqad0/vx5SRf/IHlpvp08ebJKSkqa6QgAjkdBhFbt1ltv1YgRI/TSSy9pzZo1uu2229SvXz9J0sGD\nB5WUlKRXXnlFH3/8sXr27Kn58+dLkt58802dO3dO27dv19tvv61Nmzbpm2++se/3n//8pz744AP7\npW11KS0t1fbt2zVkyBB7W0P/ihcYGKjHHntM4eHhV71UAQCAS/74xz+qoKBAH374od5++2199dVX\nev/991VVVaWkpCT97ne/0wcffKD//Oc/Ki8vb/B+L1y4IG9vb/vjo0ePavv27frRj35kb8vPz9fi\nxYu1YcMGbd++XWfPntWbb76pQ4cO6emnn9bLL7+sjz/+WHfffbfmzZvn0HEDzcnT2QGAa5WQkKDo\n6GhduHBB77zzjr39iy++UL9+/XTLLbdIksaMGaNBgwZJkqZMmaJz585Jkjp06KCuXbvq0KFD9gJo\n4MCBdfZXUVGh6OhoGWN09OhR3XHHHfb9AgDQnD7//HNNnjxZHh4e8vHx0YgRI/TXv/5Vt99+u86f\nP6977rlH0sX7hN54440G7fPQoUPKyMjQsmXL7G21zWt//etfFRYWpoCAAEkXLwX39PRUamqq7r77\nbnXt2lXSxfn2lVdekTHG4Zf6Ac2Bggitnq+vr2JiYlRYWKigoCB7+6lTp/Tll18qOjpa0sX7gdq1\na6dTp06puLhYycnJOnDggCwWi44ePVptcYYOHTrU2d+le4gu2bZtm0aPHl2tDQCA5nD8+HG1b9/e\n/rh9+/YqLi7WqVOnqrUHBgbWeh/sJUuWLNGKFStUVVWlDh06aNasWbrjjjvsz9c2D544cULt2rWz\nP750Run06dPavXt3tfm2Q4cOOnHihPz8/Jo+WKCFUBChTfDy8pKnZ/Uf58DAQA0YMEAvvvhije3j\n4+MVHh6ulStXSpJGjx7d5L6jo6O1YMEC/fvf/5bVaq1WWF26ZwkAAEcICAiodn9OSUmJAgIC5Ovr\nqzNnztjbi4qKrnp2ZubMmRoxYkSj+u7UqZP27Nljf1xaWqpz584pMDBQffv21dKlSxu1P8BVcA8R\n2qwBAwZo165dys/PlyTt2bNHycnJki7+he3222+XdPHSusOHD6usrKxB+73yL267d+/W+fPnFRwc\nrM6dO+vAgQOqqKhQWVmZPvroo6vuw8vLq0FLdgMAIF28lG3Lli2qqqpSWVmZ0tPTNWjQIN18882q\nrKzU7t27JUlvvfWWwy9XGzhwoPbs2aMjR47IGKNnn31WaWlpuueee5SdnW1fYOibb77R888/79C+\ngebEGSK0WUFBQXruuec0depUVVZWytfXV3PmzJEkTZ06Vb/73e+0dOlSDRs2TFOnTtXLL7+s2267\nrd4J5MKFC9UuC2jfvr1WrVql9u3bq2/fvrrtttsUFRWlG264QUOHDtWuXbskVV9s4dK/w8PD9eKL\nL6p///7auXNncxwGAEAbEhcXp8OHD+u+++6TxWLR8OHDNWzYMEnSs88+q6efflodOnTQhAkTZLFY\nap3T6pvnrnz+0uOgoCAtWLBA48ePl9VqVWhoqCZMmCBvb2/99re/1YwZM3ThwgXZbDbNnj3bQSMG\nmp+HudoFpnXYsmWL3nvvPXl4eMgYo3/84x/atm2bZs6cKWOMOnfurMWLF9uXPgYAwFXt3btX8fHx\nmjBhgh5++GH98MMPmj17ti5cuCAvLy8tWbJE/v7+Sk9P17p162S1WjVq1CjFxsY6OzpQp/LycoWF\nhWn37t3y9fV1dhzApTWpILrc7t27tX37dpWVlSkiIkKRkZF66aWX1KVLF40dO9ZROQEAcLjy8nJN\nmzZNN998s372s5/p4Ycf1qxZszRw4EANHz5cGzZs0A8//KDp06crJiZGaWlp8vT0VGxsrDZs2FDt\nJnbA2WJjYzVp0iRFR0dry5Yt+uMf/6j333/f2bEAl3fN9xC99tprmjZtmrKyshQRESFJioiIUGZm\n5jWHAwCgOfn4+GjVqlX2ZYSli5cdXboEyc/PTyUlJcrNzVVoaKhsNpt8fHwUFhZm/6JKwFXMnj1b\nq1atUlRUlFJTU/X73//e2ZGAVuGa7iH6+9//ri5dusjf31/l5eX2S+T8/f1VVFTkkIAAADQXi8VS\n7csoJem6666TJFVVVelPf/qTpk+frmPHjlVbPtjPz495Di4nLCxM7733nrNjAK3ONRVEmzdv1siR\nI2u0N/QqvOzs7GvpHgBwmfDwcGdHaDOqqqo0c+ZM9enTR717965x2RHzHAC0rOac466pIMrKytK8\nefMkSTabTRUVFfL29lZBQYECAwMbtA9XnMCzs7PJ1UCumEkiV2O5Yi5XzCS5di44TlJSkm655RZN\nmzZN0sXvNbv8jFBBQYF69uzZoH254s9LQ7nqz3tjtPYxtPb8UvUx7Nu3T7/+/Q75dvpRs/ZZeiJf\nq2bdq27dul3zvtra/0Fr1NxzXJPvISosLJTNZrN/GWafPn2UkZEhScrIyFD//v0dkxAAgBaUnp4u\nb29vzZgxw97Wo0cP5eXlqbS0VGfOnNGePXta9YcLAMD/afIZoqKiIvn7+9sfx8fH6+mnn9bGjRsV\nHBysmJgYhwQEAKC55Obmau7cuTp+/LisVqtSU1NVVVUlHx8fxcXFycPDQz/96U81b948JSYmatKk\nSbJYLIqPj2cpYwBoI5pcEHXv3l2rV6+2P+7cubPWrFnjkFAAALSEHj16aOvWrQ3aNjIyUpGRkc2c\nCADQ0q552W0AAAAAaK0oiAAAAAC4LQoiAAAAAG6LgggAAACA26IgAgAAAOC2rumLWQG4t8rKSu3f\nv79Z9n3w4EG1a9fuqtt07dpVVqu1WfoHAADugYIIQJPt379fcUl/0vUdApung/eP1vlU2clCvbno\nlw75FnIAAOC+KIgAXJPrOwTKt9OPnB0DAACgSSiIAKARKisrtW/fPqf1z2WCAAA4FgURADTC4cOH\nFZ+8rfkuE7wKLhMEAMDxKIgAoJG4TBAAgLaDZbcBAAAAuC0KIgAAAABui4IIAAAAgNuiIAIAAADg\ntiiIAAAAALgtCiIAAAAAbouCCAAAAIDbavL3EKWnpyslJUWenp5KSEjQrbfeqpkzZ8oYo86dO2vx\n4sXy8vJyZFYAAAAAcKgmnSEqKSnRa6+9ptTUVK1atUp//vOftXTpUsXFxWn9+vW66aablJaW5uis\nAAAAAOBQTSqIMjMz1a9fP1133XUKCAjQggULlJWVpYiICElSRESEMjMzHRoUAAAAABytSZfM5efn\nq7y8XFOnTtXp06c1ffp0nT171n6JnL+/v4qKihwaFAAAAAAcrUkFkTHGftlcfn6+xo8fL2NMtecb\nKjs7uykRmh25Gs4VM0nkaqym5Dp48GAzJGm4vLw8nT592qkZWpo7jhkAgObUpIIoICBAPXv2lMVi\n0Y033iibzSZPT09VVFTI29tbBQUFCgwMbNC+wsPDmxKhWWVnZ5OrgVwxk0Suxmpqrnbt2knvH22G\nRA1zxx13qFu3bi3ap7OLwLrG7KqFdmuwd+9excfHa8KECXr44Yd19OjRWhcJSk9P17p162S1WjVq\n1CjFxsY6OzoAwAGadA9Rv379tGvXLhljdOLECZWVlalPnz7avn27JCkjI0P9+/d3aFAAABytvLxc\nycnJ6tevn72ttkWCysvLtXz5cq1du1br1q3T2rVrderUKScmBwA4SpMKoqCgIA0bNkyjR4/Wr3/9\na82bN08JCQl69913NW7cOJ06dUoxMTGOzgoAgEP5+Pho1apVCggIsLfVtkhQbm6uQkNDZbPZ5OPj\no7CwMOXk5DgrNgDAgZr8PUSjR4/W6NGjq7WtWbPmmgMBANBSLBaLvL29q7WVl5dXWySosLBQxcXF\n8vPzs2/j5+fH4kEA0EY0uSAC4BoqKyu1f//+a9rHwYMHL94P1EgHDhy4pn4BV1fXIkFtYfGghmrt\n+aXWP4bWnl/6vzG05H2YjlyEpi39H6AmCiKgldu/f7/ikv6k6zs0bCGTOjVhcYTiw/+S/w23XVu/\ngIux2WzVFgkKCgpSYGBgtTNCBQUF6tmzZ4P254oLqTSUqy4E0xitfQytPb9UfQwtuRiPoxbeaWv/\nB61RcxdzFERAG3B9h0D5dvpRi/dbdrKgxfsEmlufPn2UkZGhESNG2BcJCg0N1dy5c1VaWioPDw/t\n2bNHc+bMcXZUAIADUBABANxWbm6u5s6dq+PHj8tqtSo1NVUpKSmaNWuWNm7cqODgYMXExMhqtSox\nMVGTJk2SxWJRfHy8fH19nR0fAOAAFEQAALfVo0cPbd26tUZ7bYsERUZGKjIysiViAQBaUJOW3QYA\nAACAtoCCCAAAAIDboiACAAAA4LYoiAAAAAC4LQoiAAAAAG6LgggAAACA26IgAgAAAOC2KIgAAAAA\nuC0KIgAAAABui4IIAAAAgNuiIAIAAADgtiiIAAAAALgtCiIA+P/t3X9UlHX+9/HXgECC+IsfFv7a\nstDusDJuN41IYV3Ntm+7tGmmYLa1neOPtF8mStkutWthyXKWzNigc8q7JY3VzFPgaTu5eighKIvu\n1BVp1uTmp4IoKArX/YfH2URAHGaumWGej7/gmvH6vC4+n5nxPdfnuj4AAMBrURABAAAA8Fr97PlH\nRUVFWrZsma677joZhqGxY8fqkUce0fLly2UYhsLCwpSWliY/Pz9H5wUAAAAAh7GrIJKkn//858rI\nyLD9vnLlSiUlJWn69OlKT09XXl6e5syZ45CQAAAAAOAMdk+ZMwzjgt+LiooUFxcnSYqLi1NhYWHv\nkgEAAACAk9l9hqi8vFyLFi1SY2OjFi9erFOnTtmmyIWEhKi2ttZhIQEAAADAGewqiEaPHq0lS5Zo\n5syZOnz4sObPn6+zZ8/aHu949qg7JSUl9kRwOnL1nDtmkrwnl9Vqdej+PElZWZmamppcHcNU3njM\nAEX9BKcAAB+kSURBVAA4k10F0bBhwzRz5kxJ0siRIxUaGqqysjK1trbK399f1dXVCg8P79G+oqOj\n7YngVCUlJeTqIXfMJHlXruDgYGl7lUP36SmioqIUGRlpapuuLkC7OmZ3/QIAAAB3Z9c1RB9++KEy\nMzMlSfX19aqvr9e9996r/Px8SVJBQYFiY2MdlxIAAAAAnMCuM0Tx8fF66qmn9MADD8gwDP3xj3/U\nuHHjtGLFCm3atEkRERFKSEhwdFYAAAAAcCi7CqKgoCBt2LDhou05OTm9DgQAAAAAZrH7LnMAAPRV\nzc3NWrFihRobG3XmzBktXrxY1157LQuQAx7CaG9XRUWFQ/ZltVrPXa/bjTFjxsjX19ch7cF8FEQA\nAHSwZcsWXXPNNXriiSdUU1OjBx98UDfffLMSExM1Y8YMFiAH3FxLU61WZ9UpcFC5Y3bYzc2Lmhtr\n9M6auabf5AeOQ0EEAEAHQ4cO1f79+yVJjY2NGjp0qIqLi5Wamirp3ALkOTk5FESAGwscFK4BQ4a7\nOgY8gF13mQMAoC+bOXOmqqqqNH36dM2fP18rVqxQS0sLC5ADQB/EGSIAADrYtm2brrzySmVlZWn/\n/v1KSUm54PG+sAB5T3l6fsnzj8HT80v/PQZXr+XmLJ6waHZfGEfOQkEEAEAHpaWltvX0xo4dq+rq\navXv37/PLEDeU+66yPXl8PRj8PT80oXH0FcXE3fFQuGXw9PHkbOLOabMAQDQwejRo/X1119Lko4c\nOaLAwEDddtttLEAOAH0QZ4gAAOjg/vvv16pVq5SUlKS2tja98MILuvrqq1mAHAD6IAoiAAA6CAwM\n1F/+8peLtrMAOQD0PUyZAwAAAOC1KIgAAAAAeC0KIgAAAABei4IIAAAAgNeiIAIAAADgtSiIAAAA\nAHgtCiIAAAAAXouCCAAAAIDXoiACAAAA4LUoiAAAAAB4rV4VRKdPn9Yvf/lLbd26VVVVVUpKSlJi\nYqKeeOIJnTlzxlEZAQAAAMApelUQrV+/XoMHD5YkZWRkKCkpSRs3btSoUaOUl5fnkIAAAAAA4Cx2\nF0SHDh1SRUWFpkyZIsMwVFxcrLi4OElSXFycCgsLHRYSAAAAAJzB7oIoLS1NycnJtt9bWlrk5+cn\nSQoJCVFtbW3v0wEAAACAE/Wz5x9t3bpVEydOVERERKePG4bR432VlJTYE8HpyNVz7phJ8p5cVqvV\nofvzJGVlZWpqanJ1DFN54zEDAOBMdhVEO3fu1I8//qgdO3aourpafn5+CgwMVGtrq/z9/VVdXa3w\n8PAe7Ss6OtqeCE5VUlJCrh5yx0ySd+UKDg6Wtlc5dJ+eIioqSpGRkaa26eoCtKtjdtcvAAAAcHd2\nFUTp6em2nzMzMzVixAiVlpYqPz9f99xzjwoKChQbG+uwkAAAAADgDA5bh2jp0qXaunWrEhMTdfz4\ncSUkJDhq1wAAAADgFHadIfqpJUuW2H7Oycnp7e4AAAAAwDQOO0MEAAAAAJ6GgggAAACA16IgAgAA\nAOC1KIgAAAAAeC0KIgAAAABeq9d3mQMAoC/atm2bsrOz1a9fPy1dulRjx47V8uXLZRiGwsLClJaW\nJj8/P1fHBAD0EmeIAADooKGhQa+99ppyc3P1xhtv6J///KcyMjKUlJSkjRs3atSoUcrLy3N1TACA\nA1AQAQDQQWFhoWJiYtS/f3+FhoYqNTVVRUVFiouLkyTFxcWpsLDQxSkBAI7AlDkAADo4cuSIWlpa\ntHDhQjU1NWnx4sU6deqUbYpcSEiIamtrXZwSAOAIFEQAAHRgGIZt2tyRI0c0f/58GYZxweM9VVJS\n4oyIpvH0/JLnH4On55f+ewxWq9XFSZyjrKxMTU1Nro7Rrb4wjpyFgggAgA5CQ0M1YcIE+fj4aOTI\nkQoKClK/fv3U2toqf39/VVdXKzw8vEf7io6OdnJa5ykpKfHo/JLnH4On55cuPIbg4GBpe5WLEzle\nVFSUIiMjXR2jS54+jpxdzHENEQAAHcTExGjPnj0yDEPHjh1Tc3OzJk+erPz8fElSQUGBYmNjXZwS\nAOAInCECAKCDYcOGacaMGZo9e7YsFotWr16tqKgoPfPMM9q0aZMiIiKUkJDg6pgAAAegIAIAoBOz\nZ8/W7NmzL9iWk5PjojQAAGdhyhwAAAAAr0VBBAAAAMBrMWUOgEcy2ttVUVFheruVlZXiuyQAAPoO\nCiIAHqmlqVars+oUOKjc1Hbrf9yvkBHXm9omAABwHrsKolOnTik5OVn19fVqbW3VwoULNW7cOC1f\nvlyGYSgsLExpaWm2Fb0BwBkCB4VrwJDhprbZ3FhtansAAMC57CqIPv30U40fP14PP/ywKisr9dBD\nD+mWW25RYmKiZsyYofT0dOXl5WnOnDmOzgt0q62tTeXl5bJarecWfzPRmDFj5Ovra2qbAAAA6B27\nCqK77rrL9nNlZaWuuuoqFRcXKzU1VZIUFxennJwcCiKYrry8XEkr31XgoHBTV8JubqzRO2vmuvUq\n1QAAALhYr64hmjNnjmpqavT666/rd7/7nW2KXEhIiGprax0SELhcrphGBQAAAM/Uq4IoNzdX+/bt\n09NPPy3DMGzbf/ozAAAAALgruwqisrIyhYSE6KqrrtK4cePU3t6uoKAgtba2yt/fX9XV1QoPD+/R\nvkpKSuyJ4HTk6jl3ymS1Wl3WdllZmZqami75PEf/vVx5zDBfT8cZAADoGbsKoi+//FKVlZVatWqV\n6urq1NzcrNjYWOXn5+uee+5RQUGBYmNje7Sv6OhoeyI4VUlJCbl6yN0yBQcHm3rt0E9FRUVd8hoi\nZ/y9XHnMMF9X48ydvpgAAMCT2FUQPfDAA1q1apXmzZun06dP6w9/+INuuOEGPfPMM9q0aZMiIiKU\nkJDg6KwAAAAA4FB2FUQBAQF69dVXL9qek5PT60AAAAAAYBYfVwcAAAAAAFehIAIAAADgtSiIAAAA\nAHgtCiIAAAAAXouCCAAAAIDXoiACAAAA4LUoiAAAAAB4LQoiAAAAAF7LroVZAQAA0De0tbWpvLzc\nafu3Wq0KDg6WJFVUVDitHcBeFEQAAABerLy8XEkr31XgoHDnNbK9SpJU/+P3ChlxvfPaAexAQQQA\nQBdOnz6tu+++W4sXL9akSZO0fPlyGYahsLAwpaWlyc/Pz9URAYcIHBSuAUOGO72d5sZqp7cBXC6u\nIQIAoAvr16/X4MGDJUkZGRlKSkrSxo0bNWrUKOXl5bk4HQDAESiIAADoxKFDh1RRUaEpU6bIMAwV\nFxcrLi5OkhQXF6fCwkIXJwQAOAIFEQAAnUhLS1NycrLt95aWFtsUuZCQENXW1roqGgDAgbiGCACA\nDrZu3aqJEycqIiKi08cNw+jxvkpKShwVyyU8Pb/k+cfg7PxWq9Wp+/cGZWVlampqcnWMbnn668CZ\nKIgAAOhg586d+vHHH7Vjxw5VV1fLz89PgYGBam1tlb+/v6qrqxUe3rM7ckVHRzs5rfOUlJR4dH7J\n84/BjPzBwcG2u8DBPlFRUYqMjHR1jC71hdeBM1EQAQDQQXp6uu3nzMxMjRgxQqWlpcrPz9c999yj\ngoICxcbGujAhAMBRuIYIAIAeWLp0qbZu3arExEQdP35cCQkJro4EAHAAzhABANCNJUuW2H7Oyclx\nYRIAgDPYXRClpaWptLRUbW1tevTRRzV+/HgWrAMAAADgUewqiPbs2aODBw8qNzdXDQ0NSkhI0KRJ\nk5SYmKgZM2YoPT1deXl5mjNnjqPzwgO0tbWpvLzcJW1XVFS4pF0AAAB4JrsKookTJ+rGG2+UJA0c\nOFDNzc0qLi5WamqqpHML1uXk5FAQeany8nIlrXxXgYN6dgcmR6r/8XuFjLje9HYBAADgmewqiHx8\nfNS/f39J0vvvv6+pU6dq9+7dLFgHm8BB4RowZLjp7TY3VpvepiQZ7e09OjtltVrP3d7UgTgrBgAA\nYL9e3VThk08+UV5enrKzszV9+nTb9r6wYB25eq5jJm9c4K2lqVars+oUOKgHUwUdvNYDZ8W8iycs\n/gcAgCexuyDatWuXsrKylJ2drQEDBigoKKjPLFjnrotXuWOuzjJ56wJv3nZWDK7R1eJ/7vhlCQAA\nnsCudYhOnDihtWvXasOGDbbpP5MnT1ZBQYEksWAdAAAAAI9g1xmijz76SA0NDXr88cdlGIYsFote\nfvllpaSk6L333lNERAQL1gEAAABwe3YVRLNnz9bs2bMv2s6CdQAAAAA8Sa9uqgD3ZdZaQJ3dNY27\nngEAAMBTUBD1UaauBdThBgrc9QwAAACegoKoD+OuZwAAAED37LrLHAAAAAD0BRREAAAAALwWBREA\nAAAAr0VBBAAAAMBrURABAAAA8FoURAAAAAC8FrfdBgAAAOxktLebtij9mDFj5Ovra0pb3oSCCAAA\nALBTS1OtVmfVKXBQuVPbaW6s0Ttr5ioyMtKp7XgjCiIAAACgFwIHhWvAkOGujgE7cQ0RAAAAAK9F\nQQQAAADAazFlDgCATqSlpam0tFRtbW169NFHNX78eC1fvlyGYSgsLExpaWny8/NzdUwAQC9REAEA\n0MGePXt08OBB5ebmqqGhQQkJCZo0aZISExM1Y8YMpaenKy8vT3PmzHF1VABALzFlDgCADiZOnKiM\njAxJ0sCBA9Xc3Kzi4mLFx8dLkuLi4lRYWOjKiAAAB6EgAgCgAx8fH/Xv31+S9P7772vq1KlqaWmx\nTZELCQlRbW2tKyMCAByEKXMAAHThk08+UV5enrKzszV9+nTbdsMweryPkpISZ0Qzjafnlzz/GJyd\n32q1OnX/cJyysjI1NTXZ9W89/XXgTL0qiPbt26fHHntMCxYs0Lx581RVVcUFpwCAPmHXrl3KyspS\ndna2BgwYoKCgILW2tsrf31/V1dUKDw/v0X6io6OdnNR5SkpKPDq/5PnHYEb+4OBgaXuVU9uAY0RF\nRdm1MGtfeB04k91T5lpaWvTyyy8rJibGti0jI0NJSUnauHGjRo0apby8PIeEBADATCdOnNDatWu1\nYcOGc/9ZlDR58mQVFBRIkgoKChQbG+vKiAAAB7G7IAoICNAbb7yh0NBQ27aioiLFxcVJ4oJTAIDn\n+uijj9TQ0KDHH39cSUlJmj9/vhYuXKgtW7YoMTFRx48fV0JCgqtjAgAcwO4pcz4+PvL3979gGxec\nAgD6gtmzZ2v27NkXbc/JyXFBGgCAMzntpgo9veDUXS/w8vRcXCAJ9E29uaAWAABczKEFkT0XnLrj\nBV7ueuHZ5eTiAkmgb+rqglp3/RIHAAB359B1iLjgFAAAAIAnsfsM0d69e/Xss8/q6NGj8vX1VW5u\nrrKzs5WcnKz33ntPERERXHAKAAAAwK3ZXRDddNNN+vDDDy/azgWnAAAAADyFQ6fMAQAAAIAnoSAC\nAAAA4LWcdtttAACAvqatrU3l5eWmtVVRUXHuzrFOVFFR4dT9A+6OgggAAKCHysvLlbTyXQUOuvTS\nIr1V/+P36h8cosCPapzeTsiI653aBuDOKIgAAAAuQ+CgcA0YMtzp7TQ3VpvSVnNjtVP3D7g7riEC\nAAAA4LUoiAAAAAB4LabMAQAAj9fVzQ6sVqtDb0rADQiAvoeCCAAAeLxub3awvcph7XADAqDvoSAC\nAAB9AjcgQF9mtLfbfYbSnjOlY8aMka+vr13teRoKIgAAAMDNtTTVanVWnQIH2bkO1mWcKW1urNE7\na+YqMjLSvrY8DAURAAAA4AHMuuW7t+EucwAAAAC8FgURAAAAAK/lFVPm/vrG/9GhyoYeP//YsWMa\nsu0Lh7Q97bb/pV/NiHPIvgAAAAA4llcURD9UHdfBEyN6/g/8Rqj+hGPaHmP9f47ZEQAAAACHY8oc\nAAAAAK9FQQQAAADAa1EQAQAAAPBaDr+GaM2aNdq7d68sFotWrVql8ePHO7oJAABcoq98xn204zMV\nlhy45PPq6uq0ZUdJr9qaGXeLYib9717tAwCcyaEFUXFxsaxWq3Jzc1VeXq6UlBTl5uY6sgkAAFyi\nL33G/d8D/9HeumE9eOYwHamzvx2jvU1XfLZLYUMH2r+THqqoqHB6GwD6JocWRJ9//rmmTZsmSRoz\nZoyOHz+ukydPKigoyJHNAABgOj7jLt/Jxip9+J9G/fPAJ05vq/7H7xUy4nqntwOg73FoQVRXV6eo\nqCjb70OGDFFdXZ3LPyzaW5tkafyux88/feq0Aq4IcEjbR2sDdODApacl9ITValVwcHCPnltRUaHm\nxhqHtHu5WpqOSrJ4VdveeMze2rYrj9lVr2mc466fcfbwtbT36HOxt5+HlqY6Sc4/O3SeGa8RM98D\nzGqLY/KMtsw8Jm/7vHHqOkSGYVzyOSUlvZub3BOJ9/7C6W10p6mpySH7GT16dI/3FRoaqvWr/sch\n7V6+W13Urivb9sZj9ta2XXnM595PzHjfxKX15DNOMudz7nLdMWm87pjkmdc/dc2s16aZ7wEck/u3\nY2Zb5n7+eNPnjUMLovDwcNXV/XeycU1NjcLCwrp8fnR0tCObBwDAaS73M07icw4APIFDb7sdExOj\ngoICSdJ3332nYcOGKTAw0JFNAADgEnzGAUDf5NAzRBMmTNANN9ygOXPmyNfXV6tXr3bk7gEAcBk+\n4wCgb7IYPZ0EDQAAAAB9jEOnzAEAAACAJ6EgAgAAAOC1KIgAAAAAeC2nrUO0b98+PfbYY1qwYIHm\nzZun4uJipaenq1+/fgoMDNTatWsvWGT0ySefVEBAgNasWaOzZ88qOTlZlZWV8vX11Zo1azRixAjT\nMu3bt08pKSmyWCyKj4/XokWLnJbpcnKlp6erqKhIhmFo2rRpeuSRR0zNdejQIa1evVoWi0VXX321\n/vCHP8jHx0fbtm3T22+/LV9fX82aNUv33XefW+T66KOP9NZbb8nX11e33nqrnnjiCdPGVleZzjNj\nvF9OLleP+a5ymTnm09LSVFpaqra2Nj366KMaP368li9fLsMwFBYWprS0NPn5+Zk+3nuay8zxjs6d\nPn1ad999txYvXqzf/OY3tu3x8fGKiIiQxWKRxWLRK6+8ovDwcBcmvVhRUZGWLVum6667ToZhaOzY\nsXr22WdtjxcWFio9PV2+vr664447tGjRIhemvdil8ntCH0jStm3blJ2drX79+mnp0qWaMmWK7TF3\n7wOp+/ye0Afvv/++PvjgA1ksFhmGoe+++06lpaW2x929Dy6V3xP6oLm5WStWrFBjY6POnDmjxYsX\n6/bbb7c97rQ+MJygubnZWLBggfH8888bGzduNAzDMO69917jhx9+MAzDMDZs2GBkZWXZnr97925j\n1qxZRnJysmEYhrFlyxYjNTXV9tjjjz9uaqZZs2YZ33//vWEYhvHkk08ap06dckqmy8l14MAB4/77\n7zcMwzDa29uNmTNnGnV1dabmWrhwobFr1y7DMAwjMzPT2L59u9Hc3GzMmDHDOHHihHHq1Cnj7rvv\nNhobG12eq6WlxYiLizNOnjxpGMa5Pj148KBpY6uzTOeZMd4vN5erx3xnucwc81988YXx+9//3jAM\nwzh27JgxdepUIzk52cjPzzcMwzDWrVtn/P3vfzd9vPc0l5njHV1bt26dcd999xlbtmy5YHt8fLzR\n0tLiolQ9s2fPHmPp0qVdPn7XXXcZVVVVRnt7uzF37lzj4MGDJqa7tEvl94Q+OHbsmDF9+nSjubnZ\nqK2tNZ577rkLHnf3PrhUfk/og58qKiqyvX+e5+598FOd5feEPti4caOxbt06wzAMo7q62rjzzjsv\neNxZfeCUKXMBAQF64403FBoaatsWGhqqo0ePSpIaGxs1ZMgQSVJra6s2bNighQsX2p77+eefa9q0\naZKk22677YLq1tmZ6uvr1dLSonHjxkmSXn31VQUEBDgl0+XkGjhwoM6cOaPW1ladOnVKvr6+uuKK\nK0zNZbVaNX78eFtbu3fv1t69e3XjjTcqKChIAQEBuuWWW1RSUuLyXFdccYW2bdtmWyNk8ODBamho\nMG1sdZZJMm+8X04udxjzneUyc8xPnDhRGRkZkqSBAwequblZxcXFio+PlyTFxcWpsLDQ9PHe01xm\njnd07tChQ6qoqLjgG/HzDMOQ4QE3dO0q4+HDhzV48GANGzZMFotFU6ZM0RdffGFyukvr7m/sCX1Q\nWFiomJgY9e/fX6GhoUpNTbU95gl90F1+yTP64Kdee+21C84+eEIf/FTH/JJn9MHQoUN17NgxSef+\nDzx06FDbY87sA6cURD4+PvL3979g24oVK7RkyRLNnDlTX331lX77299KkrKyspSYmKigoCDbc+vq\n6mx/AIvFIh8fH509e9aUTEeOHNHAgQO1cuVKzZ07V2+//bbTMl1OrmHDhmnmzJmKj4/XL37xC82d\nO1dBQUGm5oqMjNRnn30m6dx/4uvr6y9oXzo3kGtra12eS5IGDBggSdq/f78qKyt18803mza2uspk\n1ni/nFzuMOY7y2XmmPfx8VH//v0lnZtyMHXqVLW0tMjPz0+SFBISopqaGtXX15s+3i+Vq7a2VpJ5\n4x2dS0tLU3JycpePP//885o7d67WrVtnYqrLU15erkWLFmnevHkqLCy0be/sfb6mpsYVEbvVVf7z\n3L0Pjhw5opaWFi1cuFCJiYn6/PPPbY95Qh90l/88d++D87799ltdddVVCgkJsW3zhD44r7P857l7\nH8ycOVNVVVWaPn265s+ff8H7qjP7wLSbKrzwwgt67bXX9PHHH2vChAl69913ZbVatX//fs2YMaPb\nirW9vd20TIZh6MiRI1q5cqVycnL0j3/8QwcPHjQtU1e5Dh8+rIKCAn366afasWOH3n33XdtZJLNy\nLV++XNu3b9fDDz+s06dPyzAMWSyWC57TVT+aneu8H374QU8//bReffVV+fr6mpars0yuHu9d5XKH\nMd9ZLleM+U8++UR5eXl67rnnLuijrvrLrPHe01yuGu/ebuvWrZo4caIiIiIkXdwvy5YtU3JysjZu\n3KgDBw5ox44drojZrdGjR2vJkiVav369XnrpJaWkpHRZPLvjN8yXyu8JfWAYhhoaGrR+/XqtWbNG\nq1at6va57uZS+T2hD87bvHmz7r333m6f4459cF5X+T2hD7Zt26Yrr7xSO3bs0FtvvXXRmcafcmQf\nmFYQ7d+/XzfffLOkc1M3vvnmG+3cuVP/+c9/NGfOHKWmpmrnzp3Kzs5WeHi46urqJMn2htavn+Pv\n/9Ax07fffquQkBBde+21GjhwoK644grdcsst+ve//21apq5yffvtt7rpppvk7++vAQMGKDIyUgcO\nHDA1V0REhP72t78pOztb1157rYYPH67w8HDbN9SSVF1drWHDhrk8lyRVVVXpscce09q1azV27FhJ\nMi1XZ5k+++wzl473rnK5w5jvLJfZY37Xrl3KysrSm2++qQEDBigoKEitra2SLhzXZo/3S+U6f0Gs\nK8e7t9u5c6fy8/N1//33a/PmzXr99dcv+Hb817/+tYYOHSofHx/dcccdOnDggAvTdu78GVlJGjly\npEJDQ1VdXS1JnY57d7sQu7v8kmf0QWhoqCZMmCCLxaKRI0cqKCjI9iWQJ/RBd/klz+iD84qKijRh\nwoQLtnlCH5zXWX7JM/qgtLRUsbGxkqRx48apqqrKVvg4sw9MK4jCwsJUXl4u6dypvNGjR2v+/Pn6\n4IMPlJubq+eff15TpkzRww8/rJiYGOXn50uSPv30U916662mZBo1apRGjBihkydP6vjx42pvb9f3\n33+va665RjExMfr444+dnqmrXKNHj1ZZWZkk6cyZMzpw4IBGjhxp2t9Kkv7617/qX//6lyTpgw8+\nUHx8vG688UaVlZXpxIkTOnnypL766itFR0e7PJckpaSk6Pnnn7ddGyPJtFwdM8XFxenBBx906Xjv\nLFd8fLxbjPnO/l5mjvkTJ05o7dq12rBhg+3ul5MnT1ZBQYEkqaCgQLGxsaaP957mklw73r1denq6\nNm/erPfee0+zZs3SokWLNHnyZEnn+jAxMVGnT5+WJH355Ze67rrrXBm3Ux9++KEyMzMlSfX19Tp6\n9KiGDRsmSRo+fLhOnjypyspKnT17Vp999tkFd31yB93l95Q+iImJ0Z49e2QYho4dO6bm5mbb9CBP\n6IPu8ntKH0hSTU2NgoKCLvryyBP6QOo6v6f0wejRo/X1119LOjcNMzAw0DYbyZl9YDGccM5v7969\nevbZZ3X06FH5+vpq0KBBSk1Ntd0edvDgwfrzn/9sm/Munatmt2zZojVr1qi9vV0pKSmyWq0KCAjQ\nSy+9ZHtjMyPTN998oxdffFE+Pj66/fbbtWTJEqdkutxcmZmZ2r17tywWi+666y4lJSWZmutPf/qT\nXnzxRZ09e1a33nqrVqxYIUnasWOH3nzzTfn4+CgpKUm/+tWvXJ7rhx9+UEJCgsaPH2+b2vfQQw9p\nypQppoytrv5W5zl7vF9uLleP+a5ymTXmN23apMzMTP3sZz+zjZeXX35ZKSkpam1tVUREhNasWSNf\nX19Tx3tPcx0+fNi08Y7uZWZmasSIETIMQ8HBwZo2bZreeecd5eXlKSgoSNdff/0Ft4N2FydPntRT\nTz2lxsZGGYahRYsWqb6+3nYMX375pV555RVJ0p133qkFCxa4NnAHl8rvCX0gnXvNb968WRaLRQsX\nLlRDQ4PH9IHUfX5P6YPvvvtOGRkZysrKkiRt2bLFo/qgu/ye0AfNzc1atWqV6uvr1dbWpmXLlqmy\nstLpfeCUgggAAAAAPIFpU+YAAAAAwN1QEAEAAADwWhREAAAAALwWBREAAAAAr0VBBAAAAMBrURAB\nAAAA8FoURAAAAAC81v8HSuHwAt2lBSQAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Pulling in DataFrame and dropping blank values\n", + "fields = ['Price', 'Number Of Stories', 'Total area', 'Type', 'Year Built']\n", + "data = local_csv('loopnetlistingswithbrokers (3).csv')[fields]\n", + "data = data[data != ' '].dropna()\n", + "\n", + "# Formatting values from strings with thousands separators into integers\n", + "data['Total area'] = data['Total area'].str.replace(' SF', '').str.replace(',','')\n", + "data['Price'] = data['Price'].str.replace(',','').str.replace('$', '')\n", + "data = data[[i.isdigit() for i in data['Price']]]\n", + "for i in [0,1,2,4]:\n", + " data[fields[i]] = data[fields[i]].astype(int)\n", + "\n", + "# Restricting the real estate to only multifamily properties\n", + "data = data[data['Type'] == 'Multifamily']\n", + "\n", + "# Using log price transforms the price distribution to a more normal one\n", + "# Normally distributed independent variables are a linear regression assumption\n", + "data['log Price'] = np.log10(data['Price'])\n", + "\n", + "data.ix[:, data.columns != 'Price'].hist(bins=10);" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's begin by attempting to model `log Price` using only `Year Built` as our explanatory variable. We'll also define a linear regression plotting function to make this step simpler as we repeat it for the other data dimensions.\n", + "\n", + "A OLS fitted simple linear regression returns a single set of coefficients that minimizes the sum of squared residuals within the training set. This model is simply an estimate. It will usually have bias (difference betwen model expected value and true value) and variance (sensitivity to small changes in the training set). As we add more models, we should see the aggregate model have a higher $R^2$ as the model leaves less and less variance in `log Price` unexplained." + ] + }, + { + "cell_type": "code", + "execution_count": 106, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "rsquared 0.0190269927541\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0oAAAHxCAYAAABTSExyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3X10XOVh5/HfSDOyrJdlJNsjLGHLG4EJiJc6cixeLPvg\nuPZxQ0ugvDQJ5nizp6eNIU3rtAlpE3xC49MtkFASQ1MvSd2cJnAaTs3Lbk3IdkPW4PUYhMLaEOwi\nEtuMbMnYGvBIljQjzf4xaDy61ozuaOa+zXw/5/gcX83bc+c+M/P87vNyfclkMikAAAAAQFqF0wUA\nAAAAALchKAEAAACAAUEJAAAAAAwISgAAAABgQFACAAAAAAOCEgAAAAAY+K188uHhYX3lK1/R+++/\nr3g8rrvvvlsrV65M37537149/PDDqqys1KpVq7R582YriwMAAAAApljao7Rr1y595CMf0Q9/+EM9\n8sgj2rZt25Tbt23bpu3bt+uJJ57Qyy+/rN7eXiuLAwAAAACmWBqUGhsbNTg4KEl6//331djYmL7t\n2LFjCgaDampqks/n0+rVq7Vv3z4riwMAAAAAplg69G7Dhg3atWuX1q1bpzNnzmjHjh3p2957770p\nwamxsVHHjh2zsjgAAAAAYIqlQenZZ5/VhRdeqB07duitt97S17/+df3kJz+Z9r7JZHLG5+vu7i52\nEQEAAACUmI6OjoKfw9Kg9Nprr6mrq0uS9NGPflQnTpxQMpmUz+dTKBTSyZMn0/ft7+9XKBSa8TmL\nsdOAGd3d3dQ32Io6BztR32An6hvsVKzOFUvnKLW2tuqXv/ylJCkSiaimpkY+n0+S1NLSoqGhIfX1\n9SmRSOjFF1+csiIeAAAAADjF0h6lO+64Q3/5l3+pjRs3anx8XPfff7927dql+vp6rV27Vlu3btWW\nLVskSTfeeKNaW1utLA4AAAAAmGJpUKqpqdHf/d3fZb19+fLlevLJJ60sAgAAAADkzdKhdwAAAADg\nRQQlAAAAADAgKAEAAACAAUEJAAAAAAwISgAAAABgQFACAAAAAAOCEgAAAAAYEJQAAAAAwICgBAAA\nAAAGBCUAAAAAMCAoAQAAAIABQQkAAAAADAhKAAAAAGBAUAIAAAAAA4ISAAAAABgQlAAAAADAgKAE\nAAAAAAYEJQAAAAAwICgBAAAAgAFBCQAAAAAMCEoAAAAAYEBQAgAAAAADghIAAAAAGBCUAAAAAMCA\noAQAAAAABgQlAAAAADAgKAEAAACAAUEJAAAAAAwISgAAAABgQFACAAAAAAOCEgAAAAAYEJQAAAAA\nwICgBAAAAAAGBCUAAAAAMCAoAQAAAIABQQkAAAAADAhKAAAAAGBAUAIAAAAAA4ISAAAAABgQlAAA\nAADAwO90AQAAAAA7jY3FFQ4PKBbzq64uoc7OkKqqAk4XCy5DjxIAAADKSjg8oGi0RYlEk6LRFoXD\nA04XCS5EUAIAAEBZicX8ObcBiaAEAACAMlNXl8i5DUgEJQAAAJSZzs6QgsGI/P5+BYMRdXaGnC4S\nXIh+RgAAAJSVqqqAurpanC4GXI4eJQAAAAAwICgBAAAAgAFBCQAAAAAMCEoAAAAAYMBiDgAAAIDB\n2Fhc4fCAYjG/6uoS6uwMqaoq4HSxYCN6lAAAAACDcHhA0WiLEokmRaMtCocHnC4SbEaPEgAAAMpW\ntp6jaFR6441TGhmpUHX1hNrbnS4p7EaPEgAAAMpWtp6jI0cGNDQ0T+PjDRoamqcjR+hRKjf0KAEA\nAKBsxWL+abcXL16gWCyikRG/qqsTWrx4gRPFg4MsDUpPPfWUnnnmGfl8PiWTSb3xxht67bXX0rev\nWbNGzc3N8vl88vl8euihhxQKhawsEgAAAJBWV5dQNDp1W5IaGnxqb29J/z0YjNhdNDjM0qB06623\n6tZbb5UkvfLKK3r++een3O7z+fT444+rurraymIAAAAA0+rsDCkcjkyZo5Tr7ygftg29e/TRR/Wt\nb31ryt+SyaSSyaRdRQAAAACmqKoKqKurxfTfUT5sCUoHDhzQwoULNW/evPNu27p1q959910tX75c\nW7ZssaM4AAAAAJCTL2lDl859992n3/3d39XHP/7xKX9/5pln1NXVpWAwqM2bN+uWW27RunXrsj5P\nd3e31UUFAAAA4HEdHR0FP4ctPUr79+/Xfffdd97fb7rppvT/V61apcOHD+cMSlJxdhowo7u7m/oG\nW1HnYCfqG+xEfYOditW5Yvl1lAYGBlRbWyu/37j0Ykx33nmnRkdHJUmvvvqqLrnkEquLAwAAAAAz\nsrxH6eTJk1PmJu3atUv19fVau3at1q9frzvuuEO1tbW67LLLtH79equLAwAAAAAzsjwotbe3a8eO\nHentm2++Of3/jRs3auPGjVYXAQAAAADyYvnQOwAAAADwGtuuowQAAAC4wdhYXOHwwJSLyVZVBZwu\nFlyGHiUAAACUlXB4QNFoixKJJkWjLQqHB5wuElyIoAQAAICyEosZV2NmkBXOR1ACAABAWamrS+Tc\nBiSCEgAAAMpMZ2dIwWBEfn+/gsGIOjtDThcJLkQ/IwAAKDtM5i9vVVUBdXW1OF0MuBw9SgAAoOww\nmR/ATOhRAgAAZYfJ/MhHZg/knDlnJUmjo3PpjSxx9CgBAICyw2R+5COzB3L//nrt3x+gN7IMEJQA\nAEDZYTI/8pHZ4zgyUqGREf+0t6G0cGQBAEDZYTI/8lFXl1A0mvp/dfWEpMSU21CaCEoAAABADp2d\nIYXDEcVifq1YMTlHqT89RwmliaAEAAA8gSW94RR6IMsTc5QAAIAnsKQ3ADsRlAAAgCewpDcAO/EN\nAwAAPCFzQv3kNmbGkEVgdghKAADAEzIn1Jf6JPpihpvJIYuSFI1K4XCE+TaACQQlAADgCeU0ob6Y\n4YYhi8Ds8EkBAJQdhiJZi/e3cMUMNwxZBGaHxRwAAGWH1dOsxftbOGOYKSTcdHaGFAxG5Pf3KxiM\nlPSQRaCY6FECAJQdhiJZi/e3cMWcj1VOQxaBYuKbCwBQdhiKZC3e38IRbgDnEZQAAGWnnFZPc0K+\n7y9zmgC4EUEJAFB2OFtvrXzfX5avBuBGLOYAAAAcxZwmAG7ENxEAOGxy2FFPz7CGhyMMO0LZYU5T\naZluKCXgRfQoAYDDJocdjY8vZClllCWWry4tLA+PUkGPEgA4jGFH5YEFC7Jjzlhpme47rabGocIA\nBaBHCQAcVswLS8K9OMte+sbG4tqzJ6Ldu/u1Z09EY2Nxp4vkCL7TUCoISgDgsMlhR5WVxxl2VMLo\nOSx9hOEUhlKiVPAtDQAOmxx2VFNzQh0dDD8qVSxY4A2FDJEkDKeU4lBKhs6WJ3qUAACwAWfZC2fH\n0LZCeoUYcla66C0sT+V5qgMAAJuV4ll2u9lxYdpCeoU6O0MKhyMsi12C6C0sTxxlAADgCWYaq4UO\nkSpkiCRhuHQxdLY8EZQAAIBpTs7VMNNYLbTXiV6h8mOmTlMvyhNBCQAAmGbH8LdszDRWCx0iRa9Q\n+clWp1nAAQQlAABgmpNzNcyEGIZIIV/Z6rSTJwXgDqx6BwAATHP7ym6sLoh8ZavTLOAAjjgAADDN\n7XM1GDpXuqwaCpdZp+fMOat4XNq9u1+9vX1qbm5UIJB6DbedFID1CEoAAMA0goi7lNM8GquGwmXW\n6T17IunXaG6ep76+A2pra3blSQFYj6AEAADgUeU0jybfoXCzCZGZzxkI+NXW1qwNG5pmX2h4GnOU\nAAAAPMqr82jGxuLasyei3bv7tWdPRGNj8Rkfk+/8uMkQmUg0KRptUTg8UPTXQGkjKAEAAHiUVxv2\nswkx+S7UMZsQyWIgyOSN0w4AAAA4j9sX18hmNiEm3/lxs1kqnjl4yERQAgB4XjlNaIcz7K5jZl/P\nqw17O6535dUQCfcgKAEAPK+cJrTDGXbXsVKv03aEGK+GSLgHQQkA4HlendCO4rOq5yezTsXjce3b\nd9rS3qVSr9NOhBh6npEvFnMAAHieVye0o/iyLRIwm1XWMmXWqcOHBzQ+3pzXQgT5ok4X32wWkJhU\naP2BNxGUAACex0pVmJStJ6aQRrI0tY5VVg5q6dILsr5mMVCnzTMbYgrppSu0/sCbSqsfFwBQlpiL\nUFxeHqKUbZEAY6M4GpX27ImY3sfMOpZ6jXPPZ0VvD3XaPLPzuQpZQKLUh0JievQoAUAZYzgJpuPl\ns+fZemKMjeIjR2a/j/T2uIvZEFPIccusP/F4XL29fXxvlgHiMACUsVJfWQuz44Wz59l6vbL1xBhX\nWRsbC+qNNyIaGfGrujqhyy9PFvwasymv1Y/1OjP7nq2naLrHzvb7LbP+HDnSp+bmK5VI+PneLHH0\nKAFAGfNCgxj288JCAvn2ek2Gmw0bmtTV1aLjx6MaGmrR+HiThoZadPToyYJfo5jltaocXmNm37P1\nFBXzfcusP21tzQoEzn1X8r1ZujiyAFDGKivP6OmnY4rFqlRXN6bf//2kpCaniwWHeeFCnYWG/NbW\nkGKxUxoZqVB19YRaW1P7mNkLcfDgabW1hRQIBGb1GsUqbzmf0DCz79l6+Kx63+y4WC7cwdJP2lNP\nPaVnnnlGPp9PyWRSb7zxhl577bX07Xv37tXDDz+syspKrVq1Sps3b7ayOAAAgzffPK2RkRZNTPg1\nMlKhN9+MaN06p0sFpxW6kIAdQ8UKbawGg1J7+7yM7YikqcNRx8f9Onx4QO3t5xZxcKK85dwwd+P7\n5oUTCSgOS4PSrbfeqltvvVWS9Morr+j555+fcvu2bdv0gx/8QKFQSHfeeafWr1+vtrY2K4sEAMhw\n5ky9Fi9uydj+wMHSoFTYMfet0MZqtsdn9josXXqBenuPy+8vvEFcSHnLuWHuxveNFQnLh219t48+\n+qi+9a1vpbePHTumYDCopqbUEI/Vq1dr3759BCUAsFFDw4j6+6duF1u5TkQv1/2W7BkqVmhjNdvj\nM3shAgG/rrmmQV1dhQ9HLaS85dwwd8v7Vs6f53Jmy2IOBw4c0MKFCzVv3rku7vfee0+NjY3p7cbG\nRg0MlM/kRACYNLlE98svD9u+1OymTZeqqalHVVW/UlNTjzZturTor+GWieh2L4Xulv12ghcWg8iG\npb8xnczP88mTTdqx4yDLg5cBW3qUfvKTn+iWW27JeZ9k8vxlOafT3d1djCIBplDfYIeenqjOnGmV\ntFCvvnpWhw79Hy1bFrTt9a+9VpKGJUmHDv0q533j8YQOHoxpeLhKNTVjuuKKuimrP02np2dY4+Nn\n09uVlcdVU3Oi0GLn7dz7nGL1++yW/c7Fqu+4QCCh/v630vVkwYI6dXe7a99zqalJ/YvHE/rhD9/K\nq74jOy//pmZ+nt95Z0gjI0nF42ckWf9dAufY8mnfv3+/7rvvvil/C4VCOnny3FKc/f39CoVmPmvT\n0dFR9PIB0+nu7qa+wRYDA/1KJJr09ttv6+KLL5bfX6+ODneuPLdnT0RNTeeGssTjEV1zTe6hLcPD\nkfR8FUkKBueqo8P+YUST7/Mkq99nt+x3NlZ/x11zTXGex8khT7Op75ie139TMz/P778/qOrqYV18\ncWrbzd/Z5apYodzyoXcDAwOqra2V3z81k7W0tGhoaEh9fX1KJBJ68cUXtXLlSquLAwCu4+QwpXyH\no81m7olbhjLZ/T67Zb+9zskhjOW8LLdb2D1kNpvMz/P8+b/R0qXnPs9eGlqK/Fj+iT958uSUuUm7\ndu1SfX291q5dq61bt2rLli2SpBtvvFGtra3ZngYAStbkykyVlccVDM61tUGd7+pks1lu1y0T0e1e\nOcwt++11hYSVQnujynlZbrewYwVFMzI/z2NjjefVK5Qmy4NSe3u7duzYkd6++eab0/9fvny5nnzy\nSauLAACuNvkDXFNzIuvQLKuGH+XbCPXyMsW5ggsrWjnL+P4vW9agnp5BxWJ+HTp0VLFYUonEHFVX\nT2jFirMzP+GHcjWyzRxzL9f3UmFVr14hn3lOgpQP+pABwEWy/XhnNvhOnkxox44DamtrLrhRn+8Z\n81JtILjlrHW5Mr7/O3f2qLV1mSQpFpOOHevTwoXNkvLr0cnVyM52zAnN7mJVrx6feZhhy/LgAABz\nss3HyGzgHT78vt57r7koczayzaNxy7wAuzAXxVnG93twsDr9/0SiSgsXNqujo0nt7S0aHZ1r+nlz\nzUvLdszLeVl3N7Jqrl+hQzrL6fuxnPFLAAAOmzyD3dMzrNHR02prCykQSJ3BnvzxzjyrOjJSoerq\n7A2+fGTrISq3s63MRXGW8f3PvPBxdfWEMnuS8jk2uYbOZTvmpRKai9kzlu257Oh9s6oXO9/PfOa+\n9vb2qbn5CgUCgbL4fixn3vz0A0AJmQwl4+NnNT7eoMOHB9TenvrRnfzxzmzwzZ+f+pGeZEWjvlQa\ni2YxF8VZxvf/hhsuVU9PantyTtLoaH/exyZXIzvbMXd7aDYbTop5siPbc3n5hEq+n/nMfe3v9+vA\ngcNauLBZ1dUTam+3o8RwQmn/8gGABwwOJvXmmxH19n6g1taAKitPy++f+uNt94pLbm8sFlupzr3y\niune/66uGttfU7I/NOfbK2M2nBTzZEe25/LyCZV8P/OZ+zYwENUHH8xXKNSgoSHpyJEeSXx/lCLv\n1GgAKFFHj57U0NAyJZM+jY42q6nptDZsyH7xQjsa9aXYw8IkfZhhd2jOt1fGbDgp5smObM9ViidU\nsn1PzJlzVq+/fkojIxUaGZHq6o6qslKqrk5o8eIFThcbFiEoAYDDWltDisVOqaJiULW1c9Ta6nwo\n8XIPi5mVA702TAilK99eGbPhpJgnO7I9VymeUHnppYj27w9oZESqrpbi8YjWrFny4a0jkvyqrh7R\nokULdPXVqRNawWDEqeLCYgQlAHBYMCi1t8/TnDmDuvjiebb+6JZiL0u2QOTlYULlphTrZTb59sqY\nDSfFPNmR7bnyfQ0vHNfu7jMaGrpSkjQ0JHV3H9CaNdLo6Fy1t6eCUTw+T729b8nvz3/eHLyFXwkA\ncNhkw6ey8riCwbm2/uiWYi9LtkBUisOESlUp1sts8u2V8XJvrzeOq2/a7czvj0DAr2uuaVBXV/Yh\n0igNBCWgCLxwlgyYTin2smQLRKU4TKhUlWK9zMbLwSdfXjiuHR112r//1IeXYZhQR0edJL4/ypX7\naijgQd44Swa3ylwePHWBS/vqTyn2smRr0JRTg9Tr3FIvOQlWXG45rrmsXNmiQCB1zOfMSS1Nv3t3\nP8e/TBGUgCLwwlkyuJeT9acUz5JOXUqdhq5R5gWOh4cjrnxP3FIvOQlWXG45rrlkfn/s2RPh+Jc5\nWnNAEXjhLBncy8n6U+q9LDR0z+dkD6ZZbgm7nAQrLq9933D8wREHisALZ8ngXk4u5lDqMhs28Xhc\n+/adLvveJa81/syE3ULDVObjJ4dbjY7OVW9vn5qbGxUIpJ6Lk2DOsio0Z3teToLC3d+OgEd47SwZ\n3GWy/tTUnFBHB/WomDIbOocPD0hqViIxz9O9S4U2Fr3W+DMT7ArtOcx8/OuvRyRVq719npqb56mv\n74Da2podPQnGENIUq3qIsz1vtpOgHI/yQVACAJSszIZOZeWg2to+mr7N7T0p2RTaWPRaD6aZYFdo\nL1nm/UdG/JIqJKWWgW5ra9aGDc4uA+21IaTTBYlisKo3NNvzZjsJ6rXjgdnz5q8EAAAmZDZ0Ug3u\ncz97bu9JyabQxqLXejDNDG0utJcs8/HV1QllNo+mey67exRKYbhkTU3hz5t5nOLxhI4c6dPu3Sp4\nuGW+Qyy9djwwexxZAEBZKJW5hF4bOlcoM0ObzRzbXOEm8/ErVsQlxTU6msj6XNl6FHK9RiHhKtcx\nd+MwsOmCRDGCUuZxOnKkT83NVyiRCBQ83DLfIZbl9hksZwQlAEBZKJW5hKUS+IrJzLHNNVwq37qR\nrUch12sUMlwr1zF34zAwq4JE5nHavVtKJM4FwkKGW+Y7xJLPYPkgKAEASpYbz7YXqlQC32wUcjxz\nDZfK93mzBYFcr1HIcK1cx9yNw8CmCxIHDpwo6msUc7hlvo8v589guXH+0wQAgEXceLYds/fSSxHt\n3x/QyIhUXS3F4xGtWbPE1GNzNYzzrSfZehRyvYZVvSzZntfJkwR2BIlCe3XyfXwpnnTBzAhKAOBh\ns/nxLqcffDeebc+lnI7NbHR3n9HQ0JWSpKEhqbv7gNasMffYXA3jwcGk3nwzopERv6qrE7r88mTO\n58oWBHK9hlXDtbI9rxtPEhSzfhcaxvJ9fOb7efJkQjt2TJ3TxOe0NLn7FwMAysBk46GnZ1jDw5G8\nfnRn0xhyYwPKKl6bdF1Ox2Z2fDNsZ5erYXz06EkNDS2TlApgR4/2SLoo79Lleg2relmyPa8bTxJ4\nuX5nvn+HD7+vkZFmtbY2eW4/kB/nPzUAUOYmhxP19tZqeDi/4USzaQy5sQFlFa9Nurbj2BQSzJ3W\n0VGn/ftPaWSkQtXVE+roqCvK87a2hhSLnXve1lZ315NsClny2g5e/u7JPOmSqifn3k8v7Qfyw5EF\nAIdNDidKJn0aGmrOazjRbHpMvNbLUgivTbq249hMntUfHz+raLTFU2fDV65sUSCQOXSrOOUOBqX2\n9nkZ25GiPK/dClny2g5e/u7JPOkyf35qafJJXtoP5IegBACOm/1wotn0mHitl8WMUpnbY8ex8fJZ\nfauCb6l8JgpZ8toOrn+fV66U3nln2puqJHV9+P+kpLGxCSWT0v/7+6f1W+s77CohbOadb0cAKFGT\nw4kqKgZVWzsnr+FEs2k4eq2XxQwvz33IZMex8cJZfbuDb6l8Jtx+bK16nyfrS0XPG1p+/12qqqrI\n43RT/nyS5lRVSJJWhEYkD56UgTkEJQBw2ORwopqa01q2LFi04UTlxMu9JHabPKtfWXlcweBc953V\nV+kEX7u5vsfGjCVLpLGxvB6SHJvQx5Op4JJUhcbGJtJBxtTjda6HyOeTuaC1e7d09dV5lRPewy8J\nADhs8ixrTc0JdXTQGJwNt59JdxMv1DeC7+y4omesu1v63d89789XxuNSwJqel2Qy93ZW77wjVVfr\npT2RdDCXUnPUHH8f4Qp88wBAGWNuD9yI4OuwRYuk8XGnSzGzLVukP/9zvVJg0CGYIxtqAgCUsVIZ\n4uSKM+koGoJvgX75S+l3fsfpUpjz1lvSf/pPBT1FofVlzpyzev31cxccXrEiXlB5UDoISgBQxjiT\nCjci+Epqbna6BOb8zu9Ijz8+490OdHero6Ow1eGy9YAXp75US6pQqmlMUEIKv4gA4DCrLgBqZlid\nk0OcCh32VyrDBu0w3XsFi/3qV9InPuF0Kcz55S+lkPvrhFU94KOjc6dcR2t0lKGeSCEoAUij4ekM\nqy4AaqZR4eQQp0IbPaUybNAO071XNTXZ7893wYcuukiamHC6FDP7yEekl15yuhSWs6oHnDlxyIag\nBCCNhqczrPrxN/O8Tg5xikalN944pZGRClVXT6i9Pb/HF/N9K/VgMN17lSsoee27IOvxO3ZM6ux0\nunjm7NkjtbU5XQpXsyrQMCcO2RCUAKQxX8UZVv34u/0s6ZEjAxoaWiZJGhqSjhzpkWS+MV7M/fNa\nMMhXvu+Vq74LPvUpaf/+nHfJvI6OJCV9E1Ie19Epmr4++18zi1IM/1YFGubEIRtaQQDS3N6wLlVW\nXQDUybOkZhppixcvUCx2bqWpxYsX5PUaxdw/VwUDC0z3Xh04cCLr/Yv6XXD6tHTFFbN/fBaZFwlN\nxCdU6a+Qz6f0dl4XD530/PPSVVcVvaxOKMXwT6CB3UrrlwBAQRh+4AyrLgBqplFh1VlnM420hgaf\n2tunXvskH8VsNJX6SYJs71W242/8LrjuJw9Id/zEsvJlhh6fTwr4fTp7NqGJpE8VvqTm1vhV4fNN\nud94YlwVlYFUOJKUSEwoEKjQt7bs1bFjQ1q4cH56qec1a5aYrute7onJLPvBg4Nqa2tSIJBq6s0U\n/mez315+r7IpxX3C7BGUAKRxtq78FHrWOVujwkwPjZt6vJYta1BPTwmfJIjFpKVLp/zpynhcyWTl\ntEPWqiR1WVykbKFn3327teud06qvvyF936amHt1zzzK9lHFh0e7uflVX+9XePk/xeEK9vW/piisW\nKPLsYTU2Xqfx8UoNDUnd3Qe0Zo35uu7lnpjMso+PJ3T48Pvp1dxmCv+z2W8vv1fZlOI+YfYISgBQ\nxgodcvbSSxHt3x/QyIhUXS3F4xGtWbPEVA+Nk8Hc2Bjq6fFAY+jBB6WHHy7qUyaTubdnZc4c6de/\nnvFu2UKPJJ16Zb/q68/dd3CwWtLU+lldndDISJUkKRDw65prGtTV1aSDB0/qgw8qM17Jd95jp9vO\n9ncvDcPMLOvSpSH19r4lvz9hKvzPZr+9/F5lKqQnDqWNow8AZazQIWfd3Wc0NHSlJE05e293b5GZ\n4TJTG0On1dYWUiCQuo8tjaGxMWnJEutfJw+Tc3oytyUp/swz2jfSbOnwo2yhR5LmzRtK/z+RiOvM\nmRPavbtRvb19am5uVCAQ0NKlIfX1HZTfPzaljnV01Gn//nOrKXZ01EkyX9fnzDmr118/9/gVK84W\nc7dnxexwsMx9DAQCuuaaRnV1NZl6jczHxuNxHTnSp927Zfr1Jre9qJCeOJQ2ghIAlLHCA41xmnxq\nu5DeotnMETAzXGZqY8ivw4cH0nOkTDeGnnhC+tKX8tyj2THO28lrUQK/X2Nv9+Z8Hw90d+vKK6/S\nfuOFaKsC2pfR22PV8KNUIEkt5uH3xxUMvi2/f7Hq6hK6776P6cc/7tHgYLXOnDmh6667TonEHDU3\nz1Nf3wG1tTUrGEzoxhuvOK9urFzZokAgc59S5c6vro8o1UTKr5Hs5Jw/qbDPc+ZjjxzpU3PzlUok\n/Ja9npsMDib15pvn6qLfP2C6Jw6ljaAEAGWs0OFv2c7eF2I2cwTMDAGKxfzS+Lh++78u0tqkNJ5I\nyB9IrZQWCPg0Gk/OLpRY5P997TEdXfSp9HYwmOcFeU2EnWzH374hVdWSKuT3+3XVVdKaNed6P+65\nJ7V0/O4mxAMaAAAgAElEQVTdjUok5khKDbFra2vWhg3Ze0my7VOuuj61t/GMli79aLq3cXS03/Te\nWDW/xezxKOTznPnY3bulROLca1jxem5y9OjJ9KUKxselYHAwZx1D+SAoAQBmLdvZ+0LM2Cjct0+6\n5ZYpf1ozNqFkxqIEvmmuo5N5H59PClRVaM6H9xnNuC2ZTPXkzCn0OjwXXii99tqsH963u39Kh0a+\nYaWQsGPHkKrR0bnp4U2p7elfY+qQsISpIWH5Kkpvo85/j6NRac+eSME9THYPcSuVIXVmtbaGFIud\nO+HT2kovElIISgDgIl5bmnZWZ5QnJqRNm6T/9b+mvdlM6Dm/HBXnDVPL5z7JpBSPT0hJn+RLKjD5\nlv/kJ9L11+e3fx8aG4srnNFITq2sN2j62BbaWC3k8VYNqcqs35nzjYzly7zfnDlx1db+RqOjcz8c\nEnaFEolAUXtspg69GlFl5Wn5/fnvu/E9P3JkQFKqp6KQ8i5b1qCdO1NDERsaRnTDDZfm/Rx2vt50\n32NuFgxqSmif6VIFXvuexuwRlADARTyzNO0bb0i//duWPLWZ0GPaunXSP/6j5PPJJ2lOlrs9vr1H\n/f3L0tuTy1EXwngsd+7sUWur+UZzoWHFzOOzNfisGlKV+Z5kzjcyli/zfmfPJj6831ydPVu8IYGZ\n+/6///d/aO7cVfL7KzU+LjU1nZ7V0Cvje55MTr2I8mzL29MzqNbWZWptndyOqKurZlbPZcfrTfc9\nVmNdcQuW72fNM9/TKBhBCQBcxLa5IcmktHmz9Mwz1jx/AXzS1GFv//N/Sstyh5bMpaal/OfzLF68\nQLFYqkehujqhxYsXzPygGRiP3eBgdbrhOd3tRnbM/5hNg6+Qs+nRqPTGG+eGOLW3h6YNJJn3O378\ntBYsCKm1tamgYXFGmfteV5fQyZO/0cKFjQUNvTIesz17IkUZwmb3MtyFvt50j3dzUMr3s1Yqy6Jj\nZhxZAHCRvIZLHT0qrV2bupiom23YIP33/y5VFDjnJ4dCGy4NDb5041uaeeiNGcZj2dAwct7tVjIT\ngmbzvhVyNv3IkYH0pPmhIenIkR5J5z82836DgxM6frxXfn+N/P6E/P73ZjUszihzuN3JkwNasGCR\nOjoaJBXn+EvFG8Jo95LlTgz79NJwtswVG6urE1qxIu50kWARghIAOCWZlF5/Xfrxj6V//mddGY8r\nEAgUb9hZMT33nNTR4XQpsiq0YWfFnBzjc95ww6Xq6bFvKWUzIWg271shodRsz93ChUEdONCjWKxa\nkcg7uvDCj2l8vOHDFcn6irIiWeZKZ42NjYrFXpLff3lRj01xewVnt2S5lH8IsWLY54EDJ3I+xkwA\ntyNMmX+N1IqNqWNCUCpVBCUAKMTQUGr42o9/XNAKZ5POG3ZWLLfcIj3yiFRZWfzndki2Cf+zadhZ\nMcxtuue0cl6JkZkQNJsGcSGh1GzP3fHjUYVCyxQKSfH4hRoZ+aUqKyuKNixSmrrSWW3thK67bqlr\nl4ROrRDYlLFtfslyKf9ewEI/D7N5vJkAbsfcIDOvYXbFRngfQQkA3nxT+tGPUhcTHRmZ+f5FMN3F\nRGf0059KV15pedm8IrNBk0ikGt2Z1+Epd2ZC0GwatMW6qGmux2aGmIaG01qwYKk6OpoUj8d19OhB\n7d4dKLhHIXOls9Sy40e1e7c9w77y7RkxG06zPW8x59RY1atjZh/tmBtkVU8svImgBMD7hodTQ8Oe\neELav9/p0kzv5pulz3xGuvZaqaJiyuID8XhqVa+JiZiWLfuIq8fmu4mXJ1TbMYTIqsUginVR01ym\nhph69fUdkN/v/3B58CuVSPjzHp4Viw1r585D6SWvb711kZ56KrUE9qlTJ3TttZ1KJGp08mRCO3ZM\nXY1vtscmW1ny7RkxGzCzPa+Zhr3ZOmlVr46ZfSxmQMm2v1b1xMKbvPOrAqC0vfVWavjaE0+khrO5\nzUc+kgo6t94qhQr/Ucxs1B8+/L5GRpp1wQVnFI22sNSsSV4+q/vSSxHt31//4eR8v+LxiNasWeJ0\nsVwjsyEaDCZ0441XqKoqoN27pUTi3Gcnn+FZO3ceSi8B398v/bf/9nN94hM3qLVV6u6+UL/+9aDa\n22vSn8fW1qaCg0C2suQb8s0GzMznicfj2rfvtOmhqWYDkFUnKMzsYzEDSrb9JQQhE0EJQFpBZ7lH\nRqT/8T9SQef//l9rCzpbv/d70qc/La1c6fhcncxGfqqxnGrkZzZu3L7yk9OK2aCxe8Wt7u6YhoaW\nSEqdF+juPq41ayx7Oc/J1mg2s9pY5tLifv+o/P7Uce3pGVUolJDfn2r6nDpVm35MdfWERkZSf8/8\nPEqFBYFsocKqkJ/5vIcPD0hqViIxz9TQVLMByKqym/kMFrOX1Mz+xuNxvfRSZErAnE2PILyLoAQg\n7dWfv6OKngF1bf9D+c9+oKRvQnLLqmuStGRJKujcdpt04YVOl6YgmY38+fP71Nx8hY4cOTKlcWPm\nB9hLS+rOlh0XRbW/4ZOcYbu8nT79vu6//zWdOlWrhoao1q9fpIqKRh06dFKJxGJJVcq22ljm0uJv\nv31UH3xQqZGRKp08WaHR0VP6z/85FRbmzTvXc7106QUfDu9T+vM4qZAgkC1UWNVrkfm8lZWDamv7\naPq2mQKf2QBkVdnt/gxm29/Mcrz++ilJI2pvbyqoRxDeZfmRffbZZ/X9739ffr9ff/Inf6LVq1en\nb1uzZo2am5vl8/nk8/n00EMPKVSEIS1A2RofT40pOXo09e/YsXP/P3pUOn4858M/Njqh1HKnKUkr\n2m6f/GQq7KxaJfnL98cls5E/NtaocHhA7757XJWVDXk1bsrhzKYd+2h3w6ejo17795/rGenoqC/6\na3g5RN9//2s6fvwGSdLBg6f0m9/06g//8DJFo1J1tV9XX5263tF0q41lLkF+6tQJ1dd/ROPjDWpr\nu0yvvPJT+XyLNW/ekO6990r9x3+cP7xv8vNYjCCQLVTYMX8sFQTO1eOZAp/ZAGRV2e3+DGbb38zX\nHRmZXP57apm8POwX+bG0FkajUT366KN6+umnNTQ0pO985ztTgpLP59Pjjz+u6upqK4sBeMvQ0PQh\nZ3Lbwvk7Pt/UcOTzTXOnlhbps59N9eq0lFaD3CmTDY+amhMaHm7Iq3FTDmc27dhHuxs+K1e2KBAY\nUCwm1dVJnZ3F/yx5OURnDotLJCr0wQepZdWrqxMaGalK3zbdccpcgvzIkdOamEh9kZ0+/YEuuWS5\nbrlliSTpP/5j+vejmEHAqlBhRr49P06WVbL/M5htfzPLUV09oczrVlndIwj3sfQXde/evbr++us1\nd+5czZ07V/fff/+U25PJpJKWnLIGHDQxMbVXxxh6+vrsLU9Li9TaKi1aJC1ePPXfggVSxbkeJN9Y\nXPuNZ1I9cgbayybP/Pf0DOuKK/K7HlBqzsapD+dVTGjFirM2ldo+djSg7G742NEo9XKIbmh4XwcP\nfqBEokKx2Adqbj4jSVq6NKS+voPy+8eyHqfMY3n11WcUi81VIpFQRcWg2trOXYMp8/3I1vvm5V45\nO+pYMd8ft4SPzHJMfp+Ojvbb0iMI97H0WzMSiejs2bP6/Oc/rzNnzujuu+/WtddeO+U+W7du1bvv\nvqvly5dry5YtVhYHsNZ/+S+p69wUW13d1JCTGXoWLZJqincBS778nTF55n98/KyGhpbM4npAI0p9\nnZfm8A87GlClWPezBczMYD48HHGs8Z+rkb1uXYt+85vX9cEHtWpufl9dXQH5/f1Thshlk3ksP/GJ\nyWF00vz5cTU3n7tIaGbgztb7ZqZXzsthqlDF7LV0y2fQLeWAO/iSFnbp7NixQz09PXrsscf07rvv\n6q677tLPf/7z9O3PPPOMurq6FAwGtXnzZt1yyy1at25d1ufr7u62qqhAwS769rfV8MIL094WX7BA\nYxdemPrX1HTu/xdeqERj45ReHZSfl18e1vj4wvR2ZeVxXX+9uQBcyGNR2uLxhA4ejGl4uEo1NWO6\n4oo6BQJ+9fREdeZMa/p+9fVHtGxZ0Pby5SqHFfU62/uR6/XMlMMt76cT+P6Bm3V0dBT8HJb2KM2f\nP1/Lli2Tz+fTokWLVFtbq9OnT6uxsVGSdNNNN6Xvu2rVKh0+fDhnUJKKs9OAGd3d3fnVtx/9KOtN\nVZJqs96Kcjc8nLr47Ntvv62LL75YweBcdXSYO6M5+dhJ+Ty23JTjmf9rrjn/bwMD/UokmtL1ze+v\nV0dH9h5Mq963yXJMyixHIfU6V3kz34/M+1VU9Omii5akg9Pk65kpR679cJId9T2f49Td3a0rr7yq\nJD6DxosXb9p0qerqCIhuUqzOFUtPY19//fUKh8NKJpMaHBzU8PBwOiTFYjHdeeedGh0dlSS9+uqr\nuuSSS6wsDgC4UmdnSMFgRJWVxxUMRvIaWjb52NSwpPweW24mhwklEk0fXth3wOkiOcI4x2umOV9W\nvW+5ylFIvTZb3sz7NTdf8eHy4FNfz0w58n0/7WJHfc/3OJXKZ3Dy4sVjY5epv3+Zdu485HSRYBFL\ne5Sampq0fv163X777fL5fPr617+uXbt2qb6+XmvXrtX69et1xx13qLa2VpdddpnWr19vZXEAwJUy\nV73LtzeI8fTmeXlxg2KanPOVCuZzZ2zcWvW+5Zp7Vki9NlvezL8HAgG1tTVrw4apPUFmyuGWRQiM\n7Kjv+R6nUvkMDg5W59xG6bC8ht5+++26/fbbp71t48aN2rhxo9VFAACUoHyHFnHtk5R8g7lV75tV\nId9seYu1X249WeHG+u7GMs1GQ8OI+vunbqM0MYMcAOBJ+Q7jYZiieWNjce3ZE9Hu3f2Kx1NL1nvl\nfTN7nEu9Prhx/9xYptnYtOlSNTX1qKrqV2pq6tGmTZc6XSRYxJt9ngCAspfvMB63nvl3o8xlnxMJ\nzWLJeueYPc6lXh/cuH9uLNNs1NXV6J57ljldDNiAHiUAgCe5dRJ9KSiVuSQAUAiCEgDAk0plGI8b\nEUIBgKF3AACPKpVhPG7k1pXcAMBOBCUAADAFIRQACEoAAACwQb5L+gNOMzVH6cUXX9Q///M/S5KO\nHj2qZDJpaaEAAABQWvJd0h9w2oxB6cEHH9RTTz2lf/3Xf5UkPffcc/rmN79pecEAAABQOlhNEV4z\nY1B65ZVXtH37dtXW1kqS7r77br3xxhuWFwwAAAClg9UU4TUzBqU5c+ZIknw+nyRpfHxc4+Pj1pYK\nAAAAJYUl/eE1M/Z5fuxjH9O9996rgYEB/eM//qN++tOfasWKFXaUDQAAABm8vCACqynCa2YMSn/2\nZ3+m559/XnPnztWJEyf0uc99TuvWrbOjbAAAAMgwuSCCJEWjUjgcIXwAFpkxKA0PD2tiYkJbt26V\nJD3xxBMaGhpKz1kCAACAPVgQAbDPjHOUvvKVr+i9995Lb589e1Zf/vKXLS0UAAAAzseCCIB9ZgxK\n0WhUd911V3r7c5/7nD744ANLCwUAAIDzsSACYJ8Z+2vj8bh6e3vV1tYmSTp48KDi8bjlBQMAAMBU\nLIgA2GfGoPTVr35Vmzdv1pkzZzQ+Pq7Gxkb97d/+rR1lAwAAAABHzBiUrr76av30pz/V4OCgfD6f\ngsGgHeUCAAAAAMdkDUr/8A//oD/6oz/SX/zFX6QvNpvpgQcesLRgAAAAAOCUrEHp8ssvlyRdd911\nthUGAAAAANwga1Dq6uqSJJ04cUKf//znbSsQAAAAADhtxuXBe3t7deTIETvKAgAAAACuMONiDocO\nHdInP/lJXXDBBQoEAkomk/L5fHrxxRdtKB4AAAAA2G/GoPS9733PjnIAAFBSxsbiCocHFIv5VVeX\nUGdnSFVVAaeLBRtRBwBvyxmUfvGLX+idd95RR0eHrrrqKrvKBACA54XDA4pGUxcGjUalcDjChULL\nDHUA8Lasc5S++93v6u///u81MDCgr33ta3r22WftLBcAAJ4Wi/lzbqP0UQcAb8v6iX3ppZf0ox/9\nSH6/X2fOnNEXvvAF/d7v/Z6dZQMAYAovDWWqq0soGp26jdJmrJ9z5sSVyDjs1AHAW7L2KFVVVcnv\nT+Wo+vp6jY+P21YoACgnY2Nx7dkT0csvD2vPnojGxuJOF8m1JocyJRJNikZbFA4POF2krDo7QwoG\nI/L7+xUMRtTZGXK6SLCYsX5Kog4AHpa1R8nn8+XcBgAUx2Tjanz87IeNf+YxZOOloUxVVQGOY5kx\n1sfR0blas6bJodIAKFTWX5je3l59+ctfzrr9wAMPWFsyACgTXmr8O43hbHAz6idQWrL+Gv/5n//5\nlO1rr73W8sIAQDmicWVeZ2dI4XBkyhwlwC2on0BpyRqUbr75ZjvLAQBla7JxVVl5XMHgXBpXOTCc\nDW5G/QRKC+M7AMBhk42rmpoT6uigkQUAgBtkXfUOAAAAAMoVQQkAAAAADGYcenfFFVecdw2lyspK\nLVmyRFu3btXHP/5xywoHAAAAAE6YMSh99atfVVVVldauXatkMql///d/15kzZ7R8+XJ985vf1L/8\ny7/YUU4AAADPGhuLKxwemLIiXlVVwOliAchhxqF3zz//vG677TY1NDSosbFRt912m/bs2aOrrrpK\nfj9rQQAAAMxk8sLSiUTThxeWHnC6SABmMGPSGR0d1RNPPKGOjg5VVFTowIEDOnXqlF5//fXzhuQB\nAADgfFxYGvCeGT+lDzzwgL773e/qxz/+sSYmJtTW1qYHHnhAiURC27Zts6OMAAAAnsaFpQHvmTEo\nLVmyRN/61rc0ODioiooKXXDBBXaUCwAAoGRMXlg6c44SAHebMSh1d3frK1/5ioaGhpRMJhUMBvXg\ngw/qyiuvtKN8AAAAnjd5YWkA3jFjUPr2t7+txx57TEuXLpUkvfnmm9q2bZt+9KMfWV44AAAAAHDC\njKveVVRUpEOSJF1++eWqrKy0tFAAAAAA4CRTQemFF15QLBZTLBbTv/3bvxGUAAAAAJS0GYfefeMb\n39Bf//Vf66/+6q/k8/n0W7/1W/rGN75hR9kAAEAJsfuiq1zkFUAhTK169/3vf9+OsgAAAJcrJHxM\nXnRVkqJRKRyOWLrAgd2vB6C0ZA1Kn/nMZ+Tz+bI+kMUcAAAoP4WED7svuspFXgEUIus3xp/+6Z/a\nWQ4AAOABhYQPuy+6ykVeARQi67fbihUr7CwHAADwgELCh90XXc31eoUMIWTuE1Ae6IMGAACmFRJ2\n7L7oaq7XK2QIIXOfgPJAUAIAAKbZHXasUsgQQuY+AeVhxusoAQAAlBrjkMF8hhAW8lgA3mF5UHr2\n2Wd100036fd///f1i1/8Yspte/fu1W233aY/+IM/0GOPPWZ1UQAAACSlhhAGgxH5/f0KBiN5DSEs\n5LEAvMPSvuJoNKpHH31UTz/9tIaGhvSd73xHq1evTt++bds2/eAHP1AoFNKdd96p9evXq62tzcoi\nAQAAFDSEsFSGHwLIzdIepb179+r666/X3LlzNX/+fN1///3p244dO6ZgMKimpib5fD6tXr1a+/bt\ns7I4AAAAAGCKpT1KkUhEZ8+e1ec//3mdOXNGd999t6699lpJ0nvvvafGxsb0fRsbG3Xs2DEriwMA\nAGAblhEHvM3SoJRMJhWNRvXYY4/p3Xff1V133aWf//znWe9rRnd3dzGLCOREfYPdqHOwE/XNWj09\nUZ0505rePnTo/2jZsqCDJXIW9Q1eY2lQmj9/vpYtWyafz6dFixaptrZWp0+fVmNjo0KhkE6ePJm+\nb39/v0KhmSdDdnR0WFlkIK27u5v6BltR52An6pv1Bgb6lUg0pbf9/np1dDTleETpor7BTsUK5ZbO\nUbr++usVDoeVTCY1ODio4eHh9HC7lpYWDQ0Nqa+vT4lEQi+++KJWrlxpZXEAAABswzLigLdZ2qPU\n1NSk9evX6/bbb5fP59PXv/517dq1S/X19Vq7dq22bt2qLVu2SJJuvPFGtba2zvCMAAAA3tDZGVI4\nHJkyRwmAd1h+Kenbb79dt99++7S3LV++XE8++aTVRQAAALAdy4gD3mZ5UAIAAHAbVqQDMBNL5ygB\nAAC4UTg8oGi0RYlEk6LRFoXDA04XCYDL0KMEAADKTizmz7kNe9HDBzeiRwkAAJQdVqRzF3r44EYE\nJQAAUHY6O0MKBiPy+/sVDEZYkc5h9PDBjaiFAACg7LAinbvU1SUUjU7dBpxGUAIAAHCZcpuzwzWn\n4EYEJQAAAJeZnLMjSdGoFA5HSroHjB4+uBFBCQAAYJas6vlhzg7gPD51AAAAs2RVz4/ZOTvlNkQP\nsBOr3gEAAMySVT0/ZlflY1ltwDr0KAEAAEzDTG+NVau1mZ2zwxA9wDr0KAEAAEzDTG+N09dj4sK5\ngHU47QAAKDvM64AZZnprnF6tjWW1AesQlAAArmJHiCm3pZcxO164CKrTQQ0oZQy9AwC4ih2T05nX\nATOcHlYHwFn8MgAAXMWOEOOFngI4j94aoLzRowQAcBU7JqfTUwAAmAk9SgAAV7Fjcjo9BUDpYHEW\nWIWgBABwFUIMgHywOAuswtA7AAAAeBaLs8AqBCUAAAB4FhfdhVUISgAAAPAsFmeBVeibBAAAgGcx\nrxFWoUcJAAAAAAwISgAAAABgwNA7AABQMK5lA6DU0KMEAAAKNnktm0SiSdFoi8LhAaeLBAAFoUcJ\nAAAUjGvZFBc9dIDz6FECAIeNjcW1Z09EL788rD17IhobiztdJCBvXMumuOihA5xHUAIAh002iMbH\nF9IggmdxLZvioocOcB6fOgBwGA0ilAKuZVNcdXUJRaNTtwHYix4lAHAYQ5YAGNFDBziP05YA4LDO\nzpDC4YgqK48rGJxLgwgAPXSACxCUAMBhkw2impoT6uigYQQAgBsw9A4AAAAADAhKAAAAAGBAUAIA\nAAAAA4ISAAAAABgQlAAAAADAgKAEAAAAAAYEJQAAAAAwICgBAAAAgAFBCQAAAAAMCEoAAAAAYEBQ\nAgAAAAADghIAAAAAGBCUAAAAAMDA73QBAAAASt3YWFzh8IBiMb/q6hLq7AypqirgdLEA5ECPEgAA\ngMXC4QFFoy1KJJoUjbYoHB5wukgAZkBQAgAAsFgs5s+5DcB9CEoAAAAWq6tL5NwG4D6czgAAwATm\nmKAQnZ0hhcORKfUHgLsRlADAYZMN8J6eYQ0PR2iAu9TkHBNJikalcDiirq4Wh0sFr6iqClBfbBCL\nDWvnzkMaHKxWQ8OINm26VHV1NU4XCx7F0DsAcNhkA3x8fCGTvF2MOSaA++3ceUj9/cs0NnaZ+vuX\naefOQ04XCR5m6bf8/v379cUvflGXXHKJksmkLr30Un3ta19L375mzRo1NzfL5/PJ5/PpoYceUihE\nVzSA8kID3Bvq6hKKRqduA3CXwcHqnNtAPiz/NV6xYoUeeeSRaW/z+Xx6/PHHVV1NJQZQvmiAewNz\nTAD3a2gYUX//1G1gtiwPSslkMudtuW4HgHKwbFmDdu7s0aFDpxQInNENN1zqdJFs4bXFEZhjArjf\npk2XaufOnilzlIDZsjwo9fb2avPmzXr//fd1991367rrrpty+9atW/Xuu+9q+fLl2rJli9XFAQDX\n6ekZVGvrMsXjb6u19WL19ETU1VX6k49ZHAFAsdXV1eiee5Y5XQyUCF/Swi6d/v5+vfbaa9qwYYOO\nHTumu+66Sz/72c/k96fy2TPPPKOuri4Fg0Ft3rxZt9xyi9atW5f1+bq7u60qKgA45uWXhzU+vjC9\nXVl5XNdfX/pBqVz3GwBgvY6OjoKfw9IepaamJm3YsEGStGjRIs2fP1/9/f1qaUmdMbzpppvS9121\napUOHz6cMyhJxdlpwIzu7m7qG2wxPBxRNNqit99+WxdffLGCwbnq6Cj9npXJ/Z5ULvvtFnzHwU7U\nN9ipWJ0rli4P/txzz2n79u2SpFOnTun06dNqamqSJMViMd15550aHR2VJL366qu65JJLrCwOALhS\nZ2dIwWBElZXHFQxGymaRgMn99vv7y2q/4X2x2LC2b+/RX//1r7R9e49isWGniwTAApb2KK1Zs0Zf\n+tKX9OlPf1rJZFJbt27Vc889p/r6eq1du1br16/XHXfcodraWl122WVav369lcUBAFeaXCSgpuZE\nWfWosDgCvGryWj2S1N8v7dzZw7wYoARZGpRqa2v1ve99L+vtGzdu1MaNG60sAgAAQFFxrR6gPFg6\n9A4AAKDUGK/Nw7V6gNJEUAIAAMjDpk2XqqmpR1VVv1JTUw/X6gFKlOXXUQIAACglXKsHKA/0KAEA\nAACAAUEJAAAAAAwISgAAAABgQFACAAAAAAMWcwAASJLGxuIKhwcUi/lVV5dQZ2dIVVUBp4sFAIAj\n6FECAEiSwuEBRaMtSiSaFI22KBwecLpIAAA4hqAEAJAkxWL+nNsAAJQTghIAQJJUV5fIuQ0AQDkh\nKAEAJEmdnSEFgxH5/f0KBiPq7Aw5XSQAABzDuAoAgCSpqiqgrq4Wp4sBAIAr0KMEAAAAAAYEJQAA\nAAAwICgBAAAAgAFBCQAAAAAMCEoAAAAAYEBQAgAAAAADghIAAAAAGBCUAAAAAMCAoAQAAAAABgQl\nAAAAADAgKAEAAACAAUEJAAAAAAwISgAAAABgQFACAAAAAAOCEgAAAAAYEJQAAAAAwICgBAAAAAAG\nBCUAAAAAMCAoAQAAAIABQQkAAAAADAhKAAAAAGBAUAIAAAAAA4ISAAAAABgQlAAAAADAgKAEAAAA\nAAYEJQAAAAAwICgBAAAAgAFBCQAAAAAMCEoAAAAAYEBQAgAAAAADghIAAAAAGBCUAAAAAMDA73QB\nAABAcYyNxRUODygW86uuLqHOzpCqqgJOFwsAPIkeJQAASkQ4PKBotEWJRJOi0RaFwwNOFwkAPIug\nBABAiYjF/Dm3AQDmEZQAACgRdXWJnNsAAPMISgAAlIjOzpCCwYj8/n4FgxF1doacLhIAeBZ98gAA\nlCE/qwIAAA53SURBVIiqqoC6ulqcLgYAlAR6lAAAAADAgKAEAAAAAAYEJQAAAAAwICgBAAAAgIGl\nizns379fX/ziF3XJJZcomUzq0ksv1de+9rX07Xv37tXDDz+syspKrVq1Sps3b7ayOAAAAABgiuWr\n3q1YsUKPPPLItLdt27ZNP/jBDxQKhXTnnXdq/fr1amtrs7pIAAAAAJCT5UPvksnktH8/duyYgsGg\nmpqa5PP5tHr1au3bt8/q4gAAAADAjCwPSr29vdq8ebM++9nPau/evem/v/fee2psbExvNzY2amBg\nwOriAAAAAMCMLB1619raqnvuuUcbNmzQsWPHdNddd+lnP/uZ/P7zXzZbz5NRd3d3sYsJZEV9g92o\nc7AT9Q12or7BaywNSk1NTdqwYYMkadGiRZo/f776+/vV0tKiUCikkydPpu/b39+vUCg043N2dHRY\nVl4gU3d3N/UNtqLOwU7UN9iJ+gY7FSuUWzr07rnnntP27dslSadOndLp06fV1NQkSWppadHQ0JD6\n+vqUSCT04osvauXKlVYWBwAAAABMsbRHac2aNfrSl76kT3/600omk9q6dauee+451dfXa+3atdq6\ndau2bNkiSbrxxhvV2tpqZXEAAAAAwBRLg1Jtba2+973vZb19+fLlevLJJ60sAgAAAADkzfJV7wAA\nAADAawhKAAAAAGBAUAIAAAAAA4ISAAAAABgQlAAAAADAwNJV7wAAACCNjcUVDg8oFvOrri6hzs6Q\nqqoCThcLQA70KAEAAFgsHB5QNNqiRKJJ0WiLwuEBp4sEYAYEJQAAAIvFYv6c2wDch6AEAABgsbq6\nRM5tAO5DUAIAALBYZ2dIwWBEfn+/gsGIOjtDThcJwAzo9wUAALBYVVVAXV0tThcDQB7oUQIAAAAA\nA4ISAAAAABgQlAAAAADAgKAEAAAAAAYEJQAAAAAwICgBAAAAgAFBCQAAAAAMCEoAAAAAYEBQAgAA\nAAADghIAAAAAGBCUAAAAAMCAoAQAAAAABgQlAAAAADAgKAEAAACAAUEJAAAAAAwISgAAAABgQFAC\nAAAAAAOCEgAAAAAYEJQAAAAAwICgBAAAAAAGBCUAAAAAMCAoAQAAAIABQQkAAAAADAhKAAAAAGBA\nUAIAAAAAA4ISAAAAABgQlAAAAADAgKAEAAAAAAYEJQAAAAAwICgBAAAAgAFBCQAAAAAMCEoAAAAA\nYEBQAgAAAAADghIAAAAAGBCUAAAAAMCAoAQAAAAABgQlAAAAADAgKAEAAACAAUEJAAAAAAwISgAA\nAABgQFACAAAAAAOCEgAAAAAYEJQAAAAAwICgBAAAAAAGfqtfYHR0VDfeeKPuvvtufepTn0r/fc2a\nNWpubpbP55PP59NDDz2kUChkdXEAAAAAYEaWB6XHHntMwWDwvL/7fD49/vjjqq6utroIAAAAAJAX\nS4fevfPOO/r1r3+t1atXn3dbMplUMpm08uUBAAAAYFYsDUoPPPCA7r333qy3b926VZ/5zGf07W9/\n28piAAAAAEBeLBt69/TTT+vjH/+4mpubJem83qMvfvGL6urqUjAY1ObNm/XCCy9o3bp1Mz5vd3e3\nJeUFpkN9g92oc7AT9Q12or7BaywLSr/4xS/07rvv6oUXXtCJEyc0Z84cXXjhhbr22mslSTfddFP6\nvqtWrdLhw4dnDEodHR1WFRcAAAAA0iwLSg8//HD6/9u3b9dFF12UDkmxWEx//Md/rO9///uaM2eO\nXn31Va1fv96qogAAAABAXixf9S7Trl27VF9fr7Vr12r9+vW64447VFtbq8suu4ygBAAAAMA1fEmW\nngMAAACAKSxd9Q4AAAAAvIigBAAAAAAGBCUAAAAAMLB1MYdc3nrrLX3hC1/Qpk2b9NnPflavvPKK\nHn74Yfn9ftXU1OjBBx9UfX29nn32Wf3whz9UZWWlbrvtNt16661KJBK699571dfXp8rKSv3N3/yN\nLrroIqd3CS5mtr61t7ero6NDyWRSPp9P//RP/6Tx8XHqG/JirG/vvPPO/2/v/kOquv84jj/vzXvt\nom3urpTM/YjV6I/pWhHWXEPbIMY2iAyqxV2RVBSDLdMS3FyzWsuom5sbzdUoaxVh5FZQhkXMmkal\nSP5jLCoI+qEWstt13dLP/ogudbvte53HuvZ9Pf4898c5R1688O35nCNFRUXYbDaGDx/O8uXLsdvt\n6jexRKR5U7+JFUpKSmhoaKCrq4v58+eTmppKfn4+xhiGDBlCSUkJDodD/SaWiTRzlnSciQJ+v9/M\nmTPHfPnll2b79u3GGGOmTp1qLly4YIwxZuPGjaa8vNz4/X4zefJk4/P5zN9//20++OAD09HRYfbu\n3WuKi4uNMcYcO3bMfPbZZ0/sXCT6RZo3Y4wZP378Q59X3qQnwuVt4cKFpra21hhjTFlZmdm/f7/6\nTSwRad6MUb9J79XX15t58+YZY4y5ceOGyczMNAUFBebgwYPGGGPWr19vdu7cqX4Ty0SaOWOs6bio\nWHoXGxvLjz/+yODBg4PbBg8ezPXr1wHo6Ojgueeeo6mpibS0NOLi4oiNjWXMmDGcPn2auro63n33\nXQDefPNNGhoansh5SP8QSd7cbjcAJsxDIZU36Ylwebt48SKpqanA3QwdO3ZM/SaWiDRvoH6T3hs3\nbhylpaUAPPPMM/j9fk6ePMmkSZMAyMrK4o8//lC/iWUizRxY03FRMSjZ7XacTucD25YtW8Ynn3zC\ne++9R2NjI9nZ2bS1tQV/gQVwu920trY+sN1ms2G327lz585jPQfpPyLJ29SpUwG4desWeXl5zJw5\nky1btgAob9Ij4fL26quvcvToUeBuabe3t6vfxBKR5g3Ub9J7drsdl8sFQGVlJZmZmXR2duJwOAB4\n/vnnuXbtGu3t7eo3sUQkmWttbQWs6bioGJTCWbFiBd9//z0HDhzgjTfeYMeOHQ+9J9ykCNDd3d3X\nhydPmUflraCggBUrVvDzzz+zb98+mpubH/qs8iY9lZ+fz/79+8nJyeHWrVvB9dP3U7+JVcLlDdRv\nYp2amhr27NnDF1988UB3ParH1G/SW5FkzoqOi9pBqaWlhdGjRwN3L42dOXOGpKSk4JQIcPXqVZKS\nkkhMTKStrQ0gOBXGxETNcyqkHwiXN4Dp06fjcrlwuVyMHz+es2fPKm/Sa8nJyfz0009s3ryZESNG\nMGzYMBITE9Vv0ifC5Q3Ub2KN2tpaysvL2bRpE/Hx8cTFxREIBIAHe0z9Jlb5X5lLTEwErOm4qB2U\nhgwZwrlz5wA4c+YML774ImlpaTQ3N+Pz+bh58yaNjY2MHTuWjIwMDh48CMCRI0dIT09/kocu/VC4\nvJ0/f55FixbR3d1NV1cXjY2NjBw5koyMDA4cOAAob/LffPfdd/z+++8A/Prrr0yaNEn9Jn0mNG9Z\nWVnqN7GEz+dj7dq1bNy4kUGDBgEwYcIEqqurAaiurmbixInqN7FMpJmzquNs5lHXPx+jpqYmPv/8\nc65fv86AAQN49tlnKS4uDj7eLyEhga+//pr4+HgOHTrEpk2bsNvteDwe3n//fbq7uyksLOTixYvE\nxsbyzTffkJSU9KRPS6JUT/K2bt06jh8/jtPpJCsriwULFihv0iPh8rZq1SpWrlzJnTt3SE9PZ9my\nZQDqN+m1nuRN/Sa9tXv3bsrKynj55ZeDS4jXrFlDYWEhgUCA5ORkVq9ezYABA9RvYomeZM6KjouK\nQUlERERERCSaRO3SOxERERERkSdFg5KIiIiIiEgIDUoiIiIiIiIhNCiJiIiIiIiE0KAkIiIiIiIS\nQoOSiIiIiIhICA1KIiLSp8rLy8nLy3tgW1VVFbNnz7Z8X2+//TYzZszg448/ZsaMGXz66afcvHnz\nXz9TWVlJVVUVXV1djBo1CgC/309NTY3lxyciIv2HBiUREelTc+fOpaWlhVOnTgHw119/8e2331Jc\nXGz5vux2O16vl4qKCnbt2oXT6aSqqupfPzNt2jSmTJkCgM1mA6C5uZnDhw9bfnwiItJ/aFASEZE+\nFRMTw/LlyykuLqarq4vS0lKys7N56aWXAKirq8Pj8eDxeMjJyeHy5csAVFdXM336dObMmYPH4+HK\nlSsAfPTRR6xevZpZs2Y9tC9jDPf+j3ogEKC9vZ2UlBQA8vPzg0PT/VePNmzYQFlZWfA7Ojs7KSoq\nora2Fq/X20c/FRERiXYxT/oARETk6Td27FjS0tIoKiqiqamJvXv3AneXuH311VdUVlYSHx/PoUOH\nKCkpwev14vP52LBhA0OHDuWHH35gx44d5ObmAjBo0CB++eWXsPvKzc3F4XBw6dIlXnvtNTIyMsK+\n797Vo1Aul4ucnBwaGhpYvHixBWcvIiL9kQYlERF5LPLy8njnnXcoLS3F4XAA0NLSQltbG4sWLQpe\nDbr3mtvtZunSpQC0trYybty44HeNGTPmkfvxer0MHToUgG3btrF06VLWr1/fV6clIiJPKQ1KIiLy\nWCQkJJCQkBBccgfgdDp54YUXqKioeOC9gUCAJUuW8Ntvv5GSksLWrVv5888/g6/fG6bCubf0DuDD\nDz8MLqu7/wpSIBDo9fmIiMjTTfcoiYjIY3P/EAPwyiuvcO3aNc6dOwdAfX09e/bswefz4XA4SE5O\nprOzk8OHD/+n4ebkyZOMHDkSgPj4+OD9T/X19f96fHa7ndu3b/d4fyIi8vTQFSUREXlsQu8LGjhw\nIGvXrqWgoICBAwdis9lYuXIlbrebyZMnk52dTVJSEvPnz6egoICamppH3lt07/tzc3NxOp3BZXyr\nVq0C7j7dbvHixZw4cYK33nqLuLi4Rx7f66+/jtfrpaioqE+eziciItHPZkL/vCciIiIiIvJ/Tkvv\nREREREREQmhQEhERERERCaFBSUREREREJIQGJRERERERkRAalEREREREREJoUBIREREREQmhQUlE\nRERERCTEP1Yty/2VF4YbAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "def linreg_r2(X,Y, plot):\n", + " # Running the linear regression\n", + " Xc = sm.add_constant(X)\n", + " model = regression.linear_model.OLS(Y, Xc).fit()\n", + " params = model.params\n", + " Y_hat = np.dot(Xc,params)\n", + " \n", + " # Plot results\n", + " if plot:\n", + " plt.scatter(X, Y, alpha=0.3) # Plot the raw data\n", + " plt.plot(X, Y_hat, 'r', alpha=0.9); # Add the regression line, colored in red\n", + " return model.rsquared, Y_hat\n", + "\n", + "print 'rsquared', linreg_r2(data['Year Built'], data['log Price'],plot=True)[0]\n", + "plt.xlabel('Year Built');\n", + "plt.ylabel('log Price');" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Using only `Year Built` in our model explained only 1.9% of the variation on `log Price`. Using only one dimension to try and understand a multi-dimensional dataset is equivalent to trying to categorize a 3-d object as a cylinder by only approaching it from a single perspective. It cannot be done. In this model alone we ignore many features of the data and it can be improved by adding another dimension or 'view'.\n", + "\n", + "Let's see what `log Price` looks like from the perspective of `Number Of Stories`:" + ] + }, + { + "cell_type": "code", + "execution_count": 145, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "rsquared 0.0561128798813\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAz8AAAHxCAYAAABDKAKuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3X10lPWd///XZCaTm5mQSYITIYVQgSKC1jRI2kL0K2VJ\n7dr11HrXFqzfnna3RXdd7W677ap8y677/a2rvdmqp3WtZfvbqrXdL6Juq7b9Sn/c6KAxWkAEgTXA\nEBIIGZKZyWRuf3+ECXIb4crkmuu6no9zPMcrkwzvOR/IXK95f25cuVwuJwAAAACwuRKzCwAAAACA\n8UD4AQAAAOAIhB8AAAAAjkD4AQAAAOAIhB8AAAAAjkD4AQAAAOAInkI+eTwe1ze/+U0dOXJEqVRK\nt956qxYuXDjy+KJFizR58mS5XC65XC7df//9CgaDhSwJAAAAgEMVNPysXr1aF1xwge644w719PTo\ni1/8on7zm9+MPO5yufToo4+qvLy8kGUAAAAAQGGnvdXW1qqvr0+SdOTIEdXW1h73eC6XE2esAgAA\nABgPrlyB08ef//mf691339XAwIAeeeQRXXzxxSOPLVq0SPPmzdO+ffs0b9483XnnnYUsBQAAAICD\nFXTa2zPPPKPzzz9fjzzyiN5++23dfffd+uUvfzny+O23367W1lYFAgEtX75cL774opYsWXLa52tv\nby9kuQAAAABsoLm5+ZRfL2j4ef3119Xa2ipJuvDCC3XgwAHlcjm5XC5J0jXXXDPyvZdffrl27Nhx\nxvAjnf6FwHzt7e2MT5FjjIob41PcGJ/ixvgUN8anuNltfM7UMCnomp/Gxka98cYbkqRwOKzKysqR\n4BONRrV06VINDQ1Jkl577TXNnDmzkOUAAAAAcLCCdn5uvPFGffvb39ayZcuUyWS0cuVKrV69WlVV\nVVq8eLHa2tp04403yufzafbs2WpraytkOQAAAAAcrKDhp7KyUt///vdP+/iyZcu0bNmyQpYAAAAA\nAJIKPO0NAAAAAIoF4QcAAACAIxB+AAAAADgC4QcAAACAIxB+AAAAADgC4QcAAACAIxB+AAAAADgC\n4QcAAACAIxB+AAAAADgC4QcAAACAIxB+AAAAADgC4QcAAACAIxB+AAAAADgC4QcAAACAIxB+AAAA\nADgC4QcAAACAIxB+AAAAADgC4QcAAACAIxB+AAAAADgC4QcAAACAIxB+AAAAADgC4QcAAACAIxB+\nAAAAADgC4QcAAACAIxB+AAAAADgC4QcAAACAIxB+AAAAADgC4QcAAACAIxB+AAAAADgC4QcAAACA\nIxB+AAAAADgC4QcAAACAIxB+AAAAADgC4QcAAACAIxB+AAAAADgC4QcAAACAIxB+AAAAADgC4QcA\nAACAIxB+AAAAADgC4QcAAACAIxB+AAAAADgC4QcAAACAIxB+AAAAADgC4QcAAACAIxB+AAAAADgC\n4QcAAACAIxB+AAAAADiCp5BPHo/H9c1vflNHjhxRKpXSrbfeqoULF448vnHjRn3ve9+T2+3W5Zdf\nruXLlxeyHAAAAAAOVtDOz+rVq3XBBRfoZz/7mX7wgx/o3nvvPe7xe++9Vw8++KCeeOIJbdiwQbt2\n7SpkOQAAAAAcrKDhp7a2Vn19fZKkI0eOqLa2duSxvXv3KhAIqL6+Xi6XS1dccYVeeeWVQpYDAAAA\nwMEKOu3tqquu0urVq7VkyRINDAzokUceGXns0KFDx4Wh2tpa7d27t5DlAAAAAHCwgoafZ555Ruef\nf74eeeQRvf3227r77rv1y1/+8pTfm8vl3tdztre3j2WJGGOMT/FjjIob41PcGJ/ixvgUN8anuDll\nfAoafl5//XW1trZKki688EIdOHBAuVxOLpdLwWBQBw8eHPne7u5uBYPBUZ+zubm5YPXCmPb2dsan\nyDFGxY3xKW6MT3FjfIob41Pc7DY+ZwpyBV3z09jYqDfeeEOSFA6HVVlZKZfLJUlqaGhQLBbT/v37\nlU6ntXbt2uN2ggMAAACAsVTQzs+NN96ob3/721q2bJkymYxWrlyp1atXq6qqSosXL9aKFSt05513\nSpKuvvpqNTY2FrIcAAAAAA5W0PBTWVmp73//+6d9fN68eXryyScLWQIAAAAASCrwtDcAAAAAKBaE\nHwAAAACOQPgBAAAA4AiEHwAAAACOQPgBAAAA4AiEHwAAAACOQPgBAAAA4AiEHwAAAACOQPgBAAAA\n4AiEHwAAAACOQPgBAAAA4AiEHwAAAACOQPgBAAAA4AiEHwAAAACOQPgBAAAA4AiEHwAAAACOQPgB\nAAAA4AiEHwAAAACOQPgBAAAA4AiEHwAAAACOQPgBAAAA4AiEHwAAAACOQPgBAAAA4AiEHwAAAACO\nQPgBAAAA4AiEHwAAAACOQPgBAAAA4AiEHwAAAACOQPgBAAAA4AiEHwAAAACOQPgBAAAA4AiEHwAA\nAACOQPgBAAAA4AiEHwAAAACO4DG7AACAvSSTKYVCPYpGPfL702ppCcrrLTW7LAAA6PwAAMZWKNSj\nSKRB6XS9IpEGhUI9ZpcEAIAkwg8AYIxFo54zXgMAYBbCDwBgTPn96TNeAwBgFsIPAGBMtbQEFQiE\n5fF0KxAIq6UlaHZJAABIYsMDAMAY83pL1draYHYZAACchM4PAAAAAEcg/AAAAABwBMIPAAAAAEdg\nzQ9wAg5oBAAAsCfCDwzLh4WOjrji8bDlw8L69WFt2lSlRKJE5eUepVJhLVo0zeyyAAAAYBDT3mBY\n/jT3TGaSLU5zb2+PKharUyZTo1isTu3tUbNLAgAAwBgg/MAw+53mnhvlGgAAAFZU0LvUX/3qV1qz\nZo1cLpdyuZy2bt2q119/feTxRYsWafLkyXK5XHK5XLr//vsVDHIYntX4/WlFIsdfW1lzc5U2bQor\nkfCovDyt5uYqs0sCAADAGCho+Lnuuut03XXXSZJeffVVPf/888c97nK59Oijj6q8vLyQZaDAWlqC\nCoXCcru7FAhUWP4094ULG1Ra2qNoVPL7pZYWDmsEAACwg3Gbn/TQQw/pgQceOO5ruVxOuRxTiqwu\nf5p7ZeUBNTdbPyhwOj0AAIA9jUv42bx5syZNmqS6urqTHluxYoX27dunefPm6c477xyPcgAAAAA4\nkCs3Dq2Xe+65R5/+9Kd12WWXHff1NWvWqLW1VYFAQMuXL9e1116rJUuWnPZ52tvbC10qAAAAAItr\nbm4+5dfHpfOzadMm3XPPPSd9/Zprrhn5/8svv1w7duw4Y/iRTv9CYL729nbGp8gxRsWN8SlujE9x\nY3yKG+NT3Ow2PmdqmBR8q+uenh75fD55PCduhxzV0qVLNTQ0JEl67bXXNHPmzEKXAwAAAMChCt75\nOXjw4HFrfVavXq2qqiotXrxYbW1tuvHGG+Xz+TR79my1tbUVuhwAAAAADlXw8DNnzhw98sgjI9ef\n+cxnRv5/2bJlWrZsWaFLAAAAAIDx2+oaAMZKMplSKNSjaNQjvz+tlpagvN5Ss8sCAABFruBrfgBg\nrIVCPYpEGpRO1ysSaVAo1GN2SQAAwAIIPwAsJxo9cQMVmtgAAGB0hB8AluP3p894DQAAcCqEH8AB\nksmU1q0La8OGuNatCyuZTJldkiEtLUEFAmF5PN0KBMJqaQmaXRIAALAA5ooADpBfI5PJDB5dIxNW\na2uD2WWdM6+31NL1AwAAcxB+gBPYcSexSETaurVXu3cPaWioV3PmmF0RAADA+GPaG3ACO+4k1tnZ\no1isTtlsjWKxOnV2Wv81AQAAnC06P8AJ7LiT2NSp5ykaDcvl6pbPl9PUqeeZXRIAAMC4s/5dHTDG\n/P60IpHjr62upsalOXMaVFY2qBkzGhQIhM0uCQAAYNwx7Q04gR13Esu/Jre7yzavCQAA4GzR+QEc\nIL87WmXlATU3s0saAABwJjo/wAnsuOEBAAAA6PxgDOS3hu7oiCseD1t+a+j8ttCJRInKy7NsCw0A\nAGATdH5g2LEDNCfZolOS3xY6k2FbaAAAADuh8wPD7LY1dH5b6ETCo/LyNNtCA2fJjgcFAwDswdp3\nqSgKdtsaOr8tdB7bQgNnJ98NloankYZCYbW2stEGAMB8THuDYXbbRtmOW10D48lu3WAAgH3wjgTD\n7LaNcv71ADg3dusGAwDsg84PDEsmU1q3LqwNG+Jaty6sZDJldkkATET3FABQrOj8wLBju70NHt3t\njfn9gJPRPQUAFCs6PzCM+f0AAACwAu5SYZjd5vezTW/xY4wAAMC5oPMDw+y221t+Gl86XW+LQ1vt\nyG5jxLo5AADGB+EHhuXn9y9YUKnW1gbLfwLPNL7iZ7cxOrZubpItwhwAAMWK8APD7Pap9YnT9qw+\njc+O7DZGdgtzAAAUK8IPDFu/PqwNG8q1ZUutNmwo1/r1YbNLMqSpqUadnR16441t6uzsUFNTjdkl\n4QR220rZbmEOAIBixceLMGzTpiPatq1WBw74NTRUKumIFi0yu6pz19HRp8bGJjU25q/Dam2tNLco\nHMduWym3tAQVCuXXzVVYPswBAFCsCD8wrLOzX4nEBOVyKSUSE9TZ2W92SYYwBQnjLR/mKisPqLnZ\nPqEOAIBiw10dDKuv96i9/TX19rpUV/ffmj3b2n+tysoG9eabYSUSHpWXpzV/vrXXMAEAAGCYte9S\nURQOHYrK779I6XRcfn+lDh16y+ySDEmlUvrv/44pGi2T3z+kpiav2SUBAABgDLDhAQyrq5ukKVPK\nNXFiiaZMKVdd3SSzSzLkj39MKBicowsumKFgcI7++MeE2SUBAABgDND5gWHnnZdSNlun0tIhTZpU\np/PO22N2SQa5RrkGAACAFdH5gWGf//wFGhh4Sfv3v6mBgZf0+c9fYHZJhjQ3++Xz9crt7pPP16vm\nZr/ZJeEE+bOlfvObblucLQUAAMYHnR8YtnVrVJ/4xJVqbNypGTNmaOvWsFpbq80u65wtXNig0tIe\nRaMe+f1ptbRYf/etZDKlUKhHHR1xxePD5+J4vaVml3XOQqEeRSLD4xKJSKFQ2FZbXwMAgMIg/MAw\nu20NbbczZKRjYSGTGVQk0mD5sNDXl9Nbbx3bke+ii3JmlwQAACzA2nepKAp+f1qRyPHXVpbvkhzr\n/Fi7SyLZL6Du2XNQsViTJCkWk/bs6ZD0AXOLAgAARY81PzCspSWoQCB/On3Y8qfT57sk6XT90S5J\nj9klGXZiILV6QG1sDB63Lqux0dp/5wAAwPiw9se/QAHYrUsiDQfUUCgfUCssH1ADAWnOnLr3XIdN\nrMY4u63JAgCgWNH5gWHr14e1YUO5tmyp1YYN5Vq/3to3onbrkkjH1jEtWFCp1tYGy99Y57uNHk+3\nrbqNmcwk23QbAQAoRtb/SBuma2+PKhabpmx2SLFYndrbu7RokdlVnbs5c/xaufIl9fb6VFcX0z33\nfMTsknACu21KYcduIwAAxYjODwwbGorr1Vd3qKPjkF59dYeGhuJml2TI44/vVlXVlZo2bb6qqq7U\n44/vNrsk2Jwdu40AABQjPl6EYT09ESWT05XNRpVM+tXT867ZJRly6FCp9uzpVzJZIq83K7fb2lPE\nUPzstibLbliTBQD2QfiBYVVVQXm9EUlD8nrTqqqy9o1bJHJQicRcSVIiMXwNFFJ+Gl9l5QE1N9tn\nOp9d2O2cLACwtD17pJ/9THrsseEbtVN59tnT/jjhB4bt2bNdL7+cVSJRo927+3TeeSWSLjW7rHP2\n0Y826PHHX1J/v08TJsT00Y9a/ybHbp9c2/EsJhQv1mQBwBhLpaQXXpB++lPp5ZfH9Y/mNzgMW7fu\niDKZpXK5pExGWrfuP8wuyZBDh2L68IevfM91h4nVjA27fXKdfz2SFInI8q8Hxc1uBzkDwJh5P12Y\nIkP4gWGDg+fJ7e5TLie53cPXVtbYGFQ02qtEokTl5VlbHKDZ15fTW2+FtWtXv4aGwrroopzZJRli\nt0/i7daZsxvWZAGwtVRK1evWSf/0T+PehTmjhgbpi1+UbrpJmjjx7H62vf20DxX0juFXv/qV1qxZ\nI5fLpVwup61bt+r1118feXzjxo363ve+J7fbrcsvv1zLly8vZDkoEJ/voGKxicpkcnK5XPL5rL1G\nxm4HaErSnj0HFYs1KZdzKRabrD17OiR9wOyyzpndPom3W2fObliTBcASDHRhpqZSUmmBPnT71Kek\nW26RFiyQXK7C/BlnoaDh57rrrtN1110nSXr11Vf1/PPPH/f4vffeq8cee0zBYFBLly5VW1ubpk+f\nXsiSUADXXfch/fu/b1As5pfPF9V1133I7JIMyX/K+971JFaX72aVlPTJ5yuzfDfLbmNkt04WAOAc\nmbgW5oyMdGGKzLi9wz700EN64IEHRq737t2rQCCg+vp6SdIVV1yhV155hfBjQbW11frkJ6eqqyui\nSZOmq7Z2j9kl4QT5blZZWZ9mzKizRTfLTuzWyQIAx8t3YVatkuJFdP7habowm9vb1dzcbF5d42hc\nws/mzZs1adIk1dUdm0p06NAh1dbWjlzX1tZq796941EOxlxU27bt0OHDUiTSo9mzrX3jtn59WJs2\nlSqRkMrLpVQqrEWLppldliF2W7NgtzGy2/gAgC3QhbGlcQk/v/zlL3Xttdee8Xtyufe3ALv9DAuY\nYI5XXtmv/v4W5XKl6u9P6ZVXQpYep6efPqB4vElSRpJL+/dvVXV1r9llGZJKpbV9e1SSV9u3v63S\n0n0qLbXu1Co7jlFlpbRgQaWkA9q8+YDZ5eA0rPy7zQkYn+Jm1viUHjiguueeU91zz6mkiHYk61+w\nQIc+/WnFPvzhc1sL09k5/N8Yccq/n3G5+9m0aZPuueee474WDAZ18OCxhfHd3d0KBkf/tNMpLTkr\nSSb7dN550xSN9svvn6Bkcqelx+n//t8t6u+fPHI9YcJhNTfPNbEi49atC6u+vkE7d+5Uff0MpVJh\nS59fZMcxkobfeKz8byfPrucw2WV87IrxKW6Gx2esujBjvajfQBdm4tH/ioHd/v2cKcgVPPz09PTI\n5/PJ4zn+j2poaFAsFtP+/fsVDAa1du3a49YEwTo+8IES7dzZKymq0tKUPvCBErNLMqS52a9Nm45t\ndd3c7De7JMN6epJ68cUOvftuTNOmDWjJkoDZJRlixzGyE85hAnBaFlsLA/spePg5ePDgcWt9Vq9e\nraqqKi1evFgrVqzQnXfeKUm6+uqr1djYWOhyUACLF0/Qxo2/V2+vX6lUVF/96gVml2TIpZfW6Jln\nXldvr091dTFdeulHzC7JsJde2ql33rlIkUhcqVSlSkvf0mc/+0Gzyzpn8+cH9dZb25VKlcvvT2j+\n/Flml4T3YPc6wObOoQtzcSG3Us5jLQzeh4K/I82ZM0ePPPLIyPVnPvOZkf+fN2+ennzyyUKXgAJb\nv75PweAnVVoaU02NT+vXh3TDDWZXde4ef3y3qqquVFVV/rpDt93WZG5RBvX3exSJSEeOeEaurWzT\nph5Fo1OVyZQoGs1q06YeS294YDfsXgdYBF0Y2Ex+2nVl5em/x9p3QCgKvb1+SSlJSUneo9fWdfCg\nW3v2hJVMeuT1plVS4ja7JMP6+5Py+RqUy/XL55ug/v4tZpdkSCjUp7ffLh0Zo1yuj/BTROx2DhNQ\n1Ip1R7JJk6T/+T9HujBO2koZ5slPu66sPP3GQYQfGDY42KVDh6YqGs0ok0koEOgyuyRDDh4Ma/Pm\nciWTpfJ6U/L5wpIuMbssQ+bNq9P69V2KxQbl88U0b17d6D9UxN59N6K9e6crnS6Rx5NVefkOs0vC\ne3i9pazxAc7W229LK1dKa9eaXcnx6MLAQt7PNGvCDwybNes8tbeH1d/vVSaT1KxZ55ldkiGJhFvR\naJmGhrwqKytRImH9zs/HPz5RHk9Wu3ZFNH16mebPt/Zc6ExGikQOKpn0yutNKpMxuyIA0HAXZtUq\nacUKsys53gldGMCuTpx2fSqEHxi2bVtcU6e2jmx1vW3bC2aXZMiBAyWqr298z/U7JlYzNvIbBLjd\nh+X3uyy/QYDbLQUCk5ROu+Tx5OR27zG7JAB2QhcGsKT8tOszIfyYwG5nYAQClerv75cUU2np8LWV\nNTRI7e1hJZNueb0ZXXih2RUZ19HRp8bGJqVSO9XYOEMdHWG1tlp3nKZNCyiR6BtZ8zNtmrW37gbG\nk93eg04r34X5X/9Lep8HqY+bG26Q/vZvh99wAIyZ/LTr9nbW/BQVu52BMXeuRwcO7JXLlZTX69Xc\nudb+azV9epnefHO3kkmfPJ6Ypk8vM7skwyIRaevWXu3ePaShoV7NmWN2Rca0tNTI5So/es6PR/Pn\n15hdkiH5m9GOjrji8bB9b0ZRFCz3HvQ+uzDjspXyewWD0ne+I33601KJtc+3A5zE2nepFmW3MzAu\nvnii3nknKSmlxkavLr7Y6vOJ/Zo9e6qSyRJ5vVlJ1p9S1dnZo1isSdnskGKxOnV2dkgq4pudUSxc\n2KDS0vd+cm3d1yIduxnNZAYViTQU/80oLM2U9yC6MACKhLXvui3KbmdgZLMTdPXV9dq5c6dmzJih\nbLbb7JIMGX5fTmj4n0e66N6nz8WkSQFt3tyhvXtjcru7demlTBMrJnb7QATFzdB70Pbtw92OYlsL\nEwxqz7JlmnHHHXRhAJwR77AmsNsZGCUl/XruuUPq7Izp7be36tprvZLqzS7rnFVUpCVVSSqRlFVF\nxX6TKzKuqyuiYLBJmcx+BYOT1dXVYXZJhqxfH9amTVUj095SqbClz/mx2wciKG4tH56gg1/+iup+\n/6xcLsnrLaKwYKALc6S9neADYFSEHxPY7QyMbdsiSiQuUDYbUSIR0LZtu9XWZnZV52769MlKJFJH\nb6yzmj59stklGdbYGFQ02quSkj75fGVqbLR24G5vjyoWmyZJisWk9vYuLVpkbk1G5D8Qcbu7FAhU\nWP4DEYyTDRuk668/6x/z6uik17ICBYVgcHir52uuIYwAKDqEHxjW1ZXTtm1vqbe3RJHIfp1/vrU3\nCPD5UpLKT7i2Nvu9phPnIlp7bmL+A5HKygNqbrbPByN4H4aGpNtvl555xuxKTsZaGAA2RPiBYevW\nbdO2bUuUSrnV05ORx/OipPlml2XQsTU/9pFQLjek4ddmbc3NVdq0KaxEwqPy8rSam6vMLskQdnuz\ngXPswoyLv/xL6RvfGD4gCwAcjvADwzo7vUqnB5TJeORypdXZ6TW7JEOGhio0Z079e66tvYGDdOw1\nlZUNasaMBsu/pmO7vUl+v9jtDWMjFpOuuELaf+p1fuO+lfJ7TZggPf20bHHwGACYiPADwxKJqFyu\nRrndWblcJUok/mB2SYYMb+CwX9Foufz+hK691i8rb+Ag2W9Bvd3WzbHb2xh7+mlp+XKzqzg1ujAA\nYCreYWFYba1bnZ1vKZMpl9udUG2ttd/Ut2zpVWfnJA0OlqqiolJbtnSprW2m2WUZ0tRUo1WrOrR9\ne69KSwd05ZWzzC4J72G3cDomRunCmIouDABYFuEHhk2fXqXDh/0aGvKorMyj6dOtvf7irbek6upG\nVVfnr7vMLWgMdHT0qbGxSanUTjU2zlBHR1itrZVml4WjbL3b2zPPSF/9qtlVnNqf/In02GPvuwuz\nub1dzc3NBS4KAFBIhB8T5Bc3v/ecHysvbq6rq1Vt7SENDLhVVZVRXV2t2SUZ4nYP6uDBXqXTJfJ4\nsqquHjS7JMOYVlXcin63t2hUmjVLRXvi75o10mWXmV0FAMACuAMyQX5xsyRFIrL84uahoX5VVFym\nTCahiopyDQ393uySDJk2rUTr1m1WPO5XZWVUixdb/5yKsrJBvflmWLt29WtoKKz5862+1TXOyS9+\nId1xh9lVnNpZdmEAADgXhB8T2O1T+A9+sEFbt27X4KBHZWVpffCD1g1ykrRz55AymZmSvMpkktq5\n8x2zSzJscHBIGzf2KxzOqbu7VxdfbO2zmBwtGh1ea5LNml3JqT31lLRwodlVAABwSta+67ao4d3E\nDikaLZPfP6Rrr/XKyruJvfvuAU2c+GcqL++X3z9B775bhIf1nYW33krI4/mgPJ789WZzCxoDzz13\nSBUVC1RX16uKijo999wG/emfWnfTA1tMHX3sMemuu477kqlbKb9XU9PwVDIPbxEAAHvhnc0E27ZF\nlEhcoGy2RIlEVtu27VZbm9lVnbtZs6ZoYGCH4vGEfL5yzZo1xeySDKmpKVU8fmzNT01NEdyMGpRK\n5c54bTVFM3V0YGB4LUyx+sUvpNZWs6sAAKBoEH5MMDDg19Spde+57jGxGuMmTkyrvv585XJ9qq+v\n0cSJ280uyZBPfCKg3/2u9+hW1yl94hMBs0sybO5crzo6wnK5IiovT2juXGsfRBuJSFu39iqRKFF5\neVZz5hh8wp/+VPr7vx+T2sYcXRgAAMYM76YmqKlJqLv7+Gsrmz07oG3bdkmKqbz8sGbPtnZY+NKX\nLtK+fa+rt9enurqYvvSlj5hdkmFf/vJcrVq1XVu29Gru3KRuuWWu2SUZ0tnZo1isSdLwcTCdnR3S\nwITi7sL87GfS4sVn/Ba2UgYAoLAIPya45ZZZWrWqQ3195aqpSeiWW4r4hu19yGYn6OqrZ2rnzp2a\nMWOGstnu0X+oiL3xRp/OP/8SBQLDXYU33ujTokXVZpdliN9fqdtua1J7e7uam5vMLufM3kcX5suJ\njFJpl5ST5JJKPTnpn8Zhl7ApU6QNG+jCAABgUbyDmyB/I2oXdjudvr09qlhsmqThrkJ7e5cWLTK3\nJqPyGwR0dMQVj4cLv0FAgdfCuEpcKi09tgW5y3WWO5+9jy4MAACwH8IPDLPf6fQnbgZg7c0BJGn9\n+rA2bSrVrl0+xeNSKhXWokXTRv/BIl0L4/WWKFod1IZ/+S/5qof/Dspqu70BAIBxR/iBYUV/Ov1Z\nuuSScv2f/9OhaLRcfn9CCxf6zS7JmFhMzZ/9uOalpWw2q5KSEpW40pK/SP75//u/Dx9weRZckqok\nfbIgBQEAALsqkrsfWNm4T6kqsHQ6q64utwYG3KqqciudLpLDJH/xC+mOO87pR0syKaUzbmWzWeVy\nksszxt1yqyL/AAAgAElEQVSsyZOll18ujjNqgDFmt99xAOBkhB8YtnZtp/7zP13q7KzS1q0JDQ52\nasmSGWaXdc7WrDmgaHSuMpkSRaNZrVmzZewOBI3FpIsuklKpsXm+98nlGu76ZLOSlJXLdZpvPIcu\nDGB3+XOlMplBRSIN5p0rBQAwjPADw1av7lYkskDZbK8ikTqtXr3B0uFn375+HTokpdPDm3qVl/ef\n/E0GujAFd/HF0n/913E7kj34/3Ro27bpOnCgT+efX6PZs3fp7/7OPptuAIUUjXrOeA0AsA5+g8Ow\naDShd97ZpSNHMqqujmjOHIucW3SaLsz/e3hImcyxKS3uHSlpctl4Vyc98YR0xRVj8lTpdE7d3TEd\nPJiRyxXTzJnW38QBGC9229ESAJzsfYWftWvXat++fVq6dKn27NmjKVOmyHXaeTNwmv7+XkUitYrH\nXcrlcurv7x3fAp56Svrrvx6zp/N6S5RManhtjGv4+pxdfLH03HOmr4Xp6TmkZLJRuVxSyaRXPT2H\nTK0HsBL77WgJAM41avj5l3/5F3V2dmr//v1aunSpnn32WR0+fFh33333eNRnS/nFs9GoR35/2vKL\nZzOZUu3dG1U67ZfHE9VFF53Da4nFpLlzpaGhsS/wLHk8Lg0lUsrmSlTiysrjcUuPPy79j/9hdmnn\nrKqqTl7vHpWUpOT1HlZVVZ3ZJQGWYbcdLQHAyUYNP6+++qqeeuopLVu2TJJ066236qabbip4YXaW\nXzwrSZGILL949g9/6FFJyWfk8WR0fe4/9cCv/1yafKvZZZ3swgulF14YtQvz1S/+p9asmapk0i+v\nN6prPr1H/27h4CNJsVi/qquvVDbbq+rqOsViL5ldEgAAwLgbNfyUlQ2vdchPc8tkMspkMoWtyuaK\nfvHs4KD0hS9Ir7zyvr59R2xQudzdGj595ehcsUL6+c+lK68s2NP/5jcJZbOXyeORslnpN7/ZUbA/\na7xceul5+t3vnlNvb7nq6hK66qppZpcEAAAw7ka96/7IRz6iv/u7v1NPT49++tOf6oUXXtD8+fPH\nozbbGrfFs7/7nXTzzYV57vfI5TKSSk+4HsWsWdKLL5q+FuZUUqmskskB5XIlcrmycruL5JwfA9as\neUeDg1cql8tocNCtNWte0i23zDW7LAAAgHE1avi544479Pzzz6uiokIHDhzQl770JS1ZsmQ8arOt\n/OLZ9675Oa3BQemmm6RXXx2/As/Gs89q7p90qK9vtiSfpJhqarbp8P4vm13ZOauu7tfg4LuSyiUl\nVF19iq2uLWbPnjJlMiWSMspkSrRnjwm71wEAAJhs1PATj8eVzWa1YsUKSdITTzyhWCwmn89X8OLs\nbOqq76n+6f+QyyWVGtlNbCxce630/e8fdy7M2RgaCkmaJMkraYKGht4cy+rG3ac+dZGeeGKLhobq\nVFbWq0996iKzSzLM6x1SZeUElZTEVV5eKa/X/I0lYF9229QFAGAfo97tfvOb39Rll102cj04OKhv\nfOMbeuihhwpamJ2tXx/WZb/8D6VyGl4mo4zKvG7jT/zcc9JHPmL8ec5SKpWSFFa+85M64dwcq+np\nOaIpU65VJiO53VJPz2/MLsmwq6+u0X/8x4uKx8tUVjakq6+uMbsk2JjdNnWxG8IpACcbNfxEIhHd\n/J51I1/60pf00kvsFGVEKHRYtRPmqLF369Hwkz0Wfq6/XnrggXPuwpihpMQr6cOSSiRlVVKyxeSK\njKmsrJPHc1jZrEceT1qVldbfFnrevAbt2ZNUZ2dMjY0TNW+e1+ySYGNFv6mLwxFOATjZqO9IqVRK\nu3bt0vTp0yVJW7Zssfwn+2b77/8+ojs/9JTS6RJ5PFnNmPFHPfJI4XYvK7Rs1ispouFpb8mj19bl\n8+U0c+ak91y/Y2I1YyObnaCrr67Xzp07NWPGDGWz3WaXBBsbt01dxkm+U9LREVc8HrZ8p4RwCsDJ\nRv2N961vfUvLly/XwMCAMpmMamtr9c///M/jUZtt5XIuRSIuJZMl8npzyuUKvDV0gVVWxnTkiEeS\nW5JHlZUxs0syZMmSat1//3+pv79aEyYc0U03fcDskgyz280oittZbepiAflOSSYzqEikwfKdEn4f\nAHCyUcPPhz/8Yb3wwgvq6+uTy+VSIBAYj7psLZMZ0sDAXiWT5fJ6E8pkrL34vKysQm53hzKZCXK7\n+1VWVmF2SYZ0diY1Y8ZHj4bTrDo7d5tdkmH5m1G3u0uBQIXlb0btxm6dBa+31NLh4ER265TYLZwC\nwNk47W/wH//4x/qLv/gL/e3f/u3IAafvdd999xW0MDs7cCCubNavXM6rbNajAwfiZpdkSHW1V7HY\nQqXTw0uVqqufNrskQ/r6yiQlNPzPI3302tryN6OVlQfU3Gyfm1K7sFtnwW7s1imxWzgFgLNx2vBz\n0UXD2/t+/OMfH7dinCKTKZNUKZfLI8lz9Nq6Jk3yad++PyqT8amkJKZJk6y9Dfrevbv161+7NTRU\nqbKyuD796d2SLjG7LNiY3ToLdkPnFOOJ3fiAwjrtO2xra6sk6cCBA/ra1742bgU5gdeblc9XO7KV\nstebNbskQ3p6DimV+qgymeFOSU/PVrNLMmT9+sM6cmRQ2ayUSAxq/frDZpdkWDQa16pV27VlS59e\nfrlDt9wyS35/pdll4Si7dRbshs4pxhO78QGFNerHi7t27VJnZ6caGxvP6Q945pln9JOf/EQej0d/\n9Vd/pSuuuGLksUWLFmny5MlyuVxyuVy6//77FQza/xO1lpagUqlODQ6WqqIiZflPEbu6ypTN7lcu\nV65sNqGuLmt3srq6XHK5Piy3O3+92dyCxsCqVdvV3d2kdHq/ursna9WqDt12W5PZZeEoOgsA8ugE\nA4U16r+o7du360//9E9VXV2t0tJS5XI5uVwurV27dtQnj0Qieuihh/T0008rFovpX//1X48LPy6X\nS48++qjKy8sNvQir+fjHg/J4SpVIeFRentb8+dbeGnpoaFDZ7MWSXMpmcxoaes3skgxxubJKpw8p\nv+anrMzanTlJOniwVHv29Kqra1CpVK9KSphCUUzoLADIoxMMFNao4edHP/rROT/5xo0btWDBAlVU\nVKiiokIrV6487vFcLqdcLnfOz29VCxc2qLS0R9Go5PdLLS3WvtlJpyWpU/lzftIW/z1dX59VZ+dB\n5XLlcrkSqq+3fvg5cuSgEom5kqREok5HjvzR5IoAAKfCbnxAYZ0x/PzhD3/Q7t271dzcrEsuOfsF\n3+FwWIODg/ra176mgYEB3XrrrfrYxz523PesWLFC+/bt07x583TnnXee9Z9hRXbbaaey0qX+/j2S\nqiUdUWWltc8tmj9/mqRBJZOS1zt49NraPvaxKfr5zzeptzet8nKPPvaxKWaXBAA4BbvdIwDF5rTh\n54c//KE2bNigpqYm3XXXXfryl7+sP/uzPzurJ8/lcopEInr44Ye1b98+3XzzzXrppZdGHr/99tvV\n2tqqQCCg5cuX68UXX9SSJUvO/dXAFOl0TNIsSaWSzlc6be2uwmWXVcvjaVAy6ZHXm1ZTU9jskgzr\n6upTTc2FGhrqU01Njbq6tptdEgAAwLg7bfhZv369fv7zn8vj8WhgYEB/+Zd/edbhZ+LEiWpqapLL\n5dKUKVPk8/l0+PBh1dbWSpKuueaake+9/PLLtWPHjlHDT3t7+1nVUIxSqbS2bIkqHveqsjKpuXP9\nKi218oLGgKQuSX5JUUkBS4/TJZcMatOmdTpypFqBwBFdcskkS78eSdq+vUvvvCMNDZVpYKBHlZVd\nln9NdsW4FDfGp7gxPsWN8SluThmf095xe71eeTzDD1dVVSmTyZz1ky9YsEDf/va39ZWvfEWRSETx\neHwk+ESjUX31q1/VT37yE5WVlem1115TW1vbqM/Z3Nx81nUUm3XrwqqvP9bSTqXC+uhHrdviTqXW\nqaTko8rlMnK53EqlXrH0OK1bF9bnPndsY47S0rDlF6E/+mhcU6Zcpr6+XtXU1ElaZ+kxsqv29nbG\npYgxPsWN8SlujE9xs9v4nCnInTb8uFyuM16/H/X19Wpra9MNN9wgl8ulu+++W6tXr1ZVVZUWL16s\ntrY23XjjjfL5fJo9e/b7Cj92YLdtLKurgzp8+DXlchVyuQZVXW3txZl2Gx9JmjrVp3g8LJcrovLy\nhKZOtfZBtAAAAOfitHd1u3bt0je+8Y3TXt93333v6w+44YYbdMMNN5zysWXLlmnZsmXvt1bbsNs2\nljNnpvT22+crmXTJ663WzJnWPuTUbuMjSS0ttXK5JK93SNOnS/Pn15pdEgAAwLg7bfj5m7/5m+Ou\nT9ylDeeuqalGq1Z1qK+vXDU1CV155SyzSzLkjjsu0Xe+84Z6e8tVV5fQHXec/c6AxcSO24zmt1ev\nrIypqcn626sDAACci9OGn8985jPjWYejdHT0qbGxSY2N+euwWlsrzS3KAL9/sv73/27Szp07NWPG\nDHk83WaXZIgdtxnlEE0AAACpxOwCnMhua0pOnBZmh2liAAAAsB/CjwnsFhZaWoIKBMJyu7sUCIRt\nMU0MAAAA9mPtloNF2W1NCVOqAAAAYAWjhp+5c+eedMaP2+3WtGnTtGLFCl122WUFK86u7LamJJlM\nKRTqUUdHXPH4cOfH6y01uywAAADgOKOGn29961vyer1avHixcrmcfv/732tgYEDz5s3TP/7jP+qp\np54ajzpRxEKhHkUiDcpkBhWJNCgUCtsq3AEAAMAeRl3z8/zzz+v6669XTU2Namtrdf3112vdunW6\n5JJL5PEwaw7228ABAAAA9jTqXerQ0JCeeOIJNTc3q6SkRJs3b1Zvb6/efPPNk6bDwZnseCgoAAAA\n7GfU8HPffffphz/8oR5//HFls1lNnz5d9913n9LptO69997xqBFFLr+Bw/BubxWW38ABAAAA9jRq\n+Jk2bZoeeOAB9fX1qaSkRNXV1eNRFwAAAACMqVHX/LS3t2vx4sX61Kc+pba2Nn3yk5/U5s2bx6M2\nWMSxDQ8mHd3woMfskgAAAICTjNr5+e53v6uHH35YH/rQhyRJb731lu699179/Oc/L3hxsAY2PAAA\nAIAVjNr5KSkpGQk+knTRRRfJ7XYXtChYy4kbHLDhAQAAAIrR+wo/L774oqLRqKLRqH79618TfnCc\nlpagAoH8hgdhNjwAAABAURp1ftJ3vvMd/cM//IP+/u//Xi6XS5deeqm+853vjEdtsAivt1StrQ2q\nrDyg5mYONwUAAEBxel+7vf3kJz8Zj1oAAAAAoGBOG34+//nPy+VynfYH2fAAAAAAgJWcNvz89V//\n9XjWAQAAAAAFddrwM3/+/PGsAwAAAAAKatTd3gAAAADADjiNEoZFo3GtWrVdW7b06eWXO3TLLbPk\n91eaXRYAAABwHDo/MGzVqu3q7m5SOn2RurubtGrVdrNLAgAAAE5C+IFhfX3lZ7wGAAAAigHT3mBY\nRUVEGzZsVU9PUsFgnxYv7je7JEOSyZRCoR5Fox75/Wm1tATl9ZaaXRYAAAAMovMDw4bPg/JL8kny\nn/F8KCsIhXoUiTQona5XJNKgUKjH7JIAAAAwBuj8wLB4vFqXXdaorq79mjRpsuLxuNklGRKNes54\nDQAAAGui8wPDamoSZ7y2Gr8/fcZrAAAAWBPhB4bdcsss1dd3yON5S/X1w1tdW1lLS1CBQFgeT7cC\ngbBaWoJmlwQAAIAxwHweGOb3V+q225rU3t6u5uYms8sxzOstVWtrg9llAAAAYIzR+QEAAADgCIQf\nAAAAAI7AtDcYlj8Xp6Mjrng8zLk4AAAAKEp0fmBY/lycTGYS5+IAAACgaBF+YBjn4gAAAMAKCD8w\njHNxAAAAYAWEHxiWPxfH7e7iXBwAAAAULeYnwbD8uTiVlQfU3Mz5OAAAAChOdH4AAAAAOALhBwAA\nAIAjEH4AAAAAOAJrfmDY4cNHtHLl69qxI6EPfegl3XPPR1RbW212WQAAAMBx6PzAsJUrX1dX15VK\np+erq+tKrVz5utklAQAAACch/MCw3l7fGa8BAACAYsC0NxMkkymFQj2KRj3y+9NqaQnK6y01u6xz\nVlNzRFu29KuvL6l0ul9z5x4xuyQAAADgJHR+TBAK9SgSaVA6Xa9IpEGhUI/ZJRmyZEmD/P43VVKy\nQ37/m1qyhLN+AAAAUHzo/JggGvWc8dpq3O46feUrF2nnzp2aMWOG3O5us0sCAAAATlLwzs8zzzyj\na665Rp/97Gf1hz/84bjHNm7cqOuvv1433XSTHn744UKXUjT8/vQZr63Gbq8HAAAA9lTQ8BOJRPTQ\nQw/pySef1I9//GP9/ve/P+7xe++9Vw8++KCeeOIJbdiwQbt27SpkOUWjpSWoQCAsj6dbgUBYLS1B\ns0syJP963O4uW7weAAAA2FNB51tt3LhRCxYsUEVFhSoqKrRy5cqRx/bu3atAIKD6+npJ0hVXXKFX\nXnlF06dPL2RJRcHrLVVrq33WxeRfT2XlATU32+d1AQAAwF4KGn7C4bAGBwf1ta99TQMDA7r11lv1\nsY99TJJ06NAh1dbWjnxvbW2t9u7dW8hyiobddnsDAAAArKCg4SeXyykSiejhhx/Wvn37dPPNN+ul\nl1467fe+H+3t7WNZoik6OiIaGGgcud6+/f9TU1PAxIrGjh3Gx+4Yo+LG+BQ3xqe4MT7FjfEpbk4Z\nn4KGn4kTJ6qpqUkul0tTpkyRz+fT4cOHVVtbq2AwqIMHD458b3d3t4LB0deKNDc3F7LkcdHT0610\nun7k2uOpUnNz/Rl+whra29ttMT52xhgVN8anuDE+xY3xKW6MT3Gz2/icKcgVdMODBQsWKBQKKZfL\nqa+vT/F4fGSqW0NDg2KxmPbv3690Oq21a9dq4cKFhSynaLA7GgAAADD+Ctr5qa+vV1tbm2644Qa5\nXC7dfffdWr16taqqqrR48WKtWLFCd955pyTp6quvVmNj4yjPaA8tLUGFQuHj1vwAAAAAKKyCn655\nww036IYbbjjlY/PmzdOTTz5Z6BKKjt12e8tv4NDREVc8HmYDBwAAABSlgh9yCvsLhXoUiTQok5mk\nSKRBoVCP2SUBAAAAJyl45wf2F4lIW7f2avfuIQ0N9WrOHLMrAgAAAE5G5weGdXb2KBarUzZbo1is\nTp2ddH4AAABQfOj8wLCpU89TNBqWy9Utny+nqVPPM7skAAAA4CR0fmAYW3cDAADACgg/GCPlcrnK\nJJWbXQgAAABwSoQfGBaNeiQllMsNSUocvQYAAACKC3epJsifi/PeQ06tfC7Onj0HFYs1KZdzKRab\nrD17OiR9wOyyAAAAgOPQ+TFB/lycdLreFufiNDYG5fP1qqSkTz5frxobg2aXBAAAAJyE8GOCE6eF\nWX2amM+XOuM1AAAAUAwIPyaw5+5ox9b8AAAAAMWI8GOCpqYadXZ26I03tqmzs0NNTTVml2SI3TpZ\nAAAAsCfCjwk6OvrU2NikSy+drcbGJnV09JldkiHDGx40KJc7X7FYg/bsOWh2SQAAAMBJ+IjeBHbr\nlDQ2BhWN5jc8KGPDAwAAABQla991W5Tfn1Ykcvy1lQUC0pw5dSor69OMGXUKBMJmlwQAAACchGlv\nJmhpCSoQCMvj6VYgEFZLi7U7Jfk1TNu3v2uLNUwAAACwJzo/JvB6S9Xa2mB2GWMmv4YpldqpxsYZ\n6ugIq7W10uyyAAAAgOPQ+YFhdlvDBAAAAHsi/MAwe55bBAAAALsh/MCw/Bomt7vLFmuYAAAAYE/M\nT4Jh+TVMlZUH1Nxsn7VMAAAAsBc6PwAAAAAcgc6PCZLJlEKhHkWjHvn9abW0BOX1lppdFgAAAGBr\ndH5MEAr1KBJpUDpdr0ikQaFQj9klGZJMprRuXVgbNsS1bl1YyWTK7JIAAACAk9D5MYHdtobOh7lM\nZvBomAtb+hwjOnMAAAD2ROfHBHbbGtquYc4unTkAAAAMI/yYIL81tMfTbYutoQlzAAAAsALu6kyQ\n3xraLlpaggqF8uf8VNgizEUix18DAADA+gg/MMxu5/zkw9x71/wAAADA+gg/wAns1pkDAADAMNb8\nAAAAAHAEwg8AAAAARyD8AAAAAHAEwg8AAAAARyD8AAAAAHAEwg8AAAAARyD8AAAAAHAEwg8AAAAA\nRyD8AAAAAHAEwg8AAAAARyD8AAAAAHAEj9kFOFEymVIo1KNo1CO/P62WlqC83lKzywIAAABsjc6P\nCUKhHkUiDUqn6xWJNCgU6jG7JAAAAMD2CD8miEY9Z7wGAAAAMPa46zZBWdmg3nwzrETCo/LytObP\nT5ldEgAAAGB7hB/TlGu48eaRZO3wk1/D1NERVzweZg0TAAAAihLhxwRDQxWaM6fuPddpE6sxbv36\nsDZtqtLu3bWKx8uVSoW1aNE0s8s6Z2xIAQAAYE8FDT+bNm3S7bffrpkzZyqXy2nWrFm66667Rh5f\ntGiRJk+eLJfLJZfLpfvvv1/BYLCQJRUFvz+tSOT4aytrb48qFpumbHZIsVid2tu7tGiR2VWdu/yG\nFJIUiUihUFitrQ0mVwUAAACjCt75mT9/vn7wgx+c8jGXy6VHH31U5eXlhS6jqLS0BBUKhY/rLFhb\nbpRra2FDCgAAAHsq+F1dLnf6G+FcLnfGx+3K6y21VSehublKmzaF5XJ1y+fLqbm5yuySDCkp6ddz\nzx1SNFomv39I117rlVRvdlkAAAAwqOBbXe/atUvLly/XF77wBW3cuPGkx1esWKHPf/7z+u53v1vo\nUlAgCxc2aMEC6eKLY1qwYPjayrZtiyiROF/ZbJ0SifO1bVtk9B8CAABA0XPlCth66e7u1uuvv66r\nrrpKe/fu1c0336zf/va38niGG05r1qxRa2urAoGAli9frmuvvVZLliw57fO1t7cXqlRgxL/9W5/S\n6YtGrj2et/SVr9SYWBEAAADORnNz8ym/XtBpb/X19brqqqskSVOmTNHEiRPV3d2thobhzsA111wz\n8r2XX365duzYccbwI53+hcB87e3tthifl1/uUHf35JHr+vpuNTc3mVjR2LHLGNkV41PcGJ/ixvgU\nN8anuNltfM7UMCnotLdnn31WDz74oCSpt7dXhw8fVn398NqJaDSqpUuXamhoSJL02muvaebMmYUs\nBwUSjcb14IMd+rd/69ODD3YoGo2bXZIht9wyS/X1HfJ6t6m+vkO33DLL7JIAAAAwBgra+Vm0aJG+\n/vWv63Of+5xyuZxWrFihZ599VlVVVVq8eLHa2tp04403yufzafbs2WpraytkOSiQVau2q7u7Sen0\nfnV3T9aqVR267Tbrdkr8/kpL1w8AAIBTK2j48fl8+tGPfnTax5ctW6Zly5YVsgSMg76+8jNeAwAA\nAMWg4Lu9wf5qahJnvAYAAACKAeEHhuXXyHg8b7FGBgAAAEWLo+thWH6NzPBOIayVAQAAQHGi8wMA\nAADAEQg/AAAAAByBaW8wLJlMKRTqUUdHXPF4WC0tQXm9pWaXBQAAAByHzg8MC4V6FIk0KJOZpEik\nQaFQj9klAQAAACch/MCwaNRzxmsAAACgGBB+YJjfnz7jNQAAAFAMCD8wrKUlqEAgLLe7S4HA8Jof\nAAAAoNgwPwmGeb2lam1tUGXlATU3N5hdDgAAAHBKdH4AAAAAOALhBwAAAIAjEH4AAAAAOALhBwAA\nAIAjEH4AAAAAOALhBwAAAIAjEH4AAAAAOALhBwAAAIAjEH4AAAAAOALhBwAAAIAjEH4AAAAAOALh\nBwAAAIAjEH4AAAAAOALhBwAAAIAjEH4AAAAAOALhBwAAAIAjEH4AAAAAOALhBwAAAIAjEH4AAAAA\nOALhBwAAAIAjEH4AAAAAOALhBwAAAIAjEH4AAAAAOALhBwAAAIAjEH4AAAAAOALhBwAAAIAjEH4A\nAAAAOILH7AJgfclkSqFQjzo64orHw2ppCcrrLTW7LAAAAOA4dH5gWCjUo0ikQZnMJEUiDQqFeswu\nCQAAADgJ4QeGRaOeM14DAAAAxYDwA8P8/vQZrwEAAIBiQPiBYS0tQQUCYbndXQoEhtf8AAAAAMWG\n+UkwzOstVWtrgyorD6i5ucHscgAAAIBTovMDAAAAwBEIPwAAAAAcgfADAAAAwBEKuuZn06ZNuv32\n2zVz5kzlcjnNmjVLd91118jjGzdu1Pe+9z253W5dfvnlWr58eSHLAQAAAOBgBd/wYP78+frBD35w\nysfuvfdePfbYYwoGg1q6dKna2to0ffr0QpcEAAAAwIEKPu0tl8ud8ut79+5VIBBQfX29XC6Xrrji\nCr3yyiuFLgcAAACAQxU8/OzatUvLly/XF77wBW3cuHHk64cOHVJtbe3IdW1trXp6egpdDgAAAACH\nKui0t8bGRt1222266qqrtHfvXt1888367W9/K4/n5D/2dB2iE7W3t491mRhDjE/xY4yKG+NT3Bif\n4sb4FDfGp7g5ZXwKGn7q6+t11VVXSZKmTJmiiRMnqru7Ww0NDQoGgzp48ODI93Z3dysYDI76nM3N\nzQWrF8a0t7czPkWOMSpujE9xY3yKG+NT3Bif4ma38TlTkCvotLdnn31WDz74oCSpt7dXhw8fVn19\nvSSpoaFBsVhM+/fvVzqd1tq1a7Vw4cJClgMAAADAwQra+Vm0aJG+/vWv63Of+5xyuZxWrFihZ599\nVlVVVVq8eLFWrFihO++8U5J09dVXq7GxsZDlAAAAAHCwgoYfn8+nH/3oR6d9fN68eXryyScLWQIA\nAAAASBqH3d4AAPj/27v3oKjqBozjz4IsIqhochkvaWKG+UeZ4y0yUBFsxkbMMcGE0ZoxRWvKkQbx\n7pAK3hXJuwGWCJlE1gym0zA6MJg2meVokWRpAspF5ZKI7PvHmzuAaG/zuh30fD9/sefs/vY5/IbL\ns7+zZwEAaA0oPwAAAABMgfIDAAAAwBQoPwAAAABMwaEXPEDL6upuqaCgVFVVbeThUa8hQ7xltboY\nHfYd3psAAA6ZSURBVAsAAAB4pLHyY4CCglJVVnZTfb2PKiu7qaCg1OhIAAAAwCOP8mOAqqo2970N\nAAAA4MGj/BjAw6P+vrcBAAAAPHiUHwMMGeItT89LatOmRJ6elzRkiLfRkQAAAIBHHudbGcBqddHw\n4d2MjgEAAACYCis/AAAAAEyB8gMAAADAFCg/AAAAAEyB8gMAAADAFCg/AAAAAEyB8gMAAADAFCg/\nAAAAAEyB8gMAAADAFCg/AAAAAEyB8gMAAADAFCg/AAAAAEyB8gMAAADAFCg/AAAAAEyB8gMAAADA\nFCg/AAAAAEyB8gMAAADAFCg/AAAAAEyB8gMAAADAFCg/AAAAAEyB8gMAAADAFCg/AAAAAEyB8gMA\nAADAFCg/AAAAAEyB8gMAAADAFCg/AAAAAEyB8gMAAADAFCg/AAAAAEyB8gMAAADAFCg/AAAAAEyB\n8gMAAADAFCg/AAAAAEyB8gMAAADAFCg/AAAAAEyB8gMAAADAFCg/AAAAAEyB8gMAAADAFCg/AAAA\nAEyhjaOf4ObNmxo7dqxmzZqlsLAw+/aRI0eqa9euslgsslgsWr16tby9vR0dBwAAAIBJObz8JCcn\ny9PT867tFotFO3bsUNu2bR0dAQAAAAAce9rb+fPnVVRUpMDAwLv22Ww22Ww2Rz49AAAAANg5tPwk\nJiYqNjb2nvsXL16syZMna+3atY6MAQAAAACy2By0/JKVlaWysjK98cYbSkpKUrdu3TR+/Hj7/s8+\n+0zDhw+Xp6enoqOj9corrygkJOS+Y548edIRUQEAAAA8QgYOHNjidoe95yc3N1cXL17UoUOHVFxc\nLFdXV/n6+mrYsGGSpHHjxtnv++KLL+qnn3762/Jzr4MAAAAAgL/jsPKzbt06+9dJSUnq3r27vfhU\nVVVpxowZ2rlzp1xdXXXixAmFhoY6KgoAAAAAOP5qb40dOHBA7du3V3BwsEJDQzVp0iS5u7urX79+\nlB8AAAAADuWw9/wAAAAAQGvi0Ku9AQAAAEBrQfkBAAAAYAqUHwAAAACm8NCUnxUrVig8PFwRERE6\nffq00XHQTGJiosLDwzVx4kR99dVXRsdBC27evKnRo0crKyvL6ChoJjs7W+PGjdOECROUm5trdBw0\nUlNTo7feektRUVGKiIjQsWPHjI6Ev5w9e1ajR4/WRx99JEkqLi5WZGSkpkyZonfffVe3bt0yOKG5\nNZ+fy5cva9q0aYqMjNTrr7+usrIygxOaW/P5uePo0aPy9/c3KNW/46EoP998840uXLig9PR0xcfH\n6/333zc6EhopKChQYWGh0tPTtX37di1fvtzoSGhBcnKyPD09jY6BZiorK7V582alp6dr69atOnLk\niNGR0MiBAwfUu3dvpaamasOGDfz9aSVqa2uVkJCggIAA+7YNGzYoMjJSe/bs0eOPP679+/cbmNDc\n7jU/r776qtLS0jRq1Cjt2rXLwITm1tL8SFJdXZ22bdsmb29vg5L9Ox6K8pOfn6/g4GBJkp+fn65f\nv67q6mqDU+GOQYMGacOGDZKkDh06qLa2VlxEsHU5f/68ioqKFBgYaHQUNJOXl6eAgAC5ubmpS5cu\nWrZsmdGR0Ejnzp1VUVEhSbp27Zo6d+5scCJIkqurq7Zu3aouXbrYtx0/flwjRoyQJI0YMUJ5eXlG\nxTO9luZn8eLF9o816dy5s65du2ZUPNNraX4kacuWLYqMjJSLi4tByf4dD0X5uXr1apM/OJ06ddLV\nq1cNTITGnJyc5ObmJknKzMxUYGCgLBaLwanQWGJiomJjY42OgRZcunRJtbW1mjlzpqZMmaL8/Hyj\nI6GRl156ScXFxQoJCVFUVBQ/R62Ek5OTrFZrk221tbX2f9oee+wxXblyxYhoUMvz4+bmJicnJzU0\nNOjjjz/W2LFjDUqHluanqKhIhYWFCgkJeeRfwP5XP+T0QXnUJ+VhdfjwYX366afauXOn0VHQSFZW\nlgYNGqSuXbtK4uentbHZbKqsrFRycrIuXryoqKgoff3110bHwl+ys7Pl6+urbdu26ezZs1q4cKEy\nMzONjoW/we+51qmhoUExMTEaOnSohg4danQcNJKQkKBFixYZHeNf8VCUH29v7yYrPaWlpfLy8jIw\nEZo7evSotm3bpp07d8rDw8PoOGgkNzdXFy9e1KFDh1RcXCxXV1f5+vpq2LBhRkeDpC5dumjAgAGy\nWCzq0aOH3N3dVV5ezulVrcS3336r4cOHS5L8/f1VXFwsm83G6nYr5O7urrq6OlmtVpWUlDzy71t4\nGM2bN09PPPGEZs2aZXQUNFJSUqKioiLNmTNHNptNV65cUWRkpNLS0oyO5hAPxWlvAQEBysnJkST9\n+OOP8vHxUbt27QxOhTuqqqq0atUqbdmyRe3btzc6DppZt26dMjMztW/fPk2cOFHR0dEUn1YkICBA\nBQUFstlsqqioUE1NDcWnFenZs6e+++47Sf89RbFdu3YUn1Zq2LBh9v8VcnJy7KUVrUN2drasVqtm\nz55tdBQ04+Pjo5ycHKWnp2vfvn3y8vJ6ZIuPJFlsD8na8Nq1a3X8+HE5Oztr0aJFeuqpp4yOhL9k\nZGQoKSlJvXr1sr8impiYKF9fX6OjoZmkpCR1795dYWFhRkdBIxkZGcrMzJTFYlF0dLSCgoKMjoS/\n1NTUKC4uTmVlZbp9+7beeecdDR482OhYpnfq1CktWLBA5eXlcnZ2VseOHbVz507Fxsaqrq5OXbt2\n1YoVK+Ts7Gx0VFNqaX4aGhrk6uoqd3d3WSwW9enTxzSnWbU2Lc3Pnj171LFjR0nSqFGjHukrjz40\n5QcAAAAA/h8PxWlvAAAAAPD/ovwAAAAAMAXKDwAAAABToPwAAAAAMAXKDwAAAABToPwAAAAAMAXK\nDwBA0n8/xNPf318HDx5ssn3kyJEPZHx/f381NDQ8kLFu376tjRs3aty4cQoPD1dYWJg2bdpkH//G\njRt6+eWXW/xAxaysLEVERCgqKkoTJkzQkiVLdOvWLUlSbm6url+//o+yREVFiU+NAICHA+UHAGDX\nq1cvJSUlqaamxr7NYrE8kLEf1DiStH79el24cEGffPKJ0tPTlZGRocLCQm3cuFGSdO7cObVr105J\nSUlNHldSUqL169dr9+7dSk1N1f79+1VdXa3Dhw9LklJSUlRZWfmPsqSmpj7QYwMAOE4bowMAAFoP\nLy8vDR8+XJs3b1ZMTEyTfQcOHFBeXp5WrVolSYqMjFR0dLScnZ21ZcsW+fj46IcfftAzzzyjJ598\nUkeOHFFlZaW2b98uHx8f2Ww2JScnq6CgQNXV1UpMTFSfPn107tw5JSQkqL6+XvX19Vq0aJH8/f0V\nGRmpfv366cyZM0pLS7MXjKqqKu3bt09HjhyRi4uLJMlqtWrJkiUKDQ3V9OnTFR8fr0uXLuntt9+2\nFyJJunbtmurr61VTU6O2bdtKkv149u7dqxMnTigmJkbLly9XdXW1Vq5cKRcXF1ksFi1cuFB+fn5N\ncqWmpurpp5/WmTNndPv2bS1btky//fabqqurNXbsWE2dOlU///yzFi5cKFdXV/3555+Kjo5WYGCg\nw+cSAHA3Vn4AAHYWi0XTpk1Tbm6ufv311xb3t+T06dOKi4vT/v379fnnn6tTp05KTU1V//79lZOT\nY79f3759lZaWpsmTJ2vTpk2SpLlz52rp0qVKTU3VokWLFBcXZ7+/u7u79uzZ0+R5z58/L19fX7Vv\n375Jhk6dOsnHx0e//PKL4uLi1Ldv3ybF587zjxkzRsHBwZoxY4Y+/PBDFRcXS5IiIiLUpUsXrV69\nWn5+fnrvvfc0f/58paSkaOrUqVq6dOlduZycnOzZUlNT5ePjo5SUFGVkZOjgwYM6d+6cMjIyFBwc\nrJSUFH3wwQeqqKj4X6YCAOAArPwAAJpwcXFRTEyM4uPjtWPHjv/p/Sx+fn72MuLp6akBAwZIknx8\nfHTjxg37/Z5//nlJ0oABA7R7926Vl5erqKhI8+fPtz9PTU2N/es74zTm5uZ2z0w2m01OTvd/XW/B\nggV68803dezYMeXl5SkpKUmrV69WUFCQ/T43btxQeXm5+vfvL0kaPHiw5syZY9/fUq6CggKVlJSo\noKBAklRXV6fff/9doaGhio2N1R9//KHAwECFhYXdNx8AwHEoPwCAuwQGBio9PV2HDx+2r2w0X/W5\nc5EASXJ2dm6yr/HtxkWl8RgWi0VWq1VWq1Wpqakt5rhzWltjPXv2VGlpqSoqKtSpUyf79srKSpWX\nl6tPnz46derUPY/t5s2b8vLy0vjx4zV+/HhlZmYqIyOjSflpfqw2m63JtpZyWa1WzZo1SyEhIXft\n++KLL5Sfn6+srCxlZ2drzZo198wHAHAcTnsDANg1LipxcXFas2aN6urqJEkeHh66fPmyJKmsrEyF\nhYX/ePz8/HxJ0smTJ9W3b195eHioe/fuys3NlSQVFRVp8+bN9x3DarUqMjJSixcvtmerq6tTfHy8\npk6dKldX13s+dt++fYqOjrY/TpIuXryonj17SpKcnJx069YteXh4yMvLS99//70kKS8vT88++2yL\nY975ng0cOFBffvmlJKmhoUErV67U9evXtWfPHl2+fFlBQUGKj4/X6dOn//b7BABwDFZ+AAB2jVc3\nevToodDQUG3dulWSFBAQoF27dik8PFy9e/fWc88997djNNamTRsVFhZq7969qqystF9oICEhQfHx\n8dq+fbvq6+s1b968+44jSbNnz1ZKSoomTpwoNzc31dXVacyYMZo+ffp9j2/SpEkqLS1VRESEPDw8\nVF9fLz8/P8XGxkqSXnjhBc2cOVMJCQlKSEjQihUr5OzsLGdnZ/t7fprnunP7tddeU2FhocLDw9XQ\n0KCgoCB16NBBvXv31pw5c9S+fXs1NDRo7ty5980IAHAci40PJwAAAABgApz2BgAAAMAUKD8AAAAA\nTIHyAwAAAMAUKD8AAAAATIHyAwAAAMAUKD8AAAAATIHyAwAAAMAU/gP06qrioxDMxgAAAABJRU5E\nrkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "print 'rsquared', linreg_r2(data['Number Of Stories'], data['log Price'], plot=True)[0]\n", + "plt.xlabel('Number Of Stories');\n", + "plt.ylabel('log Price');\n", + "plt.xlim(0,15);" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`Number Of Stories` explains about 5.6% of the variation in `log Price`. While better than `Year Built`, it still provides a mostly incomplete understanding. Let's take a look at the final dimension, `Total area`:" + ] + }, + { + "cell_type": "code", + "execution_count": 146, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "rsquared 0.168804441783\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1AAAAHxCAYAAABjxF1TAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3X94m/V97/+XbEmRbZkoDrHBLjitiyFxaOsqxFDi0KYZ\nGS0r33Y0dGvCWLexNXRjZWu7dqU5Zc05ZwzWdgWuNod2nH7XwVV6rgw4p1B6KLQBFgWMyTcJJQYX\nQiI3Vn5YIbLjSLL1/UOR/CP6cevHLd2Sno/r4iK3Jd1665bu+/68Pz9tsVgsJgAAAABAVnXlDgAA\nAAAAKgUJFAAAAAAYRAIFAAAAAAaRQAEAAACAQSRQAAAAAGAQCRQAAAAAGGQ3c+cTExP60pe+pBMn\nTigSieiWW27R6tWrk4+vXbtW7e3tstlsstlsuuuuu9Ta2mpmSAAAAACQN1MTqO3bt+td73qXPv/5\nzysQCOiP/uiP9Pjjjycft9lsuv/+++VyucwMAwAAAACKwtQufC0tLRobG5MknThxQi0tLXMej8Vi\nYh1fAAAAAJXCFjM5g7n55pv15ptv6uTJk9q2bZsuvfTS5GNr167VypUrdejQIa1cuVK33XabmaEA\nAAAAQEFM7cL36KOP6rzzztO2bdv06quv6vbbb9fDDz+cfPzWW29Vf3+/PB6PNm/erCeffFJXX311\n2v0NDAyYGS4AAACAKuD1ek3bt6kJ1EsvvaT+/n5J0iWXXKLDhw8rFovJZrNJkq677rrkc9esWaOh\noaGMCZRk7sEAKsnAwADnAyDOBSCBcwGIM7vRxdQxUJ2dnXr55ZclSX6/X42NjcnkKRQKaePGjTp9\n+rQk6cUXX9RFF11kZjgAAAAAUBBTW6BuuOEGfeUrX9GmTZs0NTWlO+64Q9u3b1dzc7PWrVun9evX\n64YbblBTU5OWLVum9evXmxkOAAAAABTE1ASqsbFR3/rWt9I+vmnTJm3atMnMEAAAAACgaEztwgcA\nAAAA1YQECgAAAAAMIoECAAAAAINIoAAAAADAIBIoAAAAADCIBAoAAAAADCKBAgAAAACDSKAAAAAA\nwCASKAAAAAAwiAQKAAAAAAwigQIAAAAAg0igAAAAAMAgEigAAAAAMIgECgAAAAAMIoECAAAAAINI\noAAAAADAIBIoAAAAADCIBAoAAAAADCKBAgAAAACDSKAAAAAAwCASKAAAAAAwiAQKAAAAAAwigQIA\nAAAAg0igAAAAAMAgEigAAAAAMIgECgAAAAAMIoECAAAAAINIoAAAAADAIBIoAAAAADCIBAoAAAAA\nDCKBAgAAAACDSKAAAAAAwCASKAAAAAAwiAQKAAAAAAwigQIAAAAAg0igAAAAAMAgEigAAAAAMIgE\nCgAAAAAMIoECAAAAAINIoAAAAADAIBIoAAAAADCIBAoAAAAADCKBAgAAAACDSKAAAAAAwCASKAAA\nAAAwiAQKAAAAAAwigQIAAAAAg+xm7nxiYkJf+tKXdOLECUUiEd1yyy1avXp18vHnn39e3/zmN1Vf\nX681a9Zo8+bNZoYDAAAAAAUxtQVq+/btete73qUf/vCH+va3v62tW7fOeXzr1q2655579OCDD+q5\n557T8PCwmeEAAAAAQEFMTaBaWlo0NjYmSTpx4oRaWlqSjx08eFAej0dtbW2y2Wy66qqrtHPnTjPD\nAQAAAICCmNqF75prrtH27dt19dVX6+TJk9q2bVvysaNHj85JqFpaWnTw4EEzwwEAAACAgpiaQD36\n6KM677zztG3bNr366qu6/fbb9fDDD6d8biwWM7TPgYGBYoYIVDTOByCOcwGI41wAzGdqAvXSSy+p\nv79fknTJJZfo8OHDisVistlsam1t1ZEjR5LPHR0dVWtra9Z9er1e0+IFKsnAwADnAyDOBSCBcwGI\nM7siwdQxUJ2dnXr55ZclSX6/X42NjbLZbJKkjo4OjY+Pa2RkRNFoVM8888ycGfoAAAAAwGpMbYG6\n4YYb9JWvfEWbNm3S1NSU7rjjDm3fvl3Nzc1at26dtmzZottuu02SdO2116qzs9PMcAAAAACgIKYm\nUI2NjfrWt76V9vGVK1fqoYceMjMEAAAAACgaU7vwAQAAAEA1IYECAAAAAINIoAAAAADAIBIoAAAA\nADCIBAoAAAAADCKBAgAAAACDSKAAAAAAwCASKAAAAAAwiAQKAAAAAAwigQIAAAAAg0igAAAAAMAg\nEigAAAAAMIgECgAAAAAMIoECAAAAAINIoAAAAADAIBIoAAAAADCIBAoAAAAADCKBAgAAAACDSKAA\nAAAAwCASKAAAAAAwiAQKAAAAAAwigQIAAAAAg0igAAAAAMAgEigAAAAAMIgECgAAAAAMIoECAAAA\nAINIoAAAAADAIBIoAAAAADCIBAoAAAAADCKBAgAAAACDSKAAAAAAwCASKAAAAAAwiAQKAAAAAAwi\ngQIAAAAAg+zlDgBAdQmHI/L5AgqF7HK7o+rra5XT6Sh3WAAAAEVBCxSAovL5AgoGOxSNtikY7JDP\nFyh3SAAAAEVDAgWgqEIhe8ZtAACASkYCBaCo3O5oxm0AAIBKRgIFoKj6+lrl8fhlt4/K4/Grr6+1\n3CEBAAAUDX1rABSV0+lQf39HucMAAAAwBS1QAAAAAGAQCRQAAAAAGEQCBQAAAAAGkUABAAAAgEFM\nIgEAAABUmHA4Ip8voFDILrc7qr6+VjmdjnKHZQqrfVZaoAAAAIAK4/MFFAx2KBptUzDYIZ8vUO6Q\nTGO1z0oCBQAAAFSYUMiecbuaWO2zmvruP/nJT/TII4/IZrMpFotp3759eumll5KPr127Vu3t7bLZ\nbLLZbLrrrrvU2sqimwAAAEAmbndUweDc7Wpltc9qagJ1/fXX6/rrr5ckvfDCC3riiSfmPG6z2XT/\n/ffL5XKZGQYAAABQVfr6WuXz+eeMC6pWVvusJWv/uvfee3X33XfP+VssFlMsFitVCAAAAEBVcDod\n6u/vKHcYJWG1z1qSBGrPnj06//zztXjx4rMe27Jliw4dOqSVK1fqtttuK0U4AAAAAJAXW6wETUBf\n+9rX9Hu/93u67LLL5vz9kUceUX9/vzwejzZv3qxPfOITuvrqq9PuZ2BgwOxQAQAAAFQ4r9dr2r5L\n0gK1a9cufe1rXzvr79ddd13y32vWrNHQ0FDGBEoy92AAlWRgYIDzARDnApDAuQDEmd3oYvo05oFA\nQE1NTbLb508/GNLGjRt1+vRpSdKLL76oiy66yOxwAAAAACBvprdAHTlyZM7Yp+3bt6u5uVnr1q3T\n+vXrdcMNN6ipqUnLli3T+vXrzQ4HAAAAAPJmegLV09Ojbdu2Jbc//vGPJ/+9adMmbdq0yewQAAAA\nAKAoqnfJYgAAcJZwOCKfLzBnPRWn01HusACgYpg+BgoAAFiHzxdQMNihaLRNwWCHfL5AuUMCgIpC\nAgUAQA0JheZP6kRnFADIBQkUAAA1xO2OZtwGAGRGtRMAADWkr69VPp9/zhgoACinShubSQIFAEAN\ncTod6u/vKHcYAJCUGJspScGg5PP5LX2dIoFCUVRazQEA1AKuzQAqQaWNzWQMFIqCWZ0AwHq4NgOo\nBJU2NpMECkVRaTUHAFALuDYDqAR9fa3yePyy20fl8fgtPzaTKymKwu2OKhicuw0AKC+uzQAqQaWN\nzaQFCkVRaTUHAFALuDYDQPHRAoWisGrNAQOoAdQyq16bAaCS0QKFqsYAagAAABQTLVCoamYOoKZ1\nCwAAoPbQAoWqZua0mLRuAQAA1B5aoGBYJba49PW1yufzz4m5WJgeGAAAoPZQ4oNhiRYXSQoGJZ/P\nb/nByWYOoGZ6YAAAgNpDFz4YRovLXEwPDAAAUHtquwSMnNDiMhfTAwMAANQeWqBgGC0uAAAAqHW0\nQMEwWlwAAABQ62iBAgAAAACDaIEqQCVO6w0AAADkinLvDFqgCsBCquYLhyPascOvxx8f1Y4dfoXD\nkXKHBAAAUHMo984ggSoA03qbj5MVAACg/Cj3zqjdT14ETOttPk5WpENXAgAASody7wxKowXo62uV\nz+efU4BDcXGyIp1E66QkBYOSz+dnlkgAljK/oqe3d5EGB8eo+EFFotw7gwSqAEzrbT5O1uKoxtYa\nWicBWN38ip4HHhhUZ2dvcpuKH1QSyr0zKHHA0jhZi6MaW2tonQRgdfMrdsbGXOrsTP84gMrAmYuS\nq8bWkGIx69hUY2sNrZOoNlwbq8/8ip5FiybPehxA5an8UhQqTjW2hhSLWcemGltrrNA6SYEXxcS1\nsfrMr+j50Icu1uAgFT9ApSOBQslVY2tIsZh1bGitMQcFXhQT18bqk6qip7+/sUzRACgWrs4ouWps\nDSkWs46NFVprqhEFXhQT10YAqAzc7VFytIakx7GpLBR4UUy9vYv0wAODGhtzadGiSX3oQxeXOySg\nptAtG0aRQCElMy8itIakx7GpLCS8KKbBwTF1dvYmZ2kbHPTT3QsoIbplwygSKKTERQTIrhgJLzWe\nSKBLKFBenIMwqq7cAcCauIgApZGorIhG2xQMdsjnC5Q7JJTJ/C6gdAnNLhyOaMcOvx5/fFQ7dvgV\nDkfKHRIqGOcgjCKBQkpcRIDSoLICCX19rfJ4/LLbR+Xx+OkSagAVECgmzkEYxZ0aKTG242y13tWq\n1j+/WZiIAgmMgcwdFRAoJs5BGMWVBilxETlbrY8Lq/XPb5Zqrqwg6YbZqIAAUA4kUIBBtV7TWeuf\n3yxmVVZYIXkh6YbZqrkCAkBcyvvZ7pel665L/6LHHjM1JkpAgEG1XtNZ658/H+VMYqyQvJB0w2z0\nlgCsy/A9cOdO6ROfSLufWHhal8Vmpm2I2aYlZ3mnceBuhoqQa0HUjIJrrdd01vrnz0c5kxgrJC8k\n3QBQY158UfrYxyQVL/GJxTJvlwMJFCpCrgVRMwquudR0WqH7VLFR05u7ciYxVkheSLoBoIK9/LL0\nkY/k/fJiJT42mzStOv3iu69pekGDPB4DZbqBgfzezKCaSaDMLNBarbBstXjSMRpnOBzRzp3HNT5u\nl8sVVXd3a9aCaLlr363QfaqWWeUcKGcSY4XkhaQ7Nav8PgtRDZ+h1vEd1pg9e6T160v6ljbb3KTJ\nZpv14GuvSU1NxvYTjuhFX0B1obd1jvu4JSrjaiaBMrNAa7XCstXiScdonD5fQFNT7ZqaWqzxcWlo\nyK8rr8y873LXvpc7gat1VjkHypnEkLxYl1V+n4Wohs9Q6/gOK9jgoPTRj5Y7ihn790vNzWf92RaO\naNe8JF15JOlWvJ/VTKkuXYG2GDUw8/cdDEo7dvjLVqtTKYV3o3GGQnZ1dy/U0NAxTU7Wqb5+TH19\nF2fcd7lr38udwNU6q5wDVrzoo/ys8vssRDV8hmKo5FYcvkOLKEPLUEa//rW0cGFRdlXN90BTz5af\n/OQneuSRR2Sz2RSLxbRv3z699NJLyceff/55ffOb31R9fb3WrFmjzZs3mxZLugJtMWpg5u/7wIGA\npN6C9lmIVJ/Vihd5o0mG2x1VNGpXT89iSZLHM5E19nKftOVO4GodCSysrBp+n9XwGYqhkltx+A5N\n8Oqr0tq15Y5ixp490uLF5Y6iKpmaQF1//fW6/vrrJUkvvPCCnnjiiTmPb926VT/4wQ/U2tqqjRs3\nav369erq6jIllnQF2mLUwMzfdyy2pOB9FiLVZ7XiRd5oklGJyUi5E7haV4m/GdSOavh9VsNnKIZK\nbsXhO8zi9delNWvKHcWMgQHp/PPLHQXOKNmZfu+99+ruu+9Obh88eFAej0dtbW2SpKuuuko7d+40\nLYFKV6BNVwOTS4vN/H3v2OEvawtQqs9qxYu80SSDZKQ2FPMc4TcDK6uG32c1fIZiqORWnJr6Dt98\nU/rAB8odxYwXXpA6auTYV6mSlKL37Nmj888/X4tnNSMePXpULS0tye2WlhYdPHiwFOHMka4G5tln\n/dq1y6HJScnlkiIRv9auXZr3PvNtASpWobKSL/IwxordNHNhxVZSAMiEVpwyOHhQ6usrdxQznn9e\nWrq03FGgxEqSQD388MP6RIYVhiUpZnBy+AET5nVvbIz/J0l79hyWJP3HfxzWxESvpClJNo2M7NPC\nhcfy3ufg4ISmpk4lH6+v/60aGw9n3c/gYFAnT3Ymt/fv/5V6ez2G40hwOKIaHX1VExNONTaGtWSJ\nWwMD2d+/1CKRqPbuDSXjXLHCLYejtK1lVojBqNnnQ7F+K+WS7zkCSObcGwAjUpUhyqmSzgX70aNa\ntnFjucNI2n///Qq/4x25vejYsfh/qCklKRXu2rVLX/va1+b8rbW1VUeOHEluj46OqrU1e82N1+st\nenyp/OIXe/X22+3J7XPOOS6vd0Xe+5uY8Cdr1yXJ42mQ15u9dj0QGFU02pbcttub5fW2ZXhFepdf\nntfLTJOqxcTnC6itbea4RCJ+XX55aVshduzwlz0GIwYGBuacD8X8rZRDvucIMP9cAGpVWc+FQEB6\n3/tyf53DpJ4STz0lLVuW00suNScSlIHZFQmmJ1CBQEBNTU2y2+e+VUdHh8bHxzUyMqLW1lY988wz\nc8ZIlUKmLk9er1u7dsWnzXa5puX1ugt6r3yb+au5612qLltWGKuVSwxW6jZX6b8VusIAgEUcPy6t\nyL/SuOh+/nOpp6fcUQBJppdOjxw5Mmfs0/bt29Xc3Kx169Zpy5Ytuu222yRJ1157rTo7O9PtxhSZ\nxlysXt0hh2N2wbiwmvBMgzUzFcJTFSqtVGgvRKpEpdRJQKpjmUsMVhm3Ew5HFIlE9OqreyXF5PU2\nF/ybLbVyDmgu9TlVLecwUAycDyYLBqXly8sdxYz/83+k3t5yRwEUxPQEqqenR9u2bUtuf/zjH0/+\ne+XKlXrooYfMDiGtRAE+EolqaOiEIpG3JSl58U4U5sy+uGcqhKcqVMZn+St/ob1QqRKVUrdCpDr2\nucRghRYzKf45xseX6pJL4tsOh58CSA5KnQhbJfEGrIDzIQcnT0oXp19I/tJIxLwucak8+qi0cmXp\n3g85o4LCHNYcGV8iiQL80NAJjY8vVlPTpILBjrMu3mZf3HMthM9+PBKJaOfO4xV5YqRKVErdCpHq\n2OcSg5HWqlJcvKySyFWqUh+/XN+PGyCqWc1ev8bHpYsuKncUM/7X/5KuuKLcUaDIqKAwR41cpVJL\nFOAjkbe1YMFJRaPSwMCompqOzymgmH1xz7Xb2uznDw0FJLUrGl1ccSeG0UTFzMJjoV0GjbRWmXXx\nikSi2rEj/t7DwyNqb2+R40zNY6WNfyq3UncdzfX9uAFWBxLh1Cp9/KYk6dQpyaR1LPPy0EPWWgQW\nZVOzFRQmq9mjOPtGtmjRpILBBp0+vVSSNDVll88XSBZQCr24Z7tp5tptbfbz6+vH1NV1SfKxSpnw\nIBdmFh4L7TJoJAk06+K1d28oOVtge/tijYzsUVdXOxMw5KHUXUdzfT9ugNWBRDg1y00gc/q09M53\nljeG2f7t36S1aw09dQ8zUpqqEstRVVFBYUE1exeefSNrb1+sffv+U21tC+VyTau7e6FCoZkfWKEX\n92w3zVy7rc1+fvzEmPkayznhgVkXFjMLj6XoMmjWxWtiwpn8t8NhV1dXu665pnKmLbeSUncdzfX9\nuAFWBxLh1Ew9/yIRqcQTVGV0//3SRz5S7iiQp0qsBLFcBUWVqNmr9+wbl8Nh17vetUiXXLIo+bfZ\nBZRCL+7pbprhcETPPuvXwMBJSTZ5vW6tXt2RU9JhpQkPzLqwVHrh0ayLV2NjeM52pR0XGGelG2Al\n1sBaRaVfy8rOasnQd78rfexj5Y4CJVSJlSDlnOG2mln/mzfJ/BuZ1+uWwzFTQOntXZQcX1JoISHd\nTdPnC2jXLofGx+NLt+3adUwORyDv1qhMwuGIhodHdPSo5HJF1d3dKo8n/5t3qkKUWRcWKxUe82HW\nxWvFCrcikco9LjDOSjfAZ5/1a9cuhyYnJZcrvtD02rVLyx1WRaj0a1lRTU1JF1xQ7ihmfOtb0oYN\n5Y4CFkclCBJqNoE6+0Y2t+WnmFOFp7tphkJ2TU7OPG9yss602gyfL6D29ksVCp3Q5KRTIyN7de21\n+S+Sl6q1ye2WKRcWKxUercThsOvyyzkuKK2BgZPJSp/xcWlgYI/R4Rk1r2qvZdPT0jveUe4oZtx9\nt/QHf1DuKFCFqARBQs0kUKlaTDLdyMbGYnrlFb8mJ+1yuaJavjyW93unu2m63VG5XPFCiCS5XNOm\n1WaEQnY5HHb19MQXNbbbwwV1u0nV2vThD7dwYalxdO+qBbYs26hoVkuGvvEN6TOfKXcUgKQqrgRB\nzmomgcp1fM5bbx3R+Hh8pezxcemttwYlFfem0tfXqkjEr4GBPUqMgerrM+fEzNTsnE+hN9X+5l9Y\nwuFI0bpBojJU4gBbK7NiQur1urVr1zFNTtbJ5ZqW1+suazzIIBaTOix0/m3ZIv35n5c7CgAoWM0k\nULmOz+nsbFUoNFNI6OwsfmuK0+nQ2rVLS9L9JVOzcz6F3nKufwTrqsQBtlZmxXNo9eoOORyBOd2f\nUQKxWHxq7XA4+3NL4XOfk77ylXJHAQBlUTOlm1wH/nk8SnZ3i2/7ixpPqWuWM7UO7d07pq6uNjkc\n8Z+DkUJvMdY/smLtOnI3+3ustAV9rf4btGJCSheWIrn0UunYsXJHEXfzzdJ/+S/ljgIAKkb578Yl\nUshitWaM5ylHzfLZBd1L5XDYNTUV1dDQiWTCWKxCb7akNdMxsELB1goxVIL5a6pV0oK+Vmzhma1Y\nMz7xWzbZBz4gvflmuaOI+6M/kv7bfyt3FAAKwDXb+momgSpksVozlKNmeXZh8ehRKRSKJ03d3a0a\nHn5Vdnu0qIXebElo4jNHIhENDQUUibw963XlL9haIYZKMH9NtUpa0NeKLTyzFasih99yDj70IWn/\n/nJHEbdhQ3x6bQA1hWu29VmrtFBDyrGWwOzCocsV1eSkU5LkcDh0+eUt6u8vbqE3WxKaOAZDQwGN\nj3eoqcmlYHBxssCYLvZCGa3ZsXrh2irM+C2n+o4kFb1GzuprehSrIqdmf8sf/ag0OFjuKOI+9rH4\nwqsAkEXNXrMrCN9ImZRjLYHZhcXu7laNjOyV3R4uW1erxDGIRN5WU5NL3d0LJSl5TMwq2Bqt2bFC\n4TpTIjE4OKETJ96UJJ0+3VC2Zn4zfsupvqP4v4tbI1cra3pY4bdcsOuvl55/PuVDl0YiksP47z4m\nKRyeViwm2WyS01mX22Ts69ZJP/xhLq8AAMOq4ppd5UigyqQcA7FnFxY9nqiuvXZFWfvUzj4GweDM\nhB2JgqxZBVujNTtWKFxnSiSmpk5p165mSZPq6WkrWzO/Gb9lI99RMWrkamVCBCv8lufYtEl66qmy\nvX08eaqTJB1dvka/2Xp3TfwOAFQGy12zcRYSKFlzsJ4ZMVm1sJjqQmFmrEZrdooRQ6HfY7ZEYnKy\nTrNP42pp5k/3HVEjlx9Tz/2bb5b+9/82Z9+5ev/7DcXyi8dHFY3OdFm2h0bNjKrqWPGeCVQTq5bX\nMKM6SlsFKveMeKluQLU0gLDUF4pS1uwU+j1mSyRcrmlJ0bMer3TpvqNCvjcKfQbceqv08MNF3WXe\n3eVWrJCefNLQe+wZGJDX6zUcE91jClNL9ycASKXqEygjhSYj3YWy7SeXwlk4HNG2bXt19Gi7XK6o\nurvjs87NvgExgNA8pUzYCl0LK1MiUV//W61aFd/f6dOjVdXMn+47KuR7q7lC39/9nSXG6YTD0xo/\n95167p/+U1J8Tb1yH3e6xxSmVu5PVLoASKc6r3qzGCk0GamNzLafXApnPl9AR48u1dTUIo2PS0ND\nfjU0zP0qUsWU78Wcm0D5FLIWlpQ5kWhsPCyvd6kpcVejii70bdki/Y//Ue4o4s47T+GdPsPXlPnd\n5axw3OkeU5haacGruUoXAIaV/05mMiOFJiO1kdn2k0vhLBSyy+Wa1vh4fHty0n7WDShVTPlezLkJ\nlI/RtbDSbaN4LFPo++//XfqXfynPe8+3cKH061/n/DLfDr/ha4pljjuKplZa8Lg+A0in6q8GRm7e\nRmojs+3H7Y7qyJGohoZOaHKyTueeO6JwuCVlrazbHVV392INDR1LPrevb0XWmPK9mAeD0r598fdy\nuabV02PoZSgCo2thzd6GOUwp9G3dKt17b+H7KYaGBun11+MDjUyWy7WoVgrbtaRWWvC4PgNIp+oT\nqGLdvLPtp6+vVdu27dHkZHxcU3v7irPGNc3d16gaGhL7MjadeL4X8wMHAhof75UkjY9LBw4MSqr+\nm18loHBZOlkLff/8z9Jdd5UuoGz8/pIkQ/lYsOCUdu+eqZRZtepU2ufWSmEb1YfrM4B0qj6BKtbN\nO9t+nE6Hurra1dmZva9/vjHlezG/8MIlCoX8mpy0y+WK6sILl+T83rWklGPGKFya5O674/9ZxaFD\nUl1duaMosknFbyHUyqM6cX0GkE7VJ1ClZHZzf74X80WLbOrpmXmdx+MvZlhVhzFjFnPffdI3vlHu\nKGYcPCjV15c7irI6fbpBPT1ts7atuY4SE+gAAMxAAlVEVm3ut2pcVmX1gcOJQuHg4IQmJvyVVSj8\n/vel228vdxQz3npLslvr+60ElTI2hMoQAIAZKDkUkVWb+60aVy5KWZNs9cJholA4NXVKwWBH+QqF\n//Zv0he/WPr3TefNNyWns9xR1IRKqZSxemUIAKAycTfJU6JAPzYW01tvHVFnZ6s8HhWlYG8kWai1\nrimlrEm2euHQlELhj38s/fVfF76fYnnjDWnBgnJHgTQqpVLG6pUhQLFUdM8EoALVVAJVaNIx+/XD\nwyNqb1+hoaH4DHeh0DH19Cw+q2AfDkf07LN+DQyEJMXk9TZr9eqOjO9rJFmota4ppaxJtnrhMGuh\n8PHHpT/5k9IGlcnrr0uNjeWOAjXI6pUhQLFYpmcCUCNqKoFKl3QYTaxmv/7oUadCoYAmJ+OHcHIy\nPsPW/IK9zxfQrl3NGh9fKknatcsvhyP19OYJRpKFWuuaUrM1yT/7mfTHfzznT6slhcPT+lAkKofD\nLqezhLNLh+J0AAAgAElEQVS77d8vNTeX7v2AAli9MgQollorEwDlVlNnWLoLjM8X0JEjbWcWwXVq\n9+69uvnms9dmmv16l2s6OS34+Hh8Wzq7YB8K2RUKTengQb/CYbtcruNavnxRxjiNJAu1llBURU3y\n009Ln/50wbuxSVrgrJPNZpPTUUDy9OtfSwsXFhwPMFumCqla63oMlEqtlQmAcjOUQD3zzDM6dOiQ\nNm7cqLfeeksXXHCBbBZd4DGTdBeYUMiuoaETGh9fLEk6ejScchHc2a/v7l6okZE9uvDCJXrrrcEz\nY6D8ZxXs3e6ojhwJanKyR5I0PW3XW2+9JekdaeM0kixURUKRA8vVJD/7rLRhQ7mjmLFvn7QonphT\nSEU5ZepeXGtdj4FSSZQJ6ut/K4+noerLBEC5ZU2g/umf/kkHDhzQyMiINm7cqMcee0zHjx/X7Vaa\nitigxAUmGJQOHAgoFluiHTv8WrAgosnJmZp4lyuasvl7dtLi8UR17bWJVqq5ydDsCSZ+85sRnTp1\nWm+//YpaWxfooovc6uxsnfO8+QVdI8lC4jmh0IQeeGC/nnnmbTU0BGWz2TQxsVCLFk3qppsults9\nM/aEgnUaL7wgXXdduaOY8fLLUmv2m9+egQF5vd6z/l4NhdR8f6v8xssvU1ciuhkB5kiUCRobD8vr\nrazrPVCJst69XnjhBf34xz/Wpk2bJEm33HKLPvWpT5kemBkSF5gdO/ySeiVJR45E9dZbL2l09C1N\nTp6vri6nurvb5XYH0r4+m0QB9pVX/BofX6WGhn1auXK5mpriE00kFrI1UtCdXSBcsOCUpPgilol/\nP/ywXxMTS9Xe3qrnnhuS5NZll3VqdFR64IFBfe5zvWfFlen9KlXiOGnPa1r1tU/J6ayTJdpIBwak\n888v6VtWQyE1399qNf/GK0WmrkR0MwIAVIOsJasFZ6YSTnTZm5qa0tTUlLlRmWx2gTI+7qlTv/M7\nLRoaCqi+fkxLlgQKav5O7D8xwcSSJUvU1ORXJPK2PJ5J9fYu0o4dfj3zzNtyOKTu7lY5HI6UBd3Z\nBcLdu/2SXOrpWazdu49JmtTbb1+oaLRDIyN+nTq1QNJMbfvYmCvt5061XQhTav7375c+9CFDT42F\np/S+sE2K2RS2SdKUFjjrc37LmOITNMRiks2muYmYz6dw23mWb+GohkJqvr/VakgeK12q7sWJ60O8\n9X9QF164RIsW2YrSzSgcjmhwMKhAYNSy5yQAoLpkLV28//3v19/93d8pEAjoX//1X/Wzn/1Mq1at\nKkVspomPS4rqlVeO6Ze/HJPDEZDdfqGWL+9QQ4NdfX0tBa3xlCjAJiaYcLvr1dMT30eiBSwY7JDD\n4dL4+GINDfnV09ORsqA7uwAYT8jqzvy7TtGodPLkbzU25tSCBcfldMZUXz8T36JFkynjmr2di/lJ\nUm/vIg0Ojs2a1v1SORz21DX/v/mNtHp1Tu+Xi0g4pljsTMIUsykSjmpBpjVV//M/pc7Os/787Jnv\nJsHjmfs5fLMet2oLRzWMj8v3t1oNyWOlS9VSv2PWedPZ2XHWeVUIny+gkyc7FY22WfacBABUl6wJ\n1Oc//3k98cQTamho0OHDh/WZz3xGV199dSliM01fX6u2bduj4WG36uvr1Nh4hV57LSC7PaArr5zf\nBS/9Gk+Z9u/z+bV8eSzlBBOJpKi7e6GGho6daZlSyoLu7AKhyxVV4itzuab1xhsBLVvWq927j2p6\nul7vfvcBdXVNaGJiIjkGKlVc+RasE8elIXBAl33xCk1FI7rMHk/YVoenJZvkSM4KNy0tKGx67Uyt\nQbMf+//u265fvOHS+PhMd8VzztmjL3zh0pzfM1sLRiW0cFhuwo085PtbrYbksRqZed5UwjkJAKgu\nWe80ExMTmp6e1pYtWyRJDz74oMbHx9XU1GR6cGZxOh3q6mrX6KhdkUidDh8+rhMnjmnZspj6+pbr\nqaeOS1LWNZ6k9F3XZgqwZ8+2l0iKHA77mTFRkykLvOFwRBMTE/rpT3coHHZo2bKY3vOeJZqaimrV\nqlOKxaTTp0P64Aed6u7uVkPDYl1zTVvGz33W+4yMSCtXGjlsuuz0tBItYJI0HbMp2UnOJik2M+oo\n70kan35aujie+GVqDZr/mMu1S5I/ObW815vfWkWZWjDC4YiGh0d09KhTLte0ursXyuMpfgtHYmKQ\nsTFXyslAakG+SWA1JI9Wl093XTNbBufvi1ZHwJqY5AfVJGsC9aUvfUmXXXZZcvvUqVP64he/qHvv\nvdfUwMzmdkcVCIQUiXTJ44kqFBrRgQMT8vkCWrAgomhUWdd4klIPWo/Xgqe/SBitJff5AhocbNS5\n5/ZLkqLRY2pomFR//0yStGvXtCYn6zQ0dEKr3/2W1N6bcl/FYLNJsdjMdp1tZsNur9P0VERSfbK1\nSP/3/0rLl2fc51kX1He2KtHzLpfZvLq6OuTxSKGQ5HZLfX2ZC9HpLuSZvhufL6D29hXJBZRHRvbo\n2mtXZHyffDzwwH6NjvYqGo3o9dcD2rdvUH/4h0u52RSIm3dx5DNRh5ktg319rdq//1ey25tpdQQs\njEl+UE2yJlDBYFA33nhjcvszn/mMnn76aVODKoW+vlY999xe7d+/V6Ojx3Xuud1avNiuYPBcNTW9\nKY8nfRe82UIhuyKR6JnJKOrU1DSmSCSi8fGlklJfJAzVkr/9ti77f7x6X1iKnWn1sSkmhzOW7Bp3\nZXhKl4Vt8f5sNsnpjEl5TJxgyE9/KtvyHu2aNwbqhTNjoPItkGa6oOYym1difFmh75vpuwmF7HI4\nHOrpiT9ut8uUAnhi8o+RkYAmJzsUjU4rGOzI+WZDwjCX1W/elfJ95dNlzsyWQafTod5ej7ze9K3v\nVlYp3ztQKLrboppk/fVGIhENDw+rq6tLkrR3715FIhHTAzOb0+nQlVe2qqenQwMDo5qaalNT0zFJ\n8WnC165N3IzTL3ib6NI1MDCp6Wm32tub5XIt0sDAmC65ZOZ5p46eltrbc47RZtOZrnGJP8TmdI2L\nxWyzxhxJsdh0xv0lxg29+LUfarq3J+cbtVNnJyn9/XPXmdqxw59TQSDTBTVTrXWhNdr5XMjz7YaU\nawFp0aJJjY5K4bD9zPuEDcc4m9UThlKz+s27Ur4vJuoorkr53oFCce1ANclagvjyl7+szZs36+TJ\nk5qamlJLS4v+8R//sRSxmS5RCG9qOq6pKbu6u+OL6S5YcCp9InDqlHQmmYyFp/Un03X69GRUitXJ\nVjelBQscmopGZXfMHFqbbUqnZUs9NXYGTmedpClFwvGLjMNpk9NZn0yEopFp/WTT/6tzPvwhORz2\nrDNbzRk3ZMKNOp+CQOKCGolEktPIpx5LNlehNdr5XMjzTdpyPS433XSxHnhgUL/97bjq60P68Iff\nYThGaSZhMzJNfi2x+s3b6gleAhN1FFelfO9Aobh2oJpkvVK/973v1c9+9jONjY3JZrPJ4/GUIq6S\ncNqk/n+9XaufeGLObG/SrCmxJcVs04o5686aES7xb7u9TrFYnaam4kmNrS4mm21KsZhNNltMkci0\nYtP10pnnhsPTWuBMMUPdz38u9fQkN22SFpz5b7bElMCRSESHhwI6MvyqLr98UdaLkdk36nz2n7ig\n7tx5XFK7urouUTBoN70WNp8Leb5J2+zjEIlEtXNn5m6PbnejPve53lktV8G8Erb50+RnrBioAVa/\neVs9wUtgoo7iqpTvHSgU1w5Uk7Ql3O9973v68z//c33hC19ILqI725133mlqYDmLxaTRUen115P/\nxX7wg/SLos5ik+YkNJOn53aFi8USU2bXzdlOTKpgt9fp9Omp5M7q6x3a90//U+//49/Rjh1+PfVU\no6amFkmSmpr8eu977Rlny8smUSBPjMex2+1zJpZIx+wbdT77T1xQQyG7otHFyb+bXQtbygv57OMy\nNHRC0iJDa9YUmrDNnyY/EpGOHGk7M17Pqd279+rmm1fUTBJl9Zu31RM8mIPvHQAqT9pS6vIzs6d9\n4AMfKFkwebvnHsX+6389K1lKlfSkbPmZZ/5sc/vu/jcF2i5VNNqWnDDi1Knfqrn5pF577bSiUZfs\n9kmtXdunxsYGSZLdPiopXph1uaY1Ph7f1+SkveDEJd9EyOwbdab9ZxsHtGDBKe3ePTMN+apVlT/O\nLmH2camvD6ira2aAXLpEcfbxWrDglKT42DwjLUfppsl//PFRDQ2d0Ph4PFE9ejSsZ5/1J7v31WKr\nVL5yHddm5PlWT/BgDr53AKg8aROo/v741NmHDx/WZz/72ZIFlJclS85Klk45GlUXHp/ztJH3XaVn\nrvpjHVJncn0dp9NxVsHGJiVnm0sUXvcOBDQ1ZVc0GtXp020KBN7Sm292S3LowgvPUSAwqDfemFBP\nTzyBSiQ1bndU3d2LNTR0TJOTdTr33BH19RU29fX8RKW3d5GhrlmpbtTFnAEqU0HAyDigaNSuAwdO\nSbLJ5Tqi1as7qqIwP/u4xJObmc+ULvmdfbx27z4maVI9PdlbraT0iazbHdXkpDP5PJcrqoGBkC65\nJP57ZAC7cZl+z6nOKSYKAACgemTtJzU8PKwDBw6os7Mzrzd49NFH9f3vf192u11/9Vd/pauuuir5\n2Nq1a9Xe3i6bzSabzaa77rpLra15tIrccIN+cc4HFY3OdGOz20fPFFZnCilPPfW0msMfkhTv7ffA\nA4N673tb5xRsnn32zTk18pGIND6+VF1d8UkO3njjoC66KKolS5ZoeLhOiYVllyxZovr6Ednt0TmF\n1njhaVQNDYnCVOFdpuYnKjtmTQ6Ra+GsVAW7bOOjTp9ukN1u1zvesfRMLC75fIG8YrHytMBGWwFn\nH5/4Qs7p18CaL10i29fXqt279+ro0bBcrqi6u1s1PHw87fsivUy/51TnFBMFoFSsfP0DgGqR9S6+\nf/9+ffSjH9XChQvlcDgUi8Vks9n0zDPPZN15MBjUvffeq//4j//Q+Pi4/uVf/mVOAmWz2XT//ffL\n5XIV9CGk1N3a5hdWPZ4lmjozVCkajWpw8LTGxt6Ww+FSd/dCORx2DQyE1NV1iV555ZiGh6MKBIZ0\nxRUNWr58sXp6OlRfP6ZLLunQvn1+OZ3TkhKL7Nrk9TbL4YgqFLLL5wuknUku2w0u1xtgIYWzUhXs\nsnU7TNU6km8shSSFRo59IQUUo911Zh+v+ELOc9fAyofT6dDNN6+YFXtAHk9zsntpIfuuNZl+z6nO\nKSYKQKnQ2gkA5staQv3ud7+b986ff/55XXnllWpoaFBDQ4PuuOOOOY/HYjHFZg82KkCqmv35hdXd\nuwMajQ9N0sjICblczXI4zjkzU9kx9fQslhTT0NAJvfZagyYn23T69Em99ppddvsJ9fQsltfrlsMR\nX2TX5fqNJiedqq+vk9fbLEmGblzZbnC53gALKZyVqmCXreUlVeuI2x3I670KSQqNHPtSFFBmH69V\nqxJjoEYLHrs2/5yIJ4MMYM9Vpt+zkcocjjPMQmsnAJgv45X1l7/8pX7zm9/I6/XqPe95T8479/v9\nOnXqlD772c/q5MmTuuWWW3TFFVfMec6WLVt06NAhrVy5UrfddlvO75FgpGb/ppsu1v33v6A9e6Z1\n9OgJXXbZcr3znS164w3/mZnKJuX1NutXv6pTOJzomrdAR47s0/S0S273W7rppovldicWj527yO7j\nj4/O2U5348p2g8v1BlhI4awYBbtiDJBP1TqSbyEz16Rwdvx7946pq6tNjjPreKU69qUooGQ6XokF\niwcHJzQx4Tdt3Fo1MKs7U6bjZqQyBzALrZ0AYL60Jb/vfOc7eu6559Tb26uvfvWr+tM//VN97GMf\ny2nnsVhMwWBQ9913nw4dOqQbb7xRTz/9dPLxW2+9Vf39/fJ4PNq8ebOefPJJXX311fl/mllSFZzc\n7kZ5ve3q6op3wRsf79AbbxxTT0+HPB6pv79D4XBEr7yyVwcOuDU93aipKYeWLOnRsmVSZ+diDQ76\n1d/fmPI9jd64sj0v1xnpCimcFaNgV6wWmXSx5FoIzjUpnB3/1FR8lsV4a2Tq77DcBZREvFNTpxQM\ndtBFJ4NydGciWUI50doJAOZLm0A9++yz+tGPfiS73a6TJ0/qL//yL3NOoM4991z19vbKZrPpggsu\nUFNTk44fP66WlhZJ0nXXXZd87po1azQ0NJQ1gRoYGDD03oODQZ08OTPxxf79v1Jvr0eDgxOamjql\n+vqIgsFDOnz4hMbGTqmt7Rzt3/+qVqxwa+VKyeF4Q6+8Mq3XXz8lh6NNr73WLL//kN75zjE1Nh5O\n7jcSiWrv3pAmJpyqqwvpjTd2anx8oRYuHNe1156rgYHDZ8XmcEQ1OvqqJiacamwMa8kS95znvfba\nMfn9bTp92q4FC6J67bVRLVx4zNDnLsTsz9LYGNaKFe5kS0ym5wwOhjU1dSr5nPr63845RoVK911m\n0tgY/0+S9uzJHEviNyFJ9fURHTz4shobz0n53UjZvz8jjBxrI/G+/vrrRT/elWz+cX377TrZbOb9\nNmEdRu8NtSCX6x+qD+cCYL60JTan0ym7Pf5wc3OzphKzL+Tgyiuv1Fe+8hX92Z/9mYLBoCYmJpLJ\nUygU0l/8xV/o+9//vhYsWKAXX3xR69evz7pPr9dr6L0DgdF5s/I1y+tt08TEzIx1l1wiHTgwqM7O\n3uTzIpF4DfXll8e377lnUKOjM487nYPyeme2d+zwq60tvr99+45pyZJJffCDidpnv7ze1DXRif2n\ni729fe6Mgl5v/gvvGjX7s0jxY3H55R1Zn9PbOzP2S5I8noa0nzsf6b7LYpn9m5Ckyy8/J2sLQqbv\nzwgjxzqdRLyvv/663v3udxf9eFey+cd1cnJQnZ3vTm5zrKrTwMCA4XsDUM04F4A4sysS0iZQNpst\n47YRbW1tWr9+vTZs2CCbzabbb79d27dvV3Nzs9atW6f169frhhtuUFNTk5YtW2YogTIqXTer+d0b\nYrElc143fzzLhRcuUSg0053uwgvTPz/X6aZzjd1sRsb2pHrOhz/cYmqXEbOPRzm6vBQyjioRb339\nb+XxNNBFZ5b5x7Gzs1UeD92ZAABA8aQttQ0PD+uLX/xi2u0777zT0Bts2LBBGzZsSPnYpk2btGnT\nJqOx5iRdoTj1Gkozr5tfOF+0yKaentmtK/45j7vdUR05El8j6sCBCTmdIUUiLXI4HHkX9MvVh91I\nopLqOWaP+TD7eJRjzEohSWEi3sbGw7SmzDP/uCbGNgIAABRL2gTqb//2b+dsz589z+qMFoqNTK+d\n7fFt2/ZqcnKpurrsks7R8PCruvzylrwL+uUahG4kUSlHclfpg/JTTYLBQG9zcFwBAIDZ0iZQH//4\nx0sZR9kYmV472+NdXe3q7FyU/JvdLvX3mz9mqdiMJCqVnsyUQ7qZ4DiOxcfvEwAAmK2u3AFUg/nd\nr1h3A7OxsCUAAED1IIEqgr6++EB1u31UHo+fbkOYgwQbAACgelAVXgR0G0ImjMsBAACoHlkTqBUr\nVpy1BlR9fb2WLl2qLVu26LLLLjMtOOQn1aQFTqej3GHVLBJsAACA6pE1gfryl78sp9OpdevWKRaL\n6amnntLJkye1cuVKfeMb39CPf/zjUsSJHKSbtAAAAABAYbKOgXriiSf0yU9+UosWLVJLS4s++clP\naseOHXrPe94ju50egFbEpAUAAACAObKWrE+fPq0HH3xQXq9XdXV12rNnj44dO6bdu3ef1bUP1lDI\nIq0AAAAA0suaQN155536zne+o3//93/X9PS0urq6dOeddyoajWrr1q2liBE5YtICAAAAwBxZE6il\nS5fq7rvv1tjYmOrq6rRw4cJSxIUClHvSAiaxAAAAQLXKOgZqYGBA69at00c+8hGtX79ev/u7v6s9\ne/aUIjZUqMQkFtFom4LBDvl8gXKHBAAAABRF1haof/7nf9Z9992n7u5uSdIrr7yirVu36kc/+pHp\nwaEyMYkFAAAAqlXWFqi6urpk8iRJy5cvV319valBobLNn7SCSSwAAABQLQwlUE8++aRCoZBCoZB+\n+tOfkkAho76+Vnk8ftnto/J4/ExiAQAAgKqRtW/V17/+df3DP/yD/v7v/142m03ve9/79PWvf70U\nsaFClXsSCwAAAMAshmbh+/73v1+KWAAAAADA0tImUH/4h38om82W9oVMIgEAAACg1qRNoP76r/+6\nlHEAAAAAgOWlTaBWrVpVyjgAAAAAwPKyzsIHAAAAAIirmRVOw+GIfL6AQiG73O6o+vpa5XQ6yh3W\nWSolTgAAAKAW1UwLlM8XUDDYoWi0TcFgh3y+QLlDSqlS4gQAAABqUc0kUKGQPeO2VVRKnAAAAEAt\nqpnSudsdVTA4d9uoUnarSxUn3fqqA98jAABA5auZFqi+vlZ5PH7Z7aPyePzq62s1/NpSdqtLFSfd\n+qoD3yMAAEDlq5kWKKfTof7+jrxeW8pudanipFtfdeB7BAAAqHw10wJViPnd/XLp/lcN74/i4HsE\nAACofCRQBhTS/a8a3h/FwfcIAABQ+ehDZEAh3f+q4f1RHHyPAAAAlY8WKAAAAAAwiAQKAAAAAAyi\nC1+FYk0hAAAAoPRogapQrCkEAAAAlB4JVIViTSEAAACg9EigKhRrCgEAAAClRwJVoVhTCAAAACg9\n+n1VKNYUAgAAAEqPFigAAAAAMIgECgAAAAAMIoECAAAAAIMYAzVLLovTmvVcAAAAANZFC9QsuSxO\na9ZzAQAAAFgXCdQsuSxOa9ZzAQAAAFgXJfkzwuGIhodHNDpqVyAQ1JIlC3XeeSMKh1tSdrdzu6MK\nBudup5PLcwEAAABYFy1QZ/h8AbW3r1AgcFhvv+3WkSMH1d6+Im13u1wWsmXRWwAAAKA60AJ1Rihk\nl8Ph0Pnnt6u1dZHq6yWHw5G2u10uC9my6C0AAABQHUxvgXr00Ud13XXX6fd///f1y1/+cs5jzz//\nvD75yU/qU5/6lO677z6zQ8ko0a3O5Zo+8//onL8DAAAAgKkJVDAY1L333quHHnpI3/ve9/TUU0/N\neXzr1q2655579OCDD+q5557T8PCwmeFklOhm19Mzqba2QS1fHqO7HQAAAIA5TO3C9/zzz+vKK69U\nQ0ODGhoadMcddyQfO3jwoDwej9ra2iRJV111lXbu3Kmuri4zQ0prbjc7utsBAAAAOJupCZTf79ep\nU6f02c9+VidPntQtt9yiK664QpJ09OhRtbS0JJ/b0tKigwcPmhlOWix0CwAAAMAIUxOoWCymYDCo\n++67T4cOHdKNN96op59+Ou1zjRgYGChmiJKkwcGgTp7sTG7v3/8r9fZ6iv4+QLGZcT4AlYhzAYjj\nXADMZ2oCde6556q3t1c2m00XXHCBmpqadPz4cbW0tKi1tVVHjhxJPnd0dFStrdnHG3m93qLHGQiM\nKhptS27b7c3yetsyvAIov4GBAVPOB6DScC4AcZwLQJzZFQmmTiJx5ZVXyufzKRaLaWxsTBMTE8lu\nex0dHRofH9fIyIii0aieeeYZrV692sxw0po/0x4z7wEAAABIxdQWqLa2Nq1fv14bNmyQzWbT7bff\nru3bt6u5uVnr1q3Tli1bdNttt0mSrr32WnV2dmbZozn6+lrl8/nnjIECAAAAgPlMX0h3w4YN2rBh\nQ8rHVq5cqYceesjsELKy4kK3TGwBAAAAWI/pC+kiPz5fQMFgh6LRNgWDHfL5AuUOCQAAAKh5prdA\nVSIrtP6EQvaM2wAAAABKjxaoFKzQ+sPEFgAAAID1kEClYIXWn76+Vnk8ftnto/J4/ExsAQAAAFgA\n/cJScLujCgalSCSioaGA6uvHSt6Vz4oTWwAAAAC1jhaoFBKtP8PDr0pyqavrEiZyAAAAAEALVCqJ\n1p9QyK5odHHy79m68llh8gkAAAAA5qEFKoNcJ3Lw+QI6cqRNu3fb9dRTjdq2ba/C4YiZIQIAAAAo\nIRKoDHKdyCEUsmto6ITGxxdramqRjh5tp9sfAAAAUEWqrgtfMbvR5TqRg9sd1eSkM7ntckVZvwkA\nAACoIlXXAlXONZz6+lp17rlvqr5+VE1NfnV3t7J+EwAAAFBFqq55ZHaLTyQS0XPPBbRz55ikmLze\nZq1e3WHaxA5Op0M337xiVgtYgPWbAAAAgCpSdQlUYg0nSRoaCuiNN85Ra2uXJGnXLr8cjoCp6yux\nfhMAAABQvaquC9/siR/q68e0ZMnC5GOTk3bGJAEAAADIW9VlE7NbgNzuqJ57zqbx8fhjLldUbncZ\ngwMAAABQ0aougZqtr69VkYhfAwO/VWIMVF/f3O51LH4LAAAAwKiqTqCcTofWrl2qtWvTPycxa58k\nBYOSz+dnDBMAAACAlKpuDFSu5o+JYowUAAAAgHRqPoGav04T6zYBAAAASKfmE6jZs/Z5PH7WbQIA\nAACQVs33V2PdJgAAAABG1XwLFAAAAAAYVTUtUExHDgAAAMBsVZNAmTEdOUkZAAAAgNmqJoEyYzry\nbEkZCRYAAABQW6pmDJQZ05FnS8oSCVY02qZgsEM+X6Dg9wQAAABgXVWTQJkxHXm2pIxFeAEAAIDa\nUjUlfjOmI+/ra5XP55/TRW82tzuqYHDuNgAAAIDqVTUJlBmyJWXZEiwAAAAA1YUEqgAswgsAAADU\nlqoZAwUAAAAAZiOBAgAAAACDSKAAAAAAwCASKAAAAAAwiAQKAAAAAAwigQIAAAAAg0igAAAAAMAg\nEigAAAAAMIgECgAAAAAMIoECAAAAAINIoAAAAADAIHu5A6h04XBEPl9AoZBdbndUfX2tcjod5Q4L\nAAAAgAlogSqQzxdQMNihaLRNwWCHfL5AuUMCAAAAYBISqAKFQvaM2wAAAACqR1WV9svRnc7tjioY\nnLsNAAAAoDpVVQKV6E4nSUeORLRt2151dbWbmkz19bXK5/PPSdoAAAAAVKeqSqBmd5975RW/hocX\n6TuHGIYAABNcSURBVOhRp1wuuyIRv9auXVr0Viqn06H+/o5ihA8AAADA4kxNoHbt2qVbb71VF110\nkWKxmC6++GJ99atfTT6+du1atbe3y2azyWaz6a677lJra/4tOLO70w0PhzQ9faGmps7R+Lg0MPBb\nrV07t5UqGJR8Pj8JEAAAAABDTG+BWrVqlb797W+nfMxms+n++++Xy+UqynvN7k7nco3J41k269GY\nJCZ9AAAAAJA/07OHWCyW8bFMj+dqdne6BQtOadeuw5qctMvlisrrbZaUetKHcDiiZ5/1a2DgpCSb\nvF63Vq/uYD0nAAAAAHOYnkANDw9r8+bNOnHihG655RZ94AMfmPP4li1bdOjQIa1cuVK33XZb0d53\n9eoOORwBhUKS2y319cUTq1STPvh8Ae3a5dD4+KWSpF27jsnhCNC1DwAAAMActlgxm4DmGR0d1Usv\nvaRrrrlGBw8e1I033qif//znstvjedsjjzyi/v5+eTwebd68WZ/4xCd09dVXp93fwMCAKXE+99yE\n9uxpUix2niSprm5MK1Yc15VXNpryfgAAAADM4/V6Tdu3qS1QbW1tuuaaayRJF1xwgc4991yNjo6q\noyPesnPdddcln7tmzRoNDQ1lTKAkcw7GxIRfExPS+Hi7JKmpaYF6ez3yemmBgnUNDAyYenEAKgXn\nAhDHuQDEmdXoklBn5s4fe+wx3XPPPZKkY8eO6fjx42pra5MkhUIhbdy4UadPn5Ykvfjii7rooovM\nDGeOUGhC99wzqH/4h19rYGBEK1ac0Dnn7NE55+zVqlUnWc8JAAAAwFlMbYFau3at/uZv/kZ/8Ad/\noFgspi1btuixxx5Tc3Oz1q1bp/Xr1+uGG25QU1OTli1bpvXr15sZzhwPPLBfo6O9kqRjxyS7fVBf\n+EJvyd4fAAAAQOUxNYFqamrSd7/73bSPb9q0SZs2bTIzhLTGxlwZtwEAAABgPlO78FnZokWTGbcB\nAAAAYL6aTaBuuulitbUNyun8tdraBnXTTReXOyQAAAAAFmf6OlBW5XY36nOfY8wTAAAAAONqtgUK\nAAAAAHJFAgUAAAAABlV1F75wOCKfL6BQyC63O6q+vlY5nY5yhwUAAACgQlV1C5TPF1Aw2KFotE3B\nYId8vkC5QwIAAABQwao6gQqF7Bm3AQAAACAXVZ1Aud3RjNsAAAAAkIuqTqD6+lrl8fhlt4/K4/Gr\nr6+13CEBAAAAqGBV3afN6XSov7+j3GEAAAAAqBJV3QIFAAAAAMVEAgUAAAAABpFAAQAAAIBBJFAA\nAAAAYBAJFAAAAAAYRAIFAAAAAAaRQAEAAACAQSRQAAAAAGAQCRQAAAAAGEQCBQAAAAAGkUABAAAA\ngEEkUAAAAABgEAkUAAAAABhEAgUAAAAABpFAAQAAAIBBJFAAAAAAYBAJFAAAAAAYRAIFAAAAAAaR\nQAEAAACAQSRQAAAAAGAQCRQAAAAAGEQCBQAAAAAGkUABAAAAgEEkUAAAAABgEAkUAAAAABhEAgUA\nAAAABpFAAQAAAIBB9nIHUEzhcEQ+X0ChkF1ud1R9fa1yOh3lDgsAAABAlaiqFiifL6BgsEPRaJuC\nwQ75fIFyhwQAAACgilRVAhUK2TNuAwAAAEAhqiqBcrujGbcBAAAAoBBVlUD19bXK4/HLbh+Vx+NX\nX19ruUMCAAAAUEWqqo+b0+lQf39HucMAAAAAUKWqqgUKAAAAAMxEAgUAAAAABpFAAQAAAIBBpo6B\n2rVrl2699VZddNFFisViuvjii/XVr341+fjzzz+vb37zm6qvr9eaNWu0efNmM8MBAAAAgIKYPonE\nqlWr9O1vfzvlY1u3btUPfvADtba2auPGjVq/fr26urrMDgkAAAAA8mJ6F75YLJby7wcPHpTH41Fb\nW5tsNpuuuuoq7dy50+xwAAAAACBvpidQw8PD2rx5sz796U/r/2/v7mOqrPs4jn8ujogKGiKe00Rn\nD+bDnKaiQ1N8IKcxXTrTmZHGsqzQQDEnaUE5pyamtbE0h39kNlsPs+EqIXOajQJFpzOHTnMlOEEe\n1B2Q6OTv/sN57pAHr7vO8QD3+/XXuZ5+53sxv158zu86F/n5+d71FRUVioiI8C5HRESovLzc3+UA\nAAAAwD/m11v4+vbtqyVLlig+Pl4XL17UggUL9N1336lDh8Zv29xM1Z2Kiop8XSbQZtEPwC30AnAL\nvQD4n18DlMvlUnx8vCSpT58+ioyMVFlZmaKiouR0OnXlyhXvvmVlZXI6nXcdMzo62m/1Am1JUVER\n/QCIXgBuoxeAW/z9QYJfb+Hbu3evsrKyJEmVlZWqqqqSy+WSJEVFRammpkaXLl2Sx+PRwYMHNW7c\nOH+WAwAAAAD/il9noOLi4rR8+XLNmzdPxhhlZGRo79696tq1qyZPnqyMjAylpqZKkqZPn66+ffv6\nsxwAAAAA+Ff8GqBCQ0O1bdu2ZrePHDlSn376qT9LAAAAAACf8ftT+AAAAACgvSBAAQAAAIBNBCgA\nAAAAsIkABQAAAAA2+fUhEvdCff2fKigol9vdQWFhHsXEONWxY3CgywIAAADQDrX5GaiCgnJdvRol\nj8elq1ejVFBQHuiSAAAAALRTbT5Aud0dWlwGAAAAAF9p8wEqLMzT4jIAAAAA+EqbD1AxMU6Fh5eq\nQ4cyhYeXKibGGeiSAAAAALRTbf5+t44dgxUbGxXoMgAAAAD8H2jzM1AAAAAAcK8QoAAAAADAJgIU\nAAAAANhEgAIAAAAAmwhQAAAAAGATAQoAAAAAbCJAAQAAAIBNBCgAAAAAsIkABQAAAAA2EaAAAAAA\nwCYCFAAAAADYRIACAAAAAJsIUAAAAABgEwEKAAAAAGwiQAEAAACATQQoAAAAALCJAAUAAAAANhGg\nAAAAAMAmAhQAAAAA2ESAAgAAAACbCFAAAAAAYBMBCgAAAABsIkABAAAAgE0EKAAAAACwiQAFAAAA\nADYRoAAAAADAJgIUAAAAANhEgAIAAAAAmwhQAAAAAGATAQoAAAAAbCJAAQAAAIBNBCgAAAAAsIkA\nBQAAAAA2EaAAAAAAwCYCFAAAAADYRIACAAAAAJsIUAAAAABgUwd/v8Eff/yh6dOna/HixZo5c6Z3\nfVxcnHr16iXLsmRZljZt2iSn0+nvcgAAAADgH/N7gPrggw8UHh7eaL1lWcrOzlanTp38XQIAAAAA\n+IRfb+H79ddfdeHCBU2YMKHRNmOMjDH+fHsAAAAA8Cm/BqiNGzcqLS2t2e0ZGRl65plntHnzZn+W\nAQAAAAA+4bdb+L766iuNGjVKvXr1kqRGs00pKSmKjY1VeHi4kpKSlJeXpylTptx13KKiIr/UC7RF\n9ANwC70A3EIvAP7ntwB16NAhlZSUKC8vT5cvX1ZISIjuv/9+jRkzRpI0Y8YM777jx4/X2bNn7xqg\noqOj/VUuAAAAANyV3wLUli1bvK+zsrLUu3dvb3hyu916+eWXtWPHDoWEhOjo0aOaOnWqv0oBAAAA\nAJ/w+1P4/m7Pnj3q2rWrJk+erKlTp2ru3LkKDQ3VoEGDCFAAAAAAWj3L8Cg8AAAAALDFr0/hAwAA\nAID2hAAFAAAAADYRoAAAAADApnv6EIl/Y/369Tpx4oQsy9KqVas0ZMiQQJcE+ERhYaFSUlL0yCOP\nyBijAQMG6IUXXtCKFStkjFHPnj21ceNGBQcHKycnRzt37pTD4dCcOXM0e/ZseTwepaWl6dKlS3I4\nHFq/fr169+6t4uJivfXWWwoKCtKAAQOUkZER6FMFmlVcXKxXX31ViYmJSkhI0OXLl/3WA9nZ2crN\nzVVQUJCSkpI0YcKEAJ898F939sLrr7+uU6dOqXv37pKkhQsXasKECfQC2r2NGzfq2LFj+uuvv7Ro\n0SINGTKk9VwXTBtQWFhoXnrpJWOMMefOnTNz584NcEWA7xQUFJjk5OQG69LS0kxubq4xxpjNmzeb\n3bt3m9raWjN16lTjdrtNXV2dmT59url27ZrZs2ePWbNmjTHGmB9//NEsXbrUGGPM/PnzzalTp4wx\nxqSmppoffvjhHp4VYF9tba1JTEw0GRkZZteuXcYY//XAxYsXzaxZs4zH4zGVlZXmiSeeMDdv3gzA\nWQONNdcLBw8ebLQfvYD27OeffzYvvviiMcaY6upqM3HiRJOWlmb27dtnjAn8daFN3ML3008/afLk\nyZKkhx9+WNevX1dNTU2AqwJ8x9zxMMzCwkJNmjRJkjRp0iTl5+frxIkTGjp0qEJDQxUSEqIRI0ao\nqKioQX889thjOn78uP7880+VlJRo8ODBkqS4uDjl5+ff25MCbAoJCdGHH36oyMhI7zp/9UBBQYHG\njx8vh8OhiIgIRUVF6dy5c/f+pIEmNNULTaEX0N6NGjVK77//viSpW7duqq2t1ZEjRxQXFycp8NeF\nNhGgKioqFBER4V3u3r27KioqAlgR4Fvnz59XUlKSEhISlJ+fr7q6OgUHB0uSevToofLyclVWVjbo\ng4iICF25cqVBf1iWJcuyVFFRofDw8Eb7Aq1RUFCQOnbs2GDdjRs3fN4DLY0BtAZN9YIk7dq1S889\n95yWL1+u6urqRr8X0Qtob4KCgtS5c2dJ0hdffKGJEye2qutCm/kO1N/d+Wk90Jb17dtXS5YsUXx8\nvC5evKgFCxbI4/F4tzf3772l9ZZl0SdoN/zZA/QJWrsZM2YoPDxcAwcO1Pbt25WVlaXhw4c32Ide\nQHu1f/9+ffnll9qxY4emTJniXR/o60KbmIFyOp0NZpzKy8vVs2fPAFYE+I7L5VJ8fLwkqU+fPoqM\njNT169dVX18vSSorK5PL5ZLT6Wzwicjf19/uD4/H4/1y5dWrVxvs63Q67+FZAf9OaGioz3uguTHo\nDbRmo0eP1sCBAyVJjz/+uM6ePSuXy0UvoN07fPiwtm/fruzsbIWFhbWq60KbCFBjx45Vbm6uJOmX\nX36Ry+VSly5dAlwV4Bt79+5VVlaWJKmyslKVlZWaNWuW9u3bJ0nKzc1VbGyshg4dqlOnTsntdqum\npkbHjx9XdHS0xo4d6933wIEDiomJkcPh0EMPPaRjx45JkvLy8hQbGxuYEwT+gTFjxnj/3/dlD8TE\nxOjQoUPyeDwqKytTeXm5+vXrF7DzBO4mOTlZZ86ckXTru4H9+/enF9Duud1uZWZmatu2beratauk\n1nVdsEwbmbPdvHmzCgsL5XA4lJ6ergEDBgS6JMAnampqtHz5cl27dk3GGC1evFgDBw7UypUrVV9f\nr169emn9+vVyOBzKy8tTdna2goKCNH/+fE2bNk03b97U6tWr9dtvvykkJEQbNmyQy+XS+fPnlZ6e\nLmOMHn30Ua1cuTLQpwo06cSJE3rjjTdUVVUlh8Oh++67Tzt27FBaWppfeuCTTz5RTk6OLMvSsmXL\nFBMTE+CfAHBLU72QnJysrVu3KjQ0VKGhoVq3bp0iIiLoBbRrn332mbKysvTAAw94b7975513tHr1\n6lZxXWgzAQoAAAAAAq1N3MIHAAAAAK0BAQoAAAAAbCJAAQAAAIBNBCgAAAAAsIkABQAAAAA2EaAA\nAAAAwKYOgS4AANB+ZWZm6uTJk6qvr9fp06c1fPhwSdLs2bP15JNPNntcTk5Oi9t///13JSYm6sCB\nAz6vGQCAlhCgAAB+s2LFCklSaWmpEhIStHPnzrseU1paqs8//7zFACVJlmX5pEYAAP4XBCgAQEDU\n1NQoPT1dZWVl8ng8euqppzRnzhy99tprOn/+vFatWqW1a9cqPT1dFy5ckMfj0fDhw5WWltbsmLf/\nynxwcLBqamqUmpqqMWPG6L333lNZWZlKSkq0atUqdevWTWvWrFFdXZ1u3Lih1NRUjR49utnjAQC4\njQAFAAiIjz76SD169NC7776ruro6xcfHa9y4cUpOTtbWrVu1bt06VVdXa9CgQVq7dq0kacqUKZo7\nd64cDkeTY165ckXLli3TyJEjdfToUWVmZnoD0KVLl/Txxx9LkhYuXKikpCRFR0ervLxc8+bN0/ff\nf9/i8QAASAQoAECAnDx5UvPmzZMkderUSYMHD9bp06fVpUsX7z7dunVTaWmpnn76aQUHB6uqqkrV\n1dWKjIxscsyePXsqMzNTW7ZsUX19va5fv+7dNmzYMO/rgoIC1dfXe5dvj93S8QAASAQoAEArcfPm\nzUbfa8rJydGZM2e0e/duWZalmTNntjjG22+/7X1ARXFxsVJSUrzbgoODva87deqkrVu3KiwsrMHx\nS5cubfZ4AAAkHmMOALhHjDENlocNG6bDhw9Lktxut4qLizV48GBZliWPxyNJqqys1IMPPijLsnTy\n5EmVlJR4Z47uHE+Sqqqq1K9fP0nS119/3WCW6e9GjBihb775xvseGzZs+J+OBwD8/yJAAQDuiTtn\nlxYsWKDq6mo9++yzWrhwoVJSUuRyudS/f39dvnxZixYt0rRp03TkyBHNnz9f+/fvV2JiotasWaPa\n2tomn8KXmJio1NRUPf/884qJiVHnzp21adOmRvu++eab+vbbb5WQkKBXXnnF+z2n5o4HAOA2yzT1\nER4AAAAAoBFmoAAAAADAJgIUAAAAANhEgAIAAAAAmwhQAAAAAGATAQoAAAAAbCJAAQAAAIBNBCgA\nAAAAsOk/5Hwj6NucW/4AAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "print 'rsquared', linreg_r2(data['Total area'], data['log Price'], plot=True)[0]\n", + "plt.xlabel('Total area');\n", + "plt.ylabel('log Price');\n", + "plt.xlim(0,200000);" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`Total area` was the most insightful dimension, with its model explaining 16.8% of variance. Still, however, this is not a great result and we are still attempting to understand a complex, multidimensional dataset from a single perspective. Let's see if averaging the models, combining information from all 3 dimensions, can produce a more accurate model. \n", + "\n", + "*Note: In the below plot, the blue line is not the model but the line $Y=X$. Points along this line mean the combined model perfectly predicted the observed `log Price`.*" + ] + }, + { + "cell_type": "code", + "execution_count": 147, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "rsquared: 0.185624465575\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0YAAAHsCAYAAAD2PL25AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xt01PWd//HXJDPJhEwgCSSBBIk2NigXbYwSu0jxgqXo\nWlsXq0er1fWUtupqt3Zb3bVqL0qtpbQ9XlrOWmm3/rbH2rW2W3HrrRplGWrIImAhigJmkFwgE5iB\nycwk8/tjmGEmmcnMJHOf5+Ocnvqd6+c73++Qz2ven8/na/D5fD4BAAAAQAErynQDAAAAACDTCEYA\nAAAACh7BCAAAAEDBIxgBAAAAKHgEIwAAAAAFz5jpBiSio6Mj000AAAAAkOVaW1sTfk5OBSNpYjuJ\n7NDR0cHxy1Ecu9zG8cttHL/cxbHLTZfd8Wzwv/+45vIMtgQTNdFiCkPpAAAAAIWHovuumZ3BliAT\nCEYAAAAACl7ODaUDAAAAEuXz+TQ0NBT1/i9//yVNr/B3jX9250XasWOHXC5XupqHCSotLZXBYEjK\naxGMAAAAkPeGhoY0NDSk0tLSiPf/7M6Lwrbnz5+fjmZhEgJB12w2J+X1CEYAAAAoCKWlpUnrRCP/\nMMcIAAAAQMEjGAEAAAAoeAQjAAAAAAWPYAQAAACkwWOPPaa1a9cGt30+nz7zmc+oq6sr6nOuu+46\nbdq0Kbj9wAMP6IknnhjzuIcfflg2my24fdddd02ojbt27dLevXsn9NzxHD16VBdeeGHU+zdv3qzb\nbrstuB3afpvNpocffjjpbRqNxRcAAACANPjHf/xHfeYzn9G1116r2tpaPf300zrzzDPV3Nwc9Tn3\n3Xefvva1r+l3v/ud3nvvPW3ZskVPPfVU2GPuuOMO9ff3y2az6WMf+5heffVV9fT06N5779WFF16o\npUuXxt3GF154QQsWLFBjY+OE9zMSn88Xc1ltg8GgV155Ra+99pp27dqlW265Reeff762bNmi7u5u\n7du3Tz/4wQ+S2q5QBCMAAAAgDUpLS3XzzTdr7dq1uvfee/XEE0/oySeflCTdfvvtGhgYkOQPESUl\nJXr88cfV1NSkiy++WP/+7/8uq9Wqe+65R0VF4YO+Vq9erZtuukkNDQ266qqrtGzZMt10000688wz\ntXTpUl133XVavHixNm3aJLvdrp/97GeaOXOmHnroIW3ZskUjIyO65pprdPrpp+s3v/mNqqurNX36\ndC1cuFCSv2LzjW98Q3PmzFFnZ6euvvpq7dq1S9u2bdM111yja665RlarVWvXrpXJZNLMmTP1wAMP\naGhoSLfddpvcbrfOOuusYHvffPPN4GNnzZql7373u8H7LrjgAh04cEBbt27V6tWrNXXqVO3bt08H\nDhzQ6tWrU3p8CEYAAAAoOL/44w69sdUW+4EJWHxmg/7xsvGvf3TZZZfp17/+te6++25dccUVqqqq\nkiT95Cc/ifqcVatW6dOf/rTOPvtsnXHGGWPu37hxo2655RZt3LhRw8PDevHFF/WjH/1Iv/vd74KP\nqaio0Pr167VmzRr9+c9/1rx58/Tuu+/qP//zP3Xs2DF9+tOf1rPPPqslS5boU5/6VDAUBezcuVOP\nPfaYBgYGdOmll+qVV16Ry+XSbbfdpmuuuUb33Xef1q9fr7q6On3ve9/TH//4R7lcLjU3N+vOO+/U\nc889pz/96U+SpPvvv1+//OUvNXXqVD300EPasGGD6urqgu+1b98+rV69Wq+88opWrFihoqIi3XDD\nDero6NCiRYtiH4gJIhgBAAAAafTP//zP+sY3vhF3BeTgwYMqKSnRrl27Ig5JO//88yVJ5557riTp\nqquukiT9y7/8S/Axra2tkqSZM2fKbrdr+/btOueccyRJZWVlOvXUU7Vnz56obZgzZ46mTp0qo9Go\nGTNmqKamRkePHtWRI0c0ODiooqKiYLhZtGiRNm/eLEnB92hrawvuy549e3TrrbfK5/PJ5XKpuro6\nLBh985vflCTNnTs3+HmlA8EIAAAABecfL5sfs7qTKieddJJqa2tlMpmCt0UbSidJ3/72t3X33Xfr\nL3/5i375y1/qhhtuSPg9jcYT3f5AuPL5fMHb3G73mCF6oYqLiyP+t8/nU1FRkUZGRoK3eTweFRUV\naXh4OPiagftLSkpUV1enX/3qV2GvHwhSmUQwAgAAANIsNJRI0YfSPffccyovL9eiRYs0f/58XXnl\nlbr00ktVU1MzqfdfuHChHnvsMX3xi1+U0+lUd3e3Tj75ZBkMBnk8nnHbO7rtFRUVKioq0oEDBzRz\n5kxt3rxZZ599tgYHB7Vt2zZdfPHFwZX1KioqZDAYtHv3bjU1NenXv/51SofHJYJgBAAAAKRZrBXa\nJOnIkSP66U9/ql//+teSpPLycn3lK1/R6tWr9aMf/WhS73XWWWdp3rx5+vznPy+v16uvf/3rMpvN\nOvvss/XAAw/IYrEEh+aNfo1Ir/ed73xHX/va12Q0GjVnzhxdeumlcjqduuWWW3TjjTeGLb7wve99\nT3fddZdKSkpUW1urq666Sp2dnXHvT6oYfKMjXxbr6OgIjo9E7uH45S6OXW7j+OU2jl/u4thlF5fL\nJUkym80ZbgmSJdoxneh3jwu8AgAAACh4BCMAAADkvS9//6VMNwFZjmAEAAAAoOCx+AIAAADy2mV3\nPKvpFUYNDQ1luilIoqGhIZWWlibt9agYAQAAIO8dcnh1+9rX4378jh07UtgaJENpaWlSgxEVIwAA\nAOSty+54VpLk80nr77s0oeeygl1hoWIEAAAAoOARjAAAAJCXAtUiSfrjmssz2BLkAoIRAAAAgIJH\nMAIAAEDeoVqERBGMAAAAABQ8ghEAAADyCtUiTATBCAAAAEDBIxgBAAAgb1AtwkQRjAAAAAAUPIIR\nAAAA8gLVIkwGwQgAAABAwSMYAQAAIOdRLcJkEYwAAAAAFDyCEQAAAHIa1SIkA8EIAAAAQMEjGAEA\nACBnUS1CshhT+eJPP/20nn32WRkMBvl8Pu3YsUNbtmwZ87g1a9bo//7v//Qf//EfqWwOAAAAAESU\n0mC0cuVKrVy5UpL017/+Vc8///yYx+zevVtvvvmmTCZTKpsCAACAPEO1CMmUtqF0jzzyiG6++eYx\ntz/44IO644470tUMAAAAABgjpRWjgG3btmnWrFmaPn162O3PPPOMPv7xj2vWrFnpaAYAAADSyO32\nyGrtlcNhlMXiVVtbrUpKkjNKiGoRki0twei3v/2trrjiirDbBgcH9eyzz+oXv/iF9u/fL5/PF9dr\ndXR0pKKJSBOOX+7i2OU2jl9u4/jlrkI/dp2ddh050hjc3rXrNbW0VCb9fVL1ORf68Ss0aQlGmzdv\n1j333BN226ZNm3Tw4EFdc801Ghoa0gcffKDvf//7uvPOO8d9rdbW1lQ2FSnU0dHB8ctRHLvcxvHL\nbRy/3MWxk3p7e+T11gW3jcYKtbbWjfOM+KSjWsTxy10TDbQpD0a9vb0qLy+X0Rj+VsuXL9fy5csl\nSTabTXfddVfMUAQAAIDcYbF4ZbeHbwPZKuWLL/T19YXNLXrmmWf04osvpvptAQAAkGFtbbWqrLTJ\naOxRZaVNbW21k35N5hYhVVJeMZo/f77WrVsX3P7sZz875jENDQ361a9+leqmAAAAII1KSkxasqQh\n080A4pK25boBAACAyaBahFQiGAEAAAAoeAQjAAAAZD2qRUg1ghEAAACAgkcwAgAAQFajWoR0IBgB\nAAAAKHgEIwAAAGQtqkVIF4IRAAAAgIJHMAIAAEBWolqEdCIYAQAAACh4BCMAAABkHapFSDeCEQAA\nAICCRzACAABAVqFahEwgGAEAAAAoeAQjAAAAZA2qRcgUghEAAACAgkcwAgAAQFagWoRMIhgBAAAA\nKHgEIwAAAGQc1SJkGsEIAAAAQMEjGAEAACCjqBYhGxCMAAAAABQ8ghEAAAAyhmoRsgXBCAAAAEDB\nIxgBAAAgI6gWIZsQjAAAAAAUPIIRAAAA0o5qEbINwQgAAABAwSMYAQAAIK2oFiEbEYwAAAAAFDyC\nEQAAANKGahGyFcEIAAAAQMEjGAEAACAtqBYhmxGMAAAAABQ8ghEAAABSjmoRsh3BCAAAAEDBIxgB\nAAAgpagWIRcQjAAAAAAUPIIRAAAAUoZqEXIFwQgAAABAwSMYAQAAICWoFiGXEIwAAAAAFDyCEQAA\nAJKOahFyDcEIAAAAQMEjGAEAACCpqBYhFxGMAAAAABQ8ghEAAACShmoRchXBCAAAAEDBIxgBAAAg\nKagWIZcRjAAAAAAUPIIRAAAAJo1qEXIdwQgAAABAwSMYAQAAYFKoFiEfEIwAAAAAFDyCEQAAACaM\nahHyBcEIAAAAQMEjGAEAAGBCqBYhnxCMAAAAABQ8ghEAAAASRrUI+YZgBAAAAKDgEYwAAACQEKpF\nyEcEIwAAAAAFj2AEAACAuFEtQr4iGAEAAAAoeAQjAAAAxIVqEfIZwQgAAABAwSMYAQAAICaqRch3\nBCMAAAAABY9gBAAAgHFRLUIhIBgBAAAAKHgEIwAAAERFtQiFgmAEAAAAoOARjAAAABAR1SIUEoIR\nAAAAgIJHMAIAAMAYVItQaAhGAAAAAAoewQgAAABhqBahEBGMAAAAABQ8ghEAAACCqBahUBGMAAAA\nABQ8Yypf/Omnn9azzz4rg8Egn8+nHTt2aMuWLcH7N23apLVr16q4uFinnHKK7r///lQ2BwAAAOOg\nWoRCltJgtHLlSq1cuVKS9Ne//lXPP/982P333nuvfvWrX6murk633367XnvtNX3iE59IZZMAAAAA\nYIyUBqNQjzzyiNasWRN22+9+9ztZLBZJUnV1tex2e7qaAwAAgBBUi1Do0jLHaNu2bZo1a5amT58e\ndnsgFPX29mrjxo1aunRpOpoDAAAAAGEMPp/Pl+o3ueeee3TZZZfpnHPOGXPfwYMHtWrVKn3961/X\nxz/+8XFfp6OjI1VNBAAAKFj3/b/uE/99zewMtgRIjtbW1oSfk5ahdJs3b9Y999wz5naHw6EvfvGL\nuuOOO2KGooCJ7CSyQ0dHB8cvR3HschvHL7dx/HJXTh27kGCUM21OsZw6fggz0WJKyofS9fb2qry8\nXEbj2Az2/e9/XzfeeKMWL16c6mYAAAAgAuYWAX4prxj19fWFzS165plnVFFRofPOO09/+MMftG/f\nPj311FMyGAy67LLLdOWVV6a6SQAAAAAQJuXBaP78+Vq3bl1w+7Of/Wzwv996661Uvz0AAACioFoE\nnJCWVekAAAAAIJsRjAAAAAoQ1SIgHMEIAAAAQMEjGAEAABQYqkXAWAQjAAAAAAWPYAQAAFBAqBYB\nkRGMAAAAABQ8ghEAAECBoFoEREcwAgAAAFDwCEYAAAAFgGoRMD6CEQAAAICCRzACAADIc1SLgNgI\nRgAAAAAKHsEIAAAgj1EtAuJDMAIAAABQ8AhGAAAAeYpqERA/ghEAAACAgkcwAgAAyENUi4DEEIwA\nAAAAFDyCEQAAQJ6hWgQkjmAEAAAAoOARjAAAAPII1SJgYghGAAAAAAoewQgAACBPUC0CJo5gBAAA\nAKDgEYwAAADyANUiYHIIRgAAAAAKHsEIAAAgx1EtAiaPYAQAAACg4BGMAAAAchjVIiA5CEYAAAAA\nCh7BCAAAIEdRLQKSh2AEAAAAoOARjAAAAHIQ1SIguQhGAAAAAAoewQgAACDHUC0Cko9gBAAAAKDg\nEYwAAAByCNUiIDUIRgAAAAAKHsEIAAAgR1AtAlLHGM+DBgYG1N3drYULF2pkZERFReQpAAAKgdvt\nkdXaK4fDKIvFq7a2WpWUmDLdLABIupgJ57//+7911VVX6a677pIkffe739Vvf/vblDcMAABkntXa\nK7u9QV5vnez2BlmtvZluUsGiWgSkVsxg9MQTT+jZZ59VVVWVJOmb3/ymnnrqqZQ3DAAAZJ7DYRx3\nGwDyRcxgVFFRobKysuC22WyWyUQJHQCAQmCxeMfdRnpQLQJSL+bPPlVVVXrmmWc0NDSkHTt26Lnn\nnlN1dXU62gYAADKsra1WVqstbI4RAOSjmMHo29/+tn784x/L6XTq7rvvVmtrq773ve+lo20AACDD\nSkpMWrKkIdPNKGhUi4D0iBmMpk6dquuvv1733HOPJOntt99WZWVlyhsGAAAAAOkSc47R2rVr9fOf\n/zy4/fOf/1w//OEPU9ooAAAAUC0C0ilmMLJarVq9enVw+yc/+YnefPPNlDYKAAAAANIpZjDyeDxy\nu93BbafTqeHh4ZQ2CgAAoNBRLQLSK+Yco6uvvlqXXHKJFixYoJGREW3btk233nprOtoGAAAAAGkR\nMxhdeeWVWrx4sbZt2yaDwaC77rpLs2bNSkfbAAAAChLVIiD9ogajV199VUuXLtXTTz8ddvsbb7wh\nSVq5cmVqWwYAAAAAaRI1GO3atUtLly5VR0dHxPsJRgAAAMlHtQjIjKjBaNWqVZKk5cuX6/zzz09X\newAAAAAg7WKuSvfLX/5SXq83HW0BAAAoaFSLgMyJufhCRUWFLr30Us2bN08mkyl4+w9+8IOUNgwA\nAAAA0iVmMLrgggt0wQUXpKMtAAAABYtqEZBZ4wajwcFBNTc3q6mpSWazOV1tAgAAAIC0ijrH6IUX\nXtAll1yib33rW1qxYoW2b9+eznYBAAAUDKpFQOZFrRg9/vjj+v3vf6+amhq98847WrNmjX72s5+l\ns20AAAAAkBZRK0Ymk0k1NTWSpI9+9KNyOp1paxQAAEChoFoEZIeowchgMIy7DQAAAAD5IupQut7e\nXj399NPB7b6+vrDtlStXprZlAAAAeY5qEZA9ogajlpYWdXR0BLc/9rGPhW0TjAAAAADki6jBaPXq\n1elsBwAAQEGhWgRkl6hzjAAAAACgUBCMAAAA0oxqEZB9CEYAAAAACl7UOUYB11133Ziluo1Go04+\n+WR96UtfUl1dXcoaBwAAkG+oFgHZKWbFaMmSJaqtrdW1116ra6+9VjNnztTChQtVX1+vO++8Mx1t\nBAAAAICUilkx2rhxo9avXx/cXr58uVatWqV169bp1VdfTWXbAAAA8grVIiB7xawYHTx4ULt37w5u\nd3d3q7u7WwcOHNCRI0dS2jgAAAAASIeYFaPbb79dN954o4aGhmQwGFRUVKRvfOMb2rFjh770pS+l\no40AAAA5j2oRkN1iBqNly5Zp2bJlGhgYkM/nU1VV1ZjFGAAAAAAgl8UMRr29vfrxj3+sbdu2yWAw\n6GMf+5i++tWvqrq6Oh3tAwAAyHlUi4DsF3OO0T333KP58+frRz/6kX74wx/qIx/5iP71X/81HW0D\nAAAAgLSIWTE6duyYrr322uB2c3OzXn755ZQ2CgAAIF9QLQJyQ8yK0bFjx9Tb2xvcPnDggNxud0ob\nBQAAAADpFLNidPPNN+uKK65QTU2NfD6fDh06pPvvvz8dbQMAAMhpVIuA3BEzGJ1//vl68cUXtWfP\nHknSKaecotLS0rhe/Omnn9azzz4rg8Egn8+nHTt2aMuWLcH7N27cqLVr16q4uFif+MQndPPNN09s\nLwAAAABgEqIGo5/85CfjPvH222+P+eIrV67UypUrJUl//etf9fzzz4fdf//99+sXv/iFamtr9fnP\nf17Lly9XU1NTPO0GAADIavf9v+7gf1MtArJf1DlGxcXF4/4vUY888khYReiDDz5QZWWl6urqZDAY\ntHTpUm3atGliewEAAAAAkxC1YnTrrbcm7U22bdumWbNmafr06cHb+vv7w66FVF1drQ8++CBp7wkA\nAJApzC0Cck/MVemS4be//a2uuOKKcR/j8/nS0RQAAAAAGCPm4gvJsHnzZt1zzz1ht9XW1qqvry+4\n3dPTo9ra2piv1dHRkfT2IX04frmLY5fbOH65jeOXW0LnFt13zWyOXw7j2BWWlAej3t5elZeXy2gM\nf6uGhgY5nU7t379ftbW1+stf/qI1a9bEfL3W1tZUNRUp1tHRwfHLURy73Mbxy20cvxwUEow4drmL\n717ummigjRqMTjvtNBkMhoj3FRcXa/v27XG9QV9fX9jcomeeeUYVFRVatmyZ7r33Xn3ta1+TJP39\n3/+9GhsbE2k7AABAVgmdW3TfNbMz2BIAiYoajHbs2CGfz6ef/exnmjt3rs4991wNDw9r48aNev/9\n9+N+g/nz52vdunXB7c9+9rPB/z777LP1m9/8ZoJNBwAAAIDkGHe5bqPRKKvVqosvvlgVFRWqrKzU\nJZdcos7OznS2EQAAIOsleyU6t9uj9nabNmzoUXu7TW63Z9KvCSC6mHOMjh07pt/85jdqbW1VUVGR\ntmzZokOHDqWjbQAAAAXLau2V3d4gSbLbJavVpiVLGjLcKiB/xQxGDz30kB5++GE9+eSTkqRTTz1V\nDz74YMobBgAAkCtScd0ih8M47jaA5Ir5DTvllFP00EMPqb+/P67ltAEAADB5FotXdnv4NoDUiXmB\n1//93//VsmXLdP3110uSHnjgAb3yyispbxgAAEAuSEW1SJLa2mpVWWmT0dijykqb2tr4gRpIpZjB\naO3atXrqqadUU1MjSfryl7+sxx57LOUNAwAAKGQlJSYtWdKgFSvqtGRJg0pKTJluEpDXYgajKVOm\naMaMGcHt6upqmUx8MQEAAFJVLQKQfjHnGJnNZm3evFmSNDg4qD/96U8qLS1NecMAAAAAIF1iVozu\nvfdePf7449q2bZs++clPqr29Xd/97nfT0TYAAICsRbUIyC8xK0b79u3Tz3/+87DbXnzxRTU0sI4+\nAAAAgPwQNRh1d3frgw8+0IMPPqg777xTPp9PkuT1evXAAw9o2bJlaWskAABANqFaBOSfqMGor69P\nzz33nGw2mx555JHg7UVFRbr66qvT0jgAAAAASIeowailpUUtLS1aunSpLrroIhkMBkn+ipHRyJWX\nAQBAYaJaBOSnmIsveL1efeUrXwluX3PNNXr++edT2igAAAAASKeYwWj9+vV66KGHgtuPP/64fvGL\nX6S0UQAAANmIahGQv2IGI5/Pp4qKiuB2RUWFiopiPg0AAAAAckbMyUILFizQV7/6VS1atEg+n0/t\n7e1asGBBOtoGAACQNagWAfktZjC6++679Yc//EFvvfWWDAaDLrvsMq1YsSIdbQMAAACAtIgajHp7\ne1VbW6vu7m6dddZZOuuss4L32Ww2nXTSSWlpIAAAQKZRLQLyX9Rg9OCDD2rNmjX6whe+MOY+g8Gg\nl156KaUNAwAAAIB0iRqM1qxZI0l6+eWX09YYAACAbEO1CCgMUYPRXXfdNe4TV69enfTGAAAAAEAm\nRF13OzCvqKioSIODgzrttNPU3NysgwcPqqysLJ1tBAAAyAiqRUDhiFoxuvLKKyVJL7zwgtatWxe8\n/YYbbtAtt9yS+pYBAAAAWc7t9shq7ZXDYZTF4lVbW61KSkyZbhYmIOaVWj/88EMdPnw4uO10OvXB\nBx+ktFEAAACZRrUI8bBae2W3N8jrrZPd3iCrtTfTTcIExbyO0dVXX62LL75Ys2fPlsFgUHd3t778\n5S+no20AAABZYcOGHqoBiMjhMI67jdwR88hde+21uvzyy7V37175fD7NmTNHU6dOTUfbAAAAMiK0\nWrTq/Mvl9Up2u2S12rRkSUMGW4ZsY7F4ZbeHbyM3xRxKNzg4qEceeURPPPGEFixYoDfffFOHDh1K\nR9sAAACyCtUAjNbWVqvKSpuMxh5VVtrU1lab6SZhgmIGo7vvvluzZs1Sd3e3JMntduub3/xmyhsG\nAACQCaHVom985uyw+6gGYLSSEpOWLGnQihV1WrKkgaGWOSxmMDp06JCuv/56mUz+g/ypT31KLpcr\n5Q0DAADINKoBsbndHrW327RhQ4/a221yuz2ZbhIwIXHVgz0ejwwGgySpv79fR48eTWmjAAAAMiHS\nSnTMKRpfYFU2iXlYyG1xLb6wcuVK9fX16ctf/rK2bdumf/u3f0tH2wAAAJDlWJUN+SLmmXvJJZfo\nrLPOUmdnp0pKSvSd73xHtbWUkQEAQH7hukUTw6psyBcx5xjddtttmjlzplasWKGLLrqIUAQAAIAg\n5mEhX8SsGM2ZM0dPP/20WlpaVFJSErz9pJNOSmnDAAAA0oVq0cQFVmUDcl3MYPTcc8+Nuc1gMOil\nl15KSYMAAAAAIN1iBqOXX345He0AAADICKpFAKRxgpHD4dCjjz6q9957T+ecc46+8IUvyGhklREA\nAAAA+Sfq4gv33XefJOmqq67Su+++q4cffjhdbQIAAEgLqkUAAqKWgGw2m374wx9Kkj7xiU/ohhtu\nSFebAAAAACCtolaMQofNFRcXp6UxAAAA6UK1CECoqMHIYDCMuw0AAAAA+SLqULrOzk6df/75we2D\nBw/q/PPPl8/nk8Fg0F/+8pc0NA8AACD5qBYBGC1qMHr++efT2Q4AAAAAyJiowaihgSsYAwCA/EO1\nCEAkXJgIAAAAaeN2e2S19srhMMpi8aqtrVYlJaZMNwuIvvgCAABAvqFalHlWa6/s9gZ5vXWy2xtk\ntfZmukmAJIIRAAAA0sjhMI67DWQKwQgAABQEqkXZwWLxjrsNZArBCAAAAGnT1larykqbjMYeVVba\n1NZWm+kmAZJYfAEAABQAqkXZo6TEpCVLWP0Y2YeKEQAAAICCRzACAAB5jWoRgHgQjAAAAAAUPIIR\nAADIW1SLAMSLYAQAAACg4BGMAABAXqJaBCARBCMAAAAABY9gBAAA8g7VIgCJIhgBAAAAKHgEIwAA\nkFeoFgGYCIIRAAAAgIJHMAIAAHmDahGAiTJmugEAACB93G6PrNZeORxGWSxetbXVqqTElOlmAUDG\nEYwAAMhBEw04Vmuv7PYGSZLdLlmtNi1Z0pDq5qYF1SIAk8FQOgAAclAg4Hi9dbLbG2S19sb1PIfD\nOO42ABQqghEAADloogHHYvGOu52rqBYBmCyCEQAAOWiiAaetrVaVlTYZjT2qrLSpra02Fc0DgJxD\n/RwAgBzU1lYrq9UWNscoHiUlpryZUxRAtQiZwEIm+YdgBABADsrHgAPkknxeyKRQMZQOAADkLKpF\nyBQWMsmHRICLAAAgAElEQVQ/BCMAAAAgQfm6kEkhIxgBAICcRLUImcRCJvmHmh8AAACQIOb55R+C\nEQAAyDlUi9Ivm1Zhy6a2IH8wlA4AACALud0etbfbtGFDj9rbbXK7PRltT2AVNq+3TnZ7g6zWXtqC\nvEIwAgAAOaVQqkXZ1vnPplXYsqktyB+cRQAAAJMUaWjXZGVb599i8cpuD9+mLcgnVIwAAEDOyNZq\nUSqqO9m2HHQ2rcKWTW1B/qBiBAAAMEmRqjtTpkzuNdvaamW12pJahZqMbFqFLRvawgIQ+YdgBAAA\nckK2Vouk1AztyobOP6ILVAklyW6XrFYbxyvHpXwo3R/+8Addfvnl+od/+Ae9+uqrYfc9+eSTuvrq\nq3Xttddq9erVqW4KAABASjC0q/Bk2xwwTF5Kj6Ddbtcjjzyi3//+93I6nfrpT3+qpUuXSpIcDoce\nf/xxvfTSSzIYDLrpppv01ltv6YwzzkhlkwAAQA7K5mqRRHWnELEARP5JaTDauHGjFi9erLKyMpWV\nlek73/lO8L6SkhKVlpbK4XCorKxMLpdL06ZNS2VzAAAA8h5zX9Ij2+aAYfJSGoxsNpuOHTumr3zl\nKzpy5IhuueUWffzjH5fkD0b/9E//pGXLlslsNuvTn/60GhsbU9kcAACQg7K9WpRtmPuSHlQJ809K\ng5HP55Pdbtejjz6q7u5uXX/99XrllVck+YfSPfroo/rzn/+s8vJyfeELX1BXV5eam5vHfc2Ojo5U\nNhkpxvHLXRy73Mbxy20cvxNy7bOYSHs9Hq+2b3fo6NESTZni1oIFFplM8XfZOjuPanj4WHC7uPhD\nTZlyIOF2IPfON0xOSoPRjBkz1NLSIoPBoJNOOknl5eU6dOiQqqur9d577+mkk04KDp9rbW3V9u3b\nYwaj1tbWVDYZKdTR0cHxy1Ecu9zG8ctthX78crlaNNFj195uU13diUqEx2PTuefGX5k4etQWrBhJ\nUmVlmVpbqWwkqtC/e7lsooE2pavSLV68WFarVT6fTwMDAzp69Kiqq6slSQ0NDXrvvffkdrslSdu3\nb9ecOXNS2RwAAICsN9nVzlghD5iYlFaM6urqtHz5cn3uc5+TwWDQt771LT3zzDOqqKjQsmXLdNNN\nN+m6666T0WhUS0uLzj777FQ2BwAApECqJvvncrVoMia72hlzX4CJSfmC65/73Of0uc99LuH7AABA\nbmCyf3JlarUzVrNDoeNKVAAAYFJScaHLdFeLsikUZKrik28BN5uOKXJDSucYAQCA/Dd6qFcuXugy\nEAq83jrZ7Q2yWntT/p5ut0ft7TZt2NCj9nab3G5Pyt9zPKkIuJmUiWOK3EYwAgAAk5Lsyf6ZmFuU\niVCQbR33fAi4ofIt6CH1OEMAAMCk5MNk/8kueDAR2dZxz9TcplTJxDFFbiMYAQCArJGplegyEQpS\n0XGfzLyafAi4ofIt6CH1CEYAAKDgZSIUpKLjnm8LKExGvgU9pB7BCAAAZIWJVItyeeWxyXbcI+17\ntg3PA3IJiy8AAICclW0LGKRTpH3PtwUUgHQiGAEAgIyb6NyiQq6QRNr3ZK8QCBSSwvnXAwAA5J1C\nXnks0r7n67yaXB4yidxBxQgAgByVbRcInajJrERXyBWSQtr3Qh4yifShYgQAQI5iBbLCXnmskPa9\nkIdMIn04qwAAyFH50FnM1HWLClWuDkkr5CGTSB+G0gEAkKNYgQyJGm9IWjYPzSykYYPInNz7aQkA\nAEhKzQVC04lqUfqNV2XM5qGZhTBsMFerefmEYAQAQI4qhM5ivsiWTu94Q9LyYWhmLsvmYFooOOMB\nAEDaRaoWZUt4SEU7UtXpTbSt41UZmceTWQTTzGOOEQAAyArZsiRzKtqRqk5vom0NVBlXrKjTkiUN\nYSGKeTyZxZzBzCOKAgCAtIo2tyhbfjFPRTtSVY1JZlsZmplZuT5nMB8QjAAAQFbIlqFcqWjH6E5v\nS0uV2tttkx6uly2fGSaPYJp5BCMAAJA2461Ely2/mKeiHaM7ve3ttjFzjvzvm9jcpmz5zIB8QDAC\nAKAAZMvCBuPJll/M09GOSEPgJrJAQ7Z8ZkA+IBgBAFAAsmEp4NBq0Tc+c7bcbk9C4SwXwl28Ig2B\ny5Y5VkCh4hsHAEAByLZOt38FtcTCWTLCXSBcDQz4tG9fnxoba1VZqbSHrEhD4Pz7d+IxpaXHkjIP\nCUB8CEYAABSATE/SD60WrTrfP7co0XCWjHAXCFdvv22T09kih+Og5s+fnvYKWqQhcKPDksejjFf5\ngEJCMAIAoABMdpJ+KoaxJRrOkhHuAmHK5Qr8f1HY7ekS7fMMDT4bNvSEPSfTVT4g3/ENAwAgR0wm\nnEx2kv5khrGNnlvkcPRMKJwlYwW2QLgym71yOiWzeSR4eyzJDIfxfJ7JrPLl0/wsIFUIRgAA5IhM\nLqCQrDlKibQ3Umd+svsbCFfz5vm0b1/n8TlGtrhCVjI//3g+z2QuxZ0Ni28A2Y5gBABAjkg0nCSz\nSjDR6sV41y2KJRWd+fDK2eyoj4v02YV+3h6PV5s2DUz4s43n80zmUtzZtvgGkI2KMt0AAAAQn9Gd\n51jhJBAsvN6646vA9crt9qi93aYNG3rU3m6T2+2J673b2vyVFaOxJ+4Ky2RlsjMf6bML/by7ugY1\nPFwVdn8i0v15JnruAIWInwsAAMgRiQ6tStZFRCV/9SKwpHTgdWJVSSZTLZImN8cm3mpZtMdF+uwu\nuqg6+PkXF/eqqem0sPsTEa0alKq5QMkclgfkK4IRAAA5ItGhVYlcRNThOKr163dpYMCsqiqXbrhh\nriyWKWGPTfc8lcl05uNta7THRfrsQj9///2msPuTIVJ7QgPpRMNSMoflAfmKYAQAQA6Kp7IQz0VE\nAx369et3qaenRZLU0yOtX9+pW29tCXu9eIa2Bdr1g9+/GbxtItUiKf6qSktLlTo7B6LOB4rW1ki3\nB7ZjhbJUVWCSWeUDkBiCEQAAOSieznI8FxENdOgHBsxhjxu9LcU3tO1Eu94cc1+yjN739es7VV+/\nUF1dg3K5SrR163bNm1clr1fyeDzq6upVcfFAxAAZbZ9iVVhSVYFJpMoHILlYfAEAgBw00c5yoEO/\nYkWdlixpCIaEqipX2ONGb0vxLRjgcBi17i8n5hbdvOzcuNqViNGrw3V2uvXHP3brb38zaWhoqvr7\n6yVJlZU27d69U5JZTU2nRVwkIROLSownUntYOAFID35yAAAgB1ksXvX1eY9XSYo0Y8Z+ud3VE56o\nf8MNc7V+fWfYHKPR4qmSpKMTH1pV6eoalNFYosOHp2lkZKr27z+s00/3amioTBdeWCeHwyivd3rw\nuaMDZLIrP6HD/Gw2uxYu9CR0TBKp8gFILoIRAAA5qK2tVuvWbZPLVS+z2av6+gWyWnsn3Mm3WKaM\nmVM0EaFzi5afMkcDAz61t9vGXTAg0ZXYQoNCcXGvLrxwrl5+eZcOH3arqOiQmptPlcXSe3y/Jr6y\n3URYrb3q66tVV1evdu+uksu1XatWLZjUynIsnACkB8EIAIAcVFJiUlNTvRob64K3RRtOl6oloGNp\nbPQHrVgLBiS6uMDY1eGmaPnyBcfnEg2rpqY3WFVJd7XF4TCqq6tXTmeDfD6D+vvLJhVYAaQPwQgA\ngBwVbzUkXauahV636OZl58ob0pzx5kBNZnGB0OCzeLHU1jY3LPRNttqSaKi0WLxyuU6032weYbEE\nIEfwTQUAIEfFWw2ZTPCYaLUpkSFskxnuluphZomGyra2Wm3dul39/SUqK+tTc/N8WSw9KWsfgOQh\nGAEAkEGTGeYWbyiIN3hEasvrr9u0eXOFXK4imc1GeTw2XXjhyWOeG1ot+uOay4+/VnxD2EIDXmnp\nMR096tFDD22TZFBrq0Xnneffx0wMB0w0VJaUmLRqlX++V2fnYdXU9LBYApAjCEYAAGRQOoa5xVtZ\nitQWq3VAO3ea5HYbVVLilc83EDEYjTY6tLndHrW32yIGm9DHtrfbtHmzSU7nRyVJmzcflMnUe7xN\n6b/I6USqWYH9mTLlgFpbC3tuUbLmt2VqnhwKC9cxAgAgg1J98c5EOpSR2rJv3xG5XA0aGamTy9Wg\nffuOjHne6GpRJIHQ5fXWRbyeUOh7hs7RcbmK5HAYx7TNbveHqA0betTebpPb7Yn8AUxS4LpCPl+3\ndu/+q954o18PPbRNL7+8J2XvmU/iPe7peh1gPFSMAADIoEgVicleCyf0+bt371d9/UKZTMaYlZZI\nbWlsnKajRw/K7S5SScmIGhunTWg/4w2AFotXZrM0OOjV/v2DKipyaMaMQ5o3rypsMYe9e3slxbfq\n3WQEqj8vv7xHf/tbtQ4frlNJyYiGhgZkMk18tblsr4Akq33JCv6p/gEBkKgYAQCQUYGKhNHYo8pK\n2/Fhbyd+HT9ypDHhX8dDn9/fX6+ursHgfeN1KCO1ZdGiaTr9dGnuXOn006VFi8KDUTzVIin+C7/6\n39Mju32jiooOqalJqq9fIElhbZszpybseanuKHd0OHT4cLVGRixyuaZq9273pN4z2ysgyWpfsi74\nm44LBwPEbQAAMijSAgrx/joe7Vf9gQGf3n7bJpfLqA8/3K+amhOvP16HMlJbzjuvQSZT6HtMrEIS\n7zynkhKTLrzwZA0NlcnrPXGNpqGhMl14YV1wv9et267+/nKZzSNqbp6myspUd5R9KikZkcsV2PZO\nqnOe7RWQZLUvWdeRSvf1qFCYsutbCABAAQoNOKWlx7RrV6/sdsls9qq42JPw9Yn27euT0+kfZlZd\nPV0OR7uMRt+EOpTjrXwXWi363epLoi6uEOt1Ihlv0QOrtVf19QvkcPTK5TJq//5t+vu/X5DAXo0v\nUuBsba3Q0NAR7d79oYaHPSov75fdPk/t7bYJDTMrLT2mrVsPHl/tb0SLFh1LWvuTYTJLqIdK1nLq\nqV6WHZAIRgAAZNSJ6sfJMptH5PWWSaqT2WyUy1WiY8feVFvbJRGfG+1X/cbGWjkc/k53efmI/u7v\nmrViRV2kl0iaZK+uN16FwOEwymQyaf58/+sbjUrq/JxI+xKonLW21hyft3WBpNjztsbnkr8rFl/o\nSOe8pNFLqHs80oYNPZN+32yfW4XCRjACACCDrNZe9ffXa3i4Sk6n1N29V42NZp155nRJ0vvvV0ft\nOEb7Vb+yUpo/f3rw9spKW/C/k9UxHT23aMOG8IuYTnZo2HgVgmj7ncoFA0Lbs2GD5PUaoz4+HkND\nZZo/P3SoYOyLwMZ7TalkGL2EerJCbzqWpwcmisUXAADIIIfDKLM5tGLgC9ueMsU95jmBawLZ7dLe\nvZ3y+bpVXr5HHo9HGzb0yOPxqLx8T9giCoHnrVu3XS+9ZNTWrV719dUmbdJ/OibHR9rv0P1L14IB\nydjXibxGR4dDTuf04yF6ujo6HGH3Bz6fZC9hnsz5UNk+twqFjbMRAIAMsli8am6uVVeXf7GEM8/s\n0xln1GhoyD9sqabGMuY5ob+6NzY2HK8ImYK3eb3+KlFgsYLQ5/X3nxysTnV12VRWlnhXINJKdMma\nHD9e1SfSfodWG5LV6W5pqdL69Z0aGDCrqsqlCy6YG3Z/MvZ1Yq/hG3c7VdWYZM03SvZrAclGMAIA\nIIMCy3OXlQU6yB8LG/7V0XFgzHMiXex0584BOZ1Tgqu0RQoF/urUiJxO/7bLZYzYMZ3IkLRkTY4f\nr3MfK/gk2umOtp+dnQNqbGxRY6P/cZ2dNi1ZMiX4vGTs60Reo7W1Qps3+wO02exVa2tF2P2pqsYk\nc0U4VpdDNiMYAQCyXj5P2J5IBzkQADwer7q6BrV3726NjExXdfVUDQ8Xq6vroBYvHhsK/NWp6erq\n8i/MMGPGfrW1LRjz+Xo8HjmdJ0saG07ivW7RRLjdHm3aFD3gxVrJLdFOd7QQlq3DvU4snS5ZLBqz\ndPpEqjHxfLeSuSIcq8shm2XHNx0AgHHk84TtREOf2+3R0aNH9dxzr2nvXq8aGqZq+vSTNDw8Szt2\ndKiiolpTp36oW29tHfP6paUeVVZ268wzy46/1wKVlJjGTK7fuXObTjvtxHumKxhYrb0aHq4KGeoX\nKeD5V3Lzeo/prbf65HSatHdvr+bMqVFVlSGh0BwtAEUKGNkQzmOFiolUY/L5uwUkimAEAMh62foL\nfjIk2jF9/XWb/uu/HDp8eKHc7kEdOzZNAwN75HJNV3n5R/WRj1SpvLxMnZ0DamszHV8KvF5ms1fN\nzf55ORaLVw6HUVZrr9raaiN8noawrUDlIZXVIsl/XJubq4PzrYqLe9XWdiKhha7ktmOHTXb7qdqx\nY0ROZ4scDpvmz29IqGMfrcISKWAkO0CMDlotLVXq7ByYVPCaSDUmW75b2RA8gfz5ywIAyFv5PGE7\n0nyh0Aulmkzh+9rRcUSHD9drZKRKXq/0t799qI9+1KTDh9/SjBnlKi8/qubmWjkch8IWWxgc9Op/\n/mebhoedOvXU09XcPE1er1FWq00Wi8I+39ZWi0ym9M8D8Q+V6w2bQxPaOQ49D/yPGZHLVSSv16td\nuwbkchlVXn4o7k716ADU0lIV8tlLF110Yqn0ZAeI0UFr/fpONTa2BLfTVbnJlu8WlStkA4IRACDr\n5fOE7dEd0717eyWd6CB3d2+Xx3Ni34eHR1RS4pXLJUkeSRaVlTk1bdosnXRScfCip6Wlx7Rp0xHt\n3XtUIyNHNTxcrOHhepnNh+V0Ttfbb/fIaDTK4zmsxYvLVF6+R0NDgSF2DWOCRaqrRSeY5b+aiPH4\n/p0Qeh7MmLFf9fUL1dU1qPffH5RUpeHhOg0P+yth8XSqR1dYXn55jzZvNsnlksxmhV0nKNkBYnSw\nGhgwBxd7iHR/skSuVGX+u5UtlSsUNs46AEDWS/eE7XiH9SRj+M/o0Ofz1YTd/7e/eTV7doM8Hq+2\nbh3U++8fkslUKmmHTCaXzjqrRCtWnCbJoN27d8po7Dm+gII0PFyvmTMrtX+/UwcOvKumplKddJJF\nQ0PS7t0uzZ7dqPJyl5zOhojLe6ebf6ic/8K0Ho9XHR0fBpctD3y2gfPA7a6W1dojk0nau/c9TZ8+\nV+XlB48v2DCx0NLRcURO50JJktMpdXRs04UX+u+LFs4neg6MDlpVVa4x96fC6MqMf8W9zFdmsqVy\nhcJGMAIAYJR4h/UkY/jP6NAXuIBpgMFQLEnq6hqU0zldNTUflcViUHHxgM45p0j19afLZPL/OT/3\n3Cq1tVXLau3VG28ck8FQpvLyfp1ySommTDmmiy9eePy1bCoq+lDl5UY1N9fK4/Fo06ZDxy+cOnYh\ng3RVi0I7x11d/iqQ/2KtYz/b0M+tslKy22vDXmdiDFG3o4XziZ4DoUGrtPSYmpsrtHXrdkk+tbZW\njFlxLlmytTKTz1Vh5I7s+DYAAJBF4u08pqKTObqDOG9ekSTJ5fL/v8Vi0Pz5DTIajbroIn/VJLQz\n+frrNm3ebNJ773k1MmLURz/qVWtrlcrLGyTZ1NFxRMXFBi1cWKxZs6rU1dWrXbsGVFJSpKGhYg0N\nhS9kMLqD+sc/2lRZqZRMjg/d9+LiXjU1nVh4YbzP1r/fe9TRcUSSQa2tFrndnoTb19pq0ebNJ5YD\nb20de3Hd0SZ6DpSUmIKLOmza5NDwcJWamxtlMplkMtlStvBAtlZmWMYb2YBgBADAKPF2HlPRyRzd\nQTSZuuXx2FRePqDh4aPBCs/evfuPv2f4IgGB4WAzZ9Zq//5evf/+B1q61D9vyGrtVVPT6erqGtTh\nw9Ibb7youXP/TlKFqqtna/fuLs2ePVMul7974HAY9Q93PRdsS3X/2dq6tVhnnjlzUpPjow0/C913\n/2cbvvDCeJ+ZyWTSaaedGAYXCHWJDHM7cZ2gwONj799kzoFAtcnpnKLh4Sp1dfkDaSqrOFRmgOgI\nRgCQgHQuKcvytZkTb+cxFZ1Mt9uj11+3BasfU6cO6sYbzwrp5B/S7t3+hQe8XmOE4Vv+4V9Go0lz\n5jRo6tSB4H0Oh1FdXYMaHPTPO+rrm63q6kE1NVk0NFSs4WGf9u2zqahoQGazV4sWhS9+8MEHZvl8\nH+rMM2dOqvMez/CzRD9bh8MYvOCty1Wk8vKBcS9UGyr8uxYeNCM/5sT3caLnQOjFbD/88JCqqyuC\ngTSVVZzQSlXoku382wIQjABM0OjOW2urReedN3Ylq3yTziVlWb42c+Id1pOM4T+jO9wej0ebN5uC\niwDs2zccXGUt8F4bNkhe74k/4aEhJTAczOHwqa9vUOXlHrW3+6snFotXLleJ9u93yuWaKrPZoMOH\nqyW5VVraI7t9tzyeU1RTUya326C1f9oafN0jHZ/Q8HCV+vp2S5pc5z2e4WeJfrYWi39xCqfTv3jD\n8PBRdXQcinqh2tDPPRA0TaZIQdPPau1VX1/d8eBVoq1bt2vVqgUTPgdCL2ZbXT1Vhw7t0amnHlVl\nZeqrOPzbAkRGMAIwIVZrb1jnbfPmgzKZ4lsiN5elc+Jytk6STlShV75i7f/oTurOndvkcp3oGA8N\nGccc+8DwrUCFpLi4N/jageFgmzYNyGKpUnPzHNntpuDQsq1bt+uddypkNh/RnDlzdfjwLvl8ZlVV\nuXTGGWfJYPC3xWbbLYVMsTEYXCov/1AzZw6psnLs3KNEpGIIYltbrTZt2qniYu/xi9nWavfugTHv\nGxD6uff3Sw7HYHBFvEjftUC1LRC8+vvdwcAazzk++jEDAz41N9cFL2Z76qlHdfvtp6Xlu5Ev/7YA\nycY3AcCEOBzG49dR8XO5igrij2s6Jy5n6yTpRKXy1+lcCF2x9n/s98Ygs9krp9O/VVrqHXPsA8O3\n3nijX++/P6Kamhq98caJ6+4sWeKfp+L1nlh+2+EwqqTEpFWrFkjarv7+CpnNA/r4xxeopqZXDke1\nHI4T77vfsj34XM+O0+XzHVRjo0FXXDFz0scvFUMQS0pMOvfcatntJ/Y52oVq/cPYDsnp9F9I1mj0\nyOWaFnxe6OcdOMe2bx/Qrl3FmjlzqoxGk8xmb/DYxXOOj37Mvn2damycHbzuVGWlN23nbr782wIk\nW/73YgCkhMXildmsYCfKbB4piD+u6Zy4nC+TpFP563QuDAmKtf+jO6n+ldA86ujYJsmg2bN71NY2\nL+w5geFbmzYdUm3tmZLGXncnWuc3EI5OBMre4JyT5ubaYAUjVF1duYqK3DrllEqZTOHzjqTEA2qq\nViAb+50ZO7zX7fZo3brtevvtao2MGFVfP13l5d2aMWOPjEb3mO9a4BxraqrTu+/u1YEDOzV3brWa\nm2tlsfRKiu8cH31bY2OtKisz8/3Ol39bgGQjGAGYkLa2Wnk8tmDnrbXVkrLrbiRLMqoLyerQhbal\ntPSYJP/FLaOt0JXMfUi3VP46nQtDgmLtf7TOfCDgdHQMjXOMT1xnx+v16L337NqwwX9B1JaWKnV2\nhnd+oy0y4HZ75PF4tHv3LhUX+9Rx5L3g604/WC2jyaaZM+slRf6MJxNQk3lOx/P9tFp71d9fr5kz\nZxy/8G235s1zBOcLjRbYX5PJqOXLG7V7904tWHAiUErxneOjH1NZqYyFeJbGBiLLvr8gAHKCv+N2\ncrDzlguyqboQ2patWw9Kcmn+/MgXsoz2vEzvQ7xS+et0LgwJStb+RwoQZ5xRqv/6rx1yOEp15MiH\nam1tCl4QtbNz7Lnhv3js2PPHau2V03lycKGC1w6cCEalpfVyucwyGBrkdPqHgEmzw153MgF1vHM6\n0dAUz+MdDv/wueHhYs2ZM1XFxcM691xT1NcNPcdMJqPOPbdKS5bUhT1m9MVaPR5pw4Ye2Wx2LVzo\nr7B5PB7t3Jk7PyQBhYhgBEAOx1GtX79LAwP+Cdg33DBXFsuUTDcr6TJdXQjttG3fPqCmpjqZTMbj\nF+6MvMLYaJneh4lI5a/TuTAkKNb+xxN2A8O/+vvrgwsLWK29MhgMksySSuTxWGQ4UUCKazhXYHtg\nwKe337bJ4fBp67GO4P03Lr5EnZ2H1d19SMXFAzKbR9TYeGKeTviqbtNlMiW+3PR453SiPwTE83iL\nxRs2ZHDGjP1qa1sQ9TXjOcdCj3Fo+Dxy5IisVv9wu9DgGbiAay5WgIF8lv1/UQGk3Pr1u9TT0yJJ\n6umR1q/v1K23tmS4VcmX6epCaKdteNi/mtj8+dNlNo9IOtGW8dqVqn3I1Q5aPgwJiifs+od/nazh\n4SoNDnr1P/+zTbNnm7V//yFVV7epttYoo7FI77/vUcvxr26kc6O09Ji2bvUHgtDrFO3b1yens0Uf\nfGCTZpx4fFdXr0pLjSopcUiaKsmr8nJPsE2B87m+vlr7929TU1N9zIA6+lwrLfXIG9LU0HYn+kNA\nPI8PzKcqKwuc65GH0AUkeo4lMt8oFyvAQD4jGAHQwIB53O18kYnqQrQqkX8p4Z0yGr1atCgwx6gn\nZrtStQ/JHM6ExMQTdv3Dv0bkdEr79w/q2LE6Sce0e3eZjEabWlpmq76+Vnb7/8poNMc4N8ySAlVK\nj9xujxwOqbv7HR2a8XbwUW1VbXr33XdVVDQin69SXm+gOuUJtinAZDKpqaleK1aEDzGLZPS5Vl6+\nJ+oiBIn+EBDP41Mdpi0Wr/r6/D98vPfekEymI5o3rypi+Mu1CjD/FiDfZfc3EEBaVFW51NMTvp0M\n2fZHNBPVhWhVIpPJv7Tw6LkKsaRqH6J10Nxujx59tFNbt1ZIMqqpqSS4JDSSI56wa7F4NWeORU8+\n2amdOz3yenvU1na6ampq1Ndn14ED72nu3Cm6+OI5uvDCupALMDsk+dTaWqHzzmvQ0FBZ8Fo9kjQ0\n5JXV2iuvt14jI2WSTgQjo3FYp556ugYHversdOn9999XU5NFzc3lwTb5r6XkUVdXr4qLB+L6no8+\n14aGynThhZG/B4n+EBDt8ZP9tyje5wcWsXjhBevxC+geVn39Ikm2iOEv01XsRFHhQr4jGAHQDTfM\n1WQh/XIAABazSURBVPr1nWFzjJKBP6LhncDQKlGqK1ahHbnABPDxOoLROmhWa6+2bi3T0aOnS5Le\neeewSkv35tSiG9ku1uqDNptdV199un7729d14EC5pBJJ5+idd4Y1f75XTU1ezZ7t1eLFCk7o91+A\nuUJO58mSpI0b9+jtt7fr2DGjhoeNam6eJpPJ30kPnKOHZrwSfP/FNSeruHhATU2naf36t+V0niHJ\nLLu9Tq+99oquuOLkYAjZtOmQvN5aeb01eumlEm3duj3qCm9SYmEg0R8Coj0+3n+LAp+73S7t3dur\nOXNqVFVlkMfjCX6W4z0/sIhFXd00DQ9XyW63ymQyRQ1/uTBHLlSuVbiARHFGA5DFMiUlc4r4Izp6\nRauJVYkmIrQjGJgAPl4Hs6WlKiwcX3CBPxz7j9mJGf1ud1HYNiYvUjXi9ddt2rzZJJdLOnjQoo98\npFdHj07RlCmnqrR0unp6emW398tkKtby5f4LtAbmzviHbR6Sw1EXXIxh926HGhtP1hlnWPT22za9\n8MJOfeQjU9XaWnF8js+0sDadeebM4+euUVOmTJPDcVhFRYdkNhs1bVpN2GNdLqO6u/tVXd0so9Gk\n/n73uOdbusJAtGGsUvR/iwLfmx07DsrpbJHDYdP8+Q3auXNbcOGE8Z4fuD0w7NHl8ofDaOEv1+bI\n5VqFC0hU4fVSEFW2DXtC7uOPaOZ+EU40lHZ2DqixsUWNjYFtm5YsmSKLxaumJoveeeeg3O4iTZ16\n6PgFSJEskaoZHR1H5HQulCQdOzasjo6DMpkMMpm8koyaMaNaDsdOFRVN0f792/XJT84dNWzTqL6+\nA6qtDZxvPpnNIzKZTDIaTaqrm6fTTquS0+mf49Nx5LVge25cfEnIRV9tqqrqVmmpUfX1p8poNKmm\nZl9Yu00msw4fLpXL1as5cxpkNnvHPd/SFQaiDWOVov9bFGi3f6VIhVzoNvzHAIvFG/FvZuDfvObm\naerqOqiysg9VWWmLcA2p3Pwbm2sVLiBRBCMEMewJycYf0cz9IpxoKI0WpAIX8i0t3a/A9VfOO49/\nF5Jp9Gc/MOBTV9chvf/+3yQZVVJyRE1NBn32s3V66qkj2rNni9zuQZ17boMuvbRJJpMxeCHXgObm\naZK6VVy8XZJPZ555THPm+KtC/hXpRoKPHRoqC3v/QNAKnLvz51v0ne9sUXe3TdOnO/XP/3xWWLub\nm6fp3Xff0969h1RUNKCmJotKSz0JfQbRQsNkwsREhrEGvjeBio/Z7P/enHFGqd55J7yiGulv5ujK\n65VXVkZcxjtX/8bmWoULSBTBCEEMe0IkbrdHnZ129fb2JNwx4Y9o5oSG0oqKvWpr+8S4j48WpLLl\nQr758Gt7NKM/+337+iSVa2SkUV6vQUeP7lVZ2RH93d/Vq6trlxoby7R//zFdcMHJYUPDRl+IdPHi\nGaNWFuyRw+G/bk99/cLg+z364qbgf686/3JJJyqGkrRjh0MXXXRB8DE7dti0ZMm04PuZTEadfPI0\nFRd7NGtWvYzGEUlHEvoMov0wN5kf7CYyjDXwvZk/X9q7t1Nz5tSostImj8c0pqIa6W/m6Mrrrl0v\nacmSE/ePfjyA7MK3EkG5NOwpnztJ2cZq/f/t3X1QVGX/x/HPsgsJiOKGbKHIdJNY6q9iyEGH0PmZ\nmTbd08OUNqZMTU0Fls7YZI1plOV0p/50nNJGZ+ofmh6khsJmshpHq5HCEZ91jCkfwQDlwYBVFDi/\nP7h3cWlZHmThLOf9+kfcc3b32r3Od/f6nu+5rq1SfX2SmptdIXuW04quTUpLSsq6jA+zV/cGc0W7\nY5UhIcGpigqHrly5pCtXwtTQUK/k5ATvoDshoVllZb/ru+/+0rhxMUpJGa7Y2OaAfRgREe6dg5SQ\nMEI///yLhg8fqZEj/Vd2rh20+xvQe1ZfO368rSJlt1/V/ff/j8LD246zpqaefX80NDi8q9tdvuxQ\ndHSN0tPjryuZ6M0x7Xsyp/34+u67Sp/9OiaiknwWsvBwuyN8tofKdyxgVSRG8DL7wOhag3mQZDac\n5bQGs1f3Ai0nHuonSTpWGU6f3q+hQ+M1ZkzbfJi6ugjFxra/5tLSi3I6U1RRcVyXL0fq3LnDevDB\niV32oedzs7S0WjEx/6vIyHJ9f3Kvd7unWiT5zqE5cqTmHyvZeVZf8yxIcPr0fm9S5Ll/Twwd2qyD\nB6vU2Ng+R6q4uEpDh6rXyURfHtP+khp/35meFe08oqKueP8Ope9YwKoY4cDL7AOjazFY7z8dByKD\n6SznYBhUW0Wg5cRD5SRJZ8dbx8+vMWNGaujQqyopOSzJptGjK5WePt476L58OUwOR7jGjXNqwgSX\nHA5167jtfGGBNh1/Z8fz3iYnx6u0tEp//vmXJk8eofT0eO3YUeNz36Sk+E5/pLU70tPj9dtvv8tu\nj9KQIa1KSRmuhoZm3Xuv0xTJhL+kxt93Zsf9Ro5sX6gklL5jAasK+miysLBQH330kRwOhxYtWqRp\n06Z5t1VUVGjJkiVqbm7W+PHj9eabbwa7ORgkuCSh/6Snx+v333+WwxETsmc5OxuQBmNQTbLV9zpe\ntpWWFuP9vZ5QOknS2fHW8fNsxAibMjPb53WVlDRdcylcuaKja9XS4lZKSvuPhHaH53kcjiadPFmu\nmrj2atG2/3voH/t73svw8HBNmDBKDofDO0enY5ujo69K6v1xHhERrsmTR6iuboRPe82STHS3HR33\nKympCGazAPSxsGA+eF1dnTZu3KjPP/9cmzdv1o4dO3y2/+c//9EzzzyjrVu3ym63q6KCDxB0T3p6\n29lJh6PSuxQqgiMiIlwTJw71Xj9fXFylK1d6tuLUQPMMSNvmSbVN6JaCM6ju7LnQe+2XbU3Ubbe1\nzWPxJJuhVNEMtPJfdz7PPIPuxYvHKSNDioys6dHnX/vz/KUhQy53uX+g97ZjmyVd93HP5zqAgRbU\nU2tFRUXKyMhQZGSkIiMjtXLlSu82wzBUUlKi9evXS5JWrFgRzKZgkDHLWUSrOHKkQS6X75nua39M\n0uyVkc4GpMGoPIZSBSNUBHpPQ2neRqCV/3ryedbbzz/P/RoaHNp9vn0lupwZk/3u7++99a2ISvfe\n61RERLjfxQl62z4AGChB/cYuLy/XpUuXlJ2drfr6ei1cuFBTpkyRJNXU1CgqKkqrVq3SsWPHdPfd\nd2vJkiXBbA6AXrp2ZSVJ3spRqMzt6GxAGoxBNZd59r1A72koDaaDcbx5EpXaWkNnzpz/71wfBTxR\n0d0qm7/3trPf4unL457LUQEMFJthGEawHnzLli3av3+/Nm3apLKyMmVlZWnnzp2SpAsXLui+++7T\ntm3blJCQoOeee04LFizwmYPUUUlJSbCaCiCA/fvrVF+f5P1/TMxpud0Ramm5WZLU3NyisrKTSk6O\nVlTUFU2cONT7+ypmcPVqs44caZDbHRH09vXnc1kF72nnPLF54kS1Ll1KVGTkef3rX9GKiTmt1NRY\nv/d589My798P3T60R+/n7t1ub9xLkmGc1bBhrfr77zBVVv4tl2u4hg1rua4+8vd509lrAYDOpKWl\n9fg+Qf1miYuLU2pqqmw2mxITExUdHa2amho5nU6NGDFCo0aN0ujRoyVJU6ZM0R9//BEwMZJ69yJh\nDiUlJfRfH+uvM6tXrxbr6tXIa55nqk/F6OjRat1881Ddcsuo/+5frsmTzXUWf7L/q4VC/rm6YzDE\nntne0/4UqP+qqirV3OzSxYsxamlxyW6P1K23jpDDEaO0tE5+zPSaxOjZZ+/tUVvc7vaKkSSdPl0v\nlytVLpc0dmzbynbXW8HzvCaPgK/F5AZD7FkZ/Re6eltMCeriCxkZGSouLpZhGKqtrZXb7ZbT6ZQk\n2e12jR49WmfOnJEkHT16VLfcckswmwMMOv010T883KHMzFGaPdulzMxR3hWyPBOl7fZz3hWyJObV\nAP3Fc8nakCGef1t9bu/o3y9/4/3b30p0Xem4QEJSku/lgH0R+6G0oAaAwSWooxeXy6X7779fc+bM\nkc1m04oVK1RQUKCYmBjNmDFDy5Yt02uvvSbDMJSSkqLpnrVJAXTLQE70v3b+Qdv8gt7/uONgwdwI\n9DfPvKXx4w2dObPf+3tCwVqEouO8o7Y5R+3b+yL2Q2lBDQCDS9BHUXPmzNGcOXP8bhszZow+/fTT\nYDcBGLTMMtGfgUybUFqQAoODb6IyOuC+11st8icYsR+MBTU4aQGgO7jeBQhhZklIQmllsGBiqW5Y\nTajEPictAHQH39pACAuVQYlVmKWCB3QUjGpRKOGkBYDuCOriCwBgJR0nplv1kkLAbFjQAUB3cMoE\nAPoIFTyYkdWrRZJ5LjsGYG4kRgAAYFDjpAWA7uBSOgAABimqRQDQfSRGAAAAACyPxAgAgEGIahEA\n9AyJEQAAAADLIzECAGCQoVoEAD1HYgQAAADA8kiMAAAYRKgWAUDvkBgBAAAAsDwSIwAABgmqRQDQ\neyRGAAAAACyPxAgAgEGAahEAXB8SIwAAAACWR2IEAECIo1oEANePxAgAAACA5ZEYAQAQwqgWAUDf\nIDECAAAAYHkkRgAAhCiqRQDQd0iMAAAAAFgeiREAACGIahEA9C0SIwAAAACWR2IEAECIoVoEAH2P\nxAgAAACA5ZEYAQAQQqgWAUBwkBgBAAAAsDwSIwAAQgTVIgAIHhIjAAAAAJZHYgQAQAigWgQAwUVi\nBAAAAMDySIwAADA5qkUAEHwkRgAAAAAsj8QIAAATe/PTMu/fVIsAIHhIjAAAAABYHokRAAAmxdwi\nAOg/JEYAAAAALI/ECAAAE6JaBAD9y2YYhjHQjeiukpKSgW4CAAAAAJNLS0vr8X1CKjECAAAAgGDg\nUjoAAAAAlkdiBAAAAMDySIwAAAAAWB6JEQAAAADLIzECAAAAYHkkRgAAAAAszzHQDehMU1OTHnzw\nQS1cuFAPP/yw9/bp06crISFBNptNNptNa9euVXx8/AC2FNfas2ePFi9erLFjx8owDI0bN07Lly/3\nbi8qKtL69etlt9s1depU5eTkDGBr0VFX/Uf8mVthYaE++ugjORwOLVq0SNOmTfNuI/bML1D/EXvm\n9uWXX+qbb76RzWaTYRg6evSo9u3b591O/JlXV31H7Jmb2+3Wq6++qosXL+rq1atauHCh7rnnHu/2\nHseeYVLr1q0zHnvsMaOgoMDn9unTpxuXLl0aoFahK8XFxcaiRYs63f7AAw8YFRUVRmtrqzFv3jzj\njz/+6MfWoStd9R/xZ161tbXGzJkzDbfbbZw/f95YsWKFz3Ziz9y66j9iL3Ts2bPHWLlypc9txF9o\n8Nd3xJ65ffLJJ8a6desMwzCMyspKY9asWT7bexp7pryU7sSJEzp58qTP2TIPwzBk8Ju0ptZZ/5w9\ne1axsbFyuVyy2WyaNm2afvvtt35uHboSKL6IP/MqKipSRkaGIiMjFRcXp5UrV3q3EXvmF6j/JGIv\nlGzcuNHnrDTxFzo69p1E7Jmd0+lUbW2tJOnixYtyOp3ebb2JPVMmRqtXr9Zrr73W6fbc3FzNmzdP\n69at68dWobv+/PNP5eTk6Mknn1RRUZH39gsXLvgcsE6nU1VVVQPRRATQWf95EH/mVF5erkuXLik7\nO1vz58/Xr7/+6t1G7JlfoP7zIPbM7/Dhw7r55pt14403em8j/kKDv77zIPbMa/bs2aqoqNDMmTOV\nlZXlkz/0JvZMN8fo66+/1qRJk5SQkCDpn2evFy9erMzMTMXGxionJ0c//PCDZs6cORBNhR9JSUl6\n8cUXNXv2bJ09e1ZZWVn68ccf5XD881DjDIz5dNV/xJ95GYahuro6bdq0SWVlZcrKytLOnTs73Rfm\n0lX/EXuhIT8/X48++mjAfYg/c+qs74g9cyssLNRNN92kLVu26Pjx41qxYoXy8/P97tud2DNdxein\nn37S9u3bNXfuXOXn5+vDDz/0OXP20EMPyel0KiwsTFOnTlVpaekAthYduVwuzZ49W5KUmJiouLg4\nVVZWSpLi4+N1/vx5776VlZVMYDSZQP0nEX9mFhcXp9TUVNlsNiUmJio6Olo1NTWSiL1QEKj/JGIv\nVOzZs0epqak+txF/ocFf30nEntnt27dPmZmZkqTbbrtNFRUV3gSoN7FnusRo/fr1ys/P1xdffKHH\nH39cOTk5mjJliiSpoaFB8+fPV1NTkyRp7969Gjt27EA2Fx1s27ZNH3zwgSSpurpaNTU1crlckqRR\no0apsbFR586dU3Nzs3bt2uWzcggGXqD+I/7MLSMjQ8XFxTIMQ7W1tXK73d5LCIg98wvUf8ReaKiq\nqlJ0dPQ/rpAg/syvs74j9swvKSlJBw4ckNR2SXJUVJRsNpuk3sWezTBxTfeDDz7Q6NGjZRiGYmJi\nNGPGDOXl5emrr75SdHS0br/9dp+lhDHwGhsb9fLLL+vixYsyDEM5OTmqrq729t/evXu1du1aSdKs\nWbP01FNPDWyD4aOr/iP+zG3r1q3Kz8+XzWZTdna26urqiL0QEqj/iD3zO3r0qDZs2KAtW7ZIkgoK\nCoi/EBGo74g9c3O73Vq2bJmqq6vV0tKixYsX69y5c72OPVMnRgAAAADQH0x3KR0AAAAA9DcSIwAA\nAACWR2IEAAAAwPJIjAAAAABYHokRAAAAAMsjMQIAAABgeSRGAIB+sWfPHs2bN++6H6egoEAZGRnK\nysrSggULNHfuXL3//vt+9/3ll1+0efPm635OAMDg5+h6FwAA+obnF8mvV0ZGhlavXi1Jam5u1vz5\n83XHHXdo2rRpPvtlZmYqMzOzT54TADC4kRgBAPrdqVOnlJubq9bWVrW2tmrJkiVKS0vTqVOntHTp\nUt1www2aNWuW3n33XR05ciTgYzkcDqWmpurEiRO69dZb9cILL2jcuHFKTk7WTTfdpKKiIq1Zs0YH\nDx7Uu+++q/DwcMXGxuq9995TVFSU1q9fr3379qmpqUmTJk3SK6+80k/vAgDATLiUDgDQ795++209\n+eSTysvLU25url599VVJ0vvvv69HHnlEeXl5ioiIUEtLS5ePVV9fr927dystLU2SdPLkSb300kvK\nzs6W1F6lWrp0qVatWqW8vDxNmjRJu3bt0vbt21VZWam8vDxt3bpVp0+f1q5du4LzogEApkbFCADQ\n7w4dOqQNGzZIklJSUtTY2Kja2lqVlpbq+eeflyTNmDFDb7zxht/77969W1lZWTIMQ3a7Xc8++6zu\nuOMOlZeXa/jw4UpKSvLZv7a2VvX19UpOTpYkZWVlSZLeeustHThwwPtYjY2NKisrC9bLBgCYGIkR\nAKDfdZxrZBiGwsLC1NraqrCwMO9tnbl2jlFH4eHhfp/PX/UpIiJCc+fO1dNPP92T5gMABiEupQMA\n9Lu77rpLP//8syTp2LFjio2N1fDhw5WcnKzDhw9Lknbs2NGrx/aXUMXGxsrpdHrnK3388cf67LPP\nlJaWpu+//96bNG3cuFFnzpzp1fMCAEIbFSMAQL9bvny5cnNz9fnnn6ulpUVr1qyRJOXk5Gjp0qUq\nLCxUZmam7HZ7jx+7s5Xv3nvvPb3zzjsKDw/XsGHDtHr1akVHR+vgwYN64oknZLfbNWHCBCUmJl7X\nawMAhCabEehaBQAA+tGRI0fU0tKiO++8U4cOHdKyZcv07bffDnSzAAAWQMUIAGAaQ4YM0euvvy67\n3a7m5mbl5uYOdJMAABZBxQgAAACA5bH4AgAAAADLIzECAAAAYHkkRgAAAAAsj8QIAAAAgOWRGAEA\nAACwvP8HPsMxM4K+9LMAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "combined = (linreg_r2(data['Total area'], data['log Price'],plot=False)[1]\n", + " + linreg_r2(data['Number Of Stories'], data['log Price'],plot=False)[1]\n", + " + linreg_r2(data['Year Built'], data['log Price'],plot=False)[1])/3\n", + "\n", + "plt.scatter(data['log Price'],combined, alpha = 0.3);\n", + "plt.plot(data['log Price'],data['log Price'], label='Y=X **not model**')\n", + "plt.ylim(6.5,7.5);\n", + "plt.xlabel('log Price');\n", + "plt.ylabel('Predicted log Price');\n", + "plt.legend();\n", + "\n", + "print 'rsquared:', np.corrcoef(combined,data['log Price'])[0][1]**2" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "By taking a simple equally weighted average of all the models we saw $R^2$ increase to 18.6%. While still indicative of a poorly fit model, the result is still interesting considering the $R^2$ values of the individual single-dimension models were 1.9%, 5.6%, and 16.9% respectively. The $R^2$ of the combined model was higher than any of the single models alone.\n", + "\n", + "Simply averaging the model outputs ignores some of the interplay between variables which can be better captured by using a multiple linear regression. Let's run a single multiple linear regression model on the pricing data:" + ] + }, + { + "cell_type": "code", + "execution_count": 181, + "metadata": { + "collapsed": false, + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "rsquared: 0.188016012536\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0YAAAHsCAYAAAD2PL25AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3X98m3W9//9n1qRL1xbSbmtdCys4KJMOP5Zy6Dhj/Bhw\ndob8UM5AbqiIH44I6FE/wlFABARBfh6OHuHovgLT89HDV/GMDWWoDJECLoOyA904UBmwsZS129qM\nJVvWpMvnj5o0aZPmR3Pluq7kcb/dvHldTZO8misZ72de1/V+O6LRaFQAAAAAUMammV0AAAAAAJiN\nYAQAAACg7BGMAAAAAJQ9ghEAAACAskcwAgAAAFD2nGYXkIvu7m6zSwAAAABgcR0dHTnfx1bBSMrv\nj4Q1dHd3c/xsimNnbxw/e+P42RfHzn4OHozq/H9eE99/4r7zTawG+cq3mcKpdAAAAICUFIpuueQw\nEyuBGQhGAAAAKHv7QmGzS4DJCEYAAAAoe5/61pPxbU6hK08EIwAAAJS1HbuDZpcACyAYAQAAoKx9\n4Y6n49t0i8oXwQgAAABlq+etXfHtow471MRKYDaCEQAAAMrWDf/+Qnz7/v9zmnmFwHQEIwAAAJSl\ntX9+N7597uIPm1YHrIFgBAAAgLL04GOvxrev+MRxJlYCKyAYAQAAoOwkhqKvfupjJlYCqyAYAQAA\noOwknkZ35oktptUB6yAYAQAAoKx86Z5n4tt3f3mxiZXASghGAAAAKCvbduyNb3/kyHoTK4GVEIwA\nAABQNs69ZnV8++Eb/87ESmA1BCMAAACUpdl1VWaXAAshGAEAAKAsJHaLfnXHx02sBFZEMAIAAEDZ\ncU93ml0CLIZgBAAAgJKX2C1afc95JlYCqyIYAQAAoKRFo9Gk/WnTHCZVAisjGAEAAKCknXftmvj2\nE/edb2IlsDKCEQAAAEpWOHLQ7BJgEwQjAAAAlKwLvvlEfJtuESZDMAIAAEBJ8u89YHYJsBGCEQAA\nAErSZ295Kr5NtwiZEIwAAABQct7p2xPfrp3hMrES2AXBCAAAACXnK/c9G9/+xW1nm1cIbINgBAAA\ngJLy4mt98e2TjptjYiWwE4IRAAAASsr3fvpSfPuGy040sRLYCcEIAAAAJeM/f/dGfPtzHz/WxEpg\nNwQjAAAAlIxf/P7N+PbyJUebWAnshmAEAACAkvCdn6yPb3/7f3eaWAnsiGAEAACAkvDy//THt09s\n+5CJlcCOCEYAAACwvX+47jfx7R/+8+kmVgK7IhgBAADA9obDI/Htlg8dYmIlsCuCEQAAAGzt3GtW\nx7d/fusyEyuBnRGMAAAAUDIOqa40uwTYFMEIAAAAtpXYLVp197kmVgK7cxr54I899phWr14th8Oh\naDSqzZs365VXXpnwe/fdd5/++7//W//xH/9hZDkAAAAoYc4KvvNH/gwNRsuXL9fy5cslSS+99JKe\neuqpCb+zZcsWvfzyy3K5XEaWAgAAgBKT2C164r7zTawEpaBosfqBBx7Q1VdfPeHnd911l6655ppi\nlQEAAIAScPBg1OwSUGKKEox6eno0Z84czZw5M+nnq1at0kknnaQ5c+YUowwAAACUiPP/eU18m24R\nCsHQU+lifvWrX+mCCy5I+tmePXu0evVqPfzww+rr61M0ml3q7+7uNqJEFAnHz744dvbG8bM3jp99\nceyMsX/4YNK+Ua8zx6+8FCUYbdiwQTfddFPSz9avX6/du3frkksu0YEDB/Tee+/pzjvv1HXXXTfp\nY3V0dBhZKgzU3d3N8bMpjp29cfzsjeNnXxw74xTj2iKOn33lG2gND0YDAwOqrq6W05n8VEuXLtXS\npUslST6fT9dff33GUAQAAIDytm3HB2aXgBJl+DVGO3fuTLq2aNWqVXr66aeNfloAAACUoC/d88f4\nNtcWoZAM7xi1tbVpxYoV8f1PfvKTE36nublZP/vZz4wuBQAAADb2557349sOh4mFoCSxChYAAABs\n4Y6VG+Lba+6lW4TCIhgBAADA8n7+1Bvx7RM+0mhiJShVBCMAAABY3qN/eDO+ffM/LjSxEpQqghEA\nAAAsLXF67kvP/oiJlaCUEYwAAABgGxee0Wp2CShRBCMAAABYVmK36MsXfszESlDqCEYAAACwhaUL\nW8wuASWMYAQAAABLSuwW3f9/TjWxEpQDghEAAAAs76jDPGaXgBJHMAIAAIDlJHaLfnHbMhMrQbkg\nGAEAAMDSamdUml0CygDBCAAAAJaS2C1afc95JlaCckIwAgAAgGVEo9Gk/WnTHCZVgnJDMAIAAIBl\nnHftmvj2E/edb2IlKDcEIwAAAFhC6EDE7BJQxghGAAAAsIQLb/htfJtuEYqNYAQAAADTbR/Ya3YJ\nKHMEIwAAAJjuqrueiW/TLYIZnGYXAAAAgImGh8PyegcUCDhVUxNRZ2eDKitdZpdliD/39JldAkDH\nCAAAwIq83gH5/c2KRBrl9zfL6x0wuyTD3LHypfg23SKYhWAEAABgQYGAc9L9UvH/re4xuwRAEsEI\nAADAkmpqIpPul4o1z70d36ZbBDMRjAAAACyos7NBHo9PTme/PB6fOjsbzC6p4C6//Q/x7Q83HWpi\nJQCTLwAAAFhSZaVLixc3m12GoQYG98W3v3/NaeYVAoiOEQAAAExw7jWr49sXndlqYiXAKIIRAAAA\nTPXZZR8xuwSAU+kAAACQv3zWW0rsFt38jwuNLhHICh0jAAAA5G2q6y2d8JFGgyoDckMwAgAAQN5y\nXW8psVv0k2+dZUhNQD4IRgAAAMjbVNZbaqyfUehygLwRjAAAAJC3XNZbSuwW/frOc4pRHpA1Jl8A\nAABA3vJdb6nSVWFANcWXz+QTsCY6RgAAADBcYrfoifvON7GSwprq5BOwDoIRAAAADDUyctDsEgyT\n6+QTsC6CEQAAAAz1iW88Ed8upW6RNLXJJ2AtBCMAAAAYZufQfrNLMFQuk0/A2uj1AQAAwDD/+7u/\nj2+XWrdIyn/yCVgPHSMAAAAY4oVX+8wuAcgawQgAAACGuPNnL8W3S7FbhNJCMAIAAEDB/eujr5hd\nApATghEAAAAKbt1L78W36RbBDghGAAAAKKjExVwBuyAYAQAAwDB0i2AXBCMAAAAUTGK3qLrKZWIl\nQG4IRgAAADDEo9892+wSgKwRjAAAAFAQid2i8075sImVALkjGAEAAKDgvnD+cWaXAOSEYAQAAIAp\nS+wW3fKFhSZWAuSHYAQAAICC6pjfaHYJQM4IRgAAAJiSxG7RT29eamIlQP4IRgAAACiY+kPcZpcA\n5IVgBAAAgLwldosev+c8EysBpoZgBAAAgLxEo9Gk/YppDpMqAaaOYAQAAIC8nHftmvj2E/edb2Il\nwNQRjAAAAJCz4P6w2SUABUUwAgAAQM4uvvHJ+DbdIpQCghEAAABy8sbWQbNLAAqOYAQAAICc/PMP\nuuLbdItQKghGAAAAyNp//fEvZpcAGIJgBAAAgKw98pvX49t0i1BKCEYAAADIylf/5VmzSwAMQzAC\nAABAVt727Ylv0y1CqSEYAQAAIKNzr1ltdgmAoQhGAAAAyAndIpQighEAAAAmldgt+nDzoSZWAhjH\naXYBAAAAVjU8HJbXO6BAwKmamog6OxtUWekyuyxTff/rp5ldAmAIOkYAAABpeL0D8vubFYk0yu9v\nltc7YHZJRZfYLfr8OW0mVgIYi2AEAACQRiDgnHS/3Fxw+lFmlwAYhmAEAACQRk1NZNL9UpfYLbr3\nK4tNrAQwHsEIAAAgjc7OBnk8Pjmd/fJ4fOrsbDC7JNMc01JvdgmAocq7HwwAADCJykqXFi9uNrsM\nUyR2i/7/2882sRKgOOgYAQAAYFIz3OU9Ex/KA8EIAAAASRK7RSzminJBMAIAAEBcOHLQ7BIAU3CN\nEQAAAOIu+OYT8W0jukUsmguromMEAAAASZJvZ8Dw52DRXFiVoR2jxx57TKtXr5bD4VA0GtXmzZv1\nyiuvxG9fv3697r//flVUVOjII4/U7bffbmQ5AAAAmMSVd66Lbxt1bRGL5sKqDH0nLl++XMuXL5ck\nvfTSS3rqqaeSbr/55pv1s5/9TI2NjfrqV7+q5557TqeccoqRJQEAACCF363fWpTnqamJyO9P3ges\noGin0j3wwAO6+uqrk37261//Wo2NjZKk+vp6+RM/JQAAACiaH/7qv+PbRs5Ex6K5sKqi9C57eno0\nZ84czZw5M+nnNTU1kqSBgQG9+OKL+trXvlaMcgAAAJDghgdfKNpzlfOiubA2RzQajRr9JDfddJPO\nPfdc/c3f/M2E23bv3q0rrrhC1157rU466aRJH6e7u9uoEgEAAMrWLb/YPrZ9yWEmVgIURkdHR873\nKUrHaMOGDbrpppsm/DwQCOgLX/iCrrnmmoyhKCafPxLW0N3dzfGzKY6dvXH87I3jZ192OXaJi7lK\njLVi7HL8MFG+zRTDrzEaGBhQdXW1nM6JGezOO+/U5z//eS1atMjoMgAAAJCBkdcWAVZneMdo586d\nSdcWrVq1SrW1tTr55JO1Zs0abdu2Tb/85S/lcDh07rnn6sILLzS6JAAAAGhitwgoZ4YHo7a2Nq1Y\nsSK+/8lPfjK+/dprrxn99AAAAMgC3SKUu6JN1w0AAADrSOwW/e1H55hYCWANBCMAAIAyd/3nTjS7\nBMB0BCMAAIAyk9gt+sZnTzCxEsA6CEYAAABlbPHHWGwVkAhGAAAAZSWxW/TQjWeZWAlgLQQjAACA\nMtVQN8PsEgDLIBgBAACUicRu0eP3nGdiJYD1EIwAAADKQDQaTdqvmOYwqRLAmghGAAAAZeC8a9fE\nt1nMFZiIYAQAAFDi9gQOmF0CYHkEIwAAgBL3mZufim/TLQJSIxgBAACUsA2bd5hdAmALBCMAAIAS\ndtvD3vg23SIgPYIRAABAibrv591mlwDYBsEIAACgRD37yvb4Nt0iYHIEIwAAgBKUuJgrgMwIRgAA\nACWObhGQGcEIAACgxNAtAnJHMAIAAChhdIuA7BCMAAAASgjdIiA/BCMAAIASRbcIyB7BCAAAoEQk\ndovOWXSkiZUA9kMwAgAAKEFfvOCjZpcA2ArBCAAAoAQkdovuuGqRiZUA9kQwAgAAKDHHHTXL7BIA\n2yEYAQAA2Fxit+jR755tYiWAfRGMAAAASkh1lcvsEgBbIhgBAADYWGK3iOm5gfwRjAAAAGwqHBkx\nuwSgZBCMAAAAbOqCb/4mvk23CJgaghEAAIANbX3/A7NLAEoKwQgAAMCGvnzvH+PbdIuAqSMYAQAA\n2Mx//fEts0sASg7BCAAAwGYe+c3m+DbdIqAwCEYAAAA2cvntfzC7BKAkEYwAAABsZGBwX3ybbhFQ\nOAQjAAAAm0hczBVAYRGMAAAAbIhuEVBYBCMAAAAboFsEGItgBAAAYDN0i4DCIxgBAABYXGK3qHl2\njYmVAKWLYAQAAGAjP7ruDLNLAEoSwQgAAMDCErtFX/zkcSZWApQ2ghEAAIBNnHPyh80uAShZBCMA\nAACLSuwW/ZhT6ABDOc0uAAAA5G54OCyvd0CBgFM1NRF1djaostJldlkwUBOTLgCGyqpjNDQ0pJ6e\nHknSwYMHDS0IAABk5vUOyO9vViTSKL+/WV7vgNklocASu0WP332uiZUA5SFjMPrNb36jT33qU7r+\n+uslSbfddpt+9atfGV4YAABILxBwTroPe4tGo0n7FRVc/QAYLeOn7JFHHtHq1atVV1cnSfrmN7+p\nX/7yl4YXBgAA0qupiUy6D3s779o18W0WcwWKI2Mwqq2tVVVVVXzf7XbL5eIcZgAAzNTZ2SCPxyen\ns18ej0+dnQ1ml4QCGfogZHYJQFnK2Hevq6vTqlWrdODAAW3evFlPPvmk6uvri1EbAABIo7LSpcWL\nm80uAwa49Du/i2/TLQKKJ2PH6Dvf+Y56enoUDAZ144036sCBA/rud79bjNoAAADKyjMvbzO7BKBs\nZewYHXLIIbr00kt10003SZJef/11eTwewwsDAAAoN/f/58b4Nt0ioLgydozuv/9+/fjHP47v//jH\nP9a9995raFEAAADl5trvP2d2CUBZy9gx8nq9evTRR+P73//+93XxxRcbWhQAAEC5eXPbUHybbpH1\nschy6cnYMQqHwxoeHo7vB4NBjYyMGFoUAABAOUlczBX2wCLLpSdjx+jiiy/W2WefrQULFujgwYPq\n6enRl7/85WLUBgAACoxvua2PbpE9sMhy6cl4BC+88EItWrRIPT09cjgcuv766zVnzpxi1AYAAAos\n9i23JPn9ktfrY9pvk9Etsqeamoj8/uR92FvaYPSnP/1Jp556qh577LGkn7/wwguSpOXLlxtbGQAA\nKDi+5bY2ukX20dnZIK/Xl9R9hb2l/dfwzTff1Kmnnqru7u6UtxOMAACwH77ltha6RfbFIsulJ20w\nuuKKKyRJS5cu1WmnnVasegAAgIH4ltu6xneLuB4MKK6M/fOf/vSnOvnkk+V00moHAMDu+JbbOhK7\nRSce+6EJt3M9GFBcGdNObW2tPv7xj+vYY4+VyzX2LcXdd99taGEAAADl4tuXd074GdeDpUc3DUbI\n+Ak7/fTTdfrppxejFgAAAFtKNVCfTGK36JpLjk/5O1wPlh7dNBhh0mC0Z88etba2at68eXK73cWq\nCQAAwFZSDdRnzMjuvqd1HJ7y51wPlh7dNBgh7bvoD3/4g2655RY1NjZqaGhI//Zv/6YFCxYUszYA\nAABbSDVQTxeMErtF//c7f5/2MbkeLD26aTBC2mD00EMP6fHHH9fs2bP1l7/8Rffdd59+9KMfFbM2\nAAAAW8h3oH5ozXSDKio8K13XQzcNRkgbjFwul2bPni1JOvrooxUMBotWFAAAgJ2kGqj39OyY8HuJ\n3SK7LeZqpet66KbBCGmDkcPhmHQfAAAAo7IZqIeG7X26F9f1oNSlfUcPDAzosccei+/v3LkzaX/5\n8uXGVgYAAFBCLrz+t/Ftu3WLJK7rQelLG4za29vV3d0d3//Yxz6WtE8wAgAAyE7PW7vMLmHKuK4H\npS5tMPre975XzDoAAABK1g3//kJ8247dIonrelD6ppldAAAAQCm75z9eNrsEAFkgGAEAABjouf/2\nxbft2i0CygHBCAAAwCCJ03MDsLaM8yx+9rOfnTBVt9Pp1BFHHKEvfvGLamxsNKw4AACAUkG3CLC2\njMFo8eLF6u3t1VlnnSVJWrdunebMmaPa2lpdd911euSRR9Le97HHHtPq1avlcDgUjUa1efNmvfLK\nK/HbX3zxRd1///2qqKjQKaecoquvvroAfxIAAID5bvnFdrNLAJCDjMHoxRdf1MqVK+P7S5cu1RVX\nXKEVK1boT3/606T3Xb58eXxa75deeklPPfVU0u233367Hn74YTU0NOgzn/mMli5dqnnz5uXxZwAA\nAFgX3aLSMzwcltc7kDR9eWWly+yyMAUZrzHavXu3tmzZEt/fvn27tm/frh07dmjv3r1ZP9EDDzyQ\n1BF677335PF41NjYKIfDoVNPPVXr16/PsXwAAADr4dqi0uf1Dsjvb1Yk0ii/v1le74DZJWGKMnaM\nvvrVr+rzn/+8Dhw4IIfDoWnTpukb3/iGNm/erC9+8YtZPUlPT4/mzJmjmTNnxn+2a9cu1dfXx/fr\n6+v13nvv5fEnAAAAWBfdotIUCDgn3Yf9ZDyCZ555ps4880wNDQ0pGo2qrq5uwmQMmfzqV7/SBRdc\nMOnvRKPRrB6ru7s7p+eGtXD87ItjZ28cP3vj+NnL+GuLOH72Ndmx8/n8SWdP1dZuVXc315XZWcZg\nNDAwoH/9139VT0+PHA6HPvaxj+lrX/taUrcnkw0bNuimm25K+llDQ4N27twZ3+/v71dDQ0PGx+ro\n6Mj6eWEt3d3dHD+b4tjZG8fP3jh+NpQQjPLpFnHtijVk+uwdd9z443QKx8ki8v0yIuM1RjfddJPa\n2tr0L//yL7r33nv14Q9/WDfccEPWTzAwMKDq6mo5nckZrLm5WcFgUH19fYpEInr22Wd18skn5/4X\nAAAAWETitUUnHFWd12Nw7Yo9VFa6tHhxs5Yta9Tixc2EohKQsWO0f/9+ffrTn47vt7a26plnnsn6\nCXbu3Jl0bdGqVatUW1urM888UzfffLO+/vWvS5LOOecctbS05FI7AACAZZ1zYl1e9+PaFcAcWQWj\ngYGB+GluO3bs0PDwcNZP0NbWphUrVsT3P/nJT8a3TzjhBD366KO51AsAAGBJid2if/naKfpg4O28\nHqemJiK/P3kfgPEyBqOrr75aF1xwgWbPnq1oNKrBwUHdfvvtxagNAADAlo4+vE7deZ4B19nZIK/X\nl3SNEQDjZQxGp512mp5++mm9++67kqQjjzxS06dPN7ouAAAA20jsFq26+9wpPVbs2hUAxZU2GH3/\n+9+f9I5f/epXC14MAACA3YxfcsRZkXFuKwAWlDYYVVRUFLMOAAAAWzrv2jXxbSss5sp030B+0gaj\nL3/5y8WsAwAAwHb6B/eZXcIEsem+Jcnvl7xeH6fmAVmg1wsAAJCnf7z9D/FtK3SLJKb7BvJFMAIA\nAMjDqmffMruElMZP781030B2CEYAAAB5ePiJzfFtq3SLpNHpvj0en5zOfnk8Pqb7BrKUtrc6f/58\nORyOlLdVVFRo06ZNhhUFAABgZf/wzSfMLiEtpvsG8pM2GG3evFnRaFQ/+tGPdMwxx2jhwoUaGRnR\niy++qHfeeaeYNQIAAAsrx1nQhiMH49tW6hYByF/aU+kqKirkdDrl9Xp11llnqba2Vh6PR2effbY2\nbtxYzBoBAICFxWZBi0Qa5fc3y+sdMLskQyUu5gqgdGScpmT//v169NFH1dHRoWnTpumVV17R4OBg\nMWoDAAA2UM6zoNEtAkpHxn+57rnnHv3whz/Uz3/+c0nSUUcdpbvuusvwwgAAgD3U1ETk9yfv2022\npwPSLQJKV8ZgdOSRR+qee+7Rrl271NDArCYAACBZZ2eDvF5fUqiwm3wWRaVbBJSWjMHoz3/+s771\nrW+psrJSTz31lO644w6ddNJJOv3004tRHwAAsLhSmAUtm9MB6RYBpS3jOkb333+/fvnLX2r27NmS\npCuvvFL//u//bnhhAAAAxZLroqh0i4DSkzEYzZgxQ7NmzYrv19fXy+Uq7Sk4AQBAecm0KGpit6ja\nXT6TSwDlJOMn2+12a8OGDZKkPXv26Le//a2mT59ueGEAAACZFGoNpVxOB3z09o/n/PgArC9jx+jm\nm2/WQw89pJ6eHv3d3/2durq6dNtttxWjNgAAgEkVYw2lxG7R1f/w0YI/PgBryNgx2rZtm3784x8n\n/ezpp59Wc7O9L7IEAAD2V+w1lJb97ZGGPj4A86T912P79u167733dNddd+m6665TNBqVJEUiEd1x\nxx0688wzi1YkAABAKkavoZTYLfrZzUsL+tgArCVtMNq5c6eefPJJ+Xw+PfDAA/GfT5s2TRdffHFR\nigMAAJhMMddQqjvEbdhjW0GhrtcC7CptMGpvb1d7e7tOPfVUnXHGGXI4HJJGO0ZOJ7OxAAAA8xm5\nhlJit8iI6bmtFkTyWeQWKCUZJ1+IRCK66qqr4vuXXHKJnnrqKUOLAgAAMFPoQGFPyUulGBNH5KLY\n12sBVpMxGK1cuVL33HNPfP+hhx7Sww8/bGhRAAAAZrrwht/Gt41azNVqQSTXRW6BUpMxGEWjUdXW\n1sb3a2trNW1axrsBAADY0sv/01+U57FaEMm0yC1Q6jJ+NbFgwQJ97Wtf04knnqhoNKquri4tWLCg\nGLUBAAAU3Xd+sj6+bVS3SCruxBHZMPJ6LcAOMgajG2+8UWvWrNFrr70mh8Ohc889V8uWLStGbQAA\nAEV1/YPPF+25CCKAtaQNRgMDA2poaND27dt1/PHH6/jjj4/f5vP5dPjhhxelQAAAgGLZtGV3fNvI\nbhEA60kbjO666y7dd999+tznPjfhNofDoXXr1hlaGAAAQDElTs8N+7PadOiwvrTB6L777pMkPfPM\nM0UrBgAAwAroFtkf6zIhV2mD0fXXXz/pHb/3ve8VvBgAAAAz0C0qPVabDh3Wl3be7dh1RdOmTdOe\nPXs0f/58tba2avfu3aqqqipmjQAAAEVDt6g0WG06dFhf2uh84YUXSpL+8Ic/aMWKFfGfX3bZZfrS\nl75kfGUAAABFQLeoNFltOnRYX8ae4vvvv68PPvhAhxxyiCQpGAzqvffeM7wwAACAYqNbVDqYDh25\nyhiMLr74Yp111lk67LDD5HA4tH37dl155ZXFqA0AAMBQdIsAxGQMRp/+9Kd1/vnna+vWrYpGo5o7\nd268ewQAAFAq7NYtYjpqoLDSTr4Qs2fPHj3wwAN65JFHtGDBAr388ssaHBwsRm0AAACGSewWndp+\nmImV5Cc2HXUk0ii/v1le74CGh8Pq6vJp7dp+dXX5NDwcNrtMwDYyBqMbb7xRc+bM0fbt2yVJw8PD\n+uY3v2l4YQAAAMVy7Wc6zC4hZ6mmo04VlgBkJ2MwGhwc1KWXXiqXa7Q1+/d///cKhUKGFwYAAGCU\nxG7RPf+02MRK8pdqOmrW7gHylzEYSVI4HJbD4ZAk7dq1S/v27TO0KAAAgGKZf0S92SXkpbOzQR6P\nT05nvzwenzo7G1i7B5iCrCZfWL58uXbu3Kkrr7xSPT09+ta3vlWM2gAAAAousVv0X3eda2IlU5Nq\nOmrW7gHylzEYnX322Tr++OO1ceNGVVZW6tZbb1VDAx8yAABgP9FoNGnf5czq5BnbYO0eIH8Zg9FX\nvvIV/eAHP9CyZcuKUQ8AAIBhzrt2TXzbbtNzG43pv1HuMgajuXPn6rHHHlN7e7sqKyvjPz/88MMN\nLQwAAKCQ3t8VNLsES4vNaCdJfr/k9froPqGsZAxGTz755ISfORwOrVu3zpCCAAAAjHDF956Obxe7\nW2SHbgwz2qHcZXzHP/PMM8WoAwAAwDD/+fs3TX1+O3Rjamoi8vuT963CDsES9pf2isNAIKC7775b\nV155pR566CFFItb5cAAAAOTiF797I75txrVFdujGpJr+2ypYuBbFkDYY3XLLLZKkT33qU3rrrbf0\nwx/+sFjrR4H5AAAgAElEQVQ1AQCAMjQ8HFZXl09r1/arq8un4eFwQR43cXpus9hhfaHYjHbLljVq\n8eJmS3Vk7BAsYX9p31U+n0/33nuvJOmUU07RZZddVqyaAABAGSrG6WZmzUTH+kJTY+XT/FA60gYj\np3PspoqKiqIUAwAAypcRXQErdIsk1heaKoIliiHtvzgOh2PSfQAAgEIyuivAukX2RbBEMaQNRhs3\nbtRpp50W39+9e7dOO+00RaNRORwOPfvss0UoDwAAlItCdwWs0i2yEmZ3A9JLG4yeeuqpYtYBAADK\nnJFdAbpFo+wwbThglrTBqLmZDwkAALAnukWpMbsbkF7a6boBAABKAd2iMXaYNhwwC8EIAACUlMRu\nUbWbjkgiKy/iCpiNfy0AAEDJevT2j5tdgqUwuxuQHsEIAACUjMRu0dX/8FETK5kcs8MB1kMwAgAA\nJWnZ3x6Z1/2KEVqYHQ6wHq4xAgAAJSGxW/Szm5fm/Tix0BKJNMrvb5bXO1CI8pIwOxxgPQQjAABQ\ncuoOced932KEFmaHA6yHYAQAAGwvsVs01em5ixFamB0OsB76tgAA2BQX8I8KHShscOnsbJDX60t6\nXQuN2eEA6yEYAQBgU1zAP+rCG34b3y7EYq7pQgtBFChtnEoHAIBNcQG/9PL/9BftuYoxKQMA8xCM\nAACwKS7gl77zk/Xx7UJ0iyZDEAVKG8EIAACbKvcL+G948IWiPh9BFChtfNUBAIBNlfsF/D1bdsW3\nje4WScWZlAGAeQhGAADAdhKn5y4WKwZRJoQACodgBAAAbCExBCQqRrfIqpiZECgcghEAALCk8d2Q\ncDisYPAIrXi2+N0iq2JCiNJB9898fHoAALCJchs4je+GvPHGJs2fn/w7du0WFepY1tRE5Pcn78Oe\n6P6Zj1npAACwiamsozM8HFZXl09r1/arq8un4eGwgZUWxsTuR7RkukWFWhOp3GcmLCV0/8zHKw4A\ngE1MZeBkx2+jx3dDOjpq9dxvx/Z//b2zi19UgRRqEGzFCSGQH7p/5qNjBACATUxlHR0rfBuda9dq\nfDfk/t++mnS7nU8jZE0kjEf3z3yG/6u4Zs0aPfTQQ3I6nfrKV76iU089NX7bz3/+cz3xxBOqqKjQ\nggULdP311xtdDgAAtjWVdXSm+m10Ia6JybVrNb4bcvfjL8e37XptUQxrImE8un/mMzQY+f1+PfDA\nA3r88ccVDAb1gx/8IB6MAoGAHnroIa1bt04Oh0OXX365XnvtNX30ox81siQAAGxrKgOnqQ7EC3Eq\n3lS6VonrFp3aflhOz2tFDIIB6zE0GL344otatGiRqqqqVFVVpVtvvTV+W2VlpaZPn65AIKCqqiqF\nQiEdeuihRpYDAEDZmupAvBCn4hXqGoprP9OR1/2k8pvZD0D2DL3GyOfzaf/+/brqqqv0mc98Rn/+\n85/jt1VWVuqf/umfdOaZZ+qMM87Q8ccfr5aWFiPLAQAAeSrENTH5XkOR2C26558W5/y8iQo1GxyA\n0mNoxygajcrv9+vBBx/U9u3bdemll+qPf/yjpNFT6R588EH9/ve/V3V1tT73uc+pt7dXra2tkz5m\nd3e3kSXDYBw/++LY2RvHz96scPxcroj6+9/Qvn2VmjFjWLNn16i7e0fOjzNjxuj/JKmnJ/f7B3e/\no+7d7+R8v5iNG/dpZGR/fL+i4n3NmJF7HdmayrELhyPatCkQf80XLKiRy8WEwsVkhc8eisfQT9es\nWbPU3t4uh8Ohww8/XNXV1RocHFR9fb3efvttHX744fHT5zo6OrRp06aMwaijI//2OczV3d3N8bMp\njp29cfzszUrHb+HC4j9nYrfov+46Vy7n1E522bfPF79WSpI8nip1dBhzrc9Uj11Xl0+NjWO1hcM+\nLVzIdUnFYqXPHnKTb6A19FS6RYsWyev1KhqNamhoSPv27VN9fb0kqbm5WW+//baGh4clSZs2bdLc\nuXONLAcAANhINBpN2p9qKJLsNSWyFaZYB8qJoZ+wxsZGLV26VBdddJEcDoe+/e1va9WqVaqtrdWZ\nZ56pyy+/XJ/97GfldDrV3t6uE044wchyAACAjZx37Zr4dqGm57bTbHAs+AkUl+FfPVx00UW66KKL\ncr4NAACUL9/OgNklmI61joDioicLAAAs58o718W37b6Ya77s1N0CSgHBCACAMpJuHR8rre/zk9Wb\nTHleAOXN0MkXAACAtaRbx8dK6/usfm5LfDvfbtHwcFhdXT6tXduvri6fhofDhSoPQImiYwQAQBlJ\nN9OZ3y9t3rxbodA0ud0H1dY28b65dJXy7UAlTs89FbGgJ43+bV6vz/KnpRnZtbNSRxCwKjpGAACU\nkfEzm8X2t24dUDA4UyMjdQoGZ2rr1okdo1y6SoXoQE3l2qJsp7q2Umcp3WtWiBqt1BEErIqOEQAA\nJS6xWzB9eljV1e/qwIGqpJnO5s6drUDAp1DIKbc7orlzZ094nFzW1clnDZ5CdYuk7Ke6TtdZMqPD\nku41K0T3izWRgMz4VAAAUOISB9aRiOTx+LRkSWPS79TVOdTWNjbY9nh8Ex4nl3V1proGz1Rnost2\nqmsjw0iu0r1mhQg1rIkEZEYwAgCgxGUzsM4mSOSyrk6ua/AUslskZT/VtZFhJFfpXrNChBrWRAIy\nIxgBAFDishlYZxMkcllXZypr8BRz3SIjw0iu0r1mhQg1rIkEZEYwAgDAhnK5Bsbq3YJCd4tyYWQY\nyUe640qoAYxHMAIAwIZyuQbGTgPrYnaLJmPWa2bHacaBUkEwAgDAhkpllrGpdotKbX2eUjmugB2x\njhEAADaUbj0iO3vivvNzXrOn1NbnKcXjCtgFwQgAABvq7GyQx+OT09kvj8dnueuGspHYLTq17TCt\nXduvFSs2aefOxqyDTql1WErhuAJ2Ze9/PQAAKFN2um4oG8fM7lAkIu3aJQUCe9TWNlNS5qCT7+xx\nVj0Fr9SOK2AnBCMAAFB0id2iS08+Pr7tdkcUClXG91MFncRQM316WNXV7+rAgaqcZo9jkgMA4xGM\nAACwKat2PXL1oVnT4l2f1tYG9fVtktM5nDboJIaaSETyeHw6+eR6eb0DWrduMKvXotROwQMwdfwr\nAACATdm165HYLYpNuBBbM8jjieiccxbkHGpyfS3MWMAVgLURjAAAsCk7dj32H5gYQHK9riZVqMn1\ntZjqAq6l0q0DMMb6/4ICAICU7Nj1uOiG38a3813MNVWoGe0Yjf1O7LVIF2CmOsmBXbt1ANIjGAEA\nYFNT7XoU2wuv9RXkcVKFmnSvhVEBxo7dOgCT41MMAIBNWXFq58lOMbvzpy/Ffy/fblE66V4LowKM\nHbt1ACbHAq8AAKBgYh2a8Qu0Xnnn06bUMz6wFCrAsBArUHroGAEAgIJJ16Hx7QzGf1bobtFkjDrd\ncLJuXaxrtnHjPu3b52NiBsAmCEYAAKBgUp1iljg9txEmO33PjNMNY12zkZH9f+2aMTEDYAcEIwAA\nSlixp5VO2aF5fOz2bLpFudZcjBnicqmJiRkAe+KTCgBAiRoeDmvFik3atatJbndEra2j01rnEhpy\nDSnjOzT5dItyDTrFCCLZ1jQ8HNaWLX3atatSu3cH1dISkcfDxAyAHTD5AgAAJhoeDqury6e1a/vV\n1eXT8HC4YI/t9Q5o164jNDLSqGCwWb29AzmHhnSTKeQj22uLcg06Rk2wkE9NXu+AmpoWyO3ep1Bo\nRH19PUzMANgEwQgAABMVMniMFwg45XYfjO+HQs6cQ4PfL23evFvd3UPavHl30vVDmeR7bVGuQacY\nM8RlW1Mg4JTL5VJbW7OOPfYQzZvXxMQLgE1wKh0AACYy8jSwmpqIWltnqrd3t0KhaZo1q0+dnQty\neoytWwcUDLZLkoJBaevWjZJyv34nl5nocp1JrhgTLLS312nlyo0aGnKrri6k008/JuXvsb4RYF8E\nIwAATGTkQHo0YPSrqioWMBbk3L2YO3e2AgGfQiGn3O6I5s6dndX9pjITnRUXrt24cUgtLe1qaYnt\n+7R48YwJv5cY6mprt6qz85QiVwogXwQjAABMlKo7kjjhgc/n13HHhfM6HasQAaOuzqG2trHH8Hh8\nOT9GMdctMkq2nb3E17y7e3va41bs2QIBZEYwAgDARKnCS1eXLz4D2t69e3OeSa6Q8lkgNbFb1N6a\nXYcpE7ODRKE7e8WYYnwqzH69ATMQjAAAsBgrrYMz1a7TrV/824LUYVaQiAUEv3/0+qq5c2errs4x\n5QkerHSMU7F6cAOMwKx0AABYTDGmnzZKYrfojqsWFexxzQoSYwGhWS0t7aqrc2jx4uYpd0+sfoyt\nHtwAI/AuBwDAYsy6gD/V6VOS8j6l6rijZhWstsRT2cLhiLZu7dPatTL8NC+jAkI+pygWE7ProRwR\njAAAsJhsL+AvtFSnT41uZ3dKVWK36L/uOregtSUGia1b+9TUtECRiMvw07yMCghWnHkvkdWDG2AE\nghEAACUm3wvns+mOpOuYRKPRpH2Xs7Bn6ycGibVrpUhk7O8x8jSvcg0IVg9ugBEIRgAAlJh8L5xP\n1x3JpmNy3rVr4ttGT89dzNO8CAhTw+x2sBOCEQAAJSbf62LSdUcydUy2D+zN+NiFHCCXaxfHjpjd\nDnZCMAIAoMTk21FJ1x3JNJC96q5n4tvpukWFHCDTxbEPZreDnfDuBADAptJ1YYrZUfnJ6k1Z/V6u\nA+RMHaZCz6CXDbNPCzP7+fPB7HawE4IRAAA2la4LU8yOyurntsS3J7u2KNcBcqYO01Rn0MtH7DnD\n4bBefXVA69e/qYUL64oWUJ5/3qcNG2oVCk2T2+1UOOzTkiVHGP68U1GokG7HUAj7IRgBAGAh4weA\nLlf6AGH2aUqJ03NnkusAOdPfNpUZ9DJJNwiPPV5v74CCwWZVVMyQ319XtOtmursDCgaPkCQFg1J3\n9/tassTwp52SQoV0rlVCMRCMAACwkPEDwP7+N7RwYerfzec0JaO+ec80E12uA+RMf9tUZtDLJN0g\nPPacodDo8MntPiipmIE0mmG/dJn9JQDKQ2EXGQAAADkbHg6rq8untWv7tX79oMLhcPy2ffsq096v\ns7NBHo9PTme/PB5fVqcpxQb9kUij/P5meb0DedWcS7coH5n+tlS35/N6pJJuEB57/OrqAVVX71Zr\n66GSinfdTEdHraqrfaqo6Fd1tU8dHbVFed7E92dXl0/Dw+HMdyqwVMEYKDTiNgAAJkvsUIyMONXb\nO6C2ttH9GTOG094vn9OUjPjm3Yh1izL9bfnOoJeNdN2o2HOOnhY4oEAgUtTpwk8+uVku14ACAamm\nRursLM6pZIU8jS3fjiVTtKMYCEYAAJgsMZy0th6qLVvel9M5OgCcPbsmq8dIHHBOn75fknTgQNWE\nwWchZgkzsls02cC5WBfgZxqEmzVduFnPW8gwnW/IYop2FAPBCAAAkyWGFZfLqYUL67R4caMkqbt7\nR1aPkTjgfPXV3ZJCamtrTBp8Dg+HFQ6H9cYbmyRF1dFRO+WuQ6xbVKjQMtnAuVgX4DMIT1bIKbe5\nVghWxrsRAACT5XqaUKoQkjjADIWmKfE/8bHbvN4BBYNHaP780Z+7XL6cw0u6blGhQstkA2cG1eYo\n5GlsrGsEK+NfFAAATJZrh2J8CHn++Xe1ZcuQdu2qlNt9UE5nRE7n2IAzNvgsdLBIvLaoUI892cCZ\nQXXhZdPpK2QHjWuFYGUEIwAAbGZ86OjuDmjevAUKBAYUCjnl8WzTRz86WwcO9Gv69P0Kh6W1a/u1\nZUufmppmyuUavX+uwWKya4sKFVomGzgzqC68Yq8PxGmKsDKCEQAANhMLIeFwRL29e/TWW36NjHyg\n1tZGuVxOOZ3SkiWj1yh1dfniA9+mpnr19fVo3rymKQeL8TPRFSq0WHXgXKyJH4qN0xOBMbz7AQCW\nV6qD0nzFQsj69UOS6nTEEYcpGJyp3t7damubmdStSRzoulwuzZvXpGXLGnN+zsRu0efPOXbC7cUI\nNMXubhj53FZ5T3N6IjCGYAQAsDwzB8RWFAshgYBTkUijwuGwent9Coc/kMcTSurWGDHwveD0o6f8\nGPkoVncj0+QWhXhuq7ynOT0RGEMwAgBYHqf7JIsN3DdtGtLISEStrQ1qbW1UX9+AAoF6eb0D8Q7E\n+IFve3udurp8OXUqErtFK2/6O6P/vLSK1d1IFVpqalTQ5zbiPZ1PF8qqpy4CZphmdgEAAGQyfhBa\n7qf7xAbu8+bNl+TWli1vqK+vR01NCxSJNMrvb5bXO5ByoLxx45D8/uak38vFzEOrjPmjstDZ2SCP\nxyens18ej8+w7kaq0FLo5zbiPR17X+R7bIFyV95fuQEAbIHTfcYMD4e1fv2QgsEZcrsPqrX1UFVV\njQ6qI5Gx7kAg4EzZ+ci1U5HYLRo/4UKxFau7kaozVejnNuI9TWcVmBo+MQAAy+N0nzFe74BGRuo0\nMlKnYFDq7d2tRYtGg9H4wXyqgXIup6PtC4ULWrtdFCOIG/GezubYWmXSB7vUhfJCMAIAwES5DggD\nAadaW+vV2+tTKORURcWAOjvnS9KEwfxox2jsvmM/z27Q/6lvPRnfNrtbVExmBPFCBINsjq1VJn0Y\nz6p1obwQjAAAMFGuA8KamogiEZfa2kZ/x+OJxAfQ4++XaqCc7aD/uY3b8/2Tis6O3YbxNYfDYQWD\nR0jKPxhkc2yterqdVetCeeFdBwCAibIdEMYG0kNDUW3btlEtLQ3yeDRpxyfbEJQqWNzzf7vjt1ux\nW5RY85YtfWpqWiCXy2WbbsP4QPzGGz2aP3/sdqOCgVXXLbJqXSgvBCMAAEyUaUAYDkfU1TW6mOvI\nSJ1aWxvV0nKYPJ7cBv+TdVXGD9I/e/NvJ9zXah2YxJp37apUIDAQ76LZoduQWGM4HNbbb/sVDPbL\n7R6dft3jMSYYWHUiE6vWhfJi/X85AAAoYZkGhJs2BdTY2KxgcIZGRurU2+tTW1tzzoP/yU7Ziz1W\nOBxRb+8e7RseG5Rfcdr5luzAJP79bvdBhUJj+8XsNuR7Gl9iIO7tHVBzc6ucTqdCoUr19W3SOecs\nMKReq05kYtW6UF4IRgAAmCjTgHDfvkpJo4P/YFDxAJDr4H98kPL7FV/odfRUtJnq7d2jF3Y+n/G+\nVpAYLFpbD1VfX4+cTuXUbSjEtUn5ThqQGIgrKobU2jpfLtfo6+x0DluuQweUA+v9SwcAAOJmzBiW\nNDr47+3drYqKAXk8o4P4XAb240/Z27p1QFK7JKmpqV59fT0Kh91J9+moXRi/r9XEgoXfL/X1DWju\n3Nk5h5tCzISW76QBiYF49NiY0/ECMIZgBACAhYwPO8cc45Y02llYtCiizs758YF/V5cv64F9Z2eD\nnn/+XXV375Xk0MjI6LUtLpdLLpdL8+Y16cGn1yfdp7p6LIRZTSxYdHX5FAt4uYab8SFmaCga76Jl\nG7IKMWkA19cA1kAwAgDAQsZ3Mfr739A//mPqgX4u3YrKytEANH/+cZKkzZt3q7d3bMKC8QP6b3zi\nhKJPe53PqW1TmeZ5fKjZtm2nHI7cQlYhQg3X1wDWQDACAGAcM9fFGT+wj11jlKq22LVBsWtTMnUr\nEh979NS87XrjjUFJDj23Y0vS75oxUM/n1LapdGzGhxopOdRkE7IINUDpIBgBADBOIa49ydb4EDZ9\neliRhLF97BqjxNp27mxQb++AAoEGvfVWl5YsOVp1dY6kbkWqcJcYIlwup2pqDqql5X9JUlIwMmvd\noqGhqF5/3adQyCm3O6Jjj41mvM9UOjbjQ83oqYljt3OtD1BeCEYAAIwzldOzxsvUfRofwqqr35XH\nMzbQnz27ZkItvb0DCgab5XBIHs8M1dXtmxDcUoW7xAkLtm4d0M6dFQoEdqecic5I6V6Tbdt2Khgc\nPZUtGJS2bdso6bBJH6uQHRuu9QHKG8EIAIBxsj09K5tT7jJ1n8aHrmDQJY9n8toS1+xxuw+mDG6p\nwt34CQsCAZ+CwZlJv/eNT5ygtWv7DT2FMN1r0tLSoEBgt0KhaXK7D6qlpTjBJPk4SmecUZ/T323m\nqZcACodgBADAONl2DrI55S5T92myabRjky8sXJhc26uvbtKuXZVyuw+qtfVQ1dT0x2+PDdI3bRrU\nyIhTra2H/vW0ubFwF6uhtbVBj7ywOv5z18g0PfxwWPPmOXXssY3yevsNOYUw3Wvi8UhtbWNBzePx\nZf2YqcKJpLSBZeK1WsfJ5XLmdepkPqdemhmmCHJAagQjAADGyfb0rGxOucvUfRofwqLR2Um3j598\nobLSpSuuWJAwsO1PCm6xQfq8eaPXIW3Z8r4WLqxL+p1YTS5X8mB4ev+J2newUX/5y245nXtUVTX2\n9xRyMJ3uNUl8LaZP369wWFl3r0avvWpUb+8ehUKVevXVTTr22DoFg0dImhhYEsPMrl1SILBHra2H\nqLd3QOHwB/F6svkb8zn1spjXsVnpuQErIxgBAJCnbE65y9R9SjUBwM6dYfX2DigUcmr//kEND4eT\nBuiTBTe/f3Qq7tHT0dyaP79uwu/Garr78ZfjPzuqaoEGKyMKhaTh4WkKhUb/nkBgn1aufFMbNw7L\n6azUkiXHKBKZMaXBdLrXJPHvymWNJil27dWe+KmBu3YNq7t7QPPnJ/9Oqm23O6JQqDJ+7VZ1tVt+\n/8yk55wsGOYzM14hr2PLlZnPDVjZNLMLAADArjo7G+Tx+OR09svj8aU85S422F+2rFGLFzdn7EB0\ndjaor2+TQqEZcrudmjVrvrzegaxr2rp1QMHgTI2M1CkYnPnXU/NS15SoscajpqYGud0+ud0+zZr1\nrjo7G/STn2zWSy/N01tvfVh/+csxevrp1yVNbTCdzWuS6+B99NqrsWGN2x2R5JjwO6m2W1sbNGvW\nuwqHP1B19W61th464TljXZZIpFF+f3PSMcnmfZCq3sn2jWTmcwNWZvhXBGvWrNFDDz0kp9Opr3zl\nKzr11FPjt+3YsUNf//rXFYlEdOyxx+qWW24xuhwAAAqmEDOipepEzJvXpJaWOknSW28N5RRC5s6d\nrUBgbMrruXNnp/y9c68Zu7bo0duWyrt+h7q731d9fVQf/ahbLleN1q0b1O9/v1czZlSrokIKh2fo\n3XdHw4bRg+lcuzBj114Ny+2OqLW1QR5PWC5X6m5dYtfK44nonHMW/DX8jF3jlOq6rFT72bwPxh/n\n9vY6bdxozgx4zL4HpGZoMPL7/XrggQf0+OOPKxgM6gc/+EFSMLrzzjt1+eWX64wzztBtt92mHTt2\n6EMf+pCRJQEAYCmprveoqVHe6+nU1TnU1tascHj0dLw33/Srq8sRP/VreDis9ev7k+5TPcOtJUuO\n0JIlo/uJp7FJf9HgYFD19dUaHPxA06dn3xWZilwH7xOvvRpQZ2f6Dl2qMJPqOccmsxjSgQMhSdMV\niUzXrFl9Gh7Ofva68cd540bzruthUVogNUOD0YsvvqhFixapqqpKVVVVuvXWW+O3RaNRdXd36/77\n75ckffvb3zayFAAALClVJ+KMM+rjA/Ta2q3q7Dwl68eLDe7Xrx+U1KR58+bL73fGr5fxegd0z+ru\n+O9/4xMnpKwpHI6ot3eP6upmasuWLjU0tOjoo8O64IKjCzqoTnftTj6D96kO+FPdPxYS581r1O9+\nt1XDwx/omGPq1dQ0GsKyfT6u6wGsz9BPpc/n0/79+3XVVVdp7969+tKXvqSTTjpJkjQ4OKgZM2bo\n9ttv1+uvv64TTjhBX//6140sBwAAy0l1yljiAL27e3tOs7/F7hsIOBWJjJ0WFhuIb9sxnPT76WbS\ne/XV0YkM5s71qKbmoI466qAWLmwoeKfIjBnScplhL/b6uFxOzZlTL6lGbW2NSbdlI58JGgAUl6HB\nKBqNyu/368EHH9T27dt16aWX6o9//GP8toGBAV122WVqamrSFVdcoT/96U9Jp9ql0t3dPentsDaO\nn31x7OzNzOMXDke0aVNA+/ZVasaMYS1YUCOXi2/LY1yuiPr734i/PrNn16i7e0fS76Q7fpO9tj6f\nX3v37o3/bm3tVnV3b9ej67fHf7bksDb5fJvU3b096XFdroj6+nZp//45crvDOuqoQzR9+qBmzBhW\nT09ybVO1ceM+jYzsj+9XVLyvGTMK+xwTn9OvvXtb4vtvvvmc2ttTr6qb+Dru3h2UFNJbb43ux17T\nycSOXTbHGdbDf/vKi6H/ZZo1a5ba29vlcDh0+OGHq7q6WoODg6qvr1ddXZ2am5t12GGHSZJOOukk\nvfXWWxmDUUdHh5Elw0Dd3d0cP5vi2Nmb2cevq8unxsaxDkA47NPChVzfkChxAdfxJjt+k722xx03\nvityin60alPS/U84oUqdnaek7JaEw4nXGY0uttrRUfjjtm/f+OepMuR5Eg0M9CsSaYzvO5216uho\nTPm7ia/j//pfTkmH6sCBqvhrOlk3b/yxG3+cWWjV2sz+txP5yzfQGhqMFi1apBtuuEFf+MIX5Pf7\ntW/fPtXX10uSKioqdNhhh2nbtm2aO3euNm/erHPOOcfIcgBgyhjI5I5rK4yT60xpf9iwLb79xH3n\nT/rYsWuV/P7RKcCj0dnq6vKlfM9P5XNR7BnShofD2rKlT7t2VcrtPqjW1kPl8aQ/rc3IiQpYaBWw\nFkP/69TY2KilS5fqoosuksPh0Le//W2tWrVKtbW1OvPMM3XDDTfouuuuUzQaVWtrq5bEpsMBAIsq\n5kCmVEKYkddWlMprlK/p0/fr1Vdji7ke1Ikn7k/7u4nTc2cjFgi6unyS2iWlf89P5XNR7BnSvN4B\nNTUtUCAwuoBuX1+PzjlnQdGePxFfGgDWYvgn8KKLLtJFF12U8ra5c+fqF7/4hdElAEDBFHMgUyrf\nJhvZESiV1yhf4XBY77yzTYGAWzU1IbW312R1v0zdokTZvOetMsDPJigHAk65XC61tY2+T5xOGR6m\n019zo9EAABqISURBVNXFhAyAtfDVBIC8DA+H9fzzPnV375XkUEdHjU4+Of2aIaWimAOZVINNO3ZI\njOwIWGVAXmiJx9nn8+u448Ipj/Nrr4XU0NCuhobYfo+WLp34eOO7RWvX9ie9f2LPNzQU1bZtO9XS\n0iCPZzTUjnalxhaMPfHE8ITHt8oAP5ugbHStqY5durra2+u0cuVGDQ25VVcX0umnH1PQWgDkZprZ\nBQCwJ693QBs2uPTBB8fpgw8WaMOGWnm9A2aXZbjOzgZ5PD45ncYvcjl+wFZTE4kPsCKRRvn9zWXx\nmk8m1WtkN8PDYXV1+bR2bb+6unzxgXXsOO/d2zLJcXZk2J/oitPOn/D+iT3f66871N/frs2b3ePe\nX25JlX/9/4mK+bmYTDZB2ehaUx27dHVt3DiklpZ2fexjH1FLS7s2bhwqaC0AclMaX60BKLpAwKlQ\naGw/FJpWMt/WT6aY10OkOgVt3brBpN8ph9d8MsW+cN8IqboJ2XbCOjpqtGHD2DVGHR0TT6Wb7Nqi\n2OPG/j8Uiv3/tISfO9XWNrYe0oEDE8OnUZ+LXDuk2XSDjP4Mpzp26eoq1Y4nYFd8AgHkpaYmIrdb\nCgZH993ug5b/tt5Kp6El1jJ9+ugF82NTAI/WlWoAZ5VTlqyi2BfuGyHbgXSq98zo725TW1vs1LfJ\nX4tvfOKElO+f2CQOW7cO6uDBKh199LDC4bC2bu3T/v0ujYxE1NraIJfLVdT3XK7XkFkhKKc6dunq\n4vMMWAvBCEBeOjsbFA771N3do9g1RpkGZWaz0oX6ibW8+upuSSG1tTVmrMsKAz8UVqaBdG3tVrW3\nn6QVKzZp164mud0RRSJuOZ0jamtrVkvLYfFTwsYH/3+4/smk55r8/RNSc3Otdu7cIqdzmvr6+tTU\ndJwkqbd3j7ZseUMLF9bH71OMLxpy7ahYISiPP3axtY5S1WW3z7OVvlwCjEAwApCXykqXliw5Qnaa\nZd9Kp60kPvfoaUvOlLeNZ4WBHwor1eA48Th3d2/Xxo1D2rXrCI2M1CkYlLZv/x+1tNTHHyMQcKYM\n/oliM9Glev8cOFCltrbYAqeHyenslyRFIqPvxba2mXI6I1q8eGwR1GJ80WDHjkplpSseUvftq5TX\nO5A2QNjt82ylL5cAIxCMAJQNKw2yEmtxuw9KiiTdhvKRzeA4EHDK7T4YP3VVGp0hLhwOq7d3QBUV\noxftz5vXKJdr9D/tdz/+8oTHSfWNv6S/Lngqud2jp8zFFjz1+6VwOKLe3j2qqBhICm7F+KKhUB2V\nYnU6Ys+zfv2QRkbqVFEx66+TWJRGgLDSl0uAEXhHAygbVjptJbGW2KKcBw70m14XrKmmJqIPf9ij\ndeu2KBCo1MyZ76q9/Qi99tobkpo0b9589fb2q7d3T9JECTGxblG6rlJT03EKBPYoFKpUX9+m+IKn\nXq9PL7ywS++849Ts2Y164YUKhcM+LVlyRFK4j12PtHatMgaPXELKVDoqic+zZcvoaYEulzOrTsf4\nGtvb67Rx41DGmmOvbzA4QyMjdfL7t2v+/NIJEFb6cgkwQml8UgFMSSCwTytXvhlfS+Oyy45RTc0M\ns8sqOLNPW7Hj+fl2rLkUdXY2aMWKTZozp0lO535JR+u11wKSpNbWQ+RyOdXa2qAtW96Q0xnRg0+v\nj9/3wjOOjm9n843//v2jxzf2eXn++QGFQh5t2RJVZWVI0eiQliw5Iincb906GjwikczBo1inYyU+\nz65dUiAwFhrTBZXxHZ/W1npFIi6tXLlRLS3tGWuOPW6suxcKjb6WpRIgrPTlEmAE1jECoJUr31R/\nf7uGhz+i/v52rVz5ptkllSQrr0GUai0dabTmvr46Pf54n370ow/0jW88r0Bgn8nVlp/KSpfmzWtS\nR0ejnE6XDhw4QsFgs0ZGmtTbO/o+crlcWriwXsuWNSbdd7ZjZvyYplr3qaZm9FS5YHCmRkbqNDJS\nl/Te3LZtr0KhZh082KhQqFnbtu2N17R4cbPOOKNe+/c79dpru7V5s0/hcHjSDkmxTsdKfFy3OxKf\nglxKH1TGOj6j/4u9tkNDyes3pas59ritrYequnq3qqreN3Vdp0KLHfNlyxq1eHHpL+iN8kMwAjDh\nP/rj91EYVj4/P11oCwSceuaZN+X3tysS+Yj6+/+G4GySioq9Wr36DT366Nt68snX9d57W3XkkTNU\nUTGUtFhp4rpFlyw8S5FIo3buHO04DQ1FtWXLS9q8+VW98UaPwuGw2tvrVFHRp4qKflVX+9Ta2pD0\n3mxpOVRu925NmzYkt3u3WloOTarL6x3QyEiTRkYa42Fisg5JsRblTXzc1tYGzZr1bsZFXRM7PtLY\nuk51daGk30tXc2zx2Kqq3Vq0KKRLLplFgABsxDr/VQZgmrq6kPr7k/cLgdOwkln5/Px0oa2mJqJA\nYCwoV1YeJDib5PXXB7V9u0vR6OEKh+v13nt79c47g1q0qC5ptrhEb27eK7d7SJFIWJHIEWppqVMo\n5JDk1vz5MxUMShs3+rRwYb38/rHHSHxvnnjiaBAKhSS3e2w/9vl+9tkP5HBENH16WJHIdFVUDKmz\n85i0f0exTsdKfB6PJ6JzzlmQ8d+f2Ge0tfVQ9fbuVkXFgDyeiE4//Rht3Ji55vGn63Z37yjo3wTA\nWAQjALrssmO0cuXGpGuMCoGpXccv5BpWdfW7SQu5WkW60NbZ2aBf/7pX/f2Hq7LyoJqaqgsWnJFe\n4vvG5/PruOPC2ru3VnV19aqpmanBwT0Kh4OqqBhOCiGJ3aJFs09WMDjzr9N79+iYY2olxbogYyeM\nBAJOnXFGfdqwcvLJzXK5Er/gGP0Mxz7fLpdbe/YcqsHBHs2Z06SqqvCkf1uxrvXL53kSw9SiRRF1\nds5XZaUrfmopgNJGMAKgmpoZ+vKX2wv+uFY+daxYEsNhJCJ5PD4tWZL6230zpfsWv7LSpe9+t3PC\n5Bww1vPP+7RhQ61CoWnavXuWnn/ep7q6kCorIzp40KnZs2fK4/Fr4cK6eBdkXyh58B7reoRC0+R2\nf6DW1o9IGr3eJvE//zU1kbxCROzz3Np6qH73u60KBGrldjvV1HScvN5+W34Jku51SPUlT6oFdWO/\nG/uZyzXWeaODDlhf+Y1SABSNlU8dKxa7hMPJBsZGBedclNugsrs7oGDwCEnS/v371d09qKuuOkaR\nyCZt2vSOHI4RHXPM/2vv/mOjKvc8jn+Gdkqh/Cilt8Ui29xUKAYv2juXi6YWNkhYMN74IxpcwAYT\ns0pByGoEg2BXrobw40IIoJFEl6QmKpUFwb2iropWqm0o8tN4uwooFGkRCtt2oPTH2T9qpzNlZvpz\n5jwz8379Ncwczjyd53xnzvf5Puc5ibp8+WaVlLSdpM9+4e+e//8vv/8nSZZnFbakpNFyOqt/Wx6+\nSVKTGhubu1W5DFT5bY9vpzNeN92UosREd5ervgViev/6i+NAS597P1dd/b3uvLPt/1BBB8xn5i80\ngKjA0q72JYf+pmIFO9E0/cQ0mk8q/d901eq0laWEBKdcrtHKzu64L4/Utjz29p3HfLbOyPiDzp07\npqysDM/0t972Z6Dk3ju+U1PPKSPjNs82PT3OA/WvKcelvzjuzqCH250Q8HVTB0mAWEZUAggZu+8b\nZAK7kkPvE826ujqVldUE7QvTE49oPqn099m7XENVXl6la9fiNWjQGblc6UHvy7P34EnP/v7tn9tu\n5pqVlXHD0t29ESi5947v69dT/E4r665A/WvKcekvjtva1rFN++fi/dzgwdd9Xo/1Cjpguuj5ZQEQ\nEtevN+nbby+rpqbayEqC6exKDnuaSJieeETzSaW/z/6ee9J+W/BAqqqq1913/1GffnpJktTU1Kxf\nfvlV9fXDJEnfXjnod789+YyCVWa6k9z39TgP1L+mHJf+/r5An4v3c7/73ZAutwdgDrN++QAYp6ys\nRnV1mb/d38a8SgL862kiYXriEc0nlQMHXtWRI+2LJLTqz3++6nMiXlFxVgkJTk8fVVZeUUrKOEnH\nde1ahtzXO1YJXPrAn1RfX93jzyhYZcZfUtDfU9wmT07TV1+dVkVFnSSHXK4hnhvSmnpcBkoGAy3X\nTQUdMB+JETxMmcsNs5gyYoue8U4khg79SZMnT+n29iYmHtF/UnlNbT/JzWpqalJJSUdftK9s1t5H\nTU3/p+HDr2nSpNv0nwf+7rOXYJ9RsO94f3EebPv+nuKWkOCU0+nU+PF/kCQ1NHiv/GbucQkgunCG\nAw9T5nLDLOG6S30oxWLS76/i0N3tERqBjsPGxkGaMKHjWqCjR49p/PixknxXNvPuo/bvam97/3Z/\n0Pdv/453u69q9+6T2r79jHJyBmr+/Gy/lZlgvwmhGDDxt0+OSwDhNKDrTRArIqkycP1624jqhx9W\nq6SkipvvhdDkyWkaOvQnxcdXKzm5KiJHbNtP8NqmA45WWVmN3U1CDAp0HN442ODw+Zf3ymZSW0wm\nJ1dp2/731RPt3+mffXZSly9PkNudrerqHG3f/g/PPr3jPNhvQigGTKJhEAZAZDP3zBdhZ/Jc7s6o\nboVPQoJTOTnJcrnMuylpd0VS0o8bBav4RVI1sDvLXg8Z0iyXa4gaGjq2817ZTOqoHK3d3bHoQlfV\nIqnjO76+fuBv+2mVJNXWJvqtzAT7Tejc5pycET7T/3rTD0ybA2A3zg7gEUk/SpzooiciKenHjYIN\nhETSIEl3lr2W2pM9/yubtfvLsz2rFkkd3/HDhv0it3uEMjKGS5JGjLgWdHt/vwmd21xSUtXnfmDa\nHAC7cTYJj0j6UeJEN7yampr7PBpsp0hK+nGjYAMhkTRI0t3jsPN3sffKZv50p1rkvd+cnBHavv0f\nqq1N1IgR1zR/fna32hFMJPUDAATCNxciEie64XX8eL3S031Hg9tvcBgJyVI4k/5ImtoVKYINhETS\nIEl/HYe9qRZ5GzJksBYtyulzO3z3GTn9AACBkBghIkVSdSsadL74u74+PqKmMAUSiiQmGj4X0wQb\nCIn1QZLuVov6S6CYifV+ABAdSIwAdKnzxd9DhjRHxdSZUCQx0fC5mCbYQEisDZJ4V4um/WmM53G4\nKpWdY+arr07L6XT+9r7SPfek9Pl9qboCsAvLdQPo0m23DblhKd9oWFo3FElMNHwuiAz//q9/9Ny6\nYNOm73XgQKKuXh0Z0iXpO8dIRUVdvy+Fz/L6AOzCUCaALjmd8brzTt9R+WiYOhOK6yKi4XOBmbyr\nResW50nqSCIaGuLV0jJSlZUXNWHCyJBVKjvHTOd7LoXqRq8AEA582wDolWiYwhSKJCYaPheYb3xm\niqSOpCExsVkNDdK1a20TQUJVqezqnkv9daNXFnIAYAcSIyCCMRe/b0hiECm8q0X/teYvnsftScS4\ncWmqrKxSXFytkpPdIatUdnXPpf54X6quAOxCYgREMFZAA6KfZVk+/3bGd1we7J1E5OZKkydnh3Vw\nJBSDC6HYJ4NIALqDxAiIYKbMxeekAwidl96u8jzuvDw3Vc/uYRAJQHewKh0QwUxZAY1VpIDQqL7k\ntrsJUcGUQSQAZiMxAiLY5MlpNyyjbQdOOoDQeOKVTzyPw30z12hiyiASALNx9gJEMFOm0bCKVBum\nFKI/7fzsf+1uQtRgQQcA3UFiBKDPOOlow3UM6E/b//s7z2OqRX1jyiASALORGAHoM0462jClEP3l\nydX/Y3cTACDmcI0RAPQTrmNAfzn3a8ddU/9jzs02tgQAYgeJEQD0E1MWw0Bk876ZKwAgfJjnAQD9\nhCmF6G97/3a/Kioq7G4GAMQEKkYAABiCahEA2IfECAAAA7ESHQCEF4kRAAAGoFoEAPYiMQIAwDBU\niwAg/EiMAACwmXe16PaxqTa2BABiF4kRAAAGefmpXLubAAAxicQIAAAbeVeL1i7Ks7ElABDbSIwA\nADDErb9PsbsJABCzSIwAALCJd7Xo3VfutbElAAASIwAADDA40Wl3EwAgppEYAQBgA+9qEctzA4D9\nSIwAAAizpuZWu5sAAOiExAgAgDB7aNlez2OqRQBgBhIjAADC6GxNnd1NAAD4QWIEAEAYLVjzmecx\n1SIAMAeJEQAAYfJh6Sm7mwAACIDECACAMHl151HPY6pFAGAWh2VZlt2N6K6Kigq7mwAAAADAcC6X\nq8f/J6ISIwAAAAAIBabSAQAAAIh5JEYAAAAAYh6JEQAAAICYR2IEAAAAIOaRGAEAAACIeSRGAAAA\nAGJevN0NCKSxsVH33XefFi5cqAceeMDz/LRp05SRkSGHwyGHw6H169crLS3NxpbCW3l5uZYsWaKx\nY8fKsixlZ2drxYoVntdLS0u1ceNGxcXFacqUKSooKLCxteisq/4j/sy2Z88evfHGG4qPj9fixYs1\ndepUz2vEnvmC9R+xZ7b33ntP77//vhwOhyzL0okTJ3To0CHP68SfubrqO2LPbG63W8uWLdOVK1fU\n1NSkhQsX6u677/a83uPYswy1YcMG6+GHH7Z27drl8/y0adOsq1ev2tQqdKWsrMxavHhxwNfvvfde\n6/z581Zra6s1Z84c64cffghj69CVrvqP+DNXbW2tNWPGDMvtdlsXLlywVq5c6fM6sWe2rvqP2Isc\n5eXl1qpVq3yeI/4ig7++I/bM9tZbb1kbNmywLMuyqqurrZkzZ/q83tPYM3Iq3cmTJ3Xq1Cmf0bJ2\nlmXJ4p60RgvUP2fOnFFycrLS09PlcDg0depUffPNN2FuHboSLL6IP3OVlpYqNzdXgwYNUmpqqlat\nWuV5jdgzX7D+k4i9SLJ161afUWniL3J07juJ2DNdSkqKamtrJUlXrlxRSkqK57XexJ6RidHatWv1\n/PPPB3y9sLBQc+bM0YYNG8LYKnTXjz/+qIKCAs2dO1elpaWe53/99VefAzYlJUU1NTV2NBFBBOq/\ndsSfmaqqqnT16lUtWLBA8+bN09dff+15jdgzX7D+a0fsme/YsWO66aabNHLkSM9zxF9k8Nd37Yg9\nc82aNUvnz5/XjBkzlJ+f75M/9Cb2jLvGaPfu3Zo0aZIyMjIk3Th6vWTJEuXl5Sk5OVkFBQX6+OOP\nNWPGDDuaCj8yMzO1aNEizZo1S2fOnFF+fr4++eQTxcffeKgxAmOervqP+DOXZVm6fPmyXn31VZ09\ne1b5+fn6/PPPA24Ls3TVf8ReZCguLtZDDz0UdBviz0yB+o7YM9uePXs0atQobdu2Td9//71Wrlyp\n4uJiv9t2J/aMqxh98cUX2rdvn2bPnq3i4mK99tprPiNn999/v1JSUjRgwABNmTJFlZWVNrYWnaWn\np2vWrFmSpDFjxig1NVXV1dWSpLS0NF24cMGzbXV1NRcwGiZY/0nEn8lSU1OVk5Mjh8OhMWPGKCkp\nSZcuXZJE7EWCYP0nEXuRory8XDk5OT7PEX+RwV/fScSe6Q4dOqS8vDxJ0vjx43X+/HlPAtSb2DMu\nMdq4caOKi4v17rvv6pFHHlFBQYHuuusuSVJ9fb3mzZunxsZGSdLBgwc1duxYO5uLTvbu3astW7ZI\nki5evKhLly4pPT1dkjR69Gg1NDTo3Llzam5u1v79+31WDoH9gvUf8We23NxclZWVybIs1dbWyu12\ne6YQEHvmC9Z/xF5kqKmpUVJS0g0zJIg/8wXqO2LPfJmZmTp8+LCktinJgwcPlsPhkNS72HNYBtd0\nt2zZoptvvlmWZWno0KGaPn26ioqKtHPnTiUlJenWW2/1WUoY9mtoaNCzzz6rK1euyLIsFRQU6OLF\ni57+O3jwoNavXy9JmjlzpubPn29vg+Gjq/4j/sy2Y8cOFRcXy+FwaMGCBbp8+TKxF0GC9R+xZ74T\nJ05o06ZN2rZtmyRp165dxF+ECNZ3xJ7Z3G63li9frosXL6qlpUVLlizRuXPneh17RidGAAAAABAO\nxk2lAwAAAIBwIzECAAAAEPNIjAAAAADEPBIjAAAAADGPxAgAAABAzCMxAgAAABDzSIwAAGFRXl6u\nOXPm9Hk/u3btUm5urvLz8/XYY49p9uzZ2rx5s99tS0pK9Prrr/f5PQEA0S++600AAOgf7Xck76vc\n3FytXbtWktTc3Kx58+Zp4sSJmjp1qs92eXl5ysvL65f3BABENxIjAEDYnT59WoWFhWptbVVra6ue\neeYZuVwunT59WkuXLtXAgQM1c+ZMrV69WsePHw+6r/j4eOXk5OjkyZO65ZZb9NRTTyk7O1tZWVka\nNWqUSktLtW7dOh05ckSrV6+W0+lUcnKy1qxZo8GDB2vjxo06dOiQGhsbNWnSJD333HNh+hQAACZh\nKh0AIOz++te/au7cuSoqKlJhYaGWLVsmSdq8ebMefPBBFRUVKSEhQS0tLV3uq66uTgcOHJDL5ZIk\nnTp1Sk8//bQWLFggqaNKtXTpUr3yyisqKirSpEmTtH//fu3bt0/V1dUqKirSjh079NNPP2n//v2h\n+aMBAEajYgQACLujR49q06ZNkqRx48apoaFBtbW1qqys1JNPPilJmj59ul588UW////AgQPKz8+X\nZVmKi4vTE088oYkTJ6qqqkrDhw9XZmamz/a1tbWqq6tTVlaWJCk/P1+S9NJLL+nw4cOefTU0NOjs\n2bOh+rMBAAYjMQIAhF3na40sy9KAAQPU2tqqAQMGeJ4LxPsao86cTqff9/NXfUpISNDs2bP1+OOP\n96T5AIAoxFQ6AEDY3XHHHfryyy8lSd99952Sk5M1fPhwZWVl6dixY5KkTz/9tFf79pdQJScnKyUl\nxXO90ptvvqm3335bLpdLH330kSdp2rp1q37++edevS8AILJRMQIAhN2KFStUWFiod955Ry0tLVq3\nbp0kqaCgQEuXLtWePXuUl5enuLi4Hu870Mp3a9as0csvvyyn06lhw4Zp7dq1SkpK0pEjR/Too48q\nLi5OEyZM0JgxY/r0twEAIpPDCjZXAQCAMDp+/LhaWlp0++236+jRo1q+fLk++OADu5sFAIgBVIwA\nAMZITEzUCy+8oLi4ODU3N6uwsNDuJgEAYgQVIwAAAAAxj8UXAAAAAMQ8EiMAAAAAMY/ECAAAAEDM\nIzECAAAAEPNIjAAAAADEvP8HkhYyyfgweLkAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "dimensions = [data['Number Of Stories'],data['Total area'],data['Year Built']]\n", + "mlr = linreg_r2(np.column_stack(dimensions), data['log Price'],plot=False)\n", + "\n", + "print 'rsquared:', mlr[0]\n", + "\n", + "plt.plot(data['log Price'], data['log Price'], label='Y=X **not model**');\n", + "plt.scatter(data['log Price'], mlr[1], alpha=0.3);\n", + "plt.xlabel('log Price');\n", + "plt.ylabel('Predicted log Price');\n", + "plt.ylim(6.45, 7.5);" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This model performed slightly better than the aggregated model explaining 18.8% vs. 18.5% of variation in `log Price`. For more information on regression models with more than one explanatory variable, refer to the [Quantopian Lecture on Multiple Linear Regression](https://www.quantopian.com/lectures/multiple-linear-regression).\n", + "\n", + "Despite our best efforts with the data we were given, the best model or combination of models we could generate only explained 18.8% of the variance in `log Price`. What this means is that the dimensions we were given (`Number Of Stories`, `Total area`, and `Year Built`) were not enough to give us a good understanding of what drives multifamily development prices. While dissapointing, this makes perfect sense as none of our models included important dimensions such as:\n", + "\n", + "* Location desireability\n", + "* Lot size\n", + "* Number of family units\n", + "* Occupancy rate\n", + "* ...and probably many more\n", + "\n", + "Furthermore, oftentimes datasets do not have obvious principal dimensions. In this situation you must develop a set of many possible influencers and whittle it down to only the most significant ones through [dimensionality reduction](https://en.wikipedia.org/wiki/Dimensionality_reduction). " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "*This presentation is for informational purposes only and does not constitute an offer to sell, a solicitation to buy, or a recommendation for any security; nor does it constitute an offer to provide investment advisory or other services by Quantopian, Inc. (\"Quantopian\"). Nothing contained herein constitutes investment advice or offers any opinion with respect to the suitability of any security, and any views expressed herein should not be taken as advice to buy, sell, or hold any security or as an endorsement of any security or company. In preparing the information contained herein, Quantopian, Inc. has not taken into account the investment needs, objectives, and financial circumstances of any particular investor. Any views expressed and data illustrated herein were prepared based upon information, believed to be reliable, available to Quantopian, Inc. at the time of publication. Quantopian makes no guarantees as to their accuracy or completeness. All information is subject to change and may quickly become unreliable for various reasons, including changes in market conditions or economic circumstances.*" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} \ No newline at end of file diff --git a/notebooks/lectures/Model_Ensembling/preview.html b/notebooks/lectures/Model_Ensembling/preview.html new file mode 100644 index 00000000..40e11fb2 --- /dev/null +++ b/notebooks/lectures/Model_Ensembling/preview.html @@ -0,0 +1,16417 @@ + + + Model Ensembling Lecture + + + + + + + + + + + + + + + + +
+
+ +
+
+
+
+

Model Ensembling¶

By Chris Fenaroli, Delaney Granizo-Mackenzie, and Max Margenot

+

Part of the Quantopian Lecture Series:

+ +

Notebook released under the Creative Commons Attribution 4.0 License.

+
+ +
+
+
+
+
+
+
+

What is Model Ensembling?¶

Model ensembling is the name for a variety of methods which combine information from many independent prediction models to obtain results with more predictive power than any of its components alone. The logic which an ensemble uses to combine them into a final prediction can in some techniques be very complicated, but the benefits of ensembling can be taken advantage of with a method as simple as an equally weighted average of independent predictions.

+

Ensembling plays a vital role in developing accurate predictive models and even employing basic ensembling techniques can in many cases drastically improve predictive performance.

+ +
+
+
+
+
+
In [99]:
+
+
+
import pandas as pd
+import numpy as np
+import matplotlib.pyplot as plt
+import matplotlib as mpl
+import matplotlib.cm as cm
+import scipy.stats as stats
+import scipy.linalg as linalg
+from statsmodels import regression
+import statsmodels.api as sm
+
+ +
+
+
+ +
+
+
+
+
+

Why Combine Models?¶

A common approach to model selection is a "winner takes all" process where the best single model is chosen to make predictions. While intuitive and more interpretable than an ensemble, selecting only a single model to base predictions upon has weaknesses as follows:

+
    +
  • Diversifying your prediction through ensembling reduces variance of predictions
  • +
  • Should a model begin failing, a large ensemble prevents it from greatly affecting predictions while a single-model approach would be ruined
  • +
  • Helps prevent overfitting by not assigning any single approach a significant amount of weight
  • +
+

Caveats¶

Important to note is that the benefits of model ensembling will only be seen if the models being combined are at least somewhat independent. Aggregating many very similar models will have a much smaller benefit than aggregating ones with very distinct insights.

+

Let's define two $I.I.D.$ (independent and identically distributed) standard normal toy models m_1 and m_2, and see what happens to their mean and standard deviation when we average their predictions over 1000 simulations.

+ +
+
+
+
+
+
In [107]:
+
+
+
# Model parameters
+mu = 0
+sigma = 1
+
+# Create two identical models
+m_1 = np.random.normal(mu,sigma,1000)
+m_2 = np.random.normal(mu,sigma,1000)
+
+# Combine them
+m_cm = (m_1 + m_2)/2
+
+# Plot their distribution over 1000 trials
+plt.hist(m_1, bins=50, alpha=0.2);
+plt.hist(m_2, bins=50, alpha=0.2);
+plt.hist(m_cm, bins=50, alpha=0.6);
+plt.legend(['Model 1', 'Model 2', 'Combined Model'])
+plt.title('Histogram of Model Outputs over 1000 Trials')
+
+print "%-39s %-24s" % ('---- Mean ----', '---- Variance ----')
+print "%-15s %-24s %-15s %-15s" % ('Model 1:', 
+                                   np.round(np.mean(m_1),decimals=3), 
+                                   'Model 1:', 
+                                   np.round(np.std(m_1)**2,decimals=3))
+print "%-15s %-24s %-15s %-15s" % ('Model 2:', 
+                                   np.round(np.mean(m_2),decimals=3), 
+                                   'Model 2:', 
+                                   np.round(np.std(m_2)**2,decimals=3))
+print "%-15s %-24s %-15s %-15s" % ('Combined:', 
+                                   np.round(np.mean(m_cm),decimals=3),
+                                   'Combined:',
+                                   np.round(np.std(m_cm)**2,decimals=3))
+print "\nCovariance between models:", np.cov(m_1, m_2)[1][0]
+
+ +
+
+
+ +
+
+ + +
+ +
+ + +
+
---- Mean ----                          ---- Variance ----      
+Model 1:        0.036                    Model 1:        1.02           
+Model 2:        0.045                    Model 2:        0.946          
+Combined:       0.041                    Combined:       0.486          
+
+Covariance between models: -0.0109611639748
+
+
+
+ +
+ +
+ + + + +
+ +
+ +
+ +
+
+ +
+
+
+
+
+

Benefits of Ensembling: Symbolic Intuition¶

When the $I.I.D.$ models are aggregated, the mean stays the same while the variance of results decreases. Can this be explained symbolically?

+

Consider two models with the same mean $m$, the same variance $v$, and zero covariance:

+$$ models = \hat{\theta_1} \: , \: \hat{\theta_2}$$$$E[\hat{\theta_1}]=E[\hat{\theta_2}]=m \:\:\:\:\:\:\:\: Var[\hat{\theta_1}] = Var[\hat{\theta_2}] = v \:\:\:\:\:\:\:\: Cov[\hat{\theta_2},\hat{\theta_2}] = 0$$

When averaged they form a combined model $\hat{\theta_{cm}}$:

+$$\hat{\theta_{cm}} = \frac{\hat{\theta_1} + \hat{\theta_2}}{2}$$

+$$E[\hat{\theta_{cm}}] = \frac{E[\hat{\theta_1}]+E[\hat{\theta_2}]}{2} = m$$$$Var[\hat{\theta_{cm}}] = \frac{Var[\hat{\theta_{1}}]+Var[\hat{\theta_{2}}]+2Cov[\hat{\theta_{1}},\hat{\theta_{2}}]}{4} = \frac{v}{2}$$

Where the combined model keeps the same mean $m$ as its components but sees a reduction in variance.

+

Importance of Model Independence¶

Should the models being aggregated have a correlation of 1 (equivalent to a covariance of $v$), the variability-reducing effect no longer applies. Instead, the $2Cov[\hat{\theta_{1}},\hat{\theta_{2}}]$ term becomes equal to $2v$ in turn making variance equal to it's original value $v$. The significance of this is that the magnitude of the variance remains unchanged should the models being combined be perfectly correlated, illustrating the importance of the models being uncorrelated.

+

Averaging $n$ Models¶

Now let's look at a combined model $\hat{\theta_{cm}}$ that is the average of $n$ $I.I.D$ models.

+$$\hat{\theta_{cm}} = \frac{\sum_{i=1}^{n}{\hat{\theta_i}}}{n}$$$$Var[\hat{\theta_{cm}}] = \frac{\sum_{i=1}^{n}{Var[\hat{\theta_i}}] + 2\sum_{1 \le i<j \le n}^{n}{Cov[\hat{\theta_i},\hat{\theta_j}]}}{n^2} = \frac{nv}{n^2} = \frac{v}{n}$$

This shows how if the models are perfectly uncorrelated, the ensemble's variance will decrease geometrically. Let's go back to our simulation and increase the number of models being combined:

+ +
+
+
+
+
+
In [101]:
+
+
+
# Number of identical models
+n = 100
+
+# Initizalize n models
+models = np.array([np.random.normal(mu,sigma,1000) for _ in range(n)])
+
+combined_models = [np.mean(models[0:i+1], axis=0) for i in range(n)]
+means = np.mean(combined_models,axis=1)
+stds = np.std(combined_models,axis=1)
+
+plt.plot(means);
+plt.plot(stds);
+plt.plot(range(n), 1/np.linspace(1,n+1,n), linestyle = '--')
+plt.legend(['Model Avg Mean', 'Model Avg STD', 'Perfect U']);
+plt.xlabel('Number of Models Combined');
+plt.title('Mean and STD vs. Number of Models Combined');
+
+ +
+
+
+ +
+
+ + +
+ +
+ + + + +
+ +
+ +
+ +
+
+ +
+
+
+
+
+

As more models are added the mean predicted value is stationary and the prediction variability decreases geometrically. Worth noting, however, is that in this simulation the standard deviation did not decrease at the rate perfectly uncorrelated models would. This is a result of the toy models we used having some level of covariance, purely by random chance.

+ +
+
+
+
+
+
+
+

Benefits of Ensembling: Dimension Intuition¶

The theory and simulation above demonstrate the benefits of simply averaging uncorrelated models; in both cases, as more models are averaged the mean stays the same but variance decreases. Model combination gets its power from the diversity of uncorrelated models ensuring that different features of the problem are represented. But what are these "features" that data apparently has? And how do combinations of diverse models help reveal them?

+

An interesting analogy is to think of a model as a specific "view" of the world, having its own perspective and unique insights into the problem at hand. Data can have many "dimensions" and rarely will one model encapture every single one; only by approaching it from many views can we understand its structure.

+

Consider a 3-dimensional object, such as a cylinder. To fully understand what this object is we require multiple perspectives from distinct viewpoints, as from each viewpoint alone you only see a 2-d projection of the space the cylinder takes up. To illustrate the limitations of attempting to understand a multi-dimensional structure from a single view, imagine looking at a cylinder from a specific viewpoint to the side and trying to decipher what it could be:

+ +
+
+
+
+
+
In [102]:
+
+
+
plt.fill_between([-1,0,1], -2, 2, facecolor='blue', alpha = 0.4);
+plt.xlim(-4,4);
+plt.ylim(-3,3);
+plt.xlabel("X", fontsize=20);
+plt.ylabel("Z", fontsize=20);
+plt.title('View of Object from the Side', fontsize=20);
+
+ +
+
+
+ +
+
+ + +
+ +
+ + + + +
+ +
+ +
+ +
+
+ +
+
+
+
+
+

From this perspective alone we have no information on the object's presence in the $Y$ dimension; our only conclusion can be that the 3-d object is constrained in the $X$ and $Z$ dimensions by the rectangle defined by [-1,1] and [-2,2] respectively.

+

Beyond that, we can not tell if the shape is a prism, cylinder, or any number of possible objects that fit those constraints. The "variability" of our understanding is high, and can only be diminished by supplementing our current perspective with an additional "view."

+

Let's add another view by looking at the same object, this time from above instead of from the side:

+ +
+
+
+
+
+
In [103]:
+
+
+
X = np.linspace(-1,1,50)
+plt.fill_between(X, -np.sqrt(1-X**2), np.sqrt(1-X**2), facecolor='blue', alpha = 0.4);
+plt.xlim(-4,4);
+plt.ylim(-2.5,2.5);
+plt.xlabel("X", fontsize=20);
+plt.ylabel("Y", fontsize=20);
+plt.title('View of Object from Above', fontsize=20);
+
+ +
+
+
+ +
+
+ + +
+ +
+ + + + +
+ +
+ +
+ +
+
+ +
+
+
+
+
+

After adding this second view we can be positive that the shape, if not a cylinder, is restricted to the space of +a cylinder with a unit circle base an height ranging from [-2,2].

+

Individually, neither of these perspectives would provide a particularly enlightening idea of the shape being looked at. With the first view, we had no information on the object in the $Y$ dimension, and in the second view we gained no information on the $Z$ dimension. When combined, however, we can make conclusions based on all three dimensions and the size of the set of possible shapes is drastically reduced.

+

This is the idea behind model ensembling; the aggregation of multiple perspectives yields a more complete view than any of them alone.

+ +
+
+
+
+
+
+
+

Multifamily Real Estate Example¶

Let's bring this analogy of uncorrelated models providing "perspectives" to one involving data. Where the cylinder above was a function of space in the $X$,$Y$, and $Z$ dimenseions, let's consider house pricing data, with possible explanatory dimensions Number Of Stories, Total area, and Year Built.

+

The data was aggregated by user 'dmikebishop' on DataWorld. To use exterior data, store it as a CSV in the data folder in research and use the local_csv function to pull it into a Pandas DataFrame.

+ +
+
+
+
+
+
In [105]:
+
+
+
# Pulling in DataFrame and dropping blank values
+fields = ['Price', 'Number Of Stories', 'Total area', 'Type', 'Year Built']
+data = local_csv('loopnetlistingswithbrokers (3).csv')[fields]
+data = data[data != ' '].dropna()
+
+# Formatting values from strings with thousands separators into integers
+data['Total area'] = data['Total area'].str.replace(' SF', '').str.replace(',','')
+data['Price'] = data['Price'].str.replace(',','').str.replace('$', '')
+data = data[[i.isdigit() for i in data['Price']]]
+for i in [0,1,2,4]:
+    data[fields[i]] = data[fields[i]].astype(int)
+
+# Restricting the real estate to only multifamily properties
+data = data[data['Type'] == 'Multifamily']
+
+# Using log price transforms the price distribution to a more normal one
+# Normally distributed independent variables are a linear regression assumption
+data['log Price'] = np.log10(data['Price'])
+
+data.ix[:, data.columns != 'Price'].hist(bins=10);
+
+ +
+
+
+ +
+
+ + +
+ +
+ + + + +
+ +
+ +
+ +
+
+ +
+
+
+
+
+

Let's begin by attempting to model log Price using only Year Built as our explanatory variable. We'll also define a linear regression plotting function to make this step simpler as we repeat it for the other data dimensions.

+

A OLS fitted simple linear regression returns a single set of coefficients that minimizes the sum of squared residuals within the training set. This model is simply an estimate. It will usually have bias (difference betwen model expected value and true value) and variance (sensitivity to small changes in the training set). As we add more models, we should see the aggregate model have a higher $R^2$ as the model leaves less and less variance in log Price unexplained.

+ +
+
+
+
+
+
In [106]:
+
+
+
def linreg_r2(X,Y, plot):
+    # Running the linear regression
+    Xc = sm.add_constant(X)
+    model = regression.linear_model.OLS(Y, Xc).fit()
+    params = model.params
+    Y_hat = np.dot(Xc,params)
+    
+    # Plot results
+    if plot:
+        plt.scatter(X, Y, alpha=0.3) # Plot the raw data
+        plt.plot(X, Y_hat, 'r', alpha=0.9);  # Add the regression line, colored in red
+    return model.rsquared, Y_hat
+
+print 'rsquared', linreg_r2(data['Year Built'], data['log Price'],plot=True)[0]
+plt.xlabel('Year Built');
+plt.ylabel('log Price');
+
+ +
+
+
+ +
+
+ + +
+ +
+ + +
+
rsquared 0.0190269927541
+
+
+
+ +
+ +
+ + + + +
+ +
+ +
+ +
+
+ +
+
+
+
+
+

Using only Year Built in our model explained only 1.9% of the variation on log Price. Using only one dimension to try and understand a multi-dimensional dataset is equivalent to trying to categorize a 3-d object as a cylinder by only approaching it from a single perspective. It cannot be done. In this model alone we ignore many features of the data and it can be improved by adding another dimension or 'view'.

+

Let's see what log Price looks like from the perspective of Number Of Stories:

+ +
+
+
+
+
+
In [145]:
+
+
+
print 'rsquared', linreg_r2(data['Number Of Stories'], data['log Price'], plot=True)[0]
+plt.xlabel('Number Of Stories');
+plt.ylabel('log Price');
+plt.xlim(0,15);
+
+ +
+
+
+ +
+
+ + +
+ +
+ + +
+
rsquared 0.0561128798813
+
+
+
+ +
+ +
+ + + + +
+ +
+ +
+ +
+
+ +
+
+
+
+
+

Number Of Stories explains about 5.6% of the variation in log Price. While better than Year Built, it still provides a mostly incomplete understanding. Let's take a look at the final dimension, Total area:

+ +
+
+
+
+
+
In [146]:
+
+
+
print 'rsquared', linreg_r2(data['Total area'], data['log Price'], plot=True)[0]
+plt.xlabel('Total area');
+plt.ylabel('log Price');
+plt.xlim(0,200000);
+
+ +
+
+
+ +
+
+ + +
+ +
+ + +
+
rsquared 0.168804441783
+
+
+
+ +
+ +
+ + + + +
+ +
+ +
+ +
+
+ +
+
+
+
+
+

Total area was the most insightful dimension, with its model explaining 16.8% of variance. Still, however, this is not a great result and we are still attempting to understand a complex, multidimensional dataset from a single perspective. Let's see if averaging the models, combining information from all 3 dimensions, can produce a more accurate model.

+

Note: In the below plot, the blue line is not the model but the line $Y=X$. Points along this line mean the combined model perfectly predicted the observed log Price.

+ +
+
+
+
+
+
In [147]:
+
+
+
combined = (linreg_r2(data['Total area'], data['log Price'],plot=False)[1]
+            + linreg_r2(data['Number Of Stories'], data['log Price'],plot=False)[1]
+            + linreg_r2(data['Year Built'], data['log Price'],plot=False)[1])/3
+
+plt.scatter(data['log Price'],combined, alpha = 0.3);
+plt.plot(data['log Price'],data['log Price'], label='Y=X **not model**')
+plt.ylim(6.5,7.5);
+plt.xlabel('log Price');
+plt.ylabel('Predicted log Price');
+plt.legend();
+
+print 'rsquared:', np.corrcoef(combined,data['log Price'])[0][1]**2
+
+ +
+
+
+ +
+
+ + +
+ +
+ + +
+
rsquared: 0.185624465575
+
+
+
+ +
+ +
+ + + + +
+ +
+ +
+ +
+
+ +
+
+
+
+
+

By taking a simple equally weighted average of all the models we saw $R^2$ increase to 18.6%. While still indicative of a poorly fit model, the result is still interesting considering the $R^2$ values of the individual single-dimension models were 1.9%, 5.6%, and 16.9% respectively. The $R^2$ of the combined model was higher than any of the single models alone.

+

Simply averaging the model outputs ignores some of the interplay between variables which can be better captured by using a multiple linear regression. Let's run a single multiple linear regression model on the pricing data:

+ +
+
+
+
+
+
In [181]:
+
+
+
dimensions = [data['Number Of Stories'],data['Total area'],data['Year Built']]
+mlr = linreg_r2(np.column_stack(dimensions), data['log Price'],plot=False)
+
+print 'rsquared:', mlr[0]
+
+plt.plot(data['log Price'], data['log Price'], label='Y=X **not model**');
+plt.scatter(data['log Price'], mlr[1], alpha=0.3);
+plt.xlabel('log Price');
+plt.ylabel('Predicted log Price');
+plt.ylim(6.45, 7.5);
+
+ +
+
+
+ +
+
+ + +
+ +
+ + +
+
rsquared: 0.188016012536
+
+
+
+ +
+ +
+ + + + +
+ +
+ +
+ +
+
+ +
+
+
+
+
+

This model performed slightly better than the aggregated model explaining 18.8% vs. 18.5% of variation in log Price. For more information on regression models with more than one explanatory variable, refer to the Quantopian Lecture on Multiple Linear Regression.

+

Despite our best efforts with the data we were given, the best model or combination of models we could generate only explained 18.8% of the variance in log Price. What this means is that the dimensions we were given (Number Of Stories, Total area, and Year Built) were not enough to give us a good understanding of what drives multifamily development prices. While dissapointing, this makes perfect sense as none of our models included important dimensions such as:

+
    +
  • Location desireability
  • +
  • Lot size
  • +
  • Number of family units
  • +
  • Occupancy rate
  • +
  • ...and probably many more
  • +
+

Furthermore, oftentimes datasets do not have obvious principal dimensions. In this situation you must develop a set of many possible influencers and whittle it down to only the most significant ones through dimensionality reduction.

+ +
+
+
+
+
+
+
+

This presentation is for informational purposes only and does not constitute an offer to sell, a solicitation to buy, or a recommendation for any security; nor does it constitute an offer to provide investment advisory or other services by Quantopian, Inc. ("Quantopian"). Nothing contained herein constitutes investment advice or offers any opinion with respect to the suitability of any security, and any views expressed herein should not be taken as advice to buy, sell, or hold any security or as an endorsement of any security or company. In preparing the information contained herein, Quantopian, Inc. has not taken into account the investment needs, objectives, and financial circumstances of any particular investor. Any views expressed and data illustrated herein were prepared based upon information, believed to be reliable, available to Quantopian, Inc. at the time of publication. Quantopian makes no guarantees as to their accuracy or completeness. All information is subject to change and may quickly become unreliable for various reasons, including changes in market conditions or economic circumstances.

+ +
+
+
+
+
+ From 016139bb893692d36af2dd02fe87645bddbac6ad Mon Sep 17 00:00:00 2001 From: Christopher Fenaroli Date: Tue, 1 Aug 2017 16:13:36 -0400 Subject: [PATCH 3/4] Updated model ensembling lecture. --- .../lectures/Model_Ensembling/notebook.ipynb | 349 +- .../lectures/Model_Ensembling/preview.html | 6501 ++++++++--------- 2 files changed, 3006 insertions(+), 3844 deletions(-) diff --git a/notebooks/lectures/Model_Ensembling/notebook.ipynb b/notebooks/lectures/Model_Ensembling/notebook.ipynb index 7fc822d3..0f3ede1f 100644 --- a/notebooks/lectures/Model_Ensembling/notebook.ipynb +++ b/notebooks/lectures/Model_Ensembling/notebook.ipynb @@ -23,14 +23,14 @@ "source": [ "## What is Model Ensembling?\n", "\n", - "Model ensembling is the name for a variety of methods which combine information from many *independent* prediction models to obtain results with more predictive power than any of its components alone. The logic which an ensemble uses to combine them into a final prediction can in some techniques be very complicated, but the benefits of ensembling can be taken advantage of with a method as simple as an equally weighted average of independent predictions.\n", + "Model ensembling is the name for a variety of methods which combine information from many *independent* prediction models to obtain results with more predictive power than any of its components alone. An model ensemble takes these component forecasts and uses some logic to combine them into a final prediction.\n", "\n", - "Ensembling plays a vital role in developing accurate predictive models and even employing basic ensembling techniques can in many cases drastically improve predictive performance. " + "Ensembling plays a vital role in developing accurate predictive models and even employing basic ensembling techniques can in many cases drastically improve predictive performance." ] }, { "cell_type": "code", - "execution_count": 99, + "execution_count": 36, "metadata": { "collapsed": false }, @@ -61,14 +61,14 @@ "\n", "### Caveats\n", "\n", - "Important to note is that the benefits of model ensembling will only be seen if the models being combined are at least somewhat independent. Aggregating many very similar models will have a much smaller benefit than aggregating ones with very distinct insights.\n", + "Important to note is that the benefits of model ensembling will only be seen if the models being combined are at least somewhat independent. Aggregating many very similar models will have a much smaller benefit than aggregating ones with distinct insights.\n", "\n", - "Let's define two $I.I.D.$ (independent and identically distributed) standard normal toy models `m_1` and `m_2`, and see what happens to their mean and standard deviation when we average their predictions over 1000 simulations." + "Let's define two $I.I.D.$ (independent and identically distributed) standard normal toy models `m_1` and `m_2`, and see what happens to their mean and standard deviation when we average their predictions over 1000 trials." ] }, { "cell_type": "code", - "execution_count": 107, + "execution_count": 37, "metadata": { "collapsed": false }, @@ -78,18 +78,18 @@ "output_type": "stream", "text": [ "---- Mean ---- ---- Variance ---- \n", - "Model 1: 0.036 Model 1: 1.02 \n", - "Model 2: 0.045 Model 2: 0.946 \n", - "Combined: 0.041 Combined: 0.486 \n", + "Model 1: -0.029 Model 1: 1.014 \n", + "Model 2: 0.015 Model 2: 1.038 \n", + "Combined: -0.007 Combined: 0.514 \n", "\n", - "Covariance between models: -0.0109611639748\n" + "Covariance between models: 0.00281306569105\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzAAAAHrCAYAAAAQbnjeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xt0FPX9//HXzt5yJySEAAJ+8QKoRY9QL6ioIHLzVqxF\nrEKrbb+/WhT71QKCQhUrVpRSlGq9I2C1KuIViBda22IriFrU1juogISQ6yabndmdnd8fMSub225C\nAlnyfJyTc9iZz8y8J58Nu6+d+XzW5TiOIwAAAABIAcaBLgAAAAAAkkWAAQAAAJAyCDAAAAAAUgYB\nBgAAAEDKIMAAAAAASBkEGAAAAAApgwADoNMbPHiwiouL45atXr1al19+uSTpscce01133dXiPrZs\n2aKPP/64w2rsSNFoVFOnTtXo0aP1ySefxK1bvXq1Bg8erNdffz1uuWmaGjp0qGbPnt3q4x1zzDHa\nuXNni22mTJmiF154ocl1W7du1fTp0zVmzBhNmDBBkyZN0ssvv5zUsdujn5566ql92r6jbdmyRaNH\nj9bcuXPjln/44YeaPHmyxo0bp0suuUQfffRRbN2yZcs0YcIEjR8/XnPnzlUkEpEkBQIBXX311Ro7\ndqzOO+88rV27ttHxNmzYoPHjx2vChAk6+eSTdcIJJ2jChAmaMGGCnnvuuUbtX331Vd1www0Jz6Op\nv0sA2B88B7oAAEjE5XK1uPzSSy9NuI9Vq1Zp2LBhGjhw4D7X4zhOszV1hOLiYm3evFlbtmyR2+1u\ntL5Pnz568cUXdcYZZ8SW/fWvf1Vubm6bjrcv57Z7925NmTJF06dPj4XKDz/8UNOmTVMwGNT3vve9\nFrff136ybVsLFy7UD37wgzZt356aep5s3LhRv/3tbzV06NBG7a+99lr96le/0qhRo7R+/Xr96le/\n0gsvvKB3331XK1eu1LPPPqusrCxNnz5dK1as0OWXX6477rhDffr00d13363i4mJNnDhRw4YNU8+e\nPWP7PfXUU2PBZunSpSouLtYtt9zSbM2jR4/W6NGjE57f/vwbAIC9cQUGQKeX6Pt2ly5dqhtvvFGS\ntHbtWp133nmaMGGCLrjgAm3cuFFPPPGEnnvuOd15551atmyZHMfR4sWLY59Kz549W6FQSJL0wQcf\naOzYsRo7dqyWLl2qCy64QJs2bdKOHTs0YsQI3X777ZoyZYok6bXXXtN5552nsWPH6vvf/74+/PBD\nSXVvUidPnqwFCxZo9OjRuuiii/Tee+9p6tSpOu2003T33Xc3eR4fffSRLrnkEo0fP14TJ07Uhg0b\nYldfotGozjvvvLhP5esdf/zxevPNN2WaZmzZSy+9pFNPPTX22LIs/frXv9a4ceN0zjnn6Pbbb4/9\nXl9//XWNGTNG5557rh555JG4ff/5z3/W+PHjddZZZ+m6666TZVkt9sWyZct0yimnaNKkSbFlgwcP\n1ty5c7V48eJG/bX344b9tHTpUs2aNUs///nPNWrUKP3whz9UWVmZJGnUqFF6++23Y/uof3zFFVco\nEAhowoQJ2rFjR6Pnw6ZNmxrV3NTzoba2Vn/605/085//PNYuGo3q5JNP1tatW1VcXKyf//znGjt2\nrMaNG6e//e1vktTk82RvhYWFevzxx9W/f/+45R9//LECgYBGjRoVO5/y8nJ9/vnnKioq0oQJE5SV\nlSVJ+v73v69169ZJkoqKijR58uTYvk888UStX7++xT5qaPXq1Zo+fXosEO19dXPPnj366U9/qvHj\nx2v06NFatmxZ3O9NkoLBoK666ipNmDBBY8aM0bx582TbdqtqAIDWIMAASEkNQ039p8Hz58/XAw88\noDVr1ug3v/mN1q9fr8mTJ2vIkCGaOXOmfvzjH2vNmjX6+9//rmeffVYvvfSSqqqqYm/M5s2bpyuu\nuEJFRUXKzs7Wtm3bYscoLy/X4MGDtXLlStm2rTlz5mj+/PkqKirSqFGjtHDhwljbDz74QGPGjNGr\nr74ql8ul+fPn68EHH9Qjjzyi++67r1EQcBxH1157raZMmaK1a9fqlltu0bXXXqtQKKRly5bJ7XZr\nzZo1GjRoUKPfhc/n0/Dhw2NvXGtqavThhx/q+OOPj7VZtmyZiouLtXbtWj3zzDN666239OKLLyoa\njerGG2/UzTffrBdffFGSYm8+33rrLd19991asWKFXnvtNWVnZ+v3v/99i/2yadMmnXnmmY2Wn376\n6SotLdWXX34Z119791/DfpLqQuK8efO0fv169e3bV/fff3+Lx1+wYIE8Ho/WrFmjQw45pNHz4bXX\nXmu0TVPPh0cffVRjxozRxo0bY8Fw06ZNKiws1IABAzRz5kwdc8wxKioq0gMPPKAZM2aosrJSUvzz\npKFDDz1Ufr+/0fJt27apX79+ccv69u2rzz//XFu3bo1b179/f33++eeqqKhQZWVlXBiqX9daGzZs\n0Pz58zVz5kxJ3/bPvffeqz59+mjt2rV65JFHtGjRoiZv58zJydGaNWtUVFQkv9/f6FZHAGhPBBgA\nKWHq1Kmx+/bHjx+v3/3ud02269Gjhx5//HHt3LlTQ4YM0fXXXx9bt/cVh4kTJ8rv98vlcunCCy/U\nhg0bZJqmPvjgA51zzjmS6m5Ni0ajse1t247dWuN2u/X3v/89FhKGDRumr776Kta2W7du+u53vytJ\nOuKII3TCCSfI5/PpyCOPlG3bKi8vj6t7+/bt2rNnjyZMmCBJ+s53vqNDDjlE7733XlK/nwkTJsQC\nyGuvvaaRI0fGhYTXX39dkyZNksvlkt/v13nnnacNGzZo27ZtsixLw4cPlyRNnDgxts1f/vIXjR8/\nXj169JAkXXzxxQnHslRWViovL6/RcsMwlJubq4qKioTnsnc4Pemkk9SnTx9J0pgxY/TOO+8k3H5v\nLT0f6jX3fOjRo4eOPvpobdiwQZL0yiuvaPz48aqtrdXGjRv1ox/9SJLUr18/ffe739Vf//pXSfHP\nk2TV1tY2CjZ+v1+1tbUKhUJx69LS0mLLDcOIu62wfpvWOvTQQxsFKEmaO3du7GpZv379VFBQEPc8\nl6T8/Hy9++672rBhg8LhsG644QYNHjy41TUAQLIYAwMgJaxYsSLuvv7Vq1c3OYj8nnvu0T333KML\nL7xQffr00Zw5c2JBol5ZWZlycnJij7t166bS0lJVVlbKMIzYrToej0f5+fmxdm63W5mZmbHH9eMS\nwuGwTNOMCwx7t3O73crIyIg9Ngyj0S02DWuSpOzsbJWWlqpv374t/3JUN85h7ty5CgQCWrNmja68\n8sq4T+Ib7j8nJyd2zvXnW/+7qBcIBPTKK6/E3sDbtp3w1qDu3btr9+7djZZHo1GVl5fH/T6TsXc9\nOTk5sascyWr4fJg9e7ZOOOGEuDbNPR8kaezYsVq/fn1sXMqjjz6qQCAgx3Fit245jqPa2tpYCGz4\nPElGRkZG3C2AkhQKhZSRkaH09PS4dbW1tbHl0WhUkUhEHo8nbpvWam681JYtW/S73/1OX3/9tQzD\nUElJSaOrn+PGjVNVVZWWLFmirVu36vzzz9f1118vr9fb6joAIBkEGAApIdE4mHr9+vXTbbfdJqku\n5Fx77bWx8Qn1evToEXcloKKiQvn5+crKylI0GpVpmvL7/bJtOzbmoqF33nlHDz74oFatWqXevXvr\njTfeaDSrVGvk5+c3enNeUVERu/qRiMfj0Zlnnqnnn39e27Zt03HHHRcXYJo65x49eignJ0fV1dWx\n5fVv3CWpZ8+emjhxYuy2omSMGDFCr7zyis4///y45a+//roOOeQQHXLIIY0CXEuhZO8rVZWVlbE3\n2m63O+7qWFVVVZPbN3w+XHfddUk/H6S6qz733Xef3n//feXm5qpfv36ybVsej0fPPPOM0tLS4va1\nY8eOZs+lJYcddljs9rp6X3zxhY444ohG67Zt26bDDz9c3bp1U15enr788ksddthhsW1GjBjRphqa\nMmPGDF1xxRW6+OKLJdXdCtiUSZMmadKkSdq9e7euvvpqPfvss51iIgUAByduIQNw0CgrK9MVV1wR\ne0N+7LHHyjDq/pvzer2xN7n1b/RDoZAikYiefvppjRw5UhkZGTriiCNiMzY98cQTse2l+BBVWlqq\n/Px89erVS7W1tVq9enWbbt2p17dvXxUWFmrNmjWSpLffflulpaU69thjGx27Oeecc47uu+8+nX32\n2Y3WnXnmmXr66acVjUYVDAb1/PPP68wzz9Shhx4qj8cTG9z+zDPPxK4kjRo1Sq+88kosxL366qt6\n8MEHW6zhxz/+sbZs2RKbLEGqm5xgwYIFuu666yRJBQUF+uSTT+Q4jsrKyuICxd79VP97qB9zsW7d\nutjVtIKCgtikCWvWrImNKfJ4PLFzbOn50PB30/D5UD+Op7CwUH379tUf//hHjRs3TlJdeDrjjDP0\npz/9SVLdFZE5c+bE6kw2bO/d7vDDD1deXp5eeuklSXX9cMghh+jQQw/V+PHj9dJLL6msrEyRSEQr\nVqzQueeeK0kaP368Hn30UUnSp59+qk2bNumss85K6vjJKC8v19FHHy2pLgCGQiEFg8G4Nvfcc49W\nrVolqS709u3blxnKAHQorsAA6PSSfTOUl5enESNG6KKLLpLH45HX69WCBQskSaNHj9Ydd9yh7du3\na9asWfroo4904YUXSqobZ3HZZZdJkn7961/rxhtv1EMPPaTvfe97KiwsjB1/7zpOP/10Pf744xo9\nerR69eqlOXPmaMuWLbrmmmsaTevc1ID1pixevFjz5s3T0qVLlZGRoSVLlsQ+4U/md3DiiSdKUmwc\nzd6mTJmi7du365xzzpFhGBo/frzGjh0rqW7ig9mzZ8vv9+v73/9+7Bako48+Wv/v//0/TZ06VY7j\nKC8vT/Pnz2+xnqysLK1cuVJ33HGHHnvsMXk8HmVnZ2vOnDkaOXKkpLo33S+88ILOPvtsHXbYYRo3\nblwsJO3dT5mZmTrllFN088036z//+Y8OOeSQ2FWuX/ziF5o3b57+/Oc/a+zYsTriiCMk1b2BHjp0\nqEaOHKn77rtPp59+epPPh72NGzdOH3/8cez5cPLJJ8fNIDZu3DjdfvvtmjVrVmzZr3/9a82bN09P\nPfWUXC6Xzj//fBUWFmrHjh0t9tVNN92kZ555Jnb16IUXXtAFF1yg+fPn684779TcuXN11113qUeP\nHrrzzjsl1Y2HuuKKK3TJJZdIkk477bTYv//v//5Ps2fP1pgxY+T3+7VgwYImxyC11fTp0zVt2jR1\n795dF198sS6++GLdeOON+tOf/hQ7zwsuuECzZ8/Wgw8+KJfLpeOOO04XXHBBu9UAAA25nAQfFQWD\nQc2aNUuVlZUKh8OaNm2ajjjiCM2YMUOO46igoEALFy7kXlcAB6Xhw4dr2bJlTc7+hY6V6DtLAABd\nU8JbyFavXq3DDjtMy5cv15IlS3TrrbdqyZIluuyyy7Ry5Ur1798/dukYAFLdNddcowceeECS9M9/\n/lOSNGDAgANZEgAA2EvCAJOXlxcbRFk/PeamTZtiX7Y1cuRIvfHGGx1bJQDsJ9dcc41effVVjR07\nVgsWLNAdd9whn893oMsCAADfSHgLmST97//+r7Zt26ZAIKD77rtPV155ZWxaza+++kozZ87U448/\n3uHFAgAAAOjaEg7if/7559WrVy/df//9+uijj3TDDTfErU9mtpXNmze3vUIAAAAAXcawYcNaXJ8w\nwLz99tuxOeUHDRqk4uJipaeny7Is+Xw+FRcXx325XFsLQcfbvHkz/dAJ0A8HHn3QOdAPnQP9cODR\nB50D/dA5JHPhI+EYmEMPPVTvvvuupLov6MrIyNApp5yidevWSZKKiora9UuzAAAAAKA5Ca/AXHzx\nxZozZ46mTJki27Z1yy23aMCAAZo1a5aefPJJ9enTRxMnTtwftQIAAADo4hIGmIyMDP3+979vtPzh\nhx/ukIIAAACARBzHkWma7brPUCjUrvtDy/x+f9JfVr23hLeQAQAAAJ2NaZrtGmCOOeaYdtsXEtuX\n/kt4BQYAAADojPx+v9LS0g50GdjPuAIDAAAAIGUQYAAAAACkDG4hAwAAQMrriEH9bR1kjo5FgAEA\nAEDKM01T//18t3xeX7vszwpbOuqwni2OsdmxY4fOOussPfXUUxoyZEhs+UUXXaQjjzxSt912W8Lj\nBINBnXvuuVq/fn2T6zdu3KiVK1fqrrvuilu+c+dOXXXVVTr55JM1c+bMJM/q4ECAAQAAwEHB5/XJ\nv58H9ffv319r166NBZidO3eqqqoq6e0dx0l4laep9XPnztWIESMUDodbV/BBgAADAAAAtNGxxx6r\nf/3rX7HHRUVFOu2001RbWytJevPNN7V48WJ5vV716tVLCxYskGmamj59uizL0tChQ2PbvvXWW7G2\nvXv31i233NLscZcuXap169bpk08+6biT66QYxA8AAAC0kdfr1eDBg7VlyxZJ0l/+8hedccYZsfU3\n3XSTlixZohUrVqhbt2564YUX9Pzzz2vgwIFauXKlBg8eHGt766236t5779WyZcuUl5entWvXNnvc\n9PT0jjupTo4rMAAAAMA+GDdunNasWaOePXsqNzc3Fi4qKytlGIYKCwslSSeeeKI2btwoSTrhhBMk\nSSeddJIkqbS0VNu2bdNVV10lx3EUCoWUl5cX2xbfIsAAAAAA+2D48OFatGiR+vTpo7PPPju23OVy\nKRqNxh6Hw2EZhiHbtmUYdTdC1a/3+XwqLCzU8uXL4/ZdH3jwLW4hAwAAwEHBClsyQ6F2+bHCVtLH\n9Xq9Ovroo7Vq1SqNHDkytjwnJ0eGYWjXrl2S6sLIkCFDNGDAAL333nuSFBs/k52dLZfLpc8++0yS\ntHLlSn388ccJj+04TtJ1Hiy4AgMAAICU5/f7ddRhPdt9n8kaN26cysvLlZWVFbd8/vz5uvbaa+Xx\neNS/f3+dc845qqmp0bRp03T55ZfHDeL/zW9+o9mzZ8vn86lnz566+OKL9c477zQ61q5du/Szn/1M\ngUBApmnqH//4hxYtWqSBAwe2/WRTiMvZD7Ft8+bNGjZsWEcfBgnQD50D/XDg0QedA/3QOdAPBx59\n0DahUEiSWvyeFnRezfVfMn8P3EIGAAAAIGUQYAAAAACkDAIMAAAAgJRBgAEAAACQMggwAAAAAFIG\n0ygDAAAg5TmOI9M023Wffr9fLperXfeJfUeAAQAAQMozTVMf7fpUPp+3XfZnWWEN6nVEi9M079ix\nQ2eddZaeeuopDRkyJLb8oosu0pFHHqnbbrst4XGCwaDOPfdcrV+/vsn1Gzdu1MqVK3XXXXfFLX/0\n0Uf14osvSpImTpyoH/7wh8mc1kGBAAMAAICDgs/nlX8/fy9M//79tXbt2liA2blzp6qqqpLe3nGc\nhFd5Gq7/6quvtHr1aq1evVqRSERjx47V+eef3+hLNA9WBBgAAACgjY499lj961//ij0uKirSaaed\nptraWknSm2++qcWLF8vr9apXr15asGCBTNPU9OnTZVmWhg4dGtv2rbfeirXt3bu3brnlliaP2a9f\nPz322GNyuVzyer1KT09XTU1NlwkwDOIHAAAA2sjr9Wrw4MHasmWLJOkvf/mLzjjjjNj6m266SUuW\nLNGKFSvUrVs3vfDCC3r++ec1cOBArVy5UoMHD461vfXWW3Xvvfdq2bJlysvL09q1a5s9bmZmpiTp\nH//4h/Ly8lRYWNhBZ9j5cAUGAAAA2Afjxo3TmjVr1LNnT+Xm5io9PV2SVFlZKcMwYuHixBNP1MaN\nGyVJJ5xwgiTppJNOkiSVlpZq27Ztuuqqq+Q4jkKhUMJg8u677+qOO+7Q/fff35Gn1+kQYAAAAIB9\nMHz4cC1atEh9+vTR2WefHVvucrkUjUZjj8PhsAzDkG3bMoy6G6Hq1/t8PhUWFmr58uVx+64PPA19\n+OGHmjt3ru6///4udfVF4hYyAAAAHCQsKywzFGqXH8sKJ31cr9ero48+WqtWrdLIkSNjy3NycmQY\nhnbt2iWpLowMGTJEAwYM0HvvvSdJsfEz2dnZcrlc+uyzzyRJK1eu1Mcff9zk8aLRqObMmaO7775b\nvXv3btPvKpVxBQYAAAApz+/3a1CvI9p9n8kaN26cysvLGw2knz9/vq699lp5PB71799f55xzjmpq\najRt2jRdfvnlcYP4f/Ob32j27Nny+Xzq2bOnLr74Yr3zzjuNjvXPf/5TO3bs0Lx582KzmM2YMSNu\nKueDmctxHKejD7J582YNGzasow+DBOiHzoF+OPDog86Bfugc6IcDjz5om1AoJEktfk8LOq/m+i+Z\nvwduIQMAAACQMggwAAAAAFIGAQYAAABAyiDAAAAAAEgZzEIGAOhw0WhUJSUlcctKS0tVXFzcqG1B\nQUHs+xEAAGiIAAMA6HAlJSV6++4/qPte04tGSku19e1349qVV1dr6NXTutyXsgHYd019ULKv+ECl\ncyLAAAD2i+5ZWeqRk/PtAtOMfwwA+6CpD0r2RbIfqHzxxRdasGCBysvLZdu2jj/+eM2cOVM+n69N\nx129erU+/vhjzZo1K275ddddp9tuu63N+/3kk080f/58rVixIm754MGD9fvf/17jxo2LLbvmmmtU\nXl6u5cuXJ7Xvk08+OfaFnA3t2LFD06dP16pVq9pUd1MIMAAAADgoNPqgpINFo1FdffXVmjdvnr77\n3e9KqvsyynvuuUe//OUv27xfl8vVaNmiRYvavL+W9tuvXz+tW7cuFmBM09TWrVuVm5u7T/ttzfrW\nIsAAAAAAbbBhwwYdfvjhsfAiSTNnzoy9YX/00Ue1du1aSdLo0aP105/+VLNnz1ZeXp4++OADlZWV\n6Wc/+5meeeYZVVRUxK6OfPnll/rZz36m3bt360c/+pEuvPBCjRo1Si+99JLmz5+vnj176v3339eu\nXbt055136qijjtJjjz2mF198UW63W6NHj9aPf/xjFRcX65prrpHP59OgQYOaPIdevXrp66+/VigU\nUlpaml5//XUNGzZMn332mSTpo48+0i233CLDMJSZmanbb79dmZmZuu6667Rr1y595zvfie3r008/\njWv729/+tkN+79zUBwAAALTB559/rqOOOipumc/nk9fr1fbt2/Xcc8/p8ccf12OPPaY1a9boq6++\nkiR5PB4tW7ZMAwcO1LvvvqtHHnlEAwcO1JtvvimpLsDcd999evTRR3XXXXdJir+KYVmWHnroIU2Z\nMkXPPvustm/frqKiIj3++ONauXKl1q1bp127dmn58uU655xztHz5cvXs2bPZ8zj99NO1fv16SVJR\nUZHGjBkTW7dgwQLNmjVLy5cv14knnqhHH31U//jHP2Tbtp544gmdf/75qqiokFR39emWW27RI488\nolNOOUUrV65sh99yYwQYAAAAoA1cLpds225y3X//+18dd9xxcrlccrvdGjp0qD788ENJ0rHHHiup\nbpKA+gCUl5enQCAgSRo2bJgMw1Bubq6ysrJUXl4et+/6Kz69evVSIBDQli1b9MUXX2jq1KmaMmWK\namtrtX37dn322Wc6/vjjJUknnXRSs+cwbtw4rV27VpZlqbi4WP3794+t/+yzzzRkyBBJ0oknnqj/\n/Oc/+vzzz2P7PfbYY5WWliZJ2rJli2688UZNmTJFzz//vEpLS1v5G00Ot5ABAAAAbXDYYYc1uspg\nWZa++OILuVwuRaPRuOX1M5p5PN++Bd/73/Uajhlp+HjvbRzHkc/n05lnnqmbb745rt0DDzwQO+be\ntTR0+OGHa+fOnXr55Zd12mmnNdsuHA7LMAw5jhM3O1v9vtPT0xsN/N+xY0ez+2srrsAAAADgoFBe\nXa09VVXt8lNeXZ3weKeeeqq+/vpr/fWvf5VU90b+zjvv1Nq1a3XUUUfp3//+t6LRqCKRiN577z0d\nffTRSZ3Hu+++K8dxVFZWpmAwqNzcXDmO02z7Y445Rm+++aZCoZAcx9Gtt94qy7I0YMAAvffee5IU\nuz2tofr9jhw5UkuXLo27fUySBg4cqH//+9+SpI0bN2rIkCFx+3377bdlWZakuhnN/va3v0mS1qxZ\nE5uZrKXa24IrMAAAAEh5BQUFGnr1tHbb34Bv9tkSl8ulhx56SDfeeKOWLl0qr9erU089VVdddZUk\nadKkSbr00kvlOI5+8IMfqHfv3o22b/hvl8ulAQMGaPr06fryyy917bXXNmrbUO/evTV16lRdeuml\n8ng8Ouuss+Tz+TR16lT98pe/1CuvvKKBAwc2ew6SNG7cOBUVFemwww6Lu2pyww036Oabb5ZhGMrJ\nydFtt90mv9+vp59+WlOmTNGgQYNiU03PmTNH8+bN0wMPPKC0tDQtWrRIgUCg3WchczntHYmasHnz\nZg0bNqyjD4ME6IfOgX448OiD/a+4uFhbH3k0bnrTPSUl6tHgzcGeqioNuPxHfJHlfsTfw4FHH7RN\nKBSSpNj4C6SW5vovmb8HbiEDAAAAkDIIMAAAAABSBgEGAAAAQMpIOIj/6aef1nPPPSeXyyXHcfTB\nBx9ozZo1mjFjhhzHUUFBgRYuXCiv17s/6gUAAAAkSaZpHugS0Eamacrv97dp24RXYC666CKtWLFC\ny5cv1/Tp0zVx4kQtWbJEU6ZM0cqVK9W/f3+tWrWqTQcHAAAA2sLv97f5DXBTPvjgg3bbFxLbl/5r\n1TTKf/jDH7Ro0SJNmjRJ8+fPl1Q3Z/TDDz+syZMnt6kAAAAAoLVcLle7z0DGjGapIekxMO+99556\n9+6t/Px81dbWxm4Zy8/PV0lJSYcVCAAAAAD1kr4C89RTT+nCCy9stDzZr5HZvHlz8lWhw9APnQP9\ncODRB/tXaWmpIqWlUoP71fc0+ACsrLpaVf/+t/Lz8/dneV0efw8HHn3QOdAPqSHpALNx40bNmzdP\nkpSZmSnLsuTz+VRcXKyePXsm3J4vaDrw+KKszoF+OPDog/2vuLhYW99+N+EXWcrv14DjjuOLLPcj\n/h4OPPqgc6AfOodkQmRSt5Dt3r1bmZmZ8njq8s7w4cNVVFQkSSoqKtKIESP2oUwAAAAASE5SAaak\npCTucv4JnwquAAAgAElEQVTVV1+t1atX67LLLlNVVZUmTpzYYQUCAAAAQL2kbiE75phjdP/998ce\nFxQU6OGHH+6wogAAAACgKUnPQgYAAAAABxoBBgAAAEDKIMAAAAAASBkEGAAAAAApgwADAAAAIGUQ\nYAAAAACkDAIMAAAAgJRBgAEAAACQMggwAAAAAFIGAQYAAABAyiDAAAAAAEgZBBgAAAAAKYMAAwAA\nACBlEGAAAAAApAwCDAAAAICUQYABAAAAkDIIMAAAAABSBgEGAAAAQMogwAAAAABIGQQYAAAAACmD\nAAMAAAAgZRBgAAAAAKQMAgwAAACAlEGAAQAAAJAyCDAAAAAAUgYBBgAAAEDKIMAAAAAASBkEGAAA\nAAApw3OgCwAAdD7RaFQlJSVJtS0oKJBh8HkYAGD/IMAAABopKSnR23f/Qd2zslpsV15draFXT1Nh\nYeF+qgwA0NURYAAATeqelaUeOTkHugwAAOJwzR8AAABAyiDAAAAAAEgZBBgAAAAAKYMAAwAAACBl\nEGAAAAAApAwCDAAAAICUQYABAAAAkDIIMAAAAABSBl9kCQDoNKLRqEpKSpJqW1BQIMPgczgA6GoI\nMACATqOipkbFy1aoukd+i+3Kq6s19OppKiws3E+VAQA6CwIMAKBT6Z6ZqR45OQe6DABAJ8W1dwAA\nAAApgwADAAAAIGUQYAAAAACkDAIMAAAAgJRBgAEAAACQMpKahez555/XQw89JI/Ho+nTp2vQoEGa\nMWOGHMdRQUGBFi5cKK/X29G1AgAAAOjiEl6Bqaio0B/+8Ac98cQTuu+++/Taa69pyZIlmjJlilau\nXKn+/ftr1apV+6NWAAAAAF1cwgDzxhtv6NRTT1V6erp69Oih+fPna+PGjRo5cqQkaeTIkXrjjTc6\nvFAAAAAASHgL2Y4dO1RbW6srr7xSgUBA06ZNUygUit0ylp+fr5KSkg4vFADQ+USj0bjXAMdxZJpm\no3YlJSWKRCKyI3ZsmW1HY4/dbrfk6vh6AQCpL2GAcRwndhvZjh07NHXqVDmOE7c+GZs3b257lWg3\n9EPnQD8cePRBy0pLSxUpLZWaCCN721pcLOv3d6uwe66kulASjNTKcMVf4P+qtFQ9s7MUqs2LX168\nXdFoVJneDLndhsrLyxXyeJRmtJxmyqqrVfXvfys/P78NZ4eG+Hs48OiDzoF+SA0JA0yPHj10/PHH\nyzAM9evXT5mZmfJ4PLIsSz6fT8XFxerZs2fCAw0bNqxdCkbbbd68mX7oBOiHA48+SKy4uFhb335X\nPXJyWmxXZlnK8HjVt7DudcCO2AqYgborKnvzeZTh8So//9sAU15Roe65ubJtW9n+bLk97tj+ehQU\ntFyg368Bxx2nwsLCNp0fvsXfw4FHH3QO9EPnkEyITDgG5tRTT9Wbb74px3FUXl6uYDCo4cOHa926\ndZKkoqIijRgxYt+rBQAAAIAEEl6BKSws1NixYzVp0iS5XC7NmzdP3/nOdzRz5kw9+eST6tOnjyZO\nnLg/agUAAADQxSX1PTCTJk3SpEmT4pY9/PDDHVIQAAAAADQn4S1kAAAAANBZEGAAAAAApAwCDAAA\nAICUQYABAAAAkDIIMAAAAABSRlKzkAEAgPbnOI5M02z1dn6/Xy6XqwMqAoDOjwADAMABYpqmPtr1\nqXw+b9LbWFZYg3odobS0tA6sDAA6LwIMAAAHkM/nlZ8wAgBJYwwMAAAAgJRBgAEAAACQMggwAAAA\nAFIGY2AAoAtKNPtVKBSSHbFlR+zYMrfbLXXkxFeOZNu2bJcr7rhNsSO2QqGQHMdhNi4A6GIIMADQ\nBZmmqf9+vls+r6/J9Xv2VKk2aMnnrgs50WhUudnpcnvcHVaTbduqCpqKeqWqmpanFg4ELX3yxR4V\nFhYyGxcAdDEEGADoonxeX7OzX/n9fllut9zu+peJyH6pyXAZchvGXsdtmtvtlreZ8AUAOLgxBgYA\nAABAyiDAAAAAAEgZ3EIGAF1INBpVSUmJQqGQ9uypkt/vb7JdWekeeZz9XBwAAEkgwABAF1JSUqK3\n7/6DctLSVRu0ZLmbHpS/Y/du9c7JkZSzfwsEACABAgwAdDHds7LUPSNTPrfZ7GD58urq/VwVAADJ\nYQwMAAAAgJRBgAEAAACQMggwAAAAAFIGY2AAACnHkWSZIYVCoaS38fv9crlcHVcUAGC/IMAAAFJO\n1La1K7BDBRXp8vu8CdtbVliDeh2htLS0/VAdAKAjEWAAACnJ4/HKn+aX3+c70KUAAPYjxsAAAAAA\nSBkEGAAAAAApgwADAAAAIGUQYAAAAACkDAIMAAAAgJRBgAEAAACQMggwAAAAAFIGAQYAAABAyuCL\nLAEABz3HcRQKhVq9nd/vl8vl6oCKAABtRYABABz0LNPSJ8GtysrMSH4bK6xBvY5QWlpaB1YGAGgt\nAgwAoEvwer3yE0YAIOUxBgYAAABAyiDAAAAAAEgZBBgAAAAAKYMAAwAAACBlEGAAAAAApAwCDAAA\nAICUQYABAAAAkDIIMAAAAABSBgEGAAAAQMogwAAAAABIGQQYAAAAACnDk6jBxo0bdc011+jII4+U\n4zgaNGiQfvrTn2rGjBlyHEcFBQVauHChvF7v/qgXAAAAQBeWMMBI0oknnqglS5bEHs+ePVtTpkzR\nmDFjtHjxYq1atUqTJ0/usCIBAAAAQEryFjLHceIeb9y4USNHjpQkjRw5Um+88Ub7VwYAAAAADSR1\nBeazzz7TL37xC1VWVmratGkKhUKxW8by8/NVUlLSoUUCAAAAgJREgDn00EN11VVXafz48frqq680\ndepURSKR2PqGV2eas3nz5rZXiXZDP3QO9MOB11X7oLS0VJHSUtnBWgVNW4bb3WS7quoqhd1epX/z\nYVXUtmXVuuV2x1+4Ly8vV8jjUZrhkiTZdlS1dkhGg3aVVQGFvV6le+NfdsorKhS1ozLdpiQpEKhS\n1JcWO25zqqoqtX3HV8pMj8rn9SU87+pAtWRIWZlZCdvWs0xL5Wml8vv9SW/TWqZpqjhUKp8/8Tl0\nZF1d9e+hM6EPOgf6ITUkDDCFhYUaP368JKlfv37q0aOH3n//fVmWJZ/Pp+LiYvXs2TPhgYYNG7bv\n1WKfbN68mX7oBOiHA68r90FxcbG2vv2uumdkqqrGlNvd9MtAaW2tMjwedc/tLkmy7YhyMv1ye+ID\nT5llKcPjVY+Cgrp2EVsBMyB3g2DUrbZWGR6vuufmxpaVV1Soe26ubNtWtj9bkpRdWa1snz923OaE\nJfU9pJ8GDx4ovy/xm/+qikrJMJSTk52wbT0zFNKAvEOVlpaW9DatFQqFtLXsC/lbcYz2rqsr/z10\nFvRB50A/dA7JhMiEY2BeeOEFLV26VFLdJ3elpaW68MILtW7dOklSUVGRRowYsY+lAgAAAEBiCa/A\njBo1Stddd50uueQSOY6jm2++WYMHD9asWbP05JNPqk+fPpo4ceL+qBUAAABAF5cwwGRmZuqPf/xj\no+UPP/xwhxQEAF2R4zgyTbNV2/j9frlcrg6qqPNzHEeWaSXV1gyH5ZJLjiMl+ytzHEe1tbUKhUKS\npGg0qj179iTcLjs7W4WFhTIMvisaADpCUrOQAQA6lmma+mjXp/L5kvtSYMsKa1CvIzp0fEZnZ0fC\n+uLrCqWnpydsW10VUMSOKLtbdlJjZqS6wfL/Kf9YJVWmvB6vykvLZL2wRjkZGS3UFFG6P00nXftL\nFRYWJn0uAIDkEWAAoJPw+bytGswNyeP1yOdLPBuX1+eXK9z6q1Ver1eZmV75fH5ZpqXsbt2Ul9X8\nRADhsCWP0fTMbgCA9sH1bQAAAAApgwADAAAAIGUQYAAAAACkDMbAAEAX4TiOQqGQ7Igt2677aY4d\ntWVHDdl2RIbbLTlqsr1t27JdLtkR+9vH0ajkcskwDHXdOdIAAB2FAAMAXYRpmvps91aFrWp5vI6C\nkbCMaNMDzmsjIbkUVsCsVrY/S3bUVkUgLK83fpa06tqwoh6pqqZuCmjbthWMhCVXRDmZfrmZShgA\n0M4IMADQhXh9XkXdbrndbhnuqNzNzJjldhtyG+647zIx3Ibc7viXDbfhltuIX25E3eLSCwCgo/DR\nGAAAAICUQYABAAAAkDIIMAAAAABSBmNgAKCTcRzJClsttjGtsEKhUOyx3++Xy8XAk1TjOI5MKyy1\nYrID0wrLcZwOrAoAOjcCDAB0MlbY0tYdZfJ6vM23MU1Fqyvk96fJCls66rCeSktL249Voj2Ypqlt\nO8uUmZmV9DY1NdX6n9y+Sk9P78DKAKDzIsAAQCfk9Xjl8/mbXe84kt+fJj+hJeUl6uuGLNPswGoA\noPNjDAwAAACAlEGAAQAAAJAyuIUMAID24khR21YoFIqbZKE5oVCIAfkA0EoEGAAA2kk0aqsmHNKX\nFdsV9CYOMKVl5YqEw/uhMgA4eBBgAABoR4ZhyO/3JzXBgtfrlcSgfABoDcbAAAAAAEgZBBgAAAAA\nKYMAAwAAACBlMAYGAFKQ4zgyzbpB4qbZmhmvOrqy1nMk2bYtqW4QvB2NyrYjLW4TsSOqKC+XN80v\nM9jyuefm5bVXqe0qGo2qdE+pKspqEvZLbl6eDIPPHAFAIsAAQEoKW5a+DH6pjMwshS1TRkW1/D5v\ni9sEAtUKd8IZr6K2rcpIlQzDUG0kJLcRVU042OI2X5eXyPuX7fIXFMjwNP9SVlkTlH4wUV6fr73L\n3mdle0pV9uQLyjR8MtL8zbarP4e8Hj32Y3UA0HkRYAAgRXm9Xvn9frlckj/NL3+CN+lmqPPOdmUY\nhtxutwy3W27DLbfb3WJ7l2EoOz1deVlZ8npaDm7R9iy0neVmZijNnZZwxrLOfA4AsL9xPRoAAABA\nyiDAAAAAAEgZ3EIGAOjyotGoyvaUxi0LVAVkhSMKmJLX61NFWZm6JzEJQtRxVNpgX00p3VPaKSdV\nAIDOjgADAOjyyvaU6suHH1duZmZsmWWF5TiOPHbdGJ3qkhJlZedI2dkt7qsyGJTryRflze/eYrsd\nu3cr15+mdE/L418AAPEIMAAASMrNzFT+XuHEsixFo45MW3IbblXU1LRiXxlx+2pKeXW1ZDM8HwBa\nizEwAAAAAFIGAQYAAABAyiDAAAAAAEgZjIEBgINANBrVnt0lLbYJVAVUXlaubvupJgAAOgIBBgAO\nAmWlZSpe8XTcLFoNWVZYe/bsUXpentRCOwAAOjMCDAAcJBrOotWQZVkqrwnux4oAAGh/jIEBAAAA\nkDIIMAAAAABSBreQAUArOI4j0zRbvY0kuVyuZtuEQiGZVlgyDFmmJUfOPtWJOlHHUUVZmTxen+yI\npT0lPvm93kbtSveU8oIIACmC/68BoBVM09R/P98tn9eX9DaB6iq5XIayMrNa2G9IXwcD8vktBYM1\n8vp88id/CDSjKhiUvfZlZWdmyYlGFdycLtNofPPBjt271Tunm9TCGCIAQOdAgAGAVvJ5ffKnpSXd\n3jRDkuFKuI034pfP51fYsva1ROylW3qG8rKyFI1GlZudIXcTAaa8uvoAVAYAaAvGwAAAAABIGQQY\nAAAAACmDAAMAAAAgZTAGBgDQ/hxHth2NPbSj0dhPvehey1xySXJJzL4GAEiAAAMAaHfRaFTVQVNu\nT93LTNC05YpI1bXhWJuQFVV1bVgRKyzJJRlhRaMEGABAy5K6hcw0TZ199tl69tlntWvXLk2ZMkWX\nXXaZ/u///k/hcDjxDgAAXY7LMOQ23N/8GDJi/677Mb5ZbxhuGW5Dhou7mgEAiSX1anHPPfcoNzdX\nkrRkyRJNmTJFK1euVP/+/bVq1aoOLRAAAAAA6iUMMJ9//rm2bt2qM844Q47jaNOmTRo5cqQkaeTI\nkXrjjTc6vEgAAAAAkJIIMAsXLtT1118fe1xbWyuv1ytJys/PV0lJScdVBwAAAAB7aXEQ/7PPPqsT\nTjhBffr0aXK94zDYEgAObo5s25Zt25JLso1I3Fo7asuOGrLtuuW2bYuZxDoXx3Fkmmaz603TVCgU\narTc7/fL5XJ1ZGkA0CYtBpjXX39d27dv18svv6zi4mJ5vV5lZGTIsiz5fD4VFxerZ8+eSR1o8+bN\n7VIw9g390DnQDwdeW/vANE19XW7J5/MnvU11dUCSlJWV3WwbyzJVFimT1+dTMFgjScrIyGy2fbC6\nWnJJGZlZCocteSLVyq6slGHbzW4TDkcUqA7IFQnL7zYUsqIyjKYvxNfU1Mhxe+Q3DFU4FbHlHk/8\ny0ZpValqPR653XXHjUQicfusb1+/v4DfF7d9IFClSDhSN4OypNqaGnkidqN2DdUGg7INl6oDgUY1\nNXceUScqOVaT51xZFVDY61W699t9hcMRRaO2bKduwoHmzmFvlmkqEKiSYdtx+2pKZVVA3qgjj9yy\nwlaz7aprarTnqy9V+c3zKFhTrYyakHJyclrcfz3TNLWjepc8Hm+zbda+8Urc40gkrEOyesnvT/55\njn3D60LnQD+khhb/d128eHHs30uXLlXfvn319ttva926dTr//PNVVFSkESNGJHWgYcOG7Vul2Geb\nN2+mHzoB+uHA25c+CIVC+uyrCvnT0pLepqqyQjJcysnu1mwbMxTSjpqd8vv9qqkOSIZLmRlZzbYP\nVFXJ5ZKysnNkWabSDFPme5+qe3ZLIclSdm1I3dLTlJubq+rasNyGu8m2mcGgMtweZWVlxcKFXC55\nG7wJzg6FlOH2qFu3uolewpbVZPv6/WVnf/umOxCoUnZ2Ttw26cGgMv1pce2akp5RKZ9LysrOblRT\nc+cRjUaV2y1D7iYCTLfaWmV4vOr+zYQ1Ut3vKxp1ZNqS23A3eQ4Nmd5aZUfD6paREbevpnSrrZXL\njiorM6vF51PY5VJGv/7K69FDklQdqNLxA4+KTa6TSCgUUveyL5o9xn//+6GOOmpw/HmEQhqQd6jS\nWvE8R9vxutA50A+dQzIhstVzVk6fPl3PPvusLrvsMlVVVWnixIltKg4AAAAAWivpL7K86qqrYv9+\n+OGHO6QYAAAAAGhJ0gEGANB+otGoykr3xB6bpqnyYKl8Pp+CNTWSIZnBuoHVuXl5zY5VAQCgqyHA\nAMABUFa6R1+tfES5mXUD9W3bljdSK8NtyB8OSy6XDI9HlTVB6QcTY+MfAADo6ggwAHCA5GZmKv+b\nAeG2HVFa2C23261w2IobAB89kEUCANDJcE8CAAAAgJRBgAEAAACQMggwAAAAAFIGAQYAAABAyiDA\nAAAAAEgZBBgAAAAAKYMAAwAAACBlEGAAAAAApAy+yBIA0EU4su2mvxbUjkZjP3svi0aj4rM+AOhc\nCDAAgC4hGo2qOmjK7Wn80hc0bbkiUnVtOLYsYoUVidjypfnlJsMAQKdBgAEAdBkuw5DbcDda7jYM\nGYY7bl3UcMswmr5iAwA4cPhMCQAAAEDKIMAAAAAASBkEGAAAAAApgzEwANDOotGoykr3xB4Hqiol\nwyUrZMaWlZXukcc5ENUh1TmOo1AopFAolFT7UCgkh+cagIMIAQYA2llZ6R59tfIR5WZmSpLCYUty\nSQGPL9Zmx+7d6p2TIynnAFWJVBUJh/XxF6XKDyTXPlBdpbTuYaWlp3VsYQCwnxBgAKAD5GZmKj+7\nLpxYlim5JJ/XH1tfXl19oErDQcDr88ifllwgMc2QJKtjCwKA/YgxMAAAAABSBgEGAAAAQMogwAAA\nAABIGYyBAYB25jiObNuWbUckSbZtSy7JNiKxNnbUlh014tuo8VRRUcdRRVlZo+XVgWq5XJJlWrIs\nU+5IjbJsW3a0+W+Ot6NROU5UdjQq2442eTwAADo7AgwAtDPLslRt1Sgt7JYkRSJhySWF9W2AqY2E\n5FJYNeFgXZtwWIbbkNsdv6+qYFD22pdldO8etzzdqtun4fXKHQ7ry5ISHZKbqzRverN1RaywamvD\n8sqtQDAkw3DLzXV4AECKIcAAQAcwDEPub9JINGpLLlfssSS53YbchvvbNrbd7L66pWcoLys7blnY\nqpua2ev1KRy2VBEMfhNI3M3sRYoabrnchgzDLcNFcgEApCZewQAAAACkDAIMAAAAgJTBLWQAACDG\ncSTTCisUCiW9jd/vl8vl6sCqAOBbBBgAABBjhS1t21mmaHWW/P60pNofdVhPpaUlbgsA7YEAAwAA\n4ng9Xvn9afITSgB0QoyBAQAAAJAyCDAAAAAAUgYBBgAAAEDKYAwMgJTlOI5M02zTdm09RigUkmm2\nPDuTZYYkJX8MHDwc1X1xqR2Nyo5GW2xrR6Ny245a+1ypf06aSc4SZpqm0jJ5PgI4eBBgAKQs0zT1\n0a5P5fN5k97GssKyLKvNxzCtsL4OBuSN+JvdZmfVDmUlePOKg5MTjSoYCstvhFVdG26xbdC05YmE\n1c1p3XMlbFnaae6QlRZJqn1FZan+Jyu/VccAgM6MAAMgpfl83lbPlFSzL8cwDPn8lny+5gOM25N8\noMLBxyXJMNxyG+4W27kNQ3K17U5uj8cjv7/55+DevF6ejwAOLoyBAQAAAJAyCDAAAAAAUga3kAHo\nUuoHQIeSHAAdCoXUijH/QLuLOo4qyspijyvKyyXDJa/b16htbl6eDIPPJgEc3AgwALoUy7S0M7hb\nW8u+SKp9IFAtn9+vtHS+kRwHRlUwKHvtyzK6d5ckdQsGJZdkpGfEtausCUo/mKi8Hj0ORJkAsN8Q\nYAB0OR6vJ+mB/2ao9dM0A+2tW3qG8rKyJUm1hiG5pPT0zEbtmPsOQFfAdWYAAAAAKYMAAwAAACBl\nEGAAAAAApAzGwADo0hxHssJWs+vNcFguuWRadW0s05IjpiUDAOBAIcAA6NKssKWtO8rk9TT9beXV\nVQG5XC5lfjPrcjBYI6/PJ3/jGWwBAMB+kDDAhEIhXX/99SotLZVlWbryyis1ePBgzZgxQ47jqKCg\nQAsXLpTX2/SLPwB0dl6PVz6fv+l1Pr9cLsXWh63mr9YAAICOlzDArF+/XkOGDNFPfvIT7dy5U5df\nfrmGDh2qyy67TGPHjtXixYu1atUqTZ48eX/UCwAAAKALSziIf8KECfrJT34iSdq5c6d69+6tTZs2\nadSoUZKkkSNH6o033ujYKgEAAABArRgDM3nyZO3evVv33nuvrrjiitgtY/n5+SopKemwAgEAQNs5\njiMzbMYmomjICltx65ioAkBnl3SAeeKJJ/Thhx/qV7/6lRzn2//Y9v53SzZv3tz66tDu6IfOgX5o\nH6ZpqjhUKl8rRtRXB6olQ/rvfz+UVPfmbU9VWF5v0/sIVldLLikjM6vucbBGkpSR0fhb0Ovt2rFd\nfWpqFPDU/RcbiUQkSR7Pt//l1tTUyHF7FPim9kg4Irnq2uzdvmG7eg3b19bUyBOxG7VruE1tMCiP\nHZXfbTSqaW/1x/V/863v9Rq2b+48GrZv7jwCgaq4bZI5D0mqDQZlGy5VBwLNnkPD84jYEXlMs8n2\nTdUXCUfitmnuHPYWqq1VMFgrv8ud8BxqampkRCKq9vsVidgJz6F+f6HaWsnlarRNdU2N9nz1pSqr\nA3HL9+wu1iefRZWXn9/sMf6x8b29ziGkaNSWmWM1OzZsb5ZlqrLEJ78/cVs0j9eFzoF+SA0JA8z7\n77+v/Px89e7dW4MHD1Y0GlVmZqYsy5LP51NxcbF69uyZ8EDDhg1rl4LRdps3b6YfOgH6of2EQiFt\nLftC/rS0pLepqqjUR59+oqOOGixJMi1L24sDzb5RC1RVyeWSsrJzJEk11QHJcCkzI6vZY7gdl9I/\n+kzZ32wTDluSyxU301lmMKgMt+fbNpYluSSv1xfXvmG7eg3bpweDyvSnNWrXcJv0YI0y09KVlZXV\nqKa91R+3rt03C5to39x5NGzf1HkEAlXKzs6J2yaZ85Ck9IxK+VxSVnZ2s+fQ8DwikbA8Pl+T7Zuq\nL2xZcds01xd787jdygjWKDMzM+E5ZAaDcoXDysrKVHp684G44XE9brfkUqNtwi6XMvr1V16PHnHL\nM3w+ye1SYWGfJve/ddtWDfifAbHHNdUBWWFLRxYMTOpvywyFdHi/XKW14u8Q8Xhd6Bzoh84hmRCZ\ncAzMW2+9pUceeUSStGfPHgWDQQ0fPlzr1q2TJBUVFWnEiBH7WCoAAAAAJJbwCswll1yiOXPm6NJL\nL5Vpmrrpppt0zDHHaObMmXryySfVp08fTZw4cX/UCgAAAKCLSxhg/H6/Fi1a1Gj5ww8/3CEFAQAA\nAEBzEt5Chv/f3r3GyFXf9x//nDNzzpnb7trrC8b/AG2gpRGlVUSpSt00EIW2SqqormpqaOhFVfKg\nUiUqtZGBiPYZwjyIaFEakExbNTSLgDYlKcjAvwpNlRQcR6I0Bf9jLrbBNvZ6dnYuZ85lZs7/wXjH\nczmzs7ve3dnZeb8eec/8fnO+vz2ec+Y7c77fBQAAALBRkMAAAAAAGBkkMAAAAABGBgkMAAAAgJFB\nAgMAAABgZJDAAAAAABgZA9soAwCaGo2G5i7kJVPyXa/vuPm5OaWjaB0jAwBgfJDAAMASFfJ5+c/9\nmyazWZnJ/qfP8PQZBZOT6xgZAADjgwQGAJZhMpPRdC4nK2n1HXM+XVjHiAAAGC/UwAAAAAAYGSQw\nAAAAAEYGt5AB2FSiSArCoO/jfhgqDAL5QXNM4AeKRME9AACjggQGwKYShIHe/SDft0alXCzpQqmm\n9z8sSZJctyLLtuXY6xklAABYKRIYAJuOlbRk2078Y7Yjy7r0eBj0/7YGAABsPNTAAAAAABgZJDAA\nAAAARgYJDAAAAICRQQ0MgHUTRZF831/WHMdxZBjGGkUEIE7zteotaazve/K85ti1er1y7gDQjgQG\nwLrxfV9vvnNOtrW0ll9BGOhjH92pVCq1xpEBaBcGgU7On1Qmm1vCWF9moSxD0vW7rluT1yvnDgDt\nSGAArCvbsuXwpgLY8CzLkuPEd/NrZxiSk3KkRmNN4+HcAWABNTAAAAAARgYJDAAAAICRwS1kAFZs\nuas9tm8AACAASURBVIW1nucpUrSGEQHjqxFFKuTzPdsLc3OSachKXKof2TI9LdPkM0wAo4kEBsCK\nLbewtlQuynYcpVLpNY4MGD9F11X9hRdlbt3asX3KdSVDMtMZSdJ8xZX27dX09u3DCBMALhsJDIDL\nspzC2qW2ZQWwMlPpjKZzEx3bqqYpGVI6nW1tW9tyewBYW3x/DAAAAGBkkMAAAAAAGBkkMAAAAABG\nBgkMAAAAgJFBAgMAAABgZJDAAAAAABgZJDAAAAAARgYJDAAAAICRwR+yBLAmoihS4Psd23zfl0zJ\nt5y+cyTJMIyL4z15Xv8/ful5ni5OAQAAY4IEBsCaCHxfJwonlLSs1ja3WpJMQyWjEjvHLZclQ8pk\nc5KkMPBlFspybCt2fKlUlu04SqVTq78AAACwIZHAAFgzScuS41z6tqUWBpJpdGxrF/i+DEOtxw1D\nclKOHNuOHe97fux2AACweVEDAwAAAGBkkMAAAAAAGBkkMAAAAABGBgkMAAAAgJFBAgMAAABgZJDA\nAAAAABgZJDAAAAAARgYJDAAAAICRQQIDAAAAYGQkhx0AAAxbo9FQfnY29rFyqSzDkAI/UCGf10S0\nzsEBQ7LY66JdGAbavSO7Lp+IRlGkwPcHjvN9T57ntX52HEeGYaxlaADWEQkMgLE3Pzen+rdf1FQ2\n0/NYOgglQzItS+Xz55XK9I4BNqP5uYIaL7wU+7poVymXlP/iXdq+bXrNYwp8XycKJ5S0rEXHhYEv\ns1CWY1sKglDX77pOqVRqzeMDsD6WlMAcPHhQP/zhD1Wv1/XFL35RN954o/7iL/5CURRpx44dOnjw\noKwBJxMA2MimshlN5yZ6todBIBmSZdkqVCpDiAwYnn6vi3b1RmOdomlKWpYcx1l0jGFITsqRY9vr\nFBWA9TQwgXn11Vd1/PhxzczMqFAoaO/evfqlX/olff7zn9ev//qv6ytf+YqeffZZ7d+/fz3iBQAA\nADDGBt6yevPNN+uRRx6RJE1OTsp1XR05ckSf+tSnJEm33Xabvve9761tlAAAAACgJSQwpmkqnU5L\nkp555hndeuutqlarrVvGtm3bpvPnz69tlAAAAACgZRTxv/zyy3r22Wd16NAh/dqv/VprexQtrSXP\n0aNHlx8dVh3HYWPYLMfB932dmQtk2733oweBr3wtL6vtHnTXbdaQZDLZ2Odzy2XJkDLZnKRmd6Py\nnCXbir+PvVwqS6aUuzhekoIw0GwxlNVnzsI+3n3v3VZMxUJBV5XLsmLOZ7WwJhlSMplUpVJRaBgq\n27aSyf6nz6rrSlZSpVKx+Ry1miR1zKlUKooSSZUcu2c/7eO7x8XFVavVVK1UlKzVe8Z1z6m6rpL1\nhpyE2RNTu4X9OqYptTVv6h7fbx3d4/uto1QqdsxZyjqk5u+4bhoql0qLHov2ddTqNSV9P3Z8XHy1\nsNYxp98a2nnVqly3KsdIDFxDpVKRWaup7Diq1eoD17DwfF61KhlGz5x+8XWPL1cqmj11UvPlUmvM\nwutBar4m3HJZtTDs+7ro2G+5rPkf/1iz57dqLnVhYH3KSiycayT1nFfitJ87Aj9Ys7hW02a5Low6\njsNoWFIC893vflePP/64Dh06pFwup2w2qyAIZNu2PvzwQ+3cuXPgc9x0002XHSwuz9GjRzkOG8Bm\nOg6e5+ntUwU5Md19fM/TB5XTHW8aKuWSZBrKZnI94yWpVCzKMKTcxKSkZhL0kSsm+hbiFgvzkmlq\ncvJSkbEfBHr/w1JsUrWwj5OnTugnf+InWzHNTUwod/yEJgYU8WddV7ak3MSErGT/xiXpzLwylqWJ\ni+sIw0AyjI45WddVJpG8NKZtP+3ju8fFxRWGgdKuq6yT6hnXPSftVpRNpZXL5Xpiarew3+a4ixtj\nxvdbR/f4uHWUSkVNTEx2zFnKOqTm79g2Bh+L9nXUaqGSth07Pi6+MAg65vQ7Fu2SiYQybkXZbHbg\nGrKuKyMMlctllU7HJ/VxsSUTCclQz5x+8XWPDw1Dmauu1vT27ZKaycvC60FqvibK5ZICL1Du7ZOx\nr4t2XhRpx0/9lLZvm9ZPTl+zJt2+Fs41knrOK3Hazx2+561ZXKtlM10XRhnHYWNYShI58Baycrms\nhx9+WF/72tc0MdE8id1yyy06fPiwJOnw4cP6xCc+cZmhAgAAAMBgA7+Bef7551UoFHTPPfcoiiIZ\nhqGHHnpI999/v5566int3r1be/fuXY9YAQAAAIy5gQnMHXfcoTvuuKNn+xNPPLEmAQEAAABAP0su\n4geAUdNoNFTI5zu2lUtlFQsF5WdnJUlupaL5+Tlll9aPBMAqiaJIvu8vaaznefJ9b2HiGkYFYBSQ\nwADYtAr5vEpP/4umspnWtnQQardbkfn2SUmSE4byL1xQuGWrNLF4sTKA1eP7vo6dPS7b7t+EoTU2\nCHXGLSkMQlm2Fds4BMD4IIEBsKlNZTOabuuiFAaBbEPaenFbGAYquO6wwgPGmr3UZMQ0ZTsBX74A\nkLSELmQAAAAAsFGQwAAAAAAYGdxCBmDkNBoN5WcvqFQsSYahwPNaj/lhqLkLZVmWrUI+r63ccgKs\niyiK5LW9FgfxPI9bwgCsCAkMgJGTn72gk098QxnLlgxDkXXpVFZvNJT0ajJNU+Xz55WbmKQ4H1gH\ngR/ox+67yrU1zVhMqVSW7ThKpSnIB7A8JDAARtKWbFYTjiMZhmzrUhejeqMhJxkqYSZUqFSGGCEw\nfixr6R3CfG9pLZQBoBs1MAAAAABGBgkMAAAAgJFBAgMAAABgZFADA4yhKIrk+8u7/9xxHBmGsUYR\nxYuiSIEf9Gz3w1D1RkP1RkOGDNUTjdZj9XpDEq2NgI0sipqvY0OG/KD3Nd4t8ANFvK4BXEQCA4wh\n3/d17Oxx2bY1eLCkIAh1/a7rlFpice5qqYWhTpzxlE6nO7bPXSgr6dWUaJiSDCXrbXNqoUwzoQTf\nLwMbVhAGOnE6L9uylV1C52XXrciy7bUPDMBIIIEBxpRtL71b0DAlraRs2+nYZlm2TNOUaSYkQ0qY\nidZjDaPe/RQANiAracmy7Z7Xd5xwCd/SABgffEYJAAAAYGSQwAAAAAAYGSQwAAAAAEYGNTAAAGDl\nokihH8i3bbqKAVgXJDAAAGDFGo2G3j9X1EQ1kmEYS+4qVqvV5Ayu3weAHiQwAADgsiSSCVm2I8PQ\nkruK+VpCpgMAMaiBAQAAADAySGAAAAAAjAwSGAAAAAAjgwQGAAAAwMgggQEAAAAwMkhgAAAAAIwM\nEhgAAAAAI4MEBgAAAMDI4A9ZAgCATSWKIgV+IEnyg1CeN/iPZkZRJEkyDGPJ+3EcZ1njAawOEhgA\nALCp1MJQJ854SqfTCnxfjXJBjpNadE6pXJRhmMplc0vaRxAG+thHdyqVWvx5Aaw+EhgAALDpJK2k\nbNtRFEmOk5IzINHwfU8yjYHjAAwfNTAAAAAARgYJDAAAAICRwS1kwAYSRZF831/2vM1SSNpoNFQs\nFFrFt26lIpmS73YW4BbyeW2NhhEhMPoaUaRCPt/6eX5uTvncROtnt1JRpVJW6AfK8ToDsAGRwAAb\niO/7Onb2uGzbWvKcIAh1/a7rNkUh6fxcQeG3n9fE1JQkyQlDyTBkJjtPVeXz55WbmJQcZxhhAiOt\n6Lqqv/CizK1bJUnby2WZb7zZetwJQyXDUKfn5xVunZYmJvo9FQAMBQkMsMHYtjXWRaSTmYymL34a\nHIaBZBiykp0JXaFSGUZowKYxlb70OrOiSBNt38CEYaBaGKoUBMMKDwAWRQ0MAAAAgJFBAgMAAABg\nZJDAAAAAABgZ1MAAIyKKmn/5uZsfhPI8L2bG5ulOBgAAsIAEBhgRQRjo3Q/yPQXtge+rUS7IcVI9\n4z/20Z2bojsZAADAAhIYYIRYSUu23dk6OIokx0mNdecyAAAwPqiBAQAAADAySGAAAAAAjAxuIQM2\nqSiK+hb3e54nPwgl0+wYLym26L9fowDP8xQpWqWIAWxmjUZDhXxekuRWKqpUygq8QIHf25xky/S0\nTHN1PmONoki+H38ubOf7vmRKvuXI3iANUJqx+8uaQ/MWjAMSGGCTCgJfx96rKJfN9Tzm+57OuCXZ\nzqU3Dq5bkWGYSqfTvc/Vp1FAqVyU7ThKpXrnAEC7Qj6v0tP/oqlsRk4YKhmGSliWTKuzMcl8xZX2\n7dX09u2rst8wCHTSPalMzLmwnVstSaahuVpB12y5ZkPUFfq+rzffOSfbspc0nuYtGBckMMAmZtlW\n34uwVXM6GgKEQSCZRk+TAKl/o4ClfKoJAAumshlN5yYUhoFqYaikZcmKeXPeWOX9WpYlx+k9t7Wr\nhc1zYDJhLTpuvdmWvSGSKWAjWdL3s2+99ZZuv/12Pfnkk5Kks2fP6u6779bnP/95/dmf/ZnCMFzT\nIAEAAABAWkICU61W9dBDD2nPnj2tbY888ojuvvtuff3rX9fVV1+tZ599dk2DBAAAAABpCQmM4zh6\n7LHHtL3tXtTXXntNt912myTptttu0/e+9721ixAAAAAALhpYA2Oapmy78/7UarUq62LR3bZt23T+\n/Pm1iQ4AAGxojSjS/NycGrVIhqHYrmJSs4h/6wg0LVxq1zLPq6pQUKtgfindv+gQBqyOyy7iX2i9\nOsjRo0cvd1dYBRyHjaHfcfB9Xx96F2Q7vUWtQRhothj2FLyGQaBSsthTfF8ulyRJudxE73MFvvK1\nvKy2DydctyJJymSyPePXYx+SdPaD97W7UlEp2Tw11Wo1SVIy2XmqqlQqihJJOaYpGZ2Pt89ZGFdq\n+33WwppkSKVSsTW+WqkoWat3jOsev/B8oWGobNs9MbWruq5kJTv20b2O7tja9zNoDXHjF1tD+5yq\n6ypZb8hJmLG/2+74Fn7HC/odi+51dI/vt45SqdgxZynrkJq/47ppqFwqLXos2tdRq9eU9P3Y8f3+\nr7TP6beGdl61KtetyjESA9dQqVRk1moqO45qtfrANSw8n1etSobRM6dffN3j48Yt/F+Vmv9fa2HY\n+r8yaB0fzs6q9twLyk1MKjIkt8/xOHfhgozchGxFrX0kLavneJQrFc2eOqn5i+cX6dK5Q41IMjS4\no1jbucYtl5c1R41Ix+pvKp3ODBxfr9eVSqVUq9W0w9nZ84Fvu1pY01U7M32bCcRdF3zf15m5ILa5\nSpwg8DV/3h7YsAD98T5pNKwogclmswqCQLZt68MPP9TOnTsHzrnppptWsiusoqNHj3IcNoDFjoPn\neXo3fyK244wfBHr/w1LPhcz3ff2f7O6eOcX5gmQampyY6n0uz9MHldMdF7lKudlCNJuJa7u89vuQ\npERkKH3sbU1MTEqSwjCQDENWsrMrUNZ1lUkklcvlJEMdSV37nIVxC88nNZOxcqXcsY+06yrrpDrG\ntY9f2EfWdWVLyk1M9MTULp2ZV8ayFl1Hd2zt+xm0hrjxi62hfU7arSibSl/83fX+bvv9jiUteiy6\n19E9Pm4dpVJRExOTHXOWsg6p+Tu2jcHHon0dtVqopG3Hju/3f6V9Tr9j0S6ZSCjjVpTNZgeuIeu6\nMsJQuVxW6XR8Uh8XWzKRkAz1zOkXX/f47nELx6G17osdwtJBoGwqPfhYzM8ra1m6Yut0z+uxXc0w\nWvtdrAtZaBjKXHV1RxvlhXNHo9aQYUi5ATG1n2tKxeKy5qxkH/3Oke18z9O1V22JbXHc77rgeZ7e\nPlVYcheyxfaBwXiftDEsJYlc0V+JuuWWW3T48GFJ0uHDh/WJT3xiJU8DAAAAAMsy8BuY119/XV/+\n8peVz+eVSCQ0MzOjQ4cO6cCBA3rqqae0e/du7d27dz1iBQAAADDmBiYwP//zP69vfetbPdufeOKJ\nNQkIAAAAAPq57CJ+YDNqdqHxlzWH7jIAAABrjwQGiOH7vt5855zsPsWo3YIw0Mc+upPCSQAAgDVG\nAgP0YVv2kju/AAAAYH2sqAsZAAAAAAwDCQwAAACAkcEtZAAAAJeh2fjFW3SM73vyvM4xNH8BVoYE\nBgAA4DKEQaCT7kllsrlFxvgyC2U5tiVJCoJQ1++6juYvwAqQwAAAAFwmy7LkOE7fxw1DclKOHHtp\n3S0B9EcNDAAAAICRQQIDAAAAYGSQwAAAAAAYGdTAACOuX/cb3/clU/Kt3nuyfd+TomhD7QMAJKkR\nRSrk8x3b3EpFMqVGLZJhSIEfSJK2TE/LNPksFhg3JDDAiOvX/catliTTUMmo9Mxxy2VZtiVnid1v\n1mMfACBJRddV/YUXZW7d2trmhGGzCr4RSYZkWpbmK660b6+mt28fYrQAhoEEBtgE4rrf1MJAMo3Y\nrjiB72/IfQCAJE2lM5rOTbR+DsOgI4GxrGYnr8awAgQwVHzvCgAAAGBkkMAAAAAAGBncQgYsURRF\nfW+L8ryqCgXF/kVlx3FkGEbrZ9/35Xlez3YAwObVvIYErZ89P1ChUFAqlVKxWFShUOiZ43mePL/a\n+tnmugFIIoEBlizwfZ0onFDSsnoec8slvZuvK51Od2wPw1BXT10tx7mU2JyZC/TmO+f0sY/ujE14\nAACbTy0MdeKM17pOlItFvV07p3Q2oxMXPpT7/97smeO6FVm2rUwmp1oY6pot19AYBRAJDLAsyZhC\ndqlZzG6bhrKZzi5dvu/LcVIdFxzbdmRfLEAFAIyPpJWUbTevIZbtyHak3MSkMtmcchOTPeMNw+jb\nKAUYZ9TAAAAAABgZJDAAAAAARgYJDAAAAICRQQ0MNoUoiuQv8w8nDrMLWBRF8jyvZ7vnefKDUDJ7\nP1sI/ECRovUIT41GQ4V8vvVzuVSWYaijg05ze0kyDfnZ3rV0z9kyPb22QQMAgLFAAoNNwfd9HTt7\nXLbd2yEsThCEun7XdUPrAhYEvo69V1Eu21307+mMW5LtBD1zFrrROOtQ/1/I51V6+l80lc1IktJB\nKBmS2dWBbfbMGWWSSU3u2NHzHO1z5iuutG+vnBSFqAAA4PKQwGDTsG1rpNpLWn3itWpOq0tNuzDo\nTWrW0lQ2o+ncxKV9G5LV1T3tfLqgrGW1xrXrntNY+5ABAMAYoAYGAAAAwMgggQEAAAAwMriFDFhD\nzeYCnQXuQeA3Gw6Ykm913irm+54UrV2h/kJxflxRvlupNGNyPRXyeW1dxTAaUaRCPi/bcVr7iDM/\nN6f0Gq4fwOaxcF6J034+K5fK2jK9ZX1j62qE0h2TdKnRSaarFhLAYCQwwBoKg0An3ZMdF6h8La9E\ntfnXlUtGpWO8Wy73rY1ZDQvF+RnL6inKd8JQMgyZyaTK5883/yr0RG9ty0oUXVf1F16Uk8u19hEn\nPH1GwWTvX6MGgG4L5xVz69aex9rPZ2FhXvOf+4wmp9YvieluhNIdk9RsdFKsuircece6xQVsFiQw\nwBqzLEuOc+mbFsu2L34TYXRsl6Rgma2gV2Iqm9GE7fQU5YdhIBmGrKSlQqWyyDOscL/pjKYvJjBW\nMr5b3Pl0YdX3C2Dzap5XYpqItJ3PwiBU/He+axxbtjO29pikS41OACwfNTAAAAAARgYJDAAAAICR\nQQIDAAAAYGRQA4MNp9m5a3m1IJ7nrWXzrjXRaDSUn53t2BbXHUyStkxPr2doADBWGo2G5i7kJVNq\n1KLY8/DCOMmQaRo9nc7a56x2J0cpvqtlN8+rqlCQUm2NYBzHkWHEF9tEFy+c/R7vZ7HnXIqVXOcv\nd5/YXEhgsOH4vq9jZ4/LtuMLveOUSmXZjqNUem26d62F+bk51b/9YkeXmnQQ9nQHm6+40r69clJO\n3NMAAC5TIZ+X/9y/aTKblRpRz3l4wfvnzyudTGrH1q0dXcW6z92r3clRiu9q2c0tl/Ruvq50Ot2c\nE4a6eupqOU78tbFULsowTOWW0co5CAN97KM7O5Kk5VrudT4IQl2/67rL2ic2FxIYbEj2MlsJ+97a\nd+9aCz1dai52pWnvDiZJjfUODADGzGTmYqfEiwlM93lYkgqVijKJpKZzE12dzjrP3WvRyVHq7WrZ\nrRYGsk1D2UwzIfF9X46T6ns99X2v2RFzCInBcq/zQDtqYAAAAACMDBIYAAAAACODBAYAAADAyKAG\nBotaj04h3fvwPE9+EEpmfH4d1zXFD0MZMuQHvV1j4sZ7fqBCodC3INDzPHl+tWOb73vaqK3O4jqa\ntXfIWbAWnXEAACvTiCKV8nkVK2Xlc70F/+3n8UQyqURi83/uHEXNRgHt/CCU5y3ega37vcdKO5pW\nq9VlvYehO9pwkMBgUb7v6813zsmOKWaMs5LuJN378H1PZ9ySbKc3GZEk163IMMxWlxVJKhdLMgxD\n2ZjzW/z4ot6unVO6rQNY9xzLtpXJXOrM4pbLsjZo0eH8XEGNF17q6GjW3iFnQaszziJFoACA9VF0\nXemFF7XdsmS+8WbP4wvn8ZIfyPiN2zW9ffO31A/CQO9+kJeVvNShLPB9NcqFvt3U4t57rKSj6Xtz\np2S/n1Guz3uDnv3SHW1oSGAwkG3Za/6mvXsfVs2Rbce/yQ6DQDKNjsct25FhKHZOv/G2o+ab+RiG\nYTQ7s7S90Q+W+UnOeuvpaNbWIWfBWnXGAQCszFQ6o6xjayLmG5hL53FPxSHENixW0uq4ZkeRFu2m\n1s9yO50lk1az0xsJyYa3+b+LBAAAALBpkMAAAAAAGBncQoZVFUVRT6HdoEK67oL5jVos32g0VCwU\nFPi9tTndBfNbpqdl9mlCAABYP40o0vzcnLK5/n9tvpDPa2LjXXaWrdFoaH6u0LoW+b4vo1CX3VU7\n0mg0ZEiqVMqSKZWyzRvU4preTE9v67ieeV5VhYJadR9xc9rFNtLxPHl+ENusJ/AD1Rv1jsY0/dax\nEJvvez3vPTzP6/tWIq5RgCQFtUCBH/Q0BOq3xkENgfoV+FP4f/lIYDaoMAz11qljSg4onj91+qzC\nevNFYNQMXXPlT/Qd+94Hc0rl3tMN1/cfc7mCwNex9yrKZS9dKHzf08n5k7Ks+EK67oL59S6WP3Xs\nmLzXfqBE28mkFtYkQ0q2FcD/+Nw5XWfZmpia6nmO9oL5+Yor7dur6e3b1yV+AEB/RddV4v++InPn\njr5jyufPK5VZWuH2RjY/V5D/reeVm2zWdyaDUIWooUSy8/p7cva80smkprM5yZD8i4/Xw1Ay1Bo/\n71Z0du/ntHXbttZct1zSu/l6qzFOpVyWaZiLNsXpbqRTKZdl27ayEzGd19yKyqWS6t9+sdWYJm4d\n7bGFgS+zUJbTVrBfKpVlO45S6d73EnGNAiQpXwx1+nyppyFQ3BqkxRsChbVQP7F7uiMmicL/1UIC\ns0FFUaSEY8tJL94tysll5ZjNF0G9WpOT6v8Jk53OykwuvRvHSsUlH5lsrqMgvl13wfx6F8vX/EDX\npjJKJhKtbXEF8BesgiYznYXy/cY31j5sAMAS9Tt3L9hMDU7a1xoGgWRIVteHoSWvqkwiqW1Tkx3X\nru7xiYSphm13XL9rYSDbNJS9+KFjFEmGMbgpTratq+fCnL6Nd9TZmCZuHe2xGYbkpBw59qXHfW/x\n9xLdjQKk5vNbtt2zPa4ZkLR4Q6Ag8HtiwupZcQLz4IMP6vXXX5dhGLrvvvt04403rmZcAAAAANBj\nRQnMkSNHdOLECc3MzOjtt9/W/fffr5mZmdWODQAAAAA6rKjK+Pvf/74+/elPS5KuvfZaFYtFVTbR\n168AAAAANqYVfQMzOzurn/3Zn239vHXrVs3Oziqbza5aYGjWZniNxduieKWKwrorSTLqUtGe7Tu2\nPD8nt7JVhUJhyTF4nqdSudjsDLYEpXJJhmFKbXH7vi/XKysM4u9HXSiOi+rNyhG30iwI7Kd7/KA5\ng8YHoa9jhbmOLiu1WijDMJRIXHqJnKtWNFmrx+6jXqtJkhLJpIquq+qpU6qUy3IrFZmGqVQm3xp7\n9oP3FVarKs3Py5+fVxiGl54nDCUZSliX9rvwfHaq2bUkleosInQrFZXniwq6n6stpgX5YlHVRFKN\nRr1nP+3jF8YZCbNvXJJUKJflJ5OyYu7xbZ/T2m/U6Imp8/lK8pOWbMfuu4bLWcdCXBXXVdA2vlAq\nqeYHHeP6rcM2DJmm2XcNS13HYr/jQWuIG7/YGtrnFEpl1YJw4LHo/h3rYo+Lfseiex3d4+PW4VYq\ncmu1jjlLWYfU/B3bpiFnbm7RY9G+jlqjoWQiETu+3/+V9jn9jkU73/dVqLiKGhq4hnyxqESjrkQy\nKWeR+/W797vQ1bF7Tr/4usd3j1s4Dq1112qq1eut/yuDj0XzPGAahuLOE3HxLewjaSZ6xscei4X4\nokjd55XY123ba6j79dgvtoXXdvs+Bq1hYR/d58jF1rDw/6/99Vi1rY5j0D2nEgTKn/5AfrXacT3p\n9uGZ05ooFludPPudu/udk7vHt1/PFlSrbse1KO461657/KA51arbc33sd220y2XZjq2wFqo0L/lt\nx7jsujIU3+kr8ANVKuWemttq1VW14vaMj3sf0VxH//ceYS2U79lSo3NOEISx47E8RhQtv1/tAw88\noFtvvVWf+tSnJEl33XWXHnzwQV1zzTWx448ePXp5UQIAAAAYCzfddNOij6/oG5idO3dqtq0/97lz\n57RjR//2hIOCAAAAAIClWFENzJ49e3T48GFJ0o9+9CNdccUVymyC/ukAAAAANrYVfQPz8Y9/XDfc\ncIP279+vRCKhBx54YLXjAgAAAIAeK6qBAQAAAIBhWNEtZAAAAAAwDCQwAAAAAEYGCQwAAACAkbGu\nCczs7Kx+8Rd/UUeOHFnP3eKifD6vL3zhC/r93/993XXXXfrv//7vYYc0lur1ug4cOKC77rpL+/fv\n1w9/+MNhhzSWXn31Vf3yL/+yXnnllWGHMpYefPBB7d+/X3feeafeeOONYYcztt566y3dfvvtevLJ\nJ4cdytg6ePCg9u/fr3379umll14adjhjyfM83XPPPbr77rv1u7/7u/rOd74z7JDGlu/7uv32Y8xv\nDwAABOxJREFU2/XNb35z0XEr6kK2Ug8//LCuuuqq9dwl2jz33HP6rd/6LX32s5/VkSNH9Mgjj+jQ\noUPDDmvs/Ou//qtSqZT+6Z/+ScePH9e9996rp59+ethhjZWTJ0/qH//xH/ULv/ALww5lLB05ckQn\nTpzQzMyM3n77bd1///2amZkZdlhjp1qt6qGHHtKePXuGHcrYevXVV3X8+HHNzMyoUCho7969uv32\n24cd1tj593//d91444364z/+Y50+fVp/9Ed/pFtvvXXYYY2lr371q9qyZcvAceuWwPzXf/2XJiYm\n9NM//dPrtUt0+cM//MPWv0+fPq1du3YNL5gx9rnPfU6f/exnJUnT09Oan58fckTjZ9euXXr00Ud1\n7733DjuUsfT9739fn/70pyVJ1157rYrFoiqVirLZ7JAjGy+O4+ixxx7T448/PuxQxtbNN9+sn/u5\nn5MkTU5OqlqtKooiGYYx5MjGy2c+85nWv0+fPq0rr7xyiNGMr3feeUfvvvuuPvnJTw4cuy63kIVh\nqL/927/VPffcsx67wyJmZ2f1O7/zO3rsscc4HkOSTCblOI4k6R/+4R/0m7/5m0OOaPzYtj3sEMba\n7OyspqenWz9v3bpVs7OzQ4xoPJmmyWthyEzTVDqdliQ9/fTT+uQnP0nyMkT79+/Xl770Jd13333D\nDmUsHTx4UAcOHFjS2FX/Bubpp5/WM888I8MwWp8i/Mqv/IruvPNO5XI5SRJ/embtxR2HP/3TP9We\nPXv0zDPP6D/+4z904MABbiFbY4sdhyeffFL/+7//q6997WvDDnNTW+wYYGPgmoBx9/LLL+uf//mf\nuSYP2czMjN566y39+Z//uZ577rlhhzNWvvnNb+rmm2/W7t27JQ2+Lqx6ArNv3z7t27evY9udd96p\n//zP/9Tf/d3f6eTJk3rjjTf0yCOP6Nprr13t3eOiuOPw2muvaX5+XlNTU/rVX/1VfelLXxpSdOMj\n7jhIzTfV3/nOd/TVr35ViURiCJGNj37HAMOzc+fOjm9czp07px07dgwxImB4vvvd7+rxxx/XoUOH\nWh/0Yn39z//8j7Zt26Yrr7xSP/MzP6N6va58Pt/xTTHW1iuvvKL3339fL774os6ePSvHcbRr1y7d\ncsstsePXpQbmG9/4Ruvf9957r377t3+b5GUIXnrpJb355pv6gz/4Ax07dqyV5WJ9nTp1Sk899ZSe\nfPJJWZY17HDGHp/+r789e/bo0Ucf1R133KEf/ehHuuKKK5TJZIYdFrDuyuWyHn74Yf393/+9JiYm\nhh3O2PrBD36g06dP67777tPs7Kyq1SrJyzr7yle+0vr3o48+qo985CN9kxdpnbuQYbj+5E/+RAcO\nHNDLL7+sIAj0V3/1V8MOaSw988wzmp+f1xe+8IXWLU1PPPGEkklejuvlpZde0l//9V/r3LlzevXV\nV/U3f/M3evbZZ4cd1tj4+Mc/rhtuuEH79+9XIpHQAw88MOyQxtLrr7+uL3/5y8rn80okEpqZmdHX\nv/51TU1NDTu0sfH888+rUCjonnvuaV0PDh48SJOddXbnnXfqvvvu0+/93u/J93395V/+5bBDwgBG\nxMePAAAAAEbEuv4hSwAAAAC4HCQwAAAAAEYGCQwAAACAkUECAwAAAGBkkMAAAAAAGBkkMAAAAABG\nBgkMAAAAgJHx/wGGR7DaH305HgAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzAAAAHrCAYAAAAQbnjeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl4VOX9///XbOdMVkKAhN0fqIha7CXUhSoqiGxuxVrU\nKrTa9vq2VbEfrVioUMUW61aKUq07ClZbRVyBuNDaFltR1KJW1LLKFkL2ZHLOmcyc3x8xQybrAAnJ\ngefjurxkzna/z9wTmFfOue/jc13XFQAAAAB4gL+zCwAAAACAVBFgAAAAAHgGAQYAAACAZxBgAAAA\nAHgGAQYAAACAZxBgAAAAAHgGAQZAlzd06FAVFhYmLVu2bJmuvPJKSdJTTz2le++9t9VjrFu3Tp9/\n/nmH1diR4vG4pk2bprFjx+qLL75IWrds2TINHTpUb731VtJy27Y1fPhwzZw5c5/bO/7447Vjx45W\nt5k6dapefvnlZtdt2rRJ06dP17hx4zRp0iRNmTJFr732Wkptt0c/Pfvsswe0f0dbt26dxo4dq9mz\nZyctX79+vS699FJNmDBBl112mT777LPEukWLFmnSpEmaOHGiZs+erdraWklSZWWlrr32Wo0fP17n\nn3++VqxY0aS91atXa+LEiZo0aZJOPfVUnXTSSZo0aZImTZqkF198scn2b7zxhn75y1+2eR7N/VwC\nwMEQ7OwCAKAtPp+v1eWXX355m8dYunSpRowYoSFDhhxwPa7rtlhTRygsLNTatWu1bt06BQKBJuv7\n9u2rV155RWeeeWZi2d/+9jfl5OTsV3sHcm67d+/W1KlTNX369ESoXL9+va6++mpFIhF961vfanX/\nA+2nWCymO++8U9/5znf2a//21NznZM2aNfrtb3+r4cOHN9n++uuv189//nONGTNGq1at0s9//nO9\n/PLL+vDDD7VkyRK98MILyszM1PTp07V48WJdeeWVuuuuu9S3b1/dd999Kiws1OTJkzVixAjl5eUl\njnvaaaclgs3ChQtVWFio2267rcWax44dq7Fjx7Z5fgfzZwAAGuIKDIAur63n7S5cuFA333yzJGnF\nihU6//zzNWnSJF144YVas2aNnnnmGb344ou6++67tWjRIrmuq/nz5yd+Kz1z5kxZliVJ+uSTTzR+\n/HiNHz9eCxcu1IUXXqh3331X27dv16hRo3THHXdo6tSpkqQ333xT559/vsaPH69vf/vbWr9+vaS6\nL6mXXnqp5s2bp7Fjx+riiy/WRx99pGnTpun000/Xfffd1+x5fPbZZ7rssss0ceJETZ48WatXr05c\nfYnH4zr//POTfitf78QTT9Q777wj27YTy1599VWddtppideO4+hXv/qVJkyYoHPPPVd33HFH4n19\n6623NG7cOJ133nl6/PHHk4795z//WRMnTtTZZ5+tG264QY7jtNoXixYt0je/+U1NmTIlsWzo0KGa\nPXu25s+f36S/Gr5u3E8LFy7UTTfdpB//+McaM2aMvvvd76qkpESSNGbMGL3//vuJY9S/vuqqq1RZ\nWalJkyZp+/btTT4P7777bpOam/s81NTU6E9/+pN+/OMfJ7aLx+M69dRTtWnTJhUWFurHP/6xxo8f\nrwkTJujvf/+7JDX7OWkoPz9fTz/9tAYOHJi0/PPPP1dlZaXGjBmTOJ/S0lJt3LhRBQUFmjRpkjIz\nMyVJ3/72t7Vy5UpJUkFBgS699NLEsU8++WStWrWq1T5qbNmyZZo+fXoiEDW8urlnzx798Ic/1MSJ\nEzV27FgtWrQo6X2TpEgkomuuuUaTJk3SuHHjNGfOHMVisX2qAQD2BQEGgCc1DjX1vw2eO3euHn74\nYS1fvly//vWvtWrVKl166aUaNmyYZsyYoe9///tavny5/vGPf+iFF17Qq6++qoqKisQXszlz5uiq\nq65SQUGBsrKytHnz5kQbpaWlGjp0qJYsWaJYLKZZs2Zp7ty5Kigo0JgxY3TnnXcmtv3kk080btw4\nvfHGG/L5fJo7d64eeeQRPf7443rwwQebBAHXdXX99ddr6tSpWrFihW677TZdf/31sixLixYtUiAQ\n0PLly3XMMcc0eS8Mw9DIkSMTX1yrq6u1fv16nXjiiYltFi1apMLCQq1YsULPP/+83nvvPb3yyiuK\nx+O6+eabdeutt+qVV16RpMSXz/fee0/33XefFi9erDfffFNZWVn6/e9/32q/vPvuuzrrrLOaLD/j\njDNUXFysrVu3JvVXw/5r3E9SXUicM2eOVq1apf79++uhhx5qtf158+YpGAxq+fLl6tevX5PPw5tv\nvtlkn+Y+D0888YTGjRunNWvWJILhu+++q/z8fA0aNEgzZszQ8ccfr4KCAj388MO68cYbVV5eLin5\nc9LYEUccIdM0myzfvHmzBgwYkLSsf//+2rhxozZt2pS0buDAgdq4caPKyspUXl6eFIbq1+2r1atX\na+7cuZoxY4akvf3zwAMPqG/fvlqxYoUef/xx3XPPPc3ezpmdna3ly5eroKBApmk2udURANoTAQaA\nJ0ybNi1x3/7EiRP1u9/9rtntevbsqaefflo7duzQsGHD9Itf/CKxruEVh8mTJ8s0Tfl8Pl100UVa\nvXq1bNvWJ598onPPPVdS3a1p8Xg8sX8sFkvcWhMIBPSPf/wjERJGjBihL7/8MrFtt27d9I1vfEOS\ndNRRR+mkk06SYRg6+uijFYvFVFpamlT3tm3btGfPHk2aNEmS9LWvfU39+vXTRx99lNL7M2nSpEQA\nefPNNzV69OikkPDWW29pypQp8vl8Mk1T559/vlavXq3NmzfLcRyNHDlSkjR58uTEPn/96181ceJE\n9ezZU5J0ySWXtDmWpby8XLm5uU2W+/1+5eTkqKysrM1zaRhOTznlFPXt21eSNG7cOH3wwQdt7t9Q\na5+Hei19Hnr27KnjjjtOq1evliS9/vrrmjhxompqarRmzRp973vfkyQNGDBA3/jGN/S3v/1NUvLn\nJFU1NTVNgo1pmqqpqZFlWUnrwuFwYrnf70+6rbB+n311xBFHNAlQkjR79uzE1bIBAwaoV69eSZ9z\nSerRo4c+/PBDrV69WtFoVL/85S81dOjQfa4BAFLFGBgAnrB48eKk+/qXLVvW7CDy+++/X/fff78u\nuugi9e3bV7NmzUoEiXolJSXKzs5OvO7WrZuKi4tVXl4uv9+fuFUnGAyqR48eie0CgYAyMjISr+vH\nJUSjUdm2nRQYGm4XCASUnp6eeO33+5vcYtO4JknKyspScXGx+vfv3/qbo7pxDrNnz1ZlZaWWL1+u\nn/zkJ0m/iW98/Ozs7MQ5159v/XtRr7KyUq+//nriC3wsFmvz1qDu3btr9+7dTZbH43GVlpYmvZ+p\naFhPdnZ24ipHqhp/HmbOnKmTTjopaZuWPg+SNH78eK1atSoxLuWJJ55QZWWlXNdN3Lrluq5qamoS\nIbDx5yQV6enpSbcASpJlWUpPT1daWlrSupqamsTyeDyu2tpaBYPBpH32VUvjpdatW6ff/e532rlz\np/x+v4qKippc/ZwwYYIqKiq0YMECbdq0SRdccIF+8YtfKBQK7XMdAJAKAgwAT2hrHEy9AQMG6Pbb\nb5dUF3Kuv/76xPiEej179ky6ElBWVqYePXooMzNT8Xhctm3LNE3FYrHEmIvGPvjgAz3yyCNaunSp\n+vTpo7fffrvJrFL7okePHk2+nJeVlSWufrQlGAzqrLPO0ksvvaTNmzfr61//elKAae6ce/bsqezs\nbFVVVSWW139xl6S8vDxNnjw5cVtRKkaNGqXXX39dF1xwQdLyt956S/369VO/fv2aBLjWQknDK1Xl\n5eWJL9qBQCDp6lhFRUWz+zf+PNxwww0pfx6kuqs+Dz74oD7++GPl5ORowIABisViCgaDev755xUO\nh5OOtX379hbPpTWDBw9O3F5Xb8uWLTrqqKOarNu8ebOOPPJIdevWTbm5udq6dasGDx6c2GfUqFH7\nVUNzbrzxRl111VW65JJLJNXdCticKVOmaMqUKdq9e7euvfZavfDCC11iIgUAhyZuIQNwyCgpKdFV\nV12V+EJ+wgknyO+v+2suFAolvuTWf9G3LEu1tbV67rnnNHr0aKWnp+uoo45KzNj0zDPPJPaXkkNU\ncXGxevTood69e6umpkbLli3br1t36vXv31/5+flavny5JOn9999XcXGxTjjhhCZtt+Tcc8/Vgw8+\nqHPOOafJurPOOkvPPfec4vG4IpGIXnrpJZ111lk64ogjFAwGE4Pbn3/++cSVpDFjxuj1119PhLg3\n3nhDjzzySKs1fP/739e6desSkyVIdZMTzJs3TzfccIMkqVevXvriiy/kuq5KSkqSAkXDfqp/H+rH\nXKxcuTJxNa1Xr16JSROWL1+eGFMUDAYT59ja56Hxe9P481A/jic/P1/9+/fXH//4R02YMEFSXXg6\n88wz9ac//UlS3RWRWbNmJepMNWw33O7II49Ubm6uXn31VUl1/dCvXz8dccQRmjhxol599VWVlJSo\ntrZWixcv1nnnnSdJmjhxop544glJ0v/+9z+9++67Ovvss1NqPxWlpaU67rjjJNUFQMuyFIlEkra5\n//77tXTpUkl1obd///7MUAagQ3EFBkCXl+qXodzcXI0aNUoXX3yxgsGgQqGQ5s2bJ0kaO3as7rrr\nLm3btk033XSTPvvsM1100UWS6sZZXHHFFZKkX/3qV7r55pv16KOP6lvf+pby8/MT7Tes44wzztDT\nTz+tsWPHqnfv3po1a5bWrVun6667rsm0zs0NWG/O/PnzNWfOHC1cuFDp6elasGBB4jf8qbwHJ598\nsiQlxtE0NHXqVG3btk3nnnuu/H6/Jk6cqPHjx0uqm/hg5syZMk1T3/72txO3IB133HH6f//v/2na\ntGlyXVe5ubmaO3duq/VkZmZqyZIluuuuu/TUU08pGAwqKytLs2bN0ujRoyXVfel++eWXdc4552jw\n4MGaMGFCIiQ17KeMjAx985vf1K233qr//ve/6tevX+Iq109/+lPNmTNHf/7znzV+/HgdddRRkuq+\nQA8fPlyjR4/Wgw8+qDPOOKPZz0NDEyZM0Oeff574PJx66qlJM4hNmDBBd9xxh2666abEsl/96lea\nM2eOnn32Wfl8Pl1wwQXKz8/X9u3bW+2rW265Rc8//3zi6tHLL7+sCy+8UHPnztXdd9+t2bNn6957\n71XPnj119913S6obD3XVVVfpsssukySdfvrpiT//3//9n2bOnKlx48bJNE3Nmzev2TFI+2v69Om6\n+uqr1b17d11yySW65JJLdPPNN+tPf/pT4jwvvPBCzZw5U4888oh8Pp++/vWv68ILL2y3GgCgMZ/b\nxq+KnnvuOb344ovy+XxyXVeffPKJli9frhtvvFGu66pXr1668847udcVwCFp5MiRWrRoUbOzf6Fj\ntfXMEgDA4anNW8guvvhiLV68WE8++aSmT5+uyZMna8GCBZo6daqWLFmigQMHJi4dA4DXXXfddXr4\n4YclSf/6178kSYMGDerMkgAAQAP7NAbmD3/4g376059qzZo1iVsBRo8erbfffrtDigOAg+26667T\nG2+8ofHjx2vevHm66667ZBhGZ5cFAAC+kvIYmI8++kh9+vRRjx49VFNTk7hlrEePHioqKuqwAgHg\nYBo8eLD+/Oc/d3YZkHTNNdd0dgkAgC4o5QDz7LPPJgY4NpTKbCtr167dt6oAAAAAHJZGjBjR6vqU\nA8yaNWs0Z84cSXUPaHMcR4ZhqLCwMOnhcvtbCDre2rVr6YcugH7ofPRB10A/dA30Q+ejD7oG+qFr\nSOXCR0pjYHbv3q2MjIzEk35HjhypgoICSVJBQUG7PjQLAAAAAFqSUoApKipKPJVYkq699lotW7ZM\nV1xxhSoqKjR58uQOKxAAAAAA6qV0C9nxxx+vhx56KPG6V69eeuyxxzqsKAAAAKA1ruvKtu12PaZl\nWe16PLTONM2UH1bd0D5NowwAAAB0BbZtt2uAOf7449vtWGjbgfRfyoP4AQAAgK7ENE2Fw+HOLgMH\nGVdgAAAAAHgGAQYAAACAZ3ALGQAAADyvIwb17+8gc3QsAgwAAAA8z7Ztfbpxt4yQ0S7Hc6KOjh2c\n1+oYm+3bt+vss8/Ws88+q2HDhiWWX3zxxTr66KN1++23t9lOJBLReeedp1WrVjW7fs2aNVqyZInu\nvffepOU7duzQNddco1NPPVUzZsxI8awODQQYAAAAHBKMkCHzIA/qHzhwoFasWJEIMDt27FBFRUXK\n+7uu2+ZVnubWz549W6NGjVI0Gt23gg8BBBgAAABgP51wwgn697//nXhdUFCg008/XTU1NZKkd955\nR/Pnz1coFFLv3r01b9482bat6dOny3EcDR8+PLHve++9l9i2T58+uu2221psd+HChVq5cqW++OKL\njju5LopB/AAAAMB+CoVCGjp0qNatWydJ+utf/6ozzzwzsf6WW27RggULtHjxYnXr1k0vv/yyXnrp\nJQ0ZMkRLlizR0KFDE9v+5je/0QMPPKBFixYpNzdXK1asaLHdtLS0jjupLo4rMAAAAMABmDBhgpYv\nX668vDzl5OQkwkV5ebn8fr/y8/MlSSeffLLWrFkjSTrppJMkSaeccookqbi4WJs3b9Y111wj13Vl\nWZZyc3MT+2IvAgwAAABwAEaOHKl77rlHffv21TnnnJNY7vP5FI/HE6+j0aj8fr9isZj8/roboerX\nG4ah/Px8Pfnkk0nHrg882ItbyAAAAHBIcKKObMtql/+cqJNyu6FQSMcdd5yWLl2q0aNHJ5ZnZ2fL\n7/dr165dkurCyLBhwzRo0CB99NFHkpQYP5OVlSWfz6cNGzZIkpYsWaLPP/+8zbZd1025zkMFV2AA\nAADgeaZp6tjBee1+zFRNmDBBpaWlyszMTFo+d+5cXX/99QoGgxo4cKDOPfdcVVdX6+qrr9aVV16Z\nNIj/17/+tWbOnCnDMJSXl6dLLrlEH3zwQZO2du3apR/96EeqrKyUbdv65z//qXvuuUdDhgzZ/5P1\nEJ97EGLb2rVrNWLEiI5uBm2gH7oG+qHz0QddA/3QNdAPnY8+2D+WZUlSq89pQdfVUv+l8vPALWQA\nAAAAPIMAAwAAAMAzCDAAAAAAPIMAAwAAAMAzCDAAAAAAPINplAEAAOB5ruvKtu12PaZpmvL5fO16\nTBw4AgwAAAA8z7ZtfbbrfzKMULscz3GiOqb3Ua1O07x9+3adffbZevbZZzVs2LDE8osvvlhHH320\nbr/99jbbiUQiOu+887Rq1apm169Zs0ZLlizRvffem7T8iSee0CuvvCJJmjx5sr773e+mclqHBAIM\nAAAADgmGEZJ5kJ8LM3DgQK1YsSIRYHbs2KGKioqU93ddt82rPI3Xf/nll1q2bJmWLVum2tpajR8/\nXhdccEGTh2geqggwAAAAwH464YQT9O9//zvxuqCgQKeffrpqamokSe+8847mz5+vUCik3r17a968\nebJtW9OnT5fjOBo+fHhi3/feey+xbZ8+fXTbbbc12+aAAQP01FNPyefzKRQKKS0tTdXV1YdNgGEQ\nPwAAALCfQqGQhg4dqnXr1kmS/vrXv+rMM89MrL/lllu0YMECLV68WN26ddPLL7+sl156SUOGDNGS\nJUs0dOjQxLa/+c1v9MADD2jRokXKzc3VihUrWmw3IyNDkvTPf/5Tubm5ys/P76Az7Hq4AgMAAAAc\ngAkTJmj58uXKy8tTTk6O0tLSJEnl5eXy+/2JcHHyySdrzZo1kqSTTjpJknTKKadIkoqLi7V582Zd\nc801cl1XlmW1GUw+/PBD3XXXXXrooYc68vS6HAIMAAAAcABGjhype+65R3379tU555yTWO7z+RSP\nxxOvo9Go/H6/YrGY/P66G6Hq1xuGofz8fD355JNJx64PPI2tX79es2fP1kMPPXRYXX2RuIUMAAAA\nhwjHicq2rHb5z3GiKbcbCoV03HHHaenSpRo9enRieXZ2tvx+v3bt2iWpLowMGzZMgwYN0kcffSRJ\nifEzWVlZ8vl82rBhgyRpyZIl+vzzz5ttLx6Pa9asWbrvvvvUp0+f/XqvvIwrMAAAAPA80zR1TO+j\n2v2YqZowYYJKS0ubDKSfO3eurr/+egWDQQ0cOFDnnnuuqqurdfXVV+vKK69MGsT/61//WjNnzpRh\nGMrLy9Mll1yiDz74oElb//rXv7R9+3bNmTMnMYvZjTfemDSV86HM57qu29GNrF27ViNGjOjoZtAG\n+qFroB86H33QNdAPXQP90Pnog/1jWZYktfqcFnRdLfVfKj8P3EIGAAAAwDMIMAAAAAA8gwADAAAA\nwDMIMAAAAAA8g1nIAAAtcl1Xtm3v0z6macrn83VQRQCAwx0BBgDQItu29dmu/8kwQilt7zhRHdP7\nKGYFAnDQxeNxFRUVtesxe/XqlXjgJLoOAgwAoFWGEZJJIAHQxRUVFen9+/6g7o2ew7K/SquqNPza\nq9t8yv2WLVs0b948lZaWKhaL6cQTT9SMGTNkGMZ+tbts2TJ9/vnnuummm5KW33DDDbr99tv3+7hf\nfPGF5s6dq8WLFyctHzp0qH7/+99rwoQJiWXXXXedSktL9eSTT6Z07FNPPTXxQM7Gtm/frunTp2vp\n0qX7VXdzCDAAAAA4JHTPzFTP7OyD1l48Hte1116rOXPm6Bvf+IakuodR3n///frZz36238dt7jbc\ne+65Z7+P19pxBwwYoJUrVyYCjG3b2rRpk3Jycg7ouPuyfl8RYAAAAID9sHr1ah155JGJ8CJJM2bM\nSHxhf+KJJ7RixQpJ0tixY/XDH/5QM2fOVG5urj755BOVlJToRz/6kZ5//nmVlZUlro5s3bpVP/rR\nj7R7925973vf00UXXaQxY8bo1Vdf1dy5c5WXl6ePP/5Yu3bt0t13361jjz1WTz31lF555RUFAgGN\nHTtW3//+91VYWKjrrrtOhmHomGOOafYcevfurZ07d8qyLIXDYb311lsaMWKENmzYIEn67LPPdNtt\nt8nv9ysjI0N33HGHMjIydMMNN2jXrl362te+ljjW//73v6Rtf/vb33bI+85NfQAAAMB+2Lhxo449\n9tikZYZhKBQKadu2bXrxxRf19NNP66mnntLy5cv15ZdfSpKCwaAWLVqkIUOG6MMPP9Tjjz+uIUOG\n6J133pFUF2AefPBBPfHEE7r33nslJV/FcBxHjz76qKZOnaoXXnhB27ZtU0FBgZ5++mktWbJEK1eu\n1K5du/Tkk0/q3HPP1ZNPPqm8vLwWz+OMM87QqlWrJEkFBQUaN25cYt28efN000036cknn9TJJ5+s\nJ554Qv/85z8Vi8X0zDPP6IILLlBZWZmkuqtPt912mx5//HF985vf1JIlS9rhXW6KAAMAAADsB5/P\np1gs1uy6Tz/9VF//+tfl8/kUCAQ0fPhwrV+/XpJ0wgknSKqbJKA+AOXm5qqyslKSNGLECPn9fuXk\n5CgzM1OlpaVJx66/4tO7d29VVlZq3bp12rJli6ZNm6apU6eqpqZG27Zt04YNG3TiiSdKkk455ZQW\nz2HChAlasWKFHMdRYWGhBg4cmFi/YcMGDRs2TJJ08skn67///a82btyYOO4JJ5yQmLhl3bp1uvnm\nmzV16lS99NJLKi4u3sd3NDXcQgYAAADsh8GDBze5yuA4jrZs2SKfz6d4PJ60vH5Gs2Bw71fwhn+u\n13jMSOPXDfdxXVeGYeiss87SrbfemrTdww8/nGizYS2NHXnkkdqxY4dee+01nX766S1uF41G5ff7\n5bpu0uxs9cdOS0trMvB/+/btLR5vf3EFBgAAAIeE0qoq7amoaJf/Squq2mzvtNNO086dO/W3v/1N\nUt0X+bvvvlsrVqzQscceq//85z+Kx+Oqra3VRx99pOOOOy6l8/jwww/luq5KSkoUiUSUk5Mj13Vb\n3P7444/XO++8I8uy5LqufvOb38hxHA0aNEgfffSRJCVuT2us/rijR4/WwoULk24fk6QhQ4boP//5\njyRpzZo1GjZsWNJx33//fTmOI6luRrO///3vkqTly5cnZiZrrfb9wRUYAAAAeF6vXr00/Nqr2+14\ng746Zmt8Pp8effRR3XzzzVq4cKFCoZBOO+00XXPNNZKkKVOm6PLLL5fruvrOd76jPn36NNm/8Z99\nPp8GDRqk6dOna+vWrbr++uubbNtYnz59NG3aNF1++eUKBoM6++yzZRiGpk2bpp/97Gd6/fXXNWTI\nkBbPQZImTJiggoICDR48OOmqyS9/+Uvdeuut8vv9ys7O1u233y7TNPXcc89p6tSpOuaYYxJTTc+a\nNUtz5szRww8/rHA4rHvuuUeVlZXtPguZz23vSNSMtWvXasSIER3dDNpAP3QN9EPnow9SZ1mWNpVs\nSfk5MLZlaVDuESk9yJJ+6Broh85HH+wfy7IkiQfnelRL/ZfKzwO3kAEAAADwDG4hAwB0Oa7ryrbt\n/drXNM12v10BANB1EGAAAF2Obdv6dONuGSFjn/Zzoo6OHZzHLSUAcAgjwAAAuiQjZKQ89gbA4Wl/\nr9Si89m2LdM092tfxsAAAADAc0zT3O8vwM355JNP2u1YaNuB9B9XYAAAAOA5Pp+v3W8X5fZTb+AK\nDAAAAADPIMAAAAAA8AwCDAAAAADPIMAAAAAA8AwCDAAAAADPSGkWspdeekmPPvqogsGgpk+frmOO\nOUY33nijXNdVr169dOeddyoUCnV0rQAAAAAOc21egSkrK9Mf/vAHPfPMM3rwwQf15ptvasGCBZo6\ndaqWLFmigQMHaunSpQejVgAAAACHuTYDzNtvv63TTjtNaWlp6tmzp+bOnas1a9Zo9OjRkqTRo0fr\n7bff7vBCAQAAAKDNW8i2b9+umpoa/eQnP1FlZaWuvvpqWZaVuGWsR48eKioq6vBCAQAAAKDNAOO6\nbuI2su3bt2vatGlyXTdpfSrWrl27/1Wi3dAPXQP90Pnog9TYtq1Cq1iGaaS0vWM7Kg0XyzTNlLZv\nqR9s29bOUkeGkdpxEu07tsqLjJTbRx1+HjoffdA10A/e0GaA6dmzp0488UT5/X4NGDBAGRkZCgaD\nchxHhmG1g0otAAAgAElEQVSosLBQeXl5bTY0YsSIdikY+2/t2rX0QxdAP3Q++iB1lmVpU8kWmeFw\nStvblqVBuUconML2rfWDZVna8GVZyu02bP/IATkptY86/Dx0Pvqga6AfuoZUQmSbY2BOO+00vfPO\nO3JdV6WlpYpEIho5cqRWrlwpSSooKNCoUaMOvFoAAAAAaEObV2Dy8/M1fvx4TZkyRT6fT3PmzNHX\nvvY1zZgxQ3/5y1/Ut29fTZ48+WDUCgAAAOAwl9JzYKZMmaIpU6YkLXvsscc6pCAAAAAAaEmbt5AB\nAAAAQFdBgAEAAADgGQQYAAAAAJ5BgAEAAADgGQQYAAAAAJ5BgAEAAADgGQQYAAAAAJ6R0nNgAADo\nKK7ryrbtpGWWZcm2rVb3M0xTPp+vybEsq/X9mmM2cywAQNdEgAEAdCrbtvXZrv/JMEJ7lzlR7YxU\nKlRrNrtPbTSqI3KOkBkOJy13HFufba5WZkZmyu07UUfHDs5TuNGxAABdEwEGANDpDCOUHEb8fhmm\nI8NoPsC0JtT4WACAQwpjYAAAAAB4BgEGAAAAgGcQYAAAAAB4BmNgAKCLaG42rlQcajNoxeNx7Sna\no9LiKoVCRrPbpGVkdHgd9AcAdE0EGADoImzb1qcbd8to4Ut7cw7FGbRK9hRrxxPPKhQw5Pc3vVGg\nvDoi58JzNSCrf4fW0dzsaG1xnKiO6X3UIdUfANDVEGAAoAsxQgYzaEnKyUiXGQwr4A80u37fn/Sy\nf5rMjgYA6HSMgQEAAADgGQQYAAAAAJ5BgAEAAADgGQQYAAAAAJ5BgAEAAADgGQQYAAAAAJ5BgAEA\nAADgGQQYAAAAAJ5BgAEAAADgGQQYAAAAAJ5BgAEAAADgGQQYAAAAAJ5BgAEAAADgGQQYAAAAAJ5B\ngAEAAADgGQQYAAAAAJ4R7OwCAACHj3g8rqKiIklScXGxCgsLZVmW9pTtkWmadcv3FMvnui0fw3VV\nVlqqPelFiX3qVVaUS36fHMtWbo+e8vv5PR0AHGoIMACAg6aoqEjv3/cHdc/MVG1xsTa9/6FitTFF\nnCrZgYAkafvu3crLzFI4lNbsMSoiEem1N1XT81M5X+1TLxp1JJ/0pR2VrrhSPXvldfg5AQAOLgIM\nAOCg6p6ZqZ7Z2ZJtq2d2tmK1MZm2T4GvwkhpVVWbx+iWlqYeWVkKBJL/GXMcW/JJoaDdIbUDADof\n19YBAAAAeAYBBgAAAIBnEGAAAAAAeAYBBgAAAIBnMIgfAA4TDacwbkmvXr1anHrYdSUn6rS6v+1E\nZVlWk+Wmacrn86VeLAAALSDAAMBhouEUxs0prarS8GuvVn5+frPrnaijTdtLFAqGWmzDsW3Fq8pk\nmuGk/Y4dnKdwONzifgAApIoAAwCHkcQUxvspFAzJMMwW17uuZJphmYQVAEAHYQwMAAAAAM8gwAAA\nAADwDAIMAAAAAM9gDAwAHI5cKRaLJS2K1cZkWVbSLGKWZcl2opLfL8d25Mo92JUCAJCEAAMAh6FY\nLKayypqkKZMrI44276hQlbN3kL5tW9oZqZRhOopEqhUyDJlGZ1QMAEAdAgwAHKb8fr8Cgb3/DAQC\nAZmm2WQGsVCtKcMwFXVafwYMAAAHA2NgAAAAAHgGAQYAAACAZxBgAAAAAHgGAQYAAACAZxBgAAAA\nAHgGAQYAAACAZxBgAAAAAHhGm8+BWbNmja677jodffTRcl1XxxxzjH74wx/qxhtvlOu66tWrl+68\n806FQqGDUS8AAACAw1hKD7I8+eSTtWDBgsTrmTNnaurUqRo3bpzmz5+vpUuX6tJLL+2wIgEAAABA\nSvEWMtd1k16vWbNGo0ePliSNHj1ab7/9dvtXBgAAAACNpHQFZsOGDfrpT3+q8vJyXX311bIsK3HL\nWI8ePVRUVNShRQIAmue6rizLSmlby7IUq43V/ReLNVkfd+MqKd6TtMy2bZVGimUYhiLV1ZJfSgun\ny+8/dIZQtvQeWpYl24lKrZyrETLk87V9rLaYpilfwwMBAFrkcxtfXmmksLBQ77//viZOnKgvv/xS\n06ZNUyQS0TvvvCNJ2rp1q2666SY9/fTTLR5j7dq17Vs1AByCbNvWzlJHhmGmvE9VVaVqa2uVnp7e\n5rZlpSXK+vc/1T0jU7W1tfL5/UnjFzcVFSrqRNUrJyexLB6LyXYd+f1+xWprVVFTo9i4MerWvXuz\nbUQdR7nB3KRzcBxbfbobMk1TxcXFqn39TeVmZibWx2Jx1cQs+QN1QWFj4W6FA37lZOY0G5Q2FxUp\n7PdrQG5v+QOB5Paj0br3xbEVOe0sde+e2+b70tJ76DiOSmMlChlGs/vFamPKzw3LCO1dX1VZpdpY\nrdLT2u6PerW1UfXL7C3TTL3fAeBQNmLEiFbXt3kFJj8/XxMnTpQkDRgwQD179tTHH38sx3FkGIYK\nCwuVl5d3wIWg461du5Z+6ALoh87XVfvAsixt+LJMZjic8j4V5WWS36fsrG5tbrunaLcqP/uvemRl\ny3FsyScZob1fmotrapQeDKpvr71/p8ditaqORhQIBBSNOiqprlZgwEDl9uzZbBu2batfRt+kc7At\nS0cOyFE4HFZhYaE2vf+hemZna09RkXr26qVYbUyVdqUCX4WRbjU1Mv0BZWZmKeAPNGkjIxKR6fMp\nJydHgUDyP2P15xWwbPU/6mj17NX2v08tvYe2ZWl79Y4Wg4Xj2OqfnyWzQcCpKCuX/H5lZ2e12W7D\ndgblHqHwPvR7e+qqPw+HE/qga6AfuoZULny0eQ/Ayy+/rIULF0qSiouLVVxcrIsuukgrV66UJBUU\nFGjUqFEHWCoAAAAAtK3NKzBjxozRDTfcoMsuu0yu6+rWW2/V0KFDddNNN+kvf/mL+vbtq8mTJx+M\nWgEAAAAc5toMMBkZGfrjH//YZPljjz3WIQUBAAAAQEtSmoUMAID91XBmruSZ0OKJGdFi8bjqp/OK\nxeOKyyep1TlmAACHKQIMAKBDOY6tzzZXKzMjU3v2VKgm4sgI2IrYMVVU24rFYorURuUPxCVJETum\nmGLKznQVOHRmawYAtBMCDACgw4WMkMxwWKZpygkEFAgE5f/q/5LkjwcSM44F/P7UnrIMADgs8W8E\nAAAAAM8gwAAAAADwDAIMAAAAAM8gwAAAAADwDAbxA0A7c11Xtm3v836WZcll6mAAAFpFgAGAdmbb\ntj7duFtGyNin/SqrKmSYpsLhtA6qDAAA7yPAAEAHMEKGzHB4n/axbauDqgEA4NDBGBgAAAAAnkGA\nAQAAAOAZBBgAAAAAnkGAAQAAAOAZBBgAAAAAnkGAAQAAAOAZBBgAAAAAnkGAAQAAAOAZBBgAAAAA\nnhHs7AIAAIcO13Vl21bSMtu2Jb9kh0zZtq1YLKZYrFbxr/4fi8UkuZ1T8EHmupITdZKW2U5UlmW1\nsMdepmnK5/N1VGkA4BkEGABAu4k6jrZGtio9IzOxLFJTKfl9qvRVqzRSrFBtjcLRgGzXVnU0otpo\nVP6AX4FAJxZ+kDhRR5u2lygUDO1dZtuKV5XJNMOt7nfs4DyFwy1vAwCHCwIMAKBdhUIhmaaZeF0b\ndSS/T6ZpyjCMr8JKQH5/3f/jsVgnVnvwhYIhGcbe98d1JdMMyyScAEBKGAMDAAAAwDMIMAAAAAA8\ngwADAAAAwDMIMAAAAAA8g0H8AOBBruvKse2kKYrbYllWYgrjWCwm+aSYvzaxPhaPKRb3KxZrsKwL\nT3Eca2bwf+K8YjHZti27wfTEBtMQA8AhgQADAB7k2La2lG2RY1uJKYrbsmPPVmVYFQqHA6qtjUo+\nKaq9YaWm1pJPUVVHI4llXXWK43jcVZVTpWCD6YglJc4rUmurPLJLdnW0bnk0qiNyjmCmLwA4BBBg\nAMCjgqGQJDcxRXFbAsGQfPVTF8djks+nQINkEgj4FfAHkpZ15SmO66dhbmjvefnlM4yU3hcAgLcw\nBgYAAACAZxBgAAAAAHgGAQYAAACAZzAGBgCQsrjrqrKkpMX1VZVVysnNOYgVeZ/rurJtq9VtbNuS\n1WBGNZMZ1QAcxggwAICUVUQi0orX5O/evdn10bJylV8wSdndCDGpijqOtka2Kj0js5VtbPnLqmQa\nITlOVMf0PkphZlQDcJgiwAAA9km3tHTlZmY1uy7qRNX6tQQ0JxQKtTpjms8nmWFTpmEcxKoAoGti\nDAwAAAAAzyDAAAAAAPAMAgwAAAAAzyDAAAAAAPAMBvEDQCvqpri192kfy7Lkyu2gigAAOLwRYACg\nFbZt69ONu2WEUp/9qbKqQoZpKhxO68DKAAA4PBFgAKANRsiQuQ/P3GjroYQAAGD/MQYGAAAAgGcQ\nYAAAAAB4BgEGAAAAgGcQYAAAAAB4BgEGAAAAgGcQYAAAAAB4BgEGAAAAgGcQYAAAAAB4BgEGAAAA\ngGcEO7sAADjcua4rx7Zl27bkl+yQ2WSbeDyukpLixGvHtlRaW6ra2tq6fSKWcnJz5fd37u+l4q6r\n8tJSZWRmJpZFqqsTNZaVlKi724kFAgA8jwADAJ3MsW1tKdsix7Ykv0+Vvuom25QWFyuy7CV1S8+Q\nJMWiUQUCfgUkyedTpe1I35ms3J49D27xjVREIgq8+Zb8eb0Sy8xoVPL55A8GVVVUpMysbCkrqxOr\nBAB4GQEGALqAYCgkyZX8Pplm0yswhmEonJWl3My6L/5Rx5F8X630+RQKWoofvHJblZ2enqhTkqJR\n56saQyqrbhrOAADYF4yBAQAAAOAZKQUY27Z1zjnn6IUXXtCuXbs0depUXXHFFfq///s/RaPRjq4R\nAAAAACSlGGDuv/9+5eTkSJIWLFigqVOnasmSJRo4cKCWLl3aoQUCAAAAQL02A8zGjRu1adMmnXnm\nmXJdV++++65Gjx4tSRo9erTefvvtDi8SAAAAAKQUBvHfeeedmjNnjp5//nlJUk1NjUKhkCSpR48e\nKioq6tgKAQA4QK7ryratZte1NH11TU1EpXv2yGhmUgWpbnKCvr0y2r1WAEDrWg0wL7zwgk466ST1\n7du32fWum/pk/mvXrt23ytAh6IeugX7ofKn2gW3b2lnqyDCa/xLbnKqqSklSZmZqUwU7jq2S2hJF\na+vGFKanN/1SXF5aqp5VVQp99fdubbR27yxkkqpsW3u+3Kryr9puzq7t29S3ulqVwWDd82MkBYN7\n/xmorq6WGwiq0jQSy+rbCX61T011tYK1saRtGqqJRKRQUJWVFXuP0aCtxm1UVlYktVFfR9TnU5Vh\nJNXXsE5DUpXZdH19W43fj0hVlT6Lfaq0tPQmx4tE6mZGa/y+F+7cqZx/v6fuLUz5XFZdrTXnnam8\n/PzEsqrKKskvZWZkNruPE3W0pyKqUGjv+xepqpJ8UnoL+0h1YamqNCQjZMixHZWGi5udrW5/8XdS\n56MPugb6wRtaDTBvvfWWtm3bptdee02FhYUKhUJKT0+X4zgyDEOFhYXKy8tLqaERI0a0S8HYf2vX\nrqUfugD6ofPtSx9YlqUNX5bJDIdTPn5FeZnk9yk7q1tK29uWpe3VO1QbdSS/TxnpTb/IlmRmyf/R\np8pqYRplNxRS+oCBrT4HJuD6lPbZBmVlZSdNbVwvIxJReiCorKzsxLL6dkIhQ9Goo7RIRBlmOGmb\nhtLSy5UeCiUfo0FbDduorKyoq6VBG/V1GJIys7KS6mtYZ8iVMjMzk4JAw7Yavx+VFRXy+VT3DJpG\nqqsqm33fwyFTaf/brPzuuc2fa0W5eh19tPr12/tLvoqycsnvV3Z286HHdhxtK6xMCsSt1VbPcWz1\nz8+SaRiyLUuDco9QeB8+k63h76TORx90DfRD15BKiGw1wMyfPz/x54ULF6p///56//33tXLlSl1w\nwQUqKCjQqFGjDrxSAAAAAEjBPj8HZvr06XrhhRd0xRVXqKKiQpMnT+6IugAAAACgiTYH8de75ppr\nEn9+7LHHOqQYAAAAAGhNygEGANB1xV1XZSUlrW5TXlqqtH2YfAUAgK6IAAMAh4CKSESxFa/J3717\ni9tEd+yUk93yQHEAALyAAAMAh4huaenKbWXq5qK0soNYDQAAHWOfB/EDAAAAQGchwAAAAADwDAIM\nAAAAAM8gwAAAAADwDAIMAAAAAM8gwAAAAADwDAIMAAAAAM8gwAAAAADwDAIMAAAAAM8gwAAAAADw\njGBnFwAAgCe5rqK2I9txEovsaFQ++ZKWNeTYjly5B6k8V7Ztt7mdbduyLCtpmWma8vl8HVUaABwQ\nAgwAAPshHo9r2+4KxUJZiWVVFZXy+XzKsJrfJxKpVsgwZBodX59t2/p0424ZodYb21nqaMOXZYnX\nTtTRsYPzFA6HO7pEANgvBBgAAPZTIBiQYZiJ1yHDlM+npGUNRVu4MtNRjJAhs40gYhhmm9sAQFfC\nGBgAAAAAnkGAAQAAAOAZBBgAAAAAnsEYGABoRd1MTi2MyG6Bbdsyws2PgWhOPB5XaXGxaqNRyS/Z\nkabtlZWUqPvBmbwKKYq7rspLS5WelpFYVlVZJZ+vbrYxScrJzZXfz+8KAaA9EWAAoBW2bWtr+Val\nZ2SmvE9FRan6+funvH1JSbEiy15SVjgs+XzyB5v+1VxVVKTMrGwpK6uZI6AzVEQiCrz+N/l79Uos\nS3Oikk/yh0Iqr45I35ms3J49O7FKADj0EGAAoA2hUEimmfoVlWBo3/9q7ZaeoZz0NMnnUygYarK+\nrLp6n4+Jjpednq7czL2hMuo4kk8KfTV1cbyzCgOAQxjXtQEAAAB4BgEGAAAAgGcQYAAAAAB4BgEG\nAAAAgGcwiB/AYaFuOmRbUt3MYpaV2tTIlmXJ1b7NX1zflp1iG45tSfvYBg5MPB5XWUmJJClSXd3s\n9NXlpaVKc+kXAOhqCDAADgu2bevTjbtlhAztLHW04cuylPbbU1yk2njtPrUVdRztsLfLCae2346K\n7cqMM1/VwVRWUqLKZ5epW0a6zGi02emrozt2ysnO7qQKAQAtIcAAOGwYIUNmOCzDMGWGwynvI3vf\n2woGgylPvRxoZtpkdLxuGXVTIEejTrPTVxelpRZyAQAHF2NgAAAAAHgGAQYAAACAZxBgAAAAAHgG\nAQYAAACAZxBgAAAAAHgGAQYAAACAZxBgAAAAAHgGAQYAAACAZxBgAAAAAHgGAQYAAACAZxBgAAAA\nAHgGAQYAAACAZxBgAAAAAHgGAQYAAACAZxBgAAAAAHgGAQYAAACAZwQ7uwAAANpb3HVVVlKSeF1V\nWSWfT3JsR5JUVlKi7m5nVbdXPB5XaXFJUm2N5eTmynXdxHrbicqyrDaPbVmWXHWBkwSAdkaAAQAc\ncioiEcVWvCZ/9+6SpDQnKvkkfygkSaoqKlJmVraUldWZZaqspETRl5crOyM9UVtD5dUR6TuTZYZN\nbdlpKS0tTY5tK15VJtMMt3rsyqoKGaapcDito8oHgE5BgAEAHJK6paUrN7MuoEQdR/JJoZAhSSqr\nru7M0pJkp6crNzMzUVtj8a/+HwwFZRimXFcyzbDMcOsBxrbbvkoDAF7EGBgAAAAAnkGAAQAAAOAZ\nBBgAAAAAnsEYGAAAOkDjmdAkKVJdLfklO1I3PqWspERZzBQGAPuEAAMAQAdoPBOaJJnRqOTzyR+s\n++e3qqhIZlp6Z5UIAJ5EgAEAoIM0nAlNkqJRR/L5FArWTZlcVl0tLsAAwL5pM8BYlqVf/OIXKi4u\nluM4+slPfqKhQ4fqxhtvlOu66tWrl+68806Fmpm/HgAAAADaU5sBZtWqVRo2bJh+8IMfaMeOHbry\nyis1fPhwXXHFFRo/frzmz5+vpUuX6tJLLz0Y9QIAAAA4jLU5C9mkSZP0gx/8QJK0Y8cO9enTR+++\n+67GjBkjSRo9erTefvvtjq0SAAAAALQPY2AuvfRS7d69Ww888ICuuuqqxC1jPXr0UFFRUYcVCAAA\nAAD1Ug4wzzzzjNavX6+f//znct29Iw4b/rk1a9eu3ffq0O7oh66Bfjj4bNvWzlJHhmFKkj5d/2lK\n+5WUFKssXqqy8oqU29qzu1A+v1+RGjul7Xdt36a+1dUyvnodDDb9q7m6ulpuIKhKs26r2mit5Gt5\nfXNqIhEpFFRlZYVqa2ubtNXcMerbCQaDqq2tVU11tYK1sRbbadhG4hgN2mrcRmVlRVIb9XVEfT5V\nGUaL74Uhqcpsur6+rZber4Zt1K9v7r1o6Vyarg8ln2uDdpp9Pxu11dq5SFJVdbX2fLlVoa+OkZ6e\noajjqDJYkfgst6SqqlKSlNlgEoGWNPx5cBxb5UWGTLP146N98e9C10A/eEObAebjjz9Wjx491KdP\nHw0dOlTxeFwZGRlyHEeGYaiwsFB5eXltNjRixIh2KRj7b+3atfRDF0A/dA7LsrThyzKZ4bA+Xf+p\njh16bEr7Fe0uVKFdqO7de6TcVrphSAGf8vP7prR9wPUp7bMNyszMTJqhqqGMSETpgaCysrIlSVHH\n2RtgfD5lOE7S+uakpZcrPRRSVlZ2k9mwmmujYTuhkKFo1FFaJKIMM9xiOw3bSByjQVsN26isrKir\npUEb9XUYkjKzslp8L0KulJmZmdincVuN34/m2qhf39x70dK5JK0vL1dG43Nt0E6z72ejtlo7F0mK\n+nxKHzBQZtiU/D5lpGfKtm31y+grMxxutq56FeVlkt+n7KxurW7X+OfBtiwdOSBH4TaOj/bDvwtd\nA/3QNaQSItscA/Pee+/p8ccflyTt2bNHkUhEI0eO1MqVKyVJBQUFGjVq1AGWCgAAAABta/MKzGWX\nXaZZs2bp8ssvl23buuWWW3T88cdrxowZ+stf/qK+fftq8uTJB6NWAAAAAIe5NgOMaZq65557mix/\n7LHHOqQgAAAAAGhJm7eQAQAAAEBXkfIsZADgda7ryrYsOY4t27JS2se27ZRnW2xJPB5XWUlJi+vL\nS0uVdoBtAK1xXVeO3fyseI1/HmzbkvXVa9M05fP5mt2vveqyW6irNR1dF4CujQAD4LDhOLZ21RSq\npLZE26t3pLTPnspCBc0D+6uyrKRElc8uU7eM9GbXR3fslJPd8uxhwIFybFtbyrYoGGo6q1vjn4eo\nY8tfViWfpGN6H9Whs5HZtq3Pdv1PhtG0rpY4TrTD6wLQtRFgABxWgqGQQkbqz7gIBgPt0m63jHTl\ntvA8jqK0snZpA2hNMBRq9nPf+OfB51PdtM3x+EGpyzBCbU4JDQANMQYGAAAAgGcQYAAAAAB4BgEG\nAAAAgGcwBgZAp2k4A9G+zkZUPwsRsxEBHcN13cRsZKni5xHAwUCAAdBpbNvWpxt3ywgZsm1LW8u3\nKtTMLEmNRWuj+v/65h6UWZKAw5VjO/oiskmZLcye12R7ZgcDcJAQYAB0KiNkJGYgSs/ITGl2MMex\nD+osScDhKhRihjAAXQ9jYAAAAAB4BgEGAAAAgGcQYAAAAAB4BgEGAAAAgGcQYAAAAAB4BgEGAAAA\ngGcQYAAAAAB4BgEGAAAAgGcQYAAAAAB4BgEGAAAAgGcEO7sAANhXruvKsR25rivLslLax7IsuXI7\nuDIAANDRCDAAPKc2GtWWnZYCfr/iVWUyzXCb+1RWVdQFGN9BKBAAAHQYAgwATwqGggoGQjLNsMxw\n2wHGti3ZUfsgVAYAADoSY2AAAAAAeAYBBgAAAIBnEGAAAAAAeAZjYADgAMXjcZWVlCRel5WWSn6f\nQgGj7nVJibozARraieu6su29s+/F43GVlBQ32a6qskLyS5UZFcrIyJDcjvsQuq5kO9GUZwWsZ1lW\nR5YF4BBFgAGAA1RWUqLKZ5epW0a6JKlbJCL5JH9a3euqoiJlZmVLWVmdWSYOEVHH0dbIVqVnZEqS\nSouLFVn2krqlZyRtF4tGJZ+023HkG3e2evXOT2nCi/3hRB1t3lGieFVmSrMC1qusqlC4e1ThtI6p\nC8ChiQADAO2gW0a6cjPrAkqN3y/5pLS0ui+UZdXVnVkaDkGhUEimaUqSDMNQOCsr8fmrF406ks8n\nw7JUEQx1fE3B1GcFrFd3JcnpuKIAHJIYAwMAAADAMwgwAAAAADyDAAMAAADAMwgwAAAAADyDQfwA\nAHRRcddVWUmJDNOU/JIdsVRVWSWfT3LsusHv7T1Nt+u6cmxHdjQqn3yynbYH2Tu2I1fMhwzg4CDA\nAADQRVVEIoqteE1mZqbk88kfDCrNqZse2R+qm1msvafpro1GtWWnpVg0Kp/Pp4wUHu0SiVTL5YEu\nAA4SAgwAAF1Yt7R05X4VYP7/9u4tRpLyPv/4UzVdVdOH2dmZPXptcGwsx5aDLYsQhWxswDGJZEdR\nNsqShZgcFDkXkSIRKbEWsEjuEMuFRYIcg7QkUYwzCIgdnIAWkP8mRrbxZi1h7CxEwHoX2ONsT08f\nauqt6un6X8x0b09P9WFmZ6a3p7+fG5auw/urqj79uud92kk5isJQsiTHWfyh1HWI6U45KdmWLcuS\nXNfrun4Uhgoj4pABbAzmwAAAAAAYGDQwAAAAAAYGDQwAAACAgcEcGAAAcNniOJYxPcz4bxIEgUYc\nIxN2n2dTZ8KIwABgyNHAAACAyxaFoU7NnlImm+t5m+mL56QZWzt2Wj1vU6mU9Qtb36d0Or2aMgFs\nAjQwAABgTTiOI8/r/duUVGpEGrF6SjqrC41ZTWkANhHmwAAAAAAYGDQwAAAAAAYGDQwAAACAgUED\nAwAAAGBg0MAAAAAAGBg0MAAAAAAGBg0MAAAAgIFBAwMAAABgYNDAAAAAABgYNDAAAAAABkaq3wUA\n2HziOJYxput6QRDImECSFv4bx41ltVpNhXw+cTu/UpFsacROadLe2lNNxhiZyEhe3H1lAFesOI4V\nBIGCIFjxtp7nybKsdagKwEaigQGw5owxev3sG3Jdp/N6YaQzfklO1ZNfLstxHXmjo5KkQj6v0hPf\n1Hg2s2w7L4oky1KxXNFPP3eL9lx1ddea/LmSfH9O41vHV3dQAK4I1SjS/528qG2llW0XRqE++sGd\nGt9koIQAACAASURBVF18jgEwuGhgAKwLt6kZacu25XqhXNdTmPCNzXg2o8nc2LLboyiULEuqxQpS\njjzP61pPNQoVRmHP9QO4cjluqvvzC4BNq6cG5tChQ/rxj3+s+fl5/fmf/7muvfZa/c3f/I3iONaO\nHTt06NAhOU7nT1oBAAAA4HJ1bWBefvllvfHGG5qamlKhUNC+ffv0q7/6q/rCF76g3/qt39JXvvIV\nPfXUUzpw4MBG1AsAAABgiHVNIbv++uv14IMPSpK2bNki3/d19OhRfeYzn5Ek3Xzzzfr+97+/vlUC\nAAAAgHr4Bsa2baXTaUnSk08+qZtuukkvvfRS40/Gtm3bpgsXLqxvlQCQoBbHmp2ZUTaXa7vO1slJ\n2TaJ8QAAbBY9T+J/4YUX9NRTT+nw4cP6zd/8zcbtcdxbJOmxY8dWXh3WHNfhyrDZr4MxRueCi3I9\nt+N6YRRquhjJcVz55bJkSZnsQjMyOzOj7eWynITnmGq1Kkk6Nz2t6n8+K3/btsT9F31fp37jRo1P\nTMj3K/LLZWWyWWWyOZ34+YmejmX6/DlZti1/rn0sdGutwdycZFmqVuclSZVKRfFISqU252PO9yUn\npfLi8lRq+VNz6z6qUVWy2i/vNE6pVGycw+axkvZRHyeVSqlarWquUlGqOt/1WEql4qV9NI3VOkap\nVFwyRr2OyLJUdt2258KVVPaWL6+P1e58NY9RX550Ltody/LlztJjbRon8Xy2jNXpWJrr9Ebsxnad\njiXpXJSN0bvvvq2SX2o8vlo1Px58v7Lwj1q85DHZSevjq1e9PL5azRZmNGuXND2dHLPeThgazV5w\newr96IfN/rowKLgOg6GnBuZ73/ueHnnkER0+fFi5XE7ZbFZhGMp1XZ07d047d+7suo/rrrvusovF\n5Tl27BjX4QowDNchCAKdyJ/smhJkwlDvnCvJdT2VikVZlpQb2yJJyufGZL96XGMdUsjS5YoyjqOr\ndu9O3H++XFLtqqs1uX27KuWSyuWSstmcLly8qA/8wgd6OpaM60ojlnbt2tN2ndZaUyMjkiWl01lJ\nUtb3lRlJaWzx2FqlM7PKOI5yuZxkWXJSy0NRWvcRheGlBsaylA3DjmM0jzM2tqVxDpvHSqqzPo7j\nuIqiUGnfV9Yb7XosS/bRNFbzGKVScaGWpjHqdbiScmNjbc+FE0u5XK6xTetYrecjaYz68qRz0e5Y\nliyfnVW29Vibxkk8ny1jdTqW5jqb7xudjiXpXMSOo/e+9ypNbp9sPL6anfj5iSWPh0q5JNmWatXa\nksdkJ82Pr17Wr+vl8dVq5uKYdmV3a8f2XT1vI0kmCHTNVVuvyBjlYXhdGARchytDL01k17+rKJfL\neuCBB/S1r31NY2MLL8433HCDjhw5Ikk6cuSIPvWpT11mqQAAAADQXddvYJ555hkVCgXdeeediuNY\nlmXp/vvv1z333KPHH39ce/bs0b59+zaiVgAAAABDrmsDc+utt+rWW29ddvujjz66LgUBAAAAQDtE\n8wAAAAAYGD2nkAHAoKnFsQr5haQiv1JRpVJWGISanZlRvikcgKhlAAAGBw0MgE2r6Puaf/Y52RMT\n8qJIqSjSiONouzGyXz0uSZqt+NL+fZrcvr3P1QIAgF7QwADY1MbTGU3mxhRFoapRpJTjKEillsQz\n1/pYHwAAWBn+ZgIAAADAwKCBAQAAADAwaGAAAAAADAzmwABDJo5jGWNWvJ3nebIsax0qAoD1E8ex\nQmNkTKAgCHrejuc84MpFAwMMGWOMXj/7hlzX6XmbMIz0i7s/pNHR0XWsDADWXmiMThZOKo5rsgtl\neT089/GcB1zZaGCAIeS6jjxemAEMiZTjyLIkb9ST57r9LgfAZWIODAAAAICBQQMDAAAAYGDQwAAA\nAAAYGMyBAQbAapPDJJJ0AHRXq9VUyOclSX6lItlSrRrLsqTQhJKkrZOTsu3+f+5Zfz40PSaKGRNI\ncSzxPAhsGjQwwAAwxuj4W+flOiubfBpGoT76wZ0k6QDoqJDPq/TENzWezciLooU3+7VYsiTbcTRb\n8aX9+zS5fXu/S1UUhjpt3lU4Wu1pfb9cluM6cj1vnSsDsFFoYIAB4TouyWEA1s14NqPJ3JiiKFzS\nwDiLH5zU+lxfs1QqJa/HhiRc5bfXAK5c/f8uGAAAAAB6RAMDAAAAYGDQwAAAAAAYGDQwAAAAAAYG\nk/gBoINarabibFHOSPsEuEI+r4l4A4sCVqAWx5qdmVkSidxsdmZGcRhxHwYwMGhgAKCD4uys9Px3\nZE9ua7tO+cIF5ca2SGNjG1gZ0Jui7yv1nRc1OrFVtuMsW769XFZ+bo77MICBQQMDAF2Mp9OazLV/\nY1eoVDawGmDltmQymszlGpHIzZw4VpUfeQQwQJgDAwAAAGBg0MAAAAAAGBg0MAAAAAAGBnNgAKyJ\nOI5ljJEkBUEgE0aS3fkzktCEikX0EQAA6B0NDIA1YYzR8bfOy3VcGRPojF+S6y2PbG3m+xU5riuv\nfUIxAADAEjQwANaM67jyRkclSU7Vk+t6HdePws4NDgAAQCvmwAAAAAAYGDQwAAAAAAYGDQwAAACA\ngUEDAwAAAGBgMIkf2MTiOFYQBEtu6xZxHMcLscaWZTVuM2G0bD+tgiAgEhkAAKw7GhhgEwtDo9d/\nXlEum2vc1i3i2Pcrsixb6XT60n6MUa1ckOeNth2rVC7K9TyNjqbbrgMAAHC5aGCATc5xnUa0ceO2\nDhHHURhKtrVkeRxLnje6bD/NjOn8DQ0AAMBaYA4MAAAAgIFBAwMAAABgYNDAAAAAABgYzIEBBlgc\nxwqNabvcGCPZknG8ptuChUktKxyn2xyX5rFWMwYAAEAvaGCAARYao5OFk0o5TuJyf64k2ZZKVuXS\nbeVy4sT+TqIw1Cn/lDJNaWadxlrNGAAAAL2ggQEGXMpx5HnJiWLVaCFRrHl5p29sOnE6jNM61mrH\nAAAA6IY5MAAAAAAGBg0MAAAAgIFBAwMAAABgYDAHBsBQq8WxCvl82+XFQkFbSFQD1l2tVuv4WGxe\nzx4Z2YCKAFypaGAADLWi72v+2edkT0wkr/D22wq3jG1sUcAQKuTzKj3xTY1nM23Xma34Cj59g7Zu\nn9zAygBcaWhgAAy98XRGk7nkJmUsTRQ0sFHGs+0fi3Wdf5EKwDBgDgwAAACAgUEDAwAAAGBg0MAA\nAAAAGBg0MAAAAAAGBpP4AfRFrVbTzMW8ZEvGD1QulWVZUmhCSQuJRBOkFwMYQHEcyxjT8/rGGAVB\nIM/zZFnWOlYGbA40MAD6opDPyzz9X9qSzcpOpZQOI8mSbMeRJJUvXFBubIs0RoQxgMFijNHxt87L\nddye1j8zE+r4W+f10Q/u1OgoyYdANzQwAPpmSyajyVxOTspRFIaSJTmLL/iFSqXP1QHA6rmOK6/H\nZsR1vZ6bHQA9zoF57bXXdMstt+ixxx6TJJ09e1Z33HGHvvCFL+iv/uqvFEXRuhYJAAAAAFIPDczc\n3Jzuv/9+7d27t3Hbgw8+qDvuuENf//rXdfXVV+upp55a1yIBAAAAQOqhgfE8Tw8//LC2b9/euO1H\nP/qRbr75ZknSzTffrO9///vrVyEAAAAALOo6B8a2bbnu0r/LnJubk7M40Xbbtm26cOHC+lQHAACu\neLVaTYX8jMIgbCQJJtk6OSnb3py/4NCcPBYEgYwJetrO9bz1LAvYlC57En8c95ZzeuzYscsdCmuA\n63BlWOl1MMbozEwo1136QheGRvlqXo6bPPnT9xcmwmcy2Uu3lcuSJWWyuTXbpnW7XtafnZnRRKUi\nV1IqlVI1qkrWwr8lqVKpKB5JqeQtP7ZqtSpJmvN9yUmpVComjtG8j2q1qmoUKeU4SqUubdNpnIXj\n8iXHbTtG0j6CuTnJslStzvc0Rv04yovL6+eg0xj189VueadxSqVi4xw2j5W0j+brUq1WNVepKFWd\n73oszeereazWMUqlYuK1jyxLZddtey5cSWVv+fL6WO3OV9L9K+lctDuW5cudpcfaNE7i+WwZq9Ox\nNNfpjdiN7Xp9rDSfi05jtDsfitUYp1ypaPrtU5otlxK3P3v6XY3+v5c0OjYmv80YRd/Xqd+4UeMT\nE43bps+fk2Xb8ueMZmdmtL1cltPhfUW5UtG7p99Vac6XP9dbTHH9+chxXZVnnJ4my4cm1MzoRXkr\naC6MMXq3fFaplKOwGupiMWqEkrRTrVa1c3SnXNfTa//3mmYvuCsaE2uP90mDYVUNTDabVRiGcl1X\n586d086dO7tuc911161mKKyhY8eOcR2uAKu5DkEQ6M23C8sSbUwQ6N3K6bYveJVySbItZTOXGolS\nsSjL0kJE8Rpt07pdL+vnc2Oaz/5EubGxxBSyrO8rM5LSWMI+oiiULEvpckUZx0lcp3UfURQ2Gpgg\nCBrbdBpHkjKZjNIdxkjaR2pkRLKkdDrb0xjpzKwyjqNcLidZlpyU03WM+vmSJFmWsmHYcYzmcern\no3WspDqbr0sUhUr7vrLeaNdjWbKPprGaxyiVigu1JFx7V2rcN5LOhRNLuVxu2RvE+lit56PT/Svp\nXLQ7liXLZ2eVbT3WpnESz2fLWJ2OpbnO5vtGr4+V5nPRaYxSqahsNrvsfKgWX7r2lqXMVVdrsunP\nyZs5lq3Utm3aMTHR9k17vlxSrWUfGdeVRizt2rVH+dyY7FePayzXPjo9siy9d897tXX7pHbt2tN2\nvSXHt/h85Hqe3rdrTF6bD3yamSDQBybfv6JI4yAINJE/KW90VCYM9c650rIPnZaNY4zem92jt35+\nQh/58Ed0zVVbiVHuI94nXRl6aSJX9T3uDTfcoCNHjkiSjhw5ok996lOr2Q0AAAAArEjXb2BeeeUV\nffnLX1Y+n9fIyIimpqZ0+PBhHTx4UI8//rj27Nmjffv2bUStAAAAAIZc1wbmE5/4hL797W8vu/3R\nRx9dl4IAAAAAoJ3LnsQPIFlzIk0zY4yCYHk6TT0Qw7KsZcvaJdoYE0g9BmkAwKCrxbGKhYJkW3JG\nkueytEs6i+O4Y0JaMxNGCoKg4/NyqyAIZMJIsm2FJlQsnpuB9UIDA6wTY4xeP/uGXHfpxOBzwUWd\nyJ9ctn6pVJZl28plM8v3FUY645fkVJdOCPXLZTmus2xyPwBsRkXfV/qlH2p867js9PLnytmKL+3f\nlxg2UI0inTwTKJ1Odx0nNEa1ckFhFMqybOU6JCrWGRPojF+S64Xy/Yoc11WHUEAAl4EGBlhHbkJz\n4XpuYsNhAiPZdnIzYttyvYQY5YRveABgMxtLpzWRyzVS/lrVOmybclJdk8GkhS+2PW/xudi2ev6Q\nyKl6cl1vISkOwLrZnL8mBQAAAGBTooEBAAAAMDBoYAAAAAAMDBoYAAAAAAODSfxAD9pFIneyEMG5\nTgUBwAaqxbEK+Xzb5bMzM5okNviyxHGcGLHfjed5PcU8A5sJDQzQg3aRyJ2USmW5nqfRNBHHAAZb\n0fc1/+xzsicmEpebM2cU9hBPjPbC0Oj1n1d6imxubBOF+ugHd2qUKH0MGRoYoEdJkcidmICIYwCb\nx3g6o8ncWOKyC+nCBlezOfG7XkBvmAMDAAAAYGDQwAAAAAAYGDQwAAAAAAYGc2AwdPqdKBYrlgnD\nZbebKJIlK3FZaELFa5TwU6vVVCwUFJrl40iSX6lItpQezci2+YwDwNpISjIrzMxItiVnxFUhn9cE\nQWYAekADg6HT70SxKIp04t28nNTS8cvFkizLUjYhRdP3K3JcV5572cNrdqag6D+f0dj4eOJyL4pU\nnJtT4cB+TW7ffvkDAoCSk8zGfV+yJDudUfnCBeXGtkhjyUEBAFBHA4Oh1O9EMSflyHW9pbe5nixL\ny26XpCjhW5nLsSXTPk0oikKJ3xQAsA5ak8zmbFuypHQ6q0Kl0sfKAAwS/j4EAAAAwMCggQEAAAAw\nMGhgAAAAAAwMGhgAAAAAA4NJ/NgQq4kuliTP82RtwITyOJbCqP1E+aSI43gxV7ldfe1ikaNw7SKR\nAQAAhg0NDDaEMUbH3zov1+k9BziMQn30gzs1uoK0sNUKozAx2rguKeLY9yuyLFvpdLrnbSTp3IxR\nblt1TSKRAQAAhg0NDDaM67grii7eaEnRxo1lCRHHURhKtrWibSRpJDWydkUDAAAMGebAAAAAABgY\nNDAAAAAABgYNDAAAAICBwRwYAMvU4lilfL7x/+VSWZYlheZSotrWyUnZNp+BANh8FpIzg4X0TFsy\nTvJcx2bGBAuRlutcV9iU6GlMoCAIOmyRnJjZSzJoUgroRiWDAt3QwABYpuj70rPPyZ6YkCSlw0iy\nJNtZSGmbrfjS/n2a3L69n2UCwLqIwlCn/FMLDYltqWRVum7jl8tyXGddw2pCY3SycFKpxefiKDSy\nC2V5bnKCpiSVSmVZtq1cNtO4zYSRfn66ffJmFEW6evxqed6lY9nIZFCgGxoYAInG0xlN5sYkLSau\nWZLTFINd61dhALABHMdZ+LbBtuR53b+BCVfxW2erkXKcRj2WJXmjnjy3fS6/CYxk20sbK9tWNptr\nm6JpjJHnjV7RyaEYbvz9BwAAAICBQQMDAAAAYGDQwAAAAAAYGMyBwbppTjkJgmAhoaUH7gpTTnpJ\nU2kWBMF6B8VserU4VqEppUyS/EplIa3HD1QulRXHNQVzRradfC0L+bzGuA4AAGCFaGCwbowxev3s\nG3JdRyaMdMYvyal2nghZjSK9f+v7VzRxsHmcXpRKZbmep9E0kxNXq+j7mm9KKZMkL4oky5KdSikd\nRnr74rTC0VHtaFqnWfnCBY1mMonLAAAA2qGBwbpy65GSti3XC9smnqzZOD0wwcYkxWx2zSllkhRF\noWRZclKOojBUwa9ofDS9ZJ1mhUr3WFIAAIBWzIEBAAAAMDBoYAAAAAAMDBoYAAAAAAODBgYAAADA\nwGASP1ZkJZHFQRDIhJFk2wpNqFjrn5kbx1IYhR3XMVEkS5ZMeGm9japvI9RqtUbEcXO0cd3szIzS\n5EgD2ISSIt7LpbIsSwvx/IvPh1snJ2Xb6/cZbq1W0+xMYclzb6utk5OLr6mBwtAsvLbaknHah90Y\nE2gjfgegXlfr2EGQfDzxYk0r+QkESfJW+LMJQB0NDFbEGKPjb52X67g9rBvojF+S64Xy/Yoc15XX\nfbPLEkahTrybl5NqH6lcLpZkWZayTc/DG1XfRijk8yo98U2NZzNLoo3rotNnFG7Z0scKAWB9JEW8\np8NIqr9HtiyVTCjt36fJ7dvXrY7ZmYLMt59Rrs1z7WzFl/bvk+O6OuWfUr6a18icJdmWSlb7hEa/\nXJazgtTN1YrCUKf8U8pkc023GdmFsryEnywolcqybFu5bO/R+GEY6Rd3f0ij63ws2JxoYLBiruP2\n/OTpVD25rqco7PytyFpyUk7HuGbH9WRZWrLORta3EcazCxHHzdHGdRfShT5WBgDra1nEexguaWCc\nVKDaBtSxJZNpGyMvqVGD4zhyXFeu50m2Jc9r//oVruBHmy+X4zhLarEsyRv15LnLP+kzgZFse90b\nK6COOTAAAAAABgYNDAAAAICBQQMDAAAAYGAwB6YHtVpN8/PzK94ulUqRrrFCzcknQTCnQkFdJ/gF\nQaDAhOuedlar1ZSfnm78f2vCV61Wk2TJtheueT35JjThsv1cTg3NCTtJYxTyeU0QMgYAq1Kr1TRz\nMb8suax5efNzfV3z8/HszIx2dkgLq6elpRxXlrWQDulY9rKxuqWlxXG87DWm1WZP3sRwooHpwal3\nz6scrOxNZ61W01W7xjSxdXydqtqcmpNP/HJJJ/LzSqfTHbeplMtyXVfZsbF1TRObnSmo9uzzGl9M\nWWlN+HrnwgWlUyntWEy/qSff2M6lCfSzFV/lT3x01TU0J4y1G6N84YJyY1uksfaTRwEAyQr5vKJv\nP6Mt9UStliTH1uf6uubnY3PmjKIOaY/1tLSxbE6ypO3GLEyYbxqrnlTWKS2tGkU6eSbo+Dq52ZM3\nMZxoYHpg2/aKY/5W840NFtSTT6pRKNe2lM3kOq4fx2qkiq13mlg93UvSsoSvQqWizEjq0vLF5Bun\nJXL69FrWkDBGodI+ghMA0N1Cgtjia09LkmPrc31d8/NxL2mPC2lpCw1MkEotvM9oGauXj05TTmro\nkzcxfJgDAwAAAGBg0MAAAAAAGBg0MAAAAAAGBnNghthC4tfKftU3CAKSS9ZRa9JZXT3xLJwzJIwB\nwGWoJ4C1U8jnNcbr3DKdEs+Sks6at5O0LJU1MKEKhULbOcae5y3bpt2+uknaV/M+6++FjDGam5vr\n+b1R8347jZE01kq5rqtwFXOXeqlrENHADKmZ2RmdmTmvt96+KNfpLYbEG/HkpTy5nqfR0c7JYIPo\n+H8+q8k2xxUEgaZDo4+vcw2tSWd19cSz/MwMCWMAcBnqCWB2S4pYXfnCBXnpTOKyYdYp8Swp6azO\n9yuyLHvZduViUW9WzyudXX6uo2qkX9gzKc91ltxeKpVl2bZyCdu0E4aRfnH3h9o2SsYYHX/rvFzH\n1ZmZUKNvntOp2VNyHCdx/aQau42RNNZKhFGoD+zZopOFd+S6netasl2PdQ0iGpghFUahrFFb3pbR\njuklzSwjuanNm7k45s/pQ6nkcxHVpLI/J21A49acMtYYfzHxrLLKT24AAJcsJIAlfxBUqFTEFzDJ\n2iWeJSWd1UVhKNnWsmWO68n1tPChXIswNPJGPXnu0vccJjCSbctb4zfkruPKG114P+R5o8pkcwux\n1h20q7HXsVZVp+us+bEPKubAAAAAABgYq/4G5r777tMrr7wiy7J0991369prr13LugAAAABgmVU1\nMEePHtXJkyc1NTWlN998U/fcc4+mpqbWujYAAAAAWGJVf0L2gx/8QJ/97GclSddcc42KxaIq/Po3\nAAAAgHW2qm9gpqen9Uu/9EuN/5+YmND09LSy2eyaFXZliWWC8oq2qNVqisK0giAhkqNPjDGNeoLA\nqFQsqlIoy6R6q9GKpHi0JsuypVr3GY7GGPlBWVFoGikk8Xyt4zZ+pSzbWuir12ub5vUbt/kVna1U\npDbbRVGovDG6aEJFUSRJmq9WJUkjqYWHUb5Y1NxIStbIwr7no0iSpRHn0sOs6Pu6eO6CTp96e1mS\nm1+pqDxbVDg72xijrj5WL2M0r9NaoyQVyiWZlCPXS554OF+tqlAqqWrCtuO01tF6PuajSIVSWdUw\nWrJOs3yxKNeyZNt2Y5tuY7SO1e1YWs9FdX5eKXtEJjTy25zTVoWKL5NK6dxM+9jV1n3UYzK9wPQ2\nxuJxjCwub75e7caony9Zycs7jeN6buJ9I/G6Nl2XpPtGpzEa+2gaq3kMv1KRX60mXvvm+0bSuXAl\njdj2kvt+81jdHivdHiftjmXp8rJMKiWnaRJv8zjdHifdjqW5zlpca2zX62Ol+Vx0GsOvVJSfm1t2\nPhTHHY+l9Vy4liVvppA4Rrs6mx8rvdyH88WiRmrzGkmlGo+vbmOs9LHSfL7q23R7nDSPM+KkEu8b\nSXXWavOSLJnQyFt8fa6PVfR9ueXykvtf6+vX5bzmddpupdskrd9tu07bRNVIpVnJtDz2yr4vSyuL\nBI6iSAW7fVxzEAQqlYsyJlC5XFKxONt479Jxv001dhsjaayVCKNQwdhCqtiKtlvh+oPEiuuh2itw\n77336qabbtJnPvMZSdLtt9+u++67T+9///sT1z927NjlVQkAAABgKFx33XUdl6/qG5idO3dquunH\n9s6fP68dO3asuggAAAAA6MWq5sDs3btXR44ckST97Gc/065du5TJ8KNPAAAAANbXqr6B+eQnP6mP\nfexjOnDggEZGRnTvvfeudV0AAAAAsMyq5sAAAAAAQD+s6k/IAAAAAKAfaGAAAAAADAwaGAAAAAAD\nY0MbmOnpaf3Kr/yKjh49upHDYlE+n9cXv/hF/dEf/ZFuv/12/eQnP+l3SUNpfn5eBw8e1O23364D\nBw7oxz/+cb9LGkovv/yyfu3Xfk0vvvhiv0sZSvfdd58OHDig2267Ta+++mq/yxlar732mm655RY9\n9thj/S5laB06dEgHDhzQ/v379fzzz/e7nKEUBIHuvPNO3XHHHfqDP/gDffe73+13SUPLGKNbbrlF\n3/rWtzqut6oUstV64IEHdNVVV23kkGjy9NNP63d/93f1+c9/XkePHtWDDz6ow4cP97usofMf//Ef\nGh0d1Te+8Q298cYbuuuuu/TEE0/0u6yhcurUKf3rv/6rfvmXf7nfpQylo0eP6uTJk5qamtKbb76p\ne+65R1NTU/0ua+jMzc3p/vvv1969e/tdytB6+eWX9cYbb2hqakqFQkH79u3TLbfc0u+yhs53vvMd\nXXvttfqzP/sznT59Wn/6p3+qm266qd9lDaWvfvWr2rp1a9f1NqyB+eEPf6ixsTF9+MMf3qgh0eJP\n/uRPGv8+ffq0du/e3b9ihtjv/M7v6POf/7wkaXJyUrOzs32uaPjs3r1bDz30kO66665+lzKUfvCD\nH+izn/2sJOmaa65RsVhUpVJRNpvtc2XDxfM8Pfzww3rkkUf6XcrQuv766/Xxj39ckrRlyxbNzc0p\njmNZltXnyobL5z73uca/T58+rfe85z19rGZ4vfXWWzpx4oRuvPHGrutuyJ+QRVGkf/zHf9Sdd965\nEcOhg+npaf3+7/++Hn74Ya5Hn6RSKXmeJ0n6l3/5F/32b/92nysaPq7r9ruEoTY9Pa3JycnG/09M\nTGh6erqPFQ0n27Z5LPSZbdtKp9OSpCeeeEI33ngjzUsfHThwQF/60pd0991397uUoXTo0CEdPHiw\np3XX/BuYJ554Qk8++aQsy2p8ivDrv/7ruu2225TL5SRJ/PTM+ku6Dn/5l3+pvXv36sknn9R///d/\n6+DBg/wJ2TrrdB0ee+wx/e///q++9rWv9bvMTa3TNcCVgdcEDLsXXnhB//7v/85rcp9NTU3pr3gJ\ngQAAAnxJREFUtdde01//9V/r6aef7nc5Q+Vb3/qWrr/+eu3Zs0dS99eFNW9g9u/fr/379y+57bbb\nbtNLL72kf/qnf9KpU6f06quv6sEHH9Q111yz1sNjUdJ1+NGPfqTZ2VmNj4/r05/+tL70pS/1qbrh\nkXQdpIU31d/97nf11a9+VSMjI32obHi0uwbon507dy75xuX8+fPasWNHHysC+ud73/ueHnnkER0+\nfLjxQS821k9/+lNt27ZN73nPe/SRj3xE8/PzyufzS74pxvp68cUX9c477+i5557T2bNn5Xmedu/e\nrRtuuCFx/Q2ZA/Nv//ZvjX/fdddd+r3f+z2alz54/vnndfz4cf3xH/+xXn/99UaXi4319ttv6/HH\nH9djjz0mx3H6Xc7Q49P/jbd371499NBDuvXWW/Wzn/1Mu3btUiaT6XdZwIYrl8t64IEH9M///M8a\nGxvrdzlD63/+5390+vRp3X333Zqentbc3BzNywb7yle+0vj3Qw89pPe9731tmxdpg1PI0F9/8Rd/\noYMHD+qFF15QGIb6u7/7u36XNJSefPJJzc7O6otf/GLjT5oeffRRpVI8HDfK888/r7//+7/X+fPn\n9fLLL+sf/uEf9NRTT/W7rKHxyU9+Uh/72Md04MABjYyM6N577+13SUPplVde0Ze//GXl83mNjIxo\nampKX//61zU+Pt7v0obGM888o0KhoDvvvLPxenDo0CFCdjbYbbfdprvvvlt/+Id/KGOM/vZv/7bf\nJaELK+bjRwAAAAADYkN/yBIAAAAALgcNDAAAAICBQQMDAAAAYGDQwAAAAAAYGDQwAAAAAAYGDQwA\nAACAgUEDAwAAAGBg/H9I5ZVc7PVThgAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -97,7 +97,6 @@ } ], "source": [ - "# Model parameters\n", "mu = 0\n", "sigma = 1\n", "\n", @@ -174,16 +173,16 @@ }, { "cell_type": "code", - "execution_count": 101, + "execution_count": 296, "metadata": { "collapsed": false }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAz4AAAH6CAYAAADGLZlTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XlclOX+//H3zLDKoqCA4I5puIdbmpaJKEp6yjQlS49m\n9a2TpzyeX6VlZrnVw9QW207nlGaWZWalopZri5mKux1TKXMFU3ZkWIb5/UHOkQCFYWAGfD3/cu57\n7uv63DN3j+bNdd3XbbBarVYBAAAAQC1mdHYBAAAAAFDVCD4AAAAAaj2CDwAAAIBaj+ADAAAAoNYj\n+AAAAACo9Qg+AAAAAGo9gg8AlxUREaHHHnusxPann35aERERTqjIPgkJCYqKiip136FDhzR27FjF\nxsYqJiZGcXFxSkhIkCQ9/PDDio2N1aBBgxQREaGYmBgNGjRII0aMkCSNHj1aN998s2JjY9W3b1/F\nxcXpyy+/rJZzioiI0NSpU4tt27Fjh0aPHu2wPqKiorR7926HtXclWVlZuv322xUTE6P09PRi+157\n7TVFRETo2LFjxbYnJSWpTZs2WrhwYYX6Sk5OLtf1a8/579u3T+PGjVNMTIwGDBigcePGac+ePRVq\n40qmTJmit956q9R9sbGxSklJcVhf7dq105kzZxzWHgC4ObsAALiSI0eO6OLFi6pTp44kqaCgQAcP\nHpTBYHByZRVTVr0PPfSQZs2apVtuuUWStH79ej3yyCPaunWr3nzzTdv72rRpoyVLlig4OLjY8U88\n8YSGDBkiSfrpp5/05JNPKikpSQ8++GAVncn/7Ny5U4cPHy72I96Vvher1Vrueg4fPqyMjAxt3ry5\nxD6DwaCwsDCtXr1aEydOtG1fs2aNQkND7aqtKj6n//73v3rwwQc1Z84cW9DetGmTHnzwQS1btkwt\nW7Z0eJ+Xi4+Pd2h7rnQtAagdGPEB4NK6d++ur776yvb6u+++U4cOHYq9Z8OGDRoyZIj69++v8ePH\nKy0tTZJkNps1ceJEDRw4UNHR0XrxxRdtx4wePVqLFi3SqFGjdMstt2jSpEml9n/hwgXdf//9GjRo\nkKKjo7Vo0SLbvqioKH388ce66667dPPNNxdr/4033tCtt96qO++8U9u3by+17ZSUFJ0/f16dOnWy\nbYuJidGqVavk6elZ7L1Wq1VXe95027ZttXDhQr355pvKysoqtm/u3LmaOXOm7XVqaqoiIyOVlZWl\nDz74QLGxsYqNjdWIESOUmJh4xX4umTRpkmbNmlXqvoULFxYbEVq4cKGeeeYZSUWf/b/+9S/FxcXp\npptu0tKlS/XWW29p0KBBGjx4sE6fPm07btu2bbrjjjvUt29fvfzyy7btZX3nCxcu1LRp0zRixAgt\nXry4RF0//vij7rzzTsXGxmrkyJE6dOiQzp49q8cff1znz59XbGysra3L9erVS2vXri22be3atbrp\npptsr9PT023X2+DBg/XOO+/Y9n366aeKiorS7bffrlWrVpX4rAYOHKioqCjNnj27xPdssVg0depU\nDRw4UDExMXr00UeVnZ1dosa33npLd999d7HRxaioKL322msKDAy01TxkyBDFxsZq7NixOnnypK2G\n6dOn66GHHlLv3r31xBNPaOvWrRo2bJhuvvlmbd261dbm2bNnde+99yoqKkoTJkyQ2WyWVDQKmJyc\nrB07diguLk7z589XbGysoqOjtWvXLklSXl6eZs6cqZiYGPXr109vv/22rd2tW7dqwIABGjx4sN57\n770S5wcAlUXwAeDSBg0apDVr1ther1mzRoMGDbK9PnnypJ588km9/PLL+vrrr3XjjTdq2rRpkqQP\nP/xQmZmZWrdunVauXKmVK1cWmzq0efNmLVq0SOvXr9ePP/5Y6pSgN954Q2FhYVq7dq3ee+89zZs3\nT8nJybb9u3bt0vLly7VixQotWbJEycnJOnbsmBYvXqzPPvtMK1as0H//+99Szy0wMFAdOnTQ6NGj\n9emnn+rUqVOSpKCgILs/r2bNmiksLEz79u0rtj0mJqbYaMbmzZvVs2dPGQwGvfrqq1qxYoXi4+P1\n0EMPacuWLVftx2AwKCYmRpKKBdM/v6csCQkJ+vDDDzV79my99NJLCg0N1dq1axUeHq4VK1bY3nf4\n8GF9/vnnWrFihT766CP9/PPPV/zOpaIf0O+8847Gjh1brM+LFy9q4sSJmjZtmuLj4zV+/HhNmjRJ\noaGhevHFFxUWFqb4+HjVq1evRL0hISEKCgrS/v37JUknTpyQm5ubGjZsaHvPvHnzVLduXa1bt05L\nly7VRx99pN27dysjI0OzZs3Sf/7zH33xxRdKSkqyHfP5559r/fr1WrFihTZs2KATJ07oww8/LNb3\nd999p1OnTmndunVav369IiIitHfv3hI17ty5U3369CmxvUePHgoICNDZs2c1bdo0vfHGG4qPj1ef\nPn1KfG5z5szR6tWrtW7dOn3zzTdasWKFHnrooWIh7vvvv9fChQu1ceNGpaena/ny5ZKKf98//fST\nIiMjFR8fr7vvvts2evnOO+/ol19+0Zo1a7RmzRqtX79eW7duVWFhoaZOnarnnntOq1evllQU+ADA\nkQg+AFyWwWDQjTfeqKNHjyotLU25ubnau3evevToYfur+Lfffqsbb7zRNo1n5MiR2rRpk6xWq+67\n7z698cYbkiQ/Pz+1atXK9hduqSgMeHh4yNvbW82bN9fZs2dL1PDMM8/YRi6aNGmioKCgYm0MHjxY\nkhQcHKygoCAlJSVp165d6t69uwIDA2UwGPSXv/ylzHN89913NWDAAC1ZskT9+/fXkCFD9PXXX1fq\nc/P19VVmZmaxbR07dpTVatXPP/8sSfr6668VGxsrT09PGQwGLV++XBcuXFBUVJTGjx9f7r6mTJmi\nuXPnKi8vr0I19u3bV0ajUa1bt5bZbLaFqNatW+vcuXO29136fAMDA9WtWzft3bv3it+5JHXq1El1\n69Yt0ee+ffsUGhqqG264QZI0YMAApaWl2QLn1cTGxtp+lK9Zs0axsbHF9n/zzTcaNWqUJKlu3brq\n37+/vv/+e+3bt08tWrRQixYtJElDhw61HbNlyxYNGzZMPj4+MhqNGj58eInvPyAgQImJifr666+V\nk5Ojv/3tb+rVq1eJ+tLT09WgQYMy6//+++/Vo0cPNWnSRJJ01113aceOHSosLJQkRUZGKiAgQPXq\n1VNQUJBt+uWfv5NbbrlF9erVk8FgUP/+/W0h7PKRKl9fX/Xt21dS0UjkpXt1tmzZolGjRsnNzU1e\nXl66/fbb9dVXX+n48ePKy8tTz549bZ/R1UY4AaCiuMcHgEu79OMqPj5e9evX10033SSTyWT763Jm\nZqZ27txp+xFqtVpVt25dpaamKjMzU3PmzNGvv/4qo9GopKQkDRs2zNa2n5+f7d9Go7HUvzDv379f\n8+fP19mzZ2U0GvX7778X+0F2eRsGg0EWi0Xp6eny9fW1bff39y/z/Hx9fTVhwgRNmDBBKSkpWrFi\nhSZNmqQvvvhC4eHhdnxi0unTp1W/fv0S2wcMGKBNmzapadOm2r17t+bNmyc3NzctXrxYb775pl59\n9VVFRERo2rRpat26dbn6atu2rbp166b33ntPkZGR5a7Rx8dHkmQymSRJXl5etteXfw+XpmhJRZ91\nenq6rFZrmd+5pFJDj1Q0ve/P34Wfn1+5b8gfOHCghg0bpilTpmjdunV655139Mknn9j2p6SkFOvb\n399fv//++xWvh8zMTL377rv65JNPZLVaVVhYWOycpaLQ+swzz2jJkiWaPHmy+vbtq+nTpxdrUyoK\nSMnJybZg82cpKSnF+vb19ZXVarV9bpe+E6noe7h0X92f/9so7Tv5s8v/uzCZTLZwlZGRodmzZ2v+\n/PmyWq3Kz89Xp06dSnxGZX2HAFAZBB8ALi82NlavvPKKAgMDFRcXV2xfcHCwbrrpJr3yyisljnv8\n8cfVvn172ypUd999d4X7fvzxx3Xfffdp5MiRkmT7K/iV+Pv7F7vHpqwf1snJyTp9+rQ6d+4sqegH\n5QMPPKC1a9fq2LFjdgWfXbt2KS8vTx07diyxLyYmRrNmzdJ1112n7t27237YRkRE6JVXXlFBQYHe\neecdPfvss/roo4/K3ec//vEP3XnnnWrcuLFt259/LJf247g8Lj8uPT1d9erVk7u7e5nf+ZXUr1/f\n9iP/8jbr169f7L6isgQGBio8PFzLly+Xv79/iYUmGjRooLS0NNv0t7S0NDVo0ED+/v7FRuAuvx6C\ng4MVFRWle+6554p9DxgwQAMGDFBGRoamTJmif//738UWWpCkG2+8UevWrVPXrl2Lbf/ss890/fXX\nq0GDBsWmyKWnp8toNCogIOCq5365y++BSk9Pr1BICQ4O1v33319iSl5iYmKx/2YuXLjA4gYAHI6p\nbgBc1qWRlcjISCUnJ+vo0aPq3r17sX29e/dWQkKCbfrZ/v37NXv2bElFP57atGkjqWiaz2+//Vbq\nTeFXkpqaqrZt20qSVq5cKbPZrIsXL17xmMjISCUkJCg1NVUWi6XEzeyXnD17Vn/729908OBB27b9\n+/crKSmpxAIO5XH48GE9/fTTmjhxYonFES7VdeHCBX322We2+6SOHDmixx57TPn5+XJzc1P79u1l\nNF79fw2Xj3oFBQXp3nvv1WuvvVZs29GjR2W1WpWSkqJvvvmmXG392Zo1a2S1WnXhwgUlJCSoa9eu\npX7nZS2ycLmOHTvqwoULtvufVq9erYYNG6pRo0ZXPfaS2267TQsXLtRtt91WYt+tt96qjz/+WFJR\nuPn666916623qn379jp+/LhOnDghqei+nkv69eunL7/80rZAwMcff1xsv1QUXC5N2fT391d4eHip\noeDhhx/WqlWrih3/9ddfa/78+fL19VWvXr2UkJBgm9q3bNky9erVq1zf9+W+/fZbZWZmymKxaMOG\nDerWrVu5j+3Xr58++eQTFRYWymq16s0339R3332nZs2ayc3NTTt37rSdM8EHgKMx4gPAZV3+w6d/\n//7FAselfUFBQZoxY4YmTJiggoIC+fj46KmnnpJU9ENwzpw5ev311xUdHa0JEybo1VdfVbt27Ur8\nqCrrR9Zjjz2mRx55RAEBARo5cqRGjhypqVOn6sMPPyyzjYiICMXFxWno0KEKCAjQ4MGDdeTIkRJt\n33DDDZo5c6aee+45ZWVlqbCwUA0aNNDLL79cYpnksuqbO3eu3nzzTeXk5Mjf318TJkywLW9dmn79\n+mnFihWaP3++pKL7Nxo3bqzBgwfLw8NDPj4+evbZZyVJ8+fPV6NGjWyjXVeqZ9y4cfrkk09s2wcN\nGqRVq1apf//+Cg8P18CBA20jHeX97A0Ggzp27Kjhw4crNTVV48aNs42ClfWdX4m3t7defvllPffc\nczKbzQoMDNSCBQuuetzlBgwYoBkzZmjAgAEl9k2cOFHTp0/XoEGDZDKZ9H//939q3769JOnJJ5/U\n2LFj5ePjU+zzjI6O1rFjxzR06FAZDAY1bdrUFuIufS79+vXTU089pZiYGLm5ualZs2Z64YUXSvR/\n3XXX6b333tNLL72k119/XR4eHmratKkWL16sZs2aSZJmzpyphx9+WBaLRY0bN9aMGTNKPc8rhY6+\nfftqwoQJOnXqlDp27Kg777zzqsdccs899+j06dO24Ni+fXuNHTtWbm5uev755zVlyhR5enpq2LBh\nthFJAHAUg7USdw8ePnxYf//73zV27NgSw/Tbt2/XggULZDKZ1KJFi3L9NQ4AAAAAqoLdU91ycnL0\n4osvlrqyjCQ9++yzevXVV/Xhhx8qKyvritMcAAAAAKAq2R18PD099fbbb5e5dOaKFSsUEhIiqeiG\n0NIeCAcAAAAA1cHu4GM0GuXh4VHm/kvLUp47d07btm0r9aFqAAAAAFAdqnRxgwsXLujhhx/W9OnT\nr7rcZUJCQlWWAgAAAKAW6NKli13HVVnwycrK0gMPPKB//vOfticxX429JwFUVEJCAtcbqhXXHKoT\n1xuqE9cbqlNlBkuq7Dk+L7zwgsaNG1fm4gcAAAAAUF3sHvHZt2+fpk6dqpSUFJlMJi1btkzDhg1T\n48aN1bt3b3355Zc6ceKE7bkOQ4YM0V133eXI2gEAAACgXOwOPp06dSrzaeRS0ZO0AQAAAGexWq3K\nzc11dhmwk6enZ7kejlxeVTbVDQAAAHCm3Nxcgk8NVRXfXZWu6gYAAAA4k6enp7y8vJxdBlwAIz4A\nAAAAaj2CDwAAAIBaj+ADAAAAoNYj+AAAAABV5PTp04qIiNCBAweKbR8+fLimTJlSrjYuXryoqKio\nMvfv2LFDjz76aKn79uzZozZt2ujw4cPlL7oUjjgPZyP4AAAAAFWoadOmWrt2re31mTNnlJGRUe7j\nrVbrVZd1Lmv/mjVrFBsbq/j4+HL3V5bKnoezsaobAAAAUIU6duyo7du3216vX79evXv3Vk5OjiTp\nxx9/1IIFC+Tu7q6GDRtq9uzZys3N1aOPPqq8vDx17tzZduyuXbts7w0NDdWMGTPK7LewsFBbtmzR\n0qVLNXr0aE2aNElpaWkaOXKk1q9fL0n6/PPP9fPPP+uOO+7Q5MmT5e/vr/bt2yslJUVz5syp0HmU\nVpvBYNCTTz6p5ORkmc1mTZgwQX369NHo0aPVq1cvbd++XWlpaXrrrbfUsGHDyn/YV0DwAQAAwDXh\n3VWH9P2+0w5ts1enRrpvSLsrvsfd3V0RERHav3+/OnbsqM2bN2v8+PFat26dJGn69OlatGiRQkJC\nNHPmTK1atUpms1mtW7fW5MmTFR8frzVr1kiSZs2apcWLF8vf319z587V2rVrFRISUmq/27ZtU0RE\nhEJCQhQWFqZ9+/apU6dOCgsLU2Jiolq2bKmNGzdq/Pjxev311zVhwgT169dPEydOlLe3d4XP48+1\nrVu3TjfddJN69+6tO+64Q6dOndKjjz6qPn36SJL8/Py0aNEizZs3T1999ZXGjBlj9/dQHgQfAAAA\noIoNHDhQ8fHxCg4OVr169WzBIj09XUaj0RZeunfvrh07dkiSunXrJkm68cYbJUkXLlzQ8ePHNWHC\nBFmtVpnNZgUGBpYZfFavXq3o6GhJUnR0tFatWqVOnTopOjpamzZtUpMmTXTs2DHdcMMNSkxMVGRk\npCQpKipKP/zwQ4XOo6za/P39deDAAX388ccyGo1KT0+3tdWlSxdJUsOGDZWWlmb/h1tOBB8AAABc\nE+4b0u6qozNVpWfPnpo3b57CwsLUv39/23aDwaDCwkLb6/z8fBmNRlksFhmNRbfjX9rv4eGhkJAQ\nvf/++8XavhSULpeXl6dNmzbp0KFDWrx4sfLz85WRkaGpU6eqf//+mjhxolq1aqXevXtLKrqP6FJ/\nV7qfqKzzcHd3L7W2zz//XOnp6froo4+Umpqq4cOH2/a5uf0vilit1jL7dBQWNwAAAACqmLu7u9q2\nbasVK1aob9++tu3+/v4yGo1KSkqSVBRiOnTooBYtWthWULt0X42fn58MBoMSExMlSR988IGOHDlS\nan8bN25Ujx49tGrVKq1cuVKrV69WeHi4tm/fruDgYBkMBq1evVoxMTGSihYuOHjwoCTpm2++ses8\n/lzbzz//rNTUVDVu3FhS0T1B+fn5Ff/wHITgAwAAAFSDgQMHKjQ0VL6+vsW2P//885o0aZLGjBkj\ni8Wi2267Tbfffrv27t2rcePG6fjx47b3zpw5U1OmTNG9996r3bt3q0WLFqX2FR8fr2HDhhXbNnTo\nUNvqblFRUdq1a5e6du0qSXr44Yf14osv6v7771eDBg1kMpkqfB5/ri08PFwDBgzQpk2bNGbMGHl7\ne6thw4Z6/fXXr7pKXVUwWKtjXKkcEhISbPP8gKrG9YbqxjWH6sT1hurkyteb2WyWJHl5eTm5Ete3\nb98+eXt7q3Xr1vrXv/4lSXrwwQedVk9Z311lrjfu8QEAAACucR4eHnrqqafk5eUlb29vzZs3z9kl\nORzBBwAAALjGtWnTRp9++qmzy6hS3OMDAAAAoNYj+AAAAACo9Qg+AAAAAGo9gg8AAACAWo/FDQAA\nAIAqcvr0afXr10/Lly9Xhw4dbNuHDx+uVq1aac6cOVdt4+LFixo8eLA2bdpU6v4dO3bogw8+0Kuv\nvlpi3549ezRq1CitXLlSERER9p+IpKVLl+rLL7+Uh4eHcnNz9Y9//EPXX3+9HnvsMUnS4cOH1axZ\nM9WpU0dDhgyRm5ubXnnlFTVt2lSFhYUKDAzUE088YXugaXUj+AAAAABVqGnTplq7dq0t+Jw5c0YZ\nGRnlPt5qtV71gZ9l7V+zZo1iY2MVHx9fqeBz+vRpLV++XJ999pmMRqOOHz+uZ555RkuWLNGSJUsk\nSWPGjNGzzz6rli1bSpJWrlyp2NhYPfHEE5Kk77//Xvfff78tPFU3gg8AAABQhTp27Kjt27fbXq9f\nv169e/dWTk6OJOnHH3/UggUL5O7uroYNG2r27NnKzc3Vo48+qry8PHXu3Nl27K5du2zvDQ0N1YwZ\nM8rst7CwUFu2bNHSpUs1evRoTZo0SWlpaRo5cqTWr18vSfr888/1888/64477tDkyZPl7++v9u3b\nKyUlpdhoVGZmpvLy8pSbmytvb281b97cFngusVqtslqtZdbTq1cvde/eXRs2bFBsbGzFPkQHIPgA\nAADgmrBk7wptP7nboW32aNJZo28YdsX3uLu7KyIiQvv371fHjh21efNmjR8/XuvWrZMkTZ8+XYsW\nLVJISIhmzpypVatWyWw2q3Xr1po8ebLi4+O1Zs0aSdKsWbO0ePFi+fv7a+7cuVq7dq1CQkJK7Xfb\ntm2KiIhQSEiIwsLCtG/fPnXq1ElhYWFKTExUy5YttXHjRo0fP16vv/66JkyYoH79+mnixIny9vYu\n1lZERIQ6dOigfv36qU+fPrrllls0YMAAmUymCn1e7dq107Fjxyp0jKOwuAEAAABQxQYOHKj4+Hgl\nJSWpXr16tmCRnp4uo9FoCy/du3fXTz/9pF9++UWRkZGSpBtvvFGSdOHCBR0/flwTJkzQ6NGjtWPH\nDp07d67MPlevXq3o6GhJUnR0tFatWmX796ZNm5SXl6djx47phhtuUGJioq2/qKioUtt78cUX9cEH\nH6hNmzb697//rfvuu6/Cn0N2draMRudEEEZ8AAAAcE0YfcOwq47OVJWePXtq3rx5CgsLU//+/W3b\nDQaDCgsLba/z8/NlNBplsVhsAeHSfg8PD4WEhOj9998v1vaOHTtK9JeXl6dNmzbp0KFDWrx4sfLz\n85WRkaGpU6eqf//+mjhxolq1aqXevXtLKpqmdqm/su4XysvLU3h4uMLDw3Xvvfdq0KBBOnv2rEJD\nQ8v9ORw8eFCDBw8u9/sdiREfAAAAoIq5u7urbdu2WrFihfr27Wvb7u/vL6PRqKSkJElFIaZDhw5q\n0aKFDhw4IEm2+4P8/PxkMBiUmJgoSfrggw905MiRUvvbuHGjevTooVWrVmnlypVavXq1wsPDtX37\ndgUHB8tgMGj16tWKiYmRVLQAw8GDByVJ33zzTYn2li9frilTptju4cnIyJDValX9+vWveN6X3/Oz\ndetW/frrr2WOKFU1RnwAAACAajBw4EClpqbK19e32Pbnn39ekyZNkpubm5o2barbbrtN2dnZeuSR\nRzRu3LhiixvMnDlTU6ZMkYeHh4KDgzVy5Ejt2bOnRF/x8fEaPnx4sW1Dhw5VfHy8evTooaioKC1Z\nskQvvfSSJOnhhx/W1KlTtWjRIrVq1UqZmZnFjh02bJh+/fVXjRgxQnXq1JHFYtHUqVOLrc5W2kjR\nunXrdOjQIWVlZalBgwalLrldXQzWKy29UI0SEhLUpUsXZ5eBawTXG6ob1xyqE9cbqpMrX29ms1mS\n5OXl5eRKXN++ffvk7e2t1q1b61//+pck6cEHH3RaPWV9d5W53hjxAQAAAK5xHh4eeuqpp+Tl5SVv\nb2/NmzfP2SU5HMEHAAAAuMa1adNGn376qbPLqFIsbgAAAACg1iP4AAAAAKj1CD4AAAAAaj2CDwAA\nAIBaj+ADAAAAVJHTp0+rc+fOGjNmjEaPHq24uDht2LCh3Mfv2LFDMTExWr9+fYX6Le39Cxcu1NKl\nS4ttGz16tI4dO1ahtmsqVnUDAAAAqlB4eLjef/99SVJ6erqGDh2qW265pdjDP8uyc+dO3XPPPYqJ\niSl3f3l5eXrvvfcqdMy1gOADAAAAVJO6desqKChIv//+u9zd3fX000+roKBARqNRs2bNUsOGDTVg\nwAB16NBBkZGRWrFihdzd3RUUFKSgoCAtWLBA7u7uCg0N1YwZM+Tm5qZZs2Zp//79cnNz0/Tp0/XR\nRx/p6NGjev755zVt2jRnn7LLIPgAAADgmrHrgYdK3d71nbcc8v7SWK1W279PnTqltLQ0hYaG6pln\nntF9992nnj17auvWrXr99dc1Y8YMnTp1Sm+++aZatmyptLQ0BQQEaNCgQRo6dKgWL14sf39/zZ07\nV2vXrlWDBg2UnJysjz/+WLt27dLatWt1//33a//+/YSePyH4AAAAAFXo119/1ZgxY2S1WuXp6am5\nc+fKaDRqz549On78uN544w1ZrVYFBgZKkry9vdWyZctibVy4cEHHjx/XhAkTZLVaZTabFRgYqOTk\nZHXu3FmS1LVrV3Xt2lWnT5+uUH0Gg8ExJ+riCD4AAAC4ZlRkpMae95fm8nt8Lufh4aFXXnlFDRo0\nKLH9z9zd3dWwYcMS7bz33nsqLCwsVx0BAQHKzMwsti01NVVBQUHlOr6mY1U3AAAAoApdPtXtch07\ndtTXX38tSfrhhx+0Zs2aMt/v7+8vSUpMTJQkffDBBzpy5Ig6dOigH3/8UZL0008/acaMGTIajSoo\nKCjRRvfu3bVhwwaZzWZJ0q5du+Tn52dru7ZjxAcAAACoQmVNJZswYYKmTJmiNWvWyGAw6IUXXrji\n+2fOnKkpU6bIw8NDwcHBGjlypNzd3bVx40bdc889MhgMmj59uoKCgpSfn6+JEyfq5Zdfth3fqlUr\njRs3TmNQPjJ1AAAgAElEQVTHjpWHh4d8fHw0d+5cx5+wizJYy4qg1SwhIUFdunRxdhm4RnC9obpx\nzaE6cb2hOrny9XZpZMPLy8vJlaCiyvruKnO9MdUNAAAAQK1H8AEAAABQ6xF8AAAAANR6LG4AAACA\nWis3N9fZJcAOubm58vT0dGibBB8AAADUSo7+4Yzq4+npSfABAAAAysNgMLCiG2y4xwcAAABArUfw\nAQAAAFDrEXwAAAAA1HoEHwAAAAC1nksFH6vV6uwSAAAAANRClQo+hw8fVv/+/bV06dIS+7Zt26a7\n7rpLcXFxeuONN8rVXk6+uTLlAAAAAECp7A4+OTk5evHFF9WrV69S98+aNUsLFy7URx99pO+//16J\niYlXbTMjL8vecgAAAACgTHYHH09PT7399ttq0KBBiX0nT55UvXr1FBISIoPBoD59+mj79u1XbTPD\nnGlvOQAAAABQJruDj9FolIeHR6n7zp8/r8DAQNvrwMBAnTt37qptZuZl21sOAAAAAJTJrTo6Ke+i\nBft/PiidzaviaoAiCQkJzi4B1xiuOVQnrjdUJ6431ARVEnyCg4P1+++/214nJycrODj4qsfVDw5Q\nl3ZdqqIkoJiEhAR16cK1hurDNYfqxPWG6sT1hupUmZBdJctZN2rUSNnZ2Tpz5owKCgq0ZcsW9e7d\n+6rHZWWmVUU5AAAAAK5xdo/47Nu3T1OnTlVKSopMJpOWLVumYcOGqXHjxoqOjtazzz6rSZMmSZIG\nDx6sZs2aXbXN7Kx0e8sBAAAAgDLZHXw6deqkVatWlbm/a9euWrZsWYXavJiVYW85AAAAAFCmKpnq\nZq/cLJazBgAAAOB4LhV8TvsVOrsEAAAAALWQSwWfdMtFZ5cAAAAAoBZyqeBzMT9HBZYCZ5cBAAAA\noJZxqeAjSZl52c4uAQAAAEAt43LBJyOXBQ4AAAAAOJbLBZ/M3CxnlwAAAACglnGp4NP9QLYyCD4A\nAAAAHMylgo/vRQvBBwAAAIDDuVTw8SiwEnwAAAAAOJxLBR/3Aiv3+AAAAABwONcKPvmM+AAAAABw\nPJcKPh6M+AAAAACoAm7OLuByG6JCVIfgAwAAAMDBXGrExy2wHiM+AAAAABzOpYKPn6evMvKyZLVa\nnV0KAAAAgFrEpYKPv6evLIUW5eSbnV0KAAAAgFrEpYKPn6evJCkjN9PJlQAAAACoTVwq+Ph7+kkS\nS1oDAAAAcCiXCj5NF3whvywLwQcAAACAQ7lU8DGlZsozv5CV3QAAAAA4lEsFH0nyyLcy4gMAAADA\noVwu+LgXWJWZR/ABAAAA4DguGXwyzAQfAAAAAI7jcsHHI9+qDEZ8AAAAADiQSwWfzm8uVGKLOso0\n8xwfAAAAAI7jUsHHOyxUdXz8lZGX7exSAAAAANQiLhV8JMnfw1cZuYz4AAAAAHAc1ws+Xr7KyTer\nwFLg7FIAAAAA1BIuF3z8PHwliQUOAAAAADiMywUff08/SVImDzEFAAAA4CBuzi7gcgn/94iaBHtL\n7aUMgg8AAAAAB3GpER/zuXPyzDBLYsQHAAAAgOO41IiPydtLyiuQZGDEBwAAAIDDuNSIj8nLW4a8\notXcCD4AAAAAHMW1go+3lwy5eZLEs3wAAAAAOIyLBR9vWc25kqTM3GwnVwMAAACgtnCpe3winnxc\nFoNV2jiNER8AAAAADuNSwcczqIEkycfdmxEfAAAAAA7jUlPdLvHz9GXEBwAAAIDDuGTw8ff0U2Zu\nlqxWq7NLAQAAAFALuGTw8fP0kcVaqIv5Oc4uBQAAAEAt4JLBx9/TT5KUybN8AAAAADiASwWf5A2b\ntHPcAwr+LV0SDzEFAAAA4BguFXyslgLlpaTIp8AgieADAAAAwDFcKviYvL0lSXUsJkkEHwAAAACO\n4VrBx8tLkuRpKXrNPT4AAAAAHMG1gs8fIz4eBUWveZYPAAAAAEdwqeBj/GPExyO/6Pk9mbnZziwH\nAAAAQC3h5uwCLufTvJm6/vtt5XmapLX7GfEBAAAA4BAuFXyM7u7yDGogD6tVbkY37vEBAAAA4BAu\nNdXtEoPBID9PH1Z1AwAAAOAQLhl8JMnf008ZeQQfAAAAAJXnwsHHRzn5ZuVb8p1dCgAAAIAazmWD\nj5+nnyQpM4+V3QAAAABUjt2LG8yZM0f79u2TwWDQU089pQ4dOtj2LV26VKtWrZLJZFL79u01ZcqU\ncrd7YMpUFWRny/+vPSRJGeYsBXrXs7dMAAAAALAv+OzcuVO//fabli1bpsTERD399NNatmyZJCkr\nK0v/+c9/tHHjRhkMBo0fP1779+9Xx44dy9V2wcWLyv39vPy9fCVJmdznAwAAAKCS7Jrq9sMPPyg6\nOlqS1LJlS2VkZCg7u2hKmoeHhzw9PZWVlaWCggKZzWbVrVu33G2bvL1lMZvl5+4jSTzLBwAAAECl\n2RV8zp8/r8DAQNvrgIAAnT9/XlJR8Pn73/+u6Oho9evXT507d1azZs3K3bbJy0sqLJSfyUuSlJnL\nPT4AAAAAKschDzC1Wq22f2dlZemNN97QV199JR8fH/31r3/VkSNH1Lp166u2k5CQoDyzWZKUfPSE\nJOnwr0cUlOHniDKBYhISEpxdAq4xXHOoTlxvqE5cb6gJ7Ao+wcHBthEeSTp37pyCgoIkSb/88oua\nNGlim97WpUsXHTx4sFzBp0uXLjr63Q8699/D6tSitT7au1m+9f3UpUsXe8oEypSQkMB1hWrFNYfq\nxPWG6sT1hupUmZBt11S3Xr16af369ZKkQ4cOKSQkRHXq1JEkNWrUSL/88ovy8vIkSQcPHlTTpk3L\n3XbzcX9V9/ffVUDjoulxTHUDAAAAUFl2jfhERkaqXbt2iouLk8lk0rRp07Ry5Ur5+fkpOjpa48eP\n1+jRo+Xm5qbIyEh17dq13G27+xdNa/MrtEhicQMAAAAAlWf3PT6TJk0q9vr666+3/XvEiBEaMWKE\n/VVJcjOa5OPuzYgPAAAAgEqza6pbdfH39GPEBwAAAECluXTw8fP0VWZuVrFV4wAAAACgolw6+Ph7\n+spiLdTF/BxnlwIAAACgBnO54JN+6JB2jBmnU599Lj9PX0lSZm6Wk6sCAAAAUJO5XPAxGE3KT89Q\nQVaW/P8IPhkEHwAAAACV4HLBx+TtJUkqNJttIz4EHwAAAACV4XrBx6so+FhyzIz4AAAAAHAI1ws+\n3t6SJEtOji34cI8PAAAAgMpwueBjvDTiYzbL39NPkniWDwAAAIBKcXN2AX9m9PBQt/f+LVMdb50v\nKAo8mbnZTq4KAAAAQE3mcsHHYDDIIzBAkuSXX/TgUkZ8AAAAAFSGy011u5y3m5fcjG7c4wMAAACg\nUlw6+BgMBvl5+rCqGwAAAIBKcengI0n+nn7KyCP4AAAAALBfDQg+PsrJNyvfku/sUgAAAADUUC4Z\nfI6+8pp+GHmPCrKy5ffHktaZeazsBgAAAMA+Lhl8CgssKjSbi57l41H0ENMMM9PdAAAAANjHJYOP\nydtbkmTJyZG/V1HwyeQ+HwAAAAB2ctHg4yVJspjN8rs04sOzfAAAAADYyTWDj9cfwefyEZ9c7vEB\nAAAAYB/XDD62qW6M+AAAAACoPDdnF1CahgMHKKR/P5m8vJSdmSRJPMQUAAAAgN1cMvhcmuomSf6e\nl0Z8CD4AAAAA7OOSU90u5/tH8Ek3M9UNAAAAgH1cPvi4GU0K9Q3WifTTslqtzi4HAAAAQA3k8sFH\nksIDmyo776LOZZ93dikAAAAAaqCaEXwCmkmSElNOOLkSAAAAADWRSwafvNRUbR81RkcWvCpJahnY\nVJL0S+pvziwLAAAAQA3lksHH6OEhS3a2CrKLHlraPKCJDDIoMYXgAwAAAKDiXDL4XFrO2pKTI0mq\n4+6tML8Q/ZJ6QoXWQmeWBgAAAKAGcsngYzCZZPTwUKHZbNsWHthUOflmJWX97sTKAAAAANRELhl8\nJMnk7WUb8ZGkloFFCxz8wgIHAAAAACrIhYOPtyyXj/gE/LHAAff5AAAAAKggN2cXUJZO8+bK6Olh\ne928XmMZDAYlpjLiAwAAAKBiXDb4uPn6FHvt5e6lxn4N9WvqCRUWFspodNnBKgAAAAAupkalh/DA\nZjIX5OpMVrKzSwEAAABQg9So4MMCBwAAAADsUaOCz6UFDniQKQAAAICKqFHBp3m9xjIajKzsBgAA\nAKBCXDb4nPzkU20bHqeM/x62bfNw81AT/1AdTzslS6HFidUBAAAAqElcNvgYjEZZ8/OLPcRUKlrg\nINeSp9MZSU6qDAAAAEBN47LBx+jlJUmy5JiLbW8Z+MeDTHmeDwAAAIByctngY/K+FHz+NOITULSy\nGwscAAAAACgv1w0+Xt6SJIu5+IhPs3qNZDKaWOAAAAAAQLm5bvApY8TH3eSupv5hOp52SgUscAAA\nAACgHNycXUBZ6nbsoB6ffCijh0eJfeGBzfRr2kmdSj+j5gFNnFAdAAAAgJrEZUd8jG5uMnl6ymAw\nlNh3aYED7vMBAAAAUB4uG3yu5NICB6zsBgAAAKA8amTwaVo3TG5GN/2SQvABAAAAcHU1Mvi4mdzU\nrF4jHU8/pXxLvrPLAQAAAODiXD74WK3WUreHBzSVpdCik+lnqrkiAAAAADWNSwefneMe0L5//L9S\n97UMvPQgU6a7AQAAALgylw4+MkgFFy+WuuvSAgeJqazsBgAAAODKXDr4mLy9VWg2l7qvcd1QuZvc\n9QtLWgMAAAC4CtcOPl5esuSUHnzcjCY1r9dYJ9PPKI8FDgAAAABcgd3BZ86cOYqLi9Pdd9+tAwcO\nFNuXlJSkUaNGacSIEZo+fbrdxZm8vVWYlyerxVLq/pYBzWSxFupE2mm7+wAAAABQ+9kVfHbu3Knf\nfvtNy5Yt08yZMzVr1qxi+1944QWNHz9en3zyiUwmk5KSkuwrzstLksoc9QkPbCpJSmS6GwAAAIAr\ncLPnoB9++EHR0dGSpJYtWyojI0PZ2dny8fGR1WpVQkKCFixYIEl65pln7C7u+scnyejmJoPJVOr+\n8IA/gg8LHAAAAAC4ArtGfM6fP6/AwEDb64CAAJ0/f16SlJKSojp16mjWrFkaNWqU5s+fb3dxJk/P\nMkOPJDXybyhPk4d+YUlrAAAAAFdg14jPn13+kFGr1apz585p7NixCgsL04MPPqitW7eqT58+V20n\nISGhwn03cA/QyfQz2r7zR7kbHXI6uEbYc70BlcE1h+rE9YbqxPWGmsCupBAcHGwb4ZGkc+fOKSgo\nSFLR6E+jRo3UuHFjSVLPnj117NixcgWfLl26VLiWA4ZEnT6arIAWDXR9g5YVPh7XpoSEBLuuN8Be\nXHOoTlxvqE5cb6hOlQnZdk1169Wrl9avXy9JOnTokEJCQlSnTh1JkslkUuPGjXXixAnb/hYtWthd\n4NWEB/7xIFMWOAAAAABQBrtGfCIjI9WuXTvFxcXJZDJp2rRpWrlypfz8/BQdHa2nnnpKkydPltVq\nVevWrRUVFWV3gVarVbJaZTCWntGuq99cknT490TFtra/HwAAAAC1l903xUyaNKnY6+uvv97276ZN\nm+rDDz+0v6o/nP/ue/0872W1/L8H1HDggFLfE+obrGCf+tqX/JMKLAVyM3GfDwAAAIDi7H6AaXUw\nuHtIhYWy5OSU/R6DQZ1DOygn36zD549VY3UAAAAAagqXDj4m7z8eYGou/QGml3QO6yBJ2n3mYJXX\nBAAAAKDmcfHg4y3p6sGnbXAreZo8tPsswQcAAABASS4efP4Y8bnCVDdJ8jC5q0NIhM5kJisp81x1\nlAYAAACgBnHt4ONVNOJTmJt31ffaprsx6gMAAADgT1x6CTSPwAD1/HSZjO7uV31v59D2koru82FZ\nawAAAACXc+kRH4PRWK7QI0mBdeqpeb3GOvT7EeXkX/meIAAAAADXFpcOPhXVOayDLIUWHUg+7OxS\nAAAAALiQ2hV8bNPdDji5EgAAAACupFYFn+sCm8vP01d7zh5SobXQ2eUAAAAAcBE1IvgUFhSU631G\no1GRoe2Uak7X8dSTVVwVAAAAgJrC5YPPgaen6Ye77pbVai3X+zuHsqw1AAAAgOJcPvgY3d2lwkIV\n5l39WT6S1KlhGxkNRu0+Q/ABAAAAUMTlg4/Ju+ghppac8i1R7eNRRxENWupYynGlmTOqsjQAAAAA\nNYTrBx8vL0lSoTmn3Md0Diua7rb37KEqqQkAAABAzeL6wce7KPiUd8RHkjqHXVrWmuluAAAAAGpE\n8PGWjEZZcnPLfUwjv4YK9qmvfck/qcBSvhXhAAAAANReLh98mo6K002ffSL/iOvLfYzBYFDnsA7K\nyTfr8PljVVgdAAAAgJrA5YOPwWSSwWCo8HG2Za2Z7gYAAABc81w++NirbXAreZo8eJ4PAAAAgNob\nfDxM7urQsI3OZCYrKfOcs8sBAAAA4ES1NvhIUufQP1Z3Y9QHAAAAuKbViOBjtVhUmJ9f4eNswYf7\nfAAAAIBrmssHn+zjx7XtzhE6/t7iCh8bWKeeWtRrokO/H1FOfvmfAwQAAACgdnH54GPyqvgDTC8X\nGdZelkKL9iYdcmRZAAAAAGoQlw8+Ri9vSZLFbF/wualJF0nShsRvHVYTAAAAgJrF5YOPyfvSiE+O\nXcc3rddI7YJb60DyzzqVftaRpQEAAACoIVw++Bg9PGRwc1NBZqbdbQxq1VeStPboZkeVBQAAAKAG\ncfngYzAY5NUwxO6pbpLUJayDguoE6pvjPyo776IDqwMAAABQE7h88JGkGxa8pM6vv2r38SajSQOu\n66NcS542/7rNgZUBAAAAqAlqRPAxenhUuo1+4b3kYXLX+qNbVVhY6ICqAAAAANQUNSL4OIKvp496\nN+uu5Ozz2n2WB5oCAAAA15JrJvhI0qBWt0qS1h3d4tQ6AAAAAFSvayr4NKvXWG2DWml/8n91KoOl\nrQEAAIBrRY0JPpbcXOWcOVPpdgYy6gMAAABcc2pM8Dkw+Wntnfj/ZK3kwgTdGnVS/ToB2nr8R13M\ns++hqAAAAABqlhoTfLxCQ1WYm6u8lNRKtWMymhRzXR/lFuSytDUAAABwjagxwce7UZgkOWS6W1R4\nL7mb3LXu2FYVWlnaGgAAAKjtak7wCQ2VJJnPVH5RAn9PX/Vu2k3JWb9r79lDlW4PAAAAgGurOcHH\ngSM+0v+Wtl7LIgcAAABArVdjgo9XWKg86gfK6O7ukPaaBzRRm6DrtC/pJ53JSHJImwAAAABcU40J\nPu5+fur27jtqNvoeh7X5v6WttzqsTQAAAACup8YEn6rQrdENqu8doC3Hf1BWXrazywEAAABQRa7p\n4ONmNGlQ674yF+Tqw/1fOLscAAAAAFXkmg4+khTbqq+a1A3ThsRv9dO5o84uBwAAAEAVuOaDj5vJ\nTQ91u1cGGfT2rg+UZ8l3dkkAAAAAHKxGBR+rxaKsxF+UdSzRoe22qt9Cg1rdqrOZ57TiULxD2wYA\nAADgfDUq+BTm5WnfpMd1/P0PHN52XIe/KKhOoL48/JWOp55yePsAAAAAnKdGBR+Tt7c8AgNldtBD\nTC/n5e6lB7qOksVaqLd3fqDCwkKH9wEAAADAOWpU8JGKHmSae/6CLLm5Dm/7htB2urlZdyWm/qb4\no5sd3j4AAAAA56hxwce7UZhktcqclFwl7f818i75efrq4wNf6lzW+SrpAwAAAED1qnnBJzRUkqpk\nupsk+Xv6auwNdynXkqd3Ej6U1Wqtkn4AAAAAVJ8aF3x8wluo3g2dZPTyqrI+ejfrpsjQdtqX9F99\n+9uOKusHAAAAQPWoccGnXqeOavfcNAVE3lBlfRgMBt3f5W55unlq0Z7lSjdnVFlfAAAAAKqe3cFn\nzpw5iouL0913360DBw6U+p558+Zp9OjRdhfnTEE+9XV3h78oKy9b7+1Z7uxyAAAAAFSCXcFn586d\n+u2337Rs2TLNnDlTs2bNKvGexMRE7dq1SwaDodJFOsvA625Vq/ottO3ELm07keDscgAAAADYya7g\n88MPPyg6OlqS1LJlS2VkZCg7O7vYe1588UX985//rHyFTmQ0GvXIjX+Vp8lD7+xaqvMXU5xdEgAA\nAAA72BV8zp8/r8DAQNvrgIAAnT//v6WfV65cqZ49eyr0jxXYarIwvxCNjbxL2fk5ev3HxTzYFAAA\nAKiB3BzRyOVLPqenp+uLL77Qu+++qzNnzlRoOeiEhPJNJ7NmZanwl+MyhATLGBJc4Xorqq7VS618\nmunQuSN6a9Mi3RjQqcr7RNUr7/UGOArXHKoT1xuqE9cbagK7gk9wcHCxEZ5z584pKChIkrR9+3Zd\nuHBBo0aNUm5urk6ePKkXXnhBkydPvmq7Xbp0KVf/qXv26qfPv1STu0eqaewge06hwlrnRujxdTP1\nbepuDewcrfDAptXSL6pGQkJCua83wBG45lCduN5QnbjeUJ0qE7LtmurWq1cvrV+/XpJ06NAhhYSE\nqE6dOpKkmJgYrVq1SsuWLdPChQvVtm3bcoWeivAOC5Mk5ZyumoeYlsbf01d/u3GMLIUWvbr9XeUW\n5FVb3wAAAAAqx67gExkZqXbt2ikuLk6zZ8/WtGnTtHLlSm3YsMHR9ZXKs0F9GdzcZD57tlr6u6RT\nw7aKbR2lM5nJWrJ3RbX2DQAAAMB+dt/jM2nSpGKvr7/++hLvadSokd5//317uyiTwWSSV2hD5fxx\nD1F1Lpk9quMdOpj8s75K/EaRYe3VJaxDtfUNAAAAwD52P8DU2bzDwmTJvqj89Ixq7dfD5K5He4yT\nu9FNb+54X2nm6u0fAAAAQMXV2OATeGM3hQ4ZLFmrf3nppvUa6Z5OQ5WRm6U3dyyp0Mp1AAAAAKqf\nQ5azdoaQflFO7X9gq1u15+xB7Tl7UGuPblZsa+fWAwAAAKBsNXbEx9mMBqP+1v2v8vP01eI9n2rd\n0S3OLgkAAABAGQg+lRDgXVfP9HlU/l5+enf3x/rk4CqmvQEAAAAuiOBTSc0DmmhGv/+nEJ8G+vRQ\nvP6TsEyFhdV/3xEAAACAshF8HKChb5Ce7/f/1KxeY32V+I1e3v4f5VvynV0WAAAAgD/U6OCTfvCQ\nfluyVHlpac4uRQHedTW97z/UJug6bT+5Wy98+7py8s3OLgsAAACAanjwSdu3X6c+/UwXj//m7FIk\nST4edfT0LX9X17COOpD8s57f/LIyzJnOLgsAAAC45tXo4OPdKEySlHP2rJMr+R8PNw/9s9eDurVF\nTyWm/qZnNr2k37MvOLssAAAA4JpWs4NP2B/B57TrBB9JMhlNerjbaP0lYoDOZp7Ts5vmKznrd2eX\nBQAAAFyzanjwCZUkmc+ccXIlJRkMBt3baajiOvxF5y+maPqmBUrKPOfssgAAAIBrUo0OPm6+vnLz\n91eOCwafS+5sO0j3dhqqCzmpenbzfJ3JSHJ2SQAAAMA1p0YHH0lqGneXGg8f5uwyrugvEQM05obh\nSs1J1/TNC3Qqw7Wm5gEAAAC1XY0PPqG3xSokOsrZZVzV4Ov7aVzkCKWZM/TcpgU6me66o1QAAABA\nbVPjg09NMqh1X43vHKf03ExN37xAv6WdcnZJAAAAwDWB4FPNYlr10YNdRykzN0vPb35Zx1NPOrsk\nAAAAoNYj+DhBdMub9VC30crKu6jntrysvWd/cnZJAAAAQK1G8HGSqPCb9LfuY5STb9bsb17Ty9v+\nrdScdGeXBQAAANRKtSL4pO7ZqwNPT1PmkaPOLqVC+rTooRf6T1arwObadjJBE9dO1/qjW1VYWOjs\n0gAAAIBapVYEn0JzrjIOHlLKzl3OLqXCmgc00Yx+j+v+LnEyyKD/7F6mqRvn6lfu/QEAAAAcplYE\nn7qdOsrg5qbUXQnOLsUuRqNRA67ro5cHPateTbvqWMpxTf56jhbv+VQ5+WZnlwcAAADUeLUi+LjV\n8Vbd9u2U/cuvyr1wwdnl2K2ed1091nO8pvZ5VCE+DbTmyEZNWvu8tp/cLavV6uzyAAAAgBqrVgQf\nSQro2kWSlJqw28mVVF7Hhm300sBnNKxtrNJzMzV/2zua881CJWWec3ZpAAAAQI1U64JPxsHasTS0\nh8ldIzsM0UsDp6pDSIT2Jv2kf66boeUHVyvPku/s8gAAAIAaxc3ZBTiKd2hDdZo/Vz4tmju7FIcK\n8wvR1D6P6oeTu7V4z3ItP7RG3/y2Q+M7j9QNoe2cXR4AAABQI9SaER9J8m0ZLoOxVp2SJMlgMOim\npl20IPZZ3da6n37PvqDZ3yzUvO//pfMXU5xdHgAAAODyas2Iz7Wgjru3/ho5XH2a99B/Ej7Sj6f2\naPfZg+oX3kt/ub6/GvgEOrtEAAAAwCXVvuGRa0DzgMZ6rt8/9XC30arr6ad1R7fo72ue0Rs73teZ\njCRnlwcA+P/s3XmYHGWBP/BvXX333FdmJjO5MzlJMgkhhJvIeuCuByDKseqqq6ACIoJEQfmpCIiI\nRhbBrAsqGzkMIIuAColiQhJmcpCQBHJNJjOZ++y76/j9UdXVPekemCQz6aTz/TxPP9Vd/Xb1291v\nd9e33qq3iIjopMMen1OUKIi4cNLZOHfCYrzetBHP7XwFa/avx9r9b2Dx+Pn4+IwPYmLh+GxXk4iI\niIjopJCTwSfS0QE1EIBv0qRsV2XMyaKECyYuwXkTFmNTy1b88e0/443mRrzR3Ij542bhEzM/hOkl\nk7NdTSIiIiKirMq54KMGAmj4z+uRVzcdc+7+Qbarc8KIgojF1fNxZtU8bG3bidU7X8Lmwzuw+fAO\nzB83G1fO+Vf2ABERERHRaSvngo/s88E/dSoGdu1GfHAQit+f7SqdUIIgYN64mZg3biZ2de7Bqree\nx+bD27H58HYsGV+PT82+FJV5FdmuJhERERHRCZWTgxsULqoHdB19m7dkuypZVVc6BXdeeBO+c/7X\nMbmwFuubG3DTS3fhvzb+Fl1BDoNNRERERKePnAw+RQvrAQC9bzZmuSbZJwgC5lbMwI8+cCu+ufQ/\nUVb/oNsAACAASURBVOWvwGv71+HrL96J3zQ+id5wf7arSEREREQ05nJuVzcA8EyohaO4GL2NjTA0\nDYIkZbtKWScIAs6snoeFlXPx+sFNeHL7n/Dnd1/DK3vWYlHVPFwy5VzMKpsOQRCyXVUiIiIiolGX\nk8FHEARUfPASqMEgtGgUsseT7SqdNERRxHkTFuPs8fVYc+ANvPzuGrxxqBFvHGpEpb8cH5h8Ls6f\neBZ8Dm+2q0pERERENGpyMvgAwPgrLst2FU5qsiRj2eRzcPGkpXinex9e2fN3rG9uxGNbnsYTbz2H\npeMX4pIp52FyUS17gYiIiIjolJezwYdGRhAETC+ZjOklk/Hv8y/Hmv3r8Je9r2PNgfVYc2A9yrzF\nmD9uNhZUzsas0mlwyI5sV5mIiIiI6Kgx+JAtz+nDv9ZdgkunL8Nb7bvw2r512Ny2Ay/vWYuX96yF\nQ1Iwu7wOC8bNxoJxs1HiLcp2lYmIiIiIRoTBh9KIgogzKmbijIqZUHUN73TtRePh7Whs3Y7G1rfQ\n2PoWAKAmv8o8Z1DFLNSVTIYssTkRERER0cmJa6r0nmRRwsyyaZhZNg1Xn/EJdAS70dj6FjYf3oHt\nHbtxcFcLnt/1FzhlJ+aUTbeDUJmvJNtVJyIiIiKy5XzwaXvlr+h49TXM+t53Iblc2a7OKa/MW4wP\nTr0AH5x6AWJqDG937sGWth3YcngH3mzdhjdbtwEAxvnLMLd8BiYX1WJyUS2q/BUQxZw8bRQRERER\nnQJyPvhE2towuHMX+jZvRfGSxdmuTk5xyA6zh2fcTGD+5egIdGFL29vY0vY2trfvwst71tplnZID\nEwqqMbGoBpMKzUt13jiGISIiIiI6IXI++JSedy5anlmNltXPouisMzk08xgq85Xgkinn4ZIp50HV\nVOzva8a+noPY13sQ+3qa8G7PAezu3meXz3f6ccHEJbh40lJU+MuyWHMiIiIiynU5H3y8E2pRtPhM\n9GzYiP6t21Aw74xsV+m0IEsyphZPxNTiifa8mBpDU38L9vY0YV/PQbzZug3P7XoFz+16BXPKp+Pi\nSefizKozOEgCEREREY2602INc/ynLkfPho1o/sNTyD9jLnt9ssQhO4aEoZgWx8ZDm/HXva/jrfbd\neKt9N/KcPqsX6ByMYy8QEREREY2S0yL4+CZPQuGiesR6eqEFg5B9vmxXiQA4JAXn1J6Jc2rPRMtA\nG/6293WsPfAGnt/1Fzy/6y+o8ldgXF45Kv3lqPSXWdNy+J0+hlciIiIiOiqnRfABgGk33QDJ4+EK\n80mqKq8C186/DFfO/TdsPLQFr+1fh309TWgZbEsr61XcqPSXY3Z5HZaMr0dtQRU/VyIiIiJ6T6dN\n8JG93mxXgUbA7AVahHNqF8EwDAxEB3F4sAOtg+1otaaHB9qxr68Z7/YcwOqdL2GcvwxLxtfj7PH1\nGJ9fyRBERERERGlOm+BDpx5BEJDvykO+Kw91pVOG3BdVY9h8eDvWNTegsfUt/PHtP+OPb/8ZVf4K\nLKlZgLOqF6A6fxxEgcNlExERERGDD52inLIDZ41fgLPGL0BEjaKxdTvWNzeg8fB2PL3jRTy940W4\nZCdq8qtQU1CF2vwq1BZUoSa/Ch6HO9vVJyIiIqIT7LQNPlokAsnlynY1aBS4ZCfOrqnH2TX1CMcj\naDz8Fhpat6Op7xD29hzAOynnDgKAUk8R8gUfDu3sxozSKZhUWMMhtImIiIhy3Gm5ttexZi32PbIS\ns+78DvzTp2W7OjSK3IoLS2sWYWnNIgBAXIujZaAdB/tb0NR3yJq2YE/kIPZsOwjAPK5oavFE1JVM\nwYzSKZhWPBEuhaGYiIiIKJeclsHHWVwMLRhE85NPY+Z3b892dWgMKZKCCYXVmFBYDWCxPX/Nhr/D\nMc6DnZ17sLNzD97ueBc7Ot4BAIiCiImF4zGjdCpmlk5BXekU+BwcHIOIiIjoVHbMwefuu+/G1q1b\nIQgCbr/9dsyZM8e+74033sADDzwASZIwceJE/PCHPxyVyo6WvNmzkDdzBnrfbEBgz174pkzOdpXo\nBPPLXtTX1OPsmoUAgEAsiN1d+7Czcw92de7B3t4m7O1pwgu7/woBAmryKzGjdCpmlE3BjNKpKHDl\nZfkVEBEREdHROKbgs2nTJjQ1NWHVqlXYu3cvli9fjlWrVtn333nnnXj88cdRXl6OG264AX//+99x\n3nnnjVqlj5cgCBh/5RXYccf30fzkU5hx+23ZrhJlmc/hRX3lHNRXmgE+qsbwbvc+vN25Bzs738U7\n3fvR1N+Cl/asAQDkOX3wO33m1OGzbyfmjc+vRE1+JSRRyuKrIiIiIqKEYwo+69evx7JlywAAkydP\nxsDAAILBILzWuXKeeeYZ+Hw+AEBRURH6+vpGqbqjJ3/uHPjrpqNnwyYE9u2Hb9LEbFeJTiJO2YHZ\n5XWYXV4HAFA1FXt7m6xd495FR6AbA9EAWgfaYcAYZhlOTC2agOklkzG9ZBKmFk+E1+E5kS+DiIiI\niCzHFHy6urowe/Zs+3ZhYSG6urrs4JMIPR0dHVi3bh1uvPHGUajq6BIEAeM/dTla//R/EGVulaf3\nJkuyFWAm42Mz/sWer+s6AvEQBqMBDEYDGIgG0BcZwP7eZuzu2ovtHbuxvWM3AECAgOq8CkwrmYyq\nvHKU+0pR7i1Bua8UTtmRrZdGREREdFoYlcENDCN9i3d3dze+8pWv4Hvf+x7y8/NHtJyGhobRqM7R\nufRD2NnZCXR2nvjnpqwai/YmASiGF8ViHRaW1SFSHEVLpAMtkXa0RNpxeLATzQOH0x7nkzwoUPwo\nUPJQpORjvHscKl2lPAFrjsnKbxydttje6ERie6NTwTEFn7KyMnR1ddm3Ozo6UFpaat8OBAL44he/\niJtvvhlLliwZ8XLr6+uPpTpER62hoSEr7U3TNTT3H0ZboAPtgS60BzrRHuxEW6ALLaEOHIq022Xd\niguzyqZjbnkd5lbMwDhfGQRBOOF1ptGRrTZHpye2NzqR2N7oRDqekH1MwWfp0qVYsWIFrrjiCuzY\nsQPl5eXweJLHLvz4xz/G5z73OSxduvSYK0aUiyRRShleeyhVU9EV6sGBvkN4q30XtrXvwpstW/Fm\ny1YAQImnCHPL6zC9ZDIK3HnIc/qR5/Qhz+nnrnJERERE7+OYgs/8+fMxa9YsXHnllZAkCXfccQdW\nr14Nv9+Pc845B88//zwOHjyIJ598EoIg4KMf/Sguv/zy0a47UU6RJRkV/jJU+Mtw1vgFAICOQBe2\nte/EtrZdeKtjF17dvw6v7l+X9lin5LBDUIm3CDX5lebIcgVVqPCWQhS5yxwRERGd3o75GJ9vfOMb\nQ25Pnz7dvr5t27Zjr1EWxXp68e4vfonaqz7Nc/vQSaHMV4JlvnOxbPK50HUd+3oPoqnvEAasgRQG\nooPmJWLePtjfgr29TdhwaLO9DIekoDpvnDXEdhXKfMUodOWjwJ2PAlceHJKSxVdIREREdGKMyuAG\nuSJ08CD6Gjcj0noYZzxwH2QPhx6mk4coiphSPAFTiicMW8YwDPSG+3Gwv8W6tKK5rxXN/a3Y13sw\n42O8ihsF7nw7DBW7C1DsKTQv7kKUeArhd/p4fBERERGd0hh8UhTMOwNVn/w4Wp5Zjb0PPYxpN9/E\nlT06pQiCgCJPAYo8BZg3bpY9X9M1tAc6cbC/FV2hXvRF+tEb7remA+iLDKBloG3Y5SqijCKPGYLK\nvCUo91kXbynKfSXwObz8rhAREdFJjcHnCDWfuRID299G1z/+ify5c1FxybJsV4nouEmihMq8ClTm\nVQxbJq7F0RsZQE+oF93hXnSHetEVMqc9oT50hXuxo+Md7MA7aY/1KG7znET+UlT6y1Dpr0ClvxyV\n/nJ4HO6xfGlEREREI8LgcwRRljHtmzdiy43fxP5HVyJ/9ky4KyuzXS2iMadICsq8xSjzFg9bJqbF\n0RnsThmK25x2BLrQMtiG/X3NaY/Jd+XZIagqrwITCqpQW1ANv9M3li+HiIiIaAgGnwxcZWWY+vXr\nETzQBFd5ebarQ3TScEgKqvIqUJWh5yhxfFHrYBtaB9vROtBuTgfbsatzD3Z2vjukfKE7HxMKqlFb\nUI2a/CpMKKhGhb8MsiidqJdDREREpxEGn2EUn7UYxWctznY1iE4ZqccXzS6vG3JfTIujbbADhwYO\n40DfITT1teBgXws2H96BzYd32OVEQUSZtxgVvlJzaG9fKcb5yzDOV4YSbzFDERERER0zBh8iGnMO\nSUFNQRVqCqpwds1Ce/5gNGCGoP4WHOg7hMMD7Tgc6MCWtreBtreHLEMUROQ5ffA7febU4YPP6UWe\n0wu/IzHfj3yXH/nWyV1liT9xREREZOJaARFljd/pw+zy6ZhdPn3I/FAsjLZABw4HOtA22InDgQ60\nD3aiPzqInnAfmvtbR7R8j+JGntOHfKcf+a48FHsKUeIpsqaFKPEWocCVB1HgCV6JiIhyHYPPUYi0\nteHwiy9hwr9fA0HiLjdEY8XjcGNSUS0mFdVmvF/TNQRiQQxGgxiIBhCIBa2TuQbQHxm0T+zaHzFP\n8toR7IZu6BmXJQkiijyFKHD64ZAdcEgOOCQFTmtqzlPgkBTIogxZlI6Ymtc9ihtehwc+hwdehwce\nxc1ARUREdBJh8DkKBx7/Pbr/uQ7Rri5M+8aNEGW+fUTZIIkS8l15yHfljai8bugYjAbsIbq7Qj32\nUN1doR50h3qxv+8QVF0dtToKEOBxuOFTPPA5vRCiBjY3vINidyGK3AUo9hSgyGNed8nOUXteIiIi\nyoxr7kdhylevQ7y3F93/XI/dqorpt9wMUVGyXS0ieh+iINpBabheJADQdR0xLYaYFkc0MVXNqarH\noeoaVF1Nm8Y1FaF4GMFYCIFYCIF4CMFY0LweC+JgXwviuoo9ew5mfF634oJPMXuJPA63OVXc8Coe\neBwueBQ33LIbbsUJt+KGW7amigtu2Qmn5IAsKZAEkSeSJSIiGgaDz1GQPW7MvPM72Pmje9CzYRN2\n/uge1N12CyQnt9YS5QJRFOESXXAprlFdrmEY+OemdRg/rRbdoT70hPvQE+61rveiNzyAUDyMjlA3\nwv2R43quTLvj5Tv9KPEWodRbjFKPNfUWodRTzBPMEhHRaYPB5yhJLhdmfufb2HXPT9D7ZgN6NmxC\n6XnnZLtaRHQSEwQBbsmFWuu8Re9FN3RE4lEE4yGE4mHrEkE4cVHDCMejCMfDCKnmPLNHKrUnamhv\n1MH+Fuztbcr4fB7FjXyXPzlKnj1ang8+hxd+pxc+hxc+h8eaeuGQFPYsERHRKYfB5xiIDgfqbrsF\nPRs3oWTp2dmuDhHlEFEQzd3dRrEnRjd0DEQG0RnqQWewG53BHnSGzGlXqAcD0QA6Al3QhhkA4kiK\nKMPn8MLr8MCruOFSnHDKTrgkJ1yyE07ZAZfshEt2QZFkiIIISRAhiRJEQbQvkihCEWUo1uARiYEl\nHJICxRpgwiU7GbKIiGhUMPgcI1FRGHqI6JQgCiIK3PkocOdjavHEjGUMw0A4HsFgLIDBaNCeDkQD\n1rFLQesSsm/3RQbQMtgGwzDGtO5ehwd+q7fJ5/Ta170Oj7U7n2SFKwmSKEIUJEiCCEWSk8dLWaPt\neRU3FInHZhIRnY4YfMaAoesQRA5jS0SnDkEQ7J6mcl/piB9nGAbiWhwRLYaIGkVUjQ6ZxjQVuqHb\nF03XoBsGNEODbuiIayriehwxLY6YNZBELOV2MB5GIGqGrrZA57DDkh8NRVLgtQKRW3bBlTpohOwy\nB41QXHCl3HbJLnNwCdk8BswtO+GQHHboYq8UEdHJj8FnlAX27cM79z+IqV+/Hv7p07JdHSKiMSUI\ngnmuI9mBPKdvTJ8r0SsViAUxGAsiGAtB1TXohgbN0KHpunldN0NWXI8jGAsjGA8jFAuZ03jImmf2\nXHWFehDT4sdVLwFChvM7Scld9+T0c0O5JCc8DnPkvtTzP3mV5HXu5kdENLoYfEbZ4M5dCLe04K1v\nfwc1n7kSVR//N57slIhoFKT2SpWhZNSWq+kawmoEkXgUYTUxiIQ5jajRIbdTyw0ZSEIbOsx5XFcx\nGAvYQ6Mfy+6AkiDaA0okwpE90ITTC7/DB7/TC7/TN+S6g7vyERFlxOAzysZ95MNwjx+Pdx/4OZp+\n+3v0bdmKqTd8Dc7S0fuTJiKi0SOJkh0wxoJhGNB0LeX8UOZugak9T4ljp4L2eaCSx1INxgJoC3SM\nePAJp+SADAnew6vhkBxmT5OcHDzCPO+TDFlI6aWShvZWuWQnnJITLsVpDVSRGLjCae8SqHB0PyI6\nxTD4jIGCuXMw78H7secXD6Fn4yZsu205Fj7yEHt+iIhOQ4IgmMFCkuHBsY3WZxgGImrUHmAiEAti\nMBrAQDSAwWgAg9btwag57Qv2Q9N19MUH7JPyjjZJEO0T6XpSjo1ySA57JD9RECGK4pDbgiBAhAAI\nAgQIEAQBAgBBECHAPBeVIsnmNPW6JEMRFXtEQEmQIAqCOZjFkOcw50uiOciFKFq3BXMgDKfshCLK\nDG1EpyEGnzGi5OWh7vZb0fHqaxBEkaGHiIiOmSAIdrAo9Ra/b/mGhgbU19fbtxODUEStEDT0vE/m\nVNM1qHbPVBRR1eyZsi/xKCJa1NoFMIJQPIJIPIKQGkFnqAfheAQGxm6Ev9EkQLCOtTKPT3NKDjjt\nqTN5+4h5itUzZo4gmOwhk6zRBRUxORy7IslwiApka5qYz8BFlD0MPmNIEASUX3xRtqtBRESnudRB\nKMaKYRiIqlHEtLg1il9y9D4tMbKfbs4HDHtqWI81YNgj/8Wtk+8mTsIb11WoehxxTU0uK8MogYmB\nLTRDs57LfO7EY+KaNWKgtbthTDXDYH90ENFgdEx6xlLJomwPq+5V3PCkDLPusXrPhhtNMBGaUnvH\nhJReM4doDpzB3iyi4TH4ZImhadj/m8dR8cFL4KmuynZ1iIiIjosgCHAp5nDfpyrd0M0eLzXZ4xXT\n4uYQ7VpsSM9Yak+ZZpi341occV1FTIub1zUVMd28HlVjCMXN47oCsSDaA50jPm7raIiCmNJj5YQr\n0WNln1g4ebxW4rpDUqAbujVKojlNvK5EuAQAAbB2UYQVrszrnd2daN7ZZZ+IOPH8DskBp6xAgAgz\n5BowF5UMvADM3rGUExjbIyBKDog8PQiNIgafLOl5swGH//QC2l78M0rOOxdVH/sovBMmZLtaRERE\npy1REO0wMNYMw0BMi9sDXITiYYTjUURSRxBMGVVQ1VQk+sgSPWTmFDCsc2JFtSgiaiwZ3LQoAtEA\nImp0TEJWqnW9m8dkuZIowSEq9jFeiiSbuxKKqVMZ0hHDyaceI5YIUalTpzXMvCLK5rFo1rFiUtp1\n8zgxKXEMWeLYsSNus5ft1MDgkyVFZy5C3W3fQtPvfo/O19ag87U1yD9jLmo+/SnkzajLdvWIiIho\nDAmCYB9HVOQuGPPnUzUVEW3oMVtR+8TDMXvAiMQxS5IgWlNzcAgAQ3ppEsELAHbsehsTJ09EVIsh\nqpojF0atExJHtSh0w7B2yQPMXqLkdQBQdTV5AuOUY9FiWgwxNWbu+qirds/ZYCwI1epNO5ah4seC\nYA2gIVkDeiQH3xg6qId93ZoKVq8Zhgz6AbtMMshJZrizPiPZDmzJ50gdTMR8rARFlFMGDJEgi4o5\n3wqSyTBo9ropqVPrGDVRyJ1eNwafLBEEAcVLFqNo8SL0Nm5Gy+rn0L91G6LLLgIYfIiIiGgUyZIM\nnySPybDtg+5ezBs3a9SX+34Mw7BOXqzZ59WKpw7coWmI61aYsgKZHaiseZp10mPzODEDum6dEDnl\nZMj2cWr2fcnrqcebadZxbJp9UmUNhmFAhwHDOu4tsTuhbh3ThkSvHQzAKgsD9v2aVT6bMvW6yaJs\nDuphDfRhDvCR6C0z5x85qmPqSI+yFchSe+cS1/1OH86sngdZHP2BwRh8skwQRRQtrEfRwnoE9u6D\np7Ym21UiIiIiOukJgmD3gDgxdgN3ZJuu61Ct461SR2JMDCKSDF/JIJY4Viv1RMtxPW6FQXNeooct\nnjrV4/Z81TpmLa6p9n2JXregHrLrlAh9o+mui25GXemUUV0mwOBzUvFNnpRxvhoM4p2fPoiSc89B\n8VlnQnKdugeOEhEREdHIiaIIB0RAUrJdlWElet90XYNqjaqY6EVL602zpmrK6I2pIc0hOTC1eOKY\n1JPB5xTQv207et9sQO+bDdjrcqHk7CUovfB85M+eBYGjnRARERFRFiV63yBKJ3XfG9eaTwHFSxZj\nwX/9AtVXXAYlz4+OV1/Dju9+D/seXZntqhERERERnRLY43OKcFdWovaqT6Pm05/CwNs70fHaGhQv\nOStjWcMwOKwiEREREVEKBp9TjCCKyJ89C/mzhx89Zdfd9wCCiKIzF6Kwvh6OgvwTWEMiIiIiopMP\ng0+OMTQNkbZ2hJoOoueNDQAAT20N8ufORe1VV0Jyu7NcQyIiIiKiE4/BJ8cIkoT5P38AoUMt6Nm4\nCX1btmJw5y7Eenow8fP/nu3qERERERFlBYNPjvJUV8FTXYXqT3wMeiyGSFtbxhHgwi2t2H3/z+Cf\nPhX+6dORVzcNzvJyHiNERERERDmFwec0IDoc8NRkPjFquLUVoaYmBPfuRduLLwEAlPx8lC27CBOu\nvfpEVpOIiIiIaMww+JzmihYtxFmrfofgvv0Y2LUbg7t3Y3DXOzDi8YzlQwebEWlvh3fSRDiKitgz\nRERERESnBAYfgqgo8E+fBv/0aQA+CgDQhwk+nWv/jkNP/xEAoOTnwVNTA0/NeJScew7yZtSdqCoT\nERERER0VBh/KSFSUjPOLFp8J0elEYO8+BPfvR/9b29H/1nZ4amsyBp+BXbuhRyJwV1XCUVyc8Tgj\nIiIiIqKxxuBDR8U/bSr806bat7VIBKHmQ3CWlmQs3/LH1ejZsAmAeayRq3Ic3JWVqP7kx+GbMvmE\n1JmIiIiIiMGHjovkcsE/dcqw95df8gF4J0xAuLUV4ZZWhFsPI3SgCZX/emnG8k2//1+og4NwlZfD\nWVYGZ2kJnKUlUPLz2VtERERERMeMwYfGVNHCehQtrLdvG4aBWE8vlDx/xvJdr69DpLU1bf7cn9yT\nMWAN7NoNyeWEo7gYss/HwRaIiIiIKCMGHzqhBEGAs7ho2PvPuP9eRDvaETncjmhnp3Xpgqu8PGP5\nd37yU0Q7uwCYu9I5iorgKCnG9JtvgqOoMK28GgpBcrtH58UQERER0SmDwYdOKrLHDXnCBHgnTBhR\n+YoPfwjRjk7EeroR7epBrKcbAzvehuhyZSzf8KXroEUiMDxubC0rg5KfD6UgHxP/4/OQPemByNA0\nCJJ0PC+JiIiIiE4CDD50Sqv+xMfS5umqClFOb9qGriNvZh1iPb0ItHcguP8ADFUFAEz+8pfSyxsG\n3rjyagiKDCUvD0peHmRrOvm6/8z4HLGeXsg+L0SHYxReHRERERGNFgYfyjmZAgkACKKIGbffBgBo\naGjAggULoIVCiA8MZBy+21BV+OumI97fj/jAIKIde80eIFnGlK9dl15e07Dpc18w6+BwQPb5IPt9\nkP1+zP7B99OOPzIMA72b3oTk9UK2LpLXC8nt4rFKRERERKOMwYdOW4Ig2IEjE1FRMPv/fc++bRgG\ntGAIamAwYzDR43GUnLMU8cFBqIEgtGAA0a5uxLp7MpbXwhHs/OGP05/X5cKSP/w+4/L3r/wNJI8H\nktsN2eOG5HZD8vpQvHjRUbxyIiIiotMPgw/RCAmCANnnhezLHJQklwvTb/lG2nxD1zMvTxQw4bPX\nQg0GoQaDZqgKBoFhenvUQABtf345bb7s96N48f+kzY8PDOLNL34ZktsFyeUyQ5LbDaWgAHXfujmt\nvB6LofPv/4DodJmPcTohWo/zVFdlrBMRERHRqYLBh2iMDXf+IcnlQtXH/23Ey5H9fsz/xQNQgyFo\n4bB5CYWGLW/oGtxVlXbZWG8f9EgEjuLijOXjg4PY84uH0uYrhYU4839+nTY/1teHbbd8G5LLCdFp\nXiSnE46iIkz56lfSymuRCDrX/B2iw2GVd5i7BHo8PJktERERjTkGH6JThCjL8NTUjLi8o6AA8356\n35B5hq5Dj8czlpfcHky94avQIlFokQj0SARaNDrsQA1GPA5D181AFY1Cj8UAAM7ysozl4/392Ptf\nv0qb7ywrxcJHH06bH+noQOOXv2oGJYcDokOB6HDAWVaGWd/7bvryBwZx8PdPQFAcEBXZfIyiQMnP\nQ/kHlqWV12MxBPbshaAoEBUZgqxAVBSITiccBfkZXwMRERGduk6q4NMfiCLf58x2NYhyliCKkJyZ\nv2Oyx42yiy4c8bKcpaVYtDIZZAxdNwOQNVJe2vL9eZj2jRuhx8yQpEVj0GMxSMMMPS4IInxTpkCP\nxezHqIEgRNdAxvJqYBBtL72SNt81riJj8Il2d+Otb38nvXxFOep/ld7zFWlvx7Zv3W6GJEWBKJtT\nV3k56m79Zlr5WF8/Dv7+CYiKAkGWEe/qwsHd70IpKMC4D38wrbwWDqNvy1YIsgxBls3lyzIktyvj\n8O6GpkGLROyyEEUOikFERPQeTqrg89m7XsbCGeW4aGENFs4ohyJn3kWIiE4+giiaxxENc7/scaP0\n/HNHvDxnaQnm3vujoyhfivm/+Bl0NQ49Focei8FQ1WHPwyR7PKi+7BPQVRVG3HpMPA4lz5+xvKEb\nkDweGGocWjgMVVWhx1V7SPQjqYODaH/lr0PmNQNwV1VmDD7R7m7s+vF9afNdlZWo/69fpM0PHz6M\nzdffMGSeIMvwjK/GvJ/dn1Y+0t6OnT+6B4IkQ5QlCJIEQZbhLCvD1AyjFMZ6e9H8h6fscoJkPsZR\nUIBxH/lQ+usNBtGzYSMESYYgiXZ5yetB/qxZaeX1WAzhw212ucRjREWBkpeXVp6IiOh4nVTBvsL2\nXwAAIABJREFUp7rMjze2t+GN7W3I8zpw3vwqXLywBpOr87klk4jek6go8NSMH3F5JT8ftddcNeLy\n7nEVGQPIcFwV5Zj/y5/DUFXo8Th27diBaVOmDBvElLx8TPzC52ComhnGrIvs82UsLzmdKDpzEfR4\nHIammeU1DY6SzMdw6fE4op2dMFTNLg8A7vHVGcvHBwYzDqbhHl+dMfjEurvx7oMrMpZfsOLBtPmR\ntnZs+fpN6eWrq7Hgl+nlQ82HsOWGb5jvn2gFK1GEZ3w15tz9gwzLb8Oue35il0s8zlVejqlfvz6t\nfLS7G02P/w6COHT5juIijL/8k2nl4/39aHv5L3a5xGOUPD9Kz0sP+GoohL7NW1PKivbGgrwZdWnl\ntWgU4ZZWs+4pjxEVB5wZPmND06BFY+ZyBcH8jHV92GMMiYhORydV8PnFNy/EvpZ+/O3Ng1jbeAgv\nvL4fL7y+HzUVflxx8TScvyDzHzQR0clGVJQho+GJA/3In53e85Gg5PlR+dFLR7x8Z2kpZiy/bcTl\nPdXVOOuJ39q3DcMAdB2GpmUs7x5Xgfm/eAB6IihpGgxNhSinn/MKgDmoxdeus0KVBkPXYGg6ZK8n\nY3nJ60XFhz5olTPLGpoGR1FhxvKiIsM3dYpZTk/WSRpm+XoshnDrYfM1WhfoOtTBwYzl1cEAOtf8\nPW2+p7YmY/CJ9fbh4O//N718zfiMwSfa0Ynd9/4kY/n5v/hZ2vzI4TZsvSl9F8rhyieCYap171P+\nrW9/xwpVgh2w3FVVmPX9O9LKhw8fxu77fmpuhBRFCIIZxFwV5Zh6w9fS69/Rgf2//g0EMVkeoghn\naQkmXHt1Wvlodw9anllt1iXxHKIIR2EhKv81/XsR7+9H+19fBQSz7ompkpeXsWdZDQTRs2kTIIgQ\nxMRjRMheDwrmnZFWXguHMbj7neQupKIAQRAhulzwTZqYVj7R3gRRAIREfQQzqJaWpJU3NA1qIGCV\nhfX+CGYv6TC7IxPR8Tupgg8ATKrKx6SqOfjcpbPQuKsDf3vzIDbuaMdPft+AfS39uPYjMyGJ7P0h\nIjoegiAA1m5mmYgOx1ENpiH7fChfdvGIyzuLizD5y18ccXlXRQXm3jPyXR89NTVp58MydB0wjIzl\n3dVVWPjrXw0NYro+7AmRnWVlmPm979rhMRGuhjtmzVFUiIlf/I+0ICb7M/foyX4/xl36Ybtc4jGO\noqKM5SW3C4UL6wFDh6HpGOjvh8/rhass82AjgihCKcgHDCPlOTK/NwCgx+IIt7TadYFhwDAMcwj+\nDLRQCD0bNqbN99TWZAw+6uAADv/fixnLZwo+sd5eND3+u4zlMwWfaFcn3v1Zeo+tp7YG83/+QNr8\nSHs7dtx514jLh1tbseWG9NMEDFc+1Nx8VOWDB5rMYCsIZqiypp7aWsz76b3pyz/YjLeW32GHNsAM\nYu7qasy+6870+re0YuePfpwMkjDbiKtyHOq+lR7Aw4fbsOfnK+z6xAIBbH/2T3BVlGPK9emjekba\nO7D/1/+dVn9nWSkmfu7f08pHO7tw8IlVQ+oOQYCzuBjjP3V5evnuHrQ+9/yQZQPm9y7TBqVYXx/a\nX/5LWn2U/HyUL7sorXx8YABd/3gdVkq1HyP7/ShZuiStvBoIoGfTm1Y5M9wC5ikxChfMTy8fCqH/\nrR1mtVPe/2F7hMNhBPbus5ebqL/kcsE7cUJ6+WgU4ZaW5HtpvQ7R4YB7XEVaeT0eR7Sr26yPkChv\nbtBzFKZvnDI0DfHBQLJ84j0VJcged3p5a6Cl1M8q8Zjh/pNGyzEHn7vvvhtbt26FIAi4/fbbMWfO\nHPu+devW4YEHHoAkSTjvvPNw3XXp+4+/b8UkEWfOqsCZsyrQ2hnAXSs34I9r9uBQRwA3X7UAHlfm\nrY5ERESZvNduX6IsZ9wyPxzZ40bh/HkjLq/k5aHy0g+PuLyzuAiTvvgfIy7vKi/HzO/ebt9uaGjA\nnPr6Ycu7qyoz7oI4HG9tepAErJ7DDDzjx2Px7x+zApvVu2jo5kpgpvqPG4d5D95vhSrYYWy4USWd\nZWWYecfyZM+lFcYkd/pKFgA4iosx5atfSdbHMABDh+zLfEyfUlCAmqs+nQx5Vn2UgoKM5WW/HxUf\n/iBgwAyfhgHoxrA9mJLHg+Kzl5hldQOA+RzO0tKM5UWnE3mzZtqBE9ZjnOXlGcvD6v0yl2u+VhiA\nKGdeqTQ0FergoLldIKVOw73/ejSCgV27gZTz1PXD7InLRAuF0LNxU9p8T20NkCH4qIEAOl59LWP5\nTMFHHRhA63N/ylg+U/CJ9/aZwSpD+UzBJ9bdg32PrMxYPlPwiXZ2DRu0MwWfaHsHdv0o/YTmwwbz\ntnZsX57eMzts+dbD2HrTLSMuHz7Ugi03HkWQP9h8dOWbDh5V+dEkGMP9ar2HTZs2YeXKlXj44Yex\nd+9eLF++HKtWJRvQRz7yEfz3f/83ysrKcPXVV+Ouu+7C5MnvfZ6OhoYG1L/Hj3QgHMc9j2/Clnc6\nMWFcHr77+cUoK8q8iwPR+3m/9kY02tjm6ERie6MTxTAMNLz5JuoXLIBhGBl7SQ1NgxaOwA5i1tTc\nPTE9fOrxOGLd3XYQgwEYhtkD66pI76HQolGEDjYnKmQHRNHhyLhrohoKI/DOO2aItFaDDV2H5HZl\nHIxFDQTRt3Wrtdzkc0heD4oWpn/P4gOD6H5jA6yK269Z9vlReu7S9PL9/eh4bW0y2FoXOS8PFZek\nj0oa6+3F4RdfGvJ6AUApyM8Y9KLd3WhZ/ZxV1nwvYZg9YuOvuCy9fGcXDq76Q0qQN5/HWVKc8djY\nSHsHDvzP41Y9kq/XWVqacQNOpK0Nex9+NPneW69huB7DIx3P79sx9fisX78ey5aZH8TkyZMxMDCA\nYDAIr9eL5uZmFBQUoNzaCnH++efjjTfeeN/g8358bgXf+8JZePS57fi/f+7HzQ/+Hbd/9kzMmJi5\n25+ITg6qpiMS0xCNqVA180dOEAABAob2cguJXvuU+5JTUQCcigRJ4sHaREQnC8HaPU6QJAx3IIIg\nSZB93hEvU1SUjAFnOJLTCf/UKSMuL3vcGY/tGra8z4uSpWePuLyS588YWIYtn5+Pqo/964jLOwoL\nUXvVp0dc3llcjElf+PzIy5eWYOrX0geBGY6rvCzjaR2GLV9RkfF8fCfCMQWfrq4uzJ49275dWFiI\nrq4ueL1edHV1oShlH+SioiI0Nzcff00BSJKIL39iLsaX+fDIc9tx+3/9E1+7Yh4uWjjykZzeSzSu\nob07iLaeENq6rGl3EJGohnyfAwV+Jwp8ThT4nci3pgU+J0oK3JC5MpY14aiKrr4wOvvC6LIufYNR\nKLIIl1OGyyHB6ZDgdshwOWS4nBIOtEUg7u6AuceAAd3aImNeB2JxDYFQHIFwHIFwDIFQHMGweTsY\njkPTDTgVEQ5FglORhk4dkvWcMtxOa5py26FIiMU1hKMqwtHE1LxEoipiqg6PU4bHLcPnUuBxK/C6\nFHjdCjwuGW6nDFEUIImCNRXt24nj33Rrq5Sum1uP9CHXE1tYzHIwrI061n3hiIpgxHq9oTiCkeTr\nDkVUqKoOVdehaQbimg5N06FqBlRNR1zVEY2piMS0tLAzWtxOCR7r/Uh9X7wuBYosQpFFyJIIWRah\nWFNZEiEKZlsJRVWEI+b7HbKnccTiOjRdh24Y0DSrLegGNN2cSpIIt1OCy2F+Bom25HbKcDokGAag\nquZ7EFd1xDUNqmogrmrQdAODg4N4dtM6M8iJAkTBvJiH2ghwKpLVXs02m2hD5nUZiiLCIZttziFL\nUBQRTkWyX69oHRQuCjCXKyavJ+7LZfZnZRjQNH3IZ2d+lrA/08RUEACHbH4nHdb7OVyw1nQDsbiG\nWFxDXNURUzWIgmC//2bbkyBLuf9eExGdqkZlcIP32lvuaPaka2hoGFG5Cjdw1fnFeOr1bjzwv43Y\ntPVdXHRGHsSj/LOJxnU07g1iZ3MYPQEVgbD+/g/KQJYEVBc7ML7UgZpSJ8aXOOByHF8QCkY0tPfF\nMRDS4HGKyPNI8LsluJ3iUb/O0aTpBqJxAzFVRzRuIBLTEYnriMYMROLm9UjMvC8W15H66SeagpFy\nO7FCklw5hx0+gETPQOYegkBEx0BQRSR+jCvWr3Yd08NcirlSqaoG4qO8Un8qE0VAFgUosgCHLMDr\nFFHoUezbipwMZlbeMrv1rccPaR8pYSwxz9CBmGq1s1gcnT0xNMf14Y5VPyqCACiSAHOAKzMwCELi\ntnldjavoDhuIqcaxh7n2zuOv7DGSRNjhWJJSrls/VSl7V8CAFZxTXuaR38XEMb6iYP4GKpIA2bqk\nXpdEwX6sKCaWkZyn6QbiGhDXdPs7FdfM9ziuGtB0WAHGnGqGOS8ZdIYcZnDcEq9Hlsy2qlp1eY/j\n/tNIIjK+F6nzJHHo+5DW84nkb6G50cL8POzfzMSTpdTLSLmhG8CjL//5iNB3xNQ48ncY9oYRyfou\nZ/psE+1GtMN1ynVRMDcCWO+bqhlQdWPIbUFILuvI51Aks32KQsr3UQQkayoIyXZqvwY9ubHHQPL9\nTGxYSL0uidbzyNbzSwLk1OvW88uiAEkSzKn1WR0Nw2qnqe+BpiPj+yWm1C/xmo/meVK/q0O+pyd4\nXWGk63CA9f01kNw4ocNqj1abT1y32vqQ3y/r+yVl+GyMxH+K/R8y9LtiYOgXOfH/kfrcqe3ryPUW\nHHk7Q90y1WssHLl+nfYTlfIeAEN/2xPlM/32JNoQUr5rRz4+9X01Em946nMh82/Lkb89aXWy5jkU\nAeMKlTF5D48p+JSVlaGrK7nS2NHRgVLrgLyysjJ0dib/3Nvb21E2zKgyRzqa/fXqAZx95iD+38oN\neP3tQezr0HHxohpcWD8epYWZD25M6O4P40//2IeX1h9AMKJCFICSQg8mV3tQUexFeZE5HVfsRUWx\nBy6njIFgDH2DUfQFouZ0MIr+QBS9gxHsbx1AU9sADnREAQxCEIAJ4/IwY0IRZkwsRkm+Cw5ry6wi\ni/bWWocsQRCAQx0BNB0eQFPbIJoOD+BA2wD6BqMZ6y5LAgrzXCjOc6Eo3wW/x5Hy437EFOYXMbHF\n2/zjSm4Nl0UBcU1HJLEV3NoSHoml9EIktohH4whHzN6IsZb6J5X4Mcq0cutxySgr9qEk342SAvNS\nWuBCSYEbhX6XvYtVJNEDEU1ODxw8hOqqyqFbye3r5lZcn0eBz63A53bY1z0uBaI49EdW1XREYxqi\ncQ2xuI5YfOhzhq2ej3DUnB+La3AoyZ4Dj1OG22Vu2Xc7ZSiyiHBURTBs9ryErN6XYERFMBxHOKqm\n9UYkrmuafsTuYYmVhWTvgmj9qiWmqSuioiDA7ZTN3hSrR8XnMa/73IpdP1kSIaW0KSlLPQqGYSAS\n06zeqDjiqm73PKlWT1Rc1aGqZk+O2zX0Pfc4FbhdMhyyeFT113TD+kyT35dEu0ntAUhMJUlEY0MD\n5lv7wGt64s/D/OxUzUDUajfRDG02GtMQVzXEVN3qdTB7HOJWe1N13e7hs3v7jKFtY8j7kvI+ReI6\ngJSAIgqQrGniu2HX1fo3S11JiKk6YmGzHqMRQlM5FMlaMRUhiSKcDtFaITV788TEiqlkbhCSRAGi\ntUKU6OlKvS4ecd0wDPv9jFq9ObF48n0WBECRJbtnLdEz5JDN27phJHv4VB1xVUu7nVhWMKojFleh\nHU2COg6CAPu7afYOi+aKvCRAURI9xUj2GieChihAgGD23sY1xFRtVOovCLB6K0XoutneVW3s/09G\nixmWrA2P1vcCGPqbCpi9vjHrsz+e70OyRz85TXyvNX3o7/97Ea01WdFeN0jZsJM6T0xd8bXuS/kN\nECBAs44/sfcesAOngbiqQpZkJH9GhdTBuqzfueTeAaP5WyFZ3+XUlfyTQer/Y+L7lwxIovU7lNhw\nk/h9td5TJP8fzP92A7qum9dTPv9cds9Xz8HMiZnPS3c0IftIxxR8li5dihUrVuCKK67Ajh07UF5e\nDo/HHGigqqoKwWAQra2tKCsrw5o1a3D//elnER8N1WV+/OSG8/Dr57bj9S0t+O2fd+J3L+3EGVNL\ncfGiGpw1uwIuR/IlNrUN4Nk1e7GmsRmqZqDA58TVH5qCD589EX5P5pFLEoryXCjKyzxMKWAOvrC7\nqQdv7+/B2/u78U5TL/a3DuDFdQeO+nWVFXlw5swK1I7zo7zIg4FgDD0DEXT3R9AzYF7ebe6D1jT2\njd7tlOB2miv/ZYUeuJ3WiqO1Apm6u1HyugyPS4HLISdGZbRXKo88hkOydkGSEj8O1kpJJkbKCpdh\nGFCGGZ1mJBoaBlBfP/2YH58gCAIUWYIiS8g8KC2NJcEKam6nDOC9N3iMJkkU4HEpRzW6pCgK9i6x\nuTgmpbkRILk7WNTaJUy1djtLbkFNvZ7czc9p7SbqsHYZPdoweqrQtMSKsW6/F0bKis6RvS6pu7Km\nTlN7BVLfpsR7NlaDG2hWYE6sgGm6tVuhlrwNwN4l02HtEpxp40jq7oOJ4BmNafaKnpZY0Uu9rhvm\nf0ZixTElsEnWH05it11DB7SU3RuNlI0Mqc+XeH5zA0NyV9XUEJvYjTW5q3CiFzD5GQKw/g9Ee2Nn\n6m6pkigkg0vK+2WvzFq72CZXbJO7bGq6AQGwA2tyxTnZJhL1GtpjkdKmUualblRMbCQ5si0myiR6\nPBPPp8iJDWmJtgiEIxG4raHchwYQ63tubaAYsgFWSoRxq40L5oYLeyOGdbF7hhOfQ8pGnLiq2+FP\nFJMbfVMDaSLMAbADauq8RNlEexKE5GtN3DYfkyyfSj1id2/ztj7k9y8ZXszPNWbtAq3rxpCeSTt8\nWq/bIUvme5N4X6QjgtMRlTmybqnvR6aN48ne/aHtI9GGzF765EYxURj6HtvPccTvkYDk+5eo85Ht\nNXV379SNr4IgwOtWMLk68wiKx+uYgs/8+fMxa9YsXHnllZAkCXfccQdWr14Nv9+PZcuW4c4778Q3\nvmGeSO3SSy9FbW3tqFY6ld/jwE2fXoAvfWwOXt/air9tOogt73Riyzud8LhknDuvCnOnlOC1hkN4\nc2c7AKCq1IuPXzAFF9aPh0MZnfHCfW4F9XXlqK8zB3WIqzr2tfRhV1MvBoMxe5/weGKLrZrc6lpR\n7EXtuDxMqMhD7Tj/iFamdN3AQDCGwVBsyJaO1D/SxI9Z4gupasnjMhLPnTgOxu2U4XbI9hbxxHEF\nw4WQbBAEc0u0/ctFRCcNcyOAuVXc687FaDc6JEmEWxLhPkXPUSlZvb2jsiwxdcMFnco4iiCdKo75\n1yYRbBKmT09uPV+4cOGQ4a1PBK9bwb+cVYt/OasWLZ0BvPpmM17ddBAvv9GEl99oAgDMmFCET1w4\nBWfOrBjzFXpFFjG9tgjTa8dm1DlRFMzBFfyn6L8nEREREdEJlJObWapKfbjmQzPwmX+pw1t7OrF9\nbzcWzihH3QQOfU1EREREdDrKyeCTIIkC5k0rw7xpIxtcgYiIiIiIchNPPkNERERERDmPwYeIiIiI\niHIegw8REREREeU8Bh8iIiIiIsp5DD5ERERERJTzGHyIiIiIiCjnMfgQEREREVHOY/AhIiIiIqKc\nx+BDREREREQ5j8GHiIiIiIhyHoMPERERERHlPAYfIiIiIiLKeQw+RERERESU8xh8iIiIiIgo5zH4\nEBERERFRzmPwISIiIiKinMfgQ0REREREOY/Bh4iIiIiIch6DDxERERER5TwGHyIiIiIiynkMPkRE\nRERElPMYfIiIiIiIKOcx+BARERERUc5j8CEiIiIiopzH4ENERERERDmPwYeIiIiIiHIegw8RERER\nEeU8Bh8iIiIiIsp5DD5ERERERJTzGHyIiIiIiCjnMfgQEREREVHOY/AhIiIiIqKcx+BDREREREQ5\nj8GHiIiIiIhyHoMPERERERHlPAYfIiIiIiLKeQw+RERERESU8xh8iIiIiIgo5zH4EBERERFRzmPw\nISIiIiKinMfgQ0REREREOY/Bh4iIiIiIch6DDxERERER5TwGHyIiIiIiynkMPkRERERElPMYfIiI\niIiIKOcx+BARERERUc5j8CEiIiIiopzH4ENERERERDmPwYeIiIiIiHIegw8REREREeU8Bh8iIiIi\nIsp5DD5ERERERJTz5GN5kKqquO2229Da2gpJknD33Xejurp6SJkXX3wRv/nNbyBJEhYvXoybbrpp\nVCpMRERERER0tI6px+eFF15Afn4+nnjiCXz5y1/G/fffP+T+SCSCn/zkJ3jsscewatUqrF+/Hnv3\n7h2VChMRERERER2tYwo+69evx7JlywAAZ599NhobG4fc73K58Pzzz8Pj8QAACgoK0NfXd5xVJSIi\nIiIiOjbHFHy6urpQVFQEABAEAaIoQlXVIWV8Ph8AYPfu3WhtbcW8efOOs6pERERERETH5n2P8Xnq\nqafw9NNPQxAEAIBhGNi2bduQMrquZ3zsgQMH8M1vfhP3338/JEl638o0NDSMpM5Eo4LtjU40tjk6\nkdje6ERie6NTgWAYhnG0D/r2t7+NSy+9FEuXLoWqqrj44ouxdu3aIWXa2trwxS9+Effddx/q6upG\nrcJERERERERH65h2dVu6dCleeuklAMCrr76KxYsXp5VZvnw57rzzToYeIiIiIiLKumPq8dF1HcuX\nL0dTUxOcTid+/OMfo7y8HI888ggWL16M/Px8fPzjH8ecOXNgGAYEQcDnPvc5XHjhhWPxGoiIiIiI\niN7TMQUfIiIiIiKiU8kx7epGRERERER0KmHwISIiIiKinMfgQ0REREREOe99z+NzItx9993YunUr\nBEHA7bffjjlz5mS7SpRj7r33XjQ2NkLTNHzpS1/CnDlzcMstt8AwDJSWluLee++FoijZriblkGg0\niksvvRTXX389zjrrLLY3GlPPP/88Vq5cCVmW8fWvfx3Tp09nm6MxEQqFcOutt6K/vx/xeBzXX389\npkyZwvZGo27Xrl342te+hs9+9rO46qqr0NbWlrGdPf/883j88cchSRIuv/xyXHbZZcMuM+s9Pps2\nbUJTUxNWrVqFH/zgB/jhD3+Y7SpRjtmwYQP27NmDVatW4dFHH8WPfvQjPPjgg7j66qvxu9/9DjU1\nNXjmmWeyXU3KMQ899BAKCgoAAA8++CCuueYatjcaE319ffjlL3+JVatW4Ve/+hX+9re/sc3RmFm9\nejUmTZqExx9/HA8++CB++MMf8j+VRl04HMY999yDpUuX2vMy/a6Fw2E89NBDeOyxx/D444/jscce\nw8DAwLDLzXrwWb9+PZYtWwYAmDx5MgYGBhAMBrNcK8olixYtwoMPPggAyMvLQygUwqZNm3DRRRcB\nAC688EKsW7cum1WkHLNv3z7s378f559/PgzDwKZNm+zh/NneaLStW7cOS5cuhdvtRklJCe666y5s\n3LiRbY7GRFFREXp7ewEA/f39KCoq4n8qjTqn04lf/epXKCkpsedl+l3bunUr5s6dC6/XC6fTiQUL\nFqCxsXHY5WY9+HR1daGoqMi+XVhYiK6urizWiHKNKIpwu90AgKeffhoXXHABwuGw3Q1fXFyMzs7O\nbFaRcsy9996L2267zb7N9kZjqaWlBeFwGF/5yldw9dVXY/369YhEImxzNCY+9KEPoa2tDZdccgmu\nvfZa3HrrrfyNo1EniiIcDseQeUe2s46ODnR3dw/JEUVFRe/Z/k6KY3xS8bRCNFb++te/4plnnsHK\nlStxySWX2PPZ5mg0Pfvss1i0aBEqKysz3s/2RqPNMAx7d7eWlhZce+21Q9oZ2xyNpueffx4VFRV4\n5JFHsHv3bixfvnzI/WxvdCIM187er/1lPfiUlZUN6eHp6OhAaWlpFmtEuegf//gHHnnkEaxcuRI+\nnw9erxexWAwOhwPt7e0oKyvLdhUpR6xduxaHDh3CK6+8gvb2diiKAo/Hw/ZGY6akpATz58+HKIoY\nP348vF4vZFlmm6Mx0djYiHPPPRcAMH36dLS3t8PtdrO90Zg7ct2tvLwcZWVlQ3p42tvbMX/+/GGX\nkfVd3ZYuXYqXX34ZALBjxw6Ul5fD4/FkuVaUSwKBAO677z48/PDD8Pv9AIAlS5bY7e7ll1+2f8SJ\njtcDDzyAp556Cn/4wx9w2WWX4frrr8eSJUvw0ksvAWB7o9G3dOlSbNiwAYZhoLe3F6FQiG2Oxkxt\nbS22bNkCwNzN0uPx4Oyzz2Z7ozGXad1t7ty52L59OwKBAILBIDZv3oz6+vphlyEYJ0Gf5E9/+lNs\n3LgRkiThjjvuwPTp07NdJcohTz75JFasWIEJEybAMAwIgoB77rkHy5cvRywWQ2VlJe6++25IkpTt\nqlKOWbFiBaqrq3HOOefgW9/6FtsbjZknn3wSTz31FARBwHXXXYfZs2ezzdGYCIVCuP3229Hd3Q1N\n03DjjTdi4sSJuPXWW9neaNRs3boV3/nOd9DT0wNJkpCfn4+VK1fitttuS2tnr7zyCn79619DFEVc\nc801+MhHPjLsck+K4ENERERERDSWsr6rGxERERER0Vhj8CEiIiIiopzH4ENERERERDmPwYeIiIiI\niHIegw8REREREeU8Bh8iIiIiIsp5DD5ERFnU0tKCuro6vPDCC0PmX3TRRaOy/Lq6Oui6PirLGs4r\nr7yCZcuW4Zlnnhky/7bbbsMFF1yQVv7zn/88rr322qN6jvPPPx+tra3D3r9x40Z85jOfGfHyOjs7\nccstt+BjH/sYPvOZz+Cqq67C+vXrj6pOwxnuPb/55pvR0dFx3Mv/2c9+hhUrVhz3coiITjcMPkRE\nWTZhwgSsWLECoVDInicIwqgse7SW817Wrl2LL3zhC/jkJz+Z9txut3tIoOjs7ER7e/tRP8dIXsfR\nvNbrr78eCxYswLPPPosnnngCd955J2655RY0Nzcfdd1GWo/7778fZWVlx718IiI6NnLaPcm8AAAH\ne0lEQVS2K0BEdLorLS3Fueeei1/+8pe45ZZbhty3evVqrFu3Dvfddx8A4JprrsF1110HSZLw8MMP\no7y8HNu3b8cZZ5yBqVOn4m9/+xv6+vrw6KOPory8HIZh4KGHHsKGDRsQDAZx7733YsqUKdi9ezfu\nueceqKoKVVVxxx13oK6uDtdccw1mzJiBt99+G7/97W+HrMSvWbMGDz30ENxuN9xuN77//e9jy5Yt\nWLt2LRobGyFJEi6//PIh9f/ABz6AZ599FkuWLAEAvPDCC7jwwguxbds2AEB3dzeWL1+OYDCIeDyO\nL3zhC1i2bBm6u7tx4403Qtd1zJw5E6nn2n7ggQfQ2NiIaDSKRYsWpb1njz32GP70pz/Z9bzvvvuQ\nn59v379+/XqIoohPf/rT9rxp06b9/3buLSSqbw/g+NfL7MlyyIpqugypEwM5krcyKiRQ0HxICKlU\nSBLfCsqHopokjLwQGCVqYEbhzFRDYi9FavWgXYTE8EqYmpcSzAgTRJOcnP9DuM+MesrTn0P/4/l9\nnrZrbX97rR+C+8daa1NdXY1Op2N6epr8/Hw6Ojrw9vZmx44dnDhxgsbGxr+V89jYWCoqKmhqaqKh\noYHp6Wn6+vrYsGEDxcXFANjtdmpqanA6nQQHB5OTk4OiKFy5coW6ujrWrVuHn58fRqPxt//ehBDi\n/5Ws+AghxB/m5eVFRkYG9fX19Pf3z9s/n/b2diwWC1VVVTx48IAVK1ZgtVoxm83U1taq95lMJmw2\nG2lpaeoL9smTJ7lw4QJWq5Xz589jsVjU+5ctW4bdbvd47uTkJNnZ2ZSUlFBRUUFMTAxFRUUkJCQQ\nExNDZmbmnKIHYOfOnbS0tDA5OQnAo0ePSExMVPuLioqIjo7GZrNx7do1cnJymJiYwGq1Eh4ezu3b\nt9m/f7+6RaympoZPnz5hs9m4d+8eAwMD1NXVeTyzuLiY69evY7PZSE9Pn7PC1N3dTWho6Jyx6nQ6\nAKqrqxkcHMThcGC323n58iVNTU1/O+fuWlpaKCgo4P79+3R2dtLZ2UlbWxtPnjzBbrfjcDjQ6XRU\nVlbS39/Pw4cPqaqqorS0lIGBgTnxhBBC/Jqs+AghxD+ARqPh1KlT5ObmcuPGDY8Vjn/HaDSqL+sB\nAQFEREQAsHbtWsbGxtT7du3aBUBERAS3bt1iZGSEvr4+zp07pz5nYmJCvZ6J466/v5/Vq1erW7Wi\no6NxOBy/HKOvry+xsbHU1tZiNptZtWoVAQEBan9bW5t6NmflypXo9Xp6e3t5+/YtKSkpAISEhKjz\nfPXqFc3NzaSnp+NyuRgfH2dwcBCTyaTGPHDgAJmZmSQkJLB3714CAwM9xuTj4/PTc0+tra1qzry9\nvYmKiqK9vR2z2fzbOZ9t69atKIoCgF6vZ3R0lI6ODj58+KDObXJyEo1GQ1dXF2azGV/fH/+yt23b\n9qu0CyGEmIcUPkII8Q+xZ88eHA4HT58+VVdbZq/2TE1Nqdc+Pj4efe4/uxdO7jG8vLxQFAVFUbBa\nrfOOQ6PRzNvuHtPlci34TE1SUhKFhYW8e/eOpKQkj77ZMaanp/H29p7T53Q6AVAUhUOHDpGRkeHx\ne42Njer16dOnGRoaoq6ujmPHjnHmzBliYmLUfpPJRGVl5ZxxdnV1YTAY5p3XTNvv5ny22XFcLheK\nohAbG0t2drZHX21trZoT4L/+sQohhFisZKubEEL8Ye4vzBaLhcuXL/Pt2zcA/P39GRoaAn6ch+np\n6fmP4898XOD169eYTCb8/f3ZuHEj9fX1APT19VFaWvrTGEFBQYyMjPDx40cAGhoaCA8PX9Dzt2zZ\nwpcvX3j+/DlxcXEefWFhYbx48QKA4eFhPn/+TFBQEEajkebmZuDHCszXr18BiIqK4vHjx3z//h2A\n0tJS3r9/r8YbGxujpKQEvV5PamoqaWlp6nmiGdu3b8ff35/y8nK1rbu7m6NHjzI8PExYWBgNDQ3A\nj4KrsbGRsLCwBc11xuycL0RkZCTPnj1TP3Jx584dWltbMRqNvHnzBqfTydTUlEeRJ4QQYuFkxUcI\nIf4w9xUBg8FAQkICZWVlAOzevZubN2+SkpJCcHAwkZGRv4zhztfXl56eHu7evcvo6Kj6kYRLly6R\nm5tLeXk5TqeTs2fP/jSOVqslLy+PrKwsFEVh6dKl5OfnL3iOiYmJ9Pb2otVqPdqPHz+OxWKhvr6e\nqakpLl68iJ+fH+np6WRlZXHkyBE2b96MwWAAID4+ntbWVlJSUvDx8cFsNmMwGNSCTKfTMT4+TnJy\nMsuXL0ej0ZCXlzdnPGVlZRQUFLBv3z4CAgLQarVcvXqVwMBANm3aREtLC6mpqbhcLuLj44mIiJhT\ncCw054WFhT+9f6Y9NDSUtLQ0Dh8+zJIlS1izZg3JyclotVri4uI4ePAg69evJyQkZMF5F0II8S9e\nroVsJBdCCCGEEEKI/2Gy1U0IIYQQQgix6EnhI4QQQgghhFj0pPARQgghhBBCLHpS+AghhBBCCCEW\nPSl8hBBCCCGEEIueFD5CCCGEEEKIRU8KHyGEEEIIIcSi9xeMsmMXF3uOuQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAz4AAAH6CAYAAADGLZlTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XuczHX///HnzOyRPdhlzyIrrLNFSpSsZdm4SsSmdJHq\nqutylWuvb4UkV0h+osOFzkVSStIVFimlcghLTl0SkuMSe147e5zfH8tctt1ld3Z2Z2Y97n/tfA7v\nz2tmPt2ap/fhY7BYLBYBAAAAQB1mdHQBAAAAAFDTCD4AAAAA6jyCDwAAAIA6j+ADAAAAoM4j+AAA\nAACo8wg+AAAAAOo8gg8ApxUVFaXHHnuszPannnpKUVFRDqjINsnJyYqJiSl33759+zRq1CjFx8cr\nLi5OCQkJSk5OliQ98sgjio+P14ABAxQVFaW4uDgNGDBAw4YNkySNHDlSN998s+Lj49W7d28lJCTo\n888/r5X3FBUVpUmTJpXatnXrVo0cOdJu14iJidGOHTvs1t7lZGdn6/bbb1dcXJwyMjJK7fv3v/+t\nqKgoHTx4sNT2lJQUtW7dWnPnzq3StU6fPl2p+9eW979r1y6NHj1acXFx6tevn0aPHq2dO3dWqY3L\nmTBhgl577bVy98XHxys1NdVu12rbtq1Onjxpt/YAwM3RBQDA5Rw4cEDnz59XvXr1JEmFhYXau3ev\nDAaDgyurmorqffjhhzV9+nTdcsstkqS1a9fqb3/7mzZs2KBXX33Velzr1q21aNEiBQcHlzr/iSee\n0KBBgyRJP/30k5588kmlpKTooYceqqF38j/btm3T/v37S/2Id6bvxWKxVLqe/fv3KzMzU19//XWZ\nfQaDQeHh4Vq5cqXGjRtn3b5q1SqFhYXZVFtNfE7//e9/9dBDD2nGjBnWoL1+/Xo99NBDWrJkiZo3\nb273a14qKSnJru05070EoG6gxweAU+vWrZu++OIL6+vvv/9e7du3L3XMl19+qUGDBqlv374aM2aM\n0tPTJUlms1njxo1T//79FRsbq5kzZ1rPGTlypBYsWKARI0bolltuUWJiYrnXP3funB544AENGDBA\nsbGxWrBggXVfTEyMPvroI9111126+eabS7U/f/583Xrrrbrzzju1ZcuWcttOTU3V2bNn1bFjR+u2\nuLg4rVixQp6enqWOtVgsutLzptu0aaO5c+fq1VdfVXZ2dql9s2bN0rRp06yv09LSFB0drezsbL3/\n/vuKj49XfHy8hg0bpkOHDl32OhclJiZq+vTp5e6bO3duqR6huXPn6umnn5ZU8tm/8cYbSkhI0E03\n3aTFixfrtdde04ABAzRw4ECdOHHCet6mTZt0xx13qHfv3nrppZes2yv6zufOnavJkydr2LBhWrhw\nYZm6fvjhB915552Kj4/X8OHDtW/fPp06dUqPP/64zp49q/j4eGtbl+rRo4dWr15datvq1at10003\nWV9nZGRY77eBAwfqzTfftO775JNPFBMTo9tvv10rVqwo81n1799fMTExeu6558p8z0VFRZo0aZL6\n9++vuLg4Pfroo8rJySlT42uvvaa77767VO9iTEyM/v3vfyswMNBa86BBgxQfH69Ro0bp2LFj1hqm\nTJmihx9+WD179tQTTzyhDRs2aMiQIbr55pu1YcMGa5unTp3Svffeq5iYGI0dO1Zms1lSSS/g6dOn\ntXXrViUkJGjOnDmKj49XbGystm/fLknKz8/XtGnTFBcXpz59+uj111+3trthwwb169dPAwcO1Lvv\nvlvm/QFAdRF8ADi1AQMGaNWqVdbXq1at0oABA6yvjx07pieffFIvvfSS1q1bpxtuuEGTJ0+WJH3w\nwQfKysrSmjVrtHz5ci1fvrzU0KGvv/5aCxYs0Nq1a/XDDz+UOyRo/vz5Cg8P1+rVq/Xuu+9q9uzZ\nOn36tHX/9u3btXTpUi1btkyLFi3S6dOndfDgQS1cuFCffvqpli1bpv/+97/lvrfAwEC1b99eI0eO\n1CeffKLjx49LkoKCgmz+vJo2barw8HDt2rWr1Pa4uLhSvRlff/21unfvLoPBoFdeeUXLli1TUlKS\nHn74YX3zzTdXvI7BYFBcXJwklQqmfzymIsnJyfrggw/03HPP6YUXXlBYWJhWr16tyMhILVu2zHrc\n/v379dlnn2nZsmX68MMP9fPPP1/2O5dKfkC/+eabGjVqVKlrnj9/XuPGjdPkyZOVlJSkMWPGKDEx\nUWFhYZo5c6bCw8OVlJSkBg0alKk3JCREQUFB2r17tyTp6NGjcnNzU2hoqPWY2bNny9/fX2vWrNHi\nxYv14YcfaseOHcrMzNT06dP19ttv6z//+Y9SUlKs53z22Wdau3atli1bpi+//FJHjx7VBx98UOra\n33//vY4fP641a9Zo7dq1ioqK0o8//limxm3btqlXr15ltt94440KCAjQqVOnNHnyZM2fP19JSUnq\n1atXmc9txowZWrlypdasWaNvv/1Wy5Yt08MPP1wqxG3cuFFz587VV199pYyMDC1dulRS6e/7p59+\nUnR0tJKSknT33Xdbey/ffPNNHT58WKtWrdKqVau0du1abdiwQcXFxZo0aZL+9a9/aeXKlZJKAh8A\n2BPBB4DTMhgMuuGGG/TLL78oPT1deXl5+vHHH3XjjTda/1X8u+++0w033GAdxjN8+HCtX79eFotF\n999/v+bPny9J8vX1VYsWLaz/wi2VhAEPDw95e3vr2muv1alTp8rU8PTTT1t7Lq655hoFBQWVamPg\nwIGSpODgYAUFBSklJUXbt29Xt27dFBgYKIPBoD/96U8Vvsd33nlH/fr106JFi9S3b18NGjRI69at\nq9bn5uPjo6ysrFLbOnToIIvFop9//lmStG7dOsXHx8vT01MGg0FLly7VuXPnFBMTozFjxlT6WhMm\nTNCsWbOUn59fpRp79+4to9Goli1bymw2W0NUy5YtdebMGetxFz/fwMBAXX/99frxxx8v+51LUseO\nHeXv71/mmrt27VJYWJg6deokSerXr5/S09OtgfNK4uPjrT/KV61apfj4+FL7v/32W40YMUKS5O/v\nr759+2rjxo3atWuXmjVrpmbNmkmSBg8ebD3nm2++0ZAhQ1S/fn0ZjUYNHTq0zPcfEBCgQ4cOad26\ndcrNzdVf//pX9ejRo0x9GRkZatSoUYX1b9y4UTfeeKOuueYaSdJdd92lrVu3qri4WJIUHR2tgIAA\nNWjQQEFBQdbhl3/8Tm655RY1aNBABoNBffv2tYawS3uqfHx81Lt3b0klPZEX5+p88803GjFihNzc\n3OTl5aXbb79dX3zxhY4cOaL8/Hx1797d+hldqYcTAKqKOT4AnNrFH1dJSUlq2LChbrrpJplMJuu/\nLmdlZWnbtm3WH6EWi0X+/v5KS0tTVlaWZsyYoV9//VVGo1EpKSkaMmSItW1fX1/r30ajsdx/Yd69\ne7fmzJmjU6dOyWg06vfffy/1g+zSNgwGg4qKipSRkSEfHx/rdj8/vwrfn4+Pj8aOHauxY8cqNTVV\ny5YtU2Jiov7zn/8oMjLShk9MOnHihBo2bFhme79+/bR+/Xo1adJEO3bs0OzZs+Xm5qaFCxfq1Vdf\n1SuvvKKoqChNnjxZLVu2rNS12rRpo+uvv17vvvuuoqOjK11j/fr1JUkmk0mS5OXlZX196fdwcYiW\nVPJZZ2RkyGKxVPidSyo39Eglw/v++F34+vpWekJ+//79NWTIEE2YMEFr1qzRm2++qY8//ti6PzU1\ntdS1/fz89Pvvv1/2fsjKytI777yjjz/+WBaLRcXFxaXes1QSWp9++mktWrRI48ePV+/evTVlypRS\nbUolAen06dPWYPNHqamppa7t4+Mji8Vi/dwufidSyfdwcV7dH//bKO87+aNL/7swmUzWcJWZmann\nnntOc+bMkcViUUFBgTp27FjmM6roOwSA6iD4AHB68fHxevnllxUYGKiEhIRS+4KDg3XTTTfp5Zdf\nLnPe448/rnbt2llXobr77rurfO3HH39c999/v4YPHy5J1n8Fvxw/P79Sc2wq+mF9+vRpnThxQp07\nd5ZU8oPywQcf1OrVq3Xw4EGbgs/27duVn5+vDh06lNkXFxen6dOn67rrrlO3bt2sP2yjoqL08ssv\nq7CwUG+++aaeeeYZffjhh5W+5j/+8Q/deeedaty4sXXbH38sl/fjuDIuPS8jI0MNGjSQu7t7hd/5\n5TRs2ND6I//SNhs2bFhqXlFFAgMDFRkZqaVLl8rPz6/MQhONGjVSenq6dfhbenq6GjVqJD8/v1I9\ncJfeD8HBwYqJidE999xz2Wv369dP/fr1U2ZmpiZMmKC33nqr1EILknTDDTdozZo16tq1a6ntn376\nqVq1aqVGjRqVGiKXkZEho9GogICAK773S106ByojI6NKISU4OFgPPPBAmSF5hw4dKvXfzLlz51jc\nAIDdMdQNgNO62LMSHR2t06dP65dfflG3bt1K7evZs6eSk5Otw892796t5557TlLJj6fWrVtLKhnm\n89tvv5U7Kfxy0tLS1KZNG0nS8uXLZTabdf78+cueEx0dreTkZKWlpamoqKjMZPaLTp06pb/+9a/a\nu3evddvu3buVkpJSZgGHyti/f7+eeuopjRs3rsziCBfrOnfunD799FPrPKkDBw7oscceU0FBgdzc\n3NSuXTsZjVf+X8OlvV5BQUG699579e9//7vUtl9++UUWi0Wpqan69ttvK9XWH61atUoWi0Xnzp1T\ncnKyunbtWu53XtEiC5fq0KGDzp07Z53/tHLlSoWGhioiIuKK51502223ae7cubrtttvK7Lv11lv1\n0UcfSSoJN+vWrdOtt96qdu3a6ciRIzp69Kikknk9F/Xp00eff/65dYGAjz76qNR+qSS4XByy6efn\np8jIyHJDwSOPPKIVK1aUOn/dunWaM2eOfHx81KNHDyUnJ1uH9i1ZskQ9evSo1Pd9qe+++05ZWVkq\nKirSl19+qeuvv77S5/bp00cff/yxiouLZbFY9Oqrr+r7779X06ZN5ebmpm3btlnfM8EHgL3R4wPA\naV36w6dv376lAsfFfUFBQZo6darGjh2rwsJC1a9fXxMnTpRU8kNwxowZmjdvnmJjYzV27Fi98sor\natu2bZkfVRX9yHrsscf0t7/9TQEBARo+fLiGDx+uSZMm6YMPPqiwjaioKCUkJGjw4MEKCAjQwIED\ndeDAgTJtd+rUSdOmTdO//vUvZWdnq7i4WI0aNdJLL71UZpnkiuqbNWuWXn31VeXm5srPz09jx461\nLm9dnj59+mjZsmWaM2eOpJL5G40bN9bAgQPl4eGh+vXr65lnnpEkzZkzRxEREdbersvVM3r0aH38\n8cfW7QMGDNCKFSvUt29fRUZGqn///taejsp+9gaDQR06dNDQoUOVlpam0aNHW3vBKvrOL8fb21sv\nvfSS/vWvf8lsNiswMFAvvvjiFc+7VL9+/TR16lT169evzL5x48ZpypQpGjBggEwmk/7yl7+oXbt2\nkqQnn3xSo0aNUv369Ut9nrGxsTp48KAGDx4sg8GgJk2aWEPcxc+lT58+mjhxouLi4uTm5qamTZvq\n+eefL3P96667Tu+++65eeOEFzZs3Tx4eHmrSpIkWLlyopk2bSpKmTZumRx55REVFRWrcuLGmTp1a\n7vu8XOjo3bu3xo4dq+PHj6tDhw668847r3jORffcc49OnDhhDY7t2rXTqFGj5ObmpmeffVYTJkyQ\np6enhgwZYu2RBAB7MViqMXtw//79+vvf/65Ro0aV6abfsmWLXnzxRZlMJjVr1qxS/xoHAAAAADXB\n5qFuubm5mjlzZrkry0jSM888o1deeUUffPCBsrOzLzvMAQAAAABqks3Bx9PTU6+//nqFS2cuW7ZM\nISEhkkomhJb3QDgAAAAAqA02Bx+j0SgPD48K919clvLMmTPatGlTuQ9VAwAAAIDaUKOLG5w7d06P\nPPKIpkyZcsXlLpOTk2uyFAAAAAB1QJcuXWw6r8aCT3Z2th588EH985//tD6J+UpsfRNAVSUnJ3O/\noVZxz6E2cb+hNnG/oTZVp7Okxp7j8/zzz2v06NEVLn4AAAAAALXF5h6fXbt2adKkSUpNTZXJZNKS\nJUs0ZMgQNW7cWD179tTnn3+uo0ePWp/rMGjQIN111132rB0AAAAAKsXm4NOxY8cKn0YulTxJGwAA\nAHAUi8WivLw8R5cBG3l6elbq4ciVVWND3QAAAABHysvLI/i4qJr47mp0VTcAAADAkTw9PeXl5eXo\nMuAE6PEBAAAAUOcRfAAAAADUeQQfAAAAAHUewQcAAACoISdOnFBUVJT27NlTavvQoUM1YcKESrVx\n/vx5xcTEVLh/69atevTRR8vdt3PnTrVu3Vr79++vfNHlsMf7cDSCDwAAAFCDmjRpotWrV1tfnzx5\nUpmZmZU+32KxXHFZ54r2r1q1SvHx8UpKSqr09SpS3ffhaKzqBgAAANSgDh06aMuWLdbXa9euVc+e\nPZWbmytJ+uGHH/Tiiy/K3d1doaGheu6555SXl6dHH31U+fn56ty5s/Xc7du3W48NCwvT1KlTK7xu\ncXGxvvnmGy1evFgjR45UYmKi0tPTNXz4cK1du1aS9Nlnn+nnn3/WHXfcofHjx8vPz0/t2rVTamqq\nZsyYUaX3UV5tBoNBTz75pE6fPi2z2ayxY8eqV69eGjlypHr06KEtW7YoPT1dr732mkJDQ6v/YV8G\nwQcAAABXhXdW7NPGXSfs2maPjhG6f1Dbyx7j7u6uqKgo7d69Wx06dNDXX3+tMWPGaM2aNZKkKVOm\naMGCBQoJCdG0adO0YsUKmc1mtWzZUuPHj1dSUpJWrVolSZo+fboWLlwoPz8/zZo1S6tXr1ZISEi5\n1920aZOioqIUEhKi8PBw7dq1Sx07dlR4eLgOHTqk5s2b66uvvtKYMWM0b948jR07Vn369NG4cePk\n7e1d5ffxx9rWrFmjm266ST179tQdd9yh48eP69FHH1WvXr0kSb6+vlqwYIFmz56tL774Qvfdd5/N\n30NlEHwAAACAGta/f38lJSUpODhYDRo0sAaLjIwMGY1Ga3jp1q2btm7dKkm6/vrrJUk33HCDJOnc\nuXM6cuSIxo4dK4vFIrPZrMDAwAqDz8qVKxUbGytJio2N1YoVK9SxY0fFxsZq/fr1uuaaa3Tw4EF1\n6tRJhw4dUnR0tCQpJiZGmzdvrtL7qKg2Pz8/7dmzRx999JGMRqMyMjKsbXXp0kWSFBoaqvT0dNs/\n3Eoi+AAAAOCqcP+gtlfsnakp3bt31+zZsxUeHq6+fftatxsMBhUXF1tfFxQUyGg0qqioSEZjyXT8\ni/s9PDwUEhKi9957r1TbF4PSpfLz87V+/Xrt27dPCxcuVEFBgTIzMzVp0iT17dtX48aNU4sWLdSz\nZ09JJfOILl7vcvOJKnof7u7u5db22WefKSMjQx9++KHS0tI0dOhQ6z43t/9FEYvFUuE17YXFDQAA\nAIAa5u7urjZt2mjZsmXq3bu3dbufn5+MRqNSUlIklYSY9u3bq1mzZtYV1C7Oq/H19ZXBYNChQ4ck\nSe+//74OHDhQ7vW++uor3XjjjVqxYoWWL1+ulStXKjIyUlu2bFFwcLAMBoNWrlypuLg4SSULF+zd\nu1eS9O2339r0Pv5Y288//6y0tDQ1btxYUsmcoIKCgqp/eHZC8AEAAABqQf/+/RUWFiYfH59S2599\n9lklJibqvvvuU1FRkW677Tbdfvvt+vHHHzV69GgdOXLEeuy0adM0YcIE3XvvvdqxY4eaNWtW7rWS\nkpI0ZMiQUtsGDx5sXd0tJiZG27dvV9euXSVJjzzyiGbOnKkHHnhAjRo1kslkqvL7+GNtkZGR6tev\nn9avX6/77rtP3t7eCg0N1bx58664Sl1NMFhqo1+pEpKTk63j/ICaxv2G2sY9h9rE/Yba5Mz3m9ls\nliR5eXk5uBLnt2vXLnl7e6tly5Z64403JEkPPfSQw+qp6Lurzv3GHB8AAADgKufh4aGJEyfKy8tL\n3t7emj17tqNLsjuCDwAAAHCVa926tT755BNHl1GjmOMDAAAAoM4j+AAAAACo8wg+AAAAAOo8gg8A\nAACAOo/FDQAAAIAacuLECfXp00dLly5V+/btrduHDh2qFi1aaMaMGVds4/z58xo4cKDWr19f7v6t\nW7fq/fff1yuvvFJm386dOzVixAgtX75cUVFRtr8RSYsXL9bnn38uDw8P5eXl6R//+IdatWqlxx57\nTJK0f/9+NW3aVPXq1dOgQYPk5uaml19+WU2aNFFxcbECAwP1xBNPWB9oWtsIPgAAAEANatKkiVav\nXm0NPidPnlRmZmalz7dYLFd84GdF+1etWqX4+HglJSVVK/icOHFCS5cu1aeffiqj0agjR47o6aef\n1qJFi7Ro0SJJ0n333adnnnlGzZs3lyQtX75c8fHxeuKJJyRJGzdu1AMPPGANT7WN4AMAAADUoA4d\nOmjLli3W12vXrlXPnj2Vm5srSfrhhx/04osvyt3dXaGhoXruueeUl5enRx99VPn5+ercubP13O3b\nt1uPDQsL09SpUyu8bnFxsb755hstXrxYI0eOVGJiotLT0zV8+HCtXbtWkvTZZ5/p559/1h133KHx\n48fLz89P7dq1U2pqaqneqKysLOXn5ysvL0/e3t669tprrYHnIovFIovFUmE9PXr0ULdu3fTll18q\nPj6+ah+iHRB8AAAAcFVY9OMybTm2w65t3nhNZ43sNOSyx7i7uysqKkq7d+9Whw4d9PXXX2vMmDFa\ns2aNJGnKlClasGCBQkJCNG3aNK1YsUJms1ktW7bU+PHjlZSUpFWrVkmSpk+froULF8rPz0+zZs3S\n6tWrFRISUu51N23apKioKIWEhCg8PFy7du1Sx44dFR4erkOHDql58+b66quvNGbMGM2bN09jx45V\nnz59NG7cOHl7e5dqKyoqSu3bt1efPn3Uq1cv3XLLLerXr59MJlOVPq+2bdvq4MGDVTrHXljcAAAA\nAKhh/fv3V1JSklJSUtSgQQNrsMjIyJDRaLSGl27duumnn37S4cOHFR0dLUm64YYbJEnnzp3TkSNH\nNHbsWI0cOVJbt27VmTNnKrzmypUrFRsbK0mKjY3VihUrrH+vX79e+fn5OnjwoDp16qRDhw5ZrxcT\nE1NuezNnztT777+v1q1b66233tL9999f5c8hJydHRqNjIgg9PgAAALgqjOw05Iq9MzWle/fumj17\ntsLDw9W3b1/rdoPBoOLiYuvrgoICGY1GFRUVWQPCxf0eHh4KCQnRe++9V6rtrVu3lrlefn6+1q9f\nr3379mnhwoUqKChQZmamJk2apL59+2rcuHFq0aKFevbsKalkmNrF61U0Xyg/P1+RkZGKjIzUvffe\nqwEDBujUqVMKCwur9Oewd+9eDRw4sNLH2xM9PgAAAEANc3d3V5s2bbRs2TL17t3but3Pz09Go1Ep\nKSmSSkJM+/bt1axZM+3Zs0eSrPODfH19ZTAYdOjQIUnS+++/rwMHDpR7va+++ko33nijVqxYoeXL\nl2vlypWKjIzUli1bFBwcLIPBoJUrVyouLk5SyQIMe/fulSR9++23ZdpbunSpJkyYYJ3Dk5mZKYvF\nooYNG172fV8652fDhg369ddfK+xRqmn0+AAAAAC1oH///kpLS5OPj0+p7c8++6wSExPl5uamJk2a\n6LbbblNOTo7+9re/afTo0aUWN5g2bZomTJggDw8PBQcHa/jw4dq5c2eZayUlJWno0KGltg0ePFhJ\nSUm68cYbFRMTo0WLFumFF16QJD3yyCOaNGmSFixYoBYtWigrK6vUuUOGDNGvv/6qYcOGqV69eioq\nKtKkSZNKrc5WXk/RmjVrtG/fPmVnZ6tRo0blLrldWwyWyy29UIuSk5PVpUsXR5eBqwT3G2ob9xxq\nE/cbapMz329ms1mS5OXl5eBKnN+uXbvk7e2tli1b6o033pAkPfTQQw6rp6Lvrjr3Gz0+AAAAwFXO\nw8NDEydOlJeXl7y9vTV79mxHl2R3BB8AAADgKte6dWt98sknji6jRrG4AQAAAIA6j+ADAAAAoM4j\n+AAAAACo8wg+AAAAAOo8gg8AAABQQ06cOKHOnTvrvvvu08iRI5WQkKAvv/yy0udv3bpVcXFxWrt2\nbZWuW97xc+fO1eLFi0ttGzlypA4ePFiltl0Vq7oBAAAANSgyMlLvvfeeJCkjI0ODBw/WLbfcUurh\nnxXZtm2b7rnnHsXFxVX6evn5+Xr33XerdM7VgOADAAAA1BJ/f38FBQXp999/l7u7u5566ikVFhbK\naDRq+vTpCg0NVb9+/dS+fXtFR0dr2bJlcnd3V1BQkIKCgvTiiy/K3d1dYWFhmjp1qtzc3DR9+nTt\n3r1bbm5umjJlij788EP98ssvevbZZzV58mRHv2WnQfABAADAVWP7gw+Xu73rm6/Z5fjyWCwW69/H\njx9Xenq6wsLC9PTTT+v+++9X9+7dtWHDBs2bN09Tp07V8ePH9eqrr6p58+ZKT09XQECABgwYoMGD\nB2vhwoXy8/PTrFmztHr1ajVq1EinT5/WRx99pO3bt2v16tV64IEHtHv3bkLPHxB8AAAAgBr066+/\n6r777pPFYpGnp6dmzZolo9GonTt36siRI5o/f74sFosCAwMlSd7e3mrevHmpNs6dO6cjR45o7Nix\nslgsMpvNCgwM1OnTp9W5c2dJUteuXdW1a1edOHGiSvUZDAb7vFEnR/ABAADAVaMqPTW2HF+eS+f4\nXMrDw0Mvv/yyGjVqVGb7H7m7uys0NLRMO++++66Ki4srVUdAQICysrJKbUtLS1NQUFClznd1rOoG\nAAAA1KBLh7pdqkOHDlq3bp0kafPmzVq1alWFx/v5+UmSDh06JEl6//33deDAAbVv314//PCDJOmn\nn37S1KlTZTQaVVhYWKaNbt266csvv5TZbJYkbd++Xb6+vta26zp6fAAAAIAaVNFQsrFjx2rChAla\ntWqVDAaDnn/++cseP23aNE2YMEEeHh4KDg7W8OHD5e7urq+++kr33HOPDAaDpkyZoqCgIBUUFGjc\nuHF66aWtggHjAAAgAElEQVSXrOe3aNFCo0eP1qhRo+Th4aH69etr1qxZ9n/DTspgqSiC1rLk5GR1\n6dLF0WXgKsH9htrGPYfaxP2G2uTM99vFng0vLy8HV4Kqqui7q879xlA3AAAAAHUewQcAAABAnUfw\nAQAAAFDnsbgBAAAA6qy8vDxHlwAb5OXlydPT065tEnwAAABQJ9n7hzNqj6enJ8EHAAAAqAyDwcCK\nbrBijg8AAACAOo/gAwAAAKDOI/gAAAAAqPMIPgAAAADqPIIPAAAAgDqvWsFn//796tu3rxYvXlxm\n36ZNm3TXXXcpISFB8+fPr85lAAAAAKBabA4+ubm5mjlzpnr06FHu/unTp2vu3Ln68MMPtXHjRh06\ndMjmIgEAAACgOmwOPp6ennr99dfVqFGjMvuOHTumBg0aKCQkRAaDQb169dKWLVuu2GaxpdjWcgAA\nAACgQjYHH6PRKA8Pj3L3nT17VoGBgdbXgYGBOnPmzBXbzMk/b2s5AAAAAFAht9q4iMViqdRxm3Zs\nUSOPgBquBiiRnJzs6BJwleGeQ23ifkNt4n6DK6iR4BMcHKzff//d+vr06dMKDg6+4nkR10aoXVjr\nmigJKCU5OVldunRxdBm4inDPoTZxv6E2cb+hNlUnZNfIctYRERHKycnRyZMnVVhYqG+++UY9e/a8\n4nkZGedqohwAAAAAVzmbe3x27dqlSZMmKTU1VSaTSUuWLNGQIUPUuHFjxcbG6plnnlFiYqIkaeDA\ngWratOkV28zMJPgAAAAAsD+bg0/Hjh21YsWKCvd37dpVS5YsqVKbOVnptpYDAAAAABWqkaFutsrJ\nynB0CQAAAADqIKcKPmf8naocAAAAAHWEUyWN9MIcR5cAAAAAoA5yquCTkZfl6BIAAAAA1EHOFXzM\nBB8AAAAA9udUwSevKF/mwjxHlwEAAACgjnGq4CNJGeZMR5cAAAAAoI5xquDTbU8Ow90AAAAA2J1T\nBR+f80UscAAAAADA7pwq+HgUWhjqBgAAAMDunCr4uBdaGOoGAAAAwO6cK/gUEHwAAAAA2J9TBR+P\nQgtzfAAAAADYnVMFnxW3+DPHBwAAAIDdOVXwMTbwo8cHAAAAgN05VfDx9/Jjjg8AAAAAu3Oy4OOr\n7PwcFRYXOboUAAAAAHWIcwUfT19JUibD3QAAAADYkVMFHz+vC8GH4W4AAAAA7Mipgs91ryTJN7tI\n6QQfAAAAAHbkVMHHlJYtz4JihroBAAAAsCunCj6S5FFgUTrP8gEAAABgR04XfNwLLTzEFAAAAIBd\nOWfwYagbAAAAADtyuuDjUWDhIaYAAAAA7Mqpgk/n1+bpt0g/lrMGAAAAYFdOFXy8w0Ll4+Ov9Dzm\n+AAAAACwH6cKPlLJQ0wzzVmyWCyOLgUAAABAHeF0wcffy09FlmLl5J93dCkAAAAA6gjnCz6evpLE\nym4AAAAA7Mb5go/XheDDs3wAAAAA2Imbowu4VPJf/qbQUF+pDT0+AAAAAOzHqYKP+cwZuXuXlMSz\nfAAAAADYi1MFH5O3lyz5hZIIPgAAAADsx6nm+Ji8vGXML5DEHB8AAAAA9uNcwcfbSxZzviQpnTk+\nAAAAAOzEyYKPt4rNZpkMRmUy1A0AAACAnTjVHJ+oJx+XjEb5ff//GOoGAAAAwG6cKvh4BjWSVPIs\nn5Ts3x1cDQAAAIC6wqmGul3k7+Unc2Ge8grzHV0KAAAAgDrAOYOPp68kHmIKAAAAwD6cM/h4XQg+\nzPMBAAAAYAdOHnzo8QEAAABQfU4VfE5/uV7bRj+oBofOSqLHBwAAAIB9OFXwsRQVKj81VfUKSl4z\nxwcAAACAPThV8DF5e0uSvIpLymKoGwAAAAB7cK7g4+UlSfIsLHlNjw8AAAAAe3Cu4HOhx8e9wCKJ\nOT4AAAAA7MOpgo/xQo+PJS9P9T3qMdQNAAAAgF24ObqAS9W/tqm6vvW63Hzqq8HXvzHUDQAAAIBd\nOFePj7u7PIMayeTtLT8vX2Xn5aiouMjRZQEAAABwcU4VfC7l7+UriyzKyst2dCkAAAAAXJzTBp8G\nnn6SpHTm+QAAAACoJqcNPn5evpKkTOb5AAAAAKgmpw0+DS4En3SWtAYAAABQTTav6jZjxgzt2rVL\nBoNBEydOVPv27a37Fi9erBUrVshkMqldu3aaMGFCpdvdM2GSCnNy5PfEnyXR4wMAAACg+mwKPtu2\nbdNvv/2mJUuW6NChQ3rqqae0ZMkSSVJ2drbefvttffXVVzIYDBozZox2796tDh06VKrtwvPnlff7\nWQV6MccHAAAAgH3YNNRt8+bNio2NlSQ1b95cmZmZysnJkSR5eHjI09NT2dnZKiwslNlslr+/f6Xb\nNnl7q8hslq+njyQpk+ADAAAAoJpsCj5nz55VYGCg9XVAQIDOnj0rqST4/P3vf1dsbKz69Omjzp07\nq2nTppVu2+TlJRUXy9/gKUnKyGOODwAAAIDqsXmOz6UsFov17+zsbM2fP19ffPGF6tevrz//+c86\ncOCAWrZsecV2kpOTlW82S5L2Jf8oN4NJJ1NTlJycbI8ygVK4r1DbuOdQm7jfUJu43+AKbAo+wcHB\n1h4eSTpz5oyCgoIkSYcPH9Y111xjHd7WpUsX7d27t1LBp0uXLvrl+80689/9ateylQKyGqiwuFhd\nunSxpUygQsnJydxXqFXcc6hN3G+oTdxvqE3VCdk2DXXr0aOH1q5dK0nat2+fQkJCVK9ePUlSRESE\nDh8+rPz8fEnS3r171aRJk0q3fe3oP6vbe+/IKzhI/p6+ysjLKtWjBAAAAABVZVOPT3R0tNq2bauE\nhASZTCZNnjxZy5cvl6+vr2JjYzVmzBiNHDlSbm5uio6OVteuXSvdtrufr/Vvfy9fFRYX6nxBrup7\n1LOlVAAAAACwfY5PYmJiqdetWrWy/j1s2DANGzbM9qou8PcsCUEZ5kyCDwAAAACb2TTUrbb4X3iW\nTwYPMQUAAABQDU4efC72+BB8AAAAANiO4AMAAACgznO64JOxb5+23jdaxz/9TP6eF4e68RBTAAAA\nALZzuuBjMJpUkJGpwuxsenwAAAAA2IXTBR+Tt5ckqdhs/t/iBgQfAAAAANXgfMHHqyT4FOWa5eNR\nT0aDkVXdAAAAAFSL8wUfb29JUlFurowGo/w8fZRhZo4PAAAAANs5XfAxXuzxMZsllTzElKFuAAAA\nAKrDzdEF/JHRw0PXv/uWTPVKen78vfz0W8YJ5Rfmy8PNw8HVAQAAAHBFTtfjYzAY5BEYYJ3r43dx\nZTfm+QAAAACwkdMFnz9q4MmS1gAAAACqx+mDDz0+AAAAAKrL6YNPA57lAwAAAKCanD74+FmHurGk\nNQAAAADbOGXw+eXlf2vz8HtUmJ2jBgx1AwAAAFBNThl8iguLVGw2q8hs/t8cH3p8AAAAANjIKYOP\nybvkGT5FubnyvzDULZ3gAwAAAMBGThp8Sp7hU2Q2y93krgBvf53OPuvgqgAAAAC4KucMPhceXlqU\nmytJauwXqrPnU2UuMDuyLAAAAAAuyjmDj3WoW0nQifANkySdzDrtsJoAAAAAuC43RxdQntD+/RTS\nt4+15yfCL1SSdDwzRZGBTR1ZGgAAAAAX5JTB52Lgueh/weeUI8oBAAAA4OKccqjbHzW+EHxOZKY4\nuBIAAAAArsglgo+/l5/qu3sTfAAAAADYxCWCj8FgUIRfmFKyf1dhUaGjywEAAADgYlwi+Egl83yK\nLcVKyf7d0aUAAAAAcDFOGXzy09K0ZcR9OvDiK9ZtLHAAAAAAwFZOGXyMHh4qyslRYU6OdRsLHAAA\nAACwlVMGn4vLWRfl5lq3RRB8AAAAANjIKYOPwWSS0cNDxWazdVtQvYbyMLkTfAAAAABUmVMGH0ky\neXuV6vExGo0K9w3RiawUFVuKHVgZAAAAAFfjxMHHW0WX9PhIJcPd8osKdPZ8moOqAgAAAOCK3Bxd\nQEU6zp4lo6dHqW0RfmGSpOMZpxRcv6EjygIAAADggpy2x8fNp76M7u6ltrGyGwAAAABbOG3wKc//\nVnbjWT4AAAAAKs+lgk+YT7CMBiM9PgAAAACqxKWCj5vJTSE+jXQ8K0UWi8XR5QAAAABwES4VfKSS\nBQ5y8s8rIy/L0aUAAAAAcBFOG3yOffyJNg1NUOZ/95fazgIHAAAAAKrKaYOPwWiUpaCg1ENMJSnC\nlwUOAAAAAFSN0wYfo5eXJKkot/RDTBv7X3iWDz0+AAAAACrJaYOPyfti8Pljj0+IJIa6AQAAAKg8\n5w0+Xt6SpCJz6R4fL3cvNawXQPABAAAAUGnOG3wq6PGRShY4SM1N1/n8svsAAAAA4I+cNvj4d2iv\nGz/+QI2H3llmn3WBgyx6fQAAAABcmdMGH6Obm0yenjIYDGX2RfiVLHDAcDcAAAAAleG0wedyIi48\ny4eV3QAAAABUhksGn/89xJRn+QAAAAC4MpcMPn5evvL1qM9QNwAAAACV4vTBx2KxlLs9wi9Up3PO\nKr+ooJYrAgAAAOBqnDr4bBv9oHb94//K3RfhFyaLxaKUrDO1XBUAAAAAV+PUwUcGqfD8+XJ3NWaB\nAwAAAACV5NTBx+TtrWKzudx9/1vSmgUOAAAAAFyecwcfLy8V5ZYffP63shs9PgAAAAAuz83WE2fM\nmKFdu3bJYDBo4sSJat++vXVfSkqKEhMTVVhYqDZt2mjKlCk2XcPk7a3i/HxZiopkMJlK7WtYL0Ce\nbp4MdQMAAABwRTb1+Gzbtk2//fablixZomnTpmn69Oml9j///PMaM2aMPv74Y5lMJqWk2BZOjF5e\nklRur4/BYFCEb4hOZZ1WcXGxTe0DAAAAuDrY1OOzefNmxcbGSpKaN2+uzMxM5eTkqH79+rJYLEpO\nTtaLL74oSXr66adtLq7V44kyurmV6e25KMIvVIfTjupMzlmF+gbbfB0AAAAAdZtNPT5nz55VYGCg\n9XVAQIDOnj0rSUpNTVW9evU0ffp0jRgxQnPmzLG5OJOnZ4WhRyoJPhIruwEAAAC4PJvn+Fzq0oeM\nWiwWnTlzRqNGjVJ4eLgeeughbdiwQb169bpiO8nJyVW6bl52yVLXW/+7XYYUHmSKqqnq/QZUF/cc\nahP3G2oT9xtcgU3BJzg42NrDI0lnzpxRUFCQpJLen4iICDVu3FiS1L17dx08eLBSwadLly5VqiM0\nM0LLV38p+bpV+Vxc3ZKTk7lnUKu451CbuN9Qm7jfUJuqE7JtGurWo0cPrV27VpK0b98+hYSEqF69\nepIkk8mkxo0b6+jRo9b9zZo1s7nAywnxCZLJYORZPgAAAAAuy6Yen+joaLVt21YJCQkymUyaPHmy\nli9fLl9fX8XGxmrixIkaP368LBaLWrZsqZiYGJsLtFgsksUig7FsRnMzmhTqG6zjWSmyWCwyGAw2\nXwcAAABA3WXzHJ/ExMRSr1u1amX9u0mTJvrggw9sr+qCs99v1M+zX1Lzvzyo0P79yj2msV+YTmSm\nKM2coUDvBtW+JgAAAIC6x6ahbrXF4O4hFRerKDe3wmMurux2gpXdAAAAAFTAqYOPyfvCA0zNZR9g\nelFjgg8AAACAK3Dy4OMt6UrBJ0ySdDjtaK3UBAAAAMD1OHnwudDjc5mhbk38I+Tr6aMfT+1TsaW4\ntkoDAAAA4EKcO/h4lfT4FOflV3iM0WhU57B2Sjdn6nAqvT4AAAAAyrJ5Vbfa4BEYoO6fLJHR3f2y\nx3UJb68NR7Yo+eQeXdfw2topDgAAAIDLcOoeH4PReMXQI0kdQlvLZDRpx8k9tVAVAAAAAFfj1MGn\nsuq5e6ttUEv9mn5M586nObocAAAAAE6mTgQfqWS4myTtOLnXwZUAAAAAcDZ1Lvgkn9zt4EoAAAAA\nOBuXCD7FhYVXPCbYp5Gu8QvTnjM/K6+w4lXgAAAAAFx9nD747HlqsjbfdbcsFssVj+0c3l4FRQXa\nc3p/LVQGAAAAwFU4ffAxurtLxcUqzr9yL06X8A6SpGRWdwMAAABwCacPPibvkoeYFuWar3hsy4bN\n5OtRXztO7qlUDxEAAACAq4PzBx8vL0lSsTn3iscajUZFh7VTmjlDv6YdrenSAAAAALgI5w8+3iXB\npzI9PpLUJaJkdbftDHcDAAAAcIELBB9vyWhUUV5epY7vGNpGJoNROwg+AAAAAC5wc3QBV9JkRIKa\n3DtCBoOhUsfXc/dWm+AW2nP6Z6XmpivQu0ENVwgAAADA2Tl9j4/BZKp06Lno4upuO07urYmSAAAA\nALgYpw8+tugcXjLPJ/nkbgdXAgAAAMAZ1MngE+oTpAi/UO05vV/5hVd+/g8AAACAuq1OBh+pZLhb\nflGB9p752dGlAAAAAHAwlwg+lqIiFRcUVOmcLuHtJLGsNQAAAAAXCD45R45o053DdOTdhVU6r2XD\nSPl41NeOk3tksVhqqDoAAAAArsDpg4/Jq2oPMLWeZzQpOqytUnPTdST9eE2UBgAAAMBFOH3wMXp5\nS5KKzFULPpLUxbq6G8PdAAAAgKuZ0wcfk/fFHp/cKp/bMbSNTAYjy1oDAAAAVzmnDz5GDw8Z3NxU\nmJVV5XPre9RTVNB1OpT6m9JyM2qgOgAAAACuwOmDj8FgkFdoiE1D3aSSZa0laePRbfYsCwAAAIAL\ncfrgI0mdXnxBnee9YtO5va69Qd5uXvrsv2tlLrAtPAEAAABwbS4RfIweHjaf6+vpo4Gt+igzL1tJ\nv3xtx6oAAAAAuAqXCD7VdVurPvL1qK/P969Tdn6Oo8sBAAAAUMuuiuBTz91bt7eO0/mCXH2+f52j\nywEAAABQy66K4CNJ/a/rpQBvf60+8LXSzZmOLgcAAABALXKZ4FOUl6fckydtPt/DzUND2gxQXlG+\nlv+0xo6VAQAAAHB2LhN89ox/Sj+O+z9ZiottbiOmWQ8F12+odYe+09mcVDtWBwAAAMCZuUzw8QoL\nU3FenvJT02xuw83kprvaDlRhcaE+2bfKjtUBAAAAcGYuE3y8I8IlqVrD3STp5qbdFOEXqm+ObNHJ\nrNP2KA0AAACAk3Od4BMWJkkynzxVrXaMRqMS2v9JxZZifbx3pT1KAwAAAODkXCf42KnHR5K6RXRS\nZEATbTq6XUfSjle7PQAAAADOzWWCj1d4mDwaBsro7l7ttgwGgxLa3y5J+mjv59VuDwAAAIBzc3N0\nAZXl7uur6995027tdQxtrdZB1yn55B4dOHtYLRtF2q1tAAAAAM7FZXp87K2k1+dPkqQle+j1AQAA\nAOqyqzb4SFLroBbqFNpGe8/8rO0ndjm6HAAAAAA15KoOPpJ0X6ehMhlNejv5I50vyHV0OQAAAABq\nwFUffBr7h2lw6zidy03Tkt0MeQMAAADqIpcKPpaiImUfOqzsg4fs2u7g1v0V4RuqtQc36MDZw3Zt\nGwAAAIDjuVTwKc7P167Ex3Xkvfft2q67yV1/uf4eWWTR69sXq7Co0K7tAwAAAHAslwo+Jm9veQQG\nymyHh5j+UVTQdYptfrOOZZzU5z+vs3v7AAAAABzHpYKPVPIg07yz51SUl2f3tu/pcIcCvPy1bF+S\nTmadtnv7AAAAABzD5YKPd0S4ZLHInGL/YFLfo55Gdx6mguJCvbFtsYotxXa/BgAAAIDa53rBJyxM\nkmpkuJsk3dA4Wl0jOuqn33/R14c31cg1AAAAANQulws+9SObqUGnjjJ6edVI+waDQQ90TpC3m5fe\n3/Wp0nMzauQ6AAAAAGqPywWfBh07qO2/JisgulONXSOwXgON6HCHcgpy9e7OpTV2HQAAAAC1w+bg\nM2PGDCUkJOjuu+/Wnj17yj1m9uzZGjlypM3FOVLf625Wq4aR2nwsWckny39/AAAAAFyDTcFn27Zt\n+u2337RkyRJNmzZN06dPL3PMoUOHtH37dhkMhmoX6QhGg1F/uf5emYwmvbF9sVLPpzu6JAAAAAA2\nsin4bN68WbGxsZKk5s2bKzMzUzk5OaWOmTlzpv75z39Wv0IHauwfprvb36603AxN2/CKsvNyrnwS\nAAAAAKdjU/A5e/asAgMDra8DAgJ09uxZ6+vly5ere/fuCruwApsrG9QqVvEteut45inN+G6ezIX2\nf34QAAAAgJrlZo9GLBaL9e+MjAz95z//0TvvvKOTJ0+W2nclycnJlbtedraKDx+RISRYxpDgKtdb\nVe0skfrN95j2nTuoZ1a/oCFhfWUymGr8uqhZlb3fAHvhnkNt4n5DbeJ+gyuwKfgEBweX6uE5c+aM\ngoKCJElbtmzRuXPnNGLECOXl5enYsWN6/vnnNX78+Cu226VLl0pdP23nj/rps891zd3D1SR+gC1v\noco6FUdr1vevaeepvdpcsEd/v3G0jAaXWxQPFyQnJ1f6fgPsgXsOtYn7DbWJ+w21qToh26Zf7j16\n9NDatWslSfv27VNISIjq1asnSYqLi9OKFSu0ZMkSzZ07V23atKlU6KkK7/BwSVLuiZp5iGl53Iwm\nJd70oFo1jNTGo9u1YOfSKvVmAQAAAHAcm3p8oqOj1bZtWyUkJMhkMmny5Mlavny5fH19rYse1CTP\nRg1lcHOT+dSpGr9Wqeu6eejJm/+qZ9bP1ppfvpGfp6+Gto2v1RoAAAAAVJ3Nc3wSExNLvW7VqlWZ\nYyIiIvTee+/ZeokKGUwmeYWFKvfCHKLaXDLbx7O+nur1qJ7+apY+3rtCfp4+6nfdLbV2fQAAAABV\n57KTVLzDw1WUc14FGZm1fu3Aeg006dbH5Ofpo7eTl2jzMSb0AQAAAM7MZYNP4A3XK2zQQMlS7JDr\nh/kGa+Itf5eXm6fmblmgA2cPO6QOAAAAAFfmssEnpE+MIh8YLY+AAIfVEBnYRP+46UEVWoo06/vX\ndCbnnMNqAQAAAFAxlw0+zqJTWBuNjh6mjLwszfxuvs4X5Dq6JAAAAAB/QPCxg/4tblX/FrfqWMZJ\nvbz5bRUVFzm6JAAAAACXIPjYyZ87DVWn0DbaeWqf3vtxmaPLAQAAAHAJgo+dmIwmjev+gK7xC9Pq\nX77W2l82OLokAAAAABe4dPDJ2LtPvy1arPz0dEeXIkmq5+GtJ2/+q/w8ffTuzo+1K+UnR5cEAAAA\nQC4efNJ37dbxTz7V+SO/OboUq2CfRnq858MyGYyas+lNHc845eiSAAAAgKueSwcf74hwSVLuKecK\nF60aNdcj3UYqt8Cs57+bp0xzlqNLAgAAAK5qrh18wi8EnxPOFXwkqWfTbhraNl5ncs7piS+e05Zj\nO2SxWBxdFgAAAHBVcvHgEyZJMp886eBKyndX24Ea1m6gMvOyNWfTm3r+u3k6nf27o8sCAAAArjou\nHXzcfHzk5uenXCcNPgaDQUPb3qYX+k9S+5Ao7Ty1T4lrpuqTfUkqKCpwdHkAAADAVcPN0QVUV5OE\nu2T09HJ0GZcV7huiSb0e1eZjyVq48xN9vHeFvjvyg8Z0SVCH0NaOLg8AAACo81w++ITdFu/oEirF\nYDDopiZd1Sm0rT7au0JrDn6jaRte0U1NumpU9F1q4OXn6BIBAACAOsulh7q5onoe3hrdeZhmxI7X\ndYHXatPR7frn6me18eg2Fj8AAAAAagjBx0EiA5toWuzjGh09TPlFBXp58zuas+lNZZgzHV0aAAAA\nUOe4/FA3V2Y0GDWgZW9Fh7XV/K3v6YfjO/XT77/ogS4J6n5NF0eXBwAAANQZ9Pg4gVDfYE2JSdSf\nOw1VXmGeXtz0luZsepMHnwIAAAB2UieCT9rOH7XnqcnKOvCLo0uxmdFg1G2t+uj/xT2lVg0jteXY\nDiWueVZbju1wdGkAAACAy6sTwafYnKfMvfuUum27o0uptnDfEP0r5p8a2XGIcgvMmrPpTb206S1l\n5mU7ujQAAADAZdWJ4OPfsYMMbm5K257s6FLswmg0alBUrP5f3FNq0bCZNh1L1j9XP6utx390dGkA\nAACAS6oTwcetnrf827VVzuFflXfunKPLsZsIv1BNjfk/3dtxsM4X5OqFja/r5c1vK4veHwAAAKBK\n6kTwkaSAriWroKUl1605MUajUX+K6qeZcRPVIvBabTy6XYlrptL7AwAAAFRBnQs+mXt/cnAlNaOx\nX5ie7fN/uqfDYJ3PP68XNr6uVza/Q+8PAAAAUAl15jk+3mGh6jhnluo3u9bRpdQYk9Gk21v3U5fw\n9pq/9T19f3Sb9p75WQ90uVvdGndydHkAAACA06ozPT6S5NM8UgZjnXpL5WrsH6apff5PIzrcoZwL\nvT8vbXqL5/4AAAAAFaj7KaGOMhlNuqN1XMncnwsrv/1jzbPadHS7LBaLo8sDAAAAnArBx8U19gvT\n1Jj/032dhiqvME8vbX5bsze+ofTcDEeXBgAAADiNOjPH52pmNBo1sFUfdQ1vr1e3va+tJ37Uvt8P\naFSnu3TLtTfIYDA4ukQAAADAoepkj4/5zBllHz7s6DJqXahvsJ7pPU5jOieosLhI87Yu1PQN/9bB\nc0ccXRr+P3t3Ht9GeeAN/DeXblm2bMuO48S574QcQAjhbsq2QHdLC5Ry7dJj3xa2hZZS0oQC7Vug\nQGmakrIUynYJx6ZQGhZ4ubZHoN2kJCTkJAm5Dzu+b91zvH/MaCxHcrAdO7KV3/fz0Wek0aPRI2kk\nzW+eZ54hIiIiopzKuxYftbMTG//PrSiYMhkzH/xJrqtzyomCiH+YeCHmVMzAUx+8gC21H2Fr3U6c\nWTEL18y4AmOKRuW6ikREREREp1zeBR/Z54N/4kS079qNZEcHFL8/11XKiZC3GEsv/Ba21+3G77a/\nhg9qtuKDmq2YXzkH18y4AqMCFbmuIhERERHRKZN3wQcAis6ah47du9H64WaUXnB+rquTUzPKJmN6\naBK21u3E77a9hvePfoj1Rzfj3NHzcPX0y1FRUJ7rKhIRERERDbq8PMYneOY8AEDLB5tyXJOhQRAE\nnFE+Dfcv+j7uOv8WjCmsxP8e/gDfeevHWPH3/8TR9mO5riIRERER0aDKyxYfz5gqOIqL0bJpEwxN\ngzGbTZYAACAASURBVCBJua7SkCAIAuZVzMTcETOwoXoLXtz+Ot479D7+emg95lfOwRemfYbHABER\nERFRXsrL4CMIAso/cynUcBhaPA7Z48l1lYYUQRBwduVsnDlyFjbWbMMfdryJvx/dhL8f3YS5FTPx\nhamfwaSScbmuJhERERHRgMnL4AMAo665KtdVGPJEQcRZI8/AmRWzsKV2J/7w0RvYVLMNm2q2YWbZ\nZHxh2mWYVjqR5wEiIiIiomEvb4MP9Z4gCJg9Yhpmj5iGj+r34A8fvYmtdTuxrW43xgercPmkS3BO\n5VzIElcXIiIiIhqeuCVL3UwLTcS00ETsaTqAV3a+jQ+qt+KXf/8tnnX/Af8w4UIsGn8+Cpy+XFeT\niIiIiKhPGHwoq4nFY3Hned9AXWcD3tyzBn/Zvxartr2Klz96ExdUzcdlky7muYCIiIiIaNhg8KET\nKvOV4l/mXI1rZlyBNQfW4c2P/4I/7f8b/rT/b5hZNhnzKmZhWukkjC6sgCjk5ejoRERERJQH8j74\n1L7zR9T/+S+Yft8PIblcua7OsOVR3Lhs0iX4zISLsPHYNrzx8Z+xrW43ttXtBgD4HF5MKzW7yU0P\nTcKoAIMQEREREQ0deR98YrW16Ni5C60fbkHxgvm5rs6wJ4rmSHBnjTwDDeEm7Kj/GB/V78GO+t1Y\nX70Z66s3AwD8Di+mWkFoaulEVAVGQhQZhIiIiIgoN/I++JRecD6qX16N6tWvIHjO2RyaeQCVeotx\n0dgFuGjsAgBAfbgJH9V/jB3WJT0IuRUXppRMwNTSCZhWOhHjikZzlDgiIiIiOmXyfsvTO6YKwfln\no/n99WjbshWFs8/IdZXyVshbjJAVhAzDQEO4CTsb9mJnwx7sbNiLD49tx4fHtgMAHJKCySXjMa9i\nJuZVzESZrzTHtSciIiKifJb3wQcARn3pajS/vx5HfvcSAmfMYqvPKSAIAkK+EoR8Jbhw7DkAgJZo\nW7cgtK1uF7bV7cJ/fvgSRhaUY17FTMwdMROTS8ZBEqUcvwIiIiIiyienRfDxjR+HorPmIdHcAi0c\nhuzjeWhyocgdwLmj5+Hc0fMAAM2RVmw6th2barZha91OvLrrf/Dqrv+B1+HBnPLpmFsxA7PLp8Pn\n9Oa45kREREQ03J0WwQcAJn3nNkgeD1t7hpCgpxCLxp+HRePPQ0JNYHv9x9hUsw0bj23D3w5vwN8O\nb4AgCJhcPA5zK2Zi7ogZGBWo4GdIRERERH122gQf2ctWg6HMITswt2IG5lbMwFeNa3G4rRqbaszW\noN1N+7GrcR9e2PoKSjxBzB1hlhtTNAqFrgIOm01EREREn+i0CT40fAiCgKrCSlQVVuLKaZ9Be7wT\nm4/twKZj27Hl2A68s+89vLPvPQCAIsoo9RabAyt4S8zrvmKUeUtRVTiSxwoREREREQAGHxoGCpw+\nXDBmPi4YMx+armF3435srfsINR31aOhsQn24ETUddRmP8yhuzAhNxqzyqTijfCpHjiMiIiI6jZ22\nwUeLxSC5XLmuBvWRJEqYFjJPjJoukoyiIdyE+nAT6jsbUd1ei211u7qdS6jMV4ozyqZiVvlUqFoi\nF9UnIiIiohw5LYNP/Zp3sf/JpzH93rvhnzwp19WhAeBR3Hb3uHS1nQ3YWvsRttTuxPb63d26yf1X\n/RsYXTgSowMjMbqwAlWBkSj3hSCKPGaIiIiIKN+clsHHWVwMLRzGkRd/j2k/XJLr6tAgKveVonzC\nhbh0woVQdQ17mw5ia91HWL//Q7SoHdhQvQUbqrfY5RVJQWVBOUb4QvA6POZF8cDrcMOjeOBzeOBR\n3Ch0FaDIHeAxRERERETDRL+Dz4MPPogtW7ZAEAQsWbIEM2fOtO/7+9//jmXLlkGSJIwdOxb333//\ngFR2oBTMmI6CaVPR8sFGdO7dB9+E8bmuEp0CsihhSul4TCkdj/HxCsydOxdtsXYcaqvG4dYaHG6r\nxuHWahxtO4YDLUc+cXmCICDoKkSJpwjFniKUeIMo8QRR7ClChb8M5b5SBiMiIiKiIaJfwWfDhg04\ndOgQVq1ahX379mHp0qVYtWqVff+9996LlStXoqysDLfddhvee+89XHDBBQNW6ZMlCAJGXXsNdtzz\nIxx58SVMXbI411WiHBAEAYXuAArdAZxRPs2er+ka2mIdCCcjCCeiiFhT87Z5aY21oynagsZwM/Y2\nH8Tupv0Zy5dFGSP9ZagMjMCoQIV9CXmLOQQ3ERER0SnWr+Czbt06LFq0CAAwfvx4tLe3IxwOw2ud\nK+fll1+Gz+cDAASDQbS2tg5QdQdOYNZM+KdMRvP7G9C5/wB848bmuko0REiihKCnEEEU9qq8ruto\njbWjMdKMxkgLGiNNONpei6Ntx3Ck/RgOtVV3K++UHBhTNArjg1WYEKzChOAYlPlKeWJWIiIiokHU\nr+DT2NiIGTNm2LeLiorQ2NhoB59U6Kmvr8fatWtx++23D0BVB5YgCBj1patR89r/gyizOxL1nyiK\nZlDyFOL4oTJ0Q0djuBlH2o/hSFsNDrfV4HBrNfY0HcDuxn12Oa/DgwnBKowPVmFcURUqAyMQ8pZA\nZlc5IiIiogExIIMbGIaRMa+pqQnf/OY3cd999yEQCPRqORs3bhyI6vTNFZ/FzoYGoKHh1D835dSp\nXt9GoQSjlBIsLJ2FZLGKungjjsUbcCxmTrfU7sSW2p12eRECCpUCFDsKEVQCCDoKUawEUKgUwCO5\n2EI0DOXkN45OW1zf6FTi+kbDQb+CTygUQmNjo327vr4epaVdJ4fs7OzE17/+ddxxxx1YsGBBr5c7\nb968/lSHqM82btw45Na3zngY+1oO4UDLEdS016G6oxY17bXYEz6UUVYURBQ4fQg4/Qi4ChBwmdNC\nlx8hbwnGFFYi5CvhsURDyFBc5yh/cX2jU4nrG51KJxOy+xV8Fi5ciBUrVuCaa67Bjh07UFZWBo/H\nY9//05/+FDfffDMWLlzY74oRnW58Ti/OKJ/WbaAFwzDQHu9AdXsdajrqUNNei/pwE9riHWiLtaM+\n3JRxDFGKS3aiqrASY1KXolEYVTACDtlxql4SERER0ZDRr+AzZ84cTJ8+Hddeey0kScI999yD1atX\nw+/347zzzsOrr76Kw4cP48UXX4QgCPjc5z6Hq6++eqDrTpT3BEGwWnQKMC00MWuZhJpAa7wD7bEO\ntMbacKyjAQdbj+Bg69GMY4lEQURlwQiMC47G+CLzmKLRhSPhkJRT9ZKIiIiIcqLfx/h897vf7XZ7\n8uTJ9vWtW7f2v0Y5lGhuwZ7HfoWq67/Mc/vQsOGQHQjJxQh5izPuS2hJHG2rwcHWozjYchQHrEB0\nuK0aaw6sAwBIgojRgZEYF6zC+OBojPCXodRbjGJ3Ic9DRERERHljQAY3yBeRw4fRuulDxGqO4Yxl\nj0BO675HNBw5JAXjglUYF6yy5+m6juqOWuxrPoT9zYexr+UQDraaoehPaacjEgURQXchSr3FKPUG\nEfIWI+Qtwbii0agsGAFR5PFDRERENHww+KQpnH0GRn7xSlS/vBr7Hn8Ck+74DkfOorwjiqJ9MtWL\nxpqDj6i6hqNtx3Cg5TDqwo1oCDdZl2bsatiLnQ3dR250yU6MD1ZhYvFYTAiOwcTisShy9270RiIi\nIqJcYPA5zujrrkX79o/Q+Nf/RWDWLJRfuijXVSIadLIoYUxRJcYUVWbcp2oqGqMtaAw3oaajDnub\nDmFP8wHsqP8YO+o/tssVe4pQFRgJn8MLj+KGx+Eyp2mXAqcfIW8xvA4PdyoQERHRKcXgcxxRljHp\ne7dj8+3fw4GnnkZgxjS4KypyXS2inJElGeW+UpT7SjGjbAounWDOjySi2Nt8EHubD2JP0wHsbTqI\nTce292qZLtlpdqHzBK2udGZ3ulJPMUq8QQScfgYjIiIiGlAMPlm4QiFM/PatCB88BFdZWa6rQzQk\neRxuzCqfilnlUwGYQ2+HkxFEkjFEElFEkpmXtliH3Y2uPtKEI201WZetSApKPEVmEPIUocQKSX6n\nF27FBbfsMqeKGx7ZBVniTxkRERGdGLcWelB8znwUnzM/19UgGjYEQYDP4YXP4QW8vXtMOBExQ1Dq\nmKJIMxrDzWiMNKMh0oxjHfW9Wo4iynArZtc6r+KBx2FNFRc8Dg+8ihtehwcexQ2fwwOvwwOvYk0d\nHg7nTUREdBpg8CGinEkFjzFFo7LeH1PjaEwLQ+FEFFE1ikgyhmjqokYRTcbtVqWmaCuSWrJP9VAk\nBQUOH4o9RfalxJ4GUewpgt/h5fDeREREwxiDDxENWS7ZicqCEagsGNGnxyW1JCLJKMLJqN3tLpyM\nIJyIoDNhTsPJqDm1Lm3xDuxtPoiPm/b3uFxZlOGUFDhkB5ySeUld9zm9CDj9CLj8KLCmAacfBS4/\nCp0FMAyjx+USERHR4GPw6YNYbS2OvfEWxvzzjRAk7vklGqoUSUFAUhBwFfTpcbquozXWjsZIM5qi\nLWiKtKAxYk7DiQjiWgIJNYG4Zl464p2IaQlouvaJy5YECUXHViPg8qPQVYCAqwCF1sXv9EISJIiC\nCFEQIAoiBGsqCiKckgNF7gAKXQVQ2C2PiIioXxh8+uDgyufR9L9rEW9sxKTv3g5R5ttHlE9EUUTQ\nU4igp7BPj1N1DZ2JMNpi7WiLdaA93oG2WAfa4h1oj3WgNd6BY021SELD4dZq7NMP9buOfqcPQVcA\nRe4AityFKHIH4Hd44ZSdcMkOuGQnnLITTil13WEf3yQKPOksERGdvrjl3gcT/u0WJFta0PS/67Bb\nVTH5zjsgKtz7SnS6k0XJbr3pycaNGzFv3jwYhmGNcNeO1lgHWmPt6Ex0QjcM6Iaedum6HVPjaIm2\n2Zf6SBMOtVX3qY6iIMLv8MLv9JkX+7oXLtkJh6TAITnsqVM2rzslh/3aHLLjZN8qIiKinGHw6QPZ\n48a0e+/GzgceQvP7G7DzgYcwZfGdkJzOXFeNiIYJQRDsQR0qCsr7vZxYMoaWWDuao60IJyKIqXHE\n1DjiagJxLY6YmkDcmhdORtER70RHvBNtsXZUt9fCQN+POXIrLhS5AnYQKnQVoMDlh0dxwy274HFY\nU2uocbfigkd2QZEUnpeJiIhyjsGnjySXC9Pu/gF2PfQztHywEc3vb0DpBeflulpEdJpxKS6MUFwY\n4Q/1+bG6rqMzGbHDUExNIKElkNCS3aZxNYGYGkeb1TJlXtpQ01HXp+eTRAkexW1eUgFJccOjuOCS\nzNYmxbo4rIsiynBIDkiiaB/rlH6RRBGSIHUbotwlOxmwiIioRww+/SA6HJiy+E40r9+AkoXn5ro6\nRER9IooiCpw+FDh9/Xq8qmtoj3egNdqO9ngHoqp50tqoGksbatwadlxNjawXQyQZRWu0DXEtMcCv\nyCQJIjwOD3xp52iyA1fqhLfW+Z48itvq4md175PNbn3pXf44fDkRUX5h8OknUVEYeojotCSLEoLu\nQgTdfRsEIkXTNUStIBS3WpiSWtKc6ioSWgJJzZxqetdxT1q3Y6B0qLqKSCKGzmSk29DknckIGiLN\nUHX1pF6nU3Yi4PTZw5KnTwMuPzzWSXLdqVAlu+BSXJAZmIiIhiQGn0Fg6DoEkaMnERFlI4kSfE4v\nfE7voD2HYRhIWOdzSrU+pU5yG7Fux9SY2a1PTXXvS3br7hdORtAe68T+1iO9GrI8RZEUeGQzEHms\nY51SwSg1zyU7IYsyZFGCJEqQRQmyKNtd+BRJMc8ZJTkyBptIdQ1ktz4ior5h8Blgnfv34+NHl2Pi\nt2+Ff/KkXFeHiOi0JAgCnLIZGIrcgZNalj0SnzU8eZs1XLkZqqyufWpqGk3r7mcOQBFX4wP0qrqI\ngmiHqPTufKnrHU3tqPu4DQX2KH5m10af0wun5GBoIqLTEoPPAOvYuQvR6mps+8HdGH3dtRh55T/x\nZKdERMNYt5H4/GV9fryma4ipcTsopVqbVF2DqqvQDA2qpplTXYWqa3ZXv4SWtE+ca1/XEogl43bL\nVX1nI6JqLON517Z8mLU+qRYpp+yAS3bBJTu7XRyyA7IgQbQGlpDSBpQQBbN1ym23Xlkj+Fmj+bkU\nF9yyCw62SBHREMTgM8BGXH4Z3KNGYc+yX+LQs8+jdfMWTLztW3CWluS6akRElAOSKNnBabDoum4N\nLmF25du07UOMGDMSHfEwOhKdaLdG8DMvYXv486ZIM6JqHLqhD2h9BAh2kHJaJ9ZNXRRr1D5ZkqGI\nChRJhiLKUCQZsmh253PKCpyS0261M+eZIwBKgghBECEKgjmFAFEQIQgCREHoGvkvfSRAK8QR0emN\nwWcQFM6aidnLH8Xexx5H8/oN2Lp4Kc588nG2/BAR0aAQRbFbuGr01GHeqLm9eqxhGFB1tdu5oDRD\ng24Y0HQtY3CJpKYilj6CnxpFNBk3j6VSY4glY4hbrVKpZbbFOhBT4/06f9RAUiTF7hboVdJG/XNk\n7zLYNTKgyz5flSxx04louOK3d5AoBQWYsuQu1P/5LxBEkaGHiIiGJEEQ7PMo+fs5xHlvpAacSGgJ\nJHUVqqYiqatIaipUXUVST9pd/OLWeaTME/KmrscR1xIwDMMMYzCnhmF0zbOnmaMA6oaOhGoOeBFJ\nRNEQ7t/If7Iow51qwbK69pnXzeHRu4ZFV7oNj65IijmYhSCZg1iIEiQhNZWs1qmu1isBgj1PsFqw\n5FTrmNViJlvXOfQ6Ue8w+AwiQRBQ9qlLcl0NIiKinEsfcGKoSI38lwpD3Uf+S59vdiOMWi1aUasl\nqznailgyBm2Auwr2lSAIcMsueBU3PA5Pt6nXatGSRdkOXWZXQKlb+EqNLJgabVBJC1ayHbQk+3Yq\nfLELIQ0nDD45YmgaDvx2Jco/cyk8lSNzXR0iIqLTTqpVptBV0O9lpLoKRtW4PSBFQk0Ni959qHRN\n16AZujXVoOm6NTXnG4YBA6mWKwOGNU83dKiGZg6IkWop01WoWtIaDCOJqBpHOBnpcbCLwSIKIiSI\ncB9ZZbduOdNODOyQHJBFueu4K2vI9vTbDskBl+yAU+p+XJjTmpf6nBRJhiIpcIiKfayYyNOHUB8w\n+ORI8wcbcey111H7xpsoueB8jPz85+AdMybX1SIiIqI+SO8qOFTouo6IarZWhZNRhBMRO2jpRip8\nWdet8KXa3Q41M1SlLlbQsufbXRO77m/tbIPsUJDQEggnImjWWpHQkgM+aEY2ZhdA5bgugJI5cIY1\naIYZojIH23BKTihStpaw1EiGXS1hSlprWHoLmFs2uzsygA0PDD45Ejz7LExZ/H0ceu55NPxlDRr+\nsgaBM2Zh9Je/hIKpU3JdPSIiIhqmRFGEz+GFzzF4JwlOt3HjRsybNy9jvqprSKgJqIYG3WrVso+/\n0s0BNFRdM4dot47hiqtxxNKO6YqpcSQ1FUktiYSeRFIzjwVL6l0taekBLamriCSTULUO+xiyUzGo\nhkNSrKHdneZxX4oLbtk87qt7S5XcNU9UsgeutOPA7K6FVvmu6/Jxx3ylRjzkMPInwuCTI4IgoHjB\nfATnn4WWTR+ievV/o23LVsQXXQIw+BAREdEwJ4sSZIc7p3VIDaoRV7tGGewKWHGo6d0O7XBmditM\nbw1LnWNLtVrFVF1FwhoNMZqMIpaM2ycybo21IzYIJy7+JAKErjAkKXBY0+Ovp7oJpnc9lNKGfje7\nIgr2sPGiIECA2G0eALs7pp6li6YgHH8OsMyAlz70vCRK1nNJ8Dk8mFE2eVCOH2PwyTFBFBE8cx6C\nZ85D57798FSNznWViIiIiPJC+qAaBfCfsuc1RxG0jvGyRixMph3vlbRar3TDSOuGqGccB5a0uxom\nu653O84r+/0JPQlVUxFORpGMtZstZf0YxTBXfnzJHZhSOmHAl8vgM4T4xo/LOl8Nh/Hxz5ej5Pzz\nUHzO2ZBcrlNcMyIiIiLqLVEQ4VLMLm9DhW7o9mAYSS3ZveuhoUO3WrhS5/AykDlUfGqeAcMceh1C\n1mHYDRj2cWSp57DDnZF2fjBdz7julB2YEBwzKO8Bg88w0LZ1O1o+2IiWDzZin8uFknMXoPTiCxGY\nMR0CD6YjIiIiok8gCiIckgjHEBqI41TjVvMwULxgPub++2OovOYqKAV+1P/5L9jxw/uw/6mnc101\nIiIiIqJhgS0+w4S7ogJV138Zo7/8JbR/tBP1f1mD4gXnZC1rGAZH9SAiIiIiSsPgM8wIoojAjOkI\nzJjeY5ldDz4ECCKCZ5+Jonnz4CgMnMIaEhERERENPQw+ecbQNMRq6xA5dBjNf38fAOCpGo3ArFmo\nuv5aSO7cDitJRERERJQLDD55RpAkzPnlMkSOVqN5/Qa0bt6Cjp27kGhuxtiv/HOuq0dERERElBMM\nPnnKUzkSnsqRqPzC56EnEojV1mYdAS5aXYPdj/4C/skT4Z88GQVTJsFZVsZjhIiIiIgorzD4nAZE\nhwOe0dlPjBqtqUHk0CGE9+1D7RtvAQCUQAChRZdgzE03nMpqEhERERENGgaf01zwrDNxzqrnEN5/\nAO27dqNj92507PoYRjKZtXzk8BHE6urgHTcWjmCQLUNERERENCww+BBERYF/8iT4J08C8DkAgN5D\n8Gl49z0c/f0fAABKoACe0aPhGT0KJeefh4KpU05VlYmIiIiI+oTBh7ISlexn9Q3OPxui04nOffsR\nPnAAbdu2o23bdniqRmcNPu27dkOPxeAeWQFHcXHW44yIiIiIiAYbgw/1iX/SRPgnTbRva7EYIkeO\nwllakrV89R9Wo/n9DQDMY41cFSPgrqhA5RevhG/C+FNSZyIiIiIiBh86KZLLBf/ECT3eX3bpp+Ed\nMwbRmhpEq2sQrTmGyMFDqPjHK7KWP/T8f0Ht6ICrrAzOUAjO0hI4S0ugBAJsLSIiIiKifmPwoUEV\nPHMegmfOs28bhoFEcwuUAn/W8o1/W4tYTU3G/Fk/eyhrwGrftRuSywlHcTFkn4+DLRARERFRVgw+\ndEoJggBncbDH+8949GHE6+sQO1aHeEODdWmEq6wsa/mPf/ZzxBsaAZhd6RzBIBwlxZh8x3fgCBZl\nlFcjEUhu98C8GCIiIiIaNhh8aEiRPW7IY8bAO2ZMr8qXX/ZZxOsbkGhuQryxGYnmJrTv+Aiiy5W1\n/MZ/vQVaLAbD48aWUAhKIAClMICxX/0KZE9mIDI0DYIkncxLIiIiIqIhgMGHhrXKL3w+Y56uqhDl\nzFXb0HUUTJuCRHMLOuvqET5wEIaqAgDGf+NfM8sbBv5+7Q0QFBlKQQGUggLI1nT8Lf8n63Mkmlsg\n+7wQHY4BeHVERERENFAYfCjvZAskACCIIqYuWQwA2LhxI+bOnQstEkGyvT3r8N2GqsI/ZTKSbW1I\ntncgXr/PbAGSZUz41i2Z5TUNG27+mlkHhwOyzwfZ74Ps92PGT36UcfyRYRho2fABJK8XsnWRvF5I\nbhePVSIiIiIaYAw+dNoSBMEOHNmIioIZ//c++7ZhGNDCEaidHVmDiZ5MouS8hUh2dEDtDEMLdyLe\n2IREU3PW8lo0hp33/zTzeV0uLPjd81mXf+Dp30LyeCC53ZA9bkhuNySvD8Xzz+rDKyciIiI6/TD4\nEPWSIAiQfV7IvuxBSXK5MPnO72bMN3Q9+/JEAWP+5Sao4TDUcNgMVeEw0ENrj9rZido3386YL/v9\nKJ7/nxnzk+0d+ODr34DkdkFyucyQ5HZDKSzElO/fkVFeTyTQ8N5fITpd5mOcTojW4zyVI7PWiYiI\niGi4YPAhGmQ9nX9Icrkw8sp/6vVyZL8fcx5bBjUcgRaNmpdIpMfyhq7BPbLCLptoaYUei8FRXJy1\nfLKjA3sfezxjvlJUhLP/8zcZ8xOtrdh65w8guZwQneZFcjrhCAYx4d++mVFei8XQsOY9iA6HVd5h\ndgn0eHgyWyIiIhp0DD5Ew4Qoy/CMHt3r8o7CQsz++SPd5hm6Dj2ZzFpecnsw8bZ/gxaLQ4vFoMdi\n0OLxHgdqMJJJGLpuBqp4HHoiAQBwloWylk+2tWHfv/86Y74zVIozn3oiY36svh6bvvFvZlByOCA6\nFIgOB5yhEKbf98PM5bd34PDzL0BQHBAV2XyMokAJFKDs04syyuuJBDr37oOgKBAVGYKsQFQUiE4n\nHIWBrK+BiIiIhi8GH6LTiCCKkJzOrPfJHjdCl1zc62U5S0tx1tNdQcbQdTMAWSPlZSzfX4BJ370d\nesIMSVo8AT2RgNTD0OOCIMI3YQL0RMJ+jNoZhuhqz1pe7exA7VvvZMx3jSjPGnziTU3Y9oO7M8uX\nl2HerzNbvmJ1ddj6/SVmSFIUiLI5dZWVYcpd38son2htw+HnX4CoKBBkGcnGRhzevQdKYSFGXPaZ\njPJaNIrWzVsgyDIEWTaXL8uQ3K6sw7sbmgYtFrPLQhQ5KAYREdEJMPgQ0YAQRNE8jqiH+2WPG6UX\nnt/r5TlLSzDr4Qf6UL4Ucx77BXQ1CT2RhJ5IwFDVHs/DJHs8qLzqC9BVFUbSekwyCaXAn7W8oRuQ\nPB4YahJaNApVVaEnVXtI9OOpHR2oe+eP3eYdAeAeWZE1+MSbmrDrp49kzHdVVGDevz+WMT967Bg+\nvPW2bvMEWYZnVCVm/+LRjPKxujrsfOAhCJIMUZYgSBIEWYYzFMLELKMUJlpacOR3L9nlBMl8jKOw\nECMu/2zm6w2H0fz+egiSDEES7fKS14PA9OkZ5fVEAtFjtXa51GNERYFSUJBRnoiI6GQx+BBRXhAV\nBZ7Ro3pdXgkEUHXj9b0u7x5RnjWA9MRVXoY5v/olDFWFnkxi144dmDRhQo9BTCkIYOzXboahamYY\nsy6yz5e1vOR0Inj2WdCTSRiaZpbXNDhKsh/DpSeTiDc0wFA1uzwAuEdVZi2fbO/IOpiGe1Rl1uCT\naGrCnuUrspafu2J5xvxYbR02f/s7meUrKzH3V5nlI0eOYvNt3zXfP9EKVqIIz6hKzHzwJ1mW7xhi\nLQAAIABJREFUX4tdD/3MLpd6nKusDBO/fWtG+XhTEw6tfA6C2H35juIgRl39xYzyybY21L79P3a5\n1GOUAj9KL8gM+GokgtYPt6SVFe2dBQVTp2SU1+JxRKtrzLqnPUZUHHBm+YwNTYMWT5jLFQTzM9b1\nHo8xJCI6HTH4EBENAlFRuo2GJ7a3ITAjs+UjRSnwo+JzV/R6+c7SUkxdurjX5T2VlTjnhWft24Zh\nALoOQ9OylnePKMecx5ZBTwUlTYOhqRDlzHNeATAHtfjWLVao0mDoGgxNh+z1ZC0veb0o/+xnrHJm\nWUPT4AgWZS0vKjJ8EyeY5fSuOkk9LF9PJBCtOWa+RusCXYfa0ZG1vNrRiYY172XM91SNzhp8Ei2t\nOPz8f2WWHz0qa/CJ1zdg98M/y1p+zmO/yJgfO1aLLd/J7ELZU/lUMEy39hPKb/vB3VaoEuyA5R45\nEtN/dE9G+eixY9j9yM/N7pSiCEEwg5irvAwTb/tWZv3r63HgN7+FIHaVhyjCWVqCMTfdkFE+3tSM\n6pdXm3VJPYcowlFUhIp/zPxeJNvaUPfHPwOCWffUVCkoyNqyrHaG0bxhAyCIEMTUY0TIXg8KZ5+R\nUV6LRtGx++OuLqSiAEEQIbpc8I0bm1E+tb4JogAIqfoIZlAtLckob2ga1M5Oqyys90cwW0l76I5M\nRCePwYeI6DQkCAJgdTPLRnQ4+jSYhuzzoWzRp3pd3lkcxPhvfL3X5V3l5Zj1UO+7PnpGj844H5ah\n64BhZC3vrhyJM3/z6+5BTNd7PCGyMxTCtPt+aIfHVLjq6Zg1R7AIY7/+1YwgJvuzt+jJfj9GXHGZ\nXS71GEcwmLW85Hah6Mx5gKHD0HS0t7XB5/XCFco+2IggilAKA4BhpD1H9vcGAPREEtHqGrsuMAwY\nhmEOwZ+FFomg+f31GfM9VaOzBh+1ox3H/t8bWctnCz6JlhYcWvlc1vLZgk+8sQF7fpHZYuupGo05\nv1yWMT9WV4cd9/641+WjNTXYfFvmaQJ6Kh85cqRP5cMHD5nBVhDMUGVNPVVVmP3zhzOXf/gIti29\nxw5tgBnE3JWVmPHjezPrX12DnQ/8tCtIwlxHXBUjMOX7mQE8eqwWe3+5wq5PorMT2195Da7yMky4\nNXNUz1hdPQ785j8y6u8MlWLszf+cUT7e0IjDL6zqVncIApzFxRj1paszyzc1o+a/X+22bMD83mXb\noZRobUXd2/+TUR8lEEDZoksyyifb29H417/BSqn2Y2S/HyULF2SUVzs70bzhA6ucGW4B85QYRXPn\nZJaPRNC2bYdZ7bT3v8cW4WgUnfv228tN1V9yueAdOyazfDyOaHV113tpvQ7R4YB7RHlGeT2ZRLyx\nyayPkCpv7tBzFGXunDI0DcmOzq7yqfdUlCB73JnlrYGW0j+r1GN6+k8aKP0OPg8++CC2bNkCQRCw\nZMkSzJw5075v7dq1WLZsGSRJwgUXXIBbbsnsP075Q9MNdEYSaOuMoy2cQHs4gfbOOGIJDW6nDI9L\ntqaKfd3tlKHIIlTNgKbp5lTXoekGVE2HphkQRQEORYRDlqDIIhyKBIcsQpJOj64bhmEgltDQGUmi\nM5pAZySJjkgCSVWH0yHB7ZDhdEpwOWS4HF1Tp0Masge5G4YBXTegG9Z1w4BhXwfiCRXReNolln5b\ngywLcDtkuJxd65HLIcHtlOF0SJBEEYIASNZeY3PHsQBRECBJIiRxaL4vdGqcqNuXKMtZ98z3RPa4\nUTRndq/LKwUFqLjisl6XdxYHMe7rX+11eVdZGab9cIl9e+PGjZg5b16P5d0jK7J2QeyJtyozSAJW\ny2EWnlGjMP/5Z6zAZrUuGrq5EZit/iNGYPbyR61QBTuM9TSqpDMUwrR7lna1XFphTHJnbmQBgKO4\nGBP+7Ztd9TEMwNAh+7If06cUFmL09V/uCnlWfZTCwqzlZb8f5Zd9BjBghk/DAHSjxxZMyeNB8bkL\nzLK6AcB8DmdpadbyotOJgunT7MAJ6zHOsrKs5WG1fpnLNV8rDECUs29UGpoKtaPD3C+QVqee3n89\nHkP7rt1A2nnq2mC2xGWjRSJoXr8hY76najSQJfionZ2o//NfspbPFnzU9nbU/PdrWctnCz7JllYz\nWGUpny34JJqasf/Jp7OWzxZ84g2NPQbtbMEnXlePXQ9kntC8x2BeW4ftSzNbZnssX3MMW75zZ6/L\nR49WY/PtfQjyh4/0rfyhw30qP5AEo6dfrRPYsGEDnn76aTzxxBPYt28fli5dilWrulagyy+/HP/x\nH/+BUCiEG264AT/+8Y8xfvyJz9OxceNGzDvBjzTlhq4baO2Mo745grrmCOpbrGlzBA2tUbR1JtAZ\nTfS0E3VQSFYgkkQRkiRAEgWIogg57bokCtB0HapqIKnpUDUdqmpNNfNPKVTkRWmRG6EiD0JFbpQW\neRAKulFa6IHf67ACmY6k/TjDXoamm38+BmD+ScOw/jDM69G4hnA0iXAsic6IOQ1Hk/Y8TUtt9Jsb\n/Lq1PF03oGoGwlEz7Kha399YQYAZNJ0y3C4ZHqcCd1rglCXR3lhJfW52/QGzXnr3YKLbgcVAUjXf\nk0RSQ1LVEU9qSCY1JNSu99b8n+0KOKl5ueZySPC6FXhcCnxuM4h7XYo1L+39Sgvs5jwZLocMh2IG\nS4ci9TlEncxvnK4b1k40BrdcsNfp1PdATwvtZgFze9foKp8iioK1U9acpj5HAdY2clpZe3k9SP/0\nDXT/3TC/o13f2492bMe8ubPhVCQo/Vhfk6qGzmja71ZUNX+XYklEY0nEkzqSqoZEUkdC1czfA+t6\naoeWbhjQrPcrfXrCFwlAlAQokghZEqHI5lSWBchS6rfdsH7TDfs3PXXRdMPc0SEK5k6P1I4P67os\niXCmfY+dipT2vRYhCgJUzYBu74gzd8rpugFNM+yq2zvC0fW9FASY9ZZFKNYOu/SLJIrW/1LXf0sy\n7XXoaetCt0/LumEYgJbaSaiZ76VmvebUe6Kndh7qRsb1VB1T658gptZJ8z1K7ShKlbHnCYK1I9Lc\n+Zg+VRQRTlnEkcOHMG5sFWAI5uApQvflwNAhJePm5wHD3DkFA6IkQfEXZJy321CT0NtaAcOAYBhW\nHQBZkeEqL4ckmf/5oiiY72sshujRo9B1HYYOc2oYEBQFjlFV9mu3lx+LIb5/HwwYEAxAML+NZovJ\nlKlm60baA5KdnQhv2w7d0K3MbAZV0eOBb/bsbu+VIAjQOjvQufGDrg/Oukg+H4rOPbf7+i4KUNvb\n0fLee2mfuw7BAOQCP0o/9Smo6Z+1ZiDe3IzmP/7Rfp2G9Vsg+AvgvfjT9m9C6rMz2loR/uObXeuu\nta7JhYUI/uM/2d/J1G+S2tyE5ldWm3O6fuggB4MovepLEARrfbS+G/H6erT8/ndpdTE/BzEYhPvK\na+3tJSO1TdHYgPjq/7KXK1jPLhWXwv/lm+B1K6gMZd8pAZzc/2m/gs8vf/lLVFRU4KqrrgIAXHbZ\nZXjppZfg9Xpx5MgRLF68GM8/b+4ZevLJJ+H1enH99Sc+iHi4BR9V09HSHkdLRwyGYcDvdaDA44DH\npUA8wR+MpuloDyfQ2hlHW2cc7eEEpNQPsWL+8DodsjlVJLulpK/aOuM4XNuB5vYY4kkNsYSKeEJD\nLKFZU/N2QtXMcKBq1g+w+UOc2rBtboshoepZn8PvUVDod6LA60SB14GAz5p6HSjwOuB0yIhZe/Aj\nMRWRWBLRmIqItQc/qepmWJFEyFaIkaWuqa4b9sZ1IvUHm7axnf6jrh33o6DrOuTUH2a3P1Bz2e0d\nnYgkRbR2xPv83g4E0f6DSf0xd/1gypIIr1uGz+OAz63Ab019Hgd8HgUOWUTM/izN9zL1uUYTKmLW\n+x21p8l+BagTEQRAkVN/fuafvEMx32f7dR335ymk/4l2+5Ptuu2w1vluFzt4SFB1A7G0FqFYQrNv\nxxMaNGsj0LA2Au1wmQqUsSQiMWsjLpa0Nwb6Q5asDQHru5vaQOtp2tragpLiYpjHqQv2H1Lq9yIa\nVxGJqojEk/b3xZyqUDXdft9TGyqp9xiCAFkSzI0ryfwsZGtDy2FtgB2/EZiqgySKVmuYYH1PUt/B\n9OsChLS/44wNFANWGDbDb+o7mh6OUxvGqe9wItlV1gDsdSXbepNel1QdpeOuK6nfjbTfEVkyW/9U\nzfp9U9M3NLtfV7vtHOnaWaJZG5JDIbSfLHt9lc2NVcPa4ZL+HUndNt+z7L/7/ZH6vTN3Sp04wJsb\nU10b8b2VCh2iKNivw9xBNRCvgOjUS4WL09Uj3zofU8Zk79p7MpmhX13dGhsbMWPGDPt2UVERGhsb\n4fV60djYiGBaH+RgMIgjR470q3K51hlNYsvHDdhf04bmthiaO2JobouhpSOGts5E1seIAuDzOOD3\nOOD3mBuriaSGlg4z6HRE+t464vcoKC/2YkSxFyNKvOb1Ei/Kiz1wKhIO13XgUG0HDte243BtBw7X\ndqC1s38b9KkNDMXaYBo9ogBlRR6Egh6UFbkRCprXQ0UeuJ3D9xCx1JcmkdTQ0BpFfXME9S1RNLSY\nrVrhqJqxpzG1J08SzY0tq2stBAj2BimsjTWXQ4bPLcPrNlsTfG6Hfd3tlE95l6ukqtlhyN6YSKt7\nSrdwInbfg5XaeFFkCbIkDPvWB8MwEE9odmtcJBXKrbCYHh4jcRWxhNpt4z2eNMNmakM+llCtHQcn\n2Gg7fLRXdXM7JXhcCgI+B0YUe+FQJLtVLrXc9A1WTe9qiYsnzT31qY19bYhstSvH7SkOuGQosmTu\njbRaGdNbQY9/bbG4uXNG07paYE9Gau9/KjDKkgBZFuFydg9Vqe+CJHb/bqRCZMrxLXLpGy2pz8xI\nax02DKNbSwGQ+X3siWGgWzfO9Oup7219QxN8/oAdQOPJrvCZVDUIomAFBaTtgEm1igjwuFK/XeYl\n9fvldZktyE5Zsvf4260Aad2RJbGrlaW/vxWpHVrpLe+aZtjhNvUbfaJurOnrUWpnWdx+P3TEE6o5\ntebBgP0eSGLq997aSZAW2tJb/FOfiRkadfu7aP4edIVuVTOgWOuZHeTt9c9aPgQYaU1iXa3ygCQI\nEK2eDamdTNmup7dupf6vUjtYUnvc7T3wutHVepj2fnV1QTavq2k7RFOtfOkt/nv3HUBVVZW1kyC9\ntT+tZdIw7N4OGa2Ax31mx6/v6Ts31bSdnKrV4nB869TxrVbp373057F7bVj3w/ocU/NTrSaw/wut\n76nY1SJkv87jekik5p9I1+O63nfd6HqPBKH7Z5z6XUp9v8z1sus3QBK6vnOp12332Eh7z1PzkNp2\nQebvV/r6l22dB5D23RC6feeP/xy6dtihW92O7/KemrqdMsaMGJzTGgzIluuJGo360qC0cePGgagO\nAKClU8XB+jgO1sVR15pE0CejotiBkcUKRhQ54HJk9jM2DAO1rUnsrYlhT00MRxozQ4pDFuB3SxgT\ncsLnFuF3SxAEIBLXEY3riCTMaUt7BDWNuv14l0OAzyVhdKkDXqcEr0uE1yXB4xSt7kPWXjat+/VY\nwkBLWMX+6lbsOdLaq9de6JUwaaQLoYCCgFeCIglwyNYeYdm6LglQrGnXD3v3pt3uYuYl2oLGaqCx\nuvefxVB1/PpWogAlIWBqCOj+1TAAaNaljxJAMgG0tAEt/a8qnUIuAC4JKPIC8B5/r2RdPrkV1vyT\nsfZe68f/MaZ3BTTLOxQBLkWEQ+5qBRoIXV2guj9/9z9pWH+I1gZG6rZhXrcZ3SYAzD9Nc4cJrFYX\nwbqd2ng07+/5t6V/UgEpVd/U+52qc2pvf+r5JTGtPuLAvsdDi/XpTEztgOzd+tqz1G9frGvxUUCF\neckXAszvfjoD/XudAgCHdYEA8+3P9hEYAJLmJfUvcyJD7f1OvWcuAHPGewE05qAWJzrm18An9qvs\nRjhu+kmOX3ZfHz8QBq5ltm/vVfpj+rFt1As7tm8ZlOX2K/iEQiE0Nnat4PX19Si1DsgLhUJoaGiw\n76urq0Ooh1FljtesluDT86v6UyXUN0ewbV+jednbiPqWqH2fLAmobUnioyNd80aW+jBxdCEmjipE\nwOvElj0N2LirDs3tZkuJIACTRhVh3pQQpo0rRmmhG0UFrj61chiGgWhctfv6ngxNN9DUGsWxpjBq\nm8I41hjGsaYw4gkNo8r8qCr3Y3R5AUaV+Yd1S8ypMty6VtLwx3WOTiWub3QqcX2jU+lkGkr6tYW8\ncOFCrFixAtdccw127NiBsrIyeDzmuRRGjhyJcDiMmpoahEIhrFmzBo8+mnkW8Wx++eJmHKnvxD9f\nPq3XXYE27qrDU69sR3VDpz3P71GwYOYIzBhfjJnjS1BVXoDG1ij2HGnFniMt2HOkFXuPtmLNxqNY\ns7Gr60mB14GL5lVi3pQyzJlUioDv5MbSFwShX8fnZCOJgt3N7IyJ2Ud9ISIiIiKi7PoVfObMmYPp\n06fj2muvhSRJuOeee7B69Wr4/X4sWrQI9957L777XfNEaldccQWqqnrXilMZ8mH1mr04Wt+B710/\n74ShoTOSwG9e3Y4/bTgCSRQwf3o5Zk0owcwJZtA5vhtDKjQsPKMCgNktoqaxE3uOtKKlPY4Z44sx\nobIwj7s/EBERERGdvvrdJyoVbFImT55sXz/zzDO7DW/dW498+wI8vHIDNnxUh7tW/A0//Mp8hIKZ\nZ+Vet+0Y/v3lLWjpiGN8ZQC3fWkOxlYE+vRcoiigMuQ/4XB5RERERESUH4bUmSB9bgX3fu0cXL5w\nLA4ea8cdy9/DzgPN9v1tnXE8/OwHeOA/16MjksRNl03Fo9++oM+hh4iIiIiITi9D7ih4SRLxjS/M\nwqiQD0/+93Ys+ff/xbeumQ1ZEvDr1dvQHk5gSlURvv2lORhVxtYaIiIiIiL6ZEMu+KRcft44VJT6\n8NDKDVj2X5sAmCc3/No/zcAV54075edBISIiIiKi4WvIBh8AmDM5ZB738+wHKPQ7ccsXz8CIkowT\naxAREREREZ3QkA4+ADCqzI/HvndxrqtBRERERETD2JAa3ICIiIiIiGgwMPgQEREREVHeY/AhIiIi\nIqK8x+BDRERERER5j8GHiIiIiIjyHoMPERERERHlPQYfIiIiIiLKeww+RERERESU9xh8iIiIiIgo\n7zH4EBERERFR3mPwISIiIiKivMfgQ0REREREeY/Bh4iIiIiI8h6DDxERERER5T0GHyIiIiIiynsM\nPkRERERElPcYfIiIiIiIKO8x+BARERERUd5j8CEiIiIiorzH4ENERERERHmPwYeIiIiIiPIegw8R\nEREREeU9Bh8iIiIiIsp7DD5ERERERJT3GHyIiIiIiCjvMfgQEREREVHeY/AhIiIiIqK8x+BDRERE\nRER5j8GHiIiIiIjyHoMPERERERHlPQYfIiIiIiLKeww+RERERESU9xh8iIiIiIgo7zH4EBERERFR\n3mPwISIiIiKivMfgQ0REREREeY/Bh4iIiIiI8h6DDxERERER5T0GHyIiIiIiynsMPkRERERElPcY\nfIiIiIiIKO8x+BARERERUd5j8CEiIiIiorzH4ENERERERHmPwYeIiIiIiPIegw8REREREeU9Bh8i\nIiIiIsp7DD5ERERERJT3GHyIiIiIiCjvMfgQEREREVHek/vzIFVVsXjxYtTU1ECSJDz44IOorKzs\nVuaNN97Ab3/7W0iShPnz5+M73/nOgFSYiIiIiIior/rV4vP6668jEAjghRdewDe+8Q08+uij3e6P\nxWL42c9+hmeeeQarVq3CunXrsG/fvgGpMBERERERUV/1K/isW7cOixYtAgCce+652LRpU7f7XS4X\nXn31VXg8HgBAYWEhWltbT7KqRERERERE/dOv4NPY2IhgMAgAEAQBoihCVdVuZXw+HwBg9+7dqKmp\nwezZs0+yqkRERERERP3zicf4vPTSS/j9738PQRAAAIZhYOvWrd3K6Lqe9bEHDx7E9773PTz66KOQ\nJOkTK7Nx48be1JloQHB9o1ON6xydSlzf6FTi+kbDgWAYhtHXB/3gBz/AFVdcgYULF0JVVXzqU5/C\nu+++261MbW0tvv71r+ORRx7BlClTBqzCREREREREfdWvrm4LFy7EW2+9BQD485//jPnz52eUWbp0\nKe69916GHiIiIiIiyrl+tfjouo6lS5fi0KFDcDqd+OlPf4qysjI8+eSTmD9/PgKBAK688krMnDkT\nhmFAEATcfPPNuPjiiwfjNRAREREREZ1Qv4IPERERERHRcNKvrm5ERERERETDCYMPERERERHlPQYf\nIiIiIiLKe594Hp9T4cEHH8SWLVsgCAKWLFmCmTNn5rpKlGcefvhhbNq0CZqm4V//9V8xc+ZM3Hnn\nnTAMA6WlpXj44YehKEquq0l5JB6P44orrsCtt96Kc845h+sbDapXX30VTz/9NGRZxre//W1MnjyZ\n6xwNikgkgrvuugttbW1IJpO49dZbMWHCBK5vNOB27dqFb33rW/iXf/kXXH/99aitrc26nr366qtY\nuXIlJEnC1VdfjauuuqrHZea8xWfDhg04dOgQVq1ahZ/85Ce4//77c10lyjPvv/8+9u7di1WrVuGp\np57CAw88gOXLl+OGG27Ac889h9GjR+Pll1/OdTUpzzz++OMoLCwEACxfvhw33ngj1zcaFK2trfjV\nr36FVatW4de//jX+9Kc/cZ2jQbN69WqMGzcOK1euxPLly3H//ffzP5UGXDQaxUMPPYSFCxfa87L9\nrkWjUTz++ON45plnsHLlSjzzzDNob2/vcbk5Dz7r1q3DokWLAADjx49He3s7wuFwjmtF+eSss87C\n8uXLAQAFBQWIRCLYsGEDLrnkEgDAxRdfjLVr1+ayipRn9u/fjwMHDuDCCy+EYRjYsGGDPZw/1zca\naGvXrsXChQvhdrtRUlKCH//4x1i/fj3XORoUwWAQLS0tAIC2tjYEg0H+p9KAczqd+PWvf42SkhJ7\nXrbftS1btmDWrFnwer1wOp2YO3cuNm3a1ONycx58GhsbEQwG7dtFRUVobGzMYY0o34iiCLfbDQD4\n/e9/j4suugjRaNRuhi8uLkZDQ0Muq0h55uGHH8bixYvt21zfaDBVV1cjGo3im9/8Jm644QasW7cO\nsViM6xwNis9+9rOora3FpZdeiptuugl33XUXf+NowImiCIfD0W3e8etZfX09mpqauuWIYDB4wvVv\nSBzjk46nFaLB8sc//hEvv/wynn76aVx66aX2fK5zNJBeeeUVnHXWWaioqMh6P9c3GmiGYdjd3aqr\nq3HTTTd1W8+4ztFAevXVV1FeXo4nn3wSu3fvxtKlS7vdz/WNToWe1rNPWv9yHnxCoVC3Fp76+nqU\nlpbmsEaUj/7617/iySefxNNPPw2fzwev14tEIgGHw4G6ujqEQqFcV5HyxLvvvoujR4/inXfeQV1d\nHRRFgcfj4fpGg6akpARz5syBKIoYNWoUvF4vZFnmOkeDYtOmTTj//PMBAJMnT0ZdXR3cbjfXNxp0\nx2+7lZWVIRQKdWvhqaurw5w5c3pcRs67ui1cuBBvv/02AGDHjh0oKyuDx+PJca0on3R2duKRRx7B\nE088Ab/fDwBYsGCBvd69/fbb9o840clatmwZXnrpJfzud7/DVVddhVtvvRULFizAW2+9BYDrGw28\nhQsX4v3334dhGGhpaUEkEuE6R4OmqqoKmzdvBmB2s/R4PDj33HO5vtGgy7btNmvWLGzfvh2dnZ0I\nh8P48MMPMW/evB6XIRhDoE3y5z//OdavXw9JknDPPfdg8uTJua4S5ZEXX3wRK1aswJgxY2AYBgRB\nwEMPPYSlS5cikUigoqICDz74ICRJynVVKc+sWLEClZWVOO+88/D973+f6xsNmhdffBEvvfQSBEHA\nLbfcghkzZnCdo0ERiUSwZMkSNDU1QdM03H777Rg7dizuuusurm80YLZs2YK7774bzc3NkCQJgUAA\nTz/9NBYvXpyxnr3zzjv4zW9+A1EUceONN+Lyyy/vcblDIvgQERERERENppx3dSMiIiIiIhpsDD5E\nRERERJT3GHyIiIiIiCjvMfgQEREREVHeY/AhIiIiIqK8x+BDRERERER5j8GHiCiHqqurMWXKFLz+\n+uvd5l9yySUDsvwpU6ZA1/UBWVZP3nnnHSxatAgvv/xyt/mLFy/GRRddlFH+K1/5Cm666aY+PceF\nF16ImpqaHu9fv349rrvuul4vr6GhAXfeeSc+//nP47rrrsP111+PdevW9alOPenpPb/jjjtQX19/\n0sv/xS9+gRUrVpz0coiITjcMPkREOTZmzBisWLECkUjEnicIwoAse6CWcyLvvvsuvva1r+GLX/xi\nxnO73e5ugaKhoQF1dXV9fo7evI6+vNZbb70Vc+fOxSuvvIIXXngB9957L+68804cOXKkz3XrbT0e\nffRRhEKhk14+ERH1j5zrChARne5KS0tx/vnn41e/+hXuvPPObvetXr0aa9euxSOPPAIAuPHGG3HL\nLbdAkiQ88cQTKCsrw/bt23HGGWdg4sSJ+NOf/oTW1lY89dRTKCsrg2EYePzxx/H+++8jHA7j4Ycf\nxoQJE7B792489NBDUFUVqqrinnvuwZQpU3DjjTdi6tSp+Oijj/Dss89224hfs2YNHn/8cbjdbrjd\nbvzoRz/C5s2b8e6772LTpk2QJAlXX311t/p/+tOfxiuvvIIFCxYAAF5//XVcfPHF2Lp1KwCgqakJ\nS5cuRTgcRjKZxNe+9jUsWrQITU1NuP3226HrOqZNm4b0c20vW7YMmzZtQjwex1lnnZXxnj3zzDN4\n7bXX7Ho+8sgjCAQC9v3r1q2DKIr48pe/bM+bNGkS3nzzTfj9fui6jgceeADbt2+HKIqYP38+brvt\nNqxfv/6k3vNLLrkEzzzzDD744AOsXbsWuq7jwIEDGDlyJB577DEAwHPPPYe33noLqqq3dYRCAAAG\nGklEQVRi3LhxuO++++BwOLBs2TKsWbMGI0aMgNvtxvjx4/u9vhERna7Y4kNElGOCIODmm2/Gu+++\ni4MHD2a9P5tt27ZhyZIlePnll/Haa6+hqKgIK1euxPTp0/H222/b5SZNmoRnn30W1113nb2B/b3v\nfQ8/+tGPsHLlStxzzz1YsmSJXd7r9eK5557r9ryxWAx33303VqxYgWeeeQbnn38+li9fjn/4h3/A\n+eefj69+9asZoQcAFixYgM2bNyMWiwEA3njjDXz2s5+171++fDnOPvtsPPvss3j88cdx3333IRKJ\nYOXKlZg9ezaef/55XHnllXYXsbfeegv19fV49tln8eKLL+LQoUNYs2ZNt+d87LHH8OSTT+LZZ5/F\nTTfdlNHCtGfPHsyYMSOjrn6/HwD+fzv3F9LkF8dx/K3bnlVMGkU1opG2GOSiNa0uiggUtC7yRqop\nJEV3BeFNVNZdmgQGXbQLMQpCaiB1FYTVRfZHSAqdRZiZWgkmhAliRVs9XYjPb1N/ul8/ftRvfF5X\nz8559n3O+d5sX845D7dv32ZoaIhoNEpzczOPHz/m6dOn/zrnybq6uqivr+fmzZv09PTQ09NDd3c3\nd+/epbm5mWg0Sk5ODi0tLQwODnLr1i1u3LhBJBLh7du3M+KJiMj8tOIjIvIHcDgcHDt2jNraWi5d\nupSywvF3fD6f9Wfd7XYTCoUAWLFiBePj49Z9W7duBSAUCnHlyhVGR0cZGBjg1KlT1nM+f/5sXU/F\nSTY4OMiyZcusrVpbtmwhGo3OO0a73U5RURGtra0EAgGWLl2K2+22+ru7u62zOUuWLMHj8dDf38+r\nV68Ih8MA5OfnW/N88uQJnZ2dVFVVYZomExMTDA0N4ff7rZh79uzh0KFDlJaWsnPnTnJzc1PGZLPZ\n5jz3FIvFrJxlZ2dTWFjI8+fPCQQCv5zz6TZs2IBhGAB4PB7GxsZ48eIF79+/t+b29etXHA4Hvb29\nBAIB7PbJn+xNmzbNl3YREZmFCh8RkT/Ejh07iEaj3Lt3z1ptmb7aE4/HrWubzZbSl/w5uXBKjpGV\nlYVhGBiGwdWrV2cdh8PhmLU9OaZpmmmfqSkrK6OhoYE3b95QVlaW0jc9xo8fP8jOzp7Rl0gkADAM\ng3379nHw4MGU73V0dFjXx48fZ3h4mPv373PkyBFOnDjB9u3brX6/309LS8uMcfb29uL1emed11Tb\nr+Z8uulxTNPEMAyKioo4ffp0Sl9ra6uVE+A/f1mFiEim0lY3EZHfLPkPc01NDefPn+fbt28AuFwu\nhoeHgcnzMH19ff84/tTLBZ49e4bf78flcrFq1Sra2toAGBgYIBKJzBkjLy+P0dFRPnz4AEB7ezsb\nN25M6/nr1q3j06dPPHz4kOLi4pS+YDDIo0ePABgZGeHjx4/k5eXh8/no7OwEJldgvnz5AkBhYSF3\n7tzh+/fvAEQiEd69e2fFGx8f5+LFi3g8HioqKqisrLTOE03ZvHkzLpeLpqYmq+3169ccPnyYkZER\ngsEg7e3twGTB1dHRQTAYTGuuU6bnPB0FBQU8ePDAesnFtWvXiMVi+Hw+Xr58SSKRIB6PpxR5IiKS\nPq34iIj8ZskrAl6vl9LSUhobGwHYtm0bly9fJhwOs2bNGgoKCuaNkcxut9PX18f169cZGxuzXpJw\n7tw5amtraWpqIpFIcPLkyTnjOJ1O6urqqK6uxjAMFi1axNmzZ9Oe465du+jv78fpdKa0Hz16lJqa\nGtra2ojH45w5c4aFCxdSVVVFdXU1Bw4cYO3atXi9XgBKSkqIxWKEw2FsNhuBQACv12sVZDk5OUxM\nTFBeXs7ixYtxOBzU1dXNGE9jYyP19fXs3r0bt9uN0+nkwoUL5Obmsnr1arq6uqioqMA0TUpKSgiF\nQjMKjnRz3tDQMOf9U+3r16+nsrKS/fv3s2DBApYvX055eTlOp5Pi4mL27t3LypUryc/PTzvvIiLy\nlywznY3kIiIiIiIi/2Pa6iYiIiIiIhlPhY+IiIiIiGQ8FT4iIiIiIpLxVPiIiIiIiEjGU+EjIiIi\nIiIZT4WPiIiIiIhkPBU+IiIiIiKS8X4C4bojF3ZxvFMAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -214,6 +213,7 @@ "metadata": {}, "source": [ "As more models are added the mean predicted value is stationary and the prediction variability decreases geometrically. Worth noting, however, is that in this simulation the standard deviation did not decrease at the rate perfectly uncorrelated models would. This is a result of the toy models we used having some level of covariance, purely by random chance.\n", + "\n", "\n" ] }, @@ -232,7 +232,7 @@ }, { "cell_type": "code", - "execution_count": 102, + "execution_count": 39, "metadata": { "collapsed": false }, @@ -241,7 +241,7 @@ "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAAIJCAYAAACflB2mAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xuc1nPe+PH3NUVoadVKkXUjNQ5ldbKV3ZaV8yl0WqK9\nk3XYVk5pSBvLRm7cKufDhiLKKcSu1hYWk8aPjZWVKGodKkVn5fv7Yz8zt9E0hXRNzfP5eHg86rq+\n13W9r/mMmXn1PUwuy7IsAAAAiIJ8DwAAAFBVCCQAAIBEIAEAACQCCQAAIBFIAAAAiUACAABIBBLA\nGkyePDkKCwtj+PDh+R7lW3n22WfjwAMPjL333jv+8Ic/fG+vc+CBB8Yvf/nLddq2R48esccee3xv\ns3wb8+fPj969e0ezZs2iZcuW+R7nOyksLIyTTz4532Os0ezZs6OwsDCKiorWaftv8rkFsL7UzPcA\nAN+33/zmNzFp0qQYNWpUpT8AZ1kWBxxwQHz66acxadKkaNy4cQwdOjR22223DTjt+pFlWRQVFcXy\n5cvj4osvjsLCwnV63EsvvRRjx46N//f//l/MmzcvcrlcNGjQIPbbb7848cQTY/fdd/9Oc5199tkx\nf/787/Qc66KkpCRmzZoVnTp1Wuu2t99+ezz33HPRuXPn2G+//b732daX0s/ndV3b78uLL74Y9913\nX7z11lvxySefxBdffBHbbrtt7LnnntGlS5c48MADy7atV69eDB06NHbcccc8TgxQOYEEbPK6du0a\nkyZNigcffLDSQHruuefiww8/jKOPPjp++MMfRkTEwQcfvKHGXK/mzZsX8+bNi8MOOyy6d+++1u1X\nrFgRAwYMiHHjxkWjRo3iyCOPjF133TW+/PLL+Ne//hWPPfZY3H///XHmmWdGnz59vvVcrVq1+taP\n/SbGjBkTc+bMWadA+te//hW5XC4GDBgQtWrV2gDTfXcrVqyIwYMHx+WXX57XQLrzzjtjyJAhsdtu\nu0WnTp1ip512iuXLl8eMGTPikUceiYkTJ8a5554bp512WkREbLHFFhvt/1NA9SGQgE3eL37xi9h+\n++3jqaeeigEDBsRWW21V4XZjx46NXC4XXbp02cATrn/Lli2LiP/8QLouLr/88hg3blx06dIlBg4c\nGDVrlv/28Nvf/jb69u0bN9xwQ2y99dbRs2fP9T3yejV16tSoV6/eOm27fPnyiIi1xtHKlStX+7jk\ny7Rp02LlypV5neGzzz6L6667Ln784x/H2LFjY8sttyx3f48ePaJTp05x0003Rbdu3WKbbbbJ06QA\n34xzkIBNXkFBQZxwwgmxdOnSeOKJJyrcZsGCBfG3v/0tdtttt7K9HGs6B2n27NlRVFQUP/vZz2Lv\nvfeO/fffP84777yYMWNG2TY/+9nP4phjjlntdY444ogoLCyMSZMmlbv9iSeeiMLCwnjssccqfS8f\nffRRXHLJJXHAAQfE3nvvHfvtt1+cdtppMWXKlLJtioqK4qCDDopcLhcPP/zwWs/5ePvtt+OBBx6I\n5s2bx6WXXlphBNSuXTuuu+66qF+/fgwdOjQ+++yzCmc7++yzY7/99ot99tknTjjhhHjuuefKbdOj\nR48K93iMHTs2OnfuHD/5yU9i3333jeOOOy5GjhwZWZattu348eOjW7duse+++0aLFi3i9NNPj3/+\n858R8X9rNmPGjLI/r+m9l95f+rErLCwsOz+qf//+UVhYGNOnT4/evXvHPvvsE48//njZY1977bU4\n/fTT46c//Wnsvffe0aFDhygqKorZs2eXe42TTjopmjVrFsuXL4+BAwdG27ZtY999941evXrFhx9+\nGEuXLo1BgwZF+/bto1WrVtGjR4/417/+VeG8pYqKiqJLly6Ry+Wif//+sccee8TLL7+82lr87ne/\nK1uL7t27xxtvvLHac02ZMiV69+4dbdq0iebNm8fBBx8cQ4YMqXB9v+69996LL774Ilq0aLFaHEVE\nbL/99jFs2LC4/fbby0J9Tecgvfjii9G5c+fYZ599Yr/99ovzzjsvPvnkkwpf98svv4w77rgjjj76\n6GjevHm0bNkyunfvvtb/dwDWlUACqoXOnTtHLpeLBx98sML7H3nkkfjiiy+ic+fOlT7PBx98EMcf\nf3w8//zz0a1bt/jjH/8Y3bp1i7///e/RpUuXeOeddyIiYv/994+33347Pv/887LHzps3L955552o\nXbt2uaCJiCguLo6CgoJo3779Gl977ty5ccIJJ8Tjjz8ehx56aFx++eXRu3fvePfdd6Nnz57x/PPP\nR8R/figfNGhQZFkW++23XwwbNixOOumkNT7vww8/HLlcLnr27Bm5XG6N2/3gBz+Ibt26xdKlS+PP\nf/5zufu++OKLOPXUU2ObbbaJfv36xRlnnBFz5syJM844I15//fVy2379Na688soYMGBANGjQIC65\n5JLo379/1K9fPy6//PIYOHBguW3vuOOOOPfcc6NevXoxaNCgOPfcc+Ptt9+O7t27x+uvvx677757\nDB06NLIsi913373S9166bek5ZsOGDYvrr7++bMZcLhdDhw6NevXqxeDBg2PfffeNiP/8MH/SSSfF\nW2+9Fb/+9a/jiiuuiGOOOSaeeuqp6Nq1a3z88cfl3muWZTFgwIBYsWJFXHjhhXH44YfH3//+9ygq\nKopzzjknFi1aFBdccEF07tw5SkpK4rzzzlvjGkT8Z31PPPHEsj9ff/310bhx47L7lyxZEieffHJs\nv/32MWDAgOjZs2dMnTo1+vTpUy44J0yYEKecckrMmzcvfve738Vll10W7dq1i7vvvjt69OgRK1as\nqHSO7bbbLiL+E5offfRRhdu0bNkyWrZsGZtvvvkan+f111+P0047LWbPnh1nnHFGXHjhhVG7du3o\n1atXfPHFF6tt37dv37j22mtjr732issuuyzOPffcyOVyccEFF8TNN99c6cwA6yQDqCZ+85vfZIWF\nhdn06dNXu+/II4/Mmjdvni1YsKDstuLi4qxp06bZsGHDym4766yzspYtW2bvv/9+ucdPmzYt23PP\nPbMzzzwzy7IsGzduXFZYWJj97W9/K9vmiSeeyPbaa6/soosuyrp27Vru8YccckjWqVOnSucfOHBg\nVlhYmD3xxBPlbp8zZ07WvHnz7PDDDy+77YMPPsiaNm2a9e/fv9LnzLIsO+mkk7LCwsLsk08+Weu2\nU6ZMyZo2bZoVFRWV3XbAAQdkhYWF5T5OWZZlL7zwQta0adPs7LPPXu21Sr355ptZ06ZNsz/84Q+r\nvVafPn2ywsLC7M0338yyLMvmzZuX7b333tkpp5xSbrsZM2Zke+yxR9arV6+y25o2bZr16NFjre+n\nopmyLMv69++fNW3aNPvv//7v1bY/9NBDs3322SebPXt2uduffPLJrGnTptmgQYNWe+6vfryyLMuO\nOOKIrLCwMDvvvPPK3X7aaadlhYWFq31+fd1DDz2UFRYWZg8//HC525s2bZoVFhZmDz74YLnbSz93\npkyZkmVZli1fvjxr3759dvzxx2crVqwot+3IkSOzpk2bZiNGjKh0hizLst/97ndZYWFh1qZNm+zy\nyy/Pnnvuuezzzz9f4/YVfV6eddZZWWFhYVZcXFxu2xtuuCFr2rRpduCBB5bdNmHChKxp06bZnXfe\nWW7bL7/8MuvSpUu29957Z/PmzVvr3ACVsQcJqDa6du0aWZbF2LFjy90+derUePvtt+OQQw6JOnXq\nrPHxy5Yti4kTJ0bLli2jTp068fnnn5f917Bhw9h9991j8uTJERHRrl27iIhyhz4VFxdHkyZNok2b\nNvHGG2+UnfvyySefxHvvvRc/+9nPKp3/r3/9a2yzzTZx2GGHlbu9YcOG0bZt25gxY0a8//776/4B\nSebOnRsFBQXxox/9aK3bNmjQoOwxX/f1c7fatm0bP/zhD6O4uHiNz/fkk09GLpeLQw89tNzH8/PP\nP49DDjkksiwre/zTTz8dK1eujKOOOqrcc+yyyy5x3333rfOlo9dV6VxfNWPGjHj33Xdj//33jx12\n2KHcfQcffHBsvfXWMXHixNWe67jjjiv396ZNm0ZErHYRidLDD9d0eNm6qF279mrPW/p6pXu3pkyZ\nEnPnzo2DDz44li1bVu7jfsABB0RBQUHZ53JlrrnmmujVq1esWLEiRo4cGaeeemq0adMmjjvuuLju\nuuti1qxZa32Ol156KerVqxdt2rQpd3u3bt1W23b8+PGRy+XikEMOKTfzokWLomPHjrFy5cp45ZVX\n1vqaAJWpGmebAmwAHTp0iAYNGsSjjz4a5513Xtm5NmPGjIlcLhddu3at9PHvvfderFy5Mp599tlo\n3br1aveXHjq2aNGiqFevXjRp0iRKSkrK7i8uLo4OHTpE69at44svvohXXnkl2rZtGy+99FLkcrmy\nqKrI559/HnPnzo0WLVpUeBjcLrvsEpMmTYr33nsvdtppp3X6eJQqKCio8FyfipRuV1BQ/t/Xttlm\nm6hfv/5q2zdq1CjeeOONWLZsWYUXjHjnnXciy7I1HgaXy+Xi3//+d0T851ypiKjw/e2zzz7rNP83\n1ahRo3J/Lz3P7KuHtJUqKCiIH//4x/HPf/4zVqxYUe6wsq9f1rr0vq/fvtlmm0VEfKcLMOy4446r\nfY5sueWWkWVZWZRPnz49IiKuvfbauPbaa1d7jq9+3CtTs2bNOP/88+PMM8+MSZMmRUlJSUyZMiXe\neuutePPNN+O2226Lvn37ll3F7usWLFgQixYtKgu4r6pbt27Z1SRLzZgxI7IsK3fp8G8zN0BlBBJQ\nbZRerOGGG26IZ555Jg4++OBYvnx5PPnkk7Hrrruu9ZeELl68OCL+c37Rmn7gi/i/q6G1a9cuRo4c\nGcuXL48FCxbEe++9FxdccEHssMMO0bBhw3j55Zejbdu2MXny5Nhyyy0rff0lS5ZERFR4MnzE/12t\nbunSpZW+h4rUr18/ZsyYEf/+97+jYcOGlW774Ycflj3mq2rXrl3pXGsKpMWLF0cul4trr712jXuw\nSs91Kf3hvjQiNoSvv6/SdVjTlRBL3+OSJUvKBdKazsGp7Nycb2tdPj6lH/fevXuvcc/lN7nk+VZb\nbRWHHXZY2d7N+fPnx+OPPx7Dhg2L6667Llq0aFHhJd7XdrXFr9++ePHiKCgoiBEjRqzxfLmvRy3A\nNyWQgGrlhBNOiJtuuinGjh0bBx98cDz11FPx+eefr9Pv9in9YbmgoKDCPUhf1759+xgxYkS88sor\nZYexlf6Q2KJFi7LD7yZPnhxt2rSp9BLSpT+Ql/6A/nWlYbSmUKnMvvvuGy+99FK88MILcfzxx1e6\nbenerq//sLumMCu9fU1hVzpvo0aNolmzZpW+dt26dSMi1ukKa9+X0nUojeWvK32/awqoqqJ27dqR\nZVnUqVNnnT6Xv6m6devGySefHFtttVUMGDAgnn322QoDqTTC1nRBiCVLlsTWW2+92tyNGzcu+3wA\nWN+cgwRUKw0aNIif/exn8cILL8SCBQti3LhxscUWW8Sxxx671sfusssuUbNmzZg6dWqsWrVqtfvn\nz59f7u+tW7eOzTbbLEpKSqK4uDgaN25cdo5Tq1at4h//+Ed88MEHMXPmzLWef7T11lvHdtttV3aI\n0deVHjJVekW2b6JTp06Ry+XizjvvrPCqYaWWLFkSDzzwQNSpU2e1X/a5YMGC+PTTT1d7zAcffBD1\n6tVb496Ixo0bR5ZlFZ43smTJknI/ODdq1CiyLCt7r1/1zDPPbJDLPJceWlfRpbhXrVoVM2fOjEaN\nGn0ve4bWp9133z0iYo3n61S0ll83duzYuOCCCyoN1tK9OWsK6G233Ta23HLLCs+d++ijj1Z77tKP\nf0Vzf/755xX+fwnwTQkkoNrp2rVrrFq1Ku6///4oLi6OQw45ZJ1+iWWtWrXigAMOiE8//TQefvjh\ncve9//778ctf/jIuvfTSctu3aNEiXn311SguLi53EnqrVq1i+fLlZYcKVXb+UalDDz00Pvvss9V+\nl9N7770XxcXF0axZs7KLKHwTO+20U/Tq1StmzJgRF1xwQdmhbF+1ePHi6Nu3b3zyySfRv3//Cg+J\nGjNmTLm/P/vss7Fw4cJK31vpRRDuu+++1fYiDBkyJH7605+W/fD885//PGrWrBmPPPJIuR+ES3//\n0lcv4V5QULDWy1R/G//1X/8VTZs2jRdeeCE++OCDcveNGzcuFi9eHIcccsh6f92vKz1vrKK1WpOv\nHpLWqlWrqFevXkyaNCnefffdctuNHz8+9t9//zX+zrBS06dPj8ceeyyuuuqqCu9ftWpV3HPPPZHL\n5WL//fdf4/O0bt06Pvroo3jttdfK3X7//fevtu1hhx0WWZbFXXfdtdo/FJx//vnRoUOHNe7dA1hX\nDrEDqp0OHTrE9ttvHzfeeGOsWrVqtauvVaZfv34xZcqUuPTSS+Odd96JPffcMz744IMYNWpU1KhR\nY7ULPbRr1y5uuummWLZsWblDmXbfffeoU6dOPPTQQ9GwYcPYZZdd1vraZ555Zvz1r3+NSy65JKZN\nmxaNGzeOf//73zF69OioWbNmXHLJJev+Qfiac845J5YsWRL33ntvvPbaa3HUUUfFrrvuGlmWxdtv\nvx2PPfZYfPrpp1FUVFTh3rYGDRrE+PHjY/bs2bHPPvvEnDlz4p577olatWpFr1691vi6hYWFccop\np8Tdd98d3bp1i65du0bNmjVj4sSJMWHChDjmmGPKLsqw/fbbx1lnnRVDhw6Nnj17RqdOnWLx4sUx\ncuTIKCgoiAsvvLDseRs1ahSvv/56DB8+PBo2bLjWQwe/iUsuuSR69eoVJ598cnTv3j222267mDZt\nWtx3332x8847x29+85v19lprUrpnZuTIkbF06dJo0aJFNG/evNLHfDUoNttssxg0aFCcc8450aNH\nj+jZs2dst912MXXq1HjggQdi1113jV/84heVPl+fPn3i1VdfjYceeqjsc2bHHXeMlStXxuzZs+PJ\nJ5+Md955J44//vjo0KHDGp+nd+/e8fzzz8dvf/vbOOmkk+JHP/pRvPrqq/Hqq6+udhGLAw88MDp2\n7BgTJkyInj17xjHHHBMrV66Mxx9/PF5++eU488wzv9VhpgBfJZCAauerF2to3LhxpRdHKP2FoaV2\n2mmnGDt2bAwfPjyeeOKJuOeee2KbbbaJNm3axJlnnhlNmjQp9/j27dvHddddF7lcbrVzPVq0aBET\nJ06MI488cp3m3nbbbeOBBx6IoUOHxuOPPx5z586t9LW/PntlCgoK4pJLLomjjz46Ro8eHU8++WR8\n8sknUVBQEA0bNoxDDz00evToET/+8Y/XONvNN98cV1xxRVx11VWxfPnyKCwsjPPOO6/CK5R9VVFR\nUTRp0iTuv//+uPLKK+PLL7+MnXfeOfr16xennHJKuW3POOOMaNiwYYwcOTL+8Ic/lJ3XNXz48LLD\nxiIiLrzwwrj00kvjtttuiw4dOqw1kNb14xTxn70v9957bwwbNixuv/32WLJkSdSvXz+6du0aZ5xx\nRrlzZip77m/yml/XsmXLOP7442P8+PFx0003xaBBg8oCaV1fr2PHjjFixIi49dZb47bbbovFixeX\nvY91CY3atWvHqFGj4sEHH4w///nPcc8998SCBQvKLhnfrFmz6NevX/z85z9fbY6vztK6deu44YYb\nYvjw4XHjjTfGlltuGW3bto3bb789zjrrrNUO97v++utjxIgR8cgjj8Rll10WuVwuGjduHFdcccVq\nl1MH+DZy2bpe23UDWrZsWfTv3z/mzZsXK1asiDPOOGOt/5IFQNXXo0ePmDJlSrz55pv5HgUAKlQl\n9yA988wz0axZs+jVq1fMmTMnfv3rXwskgE3A4sWL13hJZwCoCqpkIB1++OFlf54zZ85afy8HAFXb\nK6+8Es8991xMmzZtrefKAEA+VclAKtWtW7f4+OOP4+abb873KAB8BxMmTIgRI0bETjvtFBdddFG+\nxwGANaqS5yB91bRp06Jfv34xbty4SrcrKSnZQBMBAAAbq8ouzhRRRfcgvf7661GvXr1o2LBhFBYW\nxqpVq2L+/Plr/a3Za3uzfL9KSkqsQRVgHaoG65B/1qBqsA5Vg3XIP2tQNazLTpUq+Ytip0yZEn/6\n058iImLu3LmxdOnStcYRAADAd1UlA6l79+4xb968OPHEE+P000+P3//+9/keCQAAqAaq5CF2tWrV\nimuuuSbfYwAAANVMldyDBAAAkA8CCQAAIBFIAAAAiUACAABIBBIAAEAikAAAABKBBAAAkAgkAACA\nRCABAAAkAgkAACARSAAAAIlAAgAASAQSAABAIpAAAAASgQQAAJAIJAAAgEQgAQAAJAIJAAAgEUgA\nAACJQAIAAEgEEgAAQCKQAAAAEoEEAACQCCQAAIBEIAEAACQCCQAAIBFIAAAAiUACAABIBBIAAEAi\nkAAAABKBBAAAkAgkAACARCABAAAkAgkAACARSAAAAIlAAgAASAQSAABAIpAAAAASgQQAAJAIJAAA\ngEQgAQAAJAIJAAAgEUgAAACJQAIAAEgEEgAAQCKQAAAAEoEEAACQCCQAAIBEIAEAACQCCQAAIBFI\nAAAAiUACAABIBBIAAEAikAAAABKBBAAAkAgkAACARCABAAAkAgkAACARSAAAAIlAAgAASAQSAABA\nIpAAAAASgQQAAJAIJAAAgEQgAQAAJAIJAAAgqZnvASozZMiQeOWVV2LVqlVx2mmnRceOHfM9EgAA\nsAmrsoFUXFwc06dPj9GjR8eCBQuiU6dOAgkAAPheVdlAat26dTRv3jwiIrbZZptYunRpZFkWuVwu\nz5MBAACbqiobSAUFBbHllltGRMSYMWOiQ4cO4gjYKGRZFosWLYqFCxfme5RqzRpUDVmW5XsEgG8k\nl1Xxr1wTJkyI2267Le644474wQ9+sMbtSkpKNuBUAGu2aNGiGDu2Vmy+ee18jwJ5tWLF4jjhhOWV\nfv8G2NBatmxZ6f1Vdg9SRMRzzz0Xt95661rjqNTa3izfr5KSEmtQBViH/Fu4cGGMGzcrmjZtlu9R\nqrWZM2fGzjvvnO8xqrWlSxdGxKu+JlUBvjfknzWoGtZlp0qVDaRFixbF1VdfHSNGjIitt9463+MA\nAADVQJUNpPHjx8eCBQuib9++ZRdnGDJkSDRo0CDfowEAAJuoKhtIXbp0iS5duuR7DAAAoBopyPcA\nAAAAVYVAAgAASAQSAABAIpAAAAASgQQAAJAIJAAAgEQgAQAAJAIJAAAgEUgAAACJQAIAAEgEEgAA\nQCKQAAAAEoEEAACQCCQAAIBEIAEAACQCCQAAIBFIAAAAiUACAABIBBIAAEAikAAAABKBBAAAkAgk\nAACARCABAAAkAgkAACARSAAAAIlAAgAASAQSAABAIpAAAAASgQQAAJAIJAAAgEQgAQAAJAIJAAAg\nEUgAAACJQAIAAEgEEgAAQCKQAAAAEoEEAACQCCQAAIBEIAEAACQCCQAAIBFIAAAAiUACAABIBBIA\nAEAikAAAABKBBAAAkAgkAACARCABAAAkAgkAACARSAAAAIlAAgAASAQSAABAIpAAAAASgQQAAJAI\nJAAAgEQgAQAAJAIJAAAgEUgAAACJQAIAAEgEEgAAQCKQAAAAEoEEAACQCCQAAIBEIAEAACQCCQAA\nIBFIAAAASZUOpGnTpkXHjh1j1KhR+R4FAACoBqpsIC1dujSuuuqqaN++fb5HAQAAqokqG0i1atWK\nW265JX70ox/lexQAAKCaqLKBVFBQEJtvvnm+xwAAAKqRmvkeYH0qKSnJ9wjVnjWoGqxDfi1atCgi\n6sbMmTPzPUq1Zw3ya9myz+InP/E1qaqwDvlnDTYOm1QgtWzZMt8jVGslJSXWoAqwDvm3cOHCGDdu\nVuy88875HqVamzlzpjXIs6VLF0bEfF+TqgDfG/LPGlQN6xKpVfYQOwAAgA2tyu5Beu2112LAgAEx\nf/78qFGjRowePTpGjhwZderUyfdoAADAJqrKBtI+++wTjz32WL7HAAAAqhGH2AEAACQCCQAAIBFI\nAAAAiUACAABIBBIAAEAikAAAABKBBAAAkAgkAACARCABAAAkAgkAACARSAAAAIlAAgAASAQSAABA\nIpAAAAASgQQAAJAIJAAAgEQgAQAAJAIJAAAgEUgAAACJQAIAAEgEEgAAQCKQAAAAEoEEAACQCCQA\nAIBEIAEAACQCCQAAIBFIAAAAiUACAABIBBIAAEAikAAAABKBBAAAkAgkAACARCABAAAkAgkAACAR\nSAAAAIlAAgAASAQSAABAIpAAAAASgQQAAJAIJAAAgEQgAQAAJAIJAAAgEUgAAACJQAIAAEgEEgAA\nQCKQAAAAEoEEAACQCCQAAIBEIAEAACQCCQAAIBFIAAAAiUACAABIBBIAAEAikAAAABKBBAAAkAgk\nAACARCABAAAkAgkAACARSAAAAIlAAgAASAQSAABAIpAAAAASgQQAAJAIJAAAgEQgAQAAJDXzPcCa\nDB48OF577bXI5XJx0UUXRbNmzfI9EgAAsIlb6x6kOXPmxIoVK9b5CV9//fUoKir6TkO9/PLLMXPm\nzBg9enRcfvnlccUVV3yn5wMAAFgXaw2kAw88MI499tiYNm3aOj3h7Nmz45FHHvlOQ7344otx0EEH\nRUTEbrvtFp999lksXrz4Oz0nAADA2qzTOUgzZsyILl26xN133/19zxMREXPnzo26deuW/X3bbbeN\nuXPnbpDXBgAAqq91CqS+ffvGLrvsEoMHD47TTz89Pv300+97rnKyLNugrwcAAFRP63SRhl133TXG\njBkTV155Zdx7771xzDHHxFVXXRVt27b9XoaqX79+uT1GH3/8cWy33XZrfVxJScn3Mg/rzhpUDdYh\nvxYtWhQRdWPmzJn5HqXaswb5tWzZZ/GTn/iaVFVYh/yzBhuHdb6K3eabbx4DBw6Mdu3axcUXXxy9\nevWKU089Nc4+++yoUaPGeh2qffv2MXz48OjSpUu88cYbsf3228dWW2211se1bNlyvc7BN1NSUmIN\nqgDrkH/xD+VOAAARIklEQVQLFy6MceNmxc4775zvUaq1mTNnWoM8W7p0YUTM9zWpCvC9If+sQdWw\nLpH6jS/zfdBBB8Vee+0V559/ftx6660xefLkuOaaa2LHHXf8VkNWZN9994299torunXrFjVq1IiB\nAweut+cGAABYk2/1e5AaNmwY99xzTwwbNixuueWWOOaYY+LSSy+NI444Yr0Ndu6556635wIAAFgX\n63SRhgofWFAQZ599dvzpT3+KrbbaKs4///woKiqKJUuWrM/5AAAANphvHUil9ttvv3j00UejQ4cO\n8fDDD8ell166PuYCAADY4NYaSJ06dVrr+UXbbrtt3HzzzdG/f/9YuXLlehsOAABgQ1rrOUiDBw9e\n5yfr2bNntGvXLt54443vNBQAAEA+fKuLNFSmSZMm0aRJk/X9tAAAAN+773wOEgAAwKZCIAEAACQC\nCQAAIBFIAAAAiUACAABIBBIAAEAikAAAABKBBAAAkAgkAACARCABAAAkAgkAACARSAAAAIlAAgAA\nSAQSAABAIpAAAAASgQQAAJAIJAAAgEQgAQAAJAIJAAAgEUgAAACJQAIAAEgEEgAAQCKQAAAAEoEE\nAACQCCQAAIBEIAEAACQCCQAAIBFIAAAAiUACAABIBBIAAEAikAAAABKBBAAAkAgkAACARCABAAAk\nAgkAACARSAAAAIlAAgAASAQSAABAIpAAAAASgQQAAJAIJAAAgEQgAQAAJAIJAAAgEUgAAACJQAIA\nAEgEEgAAQCKQAAAAEoEEAACQCCQAAIBEIAEAACQCCQAAIBFIAAAAiUACAABIBBIAAEAikAAAABKB\nBAAAkAgkAACARCABAAAkAgkAACARSAAAAIlAAgAASKpsIBUXF0e7du1i0qRJ+R4FAACoJqpkIM2a\nNSvuueeeaNWqVb5HAQAAqpEqGUgNGjSI4cOHR+3atfM9CgAAUI1UyUDafPPN8z0CAABQDdXM9wBj\nxoyJsWPHRi6XiyzLIpfLRZ8+faJ9+/bf+LlKSkq+hwn5JqxB1WAd8mvRokURUTdmzpyZ71GqPWuQ\nX8uWfRY/+YmvSVWFdcg/a7BxyHsgde7cOTp37rxenqtly5br5Xn4dkpKSqxBFWAd8m/hwoUxbtys\n2HnnnfM9SrU2c+ZMa5BnS5cujIj5viZVAb435J81qBrWJVKr5CF2X5VlWb5HAAAAqokqGUhPP/10\nHHXUUfHMM8/EZZddFscff3y+RwIAAKqBvB9iV5GOHTtGx44d8z0GAABQzVTJPUgAAAD5IJAAAAAS\ngQQAAJAIJAAAgEQgAQAAJAIJAAAgEUgAAACJQAIAAEgEEgAAQCKQAAAAEoEEAACQCCQAAIBEIAEA\nACQCCQAAIBFIAAAAiUACAABIBBIAAEAikAAAABKBBAAAkAgkAACARCABAAAkAgkAACARSAAAAIlA\nAgAASAQSAABAIpAAAAASgQQAAJAIJAAAgEQgAQAAJAIJAAAgEUgAAACJQAIAAEgEEgAAQCKQAAAA\nEoEEAACQCCQAAIBEIAEAACQCCQAAIBFIAAAAiUACAABIBBIAAEAikAAAABKBBAAAkAgkAACARCAB\nAAAkAgkAACARSAAAAIlAAgAASAQSAABAIpAAAAASgQQAAJAIJAAAgEQgAQAAJAIJAAAgEUgAAACJ\nQAIAAEgEEgAAQCKQAAAAEoEEAACQCCQAAIBEIAEAACQCCQAAIBFIAAAAiUACAABIBBIAAEBSM98D\nVGTVqlVx8cUXx6xZs+LLL7+Mfv36RYsWLfI9FgAAsImrkoH06KOPxhZbbBH33ntvTJ8+PYqKimLM\nmDH5HgsAANjEVclAOvroo+OII46IiIi6devGwoUL8zwRAABQHVTJQKpZs2bUrPmf0e6666448sgj\n8zwRwDezYsXiWLrUP+7k07Jln1mDPFu27PN8jwDwjeWyLMvyOcCYMWNi7NixkcvlIsuyyOVy0adP\nn2jfvn2MGjUqJk6cGDfffHPUqFGj0ucpKSnZQBMDVC7Lsli8eHG+x4AqoXbt2pHL5fI9BkCZli1b\nVnp/3gNpTcaMGRN/+ctf4sYbb4zNNttsrduXlJSs9c3y/bIGVYN1qBqsQ/5Zg6rBOlQN1iH/rEHV\nsC7rUCUPsXv//ffj/vvvj1GjRq1THAEAAKwPVTKQxo4dGwsXLozevXuXHXZ35513lp2XBAAA8H2o\nksVxzjnnxDnnnJPvMQAAgGqmIN8DAAAAVBUCCQAAIBFIAAAAiUACAABIBBIAAEAikAAAABKBBAAA\nkAgkAACARCABAAAkAgkAACARSAAAAIlAAgAASAQSAABAIpAAAAASgQQAAJAIJAAAgEQgAQAAJAIJ\nAAAgEUgAAACJQAIAAEgEEgAAQCKQAAAAEoEEAACQCCQAAIBEIAEAACQCCQAAIBFIAAAAiUACAABI\nBBIAAEAikAAAABKBBAAAkAgkAACARCABAAAkAgkAACARSAAAAIlAAgAASAQSAABAIpAAAAASgQQA\nAJAIJAAAgEQgAQAAJAIJAAAgEUgAAACJQAIAAEgEEgAAQCKQAAAAEoEEAACQCCQAAIBEIAEAACQC\nCQAAIBFIAAAAiUACAABIBBIAAEAikAAAABKBBAAAkAgkAACARCABAAAkAgkAACARSAAAAIlAAgAA\nSAQSAABAIpAAAAASgQQAAJAIJAAAgEQgAQAAJAIJAAAgqZnvASoyf/78uPDCC2P58uWxcuXK6N+/\nfzRv3jzfYwEAAJu4KrkHady4cXHsscfG3XffHeecc05cf/31+R4JAACoBqrkHqSePXuW/XnOnDnR\noEGD/A0DAABUG1UykCIi5s6dG6effnosWbIk7rrrrnyPAwAAVAO5LMuyfA4wZsyYGDt2bORyuciy\nLHK5XPTp0yfat28fERHPPvts3HXXXXHHHXdU+jwlJSUbYlwAAGAj1rJly0rvz3sgVWTy5MnRtGnT\nqFOnTkRE/PSnP42XXnopz1MBAACbuip5kYann346HnnkkYiIeOutt2KHHXbI80QAAEB1UCX3IH36\n6afRv3//WLJkSaxYsSIuvvhil/kGAAC+d1UykAAAAPKhSh5iBwAAkA8CCQAAIBFIAAAAySYVSHPn\nzo02bdrEyy+/nO9RqqX58+dH79694+STT45f/epX8Y9//CPfI1VLq1ativ79+8evfvWr6NatW7zy\nyiv5HqlaKi4ujnbt2sWkSZPyPUq1NHjw4OjWrVt07949pk6dmu9xqq1p06ZFx44dY9SoUfkepdoa\nMmRIdOvWLTp37hxPP/10vseplpYtWxZ9+/aNHj16RNeuXWPixIn5HqnaWr58eXTs2LHsatlrUnMD\nzbNBXH311bHTTjvle4xqa9y4cXHsscfGEUccES+//HJcf/31a/0Fv6x/jz76aGyxxRZx7733xvTp\n06OoqCjGjBmT77GqlVmzZsU999wTrVq1yvco1dLLL78cM2fOjNGjR8c777wTF198cYwePTrfY1U7\nS5cujauuuqrsF7+z4RUXF8f06dNj9OjRsWDBgujUqVN07Ngx32NVO88880w0a9YsevXqFXPmzIlf\n//rX8Ytf/CLfY1VLN954Y/zwhz9c63abTCC99NJLsfXWW0eTJk3yPUq11bNnz7I/z5kzJxo0aJC/\nYaqxo48+Oo444oiIiKhbt24sXLgwzxNVPw0aNIjhw4dHUVFRvkepll588cU46KCDIiJit912i88+\n+ywWL14ctWvXzvNk1UutWrXilltuiVtvvTXfo1RbrVu3Lvs1Kdtss00sXbo0siyLXC6X58mql8MP\nP7zsz3PmzImGDRvmcZrqa8aMGfHuu+9Ghw4d1rrtJnGI3RdffBE33XRT9O3bN9+jVHtz586NE044\nIW655RbrkSc1a9aMWrVqRUTEXXfdFUceeWSeJ6p+Nt9883yPUK3NnTs36tatW/b3bbfdNubOnZvH\niaqngoIC/y/kWUFBQWy55ZYRETFmzJjo0KGDOMqjbt26Rb9+/eKiiy7K9yjV0pAhQ6J///7rtO1G\ntwdpzJgxMXbs2MjlcmX/CrL//vtH9+7d4wc/+EFERPjVTt+/itahT58+0b59+xg7dmw8++yz0b9/\nf4fYfc8qW4dRo0bFP//5z7j55pvzPeYmrbI1oGrwPYHqbsKECfHQQw/5npxno0ePjmnTpsX5558f\n48aNy/c41cojjzwSrVu3jh122CEi1v59YaMLpM6dO0fnzp3L3da9e/d4/vnn409/+lPMmjUrpk6d\nGtdff33stttueZpy01fROkyePDkWLlwYderUiZ///OfRr1+/PE1XfVS0DhH/+aF94sSJceONN0aN\nGjXyMFn1saY1IH/q169fbo/Rxx9/HNttt10eJ4L8ee655+LWW2+NO+64o+wfktmwXn/99ahXr140\nbNgwCgsLY9WqVTF//vxye7r5fk2aNCk++OCD+Mtf/hIffvhh1KpVKxo0aBBt27atcPuNLpAqct99\n95X9uaioKI477jhxlAdPP/10vPnmm3HKKafEW2+9VVbpbFjvv/9+3H///TFq1KjYbLPN8j1OtWfv\nxYbXvn37GD58eHTp0iXeeOON2H777WOrrbbK91iwwS1atCiuvvrqGDFiRGy99db5HqfamjJlSsyZ\nMycuuuiimDt3bixdulQcbWDXXXdd2Z+HDx8ejRo1WmMcRWwigUTVcOaZZ0b//v1jwoQJsWLFihg0\naFC+R6qWxo4dGwsXLozevXuXHfJ15513Rs2a/nffUJ5++ukYOnRofPzxx1FcXBzDhg2LBx98MN9j\nVRv77rtv7LXXXtGtW7eoUaNGDBw4MN8jVUuvvfZaDBgwIObPnx81atSI0aNHx8iRI6NOnTr5Hq3a\nGD9+fCxYsCD69u1b9v1gyJAhLqK0gXXv3j0uuuiiOPHEE2P58uXx+9//Pt8jsRa5zD9vAgAARMQm\nchU7AACA9UEgAQAAJAIJAAAgEUgAAACJQAIAAEgEEgAAQCKQAAAAEoEEwEZt1apV0a1bt9hjjz2i\nuLi4wm2WL18ehxxySDRv3jymTZu2gScEYGMikADYqNWoUSOuvvrqqF27dhQVFcWiRYtW2+Z//ud/\nYtasWXHuuedGYWFhHqYEYGMhkADY6O20004xcODAmDNnTlx66aXl7ps8eXKMHDky2rZtGz179szP\ngABsNAQSAJuEo48+Oo466qh4/PHH46mnnoqIiCVLlkRRUVFss802MXjw4DxPCMDGIJdlWZbvIQBg\nfVi0aFEce+yxsWjRohg3blzccMMN8cADD8T1118fBx98cL7HA2AjIJAA2KS89tprceKJJ8Yuu+wS\nb7/9dhx33HHxxz/+Md9jAbCREEgAbHKuueaauO2226J27drx7LPPRu3atfM9EgAbCecgAbBJWb58\neUycODFq1KgRS5YsifHjx+d7JAA2IgIJgE3K4MGDY/r06fG///u/sfvuu8fgwYPj/fffz/dYAGwk\nBBIAm4y//vWvMXr06DjhhBOiY8eOcdVVV8WKFSuiX79+4YhyANZFjUGDBg3K9xAA8F19/PHHceqp\np0b9+vXjhhtuiM022yy22267+PLLL2PcuHGx2WabRatWrfI9JgBVnIs0ALDRy7IsevbsGVOmTIm7\n7747WrZsWXbfypUro0uXLvH222/H/fffH3vuuWceJwWgqnOIHQAbvdtuuy2Ki4ujZ8+e5eIoIqJm\nzZpx5ZVXRkREv379YsWKFfkYEYCNhEACYKM2derUGDp0aDRp0iT69u1b4TZNmjSJ3/72t/HOO+/E\n1VdfvYEnBGBj4hA7AACAxB4kAACARCABAAAkAgkAACARSAAAAIlAAgAASAQSAABAIpAAAAASgQQA\nAJAIJAAAgOT/A7BsFUyIEMnLAAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -270,7 +270,7 @@ }, { "cell_type": "code", - "execution_count": 103, + "execution_count": 40, "metadata": { "collapsed": false, "scrolled": false @@ -280,7 +280,7 @@ "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAAIJCAYAAACflB2mAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl4VPWhxvH3zJKE7AuEBAKRNVFZCgkisomCoIBeVBYX\nqrdctdrro+jjghWXqrXLbb1Favdqr6JsVkVRqlRBFIoSEBHZQlgSCJBAAklIMtu5f3CSGhIgQCZn\nknw/z5PnITPnzLwzJ8zMO+d3fscwTdMUAAAAAEAOuwMAAAAAQKigIAEAAACAhYIEAAAAABYKEgAA\nAABYKEgAAAAAYKEgAQAAAICFggQA5+iLL75QZmam5s6da3eUc/Lpp5/qiiuuUJ8+ffTMM88E7X6u\nuOIKXXnllY1advr06brwwguDluVcHDlyRHfccYf69u2rrKwsu+MEzd69e5WZmanZs2fbHQUAbOWy\nOwAA2O2uu+7SypUrNW/evNN+ADZNU6NGjVJJSYlWrlypnj17as6cOerRo0czpm0apmlq1qxZqq6u\n1o9//GNlZmY2ar1//etfWrx4sTZs2KDDhw/LMAylpKRo8ODBuuWWW9SrV6/zynXffffpyJEj53Ub\njZGTk6O9e/dq0qRJZ1z2z3/+s1atWqXJkydr8ODBQc8WDH/729/0/PPPy+VyacWKFWrfvr3dkQAg\nZFGQALR5U6dO1cqVK/Xmm2+etiCtWrVKBw4c0LXXXqv4+HhJ0lVXXdVcMZvU4cOHdfjwYV199dW6\n6aabzri8x+PR448/riVLligtLU0TJkxQ9+7dFQgEtH37dr377rtasGCB7rnnHt17773nnCs7O/uc\n1z0bixYt0v79+xtVkLZv3y7DMPT4448rPDy8GdI1vUWLFikhIUGlpaX6+9//rjvvvNPuSAAQshhi\nB6DNu/zyy9WxY0ctW7ZMx48fP+VyixcvlmEYmjJlSjOmC46qqipJUkRERKOWf/bZZ7VkyRJNmTJF\ny5Yt08yZM3Xddddp0qRJeuSRR/SPf/xDw4YN029/+1u98sorQUzeNDZt2tToZaurqyXpjOXI5/Od\nV6ZgWbdunXJzc3XLLbcoOTlZixcvtjsSAIQ0ChKANs/hcOjGG29UZWWlli5d2uAypaWl+uSTT9Sj\nR4/avRynOgZp3759mjVrloYPH64+ffpo2LBhevDBB5WXl1e7zPDhw3XdddfVu5/x48crMzNTK1eu\nrHP50qVLlZmZqXffffe0j+XgwYOaPXu2Ro0apT59+mjw4MG68847tW7dutplZs2apdGjR8swDL31\n1lvKzMzUrFmzTnmbO3bs0MKFC9WvXz89/fTTcrnqDz6IiorSCy+8oOTkZM2ZM0fHjh1rMNt9992n\nwYMHq3///rrxxhu1atWqOstMnz69weF+ixcv1uTJk/W9731PAwYM0PXXX6/XXntNpmnWW/b999/X\ntGnTNGDAAA0cOFA//OEP9e2330r69zbLy8ur/fepHnvN9TXPXWZmZu3xUY8++qgyMzOVm5urO+64\nQ/3799d7771Xu+7GjRv1wx/+UJdeeqn69OmjkSNHatasWdq3b1+d+7j11lvVt29fVVdX64knntCQ\nIUM0YMAAzZgxQwcOHFBlZaWeeuopDR06VNnZ2Zo+fbq2b9/eYN5TWbBggQzD0NVXX62xY8cqPz9f\na9asOe0669at080336wBAwYoKytLd999t/bu3VtvuZUrV+q2227ToEGD1LdvX40ePVo//elPVVpa\nKkkqLy9X3759NXHixAbvp+bv76WXXqq9bMuWLbr33ns1ZMgQ9enTR6NGjdKTTz6pQ4cOndXjBoBz\nRUECAEmTJ0+WYRh68803G7z+7bffltfr1eTJk097OwUFBbrhhhv02Wefadq0afrpT3+qadOm6fPP\nP9eUKVO0c+dOSdKwYcO0Y8cOlZWV1a57+PBh7dy5U1FRUXUKjSStXbtWDodDQ4cOPeV9FxcX68Yb\nb9R7772ncePG6dlnn9Udd9yhXbt26fbbb9dnn30m6cSH8qeeekqmaWrw4MF68cUXdeutt57ydt96\n6y0ZhqHbb79dhmGccrno6GhNmzZNlZWV+sc//lHnOq/Xq//6r/9SbGysHn74Yd19993av3+/7r77\nbn3zzTd1lj35Pn72s5/p8ccfV0pKimbPnq1HH31UycnJevbZZ/XEE0/UWfYvf/mLHnjgASUlJemp\np57SAw88oB07duimm27SN998o169emnOnDkyTVO9evU67WOvWbbmGLMXX3xRv/nNb2ozGoahOXPm\nKCkpSc8//7wGDBggSVqzZo1uvfVWbdu2Tf/5n/+p5557Ttddd52WLVumqVOn1vmgbxiGTNPU448/\nLo/Ho0ceeUTXXHONPv/8c82aNUszZ85UeXm5HnroIU2ePFk5OTl68MEHT7kNTnb06FF9+OGHuuii\ni9SjRw9NnDhRpmlq0aJFp1xn586deuCBBzRo0CA9+eSTuv766/Xpp5/q9ttvr93zKJ0orXfddZeO\nHDmiu+++W88884wuv/xyzZs3T7feequqq6sVHR2tyy+/XLm5udq1a1e9+1q2bJkMw6j9smD9+vWa\nNm2aduzYoTvuuEPPPfecxo0bpyVLlmjatGkqKSlp9GMHgHNmAgBM0zTNu+66y8zMzDRzc3PrXTdh\nwgSzX79+Zmlpae1la9euNTMyMswXX3yx9rIf/ehHZlZWlpmfn19n/a1bt5oXXXSRec8995imaZpL\nliwxMzMzzU8++aR2maVLl5oXX3yx+dhjj5lTp06ts/7YsWPNSZMmnTb/E088YWZmZppLly6tc/n+\n/fvNfv36mddcc03tZQUFBWZGRob56KOPnvY2TdM0b731VjMzM9MsKio647Lr1q0zMzIyzFmzZtVe\nNmrUKDMzM7PO82Saprl69WozIyPDvO++++rdV40tW7aYGRkZ5jPPPFPvvu69914zMzPT3LJli2ma\npnn48GGzT58+5m233VZnuby8PPPCCy80Z8yYUXtZRkaGOX369DM+noYymaZpPvroo2ZGRob5gx/8\noN7y48aNM/v372/u27evzuUffPCBmZGRYT711FP1bvu7z5dpmub48ePNzMxM88EHH6xz+Z133mlm\nZmbW+/s6lZdfftnMyMgwX3nllTr5+vbta5aUlNRZds+ePWZGRoaZmZlprlu3rs51v/rVr8zMzExz\nwYIFpmmaZmVlpZmdnW2OGDHCrKioqLPsH/7wBzMjI8N8+eWX6zzu3//+93WWKysrM/v06WPedNNN\ntZdNmDDBHD16tFlWVlZn2eXLl5sZGRnmz372s0Y9bgA4H+xBAgDL1KlTZZpmvWM0Nm3apB07dmjs\n2LGKi4s75fpVVVVasWKFsrKyFBcXp7Kystqf1NRU9erVS1988YUk6bLLLpMkffnll7Xrr127Vr17\n99Yll1yizZs31x77UlRUpN27d2v48OGnzf/Pf/5TsbGxuvrqq+tcnpqaqiFDhigvL0/5+fmNf0Is\nxcXFcjgcjZr5LCUlpXadk5187NaQIUMUHx+vtWvXnvL2PvjgAxmGoXHjxtV5PsvKyjR27FiZplm7\n/kcffSSfz1dvOFe3bt30xhtvnHYY4bmoyfVdeXl52rVrl4YNG6ZOnTrVue6qq65STEyMVqxYUe+2\nrr/++jq/Z2RkSFK9SSRqhh8WFRU1KuPChQvlcrk0YcKE2suuu+46eb1evf322w2u071793qTlVx9\n9dV1nus1a9aorKxM48ePV2RkZJ1lb7jhBknSJ598IkkaNWqUoqKi6u1V/Oijj+T1enXttddKOrHn\naseOHRo5cqRM06yzrbOzsxUTE1P7/wcAgolZ7ADAMnLkSKWkpOidd97Rgw8+WHuszaJFi2QYhqZO\nnXra9Xfv3i2fz6dPP/1UgwYNqnd9zdCx8vJyJSUlqXfv3srJyam9fu3atRo5cqQGDRokr9er9evX\na8iQIfrXv/4lwzBqS1VDysrKVFxcrIEDBzY4DK5bt25auXKldu/erS5dujTq+ajhcDgaPNanITXL\nORx1v3+LjY1VcnJyveXT0tK0efNmVVVVNThhxM6dO2Wa5imHwRmGocLCQkknjpWS1ODj69+/f6Py\nn620tLQ6v9ccZ9azZ896yzocDnXt2lXffvutPB6PwsLCaq/r3LlznWVrrjv5crfbLalxE0KsW7dO\neXl5Gj58uJKSkmovv/baa/Wb3/xGixYt0u23315vvYamaq95TmuOodq1a5cMw2hw2aSkJMXExGj3\n7t2STkxuMXr0aC1ZskQFBQW1z9myZcvkdrtrC33N8NN58+bptddeq3e7393WABBMFCQAsNRM1vDb\n3/5WH3/8sa666ipVV1frgw8+aPBb9ZNVVFRIOnF80emmUa6ZDe2yyy7Ta6+9purqapWWlmr37t16\n6KGH1KlTJ6WmpurLL7/UkCFD9MUXX6hdu3anvf+a2ffatWvX4PU15aOysvK0j6EhycnJysvLU2Fh\noVJTU0+77IEDB2rX+a6oqKjT5jpVQaqoqJBhGPr1r399yj1YHTp0kPTv2eZqSkRzOPlx1WyHk/eq\n1Kh5jMePH69TkL777+861eWNMX/+fBmGoUGDBtWZYME0TWVmZmrr1q1av369Bg4cWGe9hrZVzd9s\nzXN8pr+38PDwOn9rEyZM0DvvvKMPP/xQP/jBD1ReXq7Vq1drxIgRtXtla/7/3HDDDQ1OYCLVPz4N\nAIKBggQA33HjjTfqd7/7nRYvXqyrrrpKy5YtU1lZWaPO7VPzwdLhcDS4B+lkQ4cO1SuvvKL169fX\nDmOrmSFv4MCBtcPvvvjiC11yySUNzh5Xo+YD+ammKa/5sHqqonI6AwYM0L/+9S+tXr26dvjUqdTs\n7Tr5fEanKmY1l5/qg3ZN3rS0NPXt2/e0952YmChJDc6g11xqtkPNh/2T1TzeUxWoplIzOYMkvfDC\nC/r1r39d5/qaorFo0aJ6Bem7EzGcfFlNwWvM31tsbGzt75dddpkSExNrC1LNcMia4XXSv7d1u3bt\nGvX/BwCChWOQAOA7UlJSNHz4cK1evVqlpaVasmSJIiIi9B//8R9nXLdbt25yuVzatGmT/H5/veuP\nHDlS5/dBgwbJ7XYrJydHa9euVc+ePWu/Tc/OztbXX3+tgoIC7dmz54zHH8XExKhDhw7Ky8trcDhc\nbm6uJNXOyHY2Jk2aJMMw9Ne//lVer/eUyx0/flwLFy5UXFxcvRPolpaWNjgDWUFBgZKSkk55jqGe\nPXvKNE2tX7++wfvzeDy1v6elpck0zdrH+l0ff/zxGadIbwo1Q+samorb7/drz549SktLO689Q43x\n1ltvyePxaMyYMfrNb36jOXPm1Pn53//9X0VFRWnZsmUqLy+vs27NULfv2rNnj6R/D7Xr0aOHTNNs\n8HEePHhQFRUV6t69e+1lTqdT48aN09dff63i4mItW7ZM0dHRGjVqVO0yNc9dQ9taqv//BwCChYIE\nACeZOnWq/H6/FixYoLVr12rs2LF1vg0/lfDwcI0aNUolJSV666236lyXn5+vK6+8Uk8//XSd5QcO\nHKivvvpKa9eu1SWXXFJ7XXZ2tqqrq/XKK6+c8fijGuPGjdOxY8fqnctp9+7dWrt2rfr27Vs7icLZ\n6NKli2bMmKG8vDw99NBDtcOsvquiokL333+/ioqK9OijjzY4XO7kqaU//fRTHT169LSPrWYShDfe\neKNOGZKkX/ziF7r00ktrJ54YMWKEXC6X3n777ToFteb8S9+dwt3hcNS7vaZwwQUXKCMjQ6tXr1ZB\nQUGd65YsWaKKigqNHTu2ye/3ZDXnPrr//vt11VVX1fsZO3asrr/+elVVVWnJkiV11t22bZu+/vrr\nOpctXbq0zt/hpZdeqvj4eL333nv1CtYbb7zR4AQW48ePl2maWrZsmdasWaOxY8fWKYrdu3dX7969\n9e2339aZvESScnJyNGzYML388svn/dwAwJkwxA4ATjJy5Eh17NhRL730kvx+f73Z107n4Ycf1rp1\n6/T0009r586duuiii1RQUKB58+bJ6XTWm+jhsssu0+9+9ztVVVXVGVbUq1cvxcXF6e9//7tSU1PV\nrVu3M973Pffco3/+85+aPXu2tm7dqp49e6qwsFDz58+Xy+XS7NmzG/8knGTmzJk6fvy4Xn/9dW3c\nuFETJ05U9+7dZZqmduzYoXfffVclJSWaNWtWg3vbUlJS9P7772vfvn3q37+/9u/fr1dffVXh4eGa\nMWPGKe83MzNTt912m/7v//5P06ZN09SpU+VyubRixQotX75c1113Xe1ejY4dO+pHP/qR5syZo9tv\nv12TJk1SRUWFXnvtNTkcDj3yyCO1t5uWlqZvvvlGc+fOVWpq6hmHDp6N2bNna8aMGfr+97+vm266\nSR06dNDWrVv1xhtvKD09XXfddVeT3VdDvvzyy9qZ9L67F+dkt9xyi1599VUtWrRIN998c+3l2dnZ\nuu+++zRp0iR16dJFGzdu1MKFC5Wenq5rrrlG0oly/+Mf/1iPPPKIbr75Zt14442KiorShg0b9Oab\nbyorK6vezHxZWVlKTU3V7373O3m93gZPHvvkk09qxowZuueee3TbbbcpPT1d27dv1xtvvKGOHTtq\n/PjxTfQsAcCpUZAA4CTfnayhZ8+ep50coeaEoTW6dOmixYsXa+7cuVq6dKleffVVxcbG6pJLLtE9\n99yj3r1711l/6NCheuGFF2oPpv+ugQMHasWKFXWmaD6dhIQELVy4UHPmzNF7772n4uLi0973ydlP\nx+FwaPbs2br22ms1f/58ffDBByoqKpLD4VBqaqrGjRun6dOnq2vXrqfM9vvf/17PPfecfv7zn6u6\nulqZmZl68MEHa6e0PpVZs2apd+/eWrBggX72s58pEAgoPT1dDz/8sG677bY6y959991KTU3Va6+9\npmeeeab2uK65c+fWmXHtkUce0dNPP60//elPGjly5BkL0tlMDpCdna3XX39dL774ov785z/r+PHj\nSk5O1tSpU3X33XcrJiamUbd9rhMS1Ow9+v73v3/a5dLT0zV8+HCtWrVK33zzjWJiYmQYhvr166f7\n779f//M//6OXX35ZLpdLo0eP1mOPPVZnj8/EiROVkJCgP/7xj5ozZ448Ho86d+6se+65R3feeaec\nTme9+7zmmmv0l7/8RampqRo8eHC967OysjR//ny99NJLev3113Xs2DElJiZq7Nix+u///u8GZ0IE\ngKZmmI2duxUAgCCbPn261q1bpy1bttgdBQDQRnEMEgAgZFRUVDR4/BIAAM2FIXYAANutX79eq1at\n0tatW9WvXz+74wAA2jAKEgDAdsuXL9crr7yiLl266LHHHrM7DgCgDWs1xyDl5OTYHQEAAABAiDvd\n5EtSK9uDdKYHi+DKyclhG4QAtkNoYDvYj20QGtgOoYHtYD+2QWhozE4VJmkAAAAAAAsFCQAAAAAs\nFCQAAAAAsFCQAAAAAMBCQQIAAAAACwUJAAAAACwUJAAAAACwUJAAAAAAwEJBAgAAAAALBQkAAAAA\nLBQkAAAAALBQkAAAAADAQkECAAAAAAsFCQAAAAAsFCQAAAAAsFCQAAAAAMBCQQIAAAAACwUJAAAA\nACwUJAAAAACwUJAAAAAAwEJBAgAAAAALBQkAAAAALBQkAAAAALBQkAAAAADAQkECAAAAAAsFCQAA\nAAAsFCQAAAAAsFCQAAAAAMBCQQIAAAAACwUJAAAAACwUJAAAAACwUJAAAAAAwEJBAgAAAAALBQkA\nAAAALBQkAAAAALBQkAAAAADAQkECAAAAAAsFCQAAAAAsFCQAAAAAsLjsDnA6v/jFL7R+/Xr5/X7d\neeedGjNmjN2RAAAAALRiIVuQ1q5dq9zcXM2fP1+lpaWaNGkSBQkAAABAUIVsQRo0aJD69esnSYqN\njVVlZaVM05RhGDYnAwAAANBahewxSA6HQ+3atZMkLVq0SCNHjqQcAQAAAAgqwzRN0+4Qp7N8+XL9\n6U9/0l/+8hdFR0efcrmcnJxmTAUAAACgJcrKyjrt9SE7xE6SVq1apT/+8Y9nLEc1zvRgEVw5OTls\ngxDAdggNbAf7sQ1CA9shNLAd7Mc2CA2N2akSsgWpvLxcv/zlL/XKK68oJibG7jgAAAAA2oCQLUjv\nv/++SktLdf/999dOzvCLX/xCKSkpdkcDAAAA0EqFbEGaMmWKpkyZYncMAAAAAG1IyM5iBwAAAADN\njYIEAAAAABYKEgAAAABYKEgAAAAAYKEgAQAAAICFggQAAAAAFgoSAAAAAFgoSAAAAABgoSABAAAA\ngIWCBAAAAAAWChIAAAAAWChIAAAAAGChIAEAAACAhYIEAAAAABYKEgAAAABYKEgAAAAAYKEgAQAA\nAICFggQAAAAAFgoSAAAAAFgoSAAAAABgoSABAAAAgIWCBAAAAAAWChIAAAAAWChIAAAAAGChIAEA\nAACAhYIEAAAAABYKEgAAAABYKEgAAAAAYKEgAQAAAICFggQAAAAAFgoSAAAAAFgoSAAAAABgoSAB\nAAAAgIWCBAAAAAAWChIAAAAAWChIAAAAAGChIAEAAACAhYIEAAAAABYKEgAAAABYKEgAAAAAYKEg\nAQAAAICFggQAAAAAFgoSAAAAAFgoSAAAAABgoSABAAAAgIWCBAAAAAAWChIAAAAAWChIAAAAAGCh\nIAEAAACAhYIEAAAAABYKEgAAAABYKEgAAAAAYKEgAQAAAICFggQAAAAAFgoSAAAAAFgoSAAAAABg\noSABAAAAgIWCBAAAAAAWChIAAAAAWChIAAAAAGChIAEAAACAhYIEAAAAABYKEgAAAABYKEgAAAAA\nYKEgAQAAAICFggQAAAAAFgoSAAAAAFgoSAAAAABgoSABAAAAgIWCBAAAAAAWChIAAAAAWChIAAAA\nAGChIAEAAACAhYIEAAAAABYKEgAAAABYKEgAAAAAYKEgAQAAAICFggQAAAAAFgoSAAAAAFgoSAAA\nAABgCemCtHXrVo0ZM0bz5s2zOwoAAACANiBkC1JlZaV+/vOfa+jQoXZHAQAAANBGhGxBCg8P1x/+\n8Ae1b9/e7igAAAAA2oiQLUgOh0NhYWF2xwAAAADQhhimaZp2hziduXPnKiEhQbfccstpl8vJyWmm\nRACAUGCaprxerzwej6qqfPJ4/PJ6TXm9PpmmUWdZh0MKD3fK7XYqLMyh8HC3wsLC5HK5bEoPALBL\nVlbWaa9vVe8MZ3qwCK6cnBy2QQhgO4QGtsP583g8OnSoVAcPVqqiQjp+/N8/VVWSx2PI5wtTIBAu\npzNMDodTDodLTueJt7Y9e/YoPT1dkhQIBGSafvn9PgUCPplmtZzOarlcPoWHSxERUlSUFBl54icm\nxlDnzrGKj4+VwxGygy1aBP4vhAa2g/3YBqGhMTtVWlVBAgC0PIFAQMXFpcrPL1NJiamSEunoUUOV\nlWEyjHiFhSU3uJ7LdeKnMU6UHIecTrd1SUztdV7viZ+ysrqZPJ5jcjr3KTrar/h4KSnJUFKSU+np\niYqMjDy3BwsACHkhW5A2btyoxx9/XEeOHJHT6dT8+fP12muvKS4uzu5oAIDz4PV6tWvXIRUW+lRU\nJBUXG/J44hURkV5nufBwmwLqRKGKiIiXFK/qaungwRM/fr9PXu8RxcQcUocOUvv2UrduMUpOTpRh\nGGe8XQBA6AvZgtS/f3+9++67dscAAJwn0zRVUFCkXbuOq7BQKi52y+FIrt2b43CcGOLWEjidLjmd\nyfJ6pf37T/ysW1emiIi9SkkxlZpqKCOjvaKjo+yOCgA4RyFbkAAALZff79f27YXavdunggKpujq5\ndqic232GlVuYsLAYBQIx2r9f2rfP1OrVRWrfvkhpaVJmZpw6dEiwOyIA4CxQkAAATSIQCCg394C2\nb69Wfr5Tppkil+vE6RraylkbDMNQeHiyysqkLVukjRtLFRu7S127Sv36JSoxkWHiABDqKEgAgPNy\n4MARbdp0VHv2OFRdnSK3O1xOp92pQkNYWLyqquK1fbv0zTeH1b79LnXrZmjAgE6c6w8AQhQFCQBw\n1vx+vzZt2qetW30qLk5SWFg3Sa1v+FxTCgtL0rFjSdqwIaD16wuVnl6t/v1j1blze7ujAQC+g4IE\nAGi08vLjWrv2gHbudMnv7ySn09Vmhs81lRNTjndWQYGUl3dMiYl56tvXrYsv7sw5lwAgBFCQAABn\nVFRUqnXrjmjXrki5XN0liWF0TSAsLFbl5bFatcqjdev26KKLDGVlpcnV2BM8AQCaHK/AAIBTOnSo\nVGvWHFZ+frzCwro3+sSsODsuV5i83m7asCGgjRsLdNFFfl16aReKEgDYgFdeAEA9R44c0+efF2nv\n3gS53T0YRtdMTgyx66pvvglo69YC9ekT0KBBXeRkdx0ANBsKEgCgVmVllVau3Ke8vDi5XD2YdMEm\nDodDgUBXffWVX5s35ys726l+/dJkGIbd0QCg1aMgAQAUCAT0xRd7tXGjS4bRg6F0IcLhcMrvv0Cf\nf16tb7/N07BhcerShVnvACCYeAsEgDYuN/eAPvvsuCoru8rp5G0hFLlc4Sor66ElS0rVtWuurrii\ns6Ki2tkdCwBaJd4JAaCNqqys0vLl+dq7N0Vudwqz0rUAbne8CgvjNW9egQYNCmjAgK52RwKAVoeC\nBABt0MaN+friC0Om2YvjjFqkNK1ZU63c3FxdeWWyEhNj7Q4EAK0GZ6QDgDbk+PEqvfnmdn3+eQeZ\nZprdcXAeXK5wlZT01MKFlVq3bq/dcQCg1WAPEgC0ETt2HNDKlV4FAr2ZhKEVcTg66osvqrV37w6N\nHZvGsUkAcJ7YgwQArZzf79eHH+bqo48iFQh0sTsOgsDlCldxcS+98Uaxduw4YHccAGjR+A4RAFqx\n0tJyvffeAZWXd5fLxXdirV0g0EUffXRMhYV5Gj68G+dNAoBzQEECgFYqL++Qli/3SOopB92ozXC5\nYrV5czsdOrRDEyakKyIi3O5IANCi8JYJAK3QmjW7tWyZWxITMbRFTqdbR4701htvFKqwsMTuOADQ\nolCQAKAjIk4BAAAgAElEQVQVCQQCeu+97dqwIVUuV4LdcWAzr/cCvfOOR9u3c1wSADQWBQkAWgmP\nx6PFi3NVUNBDLhfDqnCCw9FRy5eHKSeHqcABoDEoSADQCpSVHdf8+XtVUtJLDofT7jgIMS5Xotau\nTdTKlTvtjgIAIY+CBAAtXFHRUS1cWKSqqp7MWoZTcrmitXlzmt5/f7tM07Q7DgCELAoSALRgRUVH\n9c47x+T3p9sdBS2AyxWuPXu66913tysQCNgdBwBCEgUJAFqoQ4dK9fbbZZz8FWfF6XRp374eeu+9\nHZQkAGgABQkAWqCDB0v1zjvlMk2m8cbZqylJ775LSQKAk1GQAKCFKSo6qiVLKEc4P06nS/v3nyhJ\nHJMEAP9GQQKAFqS8/LjefbeUcoQmcaIkdddHH+XaHQUAQgYFCQBaCI/Ho7//fb98PiZkQNNxOt3K\nzU3TmjW77Y4CACGBggQALUAgENBbb+1SZWUPu6OgFXK52mnDhkRt2rTP7igAYDsKEgC0AO+/n6uS\nEs5zhOBxuWL12WcRyss7ZHcUALAVBQkAQtzq1buUn3+BHA6n3VHQyjmdSVq+3KeSkjK7owCAbShI\nABDCdu06pI0b4+V0htkdBW1GJy1delB+v9/uIABgCwoSAISo8vLjWr68Wk5ngt1R0MaUl3fXhx/m\n2R0DAGxBQQKAEBQIBLRkSYFMs4vdUdAGORwO5eV11ldf5dsdBQCaHQUJAELQxx/n6dgxZqyDfdzu\nSK1ZE679+4/YHQUAmhUFCQBCzI4dB7RtWzKTMsB2TmeyPvywVD6fz+4oANBsKEgAEEI8Ho8+/bRK\nbnes3VEASVJV1QVauXKP3TEAoNlQkAAghPzzn3vl86XbHQOo5XA4tG1bgvbtO2x3FABoFhQkAAgR\nu3YdUl5eB04Gi5DjciXq44+PKhAI2B0FAIKOggQAIcDn8+mTTyrkdsfZHQVoUEVFuj77bLfdMQAg\n6ChIABACVqzYI4+HoXUIXQ6HU5s3x+rAgRK7owBAUFGQAMBmhYVHtG1bghwOXpIR2pzO9lqxgmm/\nAbRuvBsDgM3WrCmV251odwygUY4c6aStW/fbHQMAgoaCBAA22rXrkAoLO9gdA2g0l6udvvyySqZp\n2h0FAIKCggQANlq7tlxud4zdMYCzUlaWpq++yrc7BgAEBQUJAGyyZct+HT6cancM4Ky5XGHasCEg\nv99vdxQAaHIUJACwgWma+vLLKrnd7eyOApwTj6eLvvySvUgAWh8KEgDY4Kuv8lVR0cXuGMA5czic\n+vprhzwej91RAKBJUZAAoJkFAgFt2BCQ0+m2OwpwXkyzi9as2Wd3DABoUhQkAGhmmzfvU3V1Z7tj\nAOfNMAzt2OFQIBCwOwoANBkKEgA0s23bfOw9Qqvh9XbSt99yXiQArQcFCQCaUUnJMR04wLTeaD2c\nTre2bfPaHQMAmgwFCQCa0VdfHVZYWHu7YwBNqrAwWqWlZXbHAIAmQUECgGYSCAS0c6dhdwygyYWF\nddCGDcV2xwCAJkFBAoBmsm1boTyeTnbHAIIiL89gsgYArQIFCQCaydatHrlcYXbHAIKiurqTtm8v\ntDsGAJw3ChIANINjx8q1f3+U3TGAoHG5wrR1KyeNBdDyUZAAoBls2FAktzvZ7hhAUO3bF6Wysgq7\nYwDAeaEgAUCQmaapvDwmZ0Dr53Yna8OGQ3bHAIDzQkECgCCrqKhQWRnnPkLbUFzMRwsALRuvYgAQ\nZAUFpXK74+yOATSLY8fsTgAA54eCBABBVlLil9PpsjsG0CzKy13y+Xx2xwCAc0ZBAoAg4xt1tCWB\nQJyKi0vtjgEA54yCBABBRkFCWxIREa3CQmayA9ByUZAAIMiOHrU7AdC8+FIAQEtGQQKAIKqurtbx\n4+F2xwCaFQUJQEtGQQKAIDpwoFROZ7zdMYBmRUEC0JJRkAAgiA4dqpLbHWF3DKBZHTtmyDRNu2MA\nwDmhIAFAEPFNOtoirzdGx46V2R0DAM4JBQkAgoiChLYoLCxW+/YxOwmAlomCBABBREFCW+RwOFVS\nErA7BgCcEwoSAASJ3+9XebnT7hiALfhyAEBLRUECgCA5cuSo/P5Yu2MAtqAgAWipKEgAECSFheUK\nD4+xOwZgCwoSgJaKggQAQXL0qCnDMOyOAdiiqqqdKisr7Y4BAGeNggQAQcI36GjLHI44FRaW2h0D\nAM4aBQkAguQosxyjDXO7w3X4sMfuGABw1ihIABAEpmmyBwltHl8SAGiJKEgAEASVlZXyeKLtjgHY\nii8JALREZyxIzzzzjI4fP94cWep4/vnnNW3aNN10003atGlTs98/AJyPgwcr5HbH2R0DsBUFCUBL\ndMaCNG/ePE2cOFGfffZZc+SRJH355Zfas2eP5s+fr2effVbPPfdcs903ADSFsjLJ6XTZHQOwVVmZ\nUz6fz+4YAHBWzliQHnroIR05ckR33HGHHn30UR1thgHFa9as0ejRoyVJPXr00LFjx1RRURH0+wWA\nplJR4bQ7AmA704xXaWm53TEA4KycsSDNmDFDS5cu1YgRI/T2229r/Pjx+uCDD4Iaqri4WImJibW/\nJyQkqLi4OKj3CQBNqbycggSEh0fp8OFqu2MAwFlp1CQNnTp10h/+8Ae98MILkqQHHnhAP/rRj3To\n0KGghqthmmaz3A8ANBUKEiAZhqHycoaaAmhZDPMs20d5ebl+9atfacGCBYqOjta4cePkcNTtWYZh\n6MknnzznUHPnzlVycrKmTJkiSRo9erSWLFmiyMjIU66Tk5NzzvcHAE3t738vl3SB3TEA23Xpsk2D\nBiXZHQMAamVlZZ32+rP+Wic6OloPPvig9u7dq88//1wLFy6st8z5FqShQ4dq7ty5mjJlijZv3qyO\nHTuethzVONODRXDl5OSwDUIA2yE0/OMfH6t9+3S7Y7Rpe/bsUXo628BuERGbeU0KAbw32I9tEBoa\ns1PlrAvShx9+qOeee06HDh3S5Zdfrttuu01OZ9MOJRkwYIAuvvhiTZs2TU6nU0888UST3j4ABFtU\nVMDuCIDtPJ5Kde7stjsGAJyVRhekwsJC/eQnP9GKFSsUHx+vX/7yl5owYULQgj3wwANBu20ACLbo\naL/8frtTAPYyzVIlJnLCZAAtyxkLUiAQ0N/+9je9+OKLOn78uCZOnKjHHntMCQkJzZEPAFqk6OiA\nSkoC9Y7RBNqSyEiPwsLC7I4BAGfljAXpxhtv1JYtW5SSkqIXXnhBI0eObI5cANCidejQTgcPHlNE\nRLzdUQDbxMbanQAAzt4ZC9KWLVt0yy23aObMmYqKimqOTADQ4sXERMnlOiaJgoS2i4IEoCU6Y0Ga\nN2+eBg4c2BxZAKDVcDgciokxVVlpdxLAPnFxdicAgLN3xsHxlCMAODd8e462zO/3KTGRk8QCaHk4\nehgAgoSChLbM6z2qTp3YhQSg5aEgAUCQUJDQloWFlXPsMoAWiYIEAEGSkhIpj+e43TEAW8TFSYZh\n2B0DAM4aBQkAgiQ5OV6mWWp3DMAW7EEF0FJRkAAgSNxut6KjvXbHAGxBQQLQUlGQACCI+JCItsg0\nTcXFMbwOQMtEQQKAIKIgoS2qri5Tamq03TEA4JxQkAAgiChIaIuczqNKTGSKbwAtEwUJAIIoKckt\nv5/jkNC2REcH5HQ67Y4BAOeEggQAQdSpU7y8XmayQ9vCnlMALRkFCQCCKDIyUuHhnAsJbQsFCUBL\nRkECgCCL41AMtDH8zQNoyShIABBkfJuOtsTrrVJycoTdMQDgnFGQACDIKEhoSwKBUnXsGG93DAA4\nZxQkAAiyuDhDgUDA7hhAs4iMrFZ4eLjdMQDgnFGQACDIOneOlcdzzO4YQLNgjymAlo6CBABBFh8f\nq/Dwo3bHAJpFYqJpdwQAOC8UJAAIMofDoW7dGGKH1s/jKVXfvkxhB6BloyABQDPo1y9OHg8njEXr\n1qFDiZKTE+yOAQDnhYIEAM0gJSVR7duX2B0DCJpAwK9evZx2xwCA80ZBAoBm0rOng9ns0IrtV79+\nnewOAQDnjYIEAM2kf/9OMs19dscAguKCC3xyuVx2xwCA80ZBAoBm4na71a2bz+4YQJPzeo+pXz/m\n9wbQOlCQAKAZ9e0bwzmR0OokJBxWp05JdscAgCZBQQKAZtS5c3slJBy2OwbQZAKBgHr14uMEgNaD\nVzQAaGa9ehlM1oBWwzT3q3//VLtjAECToSABQDP73vc6yTD22x0DaBIXXOBRWFiY3TEAoMlQkACg\nmYWFhenCCz3sRUKL5/Md0NChHe2OAQBNioIEADa47LKucrkK7I4BnJeMjOOKjY2yOwYANCkKEgDY\nwOVyqV+/gPx+pv1GyxQIFOiyyzgxLIDWh4IEADbJzu6qiIh8u2MAZy0QCOjii71q1y7C7igA0OQo\nSABgE4fDoexst3w+j91RgLPidOZryJAudscAgKCgIAGAjfr06azYWI5FQsvh9/v0ve+dGCYKAK0R\nBQkAbGQYhi65pJ283uN2RwEapV27fGVlsfcIQOtFQQIAm/XunarU1H12xwDOyOst09Ch7eRw8PEB\nQOvFKxwAhICrruos06QkIbSlpx9Ur14pdscAgKCiIAFACIiOjtSgQX75fFV2RwEaZBh7NXo0Q+sA\ntH4UJAAIEQMHdlWHDkz7jdDj9VZo6FCXIiLC7Y4CAEFHQQKAEHLVVakKBArtjgHU0bnzfl10ESeF\nBdA2UJAAIITExUUrK8vDuZEQQgo0Zkya3SEAoNlQkAAgxGRnd1Vy8m67YwDy+Y5pxAinoqLa2R0F\nAJoNBQkAQoxhGJowIV0u1267o6AN8/t9yswsUmZmqt1RAKBZUZAAIARFRIRr3LhY+f1FdkdBG5WQ\nkKfLL+9mdwwAaHYUJAAIUZ06JWrw4Ep5vcftjoI2xuHYq4kTu3BCWABtEq98ABDCBg7sqvT0AgUC\nAbujoI3w+Y5ozJhIjjsC0GZRkAAgxI0b110xMbl2x0Ab4PNV6JJLypWe3t7uKABgGwoSAIQ4l8ul\nSZO6Kixsl91R0Ir5/R5deOEBZWd3tTsKANiKggQALUBkZISuu669DKPA7ihohQIBv7p02a1Ro3rY\nHQUAbEdBAoAWIiEhRuPHRyoQOGh3FLQipmkqMTFX11zT0+4oABASKEgA0IJ06pSo0aMln++w3VHQ\nSkRG5mrSpO7MWAcAFl4NAaCF6dmzo6680iu/n5KE89OuXa4mT+4qt9ttdxQACBkUJABogTIyUnTF\nFV75/cV2R0ELFRmZq8mTuygiItzuKAAQUihIANBCZWSk6MorfZQknLXIyB2aPLkr5QgAGkBBAoAW\nrHfvFI0Z45fff8juKGgBTNNUVNR2TZ6crvDwMLvjAEBIoiABQAvXs2dHjR/vkLTP7igIYX6/T0lJ\n2zV1anfKEQCcBgUJAFqBrl3b64YbYuRycTJZ1Of3V6lbt126/vpecrlcdscBgJBGQQKAViIpKVZT\np6YoMnKHTNO0Ow5ChM93TP36FWrcuF5M5Q0AjcArJQC0IlFR7TRtWjelpu6Qz1dldxzYLBA4qBEj\nyjR0aDe7owBAi0FBAoBWxuVy6dpre2vgwAPy+Y7YHQc2cbt3adKkcPXp09nuKADQolCQAKCVuvTS\nC3T11T4ZRoHdUdCMfD6PkpK26+abO6tjx3i74wBAi0NBAoBWrFu3ZE2ZEq+YmB3y+712x0GQ+XyH\n1a/fPl1/fS9mqgOAc0RBAoBWLi4uWtOm9VTfvvny+Q7bHQdBYJqm3O5duvZaadiwbjIMw+5IANBi\nMdcnALQBhmFo2LDuuuCCw/roozx5PHyIbi18vnJ163ZAo0eny+122x0HAFo89iABQBuSlpak6dO7\nqkePPPl8JXbHwXkwTVMOx25dcUWZrr66J+UIAJoIe5AAoI1xuVwaPbqHMjMPa8WKnSorS5fTydtB\nS+Lzlapnz8MaNaorxQgAmhjviADQRqWlJenmmxO0evUeffNNOzkcKXZHwhn4/V5FR+dr5MhYde3a\nw+44ANAqUZAAoA1zOBwaNqyb+vWr0MqVudq7t73cbqaGDjWmacowCpSdHVBW1gVyOBghDwDBQkEC\nACg2NkoTJ/ZUfn6xPvtsp0pKOsvlirA7FiT5fEXq3btMI0akKSyMqbsBINgoSACAWl26tNdNN7XX\n5s37tH59tcrK0uRy8aHcDj7fYaWnH9WQIe2VmNjB7jgA0GZQkAAA9Vx8cWdddJGpTZsKtH69V8eP\nU5Sai8dzRF26lOiyy5LUoUN3u+MAQJtDQQIANMgwDPXr10V9+gS0efM+ff21V6WlKXK7I+2O1ip5\nvQfUrdtxZWcnKDmZCRgAwC4UJADAaTkcDvXt20V9+0o7dx7Qhg0HdPBggtzuBLujtXiBQEDSPvXq\n5dUll3RUTAwzCQKA3ShIAIBG69EjRT16SEVFpfrqq13atculQKCTHA6n3dFaFK+3TPHxxerd26Hv\nfa8T5zICgBBCQQIAnLUOHeI1Zky8fD6fvv56n3bs8KuoKEZhYe3tjhay/H6fDGO/unb1q2/faHXp\n0s3uSACABlCQAADnzOVyaeDArho4UCotLdPXX+/S7t3S0aOJCg+Pszue7QKBgPz+A+rUqVo9e7p0\n4YWd5HLx1gsAoYxXaQBAk4iPj9GIETEaMUI6ePCItm3brYIC6fDhaIWHt509S36/T6ZZqM6d/era\n1aGLLuqo8PBwu2MBABopZAvS2rVrNXPmTD3//PMaOXKk3XEAAGehY8dEdeyYKEk6erRMW7fuVmGh\ndPCgQ15vB4WFtbM5YdMxTVMez2HFxZUrNVVKS3OpV69U9hQBQAsVkq/ee/fu1auvvqrs7Gy7owAA\nzlNcXIwGD46RdGLIWX5+kfLzD6moyFRRkaGqqnhFRLSc4Xh+v09eb7Hi46vUvr2UnGyod+8kxca2\nnb1kANCahWRBSklJ0dy5czVr1iy7owAAmpDD4VB6ekelp5/43TRNFReXas+e3SopkUpLDZWUSFVV\nUXK74+R02ju7W3V1hQzjqKKjvUpIMJWQILVv71T37h0UERFhazYAQHCEZEEKC+Ns7QDQFhiGoQ4d\nEtShQ91zKlVUVKiwsEhHjnh17JhUXi5VVkoVFVJVlVN+f4QMI0Jud4SczrN/KzNNUz6fRz5flRyO\narlcVWrXzlRkpBQVJUVHS7GxUkpKlNq378A03ADQhhimaZp2Bli0aJEWL14swzBkmqYMw9C9996r\noUOHatasWRo3blyjjkHKyclphrQAALv5/X5VV1erstKjigqfKiv98vkMBQKG/P4TPye/szkcplwu\nUw6H5HSacrulyEinoqPDFB4eprCwMBmGYc8DAgA0q6ysrNNeb/sepMmTJ2vy5MlNcltnerAIrpyc\nHLZBCGA7hAa2g/3YBqGB7RAa2A72YxuEhsbsVHE0Q47zYvMOLgAAAABtSEgWpI8++kgTJ07Uxx9/\nrJ/85Ce64YYb7I4EAAAAoA2wfYhdQ8aMGaMxY8bYHQMAAABAGxOSe5AAAAAAwA4UJAAAAACwUJAA\nAAAAwEJBAgAAAAALBQkAAAAALBQkAAAAALBQkAAAAADAQkECAAAAAAsFCQAAAAAsFCQAAAAAsFCQ\nAAAAAMBCQQIAAAAACwUJAAAAACwUJAAAAACwUJAAAAAAwEJBAgAAAAALBQkAAAAALBQkAAAAALBQ\nkAAAAADAQkECAAAAAAsFCQAAAAAsFCQAAAAAsFCQAAAAAMBCQQIAAAAACwUJAAAAACwUJAAAAACw\nUJAAAAAAwEJBAgAAAAALBQkAAAAALBQkAAAAALBQkAAAAADAQkECAAAAAAsFCQAAAAAsFCQAAAAA\nsFCQAAAAAMBCQQIAAAAACwUJAAAAACwUJAAAAACwUJAAAAAAwEJBAgAAAAALBQkAAAAALBQkAAAA\nALBQkAAAAADAQkECAAAAAAsFCQAAAAAsFCQAAAAAsFCQAAAAAMBCQQIAAAAACwUJAAAAACwUJAAA\nAACwUJAAAAAAwEJBAgAAAAALBQkAAAAALBQkAAAAALBQkAAAAADAQkECAAAAAAsFCQAAAAAsFCQA\nAAAAsFCQAAAAAMBCQQIAAAAACwUJAAAAACwUJAAAAACwUJAAAAAAwEJBAgAAAAALBQkAAAAALBQk\nAAAAALBQkAAAAADAQkECAAAAAAsFCQAAAAAsFCQAAAAAsFCQAAAAAMBCQQIAAAAACwUJAAAAACwU\nJAAAAACwUJAAAAAAwEJBAgAAAAALBQkAAAAALBQkAAAAALBQkAAAAADAQkECAAAAAIvL7gAN8fv9\n+vGPf6y9e/cqEAjo4Ycf1sCBA+2OBQAAAKCVC8mC9M477ygiIkKvv/66cnNzNWvWLC1atMjuWAAA\nAABauZAsSNdee63Gjx8vSUpMTNTRo0dtTgQAAACgLQjJguRyueRynYj2t7/9TRMmTLA5EQAAAIC2\nwDBN07QzwKJFi7R48WIZhiHTNGUYhu69914NHTpU8+bN04oVK/T73/9eTqfztLeTk5PTTIkBAAAA\ntFRZWVmnvd72gnQqixYt0ocffqiXXnpJbrf7jMvn5OSc8cEiuNgGoYHtEBrYDvZjG4QGtkNoYDvY\nj20QGhqzHUJyiF1+fr4WLFigefPmNaocAQAAAEBTCMmCtHjxYh09elR33HFH7bC7v/71r7XHJQEA\nAABAMIRk45g5c6ZmzpxpdwwAAAAAbYzD7gAAAAAAECooSAAAAABgoSABAAAAgIWCBAAAAAAWChIA\nAAAAWChIAAAAAGChIAEAAACAhYIEAAAAABYKEgAAAABYKEgAAAAAYKEgAQAAAICFggQAAAAAFgoS\nAAAAAFgoSAAAAABgoSABAAAAgIWCBAAAAAAWChIAAAAAWChIAAAAAGChIAEAAACAhYIEAAAAABYK\nEgAAAABYKEgAAAAAYKEgAQAAAICFggQAAAAAFgoSAAAAAFgoSAAAAABgoSABAAAAgIWCBAAAAAAW\nChIAAAAAWChIAAAAAGChIAEAAACAhYIEAAAAABYKEgAAAABYKEgAAAAAYKEgAQAAAICFggQAAAAA\nFgoSAADA/7dzt6E1/g8cxz9zNsPcCyMeaFluosQUEx4Y5a5ZG2eECU9ELWntjJgnxkaMuc+9cWYj\nliRDc1McQzE3kyGbTlqnZRqzMef34H+10n8/fvXz29c51/v16GznevCuq9PZ51zXDgBYGEgAAAAA\nYGEgAQAAAICFgQQAAAAAlhC/3+83HfE7PHjwwHQCAAAAgD/c6NGjf/p80AwkAAAAAPi3uMUOAAAA\nACwMJAAAAACwMJAAAAAAwMJAAgAAAAALAwkAAAAALAwkAAAAALAE1UDy+XwaO3asysrKTKfYUm1t\nrZYvX65FixZp/vz5evz4sekkW2publZ6errmz58vp9Ophw8fmk6yJY/Ho/Hjx+vGjRumU2wpKytL\nTqdTycnJKi8vN51jWxUVFYqLi1N+fr7pFNvKzs6W0+lUUlKSSkpKTOfY0pcvX5SamqqFCxdq3rx5\nKi0tNZ1kW42NjYqLi9P58+d/elxoG/W0iZycHA0cONB0hm0VFxcrPj5eM2bMUFlZmXJzc3Xo0CHT\nWbZz4cIFdejQQadOnVJlZaVcLpcKCwtNZ9lKVVWVTpw4oTFjxphOsaWysjK9fftWbrdbr1690tq1\na+V2u01n2U5DQ4O2bNmi2NhY0ym25fF4VFlZKbfbrQ8fPmjOnDmKi4sznWU7169f14gRI7R06VJ5\nvV4tWbJEkydPNp1lS3v27FH37t1/eVzQDKS7d++qS5cuio6ONp1iWykpKS2PvV6vIiMjzcXY2OzZ\nszVjxgxJUs+ePVVXV2e4yH4iIyOVl5cnl8tlOsWW7ty5oylTpkiSoqKi9PHjR3369EkRERGGy+wl\nPDxc+/fv14EDB0yn2FZMTIxGjhwpSeratasaGhrk9/sVEhJiuMxepk+f3vLY6/WqX79+Bmvs6/Xr\n13rz5o0mTZr0y2OD4ha7r1+/au/evUpNTTWdYns+n0+JiYnav38/58OQ0NBQhYeHS5KOHTummTNn\nGi6yn/bt25tOsDWfz6eePXu2/NyjRw/5fD6DRfbUrl07XguGtWvXTh07dpQkFRYWatKkSYwjg5xO\np9LS0pSRkWE6xZays7OVnp7+j44NuCtIhYWFKioqUkhISMunIBMmTFBycrI6d+4sSfL7/YYrg19r\n52HVqlWKjY1VUVGRbt68qfT0dG6x+4/97Dzk5+fr2bNn2rdvn+nMoPazc4A/A+8JsLurV6/q3Llz\nvCcb5na7VVFRoTVr1qi4uNh0jq2cP39eMTEx6t+/v6Rfvy8E3EBKSkpSUlLSD79LTk7W7du3deTI\nEVVVVam8vFy5ubmKiooyVBn8WjsP9+7dU11dnbp166aJEycqLS3NUJ19tHYepP/90V5aWqo9e/bI\n4XAYKLOPvzsHMKdPnz4/XDGqqalR7969DRYB5ty6dUsHDhzQoUOHWj5IRtt68uSJevXqpX79+mnI\nkCFqbm5WbW3tD1e68d+6ceOG3r17pytXruj9+/cKDw9XZGSkxo0b1+rxATeQWnP69OmWxy6XSwkJ\nCYwjA0pKSvT8+XMtXrxYL168aFnpaFvV1dUqKChQfn6+wsLCTOfYHlcv2l5sbKzy8vI0d+5cPX36\nVH379lWnTp1MZwFtrr6+Xjk5OTp69Ki6dOliOse27t+/L6/Xq4yMDPl8PjU0NDCO2tj27dtbHufl\n5WnAgAF/O46kIBlI+DOsWLFC6enpunr1qpqampSZmWk6yZaKiopUV1en5cuXt9zydfjwYYWG8nJv\nKyUlJdq5c6dqamrk8Xi0a9cunT171nSWbYwaNUrDhw+X0+mUw+HQ+vXrTSfZ0qNHj7Ru3TrV1tbK\n4XDI7Xbr5MmT6tatm+k027h06ZI+fPig1NTUlveD7OxsvkSpjSUnJysjI0MLFixQY2OjNmzYYDoJ\nv46aKFAAAAK4SURBVBDi5+NNAAAAAJAUJN9iBwAAAAC/AwMJAAAAACwMJAAAAACwMJAAAAAAwMJA\nAgAAAAALAwkAAAAALAwkAAAAALAwkAAAAa25uVlOp1NDhw6Vx+Np9ZjGxkZNmzZNI0eOVEVFRRsX\nAgACCQMJABDQHA6HcnJyFBERIZfLpfr6+v87ZuvWraqqqtLq1as1ZMgQA5UAgEDBQAIABLyBAwdq\n/fr18nq92rhx4w/P3bt3TydPntS4ceOUkpJiJhAAEDAYSACAoDB79mzNmjVLFy9e1OXLlyVJnz9/\nlsvlUteuXZWVlWW4EAAQCEL8fr/fdAQAAL9DfX294uPjVV9fr+LiYu3evVtnzpxRbm6upk6dajoP\nABAAGEgAgKDy6NEjLViwQIMGDdLLly+VkJCgTZs2mc4CAAQIBhIAIOhs27ZNBw8eVEREhG7evKmI\niAjTSQCAAMH/IAEAgkpjY6NKS0vlcDj0+fNnXbp0yXQSACCAMJAAAEElKytLlZWV2rFjhwYPHqys\nrCxVV1ebzgIABAgGEgAgaFy7dk1ut1uJiYmKi4vTli1b1NTUpLS0NHFHOQDgn3BkZmZmmo4AAODf\nqqmp0bJly9SnTx/t3r1bYWFh6t27t75//67i4mKFhYVpzJgxpjMBAH84vqQBABDw/H6/UlJSdP/+\nfR0/flyjR49uee7bt2+aO3euXr58qYKCAg0bNsxgKQDgT8ctdgCAgHfw4EF5PB6lpKT8MI4kKTQ0\nVJs3b5YkpaWlqampyUQiACBAMJAAAAGtvLxcO3fuVHR0tFJTU1s9Jjo6WitXrtSrV6+Uk5PTxoUA\ngEDCLXYAAAAAYOEKEgAAAABYGEgAAAAAYGEgAQAAAICFgQQAAAAAFgYSAAAAAFgYSAAAAABgYSAB\nAAAAgIWBBAAAAAAWBhIAAAAAWP4C8bN3bvt4PJcAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -306,34 +306,42 @@ "\n", "Individually, neither of these perspectives would provide a particularly enlightening idea of the shape being looked at. With the first view, we had no information on the object in the $Y$ dimension, and in the second view we gained no information on the $Z$ dimension. When combined, however, we can make conclusions based on all three dimensions and the size of the set of possible shapes is drastically reduced. \n", "\n", - "This is the idea behind model ensembling; the aggregation of multiple perspectives yields a more complete view than any of them alone.\n", - "\n" + "This is the idea behind model ensembling; the aggregation of multiple perspectives yields a more complete view than any of them alone.\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "## Multifamily Real Estate Example\n", + "## Example: Predicting Consumer Staples Sector ETF (XLP)\n", + "\n", + "Let's bring this analogy of uncorrelated models providing \"perspectives\" to one involving data. Where the cylinder above was a function of space in the $X$,$Y$, and $Z$ dimensions, let's consider an ETF that tracks the consumer staples sector (XLP), with the following possible explanatory dimensions:\n", + "\n", + "* US unemployment rate\n", + "* US inflation rate\n", + "* price of gold\n", + "* USD vs. EUR exchange rate\n", "\n", - "Let's bring this analogy of uncorrelated models providing \"perspectives\" to one involving data. Where the cylinder above was a function of space in the $X$,$Y$, and $Z$ dimenseions, let's consider house pricing data, with possible explanatory dimensions `Number Of Stories`, `Total area`, and `Year Built`. \n", + "The first step will be to import these macro indicators, which are all available as free [Quantopian Data Feeds](quantopian.com/data), and standardize them keeping in mind that:\n", "\n", - "The data was aggregated by user 'dmikebishop' on [DataWorld](https://data.world/dmikebishop/commercial-real-estate-for-sal). To use exterior data, store it as a CSV in the `data` folder in research and use the `local_csv` function to pull it into a Pandas DataFrame." + "* The specific inflation and unemployment datasets we are using have one month intervals, so time index intervals cannot be anything smaller than monthly\n", + "* The unemployment data is released at the start of the month after the relevant month and inflation rate data is released ~3 weeks after so we must shift both back a month from the asof_date to prevent look-ahead bias\n", + "* Gold prices must be shifted back one day from asof_date to prevent look-ahead bias\n", + "* Equity pricing data only goes back to 2002, so we can only consider data from 2002 on" ] }, { "cell_type": "code", - "execution_count": 105, + "execution_count": 295, "metadata": { - "collapsed": false, - "scrolled": false + "collapsed": false }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0QAAAHrCAYAAADvzF08AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XtclGX+//E3Mxy+NXgChIdsh23dNcrCFfKbhzygiUi5\nhV88tIl5aN2HB6iWLFEzczddtLYs8/QNW003PNABy6TcTu7SioHRsrvmL9c1xQREUREUhev3hw/n\nKwJycGAG5vX8y7nmnvt6X7cw13y47/saD2OMEQAAAAC4IYuzAwAAAACAs1AQAQAAAHBbFEQAAAAA\n3BYFEQAAAAC3RUEEAAAAwG1REAEAAABwWxREaFYhISGaO3dutbasrCzFxcU5rI/BgwcrJyfHYfu7\nJD09XSNHjlR0dLSGDRumxMREHT582P78n//8Z91zzz167rnnarz20KFDmjp1qoYPH66oqCiNHDlS\nO3bssD+/efPmRucpKCjQiBEjmjYYAECrMX/+fA0fPlzDhw/XHXfcocGDB2v48OGKjo5WWVnZVV/b\nkPnl+++/V2hoqKPiAq2ep7MDoO3bvXu39u7dq5CQEHubh4eHExNVZ4ypkWfjxo1as2aNli9frq5d\nu0qS3nzzTT300EN677335Ofnp08++USjR49WQkJCjX0++eSTevDBB7VixQpJ0tdff62JEydq+/bt\nCggI0OLFizVq1KhGZQwKCtLWrVuvYaQAgNZg/vz59n8PGTJEL7zwgnr27Fnv686fP68XXnihQfPL\ntczDtc2bQGvGGSI0u9/85jd6/vnna31u2bJl1c4gLVu2TM8884wkKS4uTqtXr9bYsWPVt29fbdiw\nQStXrtTw4cN1//33Kz8/3/66zMxMPfjgg4qIiNDLL79sb9+xY4dGjBihoUOHavLkySopKbH3M2/e\nPI0ePVpr166tlskYo1dffVXPPfecvRi6lCcsLExr167VunXrlJGRodTUVM2bN6/GuPbt26cePXrY\nH//85z/Xxx9/rKCgIE2aNEmnT59WdHS08vPz9cMPP2jy5MmKiorSiBEj9O6770qS8vPz1b9/fyUn\nJysuLk75+fnq3r17tWMVFRWlwYMHa+HChbr0HcsffvihRowYoejoaD3wwAPavXt3Pf9DAABXZYyx\nv79fkp+fr0mTJtnnjffff1+SNHHiRJ06dUrR0dE6evSo9u/fr7Fjx2r48OEaNmyYtm3bVm9/l+bN\nqKgoxcbGat++fZKkL7/8UuPGjdNjjz2mp59+WpL00Ucf2efYKVOm6NSpU5Kk8vJyJSQkKCoqyl7Q\nAS7NAM0oJCTEGGPMuHHjTEZGhjHGmF27dpm4uDhjjDGvvvqqmTt3rn37yx+PGzfOTJkyxVRWVppP\nP/3U/PznPzfvvvuuMcaY+Ph4s3TpUmOMMREREWb69OnGGGOKi4vNf//3f5u9e/ea77//3oSFhZnv\nvvvOGGPMqlWrTHx8vL2fAQMGmJKSkhqZv/vuO9OjR49ax/POO++Yhx56yBhjzKxZs8yKFStq3S4h\nIcEMHjzYrFu3zt7/JYcPHzbdu3e3P548ebJZvXq1McaY/Px8c9ddd5n8/Hz7dpfGfPnr3nnnHXP/\n/feb0tJSU1lZaX7961+b9evXG2OM6d27t/nhhx+MMcZ88803ZtGiRbVmBAC4voiICJOdnV2tbcKE\nCWbNmjXGGGMOHTpkwsPDzdGjR83BgwdNaGiofbvJkyeb//3f/zXGGPPll1+an//856aqqqrGdpec\nP3/ehIeHm9zcXGOMMUuXLjWPPvqoMcaYzMxM06NHD/PVV18ZY4w5cOCACQsLM//+97+NMcYsX77c\nPPHEE8aYi/PtlClTjDHGlJSUmF69etn3CbgizhChRSQlJWnJkiWqqKho1OsiIiJksVjUrVs3nT17\nVsOGDZMkdevWTYWFhfbt7r//fkmSn5+fevXqpa+//lo7d+7U3XffbT/LM2bMGH3yySf2v7T16NFD\nHTp0qNFnSUmJOnXqVGsef39/nTx5st7cS5Ys0bhx4/T+++/rF7/4hYYMGaLU1NQa250/f16ZmZl6\n6KGHJEnBwcG6++679be//U2SVFlZqXvvvbfG6z777DP9z//8j2w2mywWi2JjY/Xxxx9LkgICAvTW\nW2/pyJEjuvPOOzVr1qx68wIAWoeKigr97W9/09ixYyVJN9xwg+666y77vHG51atXa8KECZKk8PBw\nnT17VseOHatz356ensrMzLTfXxQeHq5Dhw7Zn7fZbAoPD5ck7dy5U/369dMtt9wi6eIce+le2SlT\npuiVV16RJHXo0EFdu3atth/A1XAPEVrE7bffrl69eumNN95o0HXQl9hsNkmS1WqVJP3Xf/2X/XFl\nZaV9Oz8/P/u/27Vrp5MnT8oYo927dys6OlrSxcsOOnTooBMnTkhSrcWQJHXq1KnOCaO4uLhaX3Xx\n9vbWxIkTNXHiRJWWlurDDz/UwoULdeONN+rHP/6xfbtLxZWvr6+9rX379iouLraP89IxuNzp06e1\nZs0abdq0ScYYVVVV2XMtX75cy5cv18iRIxUcHKykpCT16tWr3swAANd34sQJeXp66rrrrrO3dejQ\nQcePH6+x7eeff65Vq1appKTEfs9PVVXVVfe/du1apaen6/z58zp37py8vb2r9XPJqVOn9OWXX1ab\nY9u1a6dTp06puLhYycnJOnDggCwWi44ePVpvv4AzURChxTzxxBMaOXKkbrjhBnubxWKpVtg05OxL\nbS5/3cmTJ9WxY0d5eXmpb9++Wrp0aaP2dcsttyg4OFiffvqpIiIiqj33ySefqG/fvld9fUlJif71\nr3+pT58+ki4WO6NGjdLOnTu1b9++agVRp06dZLFYdPr0abVr187++oCAgKv2ERgYqMGDB+vhhx+u\n8dyNN96oRYsWSZLeeecdJSYm6osvvqh33AAA19epUydVVlbqzJkz9j+YlZSUyN/fv9p2FRUVevzx\nx7VixQr17dtX586dq3Zva22++uorrV27VmlpaQoKCtIXX3xR5z3AgYGBGjBggF588cUaz8XHxys8\nPFwrV66UJI0ePbopQwVaDJfMoVmZy24E7dy5s8aNG6dXX321Wtv/+3//T8YYHT9+/Kof3M0VN5Ve\n7oMPPpAxRsXFxcrOztZdd92le+65R9nZ2fbT9N98802db+yX8/Dw0BNPPKHf/va3+te//mVvX79+\nvf75z3/WWoRcrry8XDNmzNDOnTvtbQcPHtQ333yju+66S56enqqqqlJZWZmsVqvuuece++V033//\nvbKzs+1F15VjvvR4yJAhSk9P19mzZyVdXBXv3Xff1fHjxzVp0iSVlpZKkkJDQ2Wx8GsOAG2Ft7e3\n+vbtq02bNkmS/vOf/+jrr79Wnz595OnpqcrKSp09e1alpaU6f/68unfvLmOM1q5dK29vb/uy3bXN\nqcXFxercubOCgoJUVlam9957r85lvgcMGKBdu3bZFzjas2ePkpOTJUnHjx/X7bffLkn64osvdPjw\n4XqXCweciTNEaFZXLss5ceJEbdq0yd4+fPhwbd26VUOHDtVPfvITRUVF2U/7X/naupb49PDwUGho\nqGJjY3XixAlNnDhRP/nJTyRJv/3tbzVjxgxduHBBNptNs2fPblDuqKgoGWM0Z84clZeXq6qqSnfc\ncYfWr1+v9u3bX/W1Xbp00apVq7R06VI9//zzMsbI19dXs2fP1p133iljjMLCwhQREaFVq1bpueee\n05w5c/T222/L29tbzz//vIKCgpSfn1/nMbj33nv13XffKSYmRh4eHrrpppv0/PPPy8/PTwMGDFBs\nbKw8PT3l5eWlhQsXNmjMAADXU9vct2DBAj3zzDPatGmTvL29tWjRInXu3FlVVVW68847NXDgQL3+\n+uuaMGGCfvGLX8jf31/Tpk1TRESEfvWrX2nFihW17nfgwIFKTU3VkCFD1KVLFyUlJembb75RYmKi\nYmNjq20bFBSk5557TlOnTlVlZaV8fX01Z84cSdLUqVP1u9/9TkuXLtWwYcM0depUvfzyy7rtttv4\n/iO4JA9ztT+7Szp79qxmzZql4uJiVVRUaOrUqQoJCdHMmTNljFHnzp21ePFieXl5KT09XevWrZPV\natWoUaNq/PIAAOBqFi9erJycHFVWVmrKlCn65JNPlJeXZ19cZfLkyRo4cCBzHAC0UfUWRNu2bbN/\nT8qRI0c0ceJEhYWFadCgQRo2bJheeukldenSRQ888IBiYmKUlpYmT09PxcbGasOGDfX+NR0AAGfZ\ntWuXUlJStHr1apWUlCgmJka9e/dWVFSUBg4caN+uvLycOQ4A2qh6by6Ijo7W5MmTJUlHjhxRly5d\ntHv3bg0ePFjSxWWRMzMzlZubq9DQUNlsNvn4+CgsLEw5OTnNmx4AgGvQq1cv+8Ir7du3V1lZmaqq\nqmrcX8EcBwBtV4PvIRo7dqwKCwu1YsUKTZo0SV5eXpIufi9LYWFhjeWI/fz8VFRU5PjEAAA4iMVi\nsS9fvHnzZg0aNEgWi0Xr16/XG2+8oYCAAM2dO1fHjh1jjgOANqrBBVFqaqr27t2rJ598stpfzuq6\n4q6eK/EkSdnZ2Q3tHgBQj0tfmIjG27Fjh95++22lpKQoLy9PHTt2VEhIiFavXq1ly5bV+P60hsxx\nEvMcADhKc85x9RZEeXl58vf3V5cuXRQSEqKqqirZbDZVVFTI29tbBQUFCgoKUmBgYLW/lhUUFDTo\nCzhdcQLPzs4mVwO5YiaJXI3lirlcMZPk2rnQNDt37tTq1auVkpIiX19f9e7d2/7ckCFDNH/+fEVF\nRenTTz+1tzd0jpNcc55zFFf9fXCktj7Gtj4+iTG2Bc09x9V7D9FXX32lN954Q5J07NgxlZWVqU+f\nPtq+fbskKSMjQ/3791doaKjy8vJUWlqqM2fOaM+ePW36PwYA0PqVlpZqyZIlWrlypf3LkRMSEvTt\nt99KkrKystStWzfmOABow+o9Q/TQQw9p9uzZevjhh3Xu3DnNnz9f3bt311NPPaVNmzYpODhYMTEx\nslqtSkxM1KRJk2SxWBQfHy9fX98mB/sg4zPt+ce/m/z6a1FYWKAPP8+VuXBWzzw1zSkZAADNb9u2\nbSopKdHjjz8uY4w8PDw0cuRIJSUlyWazyWazaeHChfLx8XHoHAcAcB31FkQ+Pj568cUXa7SvWbOm\nRltkZKQiIyMdEiwnb7+yjgQ4ZF+N568D+VJl8d+d1D8AoCWMHj1ao0ePrtH+4IMP1mhz5BwHAHAd\n9V4yBwAAAABtFQURAAAAALdFQQQAAADAbVEQAQAAAHBbFEQAAAAA3BYFEQAAAAC3RUEEAAAAwG3V\n+z1EAACg6V7/Y2qL93lPn7sUcutPW7xfAGiNKIgAAGhG7/39uhbv88zZLymIAKCBuGQOAAAAgNui\nIAIAAADgtiiIAAAAALgtCiIAAAAAbouCCAAAAIDboiACAAAA4LYoiAAAAAC4LQoiAAAAAG6LgggA\nAACA26IgAgAAAOC2KIgAAAAAuC0KIgAAAABui4IIAAAAgNuiIAIAAADgtiiIAAAAALgtz4ZstHjx\nYuXk5KiyslJTpkzRJ598ory8PHXq1EmSNHnyZA0cOFDp6elat26drFarRo0apdjY2GYNDwAAAADX\not6CaNeuXfruu++UmpqqkpISxcTEqHfv3nryySc1cOBA+3bl5eVavny50tLS5OnpqdjYWEVGRqp9\n+/bNOgAAAAAAaKp6C6JevXopNDRUktS+fXuVlZWpqqpKxphq2+Xm5io0NFQ2m02SFBYWppycHA0a\nNMjxqQEAAADAAeq9h8hisei6666TJG3evFmDBg2SxWLR+vXr9cgjjygxMVEnTpzQsWPH5OfnZ3+d\nn5+fioqKmi85AAAAAFyjBt1DJEk7duzQ22+/rZSUFOXl5aljx44KCQnR6tWrtWzZMvXs2bPa9lee\nQapLdnZ2re2FhYWSAhoar1lUnK+oM5+zuFoeyTUzSeRqLFfM5YqZJNfNBQAAGq9BBdHOnTu1evVq\npaSkyNfXV71797Y/N2TIEM2fP19RUVH69NNP7e0FBQU1iqTahIeH19q+7bOv9Z8jDUnXfLy9vOvM\n5wzZ2dkulUdyzUwSuRrLFXO5YibJtXMBAIDGq/eSudLSUi1ZskQrV65Uu3btJEkJCQn69ttvJUlZ\nWVnq1q2bQkNDlZeXp9LSUp05c0Z79uxxyQ8NAABcbvHixRo7dqxGjRqljz/+WEePHlVcXJzGjRun\nJ554QufPn5ckpaenKzY2VmPGjNGWLVucnBoA4Cj1niHatm2bSkpK9Pjjj8sYIw8PD40cOVJJSUmy\n2Wyy2WxauHChfHx8lJiYqEmTJslisSg+Pl6+vr4tMQYAAJqkrpVUx40bp2HDhumll15SWlqaHnjg\nAVZSBYA2qt6CaPTo0Ro9enSN9gcffLBGW2RkpCIjIx2TDACAZlbbSqq7d+/WggULJEkRERFas2aN\nfvzjH7OSKgC0UfVeMgcAQFt1+UqqW7Zs0aBBg1ReXi4vLy9Jkr+/vwoLC1VcXMxKqgDQRjV4lTkA\nANqqHTt2KC0tTSkpKdWudKhrxdSGrqTqLEeOHGmxhTbcYUGPtj7Gtj4+iTHi6iiIAABu7cqVVG02\nmyoqKuTt7a2CggIFBQUpMDCw2hmhhq6k6izBwcEtsrCRq6666EhtfYxtfXwSY2wLmrvY45I5AIDb\nqm0l1T59+igjI0OSlJGRof79+7OSKgC0YZwhAgC4rdpWUk1OTtacOXO0ceNGBQcHKyYmRlarlZVU\nAaCNoiACALitulZSXbNmTY02VlIFgLaJS+YAAAAAuC0KIgAAAABui4IIAAAAgNuiIAIAAADgtiiI\nAAAAALgtCiIAAAAAbouCCAAAAIDboiACAAAA4LYoiAAAAAC4LQoiAAAAAG6LgggAAACA26IgAgAA\nAOC2KIgAAAAAuC0KIgAAAABui4IIAAAAgNuiIAIAAADgtiiIAAAAALgtz4ZstHjxYuXk5KiyslJT\npkzRnXfeqZkzZ8oYo86dO2vx4sXy8vJSenq61q1bJ6vVqlGjRik2Nra58wMAAABAk9VbEO3atUvf\nffedUlNTVVJSopiYGPXu3Vvjxo3TsGHD9NJLLyktLU0PPPCAli9frrS0NHl6eio2NlaRkZFq3759\nS4wDAAAAABqt3kvmevXqpaVLl0qS2rdvr7KyMu3evVuDBw+WJEVERCgzM1O5ubkKDQ2VzWaTj4+P\nwsLClJOT07zpAQAAAOAa1FsQWSwWXXfddZKkLVu2aNCgQSovL5eXl5ckyd/fX4WFhSouLpafn5/9\ndX5+fioqKmqm2AAAAABw7Rp0D5Ek7dixQ2lpaUpJSVFkZKS93RhT6/Z1tV8pOzu71vbCwkJJAQ2N\n1ywqzlfUmc9ZXC2P5JqZJHI1livmcsVMkuvmAgAAjdeggmjnzp1avXq1UlJS5OvrK5vNpoqKCnl7\ne6ugoEBBQUEKDAysdkaooKBAPXv2rHff4eHhtbZv++xr/edIA0fRTLy9vOvM5wzZ2dkulUdyzUwS\nuRrLFXO5YibJtXMBAIDGq/eSudLSUi1ZskQrV65Uu3btJEl9+vRRRkaGJCkjI0P9+/dXaGio8vLy\nVFpaqjNnzmjPnj0u+aEBAAAAAC6p9wzRtm3bVFJSoscff1zGGHl4eCg5OVlz5szRxo0bFRwcrJiY\nGFmtViUmJmrSpEmyWCyKj4+Xr69vS4wBAAAAAJqk3oJo9OjRGj16dI32NWvW1GiLjIysdn8RAAAA\nALiyei+ZAwAAAIC2ioIIAAAAgNuiIAIAAADgtiiIAAAAALgtCiIAgFvbu3evhg4dqg0bNkiSkpKS\nNGLECI0fP17jx4/X559/LklKT09XbGysxowZoy1btjgzMgDAgRr0xawAALRF5eXlSk5OVr9+/aq1\nP/nkkxo4cGC17ZYvX660tDR5enoqNjZWkZGRat++fUtHBgA4GGeIAABuy8fHR6tWrVJAQMBVt8vN\nzVVoaKhsNpt8fHwUFhamnJycFkoJAGhOFEQAALdlsVjk7e1do339+vV65JFHlJiYqBMnTujYsWPy\n8/OzP+/n56eioqKWjAoAaCZcMgcAwGUeeOABdezYUSEhIVq9erWWLVumnj17VtvGGOOkdA1z5MgR\nZWdnt0hfLdWPM7X1Mbb18UmMEVdHQQQAwGV69+5t//eQIUM0f/58RUVF6dNPP7W3FxQU1CiSXElw\ncLDCw8ObvZ/s7OwW6ceZ2voY2/r4JMbYFjR3scclcwAAXCYhIUHffvutJCkrK0vdunVTaGio8vLy\nVFpaqjNnzmjPnj1t+sMHALgTzhABANxWbm6u5s6dq+PHj8tqtSo1NVUJCQlKSkqSzWaTzWbTwoUL\n5ePjo8TERE2aNEkWi0Xx8fHy9fV1dnwAgANQEAEA3FaPHj20devWGu1Dhw6t0RYZGanIyMiWiAUA\naEFcMgcAAADAbVEQAQAAAHBbFEQAAAAA3BYFEQAAAAC3RUEEAAAAwG1REAEAAABwWxREAAAAANwW\nBREAAAAAt0VBBAAAAMBtURABAAAAcFsNKoj27t2roUOHasOGDZKkpKQkjRgxQuPHj9f48eP1+eef\nS5LS09MVGxurMWPGaMuWLc2XGgAAAAAcwLO+DcrLy5WcnKx+/fpVa3/yySc1cODAatstX75caWlp\n8vT0VGxsrCIjI9W+fXvHpwYAAAAAB6j3DJGPj49WrVqlgICAq26Xm5ur0NBQ2Ww2+fj4KCwsTDk5\nOQ4LCgAAAACOVm9BZLFY5O3tXaN9/fr1euSRR5SYmKgTJ07o2LFj8vPzsz/v5+enoqIix6YFAAAA\nAAeq95K52jzwwAPq2LGjQkJCtHr1ai1btkw9e/asto0xpkH7ys7OrrW9sLBQ0tXPSjW3ivMVdeZz\nFlfLI7lmJolcjeWKuVwxk+S6uQAAQOM1qSDq3bu3/d9DhgzR/PnzFRUVpU8//dTeXlBQUKNIqk14\neHit7ds++1r/OdKUdI7j7eVdZz5nyM7Odqk8kmtmksjVWK6YyxUzSa6dCwAANF6Tlt1OSEjQt99+\nK0nKyspSt27dFBoaqry8PJWWlurMmTPas2ePS35oAAAAAIBL6j1DlJubq7lz5+r48eOyWq1KTU1V\nQkKCkpKSZLPZZLPZtHDhQvn4+CgxMVGTJk2SxWJRfHy8fH19W2IMAAAAANAk9RZEPXr00NatW2u0\nDx06tEZbZGSkIiMjHZMMAAAAAJpZky6ZAwAAAIC2gIIIAAAAgNuiIAIAAADgtiiIAAAAALgtCiIA\nAAAAbouCCAAAAIDboiACAAAA4LYoiAAAAAC4LQoiAAAAAG6LgggAAACA26IgAgAAAOC2KIgAAG5t\n7969Gjp0qDZs2CBJOnr0qOLi4jRu3Dg98cQTOn/+vCQpPT1dsbGxGjNmjLZs2eLMyAAAB6IgAgC4\nrfLyciUnJ6tfv372tqVLlyouLk7r16/XTTfdpLS0NJWXl2v58uVau3at1q1bp7Vr1+rUqVNOTA4A\ncBQKIgCA2/Lx8dGqVasUEBBgb8vKylJERIQkKSIiQpmZmcrNzVVoaKhsNpt8fHwUFhamnJwcZ8UG\nADgQBREAwG1ZLBZ5e3tXaysvL5eXl5ckyd/fX4WFhSouLpafn599Gz8/PxUVFbVoVgBA8/B0dgAA\nAFyVMaZR7a7iyJEjys7ObpG+WqofZ2rrY2zr45MYI66OgggAgMvYbDZVVFTI29tbBQUFCgoKUmBg\nYLUzQgUFBerZs6cTU15dcHCwwsPDm72f7OzsFunHmdr6GNv6+CTG2BY0d7HHJXMAAFymT58+ysjI\nkCRlZGSof//+Cg0NVV5enkpLS3XmzBnt2bOnTX/4AAB3whkiAIDbys3N1dy5c3X8+HFZrValpqYq\nJSVFs2bN0saNGxUcHKyYmBhZrVYlJiZq0qRJslgsio+Pl6+vr7PjAwAcgIIIAOC2evTooa1bt9Zo\nX7NmTY22yMhIRUZGtkQsAEAL4pI5AAAAAG6LgggAAACA26IgAgAAAOC2KIgAAAAAuK0GFUR79+7V\n0KFDtWHDBknS0aNHFRcXp3HjxumJJ57Q+fPnJUnp6emKjY3VmDFjtGXLluZLDQAAAAAOUG9BVF5e\nruTkZPXr18/etnTpUsXFxWn9+vW66aablJaWpvLyci1fvlxr167VunXrtHbtWp06dapZwwMAAADA\ntai3IPLx8dGqVasUEBBgb8vKylJERIQkKSIiQpmZmcrNzVVoaKhsNpt8fHwUFhamnJyc5ksOAAAA\nANeo3oLIYrHI29u7Wlt5ebm8vLwkSf7+/iosLFRxcbH8/Pzs2/j5+amoqMjBcQEAAADAca75i1mN\nMY1qv1J2dnat7YWFhZICan2upVScr6gzn7O4Wh7JNTNJ5GosV8zlipkk180FAAAar0kFkc1mU0VF\nhby9vVVQUKCgoCAFBgZWOyNUUFCgnj171ruv8PDwWtu3ffa1/nOkKekcx9vLu858zpCdne1SeSTX\nzCSRq7FcMZcrZpJcOxcAAGi8Ji273adPH2VkZEiSMjIy1L9/f4WGhiovL0+lpaU6c+aM9uzZ45If\nGgAAAADgknrPEOXm5mru3Lk6fvy4rFarUlNTlZKSolmzZmnjxo0KDg5WTEyMrFarEhMTNWnSJFks\nFsXHx8vX17clxgAAAAAATVJvQdSjRw9t3bq1RvuaNWtqtEVGRioyMtIxyQAAAACgmTXpkjkAAAAA\naAsoiAAAAAC4LQoiAAAAAG6LgggAAACA26IgAgAAAOC2KIgAAAAAuC0KIgAAAABui4IIAAAAgNui\nIAIAAADgtiiIAAAAALgtCiIAAAAAbouCCAAAAIDboiACAAAA4LYoiAAAAAC4LQoiAAAAAG6LgggA\nAACA2/J0dgAAAFxNVlaWHnvsMf3sZz+TMUa33nqrHn30Uc2cOVPGGHXu3FmLFy+Wl5eXs6MCAK4R\nBREAALX47//+by1dutT+OCkpSXFxcYqMjNRLL72ktLQ0jR071okJAQCOwCVzAADUwhhT7XFWVpYi\nIiIkSRF1wLC2AAAgAElEQVQREcrMzHRGLACAg3GGCACAWuzfv1/Tpk3TyZMnNX36dJ09e9Z+iZy/\nv7+KioqcnBAA4AgURAAAXOHmm2/WjBkzNHz4cB06dEjjx4/XhQsX7M9fefYIANB6URABAHCFoKAg\nDR8+XJJ04403KiAgQHl5eaqoqJC3t7cKCgoUGBjo5JR1O3LkiLKzs1ukr5bqx5na+hjb+vgkxoir\noyACAOAKW7du1cGDBzVjxgwVFxeruLhYI0eO1Pbt2/WLX/xCGRkZ6t+/v7Nj1ik4OFjh4eHN3k92\ndnaL9ONMbX2MbX18EmNsC5q72GtSQcRypACAtmzw4MFKTEzUQw89JGOMnnvuOYWEhOjpp5/Wpk2b\nFBwcrJiYGGfHBAA4QJPPELEcKQCgrbLZbFq5cmWN9jVr1jghDQCgOTW5IKptOdIFCxZIurgc6Zo1\nayiIAABoYaaqUoUFP2jfvn3N3tfBgwfVrl07++OuXbvKarU2e78A4EhNLohYjhQAANdz5uRR7fi+\nTJkHd7RMh+8flSSVnSzUm4t+qW7durVMvwDgIE0qiBy5HGldN0kVFhZKCmhKPIepOF/hcit2uFoe\nyTUzSeRqLFfM5YqZJNfNBVxyfYdA+Xb6kbNjAECr0KSCyJHLkda1Isa2z77Wf440JZ3jeHt5u9SK\nHa64gogrZpLI1ViumMsVM0munQsAADSepSkv2rp1q5YtWyZJNZYjleTyy5ECAAAAgNTEM0QsRwoA\nAACgLWhSQcRypAAAAADagiZdMgcAAAAAbQEFEQAAAAC3RUEEAAAAwG1REAEAAABwWxREAAAAANwW\nBREAAAAAt0VBBAAAAMBtURABAAAAcFsURAAAAADcFgURAAAAALdFQQQAAADAbVEQAQAAAHBbFEQA\nAAAA3JanswMAAIDWz1RV6cCBA07pu2vXrrJarU7pG0DrR0EEAACuWfnpIs1bfUzXd9jfov2WnSzU\nm4t+qW7durVovwDaDgoiAADgENd3CJRvpx85OwYANAoFEQAAaLWa+1K9gwcPql27djXauUwPaDso\niK7CVFVp3759zo7Bmy4AAHVokUv13j9a7SGX6QFtCwXRVZSdPq64pD/p+g6BzsvAmy4AAFfFpXoA\nrgUFUT14kwUAAADaLr6HCAAAAIDboiACAAAA4LYoiAAAAAC4LYffQ7Ro0SLl5ubKw8NDs2fP1p13\n3unoLgAAcArmOABoexxaEO3evVsHDx5Uamqq9u/frzlz5ig1NdWRXQAA4BTMcQDQNjm0IPryyy91\n7733Srr43TmnTp3SmTNnZLPZHNkNAAAtjjkOzlZZWan9+x37fUt1ffHs5fg+RLR1Di2Ijh07pjvu\nuMP+uFOnTjp27FirnizKThY6vf9L38DdkDetluaKmSRyNZYr5nLFTJLr5kLza01znDPmrvLTxyV5\nuEW/l8/NLenAgQOa+cJ7+i9fPwfvOafOZ86WHteSJx/QLbfc4uA+W447vG83dYx8z+VFzfo9RMaY\nerfJzs6utT160M8V7ehAjRbn7AB2p0+f1s0336zTp087O0o1rphJIldjuWIuV8wkuW4utLyGzHGS\nNP+XNzRzkiu1dH+X3O1m/arF3wsCAgL0xu8nt2ifl7Tm9z13eN9u6hjr+hzubhxaEAUGBurYsWP2\nx4WFhercuXOd24eHhzuyewAAmk1j5ziJeQ4AWgOHLrvdr18/ZWRkSJL+8Y9/KCgoSNdff70juwAA\nwCmY4wCgbXLoGaKePXuqe/fuGjt2rKxWq+bNm+fI3QMA4DTMcQDQNnmYhl4EDQAAAABtjEMvmQMA\nAACA1oSCCAAAAIDboiACAAAA4Laa9XuIrmbRokXKzc2Vh4eHZs+erTvvvNNZUSRJWVlZeuyxx/Sz\nn/1Mxhjdeuutmjt3rlMz7d27V/Hx8ZowYYIefvhhHT16VDNnzpQxRp07d9bixYvl5eXl1ExJSUnK\ny8tTp06dJEmTJ0/WwIEDWzSTJC1evFg5OTmqrKzUlClTdOeddzr9WNWW65NPPnHq8Tp79qxmzZql\n4uJiVVRUaOrUqQoJCXH6saotV0ZGhkv8bEnSuXPndP/992v69Onq3bu304/XlZl27drlMscKF7na\nHHc1DZ1r0tPTtW7dOlmtVo0aNUqxsbG6cOGCZs2apSNHjshqtWrRokW64YYbtHfvXs2fP18Wi0W3\n3nqrnn32WUnS66+/royMDFksFk2bNq3Ffk4bOke0xjE25n29NY7vkoa8D7fW8dX2GfTRRx9tU2OU\npPT0dKWkpMjT01MJCQm69dZbXWeMxgmysrLMr3/9a2OMMd99950ZM2aMM2JUs2vXLpOQkODsGHZl\nZWVmwoQJ5tlnnzXr1683xhgza9Ysk5GRYYwx5g9/+IN56623XCLTZ5991qI5rvS3v/3N/OpXvzLG\nGHPixAkzaNAgM2vWLLN9+3ZjjHOO1dVyOfN4ffDBB+b11183xhiTn59vIiMjXeJY1ZXL2T9bl/zh\nD38wsbGx5p133nH672FdmVzlWME157i6NHSuKSsrM8OGDTOlpaXm7Nmz5v777zcnT54077zzjlmw\nYIExxpi//OUv5vHHHzfGGBMXF2fy8vKMMcb85je/MV988YU5dOiQGTlypLlw4YIpLi42UVFRpqqq\nqtnH2NA5orWOsaHv6611fJfU9z7cmsdX22fQtjbGEydOmMjISFNWVmaKiorMM88841JjdMolc19+\n+aXuvfdeSVLXrl116tQpnTlzxhlRqjEutOCej4+PVq1apYCAAHtbVlaWIiIiJEkRERHKzMx0eiZX\n0KtXLy1dulSS1L59e5WVlWn37t0aPHiwJOccq7pyVVVVOfXnLDo6WpMnX/yW8yNHjqhLly4ucaxq\nyyW5xu/kv//9bx04cEADBw6UMUa7d+926u9hbZkk1zhWuMhV57jaNHSuyc3NVWhoqGw2m3x8fBQW\nFqbs7OxqY+3bt6/27Nmj8+fP6/Dhw+revbskafDgwcrMzNSuXbs0YMAAWa1W+fn56Uc/+pG+++67\nZh9jQ+eI1jrGhr6vt9bxSQ17H27N45Nqvoe3td/DzMxM9evXT9ddd50CAgK0YMEClxqjUwqiY8eO\nyc/Pz/64U6dO1b7921n279+vadOm6eGHH3bKh5zLWSwWeXt7V2srLy+3X5rj7++voqIip2eSpPXr\n1+uRRx5RYmKiSkpKWjTTpVzXXXedJGnLli0aNGiQ04/Vlbk2b96sQYMGyWKxOP14SdLYsWP11FNP\nKSkpySWO1ZW5Zs+eLUnasGGD04/V4sWLNWvWLPtjVzhel2fy8PCQ5BrHChe56hxXm4bMNYWFhSou\nLq42Jj8/PxUVFVUbq4eHhzw8PHTs2DF17Nix2rZX20dza8gc0drHKF39fb21j6++9+HWPj6p5mfQ\ns2fPtqkx5ufnq7y8XFOnTtW4ceP05ZdfutQYnXYP0eVc4S+bN998s2bMmKHhw4fr0KFDGj9+vD7+\n+GN5errEIarBFY6ZJD3wwAPq2LGjQkJCtHr1ar366qt65plnnJJlx44dSktLU0pKiiIjI+3tzj5W\nO3bs0Ntvv62UlBTl5eW5xPFKTU3V3r179eSTT1Y7Ps4+Vpfnmj17ttOP1bvvvqtevXopODi41ued\ncbyuzGSMcanfQ9Tk7N+ra1FX9qu1e3h4NGjMLX1cGjtHtLYxNvZ9vbWMr6nvw61lfFLtn0EvXLhQ\nb47WNEZjjEpKSvTaa68pPz9f48ePd6mfU6ecIQoMDKz217LCwkJ17tzZGVHsgoKCNHz4cEnSjTfe\nqICAABUUFDg105VsNpsqKiokSQUFBQoMDHRyIql3794KCQmRJA0ZMkT79u1zSo6dO3dq9erVev31\n1+Xr6+syx+rKXM4+Xnl5efrhhx8kSSEhIaqqqnKJY3VlrsrKSnXr1s3pP1uff/65tm/frjFjxmjL\nli1avny5rr/+eqcer8szbd68WStWrJAxxunHCv/HFee4xrjyPSEoKEiBgYHV/sJ6efulsV64cMF+\nc/TlZymvto+W+v2pb45ozWNsyPt6ax5fQ96HW/P4pNo/g546dapNjTEgIEA9e/aUxWLRjTfeKJvN\n5lI/p04piPr166eMjAxJ0j/+8Q8FBQXp+uuvd0YUu61bt2rZsmWSpOLiYh0/flxBQUFOzXSlPn36\n2I9bRkaG+vfv7+REUkJCgr799ltJ0u7du9WtW7cWz1BaWqolS5Zo5cqVateunSTXOFa15XL28frq\nq6/0xhtvSLp4WU9ZWZn69Omj7du3S3Lesaot17PPPuv0n62XXnpJmzdv1saNGxUbG6vp06c7/Xhd\nnmnUqFGaNm2a3nrrLacfK/wfV5zjGqO298/Q0FDl5eWptLRUZ86c0Z49exQeHq5+/frZfx8++eQT\n3X333bJarfrJT36inJwcSdJHH32k/v376+6779bnn3+uCxcuqKCgQIWFhfrpT3/a7ONp6BzRWsfY\n0Pf11jq+hr4Pt9bxSTU/gxYXF2vkyJFtaoz9+vXTrl27ZIzRiRMnXO7n1MM46Vz+H/7wB2VlZclq\ntWrevHm69dZbnRHD7syZM0pMTNTJkydljNH06dOdWnDk5uZq7ty5On78uKxWqzp06KCUlBTNmjVL\nFRUVCg4O1qJFi2S1Wp2aKSEhQStWrLBX+gsXLqx23WZL2LRpk5YtW6Yf//jH9lOoycnJmjNnjtOO\nVV25Ro4cqXXr1jnteJ07d06zZ8/W0aNHde7cOcXHx6t79+566qmnnHqsrsw1Y8YMXX/99fr973/v\n1J+tyy1btkw33HCD7rnnHqcfryszBQcHu9SxguvNcXVpzFzz0Ucf6fXXX5fFYlFcXJzuu+8+VVVV\nac6cOTp48KB8fHz0+9//XkFBQdq/f7/mzZsnY4x69Oihp59+WtLFe93S09Pl4eGhJ554QnfffXez\nj7Exc0RrHGNj3tdb4/guV9/7cGsdX22fQUNCQvT000+3mTFKF38XN2/eLA8PD02bNk133HGHy/w/\nOq0gAgAAAABnc8olcwAAAADgCiiIAAAAALgtCiIAAAAAbouCCAAAAIDboiACAAAA4LYoiAAAAAC4\nLQoiAAAAAG6LgggAAACA26IgAgAAAOC2KIgAAAAAuC0KIgAAAABui4IIAAAAgNuiIAIAAADgtiiI\nAAAAALgtCiIAAAAAbouCCAAAAIDboiACAAAA4LYoiAAAAAC4LQoiAAAAAG6LgggAAACA26IgAgAA\nAOC2KIgAAAAAuC0KIgAAAABui4IIAAAAgNuiIAIAAADgtiiIAAAAALgtCiIAAAAAbouCCAAAAIDb\noiACAAAA4LYoiNBqvfvuu7r//vtVVVVVrX3y5Mlavnx5s/T5/fff67bbblN0dLSGDx+uqKgo/eY3\nv9Hp06frfe2TTz6pL774Qt9//71CQ0MlSefOnVN6enqzZAUAtA1ZWVmKjIx02P7i4uLUv39/RUdH\nKyoqSvfff7/WrVtX5/YTJ07Uv/71L4f1D7gaCiK0Wg8++KA6duyo9evX29t27Nihw4cP61e/+pVD\n+jDG1Gjz9vbWtm3b9OGHH+rDDz+Uh4eHXnvttXr39cILL2jAgAGSJA8PD0nS3//+dwoiAEC9Ls0b\njvLUU09p27Zt2r59u/74xz9q7dq1+stf/lLrtm+88YZuu+02h/YPuBIKIrRqzzzzjFasWKETJ06o\noqJCycnJmjdvnry8vCRJH330kUaMGKGhQ4dqypQpOnXqlCSpvLxcCQkJioqK0pAhQ/TCCy/Y9/nL\nX/5Sr7zyiu677z79/e9/v2r/Hh4euuuuu3To0CFJ0ubNm/Xoo4/an9+8ebO9OPvlL3+pbdu22Z8r\nLCzU448/rpycHI0fP94xBwQA0KZVVFTo2WefVVRUlO677z4lJyfb/3i3c+dODRo0SPfdd582bdqk\nu+66S0eOHKl3nwEBAYqKitJf//pXSdLgwYO1YsUKRUVFKT8/X4MHD1ZOTo6ki1dnDBs2TFFRUXrq\nqad0/vx5SRf/IHlpvp08ebJKSkqa6QgAjkdBhFbt1ltv1YgRI/TSSy9pzZo1uu2229SvXz9J0sGD\nB5WUlKRXXnlFH3/8sXr27Kn58+dLkt58802dO3dO27dv19tvv61Nmzbpm2++se/3n//8pz744AP7\npW11KS0t1fbt2zVkyBB7W0P/ihcYGKjHHntM4eHhV71UAQCAS/74xz+qoKBAH374od5++2199dVX\nev/991VVVaWkpCT97ne/0wcffKD//Oc/Ki8vb/B+L1y4IG9vb/vjo0ePavv27frRj35kb8vPz9fi\nxYu1YcMGbd++XWfPntWbb76pQ4cO6emnn9bLL7+sjz/+WHfffbfmzZvn0HEDzcnT2QGAa5WQkKDo\n6GhduHBB77zzjr39iy++UL9+/XTLLbdIksaMGaNBgwZJkqZMmaJz585Jkjp06KCuXbvq0KFD9gJo\n4MCBdfZXUVGh6OhoGWN09OhR3XHHHfb9AgDQnD7//HNNnjxZHh4e8vHx0YgRI/TXv/5Vt99+u86f\nP6977rlH0sX7hN54440G7fPQoUPKyMjQsmXL7G21zWt//etfFRYWpoCAAEkXLwX39PRUamqq7r77\nbnXt2lXSxfn2lVdekTHG4Zf6Ac2Bggitnq+vr2JiYlRYWKigoCB7+6lTp/Tll18qOjpa0sX7gdq1\na6dTp06puLhYycnJOnDggCwWi44ePVptcYYOHTrU2d+le4gu2bZtm0aPHl2tDQCA5nD8+HG1b9/e\n/rh9+/YqLi7WqVOnqrUHBgbWeh/sJUuWLNGKFStUVVWlDh06aNasWbrjjjvsz9c2D544cULt2rWz\nP750Run06dPavXt3tfm2Q4cOOnHihPz8/Jo+WKCFUBChTfDy8pKnZ/Uf58DAQA0YMEAvvvhije3j\n4+MVHh6ulStXSpJGjx7d5L6jo6O1YMEC/fvf/5bVaq1WWF26ZwkAAEcICAiodn9OSUmJAgIC5Ovr\nqzNnztjbi4qKrnp2ZubMmRoxYkSj+u7UqZP27Nljf1xaWqpz584pMDBQffv21dKlSxu1P8BVcA8R\n2qwBAwZo165dys/PlyTt2bNHycnJki7+he3222+XdPHSusOHD6usrKxB+73yL267d+/W+fPnFRwc\nrM6dO+vAgQOqqKhQWVmZPvroo6vuw8vLq0FLdgMAIF28lG3Lli2qqqpSWVmZ0tPTNWjQIN18882q\nrKzU7t27JUlvvfWWwy9XGzhwoPbs2aMjR47IGKNnn31WaWlpuueee5SdnW1fYOibb77R888/79C+\ngebEGSK0WUFBQXruuec0depUVVZWytfXV3PmzJEkTZ06Vb/73e+0dOlSDRs2TFOnTtXLL7+s2267\nrd4J5MKFC9UuC2jfvr1WrVql9u3bq2/fvrrtttsUFRWlG264QUOHDtWuXbskVV9s4dK/w8PD9eKL\nL6p///7auXNncxwGAEAbEhcXp8OHD+u+++6TxWLR8OHDNWzYMEnSs88+q6efflodOnTQhAkTZLFY\nap3T6pvnrnz+0uOgoCAtWLBA48ePl9VqVWhoqCZMmCBvb2/99re/1YwZM3ThwgXZbDbNnj3bQSMG\nmp+HudoFpnXYsmWL3nvvPXl4eMgYo3/84x/atm2bZs6cKWOMOnfurMWLF9uXPgYAwFXt3btX8fHx\nmjBhgh5++GH98MMPmj17ti5cuCAvLy8tWbJE/v7+Sk9P17p162S1WjVq1CjFxsY6OzpQp/LycoWF\nhWn37t3y9fV1dhzApTWpILrc7t27tX37dpWVlSkiIkKRkZF66aWX1KVLF40dO9ZROQEAcLjy8nJN\nmzZNN998s372s5/p4Ycf1qxZszRw4EANHz5cGzZs0A8//KDp06crJiZGaWlp8vT0VGxsrDZs2FDt\nJnbA2WJjYzVp0iRFR0dry5Yt+uMf/6j333/f2bEAl3fN9xC99tprmjZtmrKyshQRESFJioiIUGZm\n5jWHAwCgOfn4+GjVqlX2ZYSli5cdXboEyc/PTyUlJcrNzVVoaKhsNpt8fHwUFhZm/6JKwFXMnj1b\nq1atUlRUlFJTU/X73//e2ZGAVuGa7iH6+9//ri5dusjf31/l5eX2S+T8/f1VVFTkkIAAADQXi8VS\n7csoJem6666TJFVVVelPf/qTpk+frmPHjlVbPtjPz495Di4nLCxM7733nrNjAK3ONRVEmzdv1siR\nI2u0N/QqvOzs7GvpHgBwmfDwcGdHaDOqqqo0c+ZM9enTR717965x2RHzHAC0rOac466pIMrKytK8\nefMkSTabTRUVFfL29lZBQYECAwMbtA9XnMCzs7PJ1UCumEkiV2O5Yi5XzCS5di44TlJSkm655RZN\nmzZN0sXvNbv8jFBBQYF69uzZoH254s9LQ7nqz3tjtPYxtPb8UvUx7Nu3T7/+/Q75dvpRs/ZZeiJf\nq2bdq27dul3zvtra/0Fr1NxzXJPvISosLJTNZrN/GWafPn2UkZEhScrIyFD//v0dkxAAgBaUnp4u\nb29vzZgxw97Wo0cP5eXlqbS0VGfOnNGePXta9YcLAMD/afIZoqKiIvn7+9sfx8fH6+mnn9bGjRsV\nHBysmJgYhwQEAKC55Obmau7cuTp+/LisVqtSU1NVVVUlHx8fxcXFycPDQz/96U81b948JSYmatKk\nSbJYLIqPj2cpYwBoI5pcEHXv3l2rV6+2P+7cubPWrFnjkFAAALSEHj16aOvWrQ3aNjIyUpGRkc2c\nCADQ0q552W0AAAAAaK0oiAAAAAC4LQoiAAAAAG6LgggAAACA26IgAgAAAOC2rumLWQG4t8rKSu3f\nv79Z9n3w4EG1a9fuqtt07dpVVqu1WfoHAADugYIIQJPt379fcUl/0vUdApung/eP1vlU2clCvbno\nlw75FnIAAOC+KIgAXJPrOwTKt9OPnB0DAACgSSiIAKARKisrtW/fPqf1z2WCAAA4FgURADTC4cOH\nFZ+8rfkuE7wKLhMEAMDxKIgAoJG4TBAAgLaDZbcBAAAAuC0KIgAAAABui4IIAAAAgNuiIAIAAADg\ntiiIAAAAALgtCiIAAAAAbouCCAAAAIDbavL3EKWnpyslJUWenp5KSEjQrbfeqpkzZ8oYo86dO2vx\n4sXy8vJyZFYAAAAAcKgmnSEqKSnRa6+9ptTUVK1atUp//vOftXTpUsXFxWn9+vW66aablJaW5uis\nAAAAAOBQTSqIMjMz1a9fP1133XUKCAjQggULlJWVpYiICElSRESEMjMzHRoUAAAAABytSZfM5efn\nq7y8XFOnTtXp06c1ffp0nT171n6JnL+/v4qKihwaFAAAAAAcrUkFkTHGftlcfn6+xo8fL2NMtecb\nKjs7uykRmh25Gs4VM0nkaqym5Dp48GAzJGm4vLw8nT592qkZWpo7jhkAgObUpIIoICBAPXv2lMVi\n0Y033iibzSZPT09VVFTI29tbBQUFCgwMbNC+wsPDmxKhWWVnZ5OrgVwxk0Suxmpqrnbt2knvH22G\nRA1zxx13qFu3bi3ap7OLwLrG7KqFdmuwd+9excfHa8KECXr44Yd19OjRWhcJSk9P17p162S1WjVq\n1CjFxsY6OzoAwAGadA9Rv379tGvXLhljdOLECZWVlalPnz7avn27JCkjI0P9+/d3aFAAABytvLxc\nycnJ6tevn72ttkWCysvLtXz5cq1du1br1q3T2rVrderUKScmBwA4SpMKoqCgIA0bNkyjR4/Wr3/9\na82bN08JCQl69913NW7cOJ06dUoxMTGOzgoAgEP5+Pho1apVCggIsLfVtkhQbm6uQkNDZbPZ5OPj\no7CwMOXk5DgrNgDAgZr8PUSjR4/W6NGjq7WtWbPmmgMBANBSLBaLvL29q7WVl5dXWySosLBQxcXF\n8vPzs2/j5+fH4kEA0EY0uSAC4BoqKyu1f//+a9rHwYMHL94P1EgHDhy4pn4BV1fXIkFtYfGghmrt\n+aXWP4bWnl/6vzG05H2YjlyEpi39H6AmCiKgldu/f7/ikv6k6zs0bCGTOjVhcYTiw/+S/w23XVu/\ngIux2WzVFgkKCgpSYGBgtTNCBQUF6tmzZ4P254oLqTSUqy4E0xitfQytPb9UfQwtuRiPoxbeaWv/\nB61RcxdzFERAG3B9h0D5dvpRi/dbdrKgxfsEmlufPn2UkZGhESNG2BcJCg0N1dy5c1VaWioPDw/t\n2bNHc+bMcXZUAIADUBABANxWbm6u5s6dq+PHj8tqtSo1NVUpKSmaNWuWNm7cqODgYMXExMhqtSox\nMVGTJk2SxWJRfHy8fH19nR0fAOAAFEQAALfVo0cPbd26tUZ7bYsERUZGKjIysiViAQBaUJOW3QYA\nAACAtoCCCAAAAIDboiACAAAA4LYoiAAAAAC4LQoiAAAAAG6LgggAAACA26IgAgAAAOC2KIgAAAAA\nuC0KIgAAAABui4IIAAAAgNuiIAIAAADgtiiIAAAAALgtCiIA+P/t3X9UlHX+9/HXgECC+IsfFv7a\nstDusDJuN41IYV3Ntm+7tGmmYLa1neOPtF8mStkutWthyXKWzNigc8q7JY3VzFPgaTu5eighKIvu\n1BVp1uTmp4IoKArX/YfH2URAHGaumWGej7/gmvH6vC4+n5nxPdfnuj4AAMBrURABAAAA8Fr97PlH\nRUVFWrZsma677joZhqGxY8fqkUce0fLly2UYhsLCwpSWliY/Pz9H5wUAAAAAh7GrIJKkn//858rI\nyLD9vnLlSiUlJWn69OlKT09XXl6e5syZ45CQAAAAAOAMdk+ZMwzjgt+LiooUFxcnSYqLi1NhYWHv\nkgEAAACAk9l9hqi8vFyLFi1SY2OjFi9erFOnTtmmyIWEhKi2ttZhIQEAAADAGewqiEaPHq0lS5Zo\n5syZOnz4sObPn6+zZ8/aHu949qg7JSUl9kRwOnL1nDtmkrwnl9Vqdej+PElZWZmamppcHcNU3njM\nAEX9BKcAAB+kSURBVAA4k10F0bBhwzRz5kxJ0siRIxUaGqqysjK1trbK399f1dXVCg8P79G+oqOj\n7YngVCUlJeTqIXfMJHlXruDgYGl7lUP36SmioqIUGRlpapuuLkC7OmZ3/QIAAAB3Z9c1RB9++KEy\nMzMlSfX19aqvr9e9996r/Px8SVJBQYFiY2MdlxIAAAAAnMCuM0Tx8fF66qmn9MADD8gwDP3xj3/U\nuHHjtGLFCm3atEkRERFKSEhwdFYAAAAAcCi7CqKgoCBt2LDhou05OTm9DgQAAAAAZrH7LnMAAPRV\nzc3NWrFihRobG3XmzBktXrxY1157LQuQAx7CaG9XRUWFQ/ZltVrPXa/bjTFjxsjX19ch7cF8FEQA\nAHSwZcsWXXPNNXriiSdUU1OjBx98UDfffLMSExM1Y8YMFiAH3FxLU61WZ9UpcFC5Y3bYzc2Lmhtr\n9M6auabf5AeOQ0EEAEAHQ4cO1f79+yVJjY2NGjp0qIqLi5Wamirp3ALkOTk5FESAGwscFK4BQ4a7\nOgY8gF13mQMAoC+bOXOmqqqqNH36dM2fP18rVqxQS0sLC5ADQB/EGSIAADrYtm2brrzySmVlZWn/\n/v1KSUm54PG+sAB5T3l6fsnzj8HT80v/PQZXr+XmLJ6waHZfGEfOQkEEAEAHpaWltvX0xo4dq+rq\navXv37/PLEDeU+66yPXl8PRj8PT80oXH0FcXE3fFQuGXw9PHkbOLOabMAQDQwejRo/X1119Lko4c\nOaLAwEDddtttLEAOAH0QZ4gAAOjg/vvv16pVq5SUlKS2tja98MILuvrqq1mAHAD6IAoiAAA6CAwM\n1F/+8peLtrMAOQD0PUyZAwAAAOC1KIgAAAAAeC0KIgAAAABei4IIAAAAgNeiIAIAAADgtSiIAAAA\nAHgtCiIAAAAAXouCCAAAAIDXoiACAAAA4LUoiAAAAAB4rV4VRKdPn9Yvf/lLbd26VVVVVUpKSlJi\nYqKeeOIJnTlzxlEZAQAAAMApelUQrV+/XoMHD5YkZWRkKCkpSRs3btSoUaOUl5fnkIAAAAAA4Cx2\nF0SHDh1SRUWFpkyZIsMwVFxcrLi4OElSXFycCgsLHRYSAAAAAJzB7oIoLS1NycnJtt9bWlrk5+cn\nSQoJCVFtbW3v0wEAAACAE/Wz5x9t3bpVEydOVERERKePG4bR432VlJTYE8HpyNVz7phJ8p5cVqvV\nofvzJGVlZWpqanJ1DFN54zEDAOBMdhVEO3fu1I8//qgdO3aourpafn5+CgwMVGtrq/z9/VVdXa3w\n8PAe7Ss6OtqeCE5VUlJCrh5yx0ySd+UKDg6Wtlc5dJ+eIioqSpGRkaa26eoCtKtjdtcvAAAAcHd2\nFUTp6em2nzMzMzVixAiVlpYqPz9f99xzjwoKChQbG+uwkAAAAADgDA5bh2jp0qXaunWrEhMTdfz4\ncSUkJDhq1wAAAADgFHadIfqpJUuW2H7Oycnp7e4AAAAAwDQOO0MEAAAAAJ6GgggAAACA16IgAgAA\nAOC1KIgAAAAAeC0KIgAAAABeq9d3mQMAoC/atm2bsrOz1a9fPy1dulRjx47V8uXLZRiGwsLClJaW\nJj8/P1fHBAD0EmeIAADooKGhQa+99ppyc3P1xhtv6J///KcyMjKUlJSkjRs3atSoUcrLy3N1TACA\nA1AQAQDQQWFhoWJiYtS/f3+FhoYqNTVVRUVFiouLkyTFxcWpsLDQxSkBAI7AlDkAADo4cuSIWlpa\ntHDhQjU1NWnx4sU6deqUbYpcSEiIamtrXZwSAOAIFEQAAHRgGIZt2tyRI0c0f/58GYZxweM9VVJS\n4oyIpvH0/JLnH4On55f+ewxWq9XFSZyjrKxMTU1Nro7Rrb4wjpyFgggAgA5CQ0M1YcIE+fj4aOTI\nkQoKClK/fv3U2toqf39/VVdXKzw8vEf7io6OdnJa5ykpKfHo/JLnH4On55cuPIbg4GBpe5WLEzle\nVFSUIiMjXR2jS54+jpxdzHENEQAAHcTExGjPnj0yDEPHjh1Tc3OzJk+erPz8fElSQUGBYmNjXZwS\nAOAInCECAKCDYcOGacaMGZo9e7YsFotWr16tqKgoPfPMM9q0aZMiIiKUkJDg6pgAAAegIAIAoBOz\nZ8/W7NmzL9iWk5PjojQAAGdhyhwAAAAAr0VBBAAAAMBrMWUOgEcy2ttVUVFheruVlZXiuyQAAPoO\nCiIAHqmlqVars+oUOKjc1Hbrf9yvkBHXm9omAABwHrsKolOnTik5OVn19fVqbW3VwoULNW7cOC1f\nvlyGYSgsLExpaWm2Fb0BwBkCB4VrwJDhprbZ3FhtansAAMC57CqIPv30U40fP14PP/ywKisr9dBD\nD+mWW25RYmKiZsyYofT0dOXl5WnOnDmOzgt0q62tTeXl5bJarecWfzPRmDFj5Ovra2qbAAAA6B27\nCqK77rrL9nNlZaWuuuoqFRcXKzU1VZIUFxennJwcCiKYrry8XEkr31XgoHBTV8JubqzRO2vmuvUq\n1QAAALhYr64hmjNnjmpqavT666/rd7/7nW2KXEhIiGprax0SELhcrphGBQAAAM/Uq4IoNzdX+/bt\n09NPPy3DMGzbf/ozAAAAALgruwqisrIyhYSE6KqrrtK4cePU3t6uoKAgtba2yt/fX9XV1QoPD+/R\nvkpKSuyJ4HTk6jl3ymS1Wl3WdllZmZqami75PEf/vVx5zDBfT8cZAADoGbsKoi+//FKVlZVatWqV\n6urq1NzcrNjYWOXn5+uee+5RQUGBYmNje7Sv6OhoeyI4VUlJCbl6yN0yBQcHm3rt0E9FRUVd8hoi\nZ/y9XHnMMF9X48ydvpgAAMCT2FUQPfDAA1q1apXmzZun06dP6w9/+INuuOEGPfPMM9q0aZMiIiKU\nkJDg6KwAAAAA4FB2FUQBAQF69dVXL9qek5PT60AAAAAAYBYfVwcAAAAAAFehIAIAAADgtSiIAAAA\nAHgtCiIAAAAAXouCCAAAAIDXoiACAAAA4LUoiAAAAAB4LQoiAAAAAF7LroVZAQAA0De0tbWpvLzc\nafu3Wq0KDg6WJFVUVDitHcBeFEQAAABerLy8XEkr31XgoHDnNbK9SpJU/+P3ChlxvfPaAexAQQQA\nQBdOnz6tu+++W4sXL9akSZO0fPlyGYahsLAwpaWlyc/Pz9URAYcIHBSuAUOGO72d5sZqp7cBXC6u\nIQIAoAvr16/X4MGDJUkZGRlKSkrSxo0bNWrUKOXl5bk4HQDAESiIAADoxKFDh1RRUaEpU6bIMAwV\nFxcrLi5OkhQXF6fCwkIXJwQAOAIFEQAAnUhLS1NycrLt95aWFtsUuZCQENXW1roqGgDAgbiGCACA\nDrZu3aqJEycqIiKi08cNw+jxvkpKShwVyyU8Pb/k+cfg7PxWq9Wp+/cGZWVlampqcnWMbnn668CZ\nKIgAAOhg586d+vHHH7Vjxw5VV1fLz89PgYGBam1tlb+/v6qrqxUe3rM7ckVHRzs5rfOUlJR4dH7J\n84/BjPzBwcG2u8DBPlFRUYqMjHR1jC71hdeBM1EQAQDQQXp6uu3nzMxMjRgxQqWlpcrPz9c999yj\ngoICxcbGujAhAMBRuIYIAIAeWLp0qbZu3arExEQdP35cCQkJro4EAHAAzhABANCNJUuW2H7Oyclx\nYRIAgDPYXRClpaWptLRUbW1tevTRRzV+/HgWrAMAAADgUewqiPbs2aODBw8qNzdXDQ0NSkhI0KRJ\nk5SYmKgZM2YoPT1deXl5mjNnjqPzwgO0tbWpvLzcJW1XVFS4pF0AAAB4JrsKookTJ+rGG2+UJA0c\nOFDNzc0qLi5WamqqpHML1uXk5FAQeany8nIlrXxXgYN6dgcmR6r/8XuFjLje9HYBAADgmewqiHx8\nfNS/f39J0vvvv6+pU6dq9+7dLFgHm8BB4RowZLjp7TY3VpvepiQZ7e09OjtltVrP3d7UgTgrBgAA\nYL9e3VThk08+UV5enrKzszV9+nTb9r6wYB25eq5jJm9c4K2lqVars+oUOKgHUwUdvNYDZ8W8iycs\n/gcAgCexuyDatWuXsrKylJ2drQEDBigoKKjPLFjnrotXuWOuzjJ56wJv3nZWDK7R1eJ/7vhlCQAA\nnsCudYhOnDihtWvXasOGDbbpP5MnT1ZBQYEksWAdAAAAAI9g1xmijz76SA0NDXr88cdlGIYsFote\nfvllpaSk6L333lNERAQL1gEAAABwe3YVRLNnz9bs2bMv2s6CdQAAAAA8Sa9uqgD3ZdZaQJ3dNY27\nngEAAMBTUBD1UaauBdThBgrc9QwAAACegoKoD+OuZwAAAED37LrLHAAAAAD0BRREAAAAALwWBREA\nAAAAr0VBBAAAAMBrURABAAAA8FoURAAAAAC8FrfdBgAAAOxktLebtij9mDFj5Ovra0pb3oSCCAAA\nALBTS1OtVmfVKXBQuVPbaW6s0Ttr5ioyMtKp7XgjCiIAAACgFwIHhWvAkOGujgE7cQ0RAAAAAK9F\nQQQAAADAazFlDgCATqSlpam0tFRtbW169NFHNX78eC1fvlyGYSgsLExpaWny8/NzdUwAQC9REAEA\n0MGePXt08OBB5ebmqqGhQQkJCZo0aZISExM1Y8YMpaenKy8vT3PmzHF1VABALzFlDgCADiZOnKiM\njAxJ0sCBA9Xc3Kzi4mLFx8dLkuLi4lRYWOjKiAAAB6EgAgCgAx8fH/Xv31+S9P7772vq1KlqaWmx\nTZELCQlRbW2tKyMCAByEKXMAAHThk08+UV5enrKzszV9+nTbdsMweryPkpISZ0Qzjafnlzz/GJyd\n32q1OnX/cJyysjI1NTXZ9W89/XXgTL0qiPbt26fHHntMCxYs0Lx581RVVcUFpwCAPmHXrl3KyspS\ndna2BgwYoKCgILW2tsrf31/V1dUKDw/v0X6io6OdnNR5SkpKPDq/5PnHYEb+4OBgaXuVU9uAY0RF\nRdm1MGtfeB04k91T5lpaWvTyyy8rJibGti0jI0NJSUnauHGjRo0apby8PIeEBADATCdOnNDatWu1\nYcOGc/9ZlDR58mQVFBRIkgoKChQbG+vKiAAAB7G7IAoICNAbb7yh0NBQ27aioiLFxcVJ4oJTAIDn\n+uijj9TQ0KDHH39cSUlJmj9/vhYuXKgtW7YoMTFRx48fV0JCgqtjAgAcwO4pcz4+PvL3979gGxec\nAgD6gtmzZ2v27NkXbc/JyXFBGgCAMzntpgo9veDUXS/w8vRcXCAJ9E29uaAWAABczKEFkT0XnLrj\nBV7ueuHZ5eTiAkmgb+rqglp3/RIHAAB359B1iLjgFAAAAIAnsfsM0d69e/Xss8/q6NGj8vX1VW5u\nrrKzs5WcnKz33ntPERERXHAKAAAAwK3ZXRDddNNN+vDDDy/azgWnAAAAADyFQ6fMAQAAAIAnoSAC\nAAAA4LWcdtttAACAvqatrU3l5eWmtVVRUXHuzrFOVFFR4dT9A+6OgggAAKCHysvLlbTyXQUOuvTS\nIr1V/+P36h8cosCPapzeTsiI653aBuDOKIgAAAAuQ+CgcA0YMtzp7TQ3VpvSVnNjtVP3D7g7riEC\nAAAA4LUoiAAAAAB4LabMAQAAj9fVzQ6sVqtDb0rADQiAvoeCCAAAeLxub3awvcph7XADAqDvoSAC\nAAB9AjcgQF9mtLfbfYbSnjOlY8aMka+vr13teRoKIgAAAMDNtTTVanVWnQIH2bkO1mWcKW1urNE7\na+YqMjLSvrY8DAURAAAA4AHMuuW7t+EucwAAAAC8FgURAAAAAK/lFVPm/vrG/9GhyoYeP//YsWMa\nsu0Lh7Q97bb/pV/NiHPIvgAAAAA4llcURD9UHdfBEyN6/g/8Rqj+hGPaHmP9f47ZEQAAAACHY8oc\nAAAAAK9FQQQAAADAa1EQAQAAAPBaDr+GaM2aNdq7d68sFotWrVql8ePHO7oJAABcoq98xn204zMV\nlhy45PPq6uq0ZUdJr9qaGXeLYib9717tAwCcyaEFUXFxsaxWq3Jzc1VeXq6UlBTl5uY6sgkAAFyi\nL33G/d8D/9HeumE9eOYwHamzvx2jvU1XfLZLYUMH2r+THqqoqHB6GwD6JocWRJ9//rmmTZsmSRoz\nZoyOHz+ukydPKigoyJHNAABgOj7jLt/Jxip9+J9G/fPAJ05vq/7H7xUy4nqntwOg73FoQVRXV6eo\nqCjb70OGDFFdXZ3LPyzaW5tkafyux88/feq0Aq4IcEjbR2sDdODApacl9ITValVwcHCPnltRUaHm\nxhqHtHu5WpqOSrJ4VdveeMze2rYrj9lVr2mc466fcfbwtbT36HOxt5+HlqY6Sc4/O3SeGa8RM98D\nzGqLY/KMtsw8Jm/7vHHqOkSGYVzyOSUlvZub3BOJ9/7C6W10p6mpySH7GT16dI/3FRoaqvWr/sch\n7V6+W13Urivb9sZj9ta2XXnM595PzHjfxKX15DNOMudz7nLdMWm87pjkmdc/dc2s16aZ7wEck/u3\nY2Zb5n7+eNPnjUMLovDwcNXV/XeycU1NjcLCwrp8fnR0tCObBwDAaS73M07icw4APIFDb7sdExOj\ngoICSdJ3332nYcOGKTAw0JFNAADgEnzGAUDf5NAzRBMmTNANN9ygOXPmyNfXV6tXr3bk7gEAcBk+\n4wCgb7IYPZ0EDQAAAAB9jEOnzAEAAACAJ6EgAgAAAOC1KIgAAAAAeC2nrUO0b98+PfbYY1qwYIHm\nzZun4uJipaenq1+/fgoMDNTatWsvWGT0ySefVEBAgNasWaOzZ88qOTlZlZWV8vX11Zo1azRixAjT\nMu3bt08pKSmyWCyKj4/XokWLnJbpcnKlp6erqKhIhmFo2rRpeuSRR0zNdejQIa1evVoWi0VXX321\n/vCHP8jHx0fbtm3T22+/LV9fX82aNUv33XefW+T66KOP9NZbb8nX11e33nqrnnjiCdPGVleZzjNj\nvF9OLleP+a5ymTnm09LSVFpaqra2Nj366KMaP368li9fLsMwFBYWprS0NPn5+Zk+3nuay8zxjs6d\nPn1ad999txYvXqzf/OY3tu3x8fGKiIiQxWKRxWLRK6+8ovDwcBcmvVhRUZGWLVum6667ToZhaOzY\nsXr22WdtjxcWFio9PV2+vr664447tGjRIhemvdil8ntCH0jStm3blJ2drX79+mnp0qWaMmWK7TF3\n7wOp+/ye0Afvv/++PvjgA1ksFhmGoe+++06lpaW2x929Dy6V3xP6oLm5WStWrFBjY6POnDmjxYsX\n6/bbb7c97rQ+MJygubnZWLBggfH8888bGzduNAzDMO69917jhx9+MAzDMDZs2GBkZWXZnr97925j\n1qxZRnJysmEYhrFlyxYjNTXV9tjjjz9uaqZZs2YZ33//vWEYhvHkk08ap06dckqmy8l14MAB4/77\n7zcMwzDa29uNmTNnGnV1dabmWrhwobFr1y7DMAwjMzPT2L59u9Hc3GzMmDHDOHHihHHq1Cnj7rvv\nNhobG12eq6WlxYiLizNOnjxpGMa5Pj148KBpY6uzTOeZMd4vN5erx3xnucwc81988YXx+9//3jAM\nwzh27JgxdepUIzk52cjPzzcMwzDWrVtn/P3vfzd9vPc0l5njHV1bt26dcd999xlbtmy5YHt8fLzR\n0tLiolQ9s2fPHmPp0qVdPn7XXXcZVVVVRnt7uzF37lzj4MGDJqa7tEvl94Q+OHbsmDF9+nSjubnZ\nqK2tNZ577rkLHnf3PrhUfk/og58qKiqyvX+e5+598FOd5feEPti4caOxbt06wzAMo7q62rjzzjsv\neNxZfeCUKXMBAQF64403FBoaatsWGhqqo0ePSpIaGxs1ZMgQSVJra6s2bNighQsX2p77+eefa9q0\naZKk22677YLq1tmZ6uvr1dLSonHjxkmSXn31VQUEBDgl0+XkGjhwoM6cOaPW1ladOnVKvr6+uuKK\nK0zNZbVaNX78eFtbu3fv1t69e3XjjTcqKChIAQEBuuWWW1RSUuLyXFdccYW2bdtmWyNk8ODBamho\nMG1sdZZJMm+8X04udxjzneUyc8xPnDhRGRkZkqSBAwequblZxcXFio+PlyTFxcWpsLDQ9PHe01xm\njnd07tChQ6qoqLjgG/HzDMOQ4QE3dO0q4+HDhzV48GANGzZMFotFU6ZM0RdffGFyukvr7m/sCX1Q\nWFiomJgY9e/fX6GhoUpNTbU95gl90F1+yTP64Kdee+21C84+eEIf/FTH/JJn9MHQoUN17NgxSef+\nDzx06FDbY87sA6cURD4+PvL3979g24oVK7RkyRLNnDlTX331lX77299KkrKyspSYmKigoCDbc+vq\n6mx/AIvFIh8fH509e9aUTEeOHNHAgQO1cuVKzZ07V2+//bbTMl1OrmHDhmnmzJmKj4/XL37xC82d\nO1dBQUGm5oqMjNRnn30m6dx/4uvr6y9oXzo3kGtra12eS5IGDBggSdq/f78qKyt18803mza2uspk\n1ni/nFzuMOY7y2XmmPfx8VH//v0lnZtyMHXqVLW0tMjPz0+SFBISopqaGtXX15s+3i+Vq7a2VpJ5\n4x2dS0tLU3JycpePP//885o7d67WrVtnYqrLU15erkWLFmnevHkqLCy0be/sfb6mpsYVEbvVVf7z\n3L0Pjhw5opaWFi1cuFCJiYn6/PPPbY95Qh90l/88d++D87799ltdddVVCgkJsW3zhD44r7P857l7\nH8ycOVNVVVWaPn265s+ff8H7qjP7wLSbKrzwwgt67bXX9PHHH2vChAl69913ZbVatX//fs2YMaPb\nirW9vd20TIZh6MiRI1q5cqVycnL0j3/8QwcPHjQtU1e5Dh8+rIKCAn366afasWOH3n33XdtZJLNy\nLV++XNu3b9fDDz+s06dPyzAMWSyWC57TVT+aneu8H374QU8//bReffVV+fr6mpars0yuHu9d5XKH\nMd9ZLleM+U8++UR5eXl67rnnLuijrvrLrPHe01yuGu/ebuvWrZo4caIiIiIkXdwvy5YtU3JysjZu\n3KgDBw5ox44drojZrdGjR2vJkiVav369XnrpJaWkpHRZPLvjN8yXyu8JfWAYhhoaGrR+/XqtWbNG\nq1at6va57uZS+T2hD87bvHmz7r333m6f4459cF5X+T2hD7Zt26Yrr7xSO3bs0FtvvXXRmcafcmQf\nmFYQ7d+/XzfffLOkc1M3vvnmG+3cuVP/+c9/NGfOHKWmpmrnzp3Kzs5WeHi46urqJMn2htavn+Pv\n/9Ax07fffquQkBBde+21GjhwoK644grdcsst+ve//21apq5yffvtt7rpppvk7++vAQMGKDIyUgcO\nHDA1V0REhP72t78pOztb1157rYYPH67w8HDbN9SSVF1drWHDhrk8lyRVVVXpscce09q1azV27FhJ\nMi1XZ5k+++wzl473rnK5w5jvLJfZY37Xrl3KysrSm2++qQEDBigoKEitra2SLhzXZo/3S+U6f0Gs\nK8e7t9u5c6fy8/N1//33a/PmzXr99dcv+Hb817/+tYYOHSofHx/dcccdOnDggAvTdu78GVlJGjly\npEJDQ1VdXS1JnY57d7sQu7v8kmf0QWhoqCZMmCCLxaKRI0cqKCjI9iWQJ/RBd/klz+iD84qKijRh\nwoQLtnlCH5zXWX7JM/qgtLRUsbGxkqRx48apqqrKVvg4sw9MK4jCwsJUXl4u6dypvNGjR2v+/Pn6\n4IMPlJubq+eff15TpkzRww8/rJiYGOXn50uSPv30U916662mZBo1apRGjBihkydP6vjx42pvb9f3\n33+va665RjExMfr444+dnqmrXKNHj1ZZWZkk6cyZMzpw4IBGjhxp2t9Kkv7617/qX//6lyTpgw8+\nUHx8vG688UaVlZXpxIkTOnnypL766itFR0e7PJckpaSk6Pnnn7ddGyPJtFwdM8XFxenBBx906Xjv\nLFd8fLxbjPnO/l5mjvkTJ05o7dq12rBhg+3ul5MnT1ZBQYEkqaCgQLGxsaaP957mklw73r1denq6\nNm/erPfee0+zZs3SokWLNHnyZEnn+jAxMVGnT5+WJH355Ze67rrrXBm3Ux9++KEyMzMlSfX19Tp6\n9KiGDRsmSRo+fLhOnjypyspKnT17Vp999tkFd31yB93l95Q+iImJ0Z49e2QYho4dO6bm5mbb9CBP\n6IPu8ntKH0hSTU2NgoKCLvryyBP6QOo6v6f0wejRo/X1119LOjcNMzAw0DYbyZl9YDGccM5v7969\nevbZZ3X06FH5+vpq0KBBSk1Ntd0edvDgwfrzn/9sm/Munatmt2zZojVr1qi9vV0pKSmyWq0KCAjQ\nSy+9ZHtjMyPTN998oxdffFE+Pj66/fbbtWTJEqdkutxcmZmZ2r17tywWi+666y4lJSWZmutPf/qT\nXnzxRZ09e1a33nqrVqxYIUnasWOH3nzzTfn4+CgpKUm/+tWvXJ7rhx9+UEJCgsaPH2+b2vfQQw9p\nypQppoytrv5W5zl7vF9uLleP+a5ymTXmN23apMzMTP3sZz+zjZeXX35ZKSkpam1tVUREhNasWSNf\nX19Tx3tPcx0+fNi08Y7uZWZmasSIETIMQ8HBwZo2bZreeecd5eXlKSgoSNdff/0Ft4N2FydPntRT\nTz2lxsZGGYahRYsWqb6+3nYMX375pV555RVJ0p133qkFCxa4NnAHl8rvCX0gnXvNb968WRaLRQsX\nLlRDQ4PH9IHUfX5P6YPvvvtOGRkZysrKkiRt2bLFo/qgu/ye0AfNzc1atWqV6uvr1dbWpmXLlqmy\nstLpfeCUgggAAAAAPIFpU+YAAAAAwN1QEAEAAADwWhREAAAAALwWBREAAAAAr0VBBAAAAMBrURAB\nAAAA8FoURAAAAAC81v8HSuHwAt2lBSQAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzcAAAHrCAYAAADysmOnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XtcVXW+//E3IJggonJL0px5OKkVZulYmZniMREzJ/KG\nCh7Lmk5qXsq7pWUzx5GmGIop9SjNGbWjFeVDOwVmF5siBXGODU32GIlDKiM3BVFuCev3hz/3EW97\nA3vvtS+v5z+6N3ut73utvff68mF91/r6GIZhCAAAAADcnK/ZAQAAAADAHihuAAAAAHgEihsAAAAA\nHoHiBgAAAIBHoLgBAAAA4BEobgAAAAB4BIob4BpeeeUVbd++3ewYAAC02MKFCxUTE6OvvvrK7CiA\n0/gwzw0AAIDnueWWW5SVlaUePXqYHQVwGs7cwOvs2LFDsbGxGj16tBYvXqwvv/xSDz74oNauXavR\no0dr5MiR+uabbyRJy5Yt07p160xODABAyyQlJckwDM2YMUP33HOPSkpKJEm7du1SQkKCyekAx6G4\ngVc5fvy4kpOTtXXrVmVmZqqurk7ff/+9CgsL1b9/f2VmZuqJJ57QqlWrzI4KAECrbd68WZL0X//1\nX3riiSeUnJys2tpa/eEPf9BvfvMbk9MBjkNxA6/y1VdfacCAAQoLC5Mk/f73v9ctt9yiwMBAjR49\nWpIUGxurw4cPq76+3syoAAC0iWEYMgxDSUlJKioq0oIFCzR27Fj94he/MDsa4DAUN/Aqp06dUnBw\nsOVxQECA/Pz81KlTJ8tzF/5/+vRpp+cDAMDefH19NXnyZO3du1cTJ040Ow7gUBQ38CpdunTRqVOn\nLI/PnDmj8vJyVVZWWp6rqqqSJIWEhDg9HwAA9lZbW6uNGzcqKSlJL730ktlxAIeiuIFXGTZsmP76\n17+quLhYhmFo1apVOnr0qOrq6vTJJ59IkjIzMxUdHa2AgACT0wIA0HavvvqqYmNjtWzZMv3444/6\n/PPPzY4EOEw7swMAzhQZGanVq1dr+vTp8vPz02233aZbbrlFUVFRysvL00svvaSffvpJr776qtlR\nAQBoEx8fHx09elS7d+/WBx98IB8fH61YsUKLFy/WXXfdpQ4dOpgdEbA7q/Pc5OTkaN68ebrppptk\nGIb69Omjxx57TIsWLZJhGAoPD1dycrL8/f2dlRmwq5ycHD333HPKysoyOwoAE+zcuVObNm1Su3bt\nNHfuXPXp04c+DgDclE3D0u688079+c9/1ubNm/Xss88qNTVVSUlJ2rJli2688UZlZGQ4OicAAHZX\nWVmpP/7xj9q2bZvWr1+vTz75hD4OANyYTcXNpSd3cnJyFBMTI0mKiYlRdna2/ZMBAOBg2dnZGjJk\niDp06KCwsDCtXr2aPg4A3JhN19wUFBRo1qxZqqqq0uzZs1VXV2c5RR8aGqqysjKHhgQc6c4772RI\nGuCljh8/rtraWj355JOqrq6mjwMAN2e1uOnZs6fmzJmjuLg4HT16VNOnT9e5c+csP7dyyY4kKS8v\nr20pAQAWAwcONDuCxzAMwzI07fjx45o+fXqzfs2WPk6inwMAe2pLP2e1uImMjFRcXJwkqUePHgoL\nC1N+fr4aGhoUEBCgkpISRUREODSko+Tl5ZGrBVwxlytmksjVUq6YyxUzSfwSbW9hYWG644475Ovr\nqx49eigoKEjt2rVrcR8nuWY/ZxZX/f6Yhf3RHPujOfZHc23t56xec7Nr1y6lpaVJkioqKlRRUaGH\nH35YmZmZkqSsrCwNHTq0TSEAADDDkCFDtH//fhmGoVOnTqmmpkaDBw+mjwMAN2X1zM2IESP0zDPP\naMqUKTIMQy+88IL69u2rJUuW6O2331ZUVJTi4+OdkRUAALuKjIxUbGysJk2aJB8fH61cuVLR0dFa\nvHgxfRwAuCGrxU1QUJDWrVt32fPp6ekOCQTYqrGxUUVFRQoODnZqu7169ZKfn59T2wTgOJMmTdKk\nSZOaPUcfBwDuyaa7pQGuqKCgQGu3fqPAkBNOa7OmqlSb10xV7969ndYmAAAAbENxA7cWGBKhjl1u\nMDsGAAAAXIBNk3gCAAAAgKujuAEAAADgEShuAAAAAHgEihsAAAAAHoHiBgAAAIBH4G5pAAAAF2ls\nbFRBQYHd1netOdmYOw2wL4obAACAixQUFChp2VsKDImw30o/uHxONuZOA+yP4gYAAOASzKMGuCeu\nuQEAAADgEShuAAAAAHgEhqUBALxWTk6O5s2bp5tuukmGYahPnz567LHHtGjRIhmGofDwcCUnJ8vf\n39/sqAAAG1DcAAC82p133qnU1FTL42XLlikpKUmjRo1SSkqKMjIylJCQYGJCAICtGJYGAPBqhmE0\ne5yTk6OYmBhJUkxMjLKzs82IBQBoBc7cAAC8WkFBgWbNmqWqqirNnj1bdXV1lmFooaGhKisrMzkh\nAMBWNhU39fX1Gjt2rGbPnq27776bscgAAI/Qs2dPzZkzR3FxcTp69KimT5+uc+fOWX5+6Vmda8nL\ny3NERLflzvujqKjIaW3l5+erurraae25Cnf+fDgC+8N+bCpuXn/9dXXu3FmSlJqaylhkAIBHiIyM\nVFxcnCSpR48eCgsLU35+vhoaGhQQEKCSkhJFRNg2kePAgQMdGdWt5OXlufX+CA4OvuKkm44QHR3t\ndZN4uvvnw97YH821tdCzes3NDz/8oMLCQg0bNkyGYSg3N5exyAAAj7Br1y6lpaVJkioqKlRRUaGH\nH35YmZmZkqSsrCwNHTrUzIgAgBawWtwkJydr6dKllse1tbWMRQYAeIQRI0YoPz9fU6ZM0ezZs/XC\nCy9o/vz52rFjhxITE3X69GnFx8ebHRMAYKNrDkvbsWOHBg0apKioqCv+3BPGIpOrZVwplzPHRF/M\n1vHRrrSvLkYu27liJthXUFCQ1q1bd9nz6enpJqQBALTVNYubvXv36tixY9q9e7dKSkrk7++vwMBA\njxmL7KpjHMllG2eOib6YLeOjXW1fXUAu27liJomCCwCAa7lmcZOSkmL5f1pamrp3766DBw8qMzNT\n48aNYywyAAAAAJfR4kk8586dy1hkAAAAAC7H5kk858yZY/k/Y5HhrYymJhUWFlp9XVFR0flhc3bS\nq1cv+fn52W19AAAAnsjm4gaAVFtdppUbyhUYUmD9xXa6HqimqlSb10z1unkQAAAAWoriBmihwJAI\ndexyg9kxAAAAcIkWX3MDAAAAAK6I4gYAAACAR6C4AQAAAOARKG4AAAAAeASKGwAAAAAegeIGAAAA\ngEeguAEAeL36+nrdf//92rFjh06cOKGkpCQlJiZqwYIF+umnn8yOBwCwEcUNAMDrvf766+rcubMk\nKTU1VUlJSdqyZYtuvPFGZWRkmJwOAGArihsAgFf74YcfVFhYqGHDhskwDOXm5iomJkaSFBMTo+zs\nbJMTAgBs1c7sAAAAmCk5OVkrV67Ue++9J0mqra2Vv7+/JCk0NFRlZWVmxsNFGhsbVVBQ4PB2CgsL\nHd4GAMeguAEAeK0dO3Zo0KBBioqKuuLPDcOweV15eXn2iuURHLE/ioqKtHbrNwoMibD7ui9Wcew7\nhXa/2aFtXJCfn6/q6mqntOVK+L40x/6wH4obAIDX2rt3r44dO6bdu3erpKRE/v7+CgwMVENDgwIC\nAlRSUqKICNt+kR44cKCD07qPvLw8h+yP4OBgBYacUMcuN9h93RerqSpx6PovFh0drd69ezutPVfg\nqM+Hu2J/NNfWQo/iBgDgtVJSUiz/T0tLU/fu3XXw4EFlZmZq3LhxysrK0tChQ01MCABoCW4oAADA\nRebOnasdO3YoMTFRp0+fVnx8vNmRAAA2snrmpq6uTkuXLlVFRYUaGhr05JNPqm/fvlq0aJEMw1B4\neLiSk5MtF18CAOCO5syZY/l/enq6iUkAAK1ltbj59NNP1a9fP82cOVPFxcV65JFHNGDAACUmJio2\nNlYpKSnKyMhQQkKCM/ICAAAAwBVZHZY2ZswYzZw5U5JUXFysbt26KTc3VyNGjJDEHAAAAAAAXIPN\nNxRISEhQaWmp3njjDT366KPMAQA4idHUZLc5F4qKihQcHGzTa3v16iU/Pz+7tAsAuJw9j+/WcEyH\nt7C5uNm2bZsOHz6shQsXNrvvv61zALjq/bvJ1TKulKuoqMjsCE5RW12mlRvKFRhip4nrPjhh9SU1\nVaVaMu029ezZ0z5t2sCVPlsXuGImAJ7D7sf3q6ipKtXmNVO97pbT8E5Wi5v8/HyFhoaqW7du6tu3\nr5qamhQUFNTiOQBc8f7drnpfcXLZJjg42KZf1D1BYEiEw+d1uJQz515wtc+W5JqZJAouwNOYcXwH\nPJnVa24OHDigN998U5JUXl6umpoaDR48WJmZmZLEHAAAAAAAXILVMzdTpkzR8uXLNW3aNNXX1+v5\n55/XrbfeqsWLF+vtt99WVFQUcwAAAAAAMJ3V4qZ9+/Z6+eWXL3ueOQAAAAAAuBKrw9IAAAAAwB1Q\n3AAAAADwCBQ3AAAAADyCzfPcAADgaerq6rR06VJVVFSooaFBTz75pPr27atFixbJMAyFh4crOTnZ\nMnE1AMC1UdwAALzWp59+qn79+mnmzJkqLi7WI488ogEDBigxMVGxsbFKSUlRRkaGEhISzI4KALAB\nw9IAAF5rzJgxmjlzpiSpuLhY3bp1U25urkaMGCFJiomJUXZ2tpkRAQAtwJkbAIDXS0hIUGlpqd54\n4w09+uijlmFooaGhKisrMzkdAMBWFDcAAK+3bds2HT58WAsXLpRhGJbnL/6/NXl5eY6I5rYcsT+K\niorsvk5vkZ+fr+rqarNjWPB9aY79YT8UNwAAr5Wfn6/Q0FB169ZNffv2VVNTk4KCgtTQ0KCAgACV\nlJQoIiLCpnUNHDjQwWndR15enkP2R3BwsPTBCbuv1xtER0erd+/eZseQ5LjPh7tifzTX1kKPa24A\nAF7rwIEDevPNNyVJ5eXlqqmp0eDBg5WZmSlJysrK0tChQ82MCABoAc7cAAC81pQpU7R8+XJNmzZN\n9fX1ev7553Xrrbdq8eLFevvttxUVFaX4+HizYwIAbERxAwDwWu3bt9fLL7982fPp6ekmpAEAtBXD\n0gAAAAB4BIobAAAAAB6BYWkALmM0NamwsNBp7RUVFSk4OFi9evWSn5+f09oFAACeheIGwGVqq8u0\nckO5AkMKnNZmzdZvtHnNVJe5VSkAAHA/NhU3ycnJOnjwoBobG/XrX/9a/fr106JFi2QYhsLDw5Wc\nnGyZzRmAZwgMiVDHLjeYHQMAAMBmVoub/fv368iRI9q2bZsqKysVHx+vu+++W4mJiYqNjVVKSooy\nMjKUkJDgjLwAAAAAcEVWbygwaNAgpaamSpI6deqkmpoa5ebmasSIEZKkmJgYZWdnOzYlAAAAAFhh\ntbjx9fVVhw4dJEnvvvuuhg8frtraWsswtNDQUJWVlTk2JQAAAABYYfMNBfbs2aOMjAxt2rRJo0aN\nsjxvGIZNy+fl5bU8nROQq2VcKVdRUZHZEWBn+fn5qq6uNjuGhSt93gEAgHU2FTd/+ctftGHDBm3a\ntEkdO3ZUUFCQGhoaFBAQoJKSEkVERFhdx8CBA9sc1t7y8vLI1QKulis4OFj64ITZMWBH0dHRLnO3\nNFf7vF9AwQUAwNVZHZZ25swZvfTSS1q3bt35XyYlDR48WFlZWZKkrKwsDR061LEpAQAAAMAKq2du\nPvzwQ1VWVmr+/PkyDEM+Pj5au3atVqxYoe3btysqKkrx8fHOyAoAAAAAV2W1uJk0aZImTZp02fPp\n6ekOCQQAgDMxlxsAeA6bbygAAICnYS43APAsVq+5AQDAUzGXGwB4Fs7cAAC81pXmcvvyyy+Zyw0e\nxWhqUmFhoVPa6tWrl/z8/JzSFnAlFDcAAK/X1rncJG7TfSlH7A/mN2ud2uoyrdxQrsCQAoe2U1NV\nqiXTblPPnj2tvpbvS3PsD/uhuAEAeDV7zOUmueZ8bmZx1DxRzG/WeoEhEerY5QaHt2PLfGWuOo+Y\nWdgfzbW10OOaGwCA12IuNwDwLJy5AQB4LeZyAwDPQnEDAPBazOUGAJ6FYWkAAAAAPAJnbjxQY2Oj\nCgrsf0eUoqIiy5j0K+H2jwAAADATxY0HKigoUNKytxQYYtsdflrkKnepqakq1eY1U63eIQUAAABw\nFIobD+WsWz4CAAAAroJrbgAAAAB4BIobAAAAAB6B4gYAAACAR7CpuDl8+LDuv/9+bd26VZJ04sQJ\nJSUlKTExUQsWLNBPP/3k0JAAAAAAYI3V4qa2tlZr167VkCFDLM+lpqYqKSlJW7Zs0Y033qiMjAyH\nhgQAAAAAa6zeLa19+/Zav369NmzYYHkuJydHq1evliTFxMQoPT1dCQkJjksJAABc1qXzq1mbF621\nCgsL7b5OAJ7FanHj6+urgICAZs/V1tbK399fkhQaGqqysjLHpAMAAC7vivOrXWVetLaoOPadQrvf\nbPf1AvAcbZ7nxjAMe+QAAABuzBnzq9VUlTh0/QDcX6uKm6CgIDU0NCggIEAlJSWKiIiwukxeXl5r\nmnI4T8xVVFRkxyS2y8/PV3V1tdPaM2s74TjO/gxZ46rHB9jX4cOH9dRTT2nGjBmaNm2aTpw4oUWL\nFskwDIWHhys5OdkyWgEA4NpaVdwMHjxYWVlZevDBB5WVlaWhQ4daXWbgwIGtacqh8vLyPDJXcHCw\nQ4YDWBMdHa3evXs7rT2zthOOYTQ1KSgoyCHj9K+lV69e8vPzu+x5Vz4+wH6uddOcUaNGKSUlRRkZ\nGVxXCgBuwmpxc+jQIT377LM6efKk/Pz8tG3bNm3atElLly7V9u3bFRUVpfj4eGdkBeDBaqvLtHJD\nuQJDCqy/2E5qqkq1ec1UpxblcC3cNAcAPIvV4qZ///7atWvXZc+np6c7JBAA7+WMMfvAxbhpDgB4\nljbfUACQzg8pcvYtOrklKABHa8lNc7x5yCDXQOICW6+d9Obvy5WwP+yH4gZ2YcaQIm4JCsARWnPT\nHMk1ry11Fq6BxAW2XH/rqtc0moX90VxbCz2KG9iNs4cUcUtQAI7QmpvmAABcA8UNAMBrcdMcAPAs\nFDcAAK/FTXMAwLP4mh0AAAAAAOyB4gYAAACAR6C4AQAAAOARKG4AAAAAeARuKADAa11r8tmioqLz\nc3c4QK9eveTn5+eQdQMXa2xsVEGB4+cfY1JlAK6C4gaA17I6+awDJiWsqSrV5jVTrU5yB9hDQUGB\nkpa9pcAQ2yYibS0mVQbgKihuAHg1Z08+CzibMz7jTKoM6dpnwy9mrzPjnAXHlXhVcVNU9KP+WfJ/\nB+DDh7/XT41NDm2zc0iIfH1atkxbv/QMDwAAAM5m9Wz4xdp4Zpyz4Lgarypu/rDxPf2t5JKi4ctv\nHNpm54bvdLS6Y8uHBLThS8/wAAAAYAZnnQ239SxRWzU2NkqSQ88QXfijNmei7MOripuA9tepQ3CY\nc9s8c50CfZ077IXhAQAAwJO16CxRG1Qc+04dgkMdft1azdZvOBNlJ15V3AAAAMAzOOt6Mq7NdC+t\nLm7WrFmjQ4cOycfHR8uXL1e/fv3smQsAAFPRzwGA+2lVcZObm6uioiJt27ZNBQUFWrFihbZt22bv\nbAAAmIJ+DgDcU6uKm6+//lojR46UdP42fKdPn9bZs2cVFBRk13AAAJjB0f3cyn9PU1Fpg13WdS2+\ndSck/czh7QCAq2hVcVNeXq7o6GjL4y5duqi8vJzi5ipqqkqd2l5t9UlJLbz/NG3SJm06hbOPB2gd\nR/dz1fU+OunXyy7rupYO58qd8plz1neJdmjH2W05qx36Bvuxyw0FDMOw+pq8vDx7NNUmk+IGmdBq\ndxPavIs2aZM2XbZNqbq62iWOibCdvfu5xHF3tyVOCzirD3LWd4l2aMfZbTlvm+gb7KNVxU1ERITK\ny8stj0tLSxUeHn7V1w8cOLA1zQAAYAr6OQBwT76tWWjIkCHKysqSJH377beKjIxUYGCgXYMBAGAW\n+jkAcE+tOnNzxx136NZbb1VCQoL8/Py0cuVKe+cCAMA09HMA4J58DFsGEgMAAACAi2vVsDQAAAAA\ncDUUNwAAAAA8AsUNAAAAAI/glOLm5MmTevzxxzV9+nRNnTpV33zzjTOataqxsVFLly7V1KlTlZCQ\noIMHD5odyWL//v265557tHfvXrOjaM2aNUpISNCUKVP0t7/9zew4FocPH9b999+vrVu3mh2lmeTk\nZCUkJGjixIn6+OOPzY6juro6zZ8/X0lJSZo8ebI+//xzsyM1U19fr/vvv187duwwO4okKScnR4MH\nD9b06dOVlJSk3/zmN2ZHsti5c6d+9atfafz48S5xbPA2586d08KFCzV16lQlJSXp2LFjl72mqqpK\nM2fO1Lx581q0nDuyZbt27typCRMmaPLkyXr33XclSe+//76GDx+u6dOna/r06Vq/fr2zo9vVtfrI\n7OxsTZw4UQkJCXr99ddtWsbdtXR/uPIx1x6utT8aGhq0ZMkSTZgwweZl3J0t+2P8+PGW51r1+TCc\n4M033zQ++OADwzAMIycnx3j00Ued0axVGRkZxqpVqwzDMIx//OMfxoQJE8wN9P8VFRUZs2fPNp56\n6inj888/NzVLTk6O8cQTTxiGYRhHjhwxJk+ebGqeC2pqaowZM2YYq1atMrZs2WJ2HIt9+/YZjz/+\nuGEYhnHq1Clj+PDhJicyjP/+7/82Nm7caBiGYRw/ftwYNWqUyYmae+WVV4wJEyYY77//vtlRDMMw\njP379xtz5841O8ZlTp06ZYwaNcqoqakxysrKjOeee87sSF7n/fffN1avXm0YhmF8+eWXxvz58y97\nzYIFC4wNGzY0+wzZspw7srZdNTU1RmxsrHHmzBmjrq7OGDt2rFFVVWW89957xtq1a82IbHfW+sgx\nY8YYJ06cMJqamoypU6caR44ccdl+1R5asz9c9ZhrD9b2x4svvmhs2bLFGD9+vM3LuLPW7I/WfD6c\ncuZmxowZeuCBByRJxcXFuv76653RrFXjxo3TsmXLJEldu3ZVVVWVyYnOu/7665WWlqagoCCzo+jr\nr7/WyJEjJUm9evXS6dOndfbsWZNTSe3bt9f69esVFhZmdpRmBg0apNTUVElSp06dVFtba9PM5o40\nZswYzZw5U9L571+3bt1MzXOxH374QYWFhRo2bJjZUZox+z27kuzsbA0ZMkQdOnRQWFiYVq9ebXYk\nr3Px8fCee+654tn+3/72t+rfv3+Ll3NH1rbr0KFDuu222xQUFKT27dtrwIABlte44nesNa7VRx49\nelSdO3dWZGSkfHx8NGzYMH399dcu26/aQ0v3x759+yR5zufhUtbe62eeeUbDhw9v0TLurDX7Q2r5\n58Np19yUl5drwoQJWr9+vebPn++sZq+pXbt2at++vSTpP//zPzV27FiTE50XEBBgdgSL8vJyde3a\n1fK4S5cuzWbtNouvr69L7acLfH191aFDB0nSO++8o2HDhsnHx8fkVOclJCRo8eLFWr58udlRLJKT\nk7V06VKzY1ymoKBAs2bN0rRp05SdnW12HEnS8ePHVVtbqyeffFKJiYn6+uuvzY7kdS4+Hvr4+MjX\n11fnzp1r9poL3/+WLueOrG3Xpf1H165dVVZWJknKzc3V448/rkceeUTfffedc4Pb0bX6yKttv6v2\nq/bQ0v1RWloqyTWPufZg7b22dry40jLurDX7Q2r556NVk3heyzvvvKN3331XPj4+MgxDPj4+euqp\npzRkyBC9++67+uKLL7R06VJt2rTJ3k23OtfWrVv197//XevWrXNqJmu5XJGn/nXF3vbs2aP33nvP\n6Z/za9m2bZsOHz6shQsXaufOnWbH0Y4dOzRo0CBFRUVJcp3PVs+ePTVnzhzFxcXp6NGjmj59uj7+\n+GO1a2f3w2WLGIahyspKvf766zp27JimT5+uzz77zNRMnuziY7N0fv9fer1oU1NTq9bd2uXMZI/9\nceE7fvvtt6tr164aNmyY/ud//keLFy/Wrl27HBPcya51HLvaz1zl2OcItuyPn/3sZy55zHWE1rzX\n3vr5uKA1fbLdPzkTJ07UxIkTmz2Xk5OjqqoqhYSE6L777tPixYvt3WyrcknnD9iff/65Xn/9dfn5\n+blMLlcRERHRrKouLS1VeHi4iYlc31/+8hdt2LBBmzZtUseOHc2Oo/z8fIWGhqpbt27q27evGhsb\ndfLkyWZ/PTHD3r17dezYMe3evVsnTpxQ+/btdf3112vw4MGm5oqMjFRcXJwkqUePHgoLC1NJSYlu\nuOEGU3OFhYXpjjvukI+Pj3r06KGgoCCXeB891ZWOzcuWLVN5ebn69OljOUNhyy9gF46jLV3OlbRm\nf0RERFjO1EhSSUmJ7rjjDv385z/Xz3/+c0nnC51Tp05Z/rjnbq7VR15p+yMiIuTv7++x/Wpr9kdE\nRIRLHnPtoTW/Q3ny712t2bbW9MlOGZb28ccfW+6E9P3331v+Umu2o0ePavv27UpLS5O/v7/Zca7I\n7Ip9yJAhysrKkiR9++23ioyMVGBgoKmZXNmZM2f00ksvad26dQoODjY7jiTpwIEDevPNNyWdPyVc\nW1vrEr8Qp6Sk6J133tH27ds1ceJEzZo1y/TCRpJ27dqltLQ0SVJFRYVOnjypyMhIk1Od/y7u379f\nhmHo1KlTqqmpcYn30ZsMGTJEmZmZkqRPP/1Ud9111xVfZxhGs2O3rcu5G2vb1b9/f+Xn5+vMmTM6\ne/as/vrXv2rgwIHauHGj3nnnHUnSkSNH1LVrV7csbKRr95E33HCDzp49q+LiYp07d06ff/657r33\nXo/uV1uzP1z1mGsPtrzXVzpeeOPn44JL90drPh8+hhN+ez516pSWLl2qmpoaNTQ0aMWKFbrtttsc\n3axVKSkp+vDDD9WtWzfLX43S09NN/4vaxx9/rFdffVWlpaUKCgpSly5dlJGRYVqeV155RTk5OfLz\n89PKlSvVp08f07JccOjQIT377LM6efKk/Pz8FBISoi1btigkJMTUXG+//bbS0tL0s5/9zPKZSk5O\nNvUmGvXK3vCgAAAgAElEQVT19Vq+fLlOnDih+vp6PfXUUy53AX9aWpq6d++uhx56yOwoOnv2rJ55\n5hlVVVXJMAzNnj1bQ4cONTuWpPOfr3feeUc+Pj6aNWvWFS+8hOM0NTVpxYoVKioqUvv27fW73/1O\nkZGR2rBhg+666y7169dPv/rVr1RbW6uqqipdf/31WrJkie65554rLufurO2P/v37a/fu3dq4caN8\nfX2VlJSkBx54QCUlJVq4cKFlHUuXLlW/fv1M3prWu7SP/Pvf/67g4GCNHDlSBw4c0O9//3tJ0ujR\nozVjxowrLuMK/aq9tHR/uPIx1x6utT8eeeQRnThxQv/85z/Vo0cPzZgxQ+PHj9fLL7+s3Nxcr/t8\nXGl/xMXF6emnn27R58MpxQ0AAAAAOJrT7pYGAAAAAI5EcQMAAADAI1DcAAAAAPAIFDcAAAAAPALF\nDQAAAACPQHEDAAAAwCNQ3AAAAADwCBQ3wBX07dtXJSUllz2/c+dOJSUlmZAIAICWW7ZsmdatW2d2\njCv68ssvdeLECbNjwMNQ3ABX4OPj06qfAQAA2/zpT3/S8ePHzY4BD0NxA6+wbt063XPPPZo4caLe\neustjRgxQg0NDVq5cqVGjx6tBx54QGvXrpVhGJLU7N/Vq1crJiZGkydP1vfff2/mZgAAXFxOTo5G\njRp12eO0tDS9+OKLmjNnjkaOHKlJkyapvLxcklRSUqJ/+7d/U2xsrEaPHq0vvvhCknT8+HHde++9\n2rhxo0aPHq3Ro0frm2++0b/927/pvvvu0/Llyy1tPPjgg1q7dq1Gjx6tkSNH6ptvvrks2+HDhzVl\nyhTFxcUpPj5eX331lZqamnTvvffqu+++s7zurbfe0pw5c5STk6OEhAT9+7//u0aOHKkJEybob3/7\nm6ZPn657771Xr732mmWZ7du3Ky4uTv/yL/+iZ555Rg0NDZLOnzl67bXX9Oijj2rEiBGaOXOm6urq\nlJqaqn379mnRokX66KOP7P9GwGtR3MDjHTlyRJs2bdKuXbu0detWffTRR/Lx8dGf/vQnlZaW6qOP\nPtJ7772nAwcO6IMPPmi27BdffKHs7Gx99NFH2rx5s3Jzc03aCgCAu7j0DP+Fx1lZWXr22We1Z88e\nde3aVRkZGZKkJUuW6NZbb1VWVpb+4z/+Q4sWLVJVVZUkqbKyUhEREcrMzFTv3r21YMECrV27Vjt3\n7tQHH3ygo0ePSpJ++OEH9e/fX5mZmXriiSe0atWqZhkMw9AzzzyjpKQkffTRR3rxxRf19NNPq66u\nTnFxccrMzLS89rPPPtMDDzwgSfr22281atQo7dmzRz4+Plq9erU2btyoN998U+vXr1dDQ4MOHDig\n1157TZs3b9Ynn3yi4OBg/eEPf7CsLysrS6mpqdqzZ48qKiq0Z88ezZs3TxEREXr55ZcVFxdn53cA\n3oziBh4vNzdXd911l0JDQxUQEKDx48fLMAx98cUXmjRpknx8fNS+fXs9+OCD+uqrr5ote+DAAQ0f\nPlzXXXedAgICOAADAFrswmiAX/7yl7r++uslSTfffLOKi4tVW1ur/fv361//9V8lST169NAvf/lL\nff7555KkxsZGjR49WpLUu3dvRUdHKyQkRJ07d1Z4eLhKS0slSUFBQZbXxcbG6vDhw6qvr7dkOHbs\nmMrLyzVmzBhJUnR0tG644Qb97W9/09ixYy1nT2pqavTNN98oJiZGkhQSEqJf/vKXkqRf/OIXGjRo\nkAICAnTTTTepqalJp06d0meffaa4uDiFhYVJkiZPnqzdu3db2h42bJiCg4Pl6+ur3r17q7i4+LJ9\nA9hLO7MDAI52+vRphYSEWB5HRkZKkk6ePKlOnTpZnu/UqZMqKiqaLVtVVaWIiIhmrwEAoDWCg4Mt\n//fz81NTU5Oqq6tlGIYSEhIknf9lv7a2VoMHD7a8LiAgwPL/wMDAy9Yh6bL+TDrf/11waZ93IU9F\nRYXGjBkjwzB0+PBhHTt2TPfcc4+uu+46SeeLpovbu7h9X19fNTY2qrq6Wh9//LHlD4SNjY1qbGy8\n5nYDjkJxA4/XsWNH1dTUWB6XlZVJkkJDQ1VZWWl5vrKy0vJXpws6deqkM2fOWB6fPHnSwWkBAO7s\nwi/8F5w+ffqaN6IJDQ1Vu3bt9N5771kKigtacrH9xf3ZhSFtF/9h79I+78IyF/q9Bx54QJmZmSop\nKbGc3bFVRESE4uPjtXjx4hYtBzgCw9Lg8fr166f9+/ersrJSDQ0N2rFjh3x8fBQTE6N3331XTU1N\nqqmp0c6dOzV8+PBmy95+++368ssvVVdXp9raWmVlZZmzEQAAtxAREaGysjKdPHlSjY2N2rlz5zVf\n7+fnp2HDhumtt96SJNXW1mr58uWW6QhsHbZVW1urTz75RJKUmZmp6OhoyxkfSerevbuuv/56ffjh\nh5KkgwcPqqKiQrfddpskaezYsfr000+Vm5urYcOG2dTmhWwjRozQxx9/bPkD4J49e7Rx40ary/v7\n+6u6utqmtgBbceYGHu+2227TQw89pIceekhRUVEaM2aM/vSnPykxMVE//vijHnjgAfn6+iouLk6x\nsbGS/u/izxEjRuiLL77Q6NGjFR4eruHDhysnJ8fMzQEAuLAbb7xR48ePt/Q5Dz30kNU7ba5atUor\nV67UO++8Ix8fH40bN06RkZE6fvy4zVMT3HDDDcrLy9NLL72kn376Sa+++uplr3/llVe0atUqpaWl\nKTAwUKmpqZazRb/4xS8kSXfccUezouhq7V38+JZbbtETTzyh6dOnyzAMde3aVatXr77mNkvnrw1a\nsGCB5s6dqxkzZlh9PWALH8PKnwRycnI0b9483XTTTTIMQ3369NFjjz2mRYsWyTAMhYeHKzk5Wf7+\n/s7KDLTJ3r17lZqaqvfee8/sKABcwM6dO7Vp0ya1a9dOc+fOVZ8+fejj4FZycnL03HPPtXl0wWOP\nPabp06frvvvus1MywPlsGpZ255136s9//rM2b96sZ599VqmpqUpKStKWLVt04403Wm5lCLiikydP\n6q677lJxcbEMw9BHH32k22+/3exYAFxAZWWl/vjHP2rbtm1av369PvnkE/o4eKV9+/bpn//8J4UN\n3J5Nxc2lJ3dycnIstwiMiYlRdna2/ZMBdtK1a1c9/fTTmjFjhkaPHq2qqirNmTPH7FgAXEB2draG\nDBmiDh06KCwsTKtXr6aPg9dZtGiRVq1apbVr15odBWgzm665KSgo0KxZs1RVVaXZs2errq7Ocoo+\nNDTUcvcpwFVNnjxZkydPNjsGABdz/Phx1dbW6sknn1R1dTV9HNzSnXfe2aYhaS+99JId0wDmslrc\n9OzZU3PmzFFcXJyOHj2q6dOn69y5c5afM/kSAMBdGYZhGZp2/PhxywXRF/8cAOA+rBY3kZGRllnZ\ne/ToobCwMOXn56uhoUEBAQEqKSlpNsnhleTl5dknLQBAAwcONDuCxwgLC9Mdd9whX19f9ejRQ0FB\nQWrXrl2L+jiJfg4A7Kkt/ZzV4mbXrl0qKirSnDlzVFFRoYqKCj388MPKzMzUuHHjlJWVpaFDhzo0\npCvIy8tz621w9/wS2+AK3D2/5P7bwC/R9jVkyBAtX75cjz/+uCorK1VTU6N77723xX2c5Jr9nCt+\n3l0xk0SulnLFXK6YSSJXS7W1n7Na3IwYMULPPPOMpkyZIsMw9MILL6hv375asmSJ3n77bUVFRSk+\nPr5NIQAAMENkZKRiY2M1adIk+fj4aOXKlYqOjtbixYvp4wDADVktboKCgrRu3brLnk9PT3dIIAAA\nnGnSpEmaNGlSs+fo4wDAPdl0K2gAAAAAcHUUNwAAAAA8AsUNAAAAAI9AcQMAAADAI1DcAAAAAPAI\nVu+WBuByjY2NKigoaPFyRUVFCg4OblPbvXr1kp+fX5vWAQAA4IkoboBWKCgoUNKytxQYYn3m8st8\ncKLV7dZUlWrzmqnq3bt3q9cBAADgqShugFYKDIlQxy43mB0DAAAA/x/X3AAAAADwCBQ3AAAAADwC\nxQ0AAAAAj0BxAwAAAMAjcEMBAIDXysnJ0bx583TTTTfJMAz16dNHjz32mBYtWiTDMBQeHq7k5GT5\n+/ubHRUAYAOKGwCAV7vzzjuVmppqebxs2TIlJSVp1KhRSklJUUZGhhISEkxMCE9k63xp9pgfTWKO\nNHgPihsAgFczDKPZ45ycHK1evVqSFBMTo/T0dIob2F2L5ktrw/xoEnOkwbtQ3AAAvFpBQYFmzZql\nqqoqzZ49W3V1dZZhaKGhoSorKzM5ITwV86UB9mdTcVNfX6+xY8dq9uzZuvvuuxmLDADwCD179tSc\nOXMUFxeno0ePavr06Tp37pzl55ee1bmWvLw8R0RsM1fM5YqZJOfmKioqclpbkpSfn6/q6mq7rtMV\n30dXzCSRy5lsKm5ef/11de7cWZKUmprKWGQAgEeIjIxUXFycJKlHjx4KCwtTfn6+GhoaFBAQoJKS\nEkVE2DBsSNLAgQMdGbVV8vLyXC6XK2aSnJ8rODi4zcPNWiI6Otquw9Jc8X10xUwSuVqqrQWX1VtB\n//DDDyosLNSwYcNkGIZyc3MVExMj6fxY5Ozs7DYFAADALLt27VJaWpokqaKiQhUVFXr44YeVmZkp\nScrKytLQoUPNjAgAaAGrxU1ycrKWLl1qeVxbW8tYZACARxgxYoTy8/M1ZcoUzZ49Wy+88ILmz5+v\nHTt2KDExUadPn1Z8fLzZMQEANrrmsLQdO3Zo0KBBioqKuuLPPWEscku4+za4e37JdbbB2WOlL+aI\ncdMt4SrvQVt4wjbAPoKCgrRu3brLnk9PTzchDQCgra5Z3Ozdu1fHjh3T7t27VVJSIn9/fwUGBnrM\nWOSWcNVxibZy9/ySa22Ds8dKX8ze46ZbwpXeg9Zy922gMAMA4OquWdykpKRY/p+Wlqbu3bvr4MGD\nyszM1Lhx4xiLDAAAAMBlWL3m5lJz585lLDIAAAAAl2PzJJ5z5syx/J+xyAAAAABcTYvP3AAAAACA\nK6K4AQAAAOARKG4AAAAAeASKGwAAAAAegeIGAAAAgEeguAEAAADgEShuAAAAAHgEm+e5AVxRY2Oj\nCgoKnN5uYWGh09sEAADAtVHcwK0VFBQoadlbCgyJcGq7Fce+U2j3m53aJgDHqa+v19ixYzV79mzd\nfffdWrRokQzDUHh4uJKTk+Xv7292RACADShu4PYCQyLUscsNTm2zpqrEqe0BcKzXX39dnTt3liSl\npqYqKSlJo0aNUkpKijIyMpSQkGByQgCALbjmBgDg1X744QcVFhZq2LBhMgxDubm5iomJkSTFxMQo\nOzvb5IQAAFtR3AAAvFpycrKWLl1qeVxbW2sZhhYaGqqysjKzogEAWohhaYAbMZqaTLuZQa9evUxp\nF3CkHTt2aNCgQYqKirrizw3DsHldeXl59oplV66YyxUzSc7NVVRU5LS2JCk/P1/V1dV2Xacrvo+u\nmEkilzNR3ABupLa6TCs3lCswxLl3iKupKtXmNVOd2ibgDHv37tWxY8e0e/dulZSUyN/fX4GBgWpo\naFBAQIBKSkoUEWHbDUsGDhzo4LQtl5eX53K5XDGT5PxcwcHB0gcnnNZedHS0evfubbf1ueL76IqZ\nJHK1VFsLLoobwM2YcQMFwFOlpKRY/p+Wlqbu3bvr4MGDyszM1Lhx45SVlaWhQ4eamBAA0BJccwMA\nwEXmzp2rHTt2KDExUadPn1Z8fLzZkQAANrJ65qaurk5Lly5VRUWFGhoa9OSTT6pv377MAQAA8Chz\n5syx/D89Pd3EJACA1rJa3Hz66afq16+fZs6cqeLiYj3yyCMaMGCAEhMTFRsbyxwAAAAAAFyC1WFp\nY8aM0cyZMyVJxcXF6tatm3JzczVixAhJzAEAAAAAwDXYfEOBhIQElZaW6o033tCjjz7KHAAAAAAA\nXIrNxc22bdt0+PBhLVy4sNl9/22dA8AT7qPt7tvg7vmly7fB2fMEeLP8/Hz17NnTIz9HAADAM1gt\nbvLz8xUaGqpu3bqpb9++ampqUlBQUIvnAHDF+2i3hKveC9xW7p5fuvI2OHueAG8WHR2t6upqj/wc\nuRMKMwAArs7qNTcHDhzQm2++KUkqLy9XTU2NBg8erMzMTEliDgAAAAAALsHqmZspU6Zo+fLlmjZt\nmurr6/X888/r1ltv1eLFi/X2228rKiqKOQAAAAAAmM5qcdO+fXu9/PLLlz3PHACA9zCamlRYWKiz\nZ8+eHwroZL169ZKfn5/T2wUAAO7F5hsKAPBetdVlWrmhXIEhEU6/xqmmqlSb10xV7969ndouAABw\nPxQ3AGwSGBKhjl1uMDsGAADAVVHcAAAAeLALQ4vtqaio6IrDlBlGDLNR3AAAvFZdXZ2WLl2qiooK\nNTQ06Mknn1Tfvn21aNEiGYah8PBwJScnWyauBtzR/w0tLrDvii8ZpswwYrgCihsAgNf69NNP1a9f\nP82cOVPFxcV65JFHNGDAACUmJio2NlYpKSnKyMhQQkKC2VGBNmFoMbyF1XluAADwVGPGjNHMmTMl\nScXFxerWrZtyc3M1YsQISVJMTIyys7PNjAgAaAHO3AAAvF5CQoJKS0v1xhtv6NFHH7UMQwsNDVVZ\nWZnJ6QAAtqK4AQB4vW3btunw4cNauHChDMOwPH/x/2GexsZGFRTY+XqRS1y4QJ4L4gH3RnEDAPBa\n+fn5Cg0NVbdu3dS3b181NTUpKChIDQ0NCggIUElJiSIiImxaV15enoPTto4r5mpppqKiIq3d+s35\nubYcqGbrN1oy7Tb17NnToe1I57fJE+Xn56u6utq09l3x8y6Ry5kobgAAXuvAgQMqLi7W8uXLVV5e\nrpqaGg0dOlSZmZkaN26csrKyNHToUJvWNXDgQAenbbm8vDyXy9WaTMHBwQoMOeGUC+Kjo6Odcrev\n4OBgp0+K7AzO2n9X4oqfd4lcLdXWgoviBgDgtaZMmaLly5dr2rRpqq+v1/PPP69bb71Vixcv1ttv\nv62oqCjFx8ebHRMAYCOKGwCA12rfvr1efvnly55PT083IQ0AoK24FTQAAAAAj0BxAwAAAMAjUNwA\nAAAA8AhccwMAACDJaGpSYWGhU9pyVjuAt7GpuElOTtbBgwfV2NioX//61+rXr58WLVokwzAUHh6u\n5ORky2zOAAAA7qi2ukwrN5QrMMSxE4ZKUsWx7xTa/WaHtwN4G6vFzf79+3XkyBFt27ZNlZWVio+P\n1913363ExETFxsYqJSVFGRkZSkhIcEZeAAAAhwkMiXDKfDo1VSUObwPwRlavuRk0aJBSU1MlSZ06\ndVJNTY1yc3M1YsQISVJMTIyys7MdmxIAAAAArLBa3Pj6+qpDhw6SpHfffVfDhw9XbW2tZRhaaGio\nysrKHJsSAAAAAKyw+YYCe/bsUUZGhjZt2qRRo0ZZnjcMw6bl8/LyWp7Oxbj7Nrh7funybSgqKjIp\nCZwpPz9f1dXVdlufJ3wXAADA5Wwqbv7yl79ow4YN2rRpkzp27KigoCA1NDQoICBAJSUlioiIsLqO\ngQMHtjmsmfLy8tx6G9w9v3TlbQgODpY+OGFSIjhLdHS0evfubZd1uft3gcIMAICrszos7cyZM3rp\npZe0bt26879ISho8eLCysrIkSVlZWRo6dKhjUwIAAACAFVbP3Hz44YeqrKzU/PnzZRiGfHx8tHbt\nWq1YsULbt29XVFSU4uPjnZEVAAAAAK7KanEzadIkTZo06bLn09PTHRIIAABnYi43APAcNt9QAAAA\nT8NcbgDgWaxecwMAgKdiLjcA8CwUNwAAr8VcbgDgWRiWBgDwem2dy01y3dt0u2KulmZiTjP3Ye95\nyVrKFT/vErmcieIGAODV7DGXm+Sa87m54rxOrcnEnGbuw57zkrWUK37eJXK1VFsLLoalAQC8FnO5\nAYBn4cwN7KKxsVEFBQUObaOoqMjyy8cFhYWFDm0TgGdjLjcA8CwUN7CLgoICJS17S4Ehtg3faLVL\nhiVUHPtOod1vdmybADwWc7kBgGehuIHdBIZEqGOXG5zaZk1ViVPbAwAAgOvimhsAAAAAHoHiBgAA\nAIBHoLgBAAAA4BEobgAAAAB4BIobAAAAAB6B4gYAAACAR6C4AQAAAOARbCpuDh8+rPvvv19bt26V\nJJ04cUJJSUlKTEzUggUL9NNPPzk0JAAAAABYY3USz9raWq1du1ZDhgyxPJeamqqkpCSNGjVKKSkp\nysjIUEJCgkODAgAA19HY2KiCgoIWL1dUVKTg4OAWLVNYWNjidgB4J6vFTfv27bV+/Xpt2LDB8lxO\nTo5Wr14tSYqJiVF6ejrFDQAAXqSgoEBJy95SYEhEyxf+4ESLXl5x7DuFdr+55e0A8DpWixtfX18F\nBAQ0e662tlb+/v6SpNDQUJWVlTkmHQAAcFmBIRHq2OUGh7dTU1Xi8DYAeAarxY01hmHY9Lq8vLy2\nNmU6d98GR+YvKipy2LqB/Px8VVdX22197v5dhn0dPnxYTz31lGbMmKFp06bpxIkTWrRokQzDUHh4\nuJKTky1/0AMAuLZWFTdBQUFqaGhQQECASkpKFBFh/ZT0wIEDW9OUy8jLy3PrbXB0/uDg4BYPMwBs\nYTQ1KSgoqMVj9K8mPz9f0dHRNr22V69e8vPzs0u79kJhZl9cVwoAnqVVxc3gwYOVlZWlBx98UFlZ\nWRo6dKi9cwGAJKm2ukwrN5QrMKTlFy5flQ2FeE1VqTavmarevXvbr124HK4rBQDPYrW4OXTokJ59\n9lmdPHlSfn5+2rZtmzZt2qSlS5dq+/btioqKUnx8vDOyAvBSzhrXD+/DdaUA4FmsFjf9+/fXrl27\nLns+PT3dIYEAAHAVtl5XKrnukEFH5eJaS1yJva+RbClv+x62lavmaos231AAAABP0prrSiXXvLbU\nkddbcq0lriQ6Otopw3mvNM9SS66pbKm2XIPpqtdtu3KutqC4AQDgIlxXCri+q86z5ICCm2sw3QvF\nDQDAa3FdKWA/RlOTCgsLndJWYWEh12PiiihuAABei+tKAftxyN0tr6Li2HcK7X6zw9uB+6G48TBX\nGoMqnb/w017zhFyJs/5SAwAAXJezzqbUVJU4vA24J4obD3PVMaiSQy/85C8oAAAAMBvFjQcyYwwq\nf0GBp3Hm2PFLteWuPAAAeDOKGwC4AmeOHb8Yd+UBAKD1KG4A4Cq4Ew8AAO7F1+wAAAAAAGAPFDcA\nAAAAPALD0gAA8CBLnk/RiUpDknTmzBl17LjXIe1UlB6TrvuFQ9YNAK1FcQMAgAc5U++nk349zz8I\nkU46qJ1KnZO/g9YNuJK23j3T1rkGGxsbJclpd8u80J6nobgBAAAArsIud8+0Ya7BimPfqUNw6JXn\nKrSzmqpSLZl2m+68806Ht+VsFDcAAADANTjj7pk1VSXcpdMOWl3crFmzRocOHZKPj4+WL1+ufv36\n2TMXAACmop8DAPfTquImNzdXRUVF2rZtmwoKCrRixQpt27bN3tnsoq6uzi7rqa+vt3ldjY2N+vHH\nH02ZYdysGdUBwJO4Uz8HAPg/rSpuvv76a40cOVKS1KtXL50+fVpnz55VUFCQXcO11blz5xQ7aZ6u\n6/qztq/rp3Nq52/bHWfOVpXrJ99gp4yZvFTFse8U2v1mp7cLAJ7EXfo5AEBzrSpuysvLFR0dbXnc\npUsXlZeXu+RBv0OXG+Ufekub1xPQgtc2+B6Xv2TKmMmaqhKntwkAnsad+jkAwP+xyw0FDMOwx2rs\nzsfHRxFBterQ7n/bvK6q06cV0qmTTa+t9CvV/5405waZtdUnJfnQLu16RLtmtm1WuzVVpU5vE9a5\naj93JWEhfjp36n8ltazvaqmAgDIdq6pxyLov5azvozO/957YlidukzPbcuY2ne9rrndKW87WquIm\nIiJC5eXllselpaUKDw+/5jJ5eXmtaarN5s2MN6Vd89xFu7TrQe2a2bZ521xdXW3aMRPnuVM/d6lx\n999tdgQHcNb30Znfe09syxO3yZltOb/fcZXjlj21qrgZMmSI0tLSNGnSJH377beKjIxUYGDgVV8/\ncODAVgcEAMDZ6OcAwD21qri54447dOuttyohIUF+fn5auXKlvXMBAGAa+jkAcE8+hjsNJAYAAACA\nq/A1OwAAAAAA2APFDQAAAACPQHEDAAAAwCPYZZ4bSTp37pyWLl2q4uJi+fn5ac2aNerevXuz13z4\n4Yd688035efnp7vuuksLFiywaTlnsSVLVVWVnn76aXXs2FGpqamSpPfff1+pqam68cYbJZ2/y84T\nTzzhNvnd7T3YuXOn/vznP8vPz08TJ07UhAkTXOI9WLNmjQ4dOiQfHx8tX75c/fr1s/wsOztbKSkp\n8vPz03333adZs2ZZXcYMLd2GnJwczZs3TzfddJMMw1CfPn307LPPumT+hoYGPffccyooKNC7775r\n0zJmsGUbjhw5ooyMDElyuffAk7X2+FRaWqrly5eroaFBhmFo2bJluuWWtk8u3ZZMkrRp0ybt2rVL\n/v7+WrVqVbNJS83MJZ2fRHXMmDH64x//qEGDBpmeq7GxUStWrNCPP/6opqYmLV68WAMGDLBLJlfs\nO1qTKTk5WQcPHlRjY6N+/etf6/7777drptbmkqT6+nqNHTtWs2fP1kMPPeQSuXbu3KlNmzapXbt2\nmjt3roYNG2ZqppqaGi1ZskRVVVX66aefNHv2bN177712zWQtl936acNO3n//fWP16tWGYRjGl19+\nacyfP7/Zz2tra42YmBjj7NmzhmEYxsSJE40jR45YXc6ZbMmyYMECY8OGDcbcuXMtz7333nvG2rVr\nnZbzalqb353eg5qaGiM2NtY4c+aMUVdXZ4wdO9aoqqoy/T3IyckxnnjiCcMwDOPIkSPG5MmTm/18\nzJgxxokTJ4ympiZj6tSpxpEjR6wu42yt2Yb9+/c3+yyZyVr+F1980diyZYsxfvx4m5dxttZsgyu9\nB4SnWW4AACAASURBVJ6utcen3/3ud8b27dsNwzCMgwcPGjNnzjQ90z/+8Q9j/PjxRlNTk/H3v//d\neO211+yWqS25Lli8eLHx8MMPGzk5OS6RKyMjw1i1apVhGIbxj3/8w5gwYYJd8rhi39GaTPv27TMe\nf/xxwzAM49SpU8bw4cPtmqm1uS545ZVXjAkTJhjvv/++S+Q6deqUMWrUKKOmpsYoKysznnvuOdMy\nTZs2zThy5IixZcsW45VXXjEMwzBKSkqM0aNH2zWTLbns1U/bbVja119/rZEjR0qS7rnnHh08eLDZ\nz6+77jrt3LnTMk9A586dVVlZaXU5Z7Ily29/+1v179/f2dFs0tr87vQeHDp0SLfddpuCgoLUvn17\nDRgwwPIaw8Qb/12cu1evXjp9+rTOnj0rSTp69Kg6d+6syMhI+fj4aNiwYfr666+vuYw7bMO+ffsk\nuc7M7db25zPPPKPhw4e3aBlna802SK7zHni61hyf8vLyFBYWpsrKSknnz5537drV9EyfffaZ4uLi\n5OPjo5tvvllz5syxW6bW5rrwmn379ik4OFi9e/e2a6a25Bo3bpyWLVsmSeratauqqqrsnsdV+o7W\n9AWDBg2yjAbp1KmTamtr7X5cam0fVVBQoMLCQrufGWlLruzsbA0ZMkQdOnRQWFiYVq9ebVqm++67\nT/v27VNoaKhOnTolyf7HKVtySfbrp+1W3JSXl1t2hI+Pj3x9fXXu3Llmr+nYsaMk6fvvv1dxcbFu\nv/12m5ZzFluydOjQ4YrL5uTk6PHHH9cjjzyi7777zuFZr6S1+d3pPbj459L5TqasrEySlJuba9p7\ncGmuLl26WGY3v1rmay1jhpZuQ2lpqaTzHcesWbM0bdo0ZWdnOzf0RaztT2uf/Sst42yt2QbJdd4D\nT9ea41N5ebmSkpL00UcfKS4uTqtWrdK8efNMzVRWVqbjx4+r+P+1d/dhUdX5/8dfgMjKSCIqeJu5\nrkBXkBmXebd88bbUblwrXU0xXXe7Udc0yUBF3TtNzVyTy4pLrd3VFkXNK/v2E/NyNTddwbFsqWwv\nyViNQEElBJKE8/vDS76SwAzjGWY4PB9/DWfmcz6v8zmHmXmfc+acvDz9+te/1rRp03Ty5EnTMt1K\nrh9++EGvvfaa5syZY2qeW83VokULBQQESJL+8pe/6KGHHjI9j+Qdnx2ufBb4+vpWvz+lp6crLi5O\nPj4+pmVyNZckrVq1SomJiaZmudVc33zzjcrLy/Xss89q8uTJOnLkiMczjRw5Uvn5+br//vs1ZcoU\nt4xZY31Ou/Sbm/T0dG3fvr16wzUMQ59++mmN11RVVdXa9uuvv1ZCQoJWr14tPz+/m56vq53ZbmUZ\nfuyee+5RSEiI4uLi9Mknn2j+/PnavXu36ZlvZGb+H2tK6+D6niFPrANncjXkOW/b++7MMtxxxx2a\nNWuWRo0apTNnzmjKlCn64IMP1KKFaT/nc5kr49mU1sF13bt399p10JSZ+f60ceNGjRw5Uk8//bQO\nHjyoFStW6NVXX/VYJh8fHxmGoaqqKm3YsEF2u12LFi2qcY67J3JJUmpqqiZOnFi9M/RW/ifNzHXd\nli1b9Pnnn+v11193OVdD+nPmOXe/bzUk0759+7Rz505t3LjRrZlq67u253bt2qW+ffuqc+fODts0\nZi7DMHTp0iWtX79eZ8+e1ZQpU/SPf/zDo5neffdddezYUampqTp58qSSk5OVnp7utkyOct1KG5c+\n/caNG6dx48bVmJaUlKTCwkJFRERU7wX58Ydrfn6+fvvb32rVqlWKiIiQJIWGhjps5w6uLkNtevTo\noR49eki69iX74sWL1R8g7mJm/qa0DkJDQ6uP1EhSQUGB+vTp45F1cKPrY3jduXPn1KFDhzozh4aG\nyt/fv842nuDKMoSGhmrUqFGSpG7duql9+/YqKChQly5dGje86s9vZht3ciVPWFiY16wDKzHz/Wnv\n3r2aO3euJGnAgAFaunSpxzN16NBBP/3pTyVJMTExysvLcymT2bneeecdHTp0SG+++ab++9//6t//\n/rfWrl2rnj17ejSXdK1YOnDggNavX1/rzllXeONnhyuZJOnQoUNKTU3Vxo0bq4tTM7mS68MPP9SZ\nM2e0d+9e5efnKyAgQB07dtSAAQM8miswMFB9+vSRj4+PunXrJpvNpgsXLph2KpgrmY4fP67Y2FhJ\nUmRkpPLz803/HtVYn9OmnZY2aNAg7dmzR5K0f/9+9evX76bXLFy4UEuWLFFkZGSD2jUWZ7MYhlGj\nctywYUN1dXvq1CmFhIQ02pfqG7mavymtg969eys7O1uXL19WaWmpPv74Y8XExHh8HQwaNEgZGRmS\npM8++0xhYWHVvy/r0qWLSktLlZeXp6tXr+rAgQP6+c9/Xm8bT3BlGXbv3q2UlBRJUlFRkS5cuKCw\nsDCvy39dbdt+U1kH1/14GbxpHVidq+9P3bt31yeffCJJ+vTTT9W9e3ePZ4qNjdWhQ4ckXTutsWPH\njqZlupVcb7/9ttLS0rR161YNHjxYS5YscamwMTvXmTNntHXrVqWkpMjf39/UPN722eFKpsuXL2vV\nqlV6/fXXFRQUZFqWW831yiuvKD09XVu3btW4ceM0Y8YMUwsbV3MNHDhQR48elWEYunjxosrKykz9\njYsrmW58n/rmm28UGBho+veoxvqc9jFMOkZXVVWlhQsXKjc3VwEBAXrppZcUFham1NRU9evXT23a\ntNHYsWMVHR1dXQlOmzZNcXFxtbbzBEfLEB0drTFjxqi8vFzFxcXq2LGjXnzxRfXq1UsJCQnV80hM\nTPTI5WRdzT9w4MAmsw569+6tvXv3asOGDfL19VV8fLwefPBBFRQUeHwdvPLKK8rMzJSfn58WL16s\nzz//XEFBQRo+fLiOHTuml19+WZI0cuRITZ06tdY2149oekpDl6G0tFTz5s1TcXGxDMPQzJkzq/f8\neFv+adOmKT8/X99++626deumqVOn6rHHHtPq1auVlZXVJNZBbcswatQoPf/8816zDqzM1fen8+fP\na+HChSovL5ePj48WLVpk2o/lXc0kSevWrdNHH30k6doRDTMvlnMrua5LSkrSo48+auqloF3NtWbN\nGr3//vvq1KlT9XeYTZs2mXKWgzd+djQ007Zt25SSkqI77rijenxWrlxpetHsylhdl5KSoq5du7rl\nUtCu5Nq2bZvS09Pl4+OjGTNm1HqxmMbMVFZWpgULFqioqEiVlZWaM2eO7rvvPlMzOcpl1ue0acUN\nAAAAAHiSaaelAQAAAIAnUdwAAAAAsASKGwAAAACWQHEDAAAAwBIobgAAAABYAsUNAAAAAEuguAEA\nAABgCRQ3AAAAACyB4gbNXmZmpu6//35PxwAAAMAtorgBJPn4+Hg6AgAAAG5RC08HABrTm2++qczM\nTL322muSpOnTp2vo0KHVzyclJal169b68ssv9fXXXysqKkpr1qxRQECApyIDAADASRy5QbPy5JNP\n6ty5c/roo4+0b98+lZaWqmfPnjVes3//fqWkpOjDDz9USUmJtm3b5qG0AAAAaAiO3KBZ8fX11R//\n+EfNnz9fVVVVevXVV1VUVFTjNcOGDdNtt91W/fjjjz9WfHy8J+ICAACgAThyg2bnzjvvVOvWrRUS\nEnLTURtJatOmTY3HxcXFjRkPAAAALqK4QbNz4MABtWjRQhUVFTp48OBNz1+8eLH6cXFxsYKDgxsz\nHgAAAFzEaWloVsrKyrRs2TKtX79eZWVlmjt3rhYvXlzjNYcOHdLly5fVqlUr7du3T6NHj/ZQWgAA\nADQExQ2alXXr1mno0KH62c9+JkkaOHCg/vznP9d4zYABAzRr1iydOnVK99xzjx5//HFPRAUAAEAD\n+RiGYTh60ZUrV/TQQw9p5syZOnr0qLKzs9W2bVtJ1y6lGxcX5/agQGNISkpS9+7d9cwzz3g6CgAA\nABrIqSM369evr/G7g4SEBAoaAAAAAF7F4QUFvvrqK50+fVpxcXG6fpDHiYM9AAAAANCoHJ6W9swz\nz2jx4sXauXOnunbtqqNHj6qwsFAVFRVq3769kpOTuZoUAAAAAI+r97S0Xbt2qW/fvurcubOka0ds\nxowZo+DgYEVGRio1NVXr1q1TcnJyvZ3Y7XbzEgNAMxcTE+PpCAAAeKV6i5uDBw/q7Nmz2rt3r/Lz\n8xUQEKDf/e53ioyMlHTt7u1Lly51qiM+jP+P3W5nPG7AeNTEeNTEeNTEziIAAOpWb3GzZs2a6scp\nKSnq2rWr/v73vyskJEQRERHKyspSeHi420MCVlRZWamcnJybpufm5iooKMi0PiTJz8/PlPnVp2fP\nno3SDwAAQF0afJ+byZMnKykpSTabTTabTcuWLXNHLsDycnJyFJ/0tgLbhN785Hv5pvRRdPYLtQpq\nV3sfJiorPqe/LX+CnR0AAMCjnC5uZs2aVf14586dbgkDNDeBbULVum0Xt82/rLjA7X0AAAB4C4eX\nggYAAACApoDiBgAAAIAlUNwAAAAAsASKGwAAAACW4FRxc+XKFY0YMUK7du1Sfn6+4uPjNXnyZM2d\nO1c//PCDuzMCAAAAgENOFTfr169XcHCwJGnt2rWKj4/X5s2bdfvtt2vHjh1uDQgAAAAAznBY3Hz1\n1Vc6ffq04uLiZBiGsrKyNGTIEEnSkCFDdPjwYbeHBAAAAABHHBY3K1euVGJiYvXf5eXl8vf3lyS1\na9dO58+fd186AAAAAHBSvcXNrl271LdvX3Xu3LnW5w3DcEsoAAAAAGioFvU9efDgQZ09e1Z79+5V\nQUGB/P39FRgYqIqKCrVs2VIFBQUKDQ11qiO73W5KYKtgPGpqjuORm5vr6Qimys7OVklJiVvm3Ry3\nDwAA0HD1Fjdr1qypfpySkqKuXbvq+PHj2rNnjx555BFlZGQoNjbWqY5iYmJuLamF2O12xuMGzXU8\ngoKCpPfyPR3DNFFRUQoPDzd9vs11+6gLhR4AAHVr8H1uZs+erV27dmny5Mn67rvvNHbsWHfkAgAA\nAIAGqffIzY1mzZpV/XjTpk1uCQMAAAAArmrwkRsAAAAA8EYUNwAAAAAsgeIGAAAAgCVQ3AAAAACw\nBIobAAAAAJbg8Gpp33//vRITE1VUVKSKigo9++yzysjIUHZ2ttq2bStJmj59uuLi4tweFgAAAADq\n4rC42b9/v6KjozV9+nTl5eVp2rRpuvfee5WQkEBBAwAAAMBrOCxuRo8eXf04Ly9PnTp1kiQZhuG+\nVAAAAADQQE7/5mbChAmaP3++FixYIEnasmWLnnzySc2bN0+XLl1yW0AAAAAAcIaP0YBDMCdPnqwu\ncIKDgxUZGanU1FQVFBQoOTm5znZ2u92UsICV5Obmat17+Wrdtovb+jj39XEFtglzax+SdPniN/rt\nQx3VvXt3t/aDa2JiYjwdAQAAr+TwtLTs7Gy1a9dOnTp1UmRkpCorKxUeHq6QkBBJ0rBhw7R06VKH\nHfFh/H/sdjvjcYPmOh5BQUHSe/mejmGaqKgohYeHmz7f5rp91IWdRQAA1M3haWnHjh3Tm2++KUkq\nLCxUWVmZlixZoi+//FKSlJWV5ZYvNAAAAADQEA6P3EycOFELFizQpEmTdOXKFS1ZskSBgYFKSkqS\nzWaTzWbTsmXLGiMrAAAAANTJYXETEBCg1atX3zR9586dbgkEAAAAAK5w+mppAAAAAODNKG4AAAAA\nWALFDQAAAABLoLgBAAAAYAkUNwAAAAAsweHV0r7//nslJiaqqKhIFRUVevbZZxUZGakXXnhBhmGo\nQ4cOWrlypfz9/RsjLwAAAADUymFxs3//fkVHR2v69OnKy8vTtGnTdO+992ry5Ml64IEHtGbNGu3Y\nsUMTJkxojLwAAAAAUCuHp6WNHj1a06dPlyTl5eWpU6dOysrK0tChQyVJQ4YM0eHDh92bEgAAAAAc\ncHjk5roJEybo3Llzeu211/SrX/2q+jS0du3a6fz5824LCAAAAADOcLq4SUtL08mTJ5WQkCDDMKqn\n3/i4Pna7veHpLIzxqKk5jkdubq6nI5gqOztbJSUlbpl3c9w+AABAwzksbrKzs9WuXTt16tRJkZGR\nqqqqks1mU0VFhVq2bKmCggKFhoY67CgmJsaUwFZgt9sZjxs01/EICgqS3sv3dAzTREVFKTw83PT5\nNtftoy4UegAA1M1hcXPs2DHl5eVpwYIFKiwsVFlZmWJjY7Vnzx498sgjysjIUGxsbGNkBRpNZWWl\ncnJy3NrH6dOn3Tp/AACA5sZhcTNx4kQtWLBAkyZN0pUrV7R06VLdddddmj9/vrZt26bOnTtr7Nix\njZEVaDQ5OTmKT3pbgW0cH5V0VdHZL9Su651umz8AAEBz47C4CQgI0OrVq2+avmnTJrcEArxFYJtQ\ntW7bxW3zLysucNu8AQAAmiOHl4IGAAAAgKaA4gYAAACAJVDcAAAAALAEihsAAAAAlkBxAwAAAMAS\nHF4tTZJWrlyp48ePq7KyUk899ZT279+v7OxstW3bVpI0ffp0xcXFuTUoAAAAANTHYXFz9OhRnTp1\nSmlpabp06ZLGjh2r/v37KyEhgYIGAAAAgNdwWNz07dtXd999tyTptttuU1lZmaqqqmQYhtvDAQAA\nAICzHP7mxtfXV61atZIkpaena/DgwfL19dXmzZv15JNPat68ebp06ZLbgwIAAABAfZz6zY0k7du3\nTzt37tTGjRuVnZ2t4OBgRUZGKjU1VevWrVNycnK97e12+y2HtRLGoyZvG4/c3FxPR2hysrOzVVJS\n4pZ5e9v2AQAAvJNTxc2hQ4eUmpqqjRs3qnXr1urfv3/1c8OGDdPSpUsdziMmJsblkFZjt9sZjxt4\n43gEBQVJ7+V7OkaTEhUVpfDwcNPn643bhydR6AEAUDeHxc3ly5e1atUqvfXWW9e+8EmaPXu2Zs6c\nqYiICGVlZbnlCw2ApsOoqtLp06fdMu/c3Nzq956ePXvKz8/PLf0AAICmz2Fx8/777+vSpUuaM2eO\nDMOQj4+PHn30USUlJclms8lms2nZsmWNkRWAlyovOa/FqYUKbJPjng7ey1dZ8Tn9bfkT7EwBAAB1\ncljcjB8/XuPHj79p+i9+8Qu3BALQNAW2CVXrtl08HQMAADRjDq+WBgAAAABNAcUNAAAAAEuguAEA\nAABgCRQ3AAAAACzBqfvcrFy5UsePH1dlZaWeeuopRUdH64UXXpBhGOrQoYNWrlwpf39/d2cFAAAA\ngDo5LG6OHj2qU6dOKS0tTZcuXdLYsWPVv39/TZ48WQ888IDWrFmjHTt2aMKECY2RFwAAAABq5fC0\ntL59+2rt2rWSpNtuu01lZWXKysrS0KFDJUlDhgzR4cOH3ZsSAAAAABxwWNz4+vqqVatWkqTt27dr\n8ODBKi8vrz4NrV27djp//rx7UwIAAACAA05fUGDfvn3asWOHkpOTZRhG9fQbHwMAAACApzh1QYFD\nhw4pNTVVGzduVOvWrWWz2VRRUaGWLVuqoKBAoaGhDudht9tvOayVMB41edt45ObmejoCapGdna2S\nkhJPxwAAAF7KYXFz+fJlrVq1Sm+99ZaCgoIkSQMGDFBGRoYefvhhZWRkKDY21mFHMTExt57WIux2\nO+NxA28cj6CgIOm9fE/HwI9ERUUpPDzc0zE8ytt2BAAA4E0cFjfvv/++Ll26pDlz5sgwDPn4+GjF\nihVauHChtm7dqs6dO2vs2LGNkRUAAAAA6uSwuBk/frzGjx9/0/RNmza5JRAAAAAAuMLpCwoAAAAA\ngDejuAEAAABgCRQ3AAAAACyB4gYAAACAJVDcAAAAALAEp4qbkydPasSIEdqyZYskKSkpSQ8//LCm\nTJmiKVOm6ODBg24NCQAAAACOOLwUdHl5uVasWKFBgwbVmJ6QkKC4uDi3BQMAAACAhnB45CYgIEBv\nvPGG2rdv3xh5AAAAAMAlDo/c+Pr6qmXLljdN37x5szZt2qT27dsrOTlZwcHBbgkI3KiyslI5OTlu\n7+f06dNu7wMAAADmcljc1GbMmDEKDg5WZGSkUlNTtW7dOiUnJ9fbxm63uxTQqhiPmpwdj9zcXK3Y\n8qkC24S6NU/R2S/Uruudbu0DDZedna2SkhJPxwAAAF7KpeKmf//+1Y+HDRumpUuXOmwTExPjSleW\nZLfbGY8bNGQ8goKCFNgmX63bdnFrprLiArfOH66JiopSeHi4p2N4FDtGAACom0uXgp49e7a+/PJL\nSVJWVlaz/7IBAAAAwPMcHrk5ceKEFi1apAsXLsjPz09paWmaPXu2kpKSZLPZZLPZtGzZssbICgAA\nAAB1cljc9O7dW7t3775p+ogRI9wSCAAAAABc4dJpaQAAAADgbShuAAAAAFgCxQ0AAAAAS6C4AQAA\nAGAJFDcAAAAALMGp4ubkyZMaMWKEtmzZIknKz89XfHy8Jk+erLlz5+qHH35wa0gAAAAAcMRhcVNe\nXq4VK1Zo0KBB1dPWrl2r+Ph4bd68Wbfffrt27Njh1pAAAAAA4IjD4iYgIEBvvPGG2rdvXz0tMzNT\nQ4YMkSQNGTJEhw8fdl9CAAAAAHCCw+LG19dXLVu2rDGtvLxc/v7+kqR27drp/Pnz7kkHAAAAAE5q\ncaszMAzDqdfZ7fZb7cpSGI+anB2P3NxcNyeBN8vOzlZJSYmnYwAAAC/lUnFjs9lUUVGhli1bqqCg\nQKGhoQ7bxMTEuNKVJdntdsbjBg0Zj6CgIOm9fDcngreKiopSeHi4p2N4FDtGAACom0vFzYABA5SR\nkaGHH35YGRkZio2NNTsXANRgVFXp9OnTbu+nZ8+e8vPzc3s/AADAfA6LmxMnTmjRokW6cOGC/Pz8\nlJaWpo0bNyoxMVFbt25V586dNXbs2MbICqAZKy85r8WphQpsk+O2PsqKz+lvy59o9keHAABoqhwW\nN71799bu3btvmr5p0ya3BAKAugS2CVXrtl08HQMAAHgpp27iCQAAAADejuIGAAAAgCVQ3AAAAACw\nhFu+zw1wXWVlpXJyGv5j79zc3GuXeHZCY1wtCwAAAE0TxQ1Mk5OTo/iktxXYxvF9j27i5L1ris5+\noXZd72z4/AEAAGB5LhU3mZmZeu6559SrVy8ZhqGIiAgtWrTI7Gxogtx9Nauy4gK3zRsAAABNm8tH\nbu677z6tXbvWzCwAAAAA4DKXLyhgGIaZOQAAAADglrhc3OTk5GjGjBmaNGmSDh8+bGYmAAAAAGgw\nl05L6969u2bNmqVRo0bpzJkzmjJlij744AO1aFH37Ox2u8shrciK45Gbm+vpCMAty87OVklJiadj\nAAAAF7hU3ISFhWnUqFGSpG7duql9+/YqKChQly51/5A8JibGtYQWZLfbLTkeQUFBTl/1DPBWUVFR\nCg8P93SMOllxxwgAAGZxqbjZvXu3cnNzNWvWLBUVFenChQsKCwszOxtM5Oo9aBqCe9AAAADAk1wq\nboYOHap58+Zp4sSJMgxDS5curfeUNHjeLd2DxkncgwYAAACe5FJFYrPZ9Prrr5udBW7GPWgAAABg\nZS5fLQ0AAAAAvAnFDQAAAABLoLgBAAAAYAlcBaAe7/7vXv39/52Qj4+PqfMtLS2TzfaP6r8fGRyh\nCY89bGofAAAAQHNDcVOPi5eKVdKyl+nFjVpKN94isLj4srnzBwAAAJohl4ub5cuX68SJa0c1FixY\noOjoaDNzNRtGVaUK8r/Vf/7zH7f2wz1oAAAAYHUuFTdZWVnKzc1VWlqacnJytHDhQqWlpZmdrVko\nLc7X//73O/3j1D639sM9aAAAAGB1LhU3R44c0fDhwyVJPXv21HfffafS0lLZbDZTwzUX7r7/jMQ9\naAAAAGB9LhU3hYWFioqKqv67bdu2KiwstFxx0+onP5Fv8aeSyb+5ufL9FQX8JECS5FNSqNKq20yd\nf23KSy5IMvm3Qxbto7H6sUofjdVPY/RRVnzOrfMHAADuZcoFBQzDcPgau91uRleNqucdnbVkRmdP\nxzBJP/rwun6s0kdj9dM4y1JSUtIk368AAICLxU1oaKgKCwur/z537pw6dOhQ5+tjYmJc6QYAAAAA\nnObSTTwHDRqkjIwMSdJnn32msLAwBQYGmhoMAAAAABrCpSM3ffr00V133aUJEybIz89PixcvNjsX\nAAAAADSIj+HMD2YAAAAAwMu5dFoaAAAAAHgbihsAAAAAlkBxAwAAAMASTLnPjSRdvXpViYmJysvL\nk5+fn5YvX66uXbvWeE1xcbGef/55tW7dWmvXrpUkvfPOO1q7dq1uv/12SdeuxPb000+bFctjXB0P\nZ9o1Rc4s17vvvqu//vWv8vPz07hx4/T4449bcvtYvny5Tpw4IR8fHy1YsEDR0dHVzx0+fFhr1qyR\nn5+f/ud//kczZsxw2Kapa+h4ZGZm6rnnnlOvXr1kGIYiIiK0aNEiDy6Bueobj4qKCiUnJysnJ0fb\nt293qg0AAM2KYZJ33nnH+P3vf28YhmH885//NObMmXPTa+bOnWukpqYas2fPrp62c+dOY8WKFWbF\n8Bqujocz7ZoiR8tVVlZmPPDAA8bly5eN77//3njooYeM4uJiy20fmZmZxtNPP20YhmGcOnXK+OUv\nf1nj+dGjRxv5+flGVVWV8cQTTxinTp1y2KYpc2U8jh49WuN/xkocjccf/vAHY/PmzcZjjz3mdBsA\nAJoT005LO3LkiIYPHy5JGjhwoI4fP37Ta/70pz+pd+/eZnXp1VwdD2faNUWOluvEiRO6++67ZbPZ\nFBAQoHvvvbf6NYaFLuh34zj07NlT3333nUpLSyVJZ86cUXBwsMLCwuTj46O4uDgdOXKk3jZNXUPH\n41//+pcka20TN3K0rufNm6fBgwc3qA0AAM2JacVNYWGhQkJCJEk+Pj7y9fXV1atXa7ymVatWtbbN\nzMzUb37zG02bNk1ffPGFWZE8ytXxcKZdU+RouW58XpJCQkJ0/vx5SVJWVpZlto8fL2fbtm1Vag5G\n1gAAAxxJREFUWFhY63PXx6C+Nk1dQ8fj3LlzkqScnBzNmDFDkyZN0uHDhxs3tBs5WteO3jNqawMA\nQHPi0m9u0tPTtX37dvn4+Ei6thf1008/rfGaqqoqp+Z1zz33KCQkRHFxcfrkk080f/587d6925VY\nHmPmePyYq+08yYzxuL5n3grbR33qOwJR13NWPWohOTced9xxh2bNmqVRo0bpzJkzmjJlij744AO1\naGHaTwi9hivr2srbBwAAjrj0bWDcuHEaN25cjWlJSUkqLCxURERE9R55Z75s9OjRQz169JB07Yvs\nxYsXZRhG9RfjpsDM8QgNDXWpnTdxZTxCQ0Orj9RIUkFBgfr06WOJ7eNG19fvdefOnVOHDh2qn/vx\nGISGhsrf37/ONk2dK+MRGhqqUaNGSZK6deum9u3bq6CgQF26dGnc8G5Q33iY2QYAAKsy7bS0QYMG\nac+ePZKk/fv3q1+/frW+zjCMGnsWN2zYoPT0dEnSqVOnFBIS0mS/uN7I1fFwtl1T42i5evfurezs\nbF2+fFmlpaX6+OOPFRMTY7ntY9CgQcrIyJAkffbZZwoLC1NgYKAkqUuXLiotLVVeXp6uXr2qAwcO\n6Oc//3m9bZo6V8Zj9+7dSklJkSQVFRXpwoULCgsL89gymMmZdV3be4ZVtw8AABrKxzDpHIaqqiot\nXLhQubm5CggI0EsvvaSwsDClpqaqX79+io6O1pgxY1ReXq7i4mJ17NhRL774onr16qWEhITqeSQm\nJlriMqaujsfAgQNrbdfUORqP3r17a+/evdqwYYN8fX0VHx+vBx98UAUFBZbbPl555RVlZmbKz89P\nixcv1ueff66goCANHz5cx44d08svvyxJGjlypKZOnVprm4iICA8ugbkaOh6lpaWaN2+eiouLZRiG\nZs6cqdjYWA8vhXnqG49p06YpPz9f3377rbp166apU6fqscce0+rVq5WVlWXJ7QMAgIYwrbgBAAAA\nAE8y7bQ0AAAAAPAkihsAAAAAlkBxAwAAAMASKG4AAAAAWALFDQAAAABLoLgBAAAAYAkUNwAAAAAs\n4f8D66wFg3fRbs0AAAAASUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -341,56 +349,75 @@ } ], "source": [ - "# Pulling in DataFrame and dropping blank values\n", - "fields = ['Price', 'Number Of Stories', 'Total area', 'Type', 'Year Built']\n", - "data = local_csv('loopnetlistingswithbrokers (3).csv')[fields]\n", - "data = data[data != ' '].dropna()\n", - "\n", - "# Formatting values from strings with thousands separators into integers\n", - "data['Total area'] = data['Total area'].str.replace(' SF', '').str.replace(',','')\n", - "data['Price'] = data['Price'].str.replace(',','').str.replace('$', '')\n", - "data = data[[i.isdigit() for i in data['Price']]]\n", - "for i in [0,1,2,4]:\n", - " data[fields[i]] = data[fields[i]].astype(int)\n", - "\n", - "# Restricting the real estate to only multifamily properties\n", - "data = data[data['Type'] == 'Multifamily']\n", - "\n", - "# Using log price transforms the price distribution to a more normal one\n", - "# Normally distributed independent variables are a linear regression assumption\n", - "data['log Price'] = np.log10(data['Price'])\n", - "\n", - "data.ix[:, data.columns != 'Price'].hist(bins=10);" + "from quantopian.interactive.data.quandl import fred_unrate as unemployment_bz\n", + "from quantopian.interactive.data.quandl import rateinf_inflation_usa as inflation_bz\n", + "from quantopian.interactive.data.quandl import bundesbank_bbk01_wt5511 as gold_bz\n", + "from quantopian.interactive.data.quandl import currfx_usdeur as fx_bz\n", + "\n", + "import blaze as bz\n", + "from odo import odo\n", + "\n", + "# Start date dictated by sector ETF XLP\n", + "start = '2002-01-01'\n", + "end = '2017-01-01'\n", + "\n", + "# Sample period will be 2010-2014\n", + "s = '2010-01-01'\n", + "e = '2015-01-01'\n", + "\n", + "index = pd.date_range(start=start, end = end, freq= 'MS')\n", + "\n", + "# Migrating Blaze expressions into Pandas DataFrames and setting index\n", + "unemployment = odo(unemployment_bz, pd.DataFrame).set_index(['asof_date'])\n", + "inflation = odo(inflation_bz, pd.DataFrame)\n", + "inflation = inflation.set_index(inflation['asof_date'] + pd.Timedelta('1 days'))\n", + "gold = odo(gold_bz[gold_bz.asof_date >= start], pd.DataFrame).set_index(['asof_date'])\n", + "fx = odo(fx_bz, pd.DataFrame).set_index(['asof_date'])\n", + "xlp = get_pricing('XLP', start_date=start, end_date=end, fields = 'price')\n", + "\n", + "data = pd.DataFrame(columns = ['unemployment','cpi','gold','fx','xlp'],\n", + " index = index[1:])\n", + "\n", + "# Adjusting data along points mentioned above and putting into a Pandas DataFrame\n", + "data['unemployment'] = unemployment.shift().loc[index].ffill()['value'][1:]\n", + "data['gold'] = gold['value'].sort_index().asof(index).ffill()[1:]\n", + "data['fx'] = fx['rate'].sort_index().asof(index).ffill()[1:]\n", + "data['xlp'] = xlp.asof(index).ffill()[1:]\n", + "\n", + "# Finding first order differences; \n", + "# differences are more likely to be stationary and normally distributed\n", + "data = data.pct_change()[1:]\n", + "\n", + "# Inflation is already a first order difference of the consumer price index\n", + "# therefore we will leave it alone\n", + "data['cpi'] = inflation.shift().loc[index].ffill()['value'][1:]\n", + "\n", + "# Plot histograms for each variable\n", + "data.hist(bins=10);" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Let's begin by attempting to model `log Price` using only `Year Built` as our explanatory variable. We'll also define a linear regression plotting function to make this step simpler as we repeat it for the other data dimensions.\n", + "A OLS fitted simple linear regression returns a single set of coefficients that minimizes the sum of squared residuals within the training set. This model is simply an estimate. It will usually have bias (difference betwen model expected value and true value) and variance (sensitivity to small changes in the training set). As we add more models, we should see the aggregate model have a higher $R^2$ as the model leaves less and less unexplained variance.\n", "\n", - "A OLS fitted simple linear regression returns a single set of coefficients that minimizes the sum of squared residuals within the training set. This model is simply an estimate. It will usually have bias (difference betwen model expected value and true value) and variance (sensitivity to small changes in the training set). As we add more models, we should see the aggregate model have a higher $R^2$ as the model leaves less and less variance in `log Price` unexplained." + "Let's begin by attempting to model `xlp` returns using four different models, each a simple linear regresion with exactly one explanatory variable. We'll also define a linear regression plotting function to make this step simpler." ] }, { "cell_type": "code", - "execution_count": 106, + "execution_count": 292, "metadata": { - "collapsed": false + "collapsed": false, + "scrolled": false }, "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "rsquared 0.0190269927541\n" - ] - }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0oAAAHxCAYAAABTSExyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3X10XOVh5/HfSDOyrJdlJNsjLGHLG4EJiJc6cixeLPvg\nuPZxQ0ugvDQJ5nizp6eNIU3rtAlpE3xC49MtkFASQ1MvSd2cJnAaTs3Lbk3IdkPW4PUYhMLaEOwi\nEtuMbMnYGvBIljQjzf4xaDy61ozuaOa+zXw/5/gcX83bc+c+M/P87vNyfclkMikAAAAAQFqF0wUA\nAAAAALchKAEAAACAAUEJAAAAAAwISgAAAABgQFACAAAAAAOCEgAAAAAY+K188uHhYX3lK1/R+++/\nr3g8rrvvvlsrV65M37537149/PDDqqys1KpVq7R582YriwMAAAAApljao7Rr1y595CMf0Q9/+EM9\n8sgj2rZt25Tbt23bpu3bt+uJJ57Qyy+/rN7eXiuLAwAAAACmWBqUGhsbNTg4KEl6//331djYmL7t\n2LFjCgaDampqks/n0+rVq7Vv3z4riwMAAAAAplg69G7Dhg3atWuX1q1bpzNnzmjHjh3p2957770p\nwamxsVHHjh2zsjgAAAAAYIqlQenZZ5/VhRdeqB07duitt97S17/+df3kJz+Z9r7JZHLG5+vu7i52\nEQEAAACUmI6OjoKfw9Kg9Nprr6mrq0uS9NGPflQnTpxQMpmUz+dTKBTSyZMn0/ft7+9XKBSa8TmL\nsdOAGd3d3dQ32Io6BztR32An6hvsVKzOFUvnKLW2tuqXv/ylJCkSiaimpkY+n0+S1NLSoqGhIfX1\n9SmRSOjFF1+csiIeAAAAADjF0h6lO+64Q3/5l3+pjRs3anx8XPfff7927dql+vp6rV27Vlu3btWW\nLVskSTfeeKNaW1utLA4AAAAAmGJpUKqpqdHf/d3fZb19+fLlevLJJ60sAgAAAADkzdKhdwAAAADg\nRQQlAAAAADAgKAEAAACAAUEJAAAAAAwISgAAAABgQFACAAAAAAOCEgAAAAAYEJQAAAAAwICgBAAA\nAAAGBCUAAAAAMCAoAQAAAIABQQkAAAAADAhKAAAAAGBAUAIAAAAAA4ISAAAAABgQlAAAAADAgKAE\nAAAAAAYEJQAAAAAwICgBAAAAgAFBCQAAAAAMCEoAAAAAYEBQAgAAAAADghIAAAAAGBCUAAAAAMCA\noAQAAAAABgQlAAAAADAgKAEAAACAAUEJAAAAAAwISgAAAABgQFACAAAAAAOCEgAAAAAYEJQAAAAA\nwICgBAAAAAAGBCUAAAAAMCAoAQAAAIABQQkAAAAADAhKAAAAAGBAUAIAAAAAA4ISAAAAABgQlAAA\nAADAwO90AQAAAAA7jY3FFQ4PKBbzq64uoc7OkKqqAk4XCy5DjxIAAADKSjg8oGi0RYlEk6LRFoXD\nA04XCS5EUAIAAEBZicX8ObcBiaAEAACAMlNXl8i5DUgEJQAAAJSZzs6QgsGI/P5+BYMRdXaGnC4S\nXIh+RgAAAJSVqqqAurpanC4GXI4eJQAAAAAwICgBAAAAgAFBCQAAAAAMCEoAAAAAYMBiDgAAAIDB\n2Fhc4fCAYjG/6uoS6uwMqaoq4HSxYCN6lAAAAACDcHhA0WiLEokmRaMtCocHnC4SbEaPEgAAAMpW\ntp6jaFR6441TGhmpUHX1hNrbnS4p7EaPEgAAAMpWtp6jI0cGNDQ0T+PjDRoamqcjR+hRKjf0KAEA\nAKBsxWL+abcXL16gWCyikRG/qqsTWrx4gRPFg4MsDUpPPfWUnnnmGfl8PiWTSb3xxht67bXX0rev\nWbNGzc3N8vl88vl8euihhxQKhawsEgAAAJBWV5dQNDp1W5IaGnxqb29J/z0YjNhdNDjM0qB06623\n6tZbb5UkvfLKK3r++een3O7z+fT444+rurraymIAAAAA0+rsDCkcjkyZo5Tr7ygftg29e/TRR/Wt\nb31ryt+SyaSSyaRdRQAAAACmqKoKqKurxfTfUT5sCUoHDhzQwoULNW/evPNu27p1q959910tX75c\nW7ZssaM4AAAAAJCTL2lDl859992n3/3d39XHP/7xKX9/5pln1NXVpWAwqM2bN+uWW27RunXrsj5P\nd3e31UUFAAAA4HEdHR0FP4ctPUr79+/Xfffdd97fb7rppvT/V61apcOHD+cMSlJxdhowo7u7m/oG\nW1HnYCfqG+xEfYOditW5Yvl1lAYGBlRbWyu/37j0Ykx33nmnRkdHJUmvvvqqLrnkEquLAwAAAAAz\nsrxH6eTJk1PmJu3atUv19fVau3at1q9frzvuuEO1tbW67LLLtH79equLAwAAAAAzsjwotbe3a8eO\nHentm2++Of3/jRs3auPGjVYXAQAAAADyYvnQOwAAAADwGtuuowQAAAC4wdhYXOHwwJSLyVZVBZwu\nFlyGHiUAAACUlXB4QNFoixKJJkWjLQqHB5wuElyIoAQAAICyEosZV2NmkBXOR1ACAABAWamrS+Tc\nBiSCEgAAAMpMZ2dIwWBEfn+/gsGIOjtDThcJLkQ/IwAAKDtM5i9vVVUBdXW1OF0MuBw9SgAAoOww\nmR/ATOhRAgAAZYfJ/MhHZg/knDlnJUmjo3PpjSxx9CgBAICyw2R+5COzB3L//nrt3x+gN7IMEJQA\nAEDZYTI/8pHZ4zgyUqGREf+0t6G0cGQBAEDZYTI/8lFXl1A0mvp/dfWEpMSU21CaCEoAAABADp2d\nIYXDEcVifq1YMTlHqT89RwmliaAEAAA8gSW94RR6IMsTc5QAAIAnsKQ3ADsRlAAAgCewpDcAO/EN\nAwAAPCFzQv3kNmbGkEVgdghKAADAEzIn1Jf6JPpihpvJIYuSFI1K4XCE+TaACQQlAADgCeU0ob6Y\n4YYhi8Ds8EkBAJQdhiJZi/e3cMUMNwxZBGaHxRwAAGWH1dOsxftbOGOYKSTcdHaGFAxG5Pf3KxiM\nlPSQRaCY6FECAJQdhiJZi/e3cMWcj1VOQxaBYuKbCwBQdhiKZC3e38IRbgDnEZQAAGWnnFZPc0K+\n7y9zmgC4EUEJAFB2OFtvrXzfX5avBuBGLOYAAAAcxZwmAG7ENxEAOGxy2FFPz7CGhyMMO0LZYU5T\naZluKCXgRfQoAYDDJocdjY8vZClllCWWry4tLA+PUkGPEgA4jGFH5YEFC7Jjzlhpme47rabGocIA\nBaBHCQAcVswLS8K9OMte+sbG4tqzJ6Ldu/u1Z09EY2Nxp4vkCL7TUCoISgDgsMlhR5WVxxl2VMLo\nOSx9hOEUhlKiVPAtDQAOmxx2VFNzQh0dDD8qVSxY4A2FDJEkDKeU4lBKhs6WJ3qUAACwAWfZC2fH\n0LZCeoUYcla66C0sT+V5qgMAAJuV4ll2u9lxYdpCeoU6O0MKhyMsi12C6C0sTxxlAADgCWYaq4UO\nkSpkiCRhuHQxdLY8EZQAAIBpTs7VMNNYLbTXiV6h8mOmTlMvyhNBCQAAmGbH8LdszDRWCx0iRa9Q\n+clWp1nAAQQlAABgmpNzNcyEGIZIIV/Z6rSTJwXgDqx6BwAATHP7ym6sLoh8ZavTLOAAjjgAADDN\n7XM1GDpXuqwaCpdZp+fMOat4XNq9u1+9vX1qbm5UIJB6DbedFID1CEoAAMA0goi7lNM8GquGwmXW\n6T17IunXaG6ep76+A2pra3blSQFYj6AEAADgUeU0jybfoXCzCZGZzxkI+NXW1qwNG5pmX2h4GnOU\nAAAAPMqr82jGxuLasyei3bv7tWdPRGNj8Rkfk+/8uMkQmUg0KRptUTg8UPTXQGkjKAEAAHiUVxv2\nswkx+S7UMZsQyWIgyOSN0w4AAAA4j9sX18hmNiEm3/lxs1kqnjl4yERQAgB4XjlNaIcz7K5jZl/P\nqw17O6535dUQCfcgKAEAPK+cJrTDGXbXsVKv03aEGK+GSLgHQQkA4HlendCO4rOq5yezTsXjce3b\nd9rS3qVSr9NOhBh6npEvFnMAAHieVye0o/iyLRIwm1XWMmXWqcOHBzQ+3pzXQgT5ok4X32wWkJhU\naP2BNxGUAACex0pVmJStJ6aQRrI0tY5VVg5q6dILsr5mMVCnzTMbYgrppSu0/sCbSqsfFwBQlpiL\nUFxeHqKUbZEAY6M4GpX27ImY3sfMOpZ6jXPPZ0VvD3XaPLPzuQpZQKLUh0JievQoAUAZYzgJpuPl\ns+fZemKMjeIjR2a/j/T2uIvZEFPIccusP/F4XL29fXxvlgHiMACUsVJfWQuz44Wz59l6vbL1xBhX\nWRsbC+qNNyIaGfGrujqhyy9PFvwasymv1Y/1OjP7nq2naLrHzvb7LbP+HDnSp+bmK5VI+PneLHH0\nKAFAGfNCgxj288JCAvn2ek2Gmw0bmtTV1aLjx6MaGmrR+HiThoZadPToyYJfo5jltaocXmNm37P1\nFBXzfcusP21tzQoEzn1X8r1ZujiyAFDGKivP6OmnY4rFqlRXN6bf//2kpCaniwWHeeFCnYWG/NbW\nkGKxUxoZqVB19YRaW1P7mNkLcfDgabW1hRQIBGb1GsUqbzmf0DCz79l6+Kx63+y4WC7cwdJP2lNP\nPaVnnnlGPp9PyWRSb7zxhl577bX07Xv37tXDDz+syspKrVq1Sps3b7ayOAAAgzffPK2RkRZNTPg1\nMlKhN9+MaN06p0sFpxW6kIAdQ8UKbawGg1J7+7yM7YikqcNRx8f9Onx4QO3t5xZxcKK85dwwd+P7\n5oUTCSgOS4PSrbfeqltvvVWS9Morr+j555+fcvu2bdv0gx/8QKFQSHfeeafWr1+vtrY2K4sEAMhw\n5ky9Fi9uydj+wMHSoFTYMfet0MZqtsdn9josXXqBenuPy+8vvEFcSHnLuWHuxveNFQnLh219t48+\n+qi+9a1vpbePHTumYDCopqbUEI/Vq1dr3759BCUAsFFDw4j6+6duF1u5TkQv1/2W7BkqVmhjNdvj\nM3shAgG/rrmmQV1dhQ9HLaS85dwwd8v7Vs6f53Jmy2IOBw4c0MKFCzVv3rku7vfee0+NjY3p7cbG\nRg0MlM/kRACYNLlE98svD9u+1OymTZeqqalHVVW/UlNTjzZturTor+GWieh2L4Xulv12ghcWg8iG\npb8xnczP88mTTdqx4yDLg5cBW3qUfvKTn+iWW27JeZ9k8vxlOafT3d1djCIBplDfYIeenqjOnGmV\ntFCvvnpWhw79Hy1bFrTt9a+9VpKGJUmHDv0q533j8YQOHoxpeLhKNTVjuuKKuimrP02np2dY4+Nn\n09uVlcdVU3Oi0GLn7dz7nGL1++yW/c7Fqu+4QCCh/v630vVkwYI6dXe7a99zqalJ/YvHE/rhD9/K\nq74jOy//pmZ+nt95Z0gjI0nF42ckWf9dAufY8mnfv3+/7rvvvil/C4VCOnny3FKc/f39CoVmPmvT\n0dFR9PIB0+nu7qa+wRYDA/1KJJr09ttv6+KLL5bfX6+ODneuPLdnT0RNTeeGssTjEV1zTe6hLcPD\nkfR8FUkKBueqo8P+YUST7/Mkq99nt+x3NlZ/x11zTXGex8khT7Op75ie139TMz/P778/qOrqYV18\ncWrbzd/Z5apYodzyoXcDAwOqra2V3z81k7W0tGhoaEh9fX1KJBJ68cUXtXLlSquLAwCu4+QwpXyH\no81m7olbhjLZ/T67Zb+9zskhjOW8LLdb2D1kNpvMz/P8+b/R0qXnPs9eGlqK/Fj+iT958uSUuUm7\ndu1SfX291q5dq61bt2rLli2SpBtvvFGtra3ZngYAStbkykyVlccVDM61tUGd7+pks1lu1y0T0e1e\nOcwt++11hYSVQnujynlZbrewYwVFMzI/z2NjjefVK5Qmy4NSe3u7duzYkd6++eab0/9fvny5nnzy\nSauLAACuNvkDXFNzIuvQLKuGH+XbCPXyMsW5ggsrWjnL+P4vW9agnp5BxWJ+HTp0VLFYUonEHFVX\nT2jFirMzP+GHcjWyzRxzL9f3UmFVr14hn3lOgpQP+pABwEWy/XhnNvhOnkxox44DamtrLrhRn+8Z\n81JtILjlrHW5Mr7/O3f2qLV1mSQpFpOOHevTwoXNkvLr0cnVyM52zAnN7mJVrx6feZhhy/LgAABz\nss3HyGzgHT78vt57r7koczayzaNxy7wAuzAXxVnG93twsDr9/0SiSgsXNqujo0nt7S0aHZ1r+nlz\nzUvLdszLeVl3N7Jqrl+hQzrL6fuxnPFLAAAOmzyD3dMzrNHR02prCykQSJ3BnvzxzjyrOjJSoerq\n7A2+fGTrISq3s63MRXGW8f3PvPBxdfWEMnuS8jk2uYbOZTvmpRKai9kzlu257Oh9s6oXO9/PfOa+\n9vb2qbn5CgUCgbL4fixn3vz0A0AJmQwl4+NnNT7eoMOHB9TenvrRnfzxzmzwzZ+f+pGeZEWjvlQa\ni2YxF8VZxvf/hhsuVU9PantyTtLoaH/exyZXIzvbMXd7aDYbTop5siPbc3n5hEq+n/nMfe3v9+vA\ngcNauLBZ1dUTam+3o8RwQmn/8gGABwwOJvXmmxH19n6g1taAKitPy++f+uNt94pLbm8sFlupzr3y\niune/66uGttfU7I/NOfbK2M2nBTzZEe25/LyCZV8P/OZ+zYwENUHH8xXKNSgoSHpyJEeSXx/lCLv\n1GgAKFFHj57U0NAyJZM+jY42q6nptDZsyH7xQjsa9aXYw8IkfZhhd2jOt1fGbDgp5smObM9ViidU\nsn1PzJlzVq+/fkojIxUaGZHq6o6qslKqrk5o8eIFThcbFiEoAYDDWltDisVOqaJiULW1c9Ta6nwo\n8XIPi5mVA702TAilK99eGbPhpJgnO7I9VymeUHnppYj27w9oZESqrpbi8YjWrFny4a0jkvyqrh7R\nokULdPXVqRNawWDEqeLCYgQlAHBYMCi1t8/TnDmDuvjiebb+6JZiL0u2QOTlYULlphTrZTb59sqY\nDSfFPNmR7bnyfQ0vHNfu7jMaGrpSkjQ0JHV3H9CaNdLo6Fy1t6eCUTw+T729b8nvz3/eHLyFXwkA\ncNhkw6ey8riCwbm2/uiWYi9LtkBUisOESlUp1sts8u2V8XJvrzeOq2/a7czvj0DAr2uuaVBXV/Yh\n0igNBCWgCLxwlgyYTin2smQLRKU4TKhUlWK9zMbLwSdfXjiuHR112r//1IeXYZhQR0edJL4/ypX7\naijgQd44Swa3ylwePHWBS/vqTyn2smRr0JRTg9Tr3FIvOQlWXG45rrmsXNmiQCB1zOfMSS1Nv3t3\nP8e/TBGUgCLwwlkyuJeT9acUz5JOXUqdhq5R5gWOh4cjrnxP3FIvOQlWXG45rrlkfn/s2RPh+Jc5\nWnNAEXjhLBncy8n6U+q9LDR0z+dkD6ZZbgm7nAQrLq9933D8wREHisALZ8ngXk4u5lDqMhs28Xhc\n+/adLvveJa81/syE3ULDVObjJ4dbjY7OVW9vn5qbGxUIpJ6Lk2DOsio0Z3teToLC3d+OgEd47SwZ\n3GWy/tTUnFBHB/WomDIbOocPD0hqViIxz9O9S4U2Fr3W+DMT7ArtOcx8/OuvRyRVq719npqb56mv\n74Da2podPQnGENIUq3qIsz1vtpOgHI/yQVACAJSszIZOZeWg2to+mr7N7T0p2RTaWPRaD6aZYFdo\nL1nm/UdG/JIqJKWWgW5ra9aGDc4uA+21IaTTBYlisKo3NNvzZjsJ6rXjgdnz5q8EAAAmZDZ0Ug3u\ncz97bu9JyabQxqLXejDNDG0utJcs8/HV1QllNo+mey67exRKYbhkTU3hz5t5nOLxhI4c6dPu3Sp4\nuGW+Qyy9djwwexxZAEBZKJW5hF4bOlcoM0ObzRzbXOEm8/ErVsQlxTU6msj6XNl6FHK9RiHhKtcx\nd+MwsOmCRDGCUuZxOnKkT83NVyiRCBQ83DLfIZbl9hksZwQlAEBZKJW5hKUS+IrJzLHNNVwq37qR\nrUch12sUMlwr1zF34zAwq4JE5nHavVtKJM4FwkKGW+Y7xJLPYPkgKAEASpYbz7YXqlQC32wUcjxz\nDZfK93mzBYFcr1HIcK1cx9yNw8CmCxIHDpwo6msUc7hlvo8v589guXH+0wQAgEXceLYds/fSSxHt\n3x/QyIhUXS3F4xGtWbPE1GNzNYzzrSfZehRyvYZVvSzZntfJkwR2BIlCe3XyfXwpnnTBzAhKAOBh\ns/nxLqcffDeebc+lnI7NbHR3n9HQ0JWSpKEhqbv7gNasMffYXA3jwcGk3nwzopERv6qrE7r88mTO\n58oWBHK9hlXDtbI9rxtPEhSzfhcaxvJ9fOb7efJkQjt2TJ3TxOe0NLn7FwMAysBk46GnZ1jDw5G8\nfnRn0xhyYwPKKl6bdF1Ox2Z2fDNsZ5erYXz06EkNDS2TlApgR4/2SLoo79Lleg2relmyPa8bTxJ4\nuX5nvn+HD7+vkZFmtbY2eW4/kB/nPzUAUOYmhxP19tZqeDi/4USzaQy5sQFlFa9Nurbj2BQSzJ3W\n0VGn/ftPaWSkQtXVE+roqCvK87a2hhSLnXve1lZ315NsClny2g5e/u7JPOmSqifn3k8v7Qfyw5EF\nAIdNDidKJn0aGmrOazjRbHpMvNbLUgivTbq249hMntUfHz+raLTFU2fDV65sUSCQOXSrOOUOBqX2\n9nkZ25GiPK/dClny2g5e/u7JPOkyf35qafJJXtoP5IegBACOm/1wotn0mHitl8WMUpnbY8ex8fJZ\nfauCb6l8JgpZ8toOrn+fV66U3nln2puqJHV9+P+kpLGxCSWT0v/7+6f1W+s77CohbOadb0cAKFGT\nw4kqKgZVWzsnr+FEs2k4eq2XxQwvz33IZMex8cJZfbuDb6l8Jtx+bK16nyfrS0XPG1p+/12qqqrI\n43RT/nyS5lRVSJJWhEYkD56UgTkEJQBw2ORwopqa01q2LFi04UTlxMu9JHabPKtfWXlcweBc953V\nV+kEX7u5vsfGjCVLpLGxvB6SHJvQx5Op4JJUhcbGJtJBxtTjda6HyOeTuaC1e7d09dV5lRPewy8J\nADhs8ixrTc0JdXTQGJwNt59JdxMv1DeC7+y4omesu1v63d89789XxuNSwJqel2Qy93ZW77wjVVfr\npT2RdDCXUnPUHH8f4Qp88wBAGWNuD9yI4OuwRYuk8XGnSzGzLVukP/9zvVJg0CGYIxtqAgCUsVIZ\n4uSKM+koGoJvgX75S+l3fsfpUpjz1lvSf/pPBT1FofVlzpyzev31cxccXrEiXlB5UDoISgBQxjiT\nCjci+Epqbna6BOb8zu9Ijz8+490OdHero6Ow1eGy9YAXp75US6pQqmlMUEIKv4gA4DCrLgBqZlid\nk0OcCh32VyrDBu0w3XsFi/3qV9InPuF0Kcz55S+lkPvrhFU94KOjc6dcR2t0lKGeSCEoAUij4ekM\nqy4AaqZR4eQQp0IbPaUybNAO071XNTXZ7893wYcuukiamHC6FDP7yEekl15yuhSWs6oHnDlxyIag\nBCCNhqczrPrxN/O8Tg5xikalN944pZGRClVXT6i9Pb/HF/N9K/VgMN17lSsoee27IOvxO3ZM6ux0\nunjm7NkjtbU5XQpXsyrQMCcO2RCUAKQxX8UZVv34u/0s6ZEjAxoaWiZJGhqSjhzpkWS+MV7M/fNa\nMMhXvu+Vq74LPvUpaf/+nHfJvI6OJCV9E1Ie19Epmr4++18zi1IM/1YFGubEIRtaQQDS3N6wLlVW\nXQDUybOkZhppixcvUCx2bqWpxYsX5PUaxdw/VwUDC0z3Xh04cCLr/Yv6XXD6tHTFFbN/fBaZFwlN\nxCdU6a+Qz6f0dl4XD530/PPSVVcVvaxOKMXwT6CB3UrrlwBAQRh+4AyrLgBqplFh1VlnM420hgaf\n2tunXvskH8VsNJX6SYJs71W242/8LrjuJw9Id/zEsvJlhh6fTwr4fTp7NqGJpE8VvqTm1vhV4fNN\nud94YlwVlYFUOJKUSEwoEKjQt7bs1bFjQ1q4cH56qec1a5aYrute7onJLPvBg4Nqa2tSIJBq6s0U\n/mez315+r7IpxX3C7BGUAKRxtq78FHrWOVujwkwPjZt6vJYta1BPTwmfJIjFpKVLp/zpynhcyWTl\ntEPWqiR1WVykbKFn3327teud06qvvyF936amHt1zzzK9lHFh0e7uflVX+9XePk/xeEK9vW/piisW\nKPLsYTU2Xqfx8UoNDUnd3Qe0Zo35uu7lnpjMso+PJ3T48Pvp1dxmCv+z2W8vv1fZlOI+YfYISgBQ\nxgodcvbSSxHt3x/QyIhUXS3F4xGtWbPEVA+Nk8Hc2Bjq6fFAY+jBB6WHHy7qUyaTubdnZc4c6de/\nnvFu2UKPJJ16Zb/q68/dd3CwWtLU+lldndDISJUkKRDw65prGtTV1aSDB0/qgw8qM17Jd95jp9vO\n9ncvDcPMLOvSpSH19r4lvz9hKvzPZr+9/F5lKqQnDqWNow8AZazQIWfd3Wc0NHSlJE05e293b5GZ\n4TJTG0On1dYWUiCQuo8tjaGxMWnJEutfJw+Tc3oytyUp/swz2jfSbOnwo2yhR5LmzRtK/z+RiOvM\nmRPavbtRvb19am5uVCAQ0NKlIfX1HZTfPzaljnV01Gn//nOrKXZ01EkyX9fnzDmr118/9/gVK84W\nc7dnxexwsMx9DAQCuuaaRnV1NZl6jczHxuNxHTnSp927Zfr1Jre9qJCeOJQ2ghIAlLHCA41xmnxq\nu5DeotnMETAzXGZqY8ivw4cH0nOkTDeGnnhC+tKX8tyj2THO28lrUQK/X2Nv9+Z8Hw90d+vKK6/S\nfuOFaKsC2pfR22PV8KNUIEkt5uH3xxUMvi2/f7Hq6hK6776P6cc/7tHgYLXOnDmh6667TonEHDU3\nz1Nf3wG1tTUrGEzoxhuvOK9urFzZokAgc59S5c6vro8o1UTKr5Hs5Jw/qbDPc+ZjjxzpU3PzlUok\n/Ja9npsMDib15pvn6qLfP2C6Jw6ljaAEAGWs0OFv2c7eF2I2cwTMDAGKxfzS+Lh++78u0tqkNJ5I\nyB9IrZQWCPg0Gk/OLpRY5P997TEdXfSp9HYwmOcFeU2EnWzH374hVdWSKuT3+3XVVdKaNed6P+65\nJ7V0/O4mxAMaAAAgAElEQVTdjUok5khKDbFra2vWhg3Ze0my7VOuuj61t/GMli79aLq3cXS03/Te\nWDW/xezxKOTznPnY3bulROLca1jxem5y9OjJ9KUKxselYHAwZx1D+SAoAQBmLdvZ+0LM2Cjct0+6\n5ZYpf1ozNqFkxqIEvmmuo5N5H59PClRVaM6H9xnNuC2ZTPXkzCn0OjwXXii99tqsH963u39Kh0a+\nYaWQsGPHkKrR0bnp4U2p7elfY+qQsISpIWH5Kkpvo85/j6NRac+eSME9THYPcSuVIXVmtbaGFIud\nO+HT2kovElIISgDgIl5bmnZWZ5QnJqRNm6T/9b+mvdlM6Dm/HBXnDVPL5z7JpBSPT0hJn+RLKjD5\nlv/kJ9L11+e3fx8aG4srnNFITq2sN2j62BbaWC3k8VYNqcqs35nzjYzly7zfnDlx1db+RqOjcz8c\nEnaFEolAUXtspg69GlFl5Wn5/fnvu/E9P3JkQFKqp6KQ8i5b1qCdO1NDERsaRnTDDZfm/Rx2vt50\n32NuFgxqSmif6VIFXvuexuwRlADARTyzNO0bb0i//duWPLWZ0GPaunXSP/6j5PPJJ2lOlrs9vr1H\n/f3L0tuTy1EXwngsd+7sUWur+UZzoWHFzOOzNfisGlKV+Z5kzjcyli/zfmfPJj6831ydPVu8IYGZ\n+/6///d/aO7cVfL7KzU+LjU1nZ7V0Cvje55MTr2I8mzL29MzqNbWZWptndyOqKurZlbPZcfrTfc9\nVmNdcQuW72fNM9/TKBhBCQBcxLa5IcmktHmz9Mwz1jx/AXzS1GFv//N/Sstyh5bMpaal/OfzLF68\nQLFYqkehujqhxYsXzPygGRiP3eBgdbrhOd3tRnbM/5hNg6+Qs+nRqPTGG+eGOLW3h6YNJJn3O378\ntBYsCKm1tamgYXFGmfteV5fQyZO/0cKFjQUNvTIesz17IkUZwmb3MtyFvt50j3dzUMr3s1Yqy6Jj\nZhxZAHCRvIZLHT0qrV2bupiom23YIP33/y5VFDjnJ4dCGy4NDb5041uaeeiNGcZj2dAwct7tVjIT\ngmbzvhVyNv3IkYH0pPmhIenIkR5J5z82836DgxM6frxXfn+N/P6E/P73ZjUszihzuN3JkwNasGCR\nOjoaJBXn+EvFG8Jo95LlTgz79NJwtswVG6urE1qxIu50kWARghIAOCWZlF5/Xfrxj6V//mddGY8r\nEAgUb9hZMT33nNTR4XQpsiq0YWfFnBzjc95ww6Xq6bFvKWUzIWg271shodRsz93ChUEdONCjWKxa\nkcg7uvDCj2l8vOHDFcn6irIiWeZKZ42NjYrFXpLff3lRj01xewVnt2S5lH8IsWLY54EDJ3I+xkwA\ntyNMmX+N1IqNqWNCUCpVBCUAKMTQUGr42o9/XNAKZ5POG3ZWLLfcIj3yiFRZWfzndki2Cf+zadhZ\nMcxtuue0cl6JkZkQNJsGcSGh1GzP3fHjUYVCyxQKSfH4hRoZ+aUqKyuKNixSmrrSWW3thK67bqlr\nl4ROrRDYlLFtfslyKf9ewEI/D7N5vJkAbsfcIDOvYXbFRngfQQkA3nxT+tGPUhcTHRmZ+f5FMN3F\nRGf0059KV15pedm8IrNBk0ikGt2Z1+Epd2ZC0GwatMW6qGmux2aGmIaG01qwYKk6OpoUj8d19OhB\n7d4dKLhHIXOls9Sy40e1e7c9w77y7RkxG06zPW8x59RY1atjZh/tmBtkVU8svImgBMD7hodTQ8Oe\neELav9/p0kzv5pulz3xGuvZaqaJiyuID8XhqVa+JiZiWLfuIq8fmu4mXJ1TbMYTIqsUginVR01ym\nhph69fUdkN/v/3B58CuVSPjzHp4Viw1r585D6SWvb711kZ56KrUE9qlTJ3TttZ1KJGp08mRCO3ZM\nXY1vtscmW1ny7RkxGzCzPa+Zhr3ZOmlVr46ZfSxmQMm2v1b1xMKbvPOrAqC0vfVWavjaE0+khrO5\nzUc+kgo6t94qhQr/Ucxs1B8+/L5GRpp1wQVnFI22sNSsSV4+q/vSSxHt31//4eR8v+LxiNasWeJ0\nsVwjsyEaDCZ0441XqKoqoN27pUTi3Gcnn+FZO3ceSi8B398v/bf/9nN94hM3qLVV6u6+UL/+9aDa\n22vSn8fW1qaCg0C2suQb8s0GzMznicfj2rfvtOmhqWYDkFUnKMzsYzEDSrb9JQQhE0EJQFpBZ7lH\nRqT/8T9SQef//l9rCzpbv/d70qc/La1c6fhcncxGfqqxnGrkZzZu3L7yk9OK2aCxe8Wt7u6YhoaW\nSEqdF+juPq41ayx7Oc/J1mg2s9pY5tLifv+o/P7Uce3pGVUolJDfn2r6nDpVm35MdfWERkZSf8/8\nPEqFBYFsocKqkJ/5vIcPD0hqViIxz9TQVLMByKqym/kMFrOX1Mz+xuNxvfRSZErAnE2PILyLoAQg\n7dWfv6OKngF1bf9D+c9+oKRvQnLLqmuStGRJKujcdpt04YVOl6YgmY38+fP71Nx8hY4cOTKlcWPm\nB9hLS+rOlh0XRbW/4ZOcYbu8nT79vu6//zWdOlWrhoao1q9fpIqKRh06dFKJxGJJVcq22ljm0uJv\nv31UH3xQqZGRKp08WaHR0VP6z/85FRbmzTvXc7106QUfDu9T+vM4qZAgkC1UWNVrkfm8lZWDamv7\naPq2mQKf2QBkVdnt/gxm29/Mcrz++ilJI2pvbyqoRxDeZfmRffbZZ/X9739ffr9ff/Inf6LVq1en\nb1uzZo2am5vl8/nk8/n00EMPKVSEIS1A2RofT40pOXo09e/YsXP/P3pUOn4858M/Njqh1HKnKUkr\n2m6f/GQq7KxaJfnL98cls5E/NtaocHhA7757XJWVDXk1bsrhzKYd+2h3w6ejo17795/rGenoqC/6\na3g5RN9//2s6fvwGSdLBg6f0m9/06g//8DJFo1J1tV9XX5263tF0q41lLkF+6tQJ1dd/ROPjDWpr\nu0yvvPJT+XyLNW/ekO6990r9x3+cP7xv8vNYjCCQLVTYMX8sFQTO1eOZAp/ZAGRV2e3+DGbb38zX\nHRmZXP57apm8POwX+bG0FkajUT366KN6+umnNTQ0pO985ztTgpLP59Pjjz+u6upqK4sBeMvQ0PQh\nZ3Lbwvk7Pt/UcOTzTXOnlhbps59N9eq0lFaD3CmTDY+amhMaHm7Iq3FTDmc27dhHuxs+K1e2KBAY\nUCwm1dVJnZ3F/yx5OURnDotLJCr0wQepZdWrqxMaGalK3zbdccpcgvzIkdOamEh9kZ0+/YEuuWS5\nbrlliSTpP/5j+vejmEHAqlBhRr49P06WVbL/M5htfzPLUV09oczrVlndIwj3sfQXde/evbr++us1\nd+5czZ07V/fff/+U25PJpJKWnLIGHDQxMbVXxxh6+vrsLU9Li9TaKi1aJC1ePPXfggVSxbkeJN9Y\nXPuNZ1I9cgbayybP/Pf0DOuKK/K7HlBqzsapD+dVTGjFirM2ldo+djSg7G742NEo9XKIbmh4XwcP\nfqBEokKx2Adqbj4jSVq6NKS+voPy+8eyHqfMY3n11WcUi81VIpFQRcWg2trOXYMp8/3I1vvm5V45\nO+pYMd8ft4SPzHJMfp+Ojvbb0iMI97H0WzMSiejs2bP6/Oc/rzNnzujuu+/WtddeO+U+W7du1bvv\nvqvly5dry5YtVhYHsNZ/+S+p69wUW13d1JCTGXoWLZJqincBS778nTF55n98/KyGhpbM4npAI0p9\nnZfm8A87GlClWPezBczMYD48HHGs8Z+rkb1uXYt+85vX9cEHtWpufl9dXQH5/f1Thshlk3ksP/GJ\nyWF00vz5cTU3n7tIaGbgztb7ZqZXzsthqlDF7LV0y2fQLeWAO/iSFnbp7NixQz09PXrsscf07rvv\n6q677tLPf/7z9O3PPPOMurq6FAwGtXnzZt1yyy1at25d1ufr7u62qqhAwS769rfV8MIL094WX7BA\nYxdemPrX1HTu/xdeqERj45ReHZSfl18e1vj4wvR2ZeVxXX+9uQBcyGNR2uLxhA4ejGl4uEo1NWO6\n4oo6BQJ+9fREdeZMa/p+9fVHtGxZ0Pby5SqHFfU62/uR6/XMlMMt76cT+P6Bm3V0dBT8HJb2KM2f\nP1/Lli2Tz+fTokWLVFtbq9OnT6uxsVGSdNNNN6Xvu2rVKh0+fDhnUJKKs9OAGd3d3fnVtx/9KOtN\nVZJqs96Kcjc8nLr47Ntvv62LL75YweBcdXSYO6M5+dhJ+Ty23JTjmf9rrjn/bwMD/UokmtL1ze+v\nV0dH9h5Mq963yXJMyixHIfU6V3kz34/M+1VU9Omii5akg9Pk65kpR679cJId9T2f49Td3a0rr7yq\nJD6DxosXb9p0qerqCIhuUqzOFUtPY19//fUKh8NKJpMaHBzU8PBwOiTFYjHdeeedGh0dlSS9+uqr\nuuSSS6wsDgC4UmdnSMFgRJWVxxUMRvIaWjb52NSwpPweW24mhwklEk0fXth3wOkiOcI4x2umOV9W\nvW+5ylFIvTZb3sz7NTdf8eHy4FNfz0w58n0/7WJHfc/3OJXKZ3Dy4sVjY5epv3+Zdu485HSRYBFL\ne5Sampq0fv163X777fL5fPr617+uXbt2qb6+XmvXrtX69et1xx13qLa2VpdddpnWr19vZXEAwJUy\nV73LtzeI8fTmeXlxg2KanPOVCuZzZ2zcWvW+5Zp7Vki9NlvezL8HAgG1tTVrw4apPUFmyuGWRQiM\n7Kjv+R6nUvkMDg5W59xG6bC8ht5+++26/fbbp71t48aN2rhxo9VFAACUoHyHFnHtk5R8g7lV75tV\nId9seYu1X249WeHG+u7GMs1GQ8OI+vunbqM0MYMcAOBJ+Q7jYZiieWNjce3ZE9Hu3f2Kx1NL1nvl\nfTN7nEu9Prhx/9xYptnYtOlSNTX1qKrqV2pq6tGmTZc6XSRYxJt9ngCAspfvMB63nvl3o8xlnxMJ\nzWLJeueYPc6lXh/cuH9uLNNs1NXV6J57ljldDNiAHiUAgCe5dRJ9KSiVuSQAUAiCEgDAk0plGI8b\nEUIBgKF3AACPKpVhPG7k1pXcAMBOBCUAADAFIRQACEoAAACwQb5L+gNOMzVH6cUXX9Q///M/S5KO\nHj2qZDJpaaEAAABQWvJd0h9w2oxB6cEHH9RTTz2lf/3Xf5UkPffcc/rmN79pecEAAABQOlhNEV4z\nY1B65ZVXtH37dtXW1kqS7r77br3xxhuWFwwAAAClg9UU4TUzBqU5c+ZIknw+nyRpfHxc4+Pj1pYK\nAAAAJYUl/eE1M/Z5fuxjH9O9996rgYEB/eM//qN++tOfasWKFXaUDQAAABm8vCACqynCa2YMSn/2\nZ3+m559/XnPnztWJEyf0uc99TuvWrbOjbAAAAMgwuSCCJEWjUjgcIXwAFpkxKA0PD2tiYkJbt26V\nJD3xxBMaGhpKz1kCAACAPVgQAbDPjHOUvvKVr+i9995Lb589e1Zf/vKXLS0UAAAAzseCCIB9ZgxK\n0WhUd911V3r7c5/7nD744ANLCwUAAIDzsSACYJ8Z+2vj8bh6e3vV1tYmSTp48KDi8bjlBQMAAMBU\nLIgA2GfGoPTVr35Vmzdv1pkzZzQ+Pq7Gxkb97d/+rR1lAwAAAABHzBiUrr76av30pz/V4OCgfD6f\ngsGgHeUCAAAAAMdkDUr/8A//oD/6oz/SX/zFX6QvNpvpgQcesLRgAAAAAOCUrEHp8ssvlyRdd911\nthUGAAAAANwga1Dq6uqSJJ04cUKf//znbSsQAAAAADhtxuXBe3t7deTIETvKAgAAAACuMONiDocO\nHdInP/lJXXDBBQoEAkomk/L5fHrxxRdtKB4AAAAA2G/GoPS9733PjnIAAFBSxsbiCocHFIv5VVeX\nUGdnSFVVAaeLBRtRBwBvyxmUfvGLX+idd95RR0eHrrrqKrvKBACA54XDA4pGUxcGjUalcDjChULL\nDHUA8Lasc5S++93v6u///u81MDCgr33ta3r22WftLBcAAJ4Wi/lzbqP0UQcAb8v6iX3ppZf0ox/9\nSH6/X2fOnNEXvvAF/d7v/Z6dZQMAYAovDWWqq0soGp26jdJmrJ9z5sSVyDjs1AHAW7L2KFVVVcnv\nT+Wo+vp6jY+P21YoACgnY2Nx7dkT0csvD2vPnojGxuJOF8m1JocyJRJNikZbFA4POF2krDo7QwoG\nI/L7+xUMRtTZGXK6SLCYsX5Kog4AHpa1R8nn8+XcBgAUx2Tjanz87IeNf+YxZOOloUxVVQGOY5kx\n1sfR0blas6bJodIAKFTWX5je3l59+ctfzrr9wAMPWFsyACgTXmr8O43hbHAz6idQWrL+Gv/5n//5\nlO1rr73W8sIAQDmicWVeZ2dI4XBkyhwlwC2on0BpyRqUbr75ZjvLAQBla7JxVVl5XMHgXBpXOTCc\nDW5G/QRKC+M7AMBhk42rmpoT6uigkQUAgBtkXfUOAAAAAMoVQQkAAAAADGYcenfFFVecdw2lyspK\nLVmyRFu3btXHP/5xywoHAAAAAE6YMSh99atfVVVVldauXatkMql///d/15kzZ7R8+XJ985vf1L/8\ny7/YUU4AAADPGhuLKxwemLIiXlVVwOliAchhxqF3zz//vG677TY1NDSosbFRt912m/bs2aOrrrpK\nfj9rQQAAAMxk8sLSiUTThxeWHnC6SABmMGPSGR0d1RNPPKGOjg5VVFTowIEDOnXqlF5//fXzhuQB\nAADgfFxYGvCeGT+lDzzwgL773e/qxz/+sSYmJtTW1qYHHnhAiURC27Zts6OMAAAAnsaFpQHvmTEo\nLVmyRN/61rc0ODioiooKXXDBBXaUCwAAoGRMXlg6c44SAHebMSh1d3frK1/5ioaGhpRMJhUMBvXg\ngw/qyiuvtKN8AAAAnjd5YWkA3jFjUPr2t7+txx57TEuXLpUkvfnmm9q2bZt+9KMfWV44AAAAAHDC\njKveVVRUpEOSJF1++eWqrKy0tFAAAAAA4CRTQemFF15QLBZTLBbTv/3bvxGUAAAAAJS0GYfefeMb\n39Bf//Vf66/+6q/k8/n0W7/1W/rGN75hR9kAAEAJsfuiq1zkFUAhTK169/3vf9+OsgAAAJcrJHxM\nXnRVkqJRKRyOWLrAgd2vB6C0ZA1Kn/nMZ+Tz+bI+kMUcAAAoP4WED7svuspFXgEUIus3xp/+6Z/a\nWQ4AAOABhYQPuy+6ykVeARQi67fbihUr7CwHAADwgELCh90XXc31eoUMIWTuE1Ae6IMGAACmFRJ2\n7L7oaq7XK2QIIXOfgPJAUAIAAKbZHXasUsgQQuY+AeVhxusoAQAAlBrjkMF8hhAW8lgA3mF5UHr2\n2Wd100036fd///f1i1/8Yspte/fu1W233aY/+IM/0GOPPWZ1UQAAACSlhhAGgxH5/f0KBiN5DSEs\n5LEAvMPSvuJoNKpHH31UTz/9tIaGhvSd73xHq1evTt++bds2/eAHP1AoFNKdd96p9evXq62tzcoi\nAQAAFDSEsFSGHwLIzdIepb179+r666/X3LlzNX/+fN1///3p244dO6ZgMKimpib5fD6tXr1a+/bt\ns7I4AAAAAGCKpT1KkUhEZ8+e1ec//3mdOXNGd999t6699lpJ0nvvvafGxsb0fRsbG3Xs2DEriwMA\nAGAblhEHvM3SoJRMJhWNRvXYY4/p3Xff1V133aWf//znWe9rRnd3dzGLCOREfYPdqHOwE/XNWj09\nUZ0505rePnTo/2jZsqCDJXIW9Q1eY2lQmj9/vpYtWyafz6dFixaptrZWp0+fVmNjo0KhkE6ePJm+\nb39/v0KhmSdDdnR0WFlkIK27u5v6BltR52An6pv1Bgb6lUg0pbf9/np1dDTleETpor7BTsUK5ZbO\nUbr++usVDoeVTCY1ODio4eHh9HC7lpYWDQ0Nqa+vT4lEQi+++KJWrlxpZXEAAABswzLigLdZ2qPU\n1NSk9evX6/bbb5fP59PXv/517dq1S/X19Vq7dq22bt2qLVu2SJJuvPFGtba2zvCMAAAA3tDZGVI4\nHJkyRwmAd1h+Kenbb79dt99++7S3LV++XE8++aTVRQAAALAdy4gD3mZ5UAIAAHAbVqQDMBNL5ygB\nAAC4UTg8oGi0RYlEk6LRFoXDA04XCYDL0KMEAADKTizmz7kNe9HDBzeiRwkAAJQdVqRzF3r44EYE\nJQAAUHY6O0MKBiPy+/sVDEZYkc5h9PDBjaiFAACg7LAinbvU1SUUjU7dBpxGUAIAAHCZcpuzwzWn\n4EYEJQAAAJeZnLMjSdGoFA5HSroHjB4+uBFBCQAAYJas6vlhzg7gPD51AAAAs2RVz4/ZOTvlNkQP\nsBOr3gEAAMySVT0/ZlflY1ltwDr0KAEAAEzDTG+NVau1mZ2zwxA9wDr0KAEAAEzDTG+N09dj4sK5\ngHU47QAAKDvM64AZZnprnF6tjWW1AesQlAAArmJHiCm3pZcxO164CKrTQQ0oZQy9AwC4ih2T05nX\nATOcHlYHwFn8MgAAXMWOEOOFngI4j94aoLzRowQAcBU7JqfTUwAAmAk9SgAAV7Fjcjo9BUDpYHEW\nWIWgBABwFUIMgHywOAuswtA7AAAAeBaLs8AqBCUAAAB4FhfdhVUISgAAAPAsFmeBVeibBAAAgGcx\nrxFWoUcJAAAAAAwISgAAAABgwNA7AABQMK5lA6DU0KMEAAAKNnktm0SiSdFoi8LhAaeLBAAFoUcJ\nAAAUjGvZFBc9dIDz6FECAIeNjcW1Z09EL788rD17IhobiztdJCBvXMumuOihA5xHUAIAh002iMbH\nF9IggmdxLZvioocOcB6fOgBwGA0ilAKuZVNcdXUJRaNTtwHYix4lAHAYQ5YAGNFDBziP05YA4LDO\nzpDC4YgqK48rGJxLgwgAPXSACxCUAMBhkw2impoT6uigYQQAgBsw9A4AAAAADAhKAAAAAGBAUAIA\nAAAAA4ISAAAAABgQlAAAAADAgKAEAAAAAAYEJQAAAAAwICgBAAAAgAFBCQAAAAAMCEoAAAAAYEBQ\nAgAAAAADghIAAAAAGBCUAAAAAMDA73QBAAAASt3YWFzh8IBiMb/q6hLq7AypqirgdLEA5ECPEgAA\ngMXC4QFFoy1KJJoUjbYoHB5wukgAZkBQAgAAsFgs5s+5DcB9CEoAAAAWq6tL5NwG4D6czgAAwATm\nmKAQnZ0hhcORKfUHgLsRlADAYZMN8J6eYQ0PR2iAu9TkHBNJikalcDiirq4Wh0sFr6iqClBfbBCL\nDWvnzkMaHKxWQ8OINm26VHV1NU4XCx7F0DsAcNhkA3x8fCGTvF2MOSaA++3ceUj9/cs0NnaZ+vuX\naefOQ04XCR5m6bf8/v379cUvflGXXHKJksmkLr30Un3ta19L375mzRo1NzfL5/PJ5/PpoYceUihE\nVzSA8kID3Bvq6hKKRqduA3CXwcHqnNtAPiz/NV6xYoUeeeSRaW/z+Xx6/PHHVV1NJQZQvmiAewNz\nTAD3a2gYUX//1G1gtiwPSslkMudtuW4HgHKwbFmDdu7s0aFDpxQInNENN1zqdJFs4bXFEZhjArjf\npk2XaufOnilzlIDZsjwo9fb2avPmzXr//fd1991367rrrpty+9atW/Xuu+9q+fLl2rJli9XFAQDX\n6ekZVGvrMsXjb6u19WL19ETU1VX6k49ZHAFAsdXV1eiee5Y5XQyUCF/Swi6d/v5+vfbaa9qwYYOO\nHTumu+66Sz/72c/k96fy2TPPPKOuri4Fg0Ft3rxZt9xyi9atW5f1+bq7u60qKgA45uWXhzU+vjC9\nXVl5XNdfX/pBqVz3GwBgvY6OjoKfw9IepaamJm3YsEGStGjRIs2fP1/9/f1qaUmdMbzpppvS9121\napUOHz6cMyhJxdlpwIzu7m7qG2wxPBxRNNqit99+WxdffLGCwbnq6Cj9npXJ/Z5ULvvtFnzHwU7U\nN9ipWJ0rli4P/txzz2n79u2SpFOnTun06dNqamqSJMViMd15550aHR2VJL366qu65JJLrCwOALhS\nZ2dIwWBElZXHFQxGymaRgMn99vv7y2q/4X2x2LC2b+/RX//1r7R9e49isWGniwTAApb2KK1Zs0Zf\n+tKX9OlPf1rJZFJbt27Vc889p/r6eq1du1br16/XHXfcodraWl122WVav369lcUBAFeaXCSgpuZE\nWfWosDgCvGryWj2S1N8v7dzZw7wYoARZGpRqa2v1ve99L+vtGzdu1MaNG60sAgAAQFFxrR6gPFg6\n9A4AAKDUGK/Nw7V6gNJEUAIAAMjDpk2XqqmpR1VVv1JTUw/X6gFKlOXXUQIAACglXKsHKA/0KAEA\nAACAAUEJAAAAAAwISgAAAABgQFACAAAAAAMWcwAASJLGxuIKhwcUi/lVV5dQZ2dIVVUBp4sFAIAj\n6FECAEiSwuEBRaMtSiSaFI22KBwecLpIAAA4hqAEAJAkxWL+nNsAAJQTghIAQJJUV5fIuQ0AQDkh\nKAEAJEmdnSEFgxH5/f0KBiPq7Aw5XSQAABzDuAoAgCSpqiqgrq4Wp4sBAIAr0KMEAAAAAAYEJQAA\nAAAwICgBAAAAgAFBCQAAAAAMCEoAAAAAYEBQAgAAAAADghIAAAAAGBCUAAAAAMCAoAQAAAAABgQl\nAAAAADAgKAEAAACAAUEJAAAAAAwISgAAAABgQFACAAAAAAOCEgAAAAAYEJQAAAAAwICgBAAAAAAG\nBCUAAAAAMCAoAQAAAIABQQkAAAAADAhKAAAAAGBAUAIAAAAAA4ISAAAAABgQlAAAAADAgKAEAAAA\nAAYEJQAAAAAwICgBAAAAgAFBCQAAAAAMCEoAAAAAYEBQAgAAAAADghIAAAAAGBCUAAAAAMDA73QB\nAABAcYyNxRUODygW86uuLqHOzpCqqgJOFwsAPIkeJQAASkQ4PKBotEWJRJOi0RaFwwNOFwkAPIug\nBABAiYjF/Dm3AQDmEZQAACgRdXWJnNsAAPMISgAAlIjOzpCCwYj8/n4FgxF1doacLhIAeBZ98gAA\nlCE/qwIAAA53SURBVIiqqoC6ulqcLgYAlAR6lAAAAADAgKAEAAAAAAYEJQAAAAAwICgBAAAAgIGl\nizns379fX/ziF3XJJZcomUzq0ksv1de+9rX07Xv37tXDDz+syspKrVq1Sps3b7ayOAAAAABgiuWr\n3q1YsUKPPPLItLdt27ZNP/jBDxQKhXTnnXdq/fr1amtrs7pIAAAAAJCT5UPvksnktH8/duyYgsGg\nmpqa5PP5tHr1au3bt8/q4gAAAADAjCwPSr29vdq8ebM++9nPau/evem/v/fee2psbExvNzY2amBg\nwOriAAAAAMCMLB1619raqnvuuUcbNmzQsWPHdNddd+lnP/uZ/P7zXzZbz5NRd3d3sYsJZEV9g92o\nc7AT9Q12or7BaywNSk1NTdqwYYMkadGiRZo/f776+/vV0tKiUCikkydPpu/b39+vUCg043N2dHRY\nVl4gU3d3N/UNtqLOwU7UN9iJ+gY7FSuUWzr07rnnntP27dslSadOndLp06fV1NQkSWppadHQ0JD6\n+vqUSCT04osvauXKlVYWBwAAAABMsbRHac2aNfrSl76kT3/600omk9q6dauee+451dfXa+3atdq6\ndau2bNkiSbrxxhvV2tpqZXEAAAAAwBRLg1Jtba2+973vZb19+fLlevLJJ60sAgAAAADkzfJV7wAA\nAADAawhKAAAAAGBAUAIAAAAAA4ISAAAAABgQlAAAAADAwNJV7wAAACCNjcUVDg8oFvOrri6hzs6Q\nqqoCThcLQA70KAEAAFgsHB5QNNqiRKJJ0WiLwuEBp4sEYAYEJQAAAIvFYv6c2wDch6AEAABgsbq6\nRM5tAO5DUAIAALBYZ2dIwWBEfn+/gsGIOjtDThcJwAzo9wUAALBYVVVAXV0tThcDQB7oUQIAAAAA\nA4ISAAAAABgQlAAAAADAgKAEAAAAAAYEJQAAAAAwICgBAAAAgAFBCQAAAAAMCEoAAAAAYEBQAgAA\nAAADghIAAAAAGBCUAAAAAMCAoAQAAAAABgQlAAAAADAgKAEAAACAAUEJAAAAAAwISgAAAABgQFAC\nAAAAAAOCEgAAAAAYEJQAAAAAwICgBAAAAAAGBCUAAAAAMCAoAQAAAIABQQkAAAAADAhKAAAAAGBA\nUAIAAAAAA4ISAAAAABgQlAAAAADAgKAEAAAAAAYEJQAAAAAwICgBAAAAgAFBCQAAAAAMCEoAAAAA\nYEBQAgAAAAADghIAAAAAGBCUAAAAAMCAoAQAAAAABgQlAAAAADAgKAEAAACAAUEJAAAAAAwISgAA\nAABgQFACAAAAAAOCEgAAAAAYEJQAAAAAwICgBAAAAAAGfqtfYHR0VDfeeKPuvvtufepTn0r/fc2a\nNWpubpbP55PP59NDDz2kUChkdXEAAAAAYEaWB6XHHntMwWDwvL/7fD49/vjjqq6utroIAAAAAJAX\nS4fevfPOO/r1r3+t1atXn3dbMplUMpm08uUBAAAAYFYsDUoPPPCA7r333qy3b926VZ/5zGf07W9/\n28piAAAAAEBeLBt69/TTT+vjH/+4mpubJem83qMvfvGL6urqUjAY1ObNm/XCCy9o3bp1Mz5vd3e3\nJeUFpkN9g92oc7AT9Q12or7BaywLSr/4xS/07rvv6oUXXtCJEyc0Z84cXXjhhbr22mslSTfddFP6\nvqtWrdLhw4dnDEodHR1WFRcAAAAA0iwLSg8//HD6/9u3b9dFF12UDkmxWEx//Md/rO9///uaM2eO\nXn31Va1fv96qogAAAABAXixf9S7Trl27VF9fr7Vr12r9+vW64447VFtbq8suu4ygBAAAAMA1fEmW\nngMAAACAKSxd9Q4AAAAAvIigBAAAAAAGBCUAAAAAMLB1MYdc3nrrLX3hC1/Qpk2b9NnPflavvPKK\nHn74Yfn9ftXU1OjBBx9UfX29nn32Wf3whz9UZWWlbrvtNt16661KJBK699571dfXp8rKSv3N3/yN\nLrroIqd3CS5mtr61t7ero6NDyWRSPp9P//RP/6Tx8XHqG/JirG/vvPPO/2/v/kOquv84jj/vzXvt\nom3urpTM/YjV6I/pWhHWXEPbIMY2iAyqxV2RVBSDLdMS3FyzWsuom5sbzdUoaxVh5FZQhkXMmkal\nSP5jLCoI+qEWstt13dLP/ogudbvte53HuvZ9Pf4898c5R1688O35nCNFRUXYbDaGDx/O8uXLsdvt\n6jexRKR5U7+JFUpKSmhoaKCrq4v58+eTmppKfn4+xhiGDBlCSUkJDodD/SaWiTRzlnSciQJ+v9/M\nmTPHfPnll2b79u3GGGOmTp1qLly4YIwxZuPGjaa8vNz4/X4zefJk4/P5zN9//20++OAD09HRYfbu\n3WuKi4uNMcYcO3bMfPbZZ0/sXCT6RZo3Y4wZP378Q59X3qQnwuVt4cKFpra21hhjTFlZmdm/f7/6\nTSwRad6MUb9J79XX15t58+YZY4y5ceOGyczMNAUFBebgwYPGGGPWr19vdu7cqX4Ty0SaOWOs6bio\nWHoXGxvLjz/+yODBg4PbBg8ezPXr1wHo6Ojgueeeo6mpibS0NOLi4oiNjWXMmDGcPn2auro63n33\nXQDefPNNGhoansh5SP8QSd7cbjcAJsxDIZU36Ylwebt48SKpqanA3QwdO3ZM/SaWiDRvoH6T3hs3\nbhylpaUAPPPMM/j9fk6ePMmkSZMAyMrK4o8//lC/iWUizRxY03FRMSjZ7XacTucD25YtW8Ynn3zC\ne++9R2NjI9nZ2bS1tQV/gQVwu920trY+sN1ms2G327lz585jPQfpPyLJ29SpUwG4desWeXl5zJw5\nky1btgAob9Ij4fL26quvcvToUeBuabe3t6vfxBKR5g3Ub9J7drsdl8sFQGVlJZmZmXR2duJwOAB4\n/vnnuXbtGu3t7eo3sUQkmWttbQWs6bioGJTCWbFiBd9//z0HDhzgjTfeYMeOHQ+9J9ykCNDd3d3X\nhydPmUflraCggBUrVvDzzz+zb98+mpubH/qs8iY9lZ+fz/79+8nJyeHWrVvB9dP3U7+JVcLlDdRv\nYp2amhr27NnDF1988UB3ParH1G/SW5FkzoqOi9pBqaWlhdGjRwN3L42dOXOGpKSk4JQIcPXqVZKS\nkkhMTKStrQ0gOBXGxETNcyqkHwiXN4Dp06fjcrlwuVyMHz+es2fPKm/Sa8nJyfz0009s3ryZESNG\nMGzYMBITE9Vv0ifC5Q3Ub2KN2tpaysvL2bRpE/Hx8cTFxREIBIAHe0z9Jlb5X5lLTEwErOm4qB2U\nhgwZwrlz5wA4c+YML774ImlpaTQ3N+Pz+bh58yaNjY2MHTuWjIwMDh48CMCRI0dIT09/kocu/VC4\nvJ0/f55FixbR3d1NV1cXjY2NjBw5koyMDA4cOAAob/LffPfdd/z+++8A/Prrr0yaNEn9Jn0mNG9Z\nWVnqN7GEz+dj7dq1bNy4kUGDBgEwYcIEqqurAaiurmbixInqN7FMpJmzquNs5lHXPx+jpqYmPv/8\nc65fv86AAQN49tlnKS4uDj7eLyEhga+//pr4+HgOHTrEpk2bsNvteDwe3n//fbq7uyksLOTixYvE\nxsbyzTffkJSU9KRPS6JUT/K2bt06jh8/jtPpJCsriwULFihv0iPh8rZq1SpWrlzJnTt3SE9PZ9my\nZQDqN+m1nuRN/Sa9tXv3bsrKynj55ZeDS4jXrFlDYWEhgUCA5ORkVq9ezYABA9RvYomeZM6KjouK\nQUlERERERCSaRO3SOxERERERkSdFg5KIiIiIiEgIDUoiIiIiIiIhNCiJiIiIiIiE0KAkIiIiIiIS\nQoOSiIiIiIhICA1KIiLSp8rLy8nLy3tgW1VVFbNnz7Z8X2+//TYzZszg448/ZsaMGXz66afcvHnz\nXz9TWVlJVVUVXV1djBo1CgC/309NTY3lxyciIv2HBiUREelTc+fOpaWlhVOnTgHw119/8e2331Jc\nXGz5vux2O16vl4qKCnbt2oXT6aSqqupfPzNt2jSmTJkCgM1mA6C5uZnDhw9bfnwiItJ/aFASEZE+\nFRMTw/LlyykuLqarq4vS0lKys7N56aWXAKirq8Pj8eDxeMjJyeHy5csAVFdXM336dObMmYPH4+HK\nlSsAfPTRR6xevZpZs2Y9tC9jDPf+j3ogEKC9vZ2UlBQA8vPzg0PT/VePNmzYQFlZWfA7Ojs7KSoq\nora2Fq/X20c/FRERiXYxT/oARETk6Td27FjS0tIoKiqiqamJvXv3AneXuH311VdUVlYSHx/PoUOH\nKCkpwev14vP52LBhA0OHDuWHH35gx44d5ObmAjBo0CB++eWXsPvKzc3F4XBw6dIlXnvtNTIyMsK+\n797Vo1Aul4ucnBwaGhpYvHixBWcvIiL9kQYlERF5LPLy8njnnXcoLS3F4XAA0NLSQltbG4sWLQpe\nDbr3mtvtZunSpQC0trYybty44HeNGTPmkfvxer0MHToUgG3btrF06VLWr1/fV6clIiJPKQ1KIiLy\nWCQkJJCQkBBccgfgdDp54YUXqKioeOC9gUCAJUuW8Ntvv5GSksLWrVv5888/g6/fG6bCubf0DuDD\nDz8MLqu7/wpSIBDo9fmIiMjTTfcoiYjIY3P/EAPwyiuvcO3aNc6dOwdAfX09e/bswefz4XA4SE5O\nprOzk8OHD/+n4ebkyZOMHDkSgPj4+OD9T/X19f96fHa7ndu3b/d4fyIi8vTQFSUREXlsQu8LGjhw\nIGvXrqWgoICBAwdis9lYuXIlbrebyZMnk52dTVJSEvPnz6egoICamppH3lt07/tzc3NxOp3BZXyr\nVq0C7j7dbvHixZw4cYK33nqLuLi4Rx7f66+/jtfrpaioqE+eziciItHPZkL/vCciIiIiIvJ/Tkvv\nREREREREQmhQEhERERERCaFBSUREREREJIQGJRERERERkRAalEREREREREJoUBIREREREQmhQUlE\nRERERCTEP1Yty/2VF4YbAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1QAAAHrCAYAAADIYtzUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXl8U3W6/z9p0jRp0y0NKSVAobQU27JZXGFAWZQqeF2n\nqMCgjjpXmcFRES8O4jg6/kRcUPR6HVRcrkNRh3tBLQgIV3ADi0Bb6AK0taSlbbpnb5vz++OQNGmz\n5yQ5aZ/365UXpDnLc85Jvp/v83yf7/MVMAzDgCAIgiAIgiAIgvCZqHAbQBAEQRAEQRAEEamQQ0UQ\nBEEQBEEQBOEn5FARBEEQBEEQBEH4CTlUBEEQBEEQBEEQfkIOFUEQBEEQBEEQhJ+QQ0UQBEEQBEEQ\nBOEn5FARBA/5j//4D7z99tvhNsMphw8fxoULF8JtBkEQBMFTXnnlFRQVFYXbDIIIGeRQEQThE1u3\nboVarQ63GQRBEARPefTRR1FYWBhuMwgiZJBDRRAAjhw5guuuu27Q+82bN+Nvf/sbVq5cifnz5+O3\nv/0tNBoNAKCpqQl/+MMfcP3112PhwoX49ttvAQBqtRqzZs3Cli1bsHDhQixcuBAnT57EH/7wB8ye\nPRtr1661nWPx4sV48cUXsXDhQsyfPx8nT54cZFtFRQXuvPNOFBQU4JZbbsF3330Hi8WCWbNm4fTp\n07btPvnkE6xcuRJHjhzBkiVL8Pe//x3z58/H7bffjtLSUixfvhyzZs3CG2+8YdunqKgIBQUFmDdv\nHh577DGYzWYA7AjZG2+8gXvvvRdz587FfffdB6PRiE2bNuHHH3/E6tWrUVxczP2DIAiCIHjJ//zP\n/9j07oknnsDhw4ddahifsywIIhiQQ0UQFxEIBE7f79mzB3/5y1+wb98+yOVyfP755wCANWvWIDc3\nF3v27ME//vEPrF69Gp2dnQCAjo4OKJVK7N69GxMnTsSf//xnvPjii9i5cye++OIL1NfXAwDOnTuH\nqVOnYvfu3XjwwQexfv16BxsYhsFjjz2GZcuWobi4GH/729/w6KOPwmg0oqCgALt377Zte+DAAdx4\n440AgPLyclx33XXYt28fBAIBnn32WWzZsgXvv/8+/uu//gtmsxk///wz3njjDXz00UfYv38/4uPj\n8dprr9mOt2fPHmzatAn79u1Da2sr9u3bh1WrVkGpVOLll19GQUEBx0+AIAiC4CNqtRobNmzAf//3\nf2P37t0wGo2orKxETU2NWw0jiOECOVQE4QKGYQAAM2bMwMiRIwEAl1xyCRoaGmAwGPDTTz/hd7/7\nHQBgzJgxmDFjBg4ePAgA6Ovrw8KFCwEAEydORF5eHhITE5GUlIQRI0agubkZABAXF2fb7vrrr0dF\nRQVMJpPNhvPnz0Oj0eCGG24AAOTl5UGlUqG0tBSLFi2yjRLp9XqcPHkS1157LQAgMTERM2bMAABk\nZmbisssug1gsRlZWFiwWC9rb23HgwAEUFBRAoVAAAAoLC/H111/bzj1nzhzEx8cjKioKEydOREND\nw6B7QxAEQQx9vvvuO1x66aU2vdi4cSNycnIQGxvrVsMIYrggCrcBBMF34uPjbf8XCoWwWCzo7u4G\nwzBYsmQJANbBMBgMuOqqq2zbicVi2/9jY2MHHQMAEhISbH+3/r+rq8v2t7a2NodtrPa0trbihhtu\nAMMwqKiowPnz53H11VdDIpEAYB01+/PZnz8qKgp9fX3o7u7G3r178d133wFgncC+vj63100QBEEM\nP9rb2x00QSwWQygUetQwghgukENFEOh3Mqx0dXUNSgG0JyUlBSKRCP/6179sTowVXwo2dHR02P5v\nTRdMTEx0OI/9NtZ9rFHCG2+8Ebt370ZTU5NtFMtblEolbrnlFjzxxBM+7UcQBEEML5KTk/HLL7/Y\n3mu1Wmg0Go8aRhDDBUr5IwiwzkVLSwva2trQ19eHnTt3ut1eKBRizpw5+OSTTwAABoMBa9euRVNT\nEwDvU+IMBgP2798PANi9ezfy8vJsI1sAMHr0aIwcORJfffUVAODYsWNobW3FlClTAACLFi3CN998\ng6NHj2LOnDlendNq29y5c7F37160tbUBAPbt24ctW7Z43D86Ohrd3d1enYsgCIKIfObMmYNffvkF\nDQ0NYBgG69evR319PYxGo1sNI4jhAo1QEQSAsWPH4rbbbsPNN9+MUaNG4eabb0ZlZaXbfdavX4+n\nn34an376KQQCAW666SakpqZCrVa7Hd2y/0ylUqGkpAQvvfQSenp68Prrrw/a/pVXXsH69euxefNm\nxMbGYtOmTbZRsczMTADA9OnTXYqYq2IbOTk5ePDBB7F8+XIwDAO5XI5nn33W7TUDbJ78n//8Z/zp\nT3/CihUrPG5PEARBRDapqal49tlnsXz5cgiFQkyZMgU5OTkYNWqURw0jiOGAgAnD7PIXXngBJ06c\ngEAgwNq1azF58mTbZ2azGevWrcPZs2fx2WefebUPQUQiR44cwbp167Bnz56AjvP73/8ey5cvx+zZ\nszmyjCAIgLSKINzBlYYRxFAg5Cl/R48eRV1dHbZt24bnnnsOzz//vMPnGzZssKUzebsPQQxXfvzx\nRzQ2NpIzRRAcQ1pFEARBeEvIHaoffvgB8+fPBwBMmDABXV1d0Ol0ts8fe+wxXHPNNT7tQxDDkdWr\nV2P9+vV48cUXw20KQQw5SKsIgiAIbwm5Q6XRaCCXy23vk5OTodFobO+lUqnP+xBEJHL55ZcHlCrx\n0ksvYc+ePcjLy+PQKoIgANIqgvBEoBpGEEOJsBel8GcKl7f7lJSU+HxsgiAIgnvy8/PDbUJABEur\nSKcIgiD4QSA6FXKHSqlUOkTsmpubMWLECM73scJXES8pKeGtbQC/7eOzbQC/7SPb/IfP9vHZNiAy\nnYZQahVfn10kfK/4ah+fbQP4bR+fbQP4bR/Z5j+B6lTIU/5mzpxpGyIuLy9HamoqYmNjHbZhGMYh\nsufNPgRBEATBFaRVBEEQhLeEfIRq+vTpyM3NxZIlSyAUCvH0009jx44diI+Px/z583HPPffgwoUL\naGxsxOLFi7FixQrcdtttyMnJcdiHIAiCIIIFaRVBEAThLWGZQ/Xoo486vM/Ozrb9//3333e6z2OP\nPRZUmwiCiEwYhoHJZArJuYxGY0jO4w98sS0mJsbtwtaRBGkVQRBcESqt4osWOIMvtgVDp0Ke8kcQ\nBMElJpMpJCKVm5sb9HP4C19sC9WzIAiCiDRC0T7yRQucwRfbgvUcwl7ljyAIIlBiYmIgkUjCbQZB\nEARBuIS0auhCI1QEQRAEQRAEQRB+Qg4VQRAEQRAEQRCEn5BDRRAEQRAEQRAE4SfkUBEEQXDMV199\nhTvuuANLlizBq6++6tcxdu7cidtvvx2FhYX47LPPBn1+4cIFLFu2DEuXLsWf//xn9PT0eNxPo9Hg\n8ssvx9GjRwEAFRUVWLJkCe666y789a9/tW3X0NCAW2+9FRs2bLD97cyZM1i+fDmWL1+Oe++9F2q1\n2q/rIgiCIPhBOLWqs7MT9913H1atWuWw/bvvvoubb74Zd9xxB8rKygAAx44dQ2FhIZYtW+ZgpzOt\n0mq1ePDBB3HXXXfh/vvvR1dXl1/X5SvkUBEEQXCIwWDAxo0b8cEHH2Dbtm344YcfcPbsWZ+P8dZb\nb+GDDz7Ahx9+iA8++GCQKGzatAnLli3Dxx9/jLFjx+Lzzz/3uN9LL72EMWPG2N7//e9/x7p16/DJ\nJ5+gq6sLhw4dAgCsW7cOv/nNbxzO9/rrr+PBBx/Ehx9+iFtvvRXvvPOOr7eGIAiC4Anh1CoA+Otf\n/4orr7zSYdszZ86guLgYO3bswLPPPouDBw/atn3hhRfw0UcfoaWlBcePHwfgXKu2bt2KK664Ap98\n8gkWLFgQMq0ih4ogCCJAduzYgUcffRRLly5FV1cXdu7cidjYWABAUlISOjo6HLZftWqVbbRn2bJl\nuO+++xw+P3HiBKZMmYK4uDjExMTg0ksvxbFjxxy2OXLkCK699loAwLXXXovvv//e7X4//vgj4uPj\nMXHiRABAT08P1Gq1rZTt3Llz8f333wMANm/ejHHjxjmcT6FQoL29HQAbWZTL5YHeNoIgCCKE8EWr\nAOD555/H1KlTHbY9cOAACgoKIBAIcMkll2DlypUA2OyKjIwMAMDVV1+Nw4cPA3CuVT/++CMWLFgw\n6HzBhsqmEwQxtNi0Cdi3j9tjzp8PDEhLGEhDQwO2bdvm8LfKyko0NDRg2rRpA0zc5PZYGo3GwWGR\ny+VoaWlx2MZoNCI6OhoAkJKSgubmZrS2tjrdr6enB//5n/+JN998E88//zwAoL29HYmJiU7PIZVK\nB9m0cuVK3HHHHXjrrbfAMAw+/fRTt9dAEARBuGGYapU7nVGr1RAKhfj973+Pvr4+PPnkk8jOzsbo\n0aPx888/Y8aMGfjpp58gEolcHqOlpQXJycm282k0GrfXwBU0QkUQBMEBkydPdnhfW1uLxx9/HC+/\n/DKEQmFAx2YYxq/PrX9/5513cOedd0Imk/l0XHteeeUVPProo/jqq6+wdOlSvPnmm17vSxAEQfAD\nPmqV/ecWiwVbtmzBypUr8dRTTwEAnn32WWzatAkPPvggpFKp2+MIBAKvz8clNEJFEMTQYtUqjxG6\nYGCNwAHsJNw//vGPeOmll5CdnT1o21WrVtnS5xiGgVgsxrvvvmv7XKlUOkT5mpqaMH36dIdjxMbG\nwmw2QywWo6mpCampqS7327FjBw4dOoT3338fv/76K0pLS7Fx40Z0dnY6bKtUKl1e37Fjx7B69WoA\nbMrF008/7e2tIQiCIAYyTLXKnc4oFApMmDABAJCfn4+GhgYAQHZ2Nj766CMAwNtvv+3W8VMqldBo\nNJDJZB7PxyU0QkUQBMExTz31FNavX49JkyY5/XzTpk348MMP8eGHH+Kjjz5yECgAmDp1KsrKyqDV\naqHT6fDLL78gPz/fYZurrroKe/bsAQDs2bMHv/nNbzBlyhSn+33yySfYtm0bioqKcM0119hsGz9+\nvC3f/euvvx40udc+upeenm6bCHzy5EmMHTs2sJtEEARBhJVwaZUVhmEcdGb27Nm24khnz57FyJEj\nAQBr165FdXU1zGYziouLbXOy7I9jZdasWdi9ezcA57oWLGiEiiAIgkNqa2tx7NgxvP7662AYBgKB\nAPfcc88gAXBHTEwMHnvsMdx7772IiorCH//4R8hkMlRUVGDfvn1YuXIl/vjHP2LNmjUoKirCqFGj\ncMstt0AoFDrdzxVr167F008/DYZhMHXqVFx11VW4cOEC7r//fnR3d8NkMuHw4cN4+eWXsXr1ajzz\nzDN49913IRaL8dxzz3FxuwiCIIgwEE6tslgs+Ld/+zcYDAZ0dnZi8eLFWLNmDWbNmoVvv/0WS5Ys\nAQCsX78eAHD77bdjzZo1sFgsuOWWW5CZmelSq5YuXYrVq1fj7rvvRkJCAl566aWg3L+BCJhQJhiG\nmJKSkkGeMl/gs20Av+3js20Av+0birYZjUYAgEQi4dokwkdcPQs+f+/CDZ/vDZ9tA/htH59tA/ht\nH59tA0irIp1g6RSl/BEEQRAEQRAEQfgJOVQEQRAEQRAEQRB+Qg4VQRAEQRAEQRCEn1BRCoIgeI9e\nb8T27dXQaMRQKMwoLMyCVNqf/2wymcJoHWHFZDIhJiYm3GYQBADP7QZBhBrSqvATLJ2iESqCIHjP\n9u3VqKnJg1abjZqaPBQVVds+i4mJCUknvry8POjn8Be+2BaqZ0EQ3uCu3SCIUBOK9pEvWuAMvtgW\nrOdAI1REREMRyOGBRiO2rX4uEAig0YhtnwkEgpBVTeJzdSY+20YQ4cBdu0HwA2caPlQJlVbxWQv4\nbFug0AgVEdFQBHJ4oFCYbQv3MQwDhcIcZosIguA71G7wH9JwYqhADhUR0VAEcnhQWJiF8ePLIJNV\nYvz4siEdxSQIghuo3eA/pOHEUIFS/oiIRqEwo7ubXeF7qEcgh3N6o1QqwYoVk8NtBkEQEQS1G/zA\nnXYNJw0nhjY0QkVENMMpAkmpEQRBEESk4U67hpOGE0MbGqEiIprhFIGk1AiCIAgi0nCnXcNJw4mh\nDTlUBMER1rSG48fbUVpaynlKHqVGEARBEMEiWGnlpF3EcIBS/giCI6xpDXp9TlBS8ig1giAIgggW\nwUorJ+0ihgM0QkUQHBHslDxKjSAIgiCCRbA0jLSLGA6QQ0UQHGFNawBozRPCP4ZzJUeCIEKHwWDC\n1q2lDm0NpeYRhP+QQ0VEFHq9Ebt2qXHggIx3Hc7CwiwUFZWhs7MJ48e3UloD4TPWlBuBQIDubgZF\nRWUU2SWICME+IKLVqpGTk8sbfRrIvn0aMMxVDm2NVcPsnSyCILyDHCoioti+vRpqdT5UKhXvOpw6\nnRGHD9ejsrIXWm09brppDG/FlOAnVMmRICIX+4CIWi1DUVE1b/RpIC0tIqjVZdDrxYiNNSMmhuE8\nNY9G3InhBBWlICIKPnc4n3zye1RVLYRefy2qqhbiiSe+D7dJRIShUJjBMJQ2ShCRCJ/1aSBqdQva\n2nJhNmejrS0X586d5/wctHYiMZwIywjVCy+8gBMnTkAgEGDt2rWYPLk/IvL999/j1VdfhVAoxOzZ\ns/HQQw/hyJEjWLVqFbKyssAwDLKzs/GXv/wlHKYTYUahMKOykp8dzqYmGaKi2BhFVFQUmppkYbZo\n+DBUIqGUcsMvSKsIX/B2DhIf2iuVKhVAC/R6IWJj+zBhwhjOzxFJDiZBBErIHaqjR4+irq4O27Zt\nw9mzZ/HUU09h27Ztts+ff/55vPfee1AqlVi6dCmuv/56AMDll1+OTZs2hdpcgmcUFmahtvZryGRa\n3nU4U1O16Oy0AAAsFgtSU7Vhtmj4MFTmHlE1LP5AWkX4in1ARKWqRGHhdU6340N7NWKEGQqF0ub8\npaU1c34OKnJBDCdC7lD98MMPmD9/PgBgwoQJ6Orqgk6nQ1xcHOrr65GUlITU1FQAwJw5c/Djjz/a\non0EIZVKsHixCvn52QEfi+so4YYNV+OJJ3ajsrIXEyeKsGHD1QHbyCV8LugRKBQJJbiGtIpwhSvt\nsA+IlJRoXbav4WyvrLa3tIhhMhUjI2M0Ro0SBCU4SSPuxHAi5A6VRqNBXl6e7X1ycjI0Gg3i4uKg\n0Wggl8ttn8nlctTX1yMrKwtnz57FQw89hM7OTjz88MO4+mp+dVaJyIPrKKFWa0RVVRvOn5dCIOiC\nwWDk0FrPWIVSrWZQU3MeEyaMQVoabGLP54IegUKRUIJrSKuCAx/S3QIlUO0IZ3tltb2nJwUqVRpG\njQqODgTrOQ+F7489wb6eoXa/+EzYq/y5i+ZZPxs3bhxWrlyJgoIC1NfXY/ny5di7dy9EIs/ml5SU\ncGYr1/DZNoDf9nFh2/Hj7dDrU2zvOzubUFLiv7Ddf/9PUKvvQVRUFCorLVi8+H384x9XBGSjwWDC\nvn0adHTEIilJjwULFJBIYpxuu2uXGmp1PqqqzqKraybOnLmArCwZamu/xuLFKhw/3g6BIAUNDQ0A\nAr/eYODvc83KMqG2dpftPmVlKYLy/R3qvwnCNcHUKj4/O65ts7ZTAoEAlZWMrX3yl3DcO2+1w5Vt\noWqvnGFve2NjY9B0INDn7Op+cPX98UVbfbHPV7j+PQy0LRjH58q2oUbIHSqlUgmNRmN739zcjBEj\nRtg+a2lpsX3W1NQEpVIJpVKJgoICAMCYMWOgUCjQ1NQElcrzlyI/P5/jK+CGkpIS3toG8Ns+rmwr\nLS1FTU2aLUo4fnwr8vP9j9QZjU2QSqUwmUyQSqUwGscFbOfWraVgmKuQlMTaWF3tOpp44IAMKpUK\ndXVaJCYmQizugUqlgEymRX5+NkpLS/HddwxUKhUn18s1hw9/jzNn4v2OpM2cGUTjMDx+E8EiEkU0\nlFrF12cXjO+VtZ2yYm2f/CFc33tvtMOTbcFur1xhtb2xsRFpaWlB04FAnrO7e8fV98cXbfXFPl/h\n8veg1xuxYcPXkMmybRrK5fEDZajrVMjLps+cORN79uwBAJSXlyM1NRWxsbEAAJVKBZ1Oh4aGBvT2\n9uLgwYOYNWsWdu3ahc2bNwMAWltb0dbWZstdJyIXvd6IrVtLsXFjJbZuLQ15ilxhYRbGjy+DTFaJ\n8ePLAs7vVijaYLH0F6VQKNoCttGXXHtrye3YWDMsFgtiY/sc0kkKC7OgUpVwdr1cs2+fhkrsEryB\ntCo4DIWlAbjWjlBitT029lRQbff1Odv3B3btUrvsD3D1/eHLvFsufw/WtH57DR0Kv7dIIeQjVNOn\nT0dubi6WLFkCoVCIp59+Gjt27EB8fDzmz5+P9evX49FHHwUALFq0COnp6VAoFHjsscdw5513gmEY\nPPPMM16l+xH8Ra834k9/+gZ1dRmIizMjJyfTYRHEUOT9cl1RbfPmy3DddW+gs3MkEhMv4K23FgZ8\nTF9y7a0TgGNiGJw7t/viHKpmm2ByWdAjGLCpF+EXOIIASKuCxVAoVOCrdvBpHovV9pISs21kKhj2\n2T/nhAQtzGYGGzdWujy+t4sic/X94cO8W73eiJ4eMyoqDgLowbx5chQW5nnazSXOnMSHH06P+N9b\npBCWlt4qQlays/s7eDNmzHAoTQsAcXFxePvtt0NiGxEatm+vRl3dZejpGYH2dganTpVBLhc7fB7u\nsrK+8vrrZzFx4h9tlcBee203tmwJzHnxRTwcRX5KQOcNB0lJejAMFZYg+ANpFfcMx6UB+K5nwbDP\n/jlv3Vrq8fjejhhx9f3hg2O/fXs1zp+/FJdcwmqeWFwWkCPrbJ3O4fh7CxcUOiN8xj6alZCgBcCg\nqyvep8iWRiNGXJwF7e1sB1qni3boQPNlON4XgrGw73BqDBcsUKC6miJpBEFEFs5GeOzhu54Fwz77\ne3L0aCMyM7MQHS1xefxQjxjxQVu5vu98XqdzOEAOFeEz9tGsQ4cuAGjG9OnZPkW2FAozcnLkOHWq\nGTpdFNLTz6GwcK7D554aVz6lUQC0sG+gSCQxDimfRUX8ebYEQRCucDbCM9lOBvmQXmbFqpvHj7ej\ntLQUhYVZQbHP/p4YjYkoK6vC9OlTXB7f20WR+Yo//RGu7zvf0/qHOuRQET5jH1UxGEQA2FKjvkRY\n2MazAnK5tfGZ69D4eDMcz7c0Cr4v7BtJ8O3ZEgRBuML5SEN/55gP6WVWrG2rXp+Cmpo0FBWVBcU+\n+3uSl6fAmTOnIZNVujy+t4si8xV/NItP3wsicMihInzGPqoilfYCMAHwrYKMp+F2b4bjB4qYWs1g\n69bSsI1qyOVJ2LLlBs5Kg3oT8fInKqbRdODJJ79HU5MMqalabNhwNeTypIDt5RK+p8gQBEFY8TTS\nwIf0MivO2lYu7BuoRYmJZrS1GXDq1BnodNFITzfg4YfTXeqTXm/ERx+V4Ztv2tDe3o077gCWLs2F\nVCrhXTaKM/zRLD59L4jACXnZdCLysS8Zu2iRGjfeaA5L+diB5UBras4PqbLb1oiXu+vxZpuBPPnk\n96iqWoju7tmoqlqIJ574PhjmBwSVeiUIIlKIpDLqwWpbB2oRwzBobj4AnW4k4uKSoVQucKtP27dX\n46uvxLhwYQE0mgX44guVbXt/dC7UkGYRNEJF+AxfoioDh8slkjEwmYbOqIY3ES9/omLBKJ7BNZQK\nQRBEpMAXTfQGa9va2dmE8eNbOWtbB2pRV1c8Jk2Kx+jRIxy2cbe/wcDuKxAIYDCIbNtHQsYCaRZB\nDhURsQwUMbY0Kz8m/nKBNxNWfZ3UajCY0Nn5K+rrWxATY4FCkczL4hmR1EEhCMIzkZC2NRxwtg4V\nF7jSIm/1iS3xzcBkYsAwDKTSXtv2fCrq4QrSLIIcKmLIMNQiRN5cj6/XvG+fBldc8W/Qak9Aq5Ui\nKmovNmxYFKxLIAiCAECFZoY6rrTIW30qLMyC2VyG/fv3IiamG4sWjUNhYa7bYxMEnyCHiog4DAaT\n0+ITniJEwY6QOitHG8jxvYl4DdxGrze6LczR0RGLpKR43HTTLACATCYLWkEKikgTBGElEtK2rAy3\ntouL63WlV946zVKpBA88MAMPPIBBhZ1CPfrj6n5wrfHD7Xs21KGiFARvsToHGzdWYuvWUhgMRgDs\nKIs/E1SDPbG1vxxtTtgmznq6xqQkfcgmzkbCRGKCIEJDJE3aH25t13C7Xk+4uh9ca7y/991V34gI\nLzRCRfAWVyki7CiLY6TTm0iPRiNGb28fystbodcLUVGhQWGhkbOI0LlzRnzxRTE0mmgoFMdx000j\nPO/kB+6u1VMUeMECBaqr2dSJhAQtzGYGGzdWBiU6FkkRaYIggkskpW0Nt7bLn+vly+iKr3Z4Gn3S\naMQ4elSDzMw+REeL0Nvbh+JiDTSaShw92ojMTPZ76+v3wtl5/f2eUfosPyGHKoTY/6C0WjVycnL9\nboBC2ZiFq+F01dhYR1nsJ6h608AoFGYcOqRBR0cqAMBoTEFRUTVnDdH+/aWoq8uH2SyETteHvXtL\n8Mwzl3FybHvcXaunybsSSYxtW7aIR/AaZb5MJOaL8BPEcCaSJu3zpe0CQtN+xcd349ChkzAYYiCV\nmnDjjZ6v16pDvb0mHDpUheLiHzBvXgIABl1d8SFra311Llxtb/93o9GEsjINpk8fibIyDYAUaLXZ\nMBoTUVZWhdRUhc/fC2fnVSi8L9phz3Bz+D3BF42nlL8QYj+8q1bnBzRcHMoh+nClA7hKEVmwQDFo\nzQ/r6NPx40344YdWFBdrBg2DFxZmQSI5iZiYKsTHH0dfXyI+/7ydsyHzrq44AJMgEEwAMOnie+5x\n15j6sh5KsBvlYKzN4k+qA6WzEAThC3xaVyoU7VdPTy9+/VWC2loJfv1Vgp6eXo/7WPWjvLwaHR2T\n0d4+GV9+qcKXX4o5s9Wb9t6Tjg08RmMjnG5vf5y8vImQSE5CJquERHISeXkTL/5dAYmkFbGxp3z+\nXjiz09/vWSSlz4YCvmg8jVCFEC47sKGMUIQrGuIqRcR+lMWKN6NPUqkEBQVpqKmZiBMnmtHWNgJy\nedfFH2AJBnlYAAAgAElEQVTgozNCoQVabQP6+qIhFPZAKLQEdDxXuIue+hIFDnYUNhgRaX9SHSia\nRxCELwRzNM3XaHoo2q9DhwxISMhCYiKrBd9+exAPP+x+H6t+6PWsPbGxfdDrRQBiOLP1o4/K8NVX\n7PpUUikDs7kMDzwww6kdrnTs44/L8eWXKhgMIkilvZDLj2Ds2LxB29sfRySKQUFBGlasyMbWrWbU\n1LDXJBIJUVCgwOTJvpecd2anv9+zSEqfDQV80XgaoQohXEYVQhmhCFc05OIpvcJ+9Ck5uQx5eROd\n/qisEaG+vkrI5eXIzc3i7AfY3d2Gvr4kMEwC+vqS0N3dFvAxncFV9DRUUVguJ9D603BSNI8gCL7g\nazQ9NO1Xj4f3g7HqR3JyHZKSmpCbmwKptBdSqYkzW7/5pg0dHZNhNmejo2My9u8frKmedGz//i50\ndKTCYJChoqIZR4/2Qq0uRkxMqcP2ro7DR721OmKPP56NFSsmR0QKu15vxK5d6qAU0uCLxtMIVQix\njyqoVJUoLLyOk2MFO0IR7HO5itj5MhphP/rkbsSlPyLUP3+Iqx+gSKRCYuJ5mM0CiMUMRCJVwMd0\nBlfR01DNaeByAq0/o2oUzSMIgi/4GhQKRfs1b54cX35ZaptDNW+e3OM+Vv1g7auGRtOJRYu0YBgG\nXV1soaPFi8e4XcbDM9Ee3nujY6xz2NxcDYMhDyJRHFSqDKSllQ3KYHF2nEjTW76yfXs11Op8qFQq\nzuds80XjvXKoqqqqcObMGQgEAmRnZyMjIyPYdg1J7H9QJSXaoK9RxBXBPperDndDA3DiRDP0eiFi\nY/sg8XC7fPlRBeMHKJe3ob5+Dvr6otDXZ0FKytGAj8kl1gjRgQMyXhQX8Qd/nttwF7LhAulU5MKX\nSeWhwNegUCjar2XL8iAWV0OjARQKAQoL87ze1z6TJDpa7PDsfCl85Kxo1/z5CfjiiyZbut78+Qk+\nX5vVWWxs7IBU2oKMDCmlftsRqt9eMNPy+KLxHh2qF198Efv370deXh4YhsHLL7+MRYsW4ZFHHgmF\nfcQwwNUP7dy5erS15SIqKgpGowVnz5YAcP2jsf6orA3Em2/WuWwggvEDTE3tQ0/PJ+jtHQmR6AKU\nSn412MGMELmDy7lafGk4CX5BOhXZDKcy0HyJptvjS3r9QFzNc9LrjSgu1qC9vRWxsX3IzU1x24m2\n/w6o1TIUFVVj6dJcREfbd/ZzfbbP6ixKJEYYjQzy8pSU+m1HqH57CoUZlZXhT8sLJh4dqp9++glf\nfvkloqPZoVaz2YwlS5aQUA1zuIxquOpwZ2SMhkZTDr1ejNhYMzIyRnt1vHCJ888/A0LhfYiKEkAg\nYPDzzx8F/ZxWvF2HK5gTN13ZwMcOBDG0IJ2KbPgyqTwU8DEoFIhmsvOcFkAgEMBkYrB//1488AB7\nTKMxBSZTCgwGC7766iwmTqzD1q2D9Yl1vhrR3s5qfXy85OLaT2IoFMDDD6f73b9wlprIFx3iw8hs\nqH57hYVZqK39GjKZljf3n2s8OlQKhQIiUf9m0dHRGD3au44tMXTh0mlx1eEeNUqAqVP75zmNGlXm\nsJ+1MWpoYEezMjJGY9QogcuyqMFGr5eBYWIuTo4UQK+XheS8gHfPI9gRIlc28LEDQQwtSKc4oKkJ\nuPNOoKuLfZ+cjHFiMTBlCjBqFPtKS+v/NyaGs1Pzad2n4UggC/tWVBhhNOqgVMYiKkoA6zwnjUaM\nvLx0lJeX4cwZEximFZmZc1BTEzNIn1jnawpMplSYTMDp019j0qQ0aLXZnAVFA9UhLtcRtcKHkdlQ\n/fakUgkWL1YhPz87KMfnAx4dquTkZNx222248sorwTAMjh49irFjx2LTpk0AgFWrVgXdSIJ/cBnV\ncNXQeRrZsDZGbAn0XGg05Zg6NQ9qdTFUqn5HLCFBG+DEWO8YN86MysoO9PZGQSSyYNy40HUKvHke\nwY4QDacoM8EvSKc44MyZfmcKANrbIdHrWUfLH5RKRwfM6pSNGgWMHAnYOcA0ih1e/OlUW/V3zBgz\nqqq0aGtrQWam1DbPiT1mDKZNmwydrgVxcTGIjmZ1d6A2sM6XAuXl7JxphmlHXt4cALiYAsiERMO9\nuV77lMRAnR8+aCb99rjDo0M1ZswYjBkzxvb+mmuuCaY9Qx5rlOP48XaUlpZG7OTbUEQ1POV1Wxuj\nri6gubkFFy60AyjDtGkjMG5cfwNhNjMhiQItXToWr722H11dcUhI0GHZsrGcn8MV3jyPYEeIKMpM\nhAvSKQ6YORP49FOguhpoaAAaGqA7cQJxvb1AYyNg9vH33NzMvk6c8LipFMAK+z9sBuuE2TtiKlX/\ne6USiIq8VV/4kOLlDH861Vb9nTo1FyJRNfr62nHLLcm2eU72x0xPP4vk5N/g+PEm6HRRSE8/C4Oh\nP42P1Q4hpk1LBcMwiI01QSRiR0AZhkFVVS2OHLncVpyip6cc99+fP8imYN7fYDg/fNBMyiDhDpcO\nlcXCLkr60EMPOf08KgIbMz5gjXLo9SmoqUmL2Mm3oYhqbN9ejaqqTJw6dQY6XTQOH/4Gb7wx1/a5\ntTHq6OiCXj8BUik7UnX+/G4888wNtu02bqx0aAgbGhCUaJdMFo/p01PQ1GREaqoKcXGhaxy9eR7B\nrvJHkS4i1JBOccz48ezrIvUlJVDmD+64DsJiATQamyOGxkZArXZ872vlg8ZG9nXsmMtNJun1QGzs\n4A+EQkcHbOAIWUoKcFETQgkfUryc4U+n2qq/0dESTJ2ah/Hj+69loGOzYcPVeOKJQ9DpMhAX1wOl\n8lqHEZ6B2jF79ljU1/e/Ly+PRUdHqm2e1r59p3H//YNtCub9def8+OvIOdNMvjrdhGdcOlQ5OTm2\nTqg9DMN+oU6fPh1Uw4YqfBji5YJQRDU0GjFOnTqD9na2gayrS0FRUTUmXzyttTFKTdUAaEJS0jgk\nJLRgwoQxDscZ2BCeO1cPk6mA80a3qyse06dno6GhAaNGjUJXV2XAx/QWb55HsKv8UaSLCDWkUzwh\nKoodNVIqgWnTfN+/t5cdzbI6YPaOWEOD72mHfX3Ar7+yL3+Iiel3xKyOmb2Dlpjol0M2VPQfcB9A\nG+jY7NxZhkmTJmD06P7sCPtrH6gdJSUlmDev/31xceOAsztfeDiY99fdOqL+OnLONNOXUvMEv3Dp\nUFVUVLjcyRoVJHzH2rkHhm7pSHf4En1JSNCiutoCvb4bBkM75PI+FBdrkJUV43AclcqA6dOvhFgs\nBcMwSEtrdjjOwIY/JmY0zGbuG12+P9uhJOYEAZBODRlEov7RIx+oKClBfn4+m4544YLrEbK2Nt/s\nMZmAmhr25ScOo2dpaUB+PqZ1KPCLMAG6+LSQa8RA7c3KMgV0PHcBNGda42t6m729Eoke8fHHYDbL\nnC48bN326FENjEYT8vImQiSK4fT+ultHdOD1BpIFQzoduXicQ7Vq1So8++yzSExMBADU1tbiySef\nxLZt24Ju3JDj119xZ2wFTlZ+gNMdYoxIycK1l12Biws4hNu6kOBbJIeBWNyMpqZkMMxI9PRYYDRq\nsXdvLaqr+4+jVGaguXkvJk2a4DTVbGDDz0aAuM9btjpunZ1NGD++lXcpb9Yqfz09RpSVVUEiaXVa\nwpYgIg3SqWGOWAyMHcu+/EGvd3TIBo6QdXYGZl9jI/DFF5hrYTCt/T/R2yuASMRAniwBNnsx0jV+\nPDBjBpCfz76Sk302YaD21tbuwsyZflyLFzhznnxNCbe3V6XKQHT0XkyaJHO68LB128zMPpSVaXDm\nzLcoKEgLmQZzmQUTynlVlF7ILR4dqjlz5mDp0qV45JFH0NDQgO3bt+PJJ58MhW1DC70euPVWxAC4\nDECOXo84TSyw983gnzspiU1XUKn6J/da/z+g2lKw8SX60tUVjxtuyMOOHQeh0ejR2dmI2loxWloY\njBnTiMzMLERHSyAWR2PSpAl4/HHvii0Ea65PIIsjhoLCwixUV3+BvXvN0GqvxIQJClRVjUBRUQWl\nFEQoQ6XITaCQThEBERsLZGSwL39oaABKStjFCEtKWOfMCVFRAihS/AieWkfLPv3U6cc9vX1Qq7Xo\n6REiOroPo1UyiETC/g0uuQRju8bAknIDGtMuRU90LDo6nMw94whnGutrSrh9X8GTxlu3jY4WYfr0\nkZDJOrFiRejKcweSBTPQqbnppjHYudP7/oleb8THH5dj//4uAD3IzOzyuqQ7X+f0RSoee9K33nor\nZsyYgTvuuANJSUn47LPPEB8fHwrbhhZSKXDbbcDnn4f+3B0d7Ku83OtdXE72dUKfhUF7u9Eh6sau\nRzGYFa0GVKYVoGLSLagffaXb6Iu17KpEIoNEkgezuQvt7VfDZDqJESNGoqysCtOnT/E5ihOsuT58\nLDgysLEGBEhMvBSxsRno6mJw6lQz5HJKKYhU+PidCwekU0RYsaYrLl5s+5MtHdETDAPU1rLOmPXl\n44iYWq2F0ZgIAQBjH3Be3Ylx6Yn9G5w+jSmtx5Bt+hoCAOxKiR3A4STvT5KWxq5TdvPNHvsGgWqs\nwWBCRUUT6urkiIuzICdH7kVfIXijOp7SJQPJgnE238yXe7d9ezW+/FKFjo5LAQAXLnzrdUl3Si/k\nFo8O1a5du/DOO+9g3bp1aG5uxu9+9zs89dRT3jUURD8CAfAf/8G+4ENjC7D54U1NbNrA+fNsbrj9\n//1IR/DFCfJEe7sRJpMUAgCmPqCt3eAyCidPliC7sRgT6nd7THlYbmHQ1m7E3W096O1h0GeJggAS\nRAktSOwUw2jSIu5YtG+pE7GxwP/7f8DVV/t1re6oq+vFrl1noNFYoFDocPPNvZyfw1cGNtZHj1Yh\nLq4H7e1sY6/TRfFurhfhPSSILKRTRMQiEPRXV7zjDt/37+vDhnn/DVWTANndPyO7uwTCHu2gzeTJ\nErS1G2yaL4lx3f1z2j9obAReeYV9+cqUKcCcOcBllwGTJnkseb9vnwZK5QJoNGyF3+bmEqxbN9fl\n9sGuMOtruuRAexYvHuNyTlWgbbhGI4bBILIdw2iUDjqGq9Q+PpRtH0p4dKiKi4vx/vvvQ6FQAGDX\n91i7di3lpocSsRgYM4Z9XX45J4f8yK6SDMMwDiVPATuHr7MTqKoCTp8GKiqAykqgrs7hWL29Alhd\nGcHF967wJeXBui1jYdDZGQ2jyQSGESIqqg8QCJCYKIIixcf0Jr0e+NOffNvHSworWnGTMQEMAwga\nAGlVF7AzpX+DmTNZh3rkyKCc3xkDG2ugBzk5mTh1qgw6XTTS08+hsNC1UBH8hu+FUEIF6RQxbBEK\nYc5UYI9lIfamLoPFYsHEibuxZcsNDptFAVDYvS+xarzBABw8yGbPHD8OwLcgqVecPMm+vOTe+i6I\nhOwCwUZJIjQ94yHdpWXnj2VkDKqw6OuImK9zhwbqqKd0SecjVs5T66xteG8vO/9LIqnzaW6zQmGG\nVNoLk4nVgZgYAxQKx2flKrWPljrhFo8O1VtvveXwPiMjA//85z+DZhARGjxVpbENaScmslGlyy5z\neazdHpwzv7BY2Mb93XeBLw4A6EV0tBB9vd0QCCyIibk4KsUjevsYMIweDBMFwILevgGTqr77Dli0\nKKQ2rWg1wGSS4vj0e1Ey/T5cdpkIWVlnIJdbG9C5w3LOzVCB74VQQgXpFDGcYdd52o2mJhlSU7XY\nsMGHDAypFCgoYF8X2bqxElpt/xwkmawSDz2U7twJaWtjnbF//hPo6uLkekRCy8W0RCDG2ImMuh+A\nDcf9O5hSyRb0sL5GjfJ57tDAkZykJL1PJlj7Wz09vSgvb8WxY+0A2Dmv1ja8uFgDIAWZmbNRUxPj\ndfp2YWEWenrKsW/faVjnUBUWXuH0/IDjKBgtdcItflUjcLbuhy+88MILOHHiBAQCAdauXYvJk/sf\n6Pfff49XX30VQqEQs2fPti3Y6G4fwnc8VaXxpQJQUKIcUVHApZcCl16KD8Y7Nu4dHfvw2mvzAz+H\nK7q7gTfeAP71L592YywCAIkQCFgpYCytQTHPF6xpHvkn38IVp96EJKYPMpmsf4PNQTZg1izgnnuA\nqVN92o2qD3mHVRBLSszIz6c20Z5AdQogrSIiA7k8adCIlK/Yt7kVFWehVGZALI62jXy7dELkcuD+\n++F0pV1v6OhgF2+2zh87dw4JCSIYTQbHaoj+0twMfPUV+7rIwiYjLH39x4wSGoHNLs6Rno67p0zF\nAd33qEqYBtnYWGRlKZxv6wJrf6u8vBVtbSMglzejpibPdg9XrJgMjcaxn+Nt6p9UKsH99+fbbn9J\nSckgraTUvtAQuvJuFzl69Cjq6uqwbds2nD17Fk899ZRDWsbzzz+P9957D0qlEkuXLsX111+PtrY2\nt/sQvuOpKo0vFYC4iHK460AHGh3ymfh4YO1a9uUDT91UjP/7v+kwmYSIienDnDm/YOfOAs872nPm\nDLBhA3DsGCfz3AamWOr0Qb53Azl8mH15gX0hFH2rAQsuppwwAHR/NUBqn3IikwELFrDPKj4eSEhw\n/v/4+JBWsSSGDsNJqyiAQdg7TErl2EFLkbz5Zp3LUZaAvitJScDcuezrIpW+zDFvamIrK1qrLKrV\nHncRiRiY+mDTF5HITYneujpE19XhOgDWpXx1PhTtwsSJuGvaNOzrKcEp00jI5Srk5mYNmi+lUJjR\n1mbAqVNnbOn4BkM6J79DSu0LDV73NBiGAWNXFzrKw6RCV/zwww+YP58dXZgwYQK6urqg0+kQFxeH\n+vp6JCUlITU1FQBbCveHH35AW1uby30I//BUlcZfp8VfYXY3BD+wMfA1OhQq5PIepKYCer0ZsbFC\nyOXOV3N3S2Ym8M47ADzPc/MHt8VQfvqJHZlzs1hqqPA4L0+rBXbsCL4hIpHNQUvv6QHGjXPvwNn/\nPy7O4+Rrglu40ilgeGkVlU8mHMuUSweVKfc0yhIsPPYpUlOBG25gX14SZzDii6JqaFqikR71K24a\n1QaUnmQdMl8XgfZEVRXEVVW4AcDlF1PwBUdYRy4mxgBsYwOFyy0Mfq3vgtkUh6goBpIyEXT7V0M6\n90p27tiMGWxxD4nvDhal9oUGjw7Vli1b8Pbbb0On0wFgBUsgEOD06dN+nVCj0SAvr39RtuTkZGg0\nGsTFxUGj0UAu718BWy6Xo76+Hu3t7S73IbghUKfF2ugVF2tgNKYgLy8d3d3e5wG7q3QzsDEoKSlx\nOKe/UVWuo7KpqYlobT0AnS4RcXGdSE0d5fexAPae9PaaUF5eDb1ejIqKRp9sdHZ9brniCvYVanp7\ngdOn0bJ9O+KamoBjx7yLIKaksOmZ5iCmL/T2sgLb1gapXs+uNxMqpFLPTtvF/4uMxtDZxUO41ilg\neGkVVYv0HmftKsPAt7aWZ+j1RlRUnEVdHYO4uB5kZY3D+fNnsXEjbNdj7SMcO9YOubzZ6SiLs+O6\n0lhv9TcYzr59n0KvH4cPPi7H/rOpQPI1mHe7HMuW5bnVWVtg0mJhs0rsS967yQIZWGnRPpUxKkoA\niSQG4uj+bnlvrwA4cYJ9vfee5wsTCDBBKgVyctgy/mlp/WuOjhoFKBQU5AsiHh2qzz//HDt37sSo\nUYF1Dl3BuFkN1dVn7vYh/MOV0+It1kavvb0VJlMKysvLMG3aZK+F2Z8c30AbWq4b6h07TqOn5wGI\nRBb09ERhx4538OKLc/w+nkJhxsGDp1FdnYmenigkJgrw8cfluP9+71IhnF0fL6dziETA5MloNZsx\n7uLomS2CaN9BCUYKUl8fO9rV1cU6Z93dLv+vO3sWcRKJ498tFu5tsmIwsK/mZo+bZur1wLffsoI5\nDAm2TgFDW6v4MMciUtIOnbWrACKjrXXB9u3VF8uUt0Gni8JPP/0vZs26DVqt1EEbWX10zJzwZY0l\ne431Vn+D7ewPXMfpyy9LIRZ7t44ToqKAiRPZ1113ed4cjpUW0dMDnDplWxBauPsQ+rxNRXQGwyBa\no2GP5w8iUb/zZf9KS2P/lcsHVVgk+vHoUKWnp3MqUkqlEhqNxva+ubkZI0aMsH3W0tJi+6ypqQlK\npRLR0dEu9/GEr45BKOGzbYB7+wwGE/bt06CjIxZJSXq0tIjQ05MCs7kb3d1imEwGqNVqqFSVKCkZ\nvCbGQLKyTKit3WU7XlaWwu35S0pKcPx4O/T6/rLknZ1NKCnxviMQ6P4D0Wql0OkOwGKJQ1SUDlqt\nNKBnzN6Tc9BqR0Ak6gPDKPDpp6W49FLX+9g/l1OnOjF6dBJEIiEA9vomT0622TTwGS5YoIBEEuO3\nvVxgf7/YDgn7PE6d8n5R6oAQiVjRsBt9sKeew1MJenoQpdNBqNNBqNe7/r9eD6FW2/9/nQ5RBoPD\nsXS5uag4d27QkgbDBa51CgitVoVbC9y1v6GybdcuNdTqfAgEAlRWMqit/RqLF6s87hfqe+dMNwAM\n+pt9W8sn7Nv9Xbt2YsECBY4f10OvT4FSCQB9OH06ARpNO4B2GAw6fPbZUbz7bg1SUtrxwAMjUVtb\n45VWu9NYT/prPaZWq4ZaLbPN32pv/xHnz9dzplnHj7ejqSkOPRfX7jKZjDh+vGtQX2CgXhqNJkgk\nMdzo6LRpwLRpMN69FHv3Oh6rzt2xensR3daG6JYWRGs0iG5pgbilBYaL70Xt7b7eDjZY6GfavyUm\nBj0KBXpGjGD/VSjQo1TCfPE94uJ4+ZvgCo8OVXZ2Nh577DFcfvnlEAqFtr/ffvvtfp1w5syZ2Lx5\nM37729+ivLwcqampiL04uU+lUkGn06GhoQFKpRIHDx7Eyy+/jLa2Npf7eIKvCzuW+DLpMgx4sm/r\n1lIwzFVISmKjVCZTMVSqNIwYoby4lkIHZs6UorDwOq+jjN5UFdTrjdiw4WvIZNnQapugVI6wVSIa\nP77Vp0pnpaWlqKlJs5uj5Nv+A+nu3g+L5d8AiGCx9KK7uwT5+b/z+3gAkJurxYULKpuNycnxXj8X\nsbgEv/xiwIgRckilvVi0KBlA/29i4DOsrg7vvIlI/02EE58WCg8DwRZRrnUKCK1W8eHZOWt/Q/md\nP3BABpWq34GSybTIz892s0d4fpPOdAOAk7+ZefFcB2Jt9/X6RiQmpqG6ugzTpsU72G+xiJCWxr7/\n3/89hJ6eGyAUjkRbmwX/+tdubNlyk1fncqex7j6zf645ObkoKuqvPpiT81uIxVKvNcvTyCdrRyw6\nOtjqt0lJEkybJh3UF7DXy9ras3j//UpMmjQBFRVNUCoLkJQUzYmOeltd2ek1WsTQxlRizRte9rtM\nJuDCBbaQR2Mjm9Ju/behwb/5ZO3t7KuqatBHOr0ece7aQ5mMHQlTqWyjYka5Al8eM+K8RYXEUaKg\njlwHqlMeHarm5maIxWIcP+64BoC/QjV9+nTk5uZiyZIlEAqFePrpp7Fjxw7Ex8dj/vz5WL9+PR59\n9FEAwKJFi5Ceno709PRB+xChx75hOnq0EZmZWYiOlkAgEGDChDFIS2PnYN1yixmFhbP9+tJ7yrn+\n05++QWlpLtLSZMjK+s2gSkS+wHXlm76+RADHAMQB0F18Hxjz5snx5ZelMBhiIJWaMG+e85ETK/bp\nEQADs7kFbPKA6WL6kcDptjRvgohkuNYpgLQq1PAh7dAbXOlGUVEZ1GoGNTXnIZGMQW2tGjk5uWFJ\nW3Sno87a/XvuScWaNcW2daz++tdLsXcve40WSztSU9lEtaioKDQ1yVyedyDuNNZb/bWfjrBxI5sJ\nYm+7JzylFg5cx2nePDkKC/McjqHXG1Fc3Ij2djFiY83QaC5AKr0Mo0ePQF0dA42mDdOmpXplUzBS\nW+2vUa2WoajIy5TFmBggPZ19+YNe7+iIqdX9zlhjo+/rkmm1rCNm54xpWw240l3FX3uefdan4iRc\n49GheuGFFzg/qVWErGRn90ehZsyY4bTM7MB9iNBj/6M1GhNRVlaF6dOngGEYpKWBk9ENTznXdXUZ\n6O1Vor1dhurqZsya5ViJyBe4rnzT02MEcA2sGdA9PaUBH3PZsjyIxdXQaACFQjCooR+IfafEZJIh\nK2sMpk1jK5F1dVUC0Drdls8dGILwRDB0CiCtCiWRUtrZlW6sWDEZW7eWwmwugMkkgFot975jyzHu\ndNTa7gOwtfu7dtVDpSrA6NGsFuzd2799RcVZVFWxhQwsFgtSUz2n8Ftxp7H+6K8/muUpcDhwHSdn\nbN9eDaNxCkymVJhMQEPDWUyZws6fjYvrgU7H3h9vbApGkY2wBUdjY4EJE9iXFwzKpOjqcnTABo6Q\n6fWeK/7as349Px2qRx55BK+99hrmzJnjdIHEgwcPBtMugofY/2jz8hQ4c+Y0ZLJKTsXPXcOg0YgR\nF2dGayvboOp0UX45AcGa/CyXJ6C5uQZADAAT5PKEgI/pq+jYd0rS089BqVwAwHlDHykdGIJwBenU\n0GEolHbmy6i/Ozus7X5nZxPGj291WGPK2fYbNlyNJ57YbRu92rDhattnoS4kYq9Z8fHd6OkRYOPG\nSrfn5iJwqNGIkZenQHl5M/R6IWJjtcjJYbNFcnIy0dx8ADKZd5kywfiORGxwNCGBfU2a5HKT3a6W\nj2EYNrXQ3hG79toQGj8Ylw7VX/7yFwDAJ598EjJjCH5j/6MViYQoKFBgxQr/Roe8OcfAhkGhMCMn\nJxPt7UcRHa1Eevo5FBbOdXM05wRrzZWMjD5otb3o7Y2CSNSLjIy+gI/pq2DZd0oMhnQUFVU47Gtf\n3GEodGCI4Q3pFMEn+NKxdWeHtd0vKTHb5gm5214uT8KWLc6j/qFev8xes7badbTdnZuLwCF7f4SY\nNi0VDMOgt1eKrKx+bV23bq7XjqSzex2oY2p/jSpVJQoLr/O8U4Tg8vkJBP0FpHJzw2vkRVw6VIqL\n5XftJ4kSw5tQjGi4O8fixWOwZs0BWCy9SE9nI2X+RMOCFUWcO/cSNDSUobMzFomJesybd0nAx/RX\nsI3jD2gAACAASURBVCKlBDFBBALpFMEnwtmxtW/zExJMGD36GDo7ZV5ptb/aHs4ROW/PzUXgcPA6\nnWmYOdO/Yzq710VFgTmm9tdYUqL1qPV8W8PTHZEU+PU4h4oYugQy+hEs3J3js8/OoKVlNHp6jGhp\nkeCzz87ggQdm+HyOYEURm5o6kZ5+C3Q6HeLi4nDhwu6Aj+mvYIU6ckgQBDHc8bVjyyUD2/zx48u8\nnl/sj7YPXAw4JyczpCNyoRwNDHSdTnfHArzXea4cGb6t4TlUoCWThzHWH4VWm42amjwUFVWH2yS3\nfPNNGzo6JqOn5xJ0dEzG/v1+lPQEGyEaP74MMlklxo8v42ykbcKEMZDLWxAd3QK5vAUTJowJ+JgK\nhdm2OKgvosGXXH6CIAgi+IS6zbcuBhwXlwydbiSamw+EdB5usHQ8HHir81z12QL9rlD/wjkeR6jM\nZjM+/fRTNDY24vHHH8eJEycwadIkxMSEdwFQInAi7UfR1xeFCxd00Ol6odXqMGKEf/GAYI20paUB\nU6cqoVQ2Ii1NibS05oCP6W8qhrvoHaUDEkMN0iliuBPq+VsajRhicbStiqxMNiGkOhKojnOpg1zO\ngXKn81z12QL9rvBlriDf8OhQPfPMM4iPj8exY8cAAOXl5di6dSteffXVoBtHBJdI+1HIZHowjBZA\nHxhGCJlMH26THGDneBWjsrIXFosIq1Zd7XknD/grGu4aaBquJ4YapFPEcCfUVVsD6T/wIajHpQ4G\neixvdZ6rPlug3xWqEOwcjw7VuXPnsG3bNixbtgwAcNddd+HLL78MumFE8Im0H8XEiePQ0dGCCxcM\nGDlSiokTx4XbJAe4muPFBc4aaL3eiF271CgpSYJQWIbcXHZh5mCPTPJBPIPFUL62SIJ0ihju+Bp8\nMxhM2Lq1NKijKq7aR66cmUDaXy4zdEKV7cNVn00qleC3v82y3buiomqf7l0kFYoIJR4dKpGI3cT6\nZdHr9TAajcG1iggJkfajGDVKgKlT8y6m1KVh1KiycJvkwK5d53DokBgmUzxiYhrQ12cOm0PljO3b\nq6FW50MoFKGtbQTKy8sxdWpe0Ecmh/KI2FC+tkiCdIrgA/YdfK1WjZycXN4GWPbt04BhrgrqqIqr\n9tGVA2K9f8ePt6O0tNRjJz+QKrhsQQ054uIsyMmRB6SDocr24bLPRtrFPR4noSxcuBC/+93vcP78\neTz33HO4+eabsXjx4lDYRhAOWCehxsae4uUk1J9+0sBguAkWy7UwGG7CTz9pwm2SA1YRy81NgVze\ngr6+9pDcx0ibq+cLQ/naIgnSKYIP2BcNUKvzeV3oqaMjNuhtl6v20VURBuv90+tzvCq6EEgVXKXy\nWsTFXYBO147m5r0B6WAkFsgg7eIejyNUS5cuxZQpU3DkyBGIxWK88soryMvLC4VtBAFg4LA+cMcd\nsU7XgAh3+pVQqIRQ2AuLhUFUlABCoTJk5/YGhcKMykoG0dEiTJ2qxPjxzSGJSEXaXD1fGMrXFkmQ\nThF8IJI6qUlJejBMcNsuV+2jq9Q1jUaM3t4+VFV1o7ZWjIoKDRYv7sCuXfVOdd3f9pctqCHFtGms\n/slkgoD6CpGW7QOQdgUDjw7V0aNHAQBTp04FABgMBhw7dgxjx461LapIEMFk4NB0be0uzJzpeTvr\nEHaoHK3MTB1OnTKht5eBSCRAZqaO83MEQmFhFmprv4ZMpg3ZnDm93giz2YSKir0AojF/fgIKC/mx\nqjkXRNo8xKEK6RTBByKpkzprVjy2bStGU5MMqalan4soeaOrrtpHVw6IQmHGoUMadHWlIT4+HkZj\nCtas+R4qVYHT1LRgVMEdLpB2cY9Hh2rz5s04duwYxo0bBwCoq6vDJZdcArVajX//93/H3XffHWwb\niWGOfdSvt7cPR4/2YOPGSlsjwDCsM/X55+0QCpuRm5uC6GiRLToYqlzhoqLrceed/4v6einGjDHg\nn/+8nvNzBIJUKsHixSrk53u32CMXWOdtXXIJK1zR0WW8nVPgD5EYmRyKkE4RfMC+k6pSVaKw8Lpw\nm+SSw4e7oVItxujRbNu8c2cZVqxI8np/d7o6MKvk4YfTvWr3CwuzUFz8LcTiJCQnS5GbOxEnT3Zg\n9Gjno35cV8ENd5ZLKCHt4h6PDtW4ceOwbt06ZGZmAgDOnDmDjz/+GB988AGWLl1KQkUElYGTR3t7\ne2EyKaDVZtsacQCoqcmDUFh2sdhCC6ZOVdqiTgPTMBoaEFB1I1eoVCPx7bdLUVJSgvz8/ICPNxSI\npBQYInIhnSL4gH0ntaREy+vOeEdHLJKSgrO4q79BTKlUgoKCNHz3nRxKZSrKyjRoamrEL7+cRF7e\nRIhEMZyMJrlyJsJVqGE4OXJDGY9FKSorK20iBQCZmZmoqqqCRCJBVJR/C6sShLcMnjz6f8jIGAOg\nvxHvL7aQBbm8HH19jhNDB06APXeunpPVxgnPeLsCPEEEAukUQfiGdQ4V4F/b7K5tDySQVliYBZWq\nBGfOHALQjGuuuRGAEmfOfBv0gg/hCgDaFzOhPknk4nGESqFQ4JFHHsGMGTMgEAhQVlYGsViMvXv3\nIiUlJRQ2EsOYgZNHT59uhEgUA8CxEe/uZhAdLcHUqXkYP94xqjRweD8mZjTMZu4bTV9Lvg4HKE+b\nCAWkUwThiKdRjwULFKiuDs7iroHMUbKmpstkMmi1bHr69OkyyGSdWLEiuOnq4ZpbRZkcQwOPDtVL\nL72EnTt3oqqqChaLBTk5OXjqqaeg0+kw01llAGLIEc7h6IEN3Pz5CVCrSwYVVnDXaR84vL91aylq\narhvNPtLvqagpiaN1nUA5WkToYF0iiAc8ZS+JpHEBNQ2u2vbuQikhcO58WR3sIKmVCRjaODRoZJK\npbjhhhtw9dX9FWDa29sxZsyYoBpG8IdwLgA3uIHLxalTGFRYwRd7gjVqEu4oE+VhE8MV0imCcCSc\nesRFIG3x4jFYs8b/KoT+4MnuYAVNKZNjaODRoXruuefw+eefQy6XA4Bt3YL9+/cH3TiCH0R6wxyK\nYwJAQoIWhw5dQFOTEU1NF7BokZbzc7jD2tj39vbh0CENiou/RUFBGjlWxJCHdIogHIn0UY9du+qh\nUhX4XYXQGYEGHYPVF/LUJ6FgaWTg0aH66aef8OOPPyImJiYU9hA8JNIb5lBhMhnx668laG0Vw2Qy\nw2QKrPH3FWtjX17eio6OVMTEpKOmZqJfUTRqwIlIgnSKIBzh26iHr5rijfPi6zEDzbax9oWA0BZZ\nCmeWEOE9Hssfpaenk0gNcwoLszB+fBlkssqgV9mJZA4f1iEh4QaMGHElEhJuwKFDoV3Y11p1Sa8X\nAgBiY81+R9Go6hARSZBOEYQj1lGPxx/PxooVk8MeEPNVU7ypEOvrMQMdYbL2hWJjT4W0LxTu6QSE\nd3gcoRo5ciTuvvtu5OfnQygU2v6+atWqoBpG8AcajvaWaA/vg4s1IllRoYHRmILc3Il+R9H42oDT\nd41wBukUQfAbXzXFmxE2+2P29vahuFgDjabSpTbYZ9uYzQZUVJzFxo3wWkusfaGSEjPy80M3QkRZ\nQpGBxxGqpKQkXHXVVRCLxRAKhbYXQVih0QyW+fMTkJTUhOjoFiQlNWH+/ISQnt/a2G/dehVuuUWA\n5OQ6v6NofF0/ir5rhDNIpwiC3/iqKd6MsNkfs6yMDSS60wb7bJvm5gNQKhdEhJZQllBk4HGEauXK\nlYP+9uKLLwbFGCIy4etoRqhZujQX0dHVOH68CdOmpaKwMDcsdnBRdINv+fdW6LtGOIN0iiD4TTA0\nxf6YEkkdMjNnA3CtDfbauHEjoNVGu92eL9DyI5GBR4fqu+++wyuvvIKOjg4AgNlsRlJSEtasWRN0\n44jIgIajWcKVDhAM+NqA03eNcAbpFEHwm2BX7N261YyaGnYepTfaQFpCcI3HlL/XXnsN69atQ0pK\nCt5++23cdtttWL16dShsIyIEGo4mQgV91whnkE4RxPDGV20gLSG4xuMIlUwmw7Rp0xAdHY2srCw8\n8sgjuPfeezF79uxQ2EdEAHwdzSDCD9dFJOi7RjiDdIoghgZ6vRG7dqlx4IDMJ83wVRtISwiu8ehQ\nmc1mHDlyBAkJCdixYwcmTJiAhoaGUNhGEG6him/8h9bPIEIB6RRBDA22b6+GWp0PlUoVsZpBfZPh\niUeH6m9/+xs0Gg2eeOIJ2///8Ic/hMI2gnALddb5DxWRIEIB6RRBDA2GgmZQ32R44tGhysjIQEZG\nBgDgvffeC7pBQ5WBEYusLFO4TYp4+NbwWp/x8ePtKC0tpagUaOIvERpIpwiCPwQyQqNQmFFZyb8l\nO3wh3H0TGiELDx4dql27duGdd96BVqu11fsHgIMHDwbTriHHwIhFbe0uzJwZbqsiG7511q3PWK9P\nQU1NGkWlwN/y68TQgnSKIPhDICM0hYVZqK39GjKZNmI1I9x9ExohCw8eHarNmzfj73//O0aOHBkK\ne4YsAyMWHR2xYbYo8uFbZz3cUSk+QhN/iVBAOkUQ/CEQLZRKJVi8WIX8/OxgmRd0wt03ob5IePDo\nUP1/9u49Lqo6/x/4a7gPoCKOoKIiKmGItzBJ3E1t1dSy2pTGXDHt5q7lWunXNLPavvWwTGst12+5\nmZTWilr2E4vUvKZ5xVTQRdEIFRQYuSjMwDBwfn9MMzAww1yYmXMGXs/Hg4fOzDkz7zMDn/e8z+dy\nevbsifj4eKe9oE6nw6JFi1BQUABvb28sW7YM3bt3N9lm+/bt+OKLL+Dt7Y2kpCRMmTIF27Ztw6pV\nq9CzZ08AwIgRIzB79mynxeVqjc9YhISoxQ7J40nty7rhMwY8d6gCkSdiniKSDrF7aMQm9neTtv7+\ni8ViQXXkyBEAQJ8+fbBy5UokJCTA29vb+Pjw4cMdesEdO3agQ4cOWLFiBQ4fPoyVK1figw8+MD6u\n0WiwZs0afP311/Dx8cGUKVMwbtw4AMDEiROxcOFCh15XbI3PWERHK8QOyeXa2jhew2dcXl6IqKib\noveYEbV2zFNE0uPKHpq29r3CEWL3kLVVFguqNWvWmNw+ffq08f8ymczhRHXkyBE88sgjAIDExES8\n8sorJo+fOXMGAwcORFBQEADgrrvuwqlTpwDAZGy8p2l8xiIjI0PEaNxDrHG8YjW4hs84I0OL+Hjp\n9JwRtVbMU0TisZRrXdlDw/lB1ondQ9ZWWSyoNmzYYPx/RUUFgoODAQDFxcXo3Lmzwy+oUqkQGhoK\nQJ/wvLy8oNPp4OPj0+RxAAgNDUVxcTF8fHxw4sQJPPPMM9DpdFi4cCHuvPNOh+Mg1xNrHK/YhRxX\n+SNyD+YpIvHYm2udcbKT84NIqqzOofryyy9x+PBh45nAl156Cffffz+mT59u9cm3bNmCrVu3Gn/5\nBUHA2bNnTbapq6tr9jkMZ/sGDx6M0NBQjBw5EqdPn8bChQuRlpZmNQYp9wRJOTag5fFVVOQjPz/Y\nOI43IuICMjIqXB7b6dOlUKs7GW+XlxciI8P1Y4jT0vKRnx8PmawTDh8W8NtvuzBpUoTLX9deUv69\nk3JsgLTjk3JsrsY85TpSjg2QdnxSjg1oeXz25tr6HCnDhQvN50hLsbnye4U9pPzZMjZxWC2otm/f\nji+//NJ4+7PPPsP06dNtSlRJSUlISkoyuW/x4sVQqVSIiYmBTqfTB+FTH0ZYWBiKi4uNtwsLCzFk\nyBBERUUhKioKgD5plZaWQhAEYxK0xJkTlZ0pIyNDsrEBzokvNrY/UlMbno0a55QeG2uxZWZmIje3\nq7HBjYq66ZYhePv2BSMiIgIFBQWIiIhAcHCF5FYqkvLvnZRjA6Qdn5RjA1yfRJmnXMMTfq+kGp+U\nYwOcE5+9udaQIw0s5cjmYnPV9wp7SPmzZWyOa2me8rK2QW1trUki8fKyukuzRowYgR9++AEAsHfv\nXiQkJJg8PmjQIGRlZaGiogKVlZX45ZdfEB8fj08//RRbtmwBAFy6dAmhoaFWkxSJyzCOd8GCGMyc\nOcBtjZ5SGY2oqCz4+WUiPz8dBQUCUlIyodFUufR1FQqt8Uw1V9Yhch/mKSL3M+Ta4OALiIrKsrr4\nQXM5Uq2uQkpKJlasuIC0tHyL+Vqs7xVE1ljtobrvvvswdepUxMfHo66uDkePHjWuZuSIiRMn4vDh\nw5g2bRr8/f3xzjvvAADWrl2LhIQEDBo0CPPnz8eTTz4JLy8vzJ07F8HBwZg0aRIWLFiA7du3o66u\nDm+//bbDMVDrZmhwU1IyUV09AVqtDLm5rp9LxVX+iMTBPEXkfvYuftDc6nMN52Pl5wcjNTWHCyuQ\nR7FaUM2ZMwfDhg3D2bNnIZPJ8Prrr2Pw4MEOv6CXlxeWLVvW5P5nn33W+P9x48Y1SYbh4eEmE5CJ\nrHH35FWu8mcdl7wlV2CeIpK+5gowLjbhOsy77mG1oAKAoUOHYujQoa6OhcipeHE76eGSt+QqzFNE\nnov52nWYd92jZQPNiSTM3vHd5Ho8C0lERI01zNcRERnM107EvOseNvVQEXkiXtxOengWkoiIGmuY\nrzMyKjgkzYmYd93Dag/VokWLmtz31FNPuSQYIk9mWKVow4ZSt6wq6InYa0iuwDxFZB+Nptq4qh7z\nVevGvOseFnuotm/fjk2bNiEnJwd/+ctfjPfX1NRApVK5JTgiT2IYp6xWd0JubleOUzaDvYbkTMxT\nRI758UcVBGE459W0Acy77mGxoHrooYeQkJCABQsWYO7cucb7vby80LdvX7cER+RJOE6ZyL2Yp4gc\nU1YWiJAQ5isiZ2l2yF94eDg+/vhjqFQqDBs2DMOGDUNOTg58fX3dFR+Rx+CFfYncj3mKyH4hIWrm\nKyInsmkOVcOhExqNBgsXLnRpUESeyDBOOTDwPMcpE7kR8xSRfcaOVXBeDZETWV3lr6ysDDNmzDDe\nfvLJJ7Fv3z6XBkXkiXhhXyJxME8R2ScgwJ/zaoicyGoPVU1NDS5fvmy8nZWVhZqaGpcGRUREZCvm\nKSIiEpPVHqrFixdjzpw5uH37Nurq6tCxY0csX77cHbERERFZxTxFRERislpQDRo0CDt37kRpaSlk\nMhlCQkLcERcRUauhVldh8+YcqFR+UCi0UCqjeeFKJ2KeIqni3z5R22CxoKqoqMCaNWvw66+/4u67\n78YTTzwBHx+r9RcRETViuEYZr/niXMxTJHX82ydqGyzOoXrjjTcAAEqlEpcuXcLq1avdFRMRUbPU\n6iqkpGRixYoLSEnJhEZTJelYeI0y12CeIilSq6uQlpaPFSsuID39OnS6agD82yfrpJTbyD4WT+Xl\n5+djxYoVAIB7770XM2fOdFdMRETNktJZX1tiUSi0uH1bgEwm4zVfnIh5iqRo8+Yc5OfHIyIiAlVV\nHZCVdRFDhgzk3z5ZJaXcRvax2EPVcNiEt7e3W4IhIrKFlHp8bInFcI0yXvPFuZinSIoatglxcQoE\nBNzk3z7ZREq5jexjsYfK8IFauk1tAyfUkhRJqcfHllgM1ygj52KeIilSKLS4cEEAAPj4eGPCBAVm\nzoyBWl2F1FTmU7JMSrmN7GOxoPrll18watQo4+2bN29i1KhREAT9B71//343hEdiY/czSZFSGY3U\n1CyTLyaMpe1hniIpUiqj8dtvuxAcXGHSJjCfkjXMJ57LYkH1ww8/uDMOkih2P5MUSanHR0qxtDXM\nUyRFcnkAJk2KQHx8jMn9zKdkDfOJ57JYUEVERLgzDpIodj8TkVQxT5EnYT4lar0sLkpBBHAyPRER\nkTMwnxK1XrwCIjWL3c9EREQtx3xK1Hqxh4qIiIiIiMhBLKiIiIiIiIgcxIKKiIiIiIjIQSyoiIiI\niIiIHMSCioiIiIiIyEEsqIiIiIiIiBzEgoqIiIiIiMhBLKiIiIiIiIgcxIKKiIiIiIjIQSyoiIiI\niIiIHOTj7hfU6XRYtGgRCgoK4O3tjWXLlqF79+4m25SXl+Oll15CcHAwVq1aZfN+RGJSq6uweXMO\nTp8uRWZmJpTKaMjlAWKHRUR2Yp6itsiQw1QqPygUWuYwIju4vYdqx44d6NChA7766iv89a9/xcqV\nK5ts849//AP33HOP3fsRiWnz5hzk5sZBrY5Fbm4cUlNzxA6JiBzAPEVtkSGHVVTEMIcR2cntBdWR\nI0cwZswYAEBiYiJOnTrVZJu3334bgwYNsns/IjGpVH6QyWQAAJlMBpXKT+SIiMgRzFPUFjGHETnO\n7QWVSqVCaGgoAP0frJeXF3Q6nck2crncof2IxKRQaCEIAgBAEAQoFFqRIyIiRzBPUVvEHEbkOJfO\nodqyZQu2bt1qPOMhCALOnj1rsk1dXZ1Dz23rfhkZGQ49vztIOTZA2vFJMbbo6Gr89lsaAgMDIZOd\nRHS0QpJxSjEmAynHBkg7PinHJmXMU82TcmyAtOOTcmxA0/gMOaysLBAhIWpRc5invXdSwtjE4dKC\nKikpCUlJSSb3LV68GCqVCjExMcYzdz4+1sMICwtzaL/4+HgHIne9jIwMycYGSDs+Kcc2YoQhvjFi\nh2KWlN87KccGSDs+KccGSDuJMk9Z5gm/V1KNT8qxAZbjGzFChGAa8dT3TgoYm+NamqfcPuRvxIgR\n+OGHHwAAe/fuRUJCgtntBEEwdj3bsx8REVFLME8REZE93L5s+sSJE3H48GFMmzYN/v7+eOeddwAA\na9euRUJCAgYMGICHH34YGo0G5eXlmDRpEl5++WWL+xERETkT8xQREdnD7QWVl5cXli1b1uT+Z599\n1vj/tLQ0s/ua24+IiMiZmKeIiMgebh/yR0RERERE1FqwoCIiIiIiInIQCyoiIiIiIiIHsaAiIiIi\nIiJyEAsqIiIiIiIiB7GgIiIiIiIicpDbl00nImqt1OoqbN6cA5XKDwqFFkplNOTyALHDIiIicqvG\n+TA6ulrskFyKPVRERE6yeXMOcnPjUFERg9zcOKSm5ogdEhERkds1zoe7d6vEDsmlWFARETmJSuUH\nmUwGAJDJZFCp/ESOiIiIyP0a58OyskCRI3ItFlRERE6iUGghCAIAQBAEKBRakSMiIiJyv8b5MCRE\nLXJErsU5VERETqJURiM1NctkDhUREVFb0zgfRkcrxA7JpVhQERE5iVwegJkzB4gdBhERkaga58OM\njAwRo3E9DvkjIiIiIiJyEAsqIiIiIiIiB7GgIiIiIiIichALKiIiIiIiIgexoCIiIiIiInIQCyoi\nIiIiIiIHsaAiIiIiIiJyEAsqIiIiIiIiB7GgIiIiIiIichALKiIiIiIiIgexoCIiIiIiInIQCyoi\nIiIiIiIHsaAiIiIiIiJyEAsqIiIiIiIiB7GgIiIiIiIichALKiIiIiIiIgexoCIiIiIiInIQCyoi\nIiIiIiIHsaAiIiIiIiJykI+7X1Cn02HRokUoKCiAt7c3li1bhu7du5tsU15ejpdeegnBwcFYtWoV\nAGDbtm1YtWoVevbsCQAYMWIEZs+e7e7wiYiolWOeIiIie7i9oNqxYwc6dOiAFStW4PDhw1i5ciU+\n+OADk23+8Y9/4J577kFWVpbJ/RMnTsTChQvdGS4REbUxzFNERGQPtw/5O3LkCMaMGQMASExMxKlT\np5ps8/bbb2PQoEHuDo2IiIh5ioiI7OL2gkqlUiE0NBQAIJPJ4OXlBZ1OZ7KNXC43u+/x48fxzDPP\nYNasWfjvf//r8liJiKjtYZ4iIiJ7uHTI35YtW7B161bIZDIAgCAIOHv2rMk2dXV1Nj3X4MGDERoa\nipEjR+L06dNYuHAh0tLSrO6XkZFhf+BuIuXYAGnHJ+XYAGnHx9gcJ+X4pByblDFPNU/KsQHSjk/K\nsQHSjk/KsQHSjo+xicOlBVVSUhKSkpJM7lu8eDFUKhViYmKMZ/x8fKyHERUVhaioKAD6pFVaWgpB\nEIxJ0Jz4+PgWRE9ERK0d8xQREbWU24f8jRgxAj/88AMAYO/evUhISDC7nSAIEATBePvTTz/Fli1b\nAACXLl1CaGhos0mKiIjIEcxTRERkD5nQMBu4QV1dHZYsWYK8vDz4+/vjnXfeQXh4ONauXYuEhAQM\nGDAADz/8MDQaDcrLy9GlSxe8/PLLiI6OxoIFC4zPsWjRIgwYMMCdoRMRURvAPEVERPZwe0FFRERE\nRETUWrh9yB8REREREVFrwYKKiIiIiIjIQSyoiIiIiIiIHOTRBZVOp8OCBQswbdo0JCcn49q1a022\n2b59O6ZMmQKlUomtW7cCAIqKivD0009jxowZSE5Oxvnz5yUVHwCsW7cOjzzyCJKSkpCVlSWp2AD9\nhS+HDRuGEydOOD22lsRXW1uLRYsWYdq0aZg6dSpOnTrl1LiWLVuGqVOn4vHHH0dmZqbJYz///DOS\nkpIwdepUrFmzxqZ9nM2R+JYvX46pU6ciKSkJu3fvllRsAFBdXY2xY8fi22+/lVRs27dvx8MPP4zJ\nkyfjwIEDLovNkfjUajXmzp2LGTNm4PHHH8ehQ4dEiU2r1eLll1/GlClTbN6nrSkpKcEzzzyDGTNm\nYNq0aU2ugSUmV7enLXXs2DEkJia6/O/PXlL//c7OzsbYsWPx5Zdfih1KE+7KR/aqqqrCCy+8gOTk\nZCiVSuzfv1/skJpwR650xPHjxzF8+HDjd+633npL7JCacEo+FzzYtm3bhDfffFMQBEE4dOiQ8MIL\nL5g8rlarhfvvv1+oqKgQqqqqhAcffFAoLy8X3nnnHSE1NVUQBEE4deqU8NRTT0kqvpycHGHy5MlC\nXV2dcP78eeGjjz6STGwGCxcuFB599FHh+PHjTo+tJfF9/fXXwuuvvy4IgiDk5OQIU6ZMcVpMx48f\nF2bPni0IgiBcunRJUCqVJo9PnDhRuHHjhlBXVydMmzZNuHTpktV9nMmR+I4ePSo888wzgiAIQmlp\nqTBq1CjJxGbw/vvvC1OmTBG2bdsmmdhKS0uFcePGCWq1WiguLhaWLl3qktjsje8vf/mLcOnSPDth\nbwAAIABJREFUJWHjxo3C+++/LwiCIBQWFgrjx48XJbb//d//FTZu3ChMnjzZ5n3amvXr1ws7duwQ\nBEH/3jz55JMiR1TPle1pS+Xl5QnPPfecMHfuXGH//v1ih2Mk9d9vtVotzJw5U3j99deFjRs3ih2O\nCXflI0d89913wqeffioIgiDk5+cL48aNEzmiplydKx117Ngx4e9//7vYYVjkrHzu0T1UR44cwZgx\nYwAAiYmJTc6enTlzBgMHDkRQUBD8/f1x1113ISMjAwqFAmVlZQCA8vJyhIaGSiq+ffv2YcKECZDJ\nZLjzzjvx/PPPSyI2wzZHjx5Fu3btcMcddzg9rpbG99BDD2Hx4sUAgNDQUJSXl7skpj59+uDWrVuo\nrKwEAFy9ehUhISEIDw+HTCbDyJEjceTIkWb3cTZ74zt69CjuvvturFq1CgDQvn17aDQak+vqiBkb\nAFy+fBm5ubkYOXKk02NqSWw///wzRowYAblcDoVCgTfffFMS8d177704evQoOnXqhNLSUgDua+PM\n/X7Pnz8fo0aNsmuftmbmzJl44IEHAAAFBQXo0qWLyBHVc2V72lJdunTB6tWrERQUJHYoJqT+++3v\n749PPvkECoVC7FCacFc+csTEiRPx1FNPAdD/nXbt2lXkiEz9+uuvLs+VLSGVz9EcZ+Vzjy6oVCqV\n8YuCTCaDl5eX8ar2jR8H9AlBpVIhOTkZ6enpmDBhAl5//XXMmzdPMvEVFxcjPz8fBQUFePrppzFr\n1ixkZ2dLJraamhr83//9H1544QWnx+SM+Hx8fODv7w8A+Pzzz/Hggw+6JCYA6NixI1QqVbPxNLeP\ns9kbX1FREby8vCCXywEAW7ZswciRI11yIVJHYgOA9957D4sWLXJ6PC2NLT8/HxqNBn/7298wffp0\nHDlyRFLxjR8/Hjdu3MC4ceMwY8YMl72H1n6/Db9b9uzTFqlUKkyZMgWffPKJy9tWe7iyPW0pPz8/\nsUMwS+q/315eXpJ979yVj1pi6tSpWLhwIV555RWxQzGxfPlyl+fKlrh8+TLmzJmDv/zlL/j555/F\nDseEs/K5j5PjcpktW7Zg69atxj8uQRCajDWvq6tr9jkMFfK6deswfvx4zJ49GwcOHMC7776LDz/8\nUBLxyWQyCIKAuro6fPrpp8jIyMCrr77aZA6TGLEBwNq1a/H4448jODjY5P6WcGZ8Bl9++SXOnz+P\njz/+uMXx2fqatjzmzrM09sT3448/4ptvvsG6detcHZbZ1zf32Lfffou7774b3bp1s7qPu2MTBAFl\nZWVYs2YNrl27hhkzZmDfvn2SiW/79u3o0qUL1q5di+zsbCxduhRbtmwRNTZn7uOpGrZ1hvZ+7ty5\nGDFiBLZu3YqDBw9i0aJFbvs7tDU2d7SnjsYmdW3p99tZ3J2P7LFp0yZkZ2djwYIF2L59u9jhABAv\nV9oqMjISzz//PCZMmICrV69ixowZ2L17N3x8pFGCOCufS+NobJCUlISkpCST+xYvXgyVSoWYmBhj\n70XDDygsLAzFxcXG24WFhRgyZAh27dqFF198EQAwfPhwvPHGG5KKr3PnzujduzcAID4+HgUFBZKJ\nbdu2bfjpp5+wfv16XLlyBZmZmVi1ahX69OkjifgAffLdv38/1qxZA29vb4fjaiwsLMzkTGNRURE6\nd+5sMZ6wsDD4+vpa3MfZHIkPAH766SesXbsW69atMxbKUojt4MGDuHr1Knbt2oUbN27A398fXbp0\nwfDhw0WPLTAwEEOGDIFMJkOPHj0QFBSEkpISlwytcyS+U6dO4Y9//CMAoF+/frhx44bxi6i7YnPm\nPq2Fubbu+PHjKC8vR4cOHXDvvfdi4cKFkokNcF17ag9LsUlRW/79dgZ35CNHZGVloVOnTujatSv6\n9euH2tpal7X59jpw4ACuXbvm8lzpqPDwcEyYMAEA0KNHDygUChQWFiIiIkLkyPQUCoVT8rlHD/kb\nMWIEfvjhBwDA3r17kZCQYPL4oEGDkJWVhYqKClRWVuKXX35BfHw8IiMjcfr0aQDA2bNnERkZKan4\n/vjHP+Knn34CoO8mdcWYekdj++qrr7Bp0yakpqZi1KhReP3111tUTDk7vqtXryI1NRWrV6+Gr6+v\n02PauXMnAODcuXMIDw9HYGAgACAiIgKVlZUoKCiATqfD/v378Yc//KHZfZzNkfgqKirw3nvv4eOP\nP0a7du1cEpejsb3//vvYsmULUlNTkZSUhDlz5rgkQTgSW2JiIo4dOwZBEFBaWgq1Wu2yxOpIfA3b\nuPz8fAQGBrpk6Iwtv9+CIJicMXXn34Qn2L17t3FVrgsXLhjPMkuBK9tTZ5LSGXn+fjvOXfnIESdP\nnsT69esB6Id1ajQaSRRTAPDBBx+4JVc6Ki0tDatXrwYA3Lx5EyUlJQgPDxc5qnojRoxwSj6XCVJq\niexUV1eHJUuWIC8vD/7+/njnnXcQHh6OtWvXIiEhAYMGDcKuXbvw6aefwsvLC8nJyXjggQdQXFyM\nJUuWQKPRQCaT4dVXX3XJAguOxgcAH330EQ4fPgxA31szaNAgycRmsHjxYjz66KO4++67nRpbS+L7\n4IMP8P3336Nr167GM/KfffaZ07qW33//fRw/fhze3t547bXXcP78ebRr1w5jxozByZMnsWLFCgDA\n+PHjMXPmTLP7xMTEOCUWZ8S3efNmrF69Gr169TK+X8uXL3dJEe/Ie2ewevVqdO/eHY888ojT43I0\nts2bN2PLli2QyWSYM2dOk8UXxIxPrVbjlVdewc2bN1FbW4sXXngBw4YNc3tss2bNwo0bN3D9+nX0\n6NEDM2fOxOTJk7Fy5UqcOHHCLX8TUldaWopFixZBrVZDq9ViyZIlGDhwoNhhAYDL29OW2L17Nz78\n8EMUFRUhKCgIHTt2xNdffy12WADc2+bb68yZM3j11VdRUlICb29vdOjQARs3bkSHDh3EDs2t+che\n1dXVeOWVV3Djxg1UV1dj7ty5klwAwtW50hGVlZWYP38+ysvLIQgCnnvuOeMICqlwRj736IKKiIiI\niIhITB495I+IiIiIiEhMLKiIiIiIiIgcxIKKiIiIiIjIQSyoiIiIiIiIHMSCioiIiIiIyEEsqIiI\niIiIiBzEgoqIiIiIiMhBLKiIiIiIiIgcxIKKiIiIiIjIQSyoiIiIiIiIHMSCioiIiIiIyEEsqIg8\nQL9+/VBYWNjk/u3btyM5OVmEiIiIqK1asGABRo8ejcOHD4sdCpEk+IgdABFZJ5PJHHqMiIjI2b7/\n/nvs3LkTPXr0EDsUIklgDxWRCD7++GMkJiYiKSkJX331Fe677z5otVq89tprGD9+PB544AG8++67\nEAQBAEz+ffPNNzF69GgolUpcuHBBzMMgIqI2Jjk5GYIgYObMmUhMTDSOnkhLS8PUqVNFjo5IHCyo\niNzs0qVLWLduHdLS0vDll18iPT0dMpkMKSkpKCoqQnp6Or755hucPHkSO3bsMNn34MGD+Pnnn5Ge\nno4NGzbgxIkTIh0FERG1RRs2bAAA/Oc//8Hs2bOxfPlyaDQa/POf/8Rbb70lcnRE4mBBReRmJ06c\nQEJCAjp16gQ/Pz9MnjwZgiDg4MGDeOyxxyCTyeDv749JkyY1GZ9+8uRJjBo1CgEBAfDz88OECRNE\nOgoiImqrBEGAIAhITk5GXl4eXnzxRTz44IPo27ev2KERiYIFFZGb3bp1Cx06dDDeDg8PBwCUlJSg\nffv2xvvbt2+PmzdvmuxbXl6O4OBgk22IiIjE4OXlBaVSiQMHDiApKUnscIhEw4KKyM2Cg4OhVquN\nt4uLiwEAnTp1QllZmfH+srIyKBQKk33bt2+PiooK4+2SkhIXR0tERGSeRqPBp59+iuTkZLz33nti\nh0MkGhZURG42YMAAHDt2DGVlZdBqtfj2228hk8kwevRobN26FXV1dVCr1di+fTtGjRplsu/gwYNx\n6NAhVFVVQaPRYOfOneIcBBERtXkffvgh7r//fixevBhXrlzB/v37xQ6JSBRcNp3IzQYOHIhHHnkE\njzzyCLp164aJEyciJSUF06dPx5UrV/DAAw/Ay8sLEyZMwP333w+gfmn0++67DwcPHsT48ePRuXNn\njBo1CsePHxfzcIiIqI2RyWS4evUqdu3ahR07dkAmk2HJkiVYuHAhEhISIJfLxQ6RyK1kgmE9Zjda\ntmwZzpw5A5lMhldeeQUDBgwwPqbVarF06VJcvnwZW7dutWkfIk924MABrFq1Ct98843YoRBRA8xV\nRERkC7cP+Ttx4gTy8vKwadMmvPXWW3j77bdNHl++fDkGDhxo1z5EnqSkpAQJCQkoKCiAIAhIT0/H\n4MGDxQ6LiBpgriIiIlu5vaA6cuQIxowZAwDo06cPbt26hcrKSuPj8+fPbzJvxNo+RJ4kNDQUL730\nEmbOnInx48ejvLwczz//vNhhEVEDzFVERGQrt8+hUqlUiIuLM97u2LEjVCoVgoKCAMDsuFtr+xB5\nGqVSCaVSKXYYRGQBcxUREdlK9EUpHJnCZes+GRkZdj83ERE5X3x8vNghtIirchXzFBGRNLQkT7m9\noAoLC4NKpTLeLioqQufOnZ2+j4EnJfGMjAzG62KeFrOnxQt4XsyM1/U8sWhwZ67ytM/TUZ74u+so\nHmvr1ZaOt60da0u4fQ7ViBEjjNfOOXfuHMLDwxEYGGiyjSAIJmf2bNmHiIjIWZiriIjIVm7voRoy\nZAj69++PqVOnwtvbG6+99hq2bduGdu3aYcyYMZg1axZu3LiB69evY9KkSZg5cyYmT56M2NhYk32I\niIhchbmKiIhsJcocqpdeesnkdkxMjPH/69evN7vP/PnzXRoTEXkmQRBQXV3doueoqqpyUjTuIeV4\n/f39jRei9nTMVUTkLM7IVWKQcr5xlCvylNuH/BEROVN1dXWLklT//v2dGI3rSTneln4WREStlSe2\nj1LON45y1ecg+ip/REQt5e/vj4CAALHDICIisoi5qvViDxUREREREZGDWFARERERERE5iAUVERER\nERGRg1hQERE52ffff4+kpCRMnToVH3zwgUPPsX37dkyZMgVKpRJbt25t8viNGzeQnJyM6dOn48UX\nX0RNTU2z+x07dgyJiYk4cOAAAKCurg7JycmYMWMGkpOTcf/992Pt2rUmr/H4449j9erVJsc1ZMgQ\nXLp0yaFjIiIi6RAzV23atAlTpkzBtGnTsGvXLgD6i6E//fTTxrx0/vx5APp89d5772H48OFmY2iY\nq1QqFZ5++mkkJydj3rx50Gg0Dh2XvVhQERE5kUajwYoVK/D5559j06ZNOHLkCC5fvmz3c6xZswaf\nf/45vvjiC3z++ee4deuWyTarVq1CcnIyNm7ciJ49e+Lrr7+2uN+VK1ewYcMGDB061Li/l5cXNmzY\ngC+++AIbNmxAZGQkHn74YePjmzdvhk6nM94+duwYjh49ijvvvNPBd4aIiKRCzFxVUlKC9evX4z//\n+Q9SUlLw2WefQavVYv369Rg3bhy++OILvPTSS3j//fcBAP/+97/Rq1cvszE0zlWffPIJxowZgw0b\nNmD06NH44osv7HtjHMRV/oiodVm1CvjxR+c+55gxwLx5Fh/etm0bfvrpJxQVFWHlypXYvn07AgMD\nAQAhISEoKysz2X7evHkoLS0FoL82iZ+fH9atW2d8/MyZMxg4cCCCgoIAAHfddRdOnTqFUaNGGbc5\nfvw43nzzTQDA6NGj8dlnn6FXr15m90tMTMTq1auxePFis/EfOXIEvXr1Qnh4OACgtLQU3333HZRK\nJW7cuAEAGDhwIBISEpCcnGzz20ZERBa04VwVGxuL3r17w9fXFwBwxx134PTp01AoFMYYysvLERoa\nCgCYMWMG5HK5scAyMJer8vLy8Oc//xkAkJiYiPnz52P27Nl2vImOYUFFROQEBQUF2LRpk8l9Fy5c\nQEFBAQYPHmxy/6pVq5p9LpVKZUwkABAaGori4mKTbaqqqozJqFOnTigqKsLNmzfN7ufn59fs633+\n+edYsmSJ8faKFSswf/58k7OVcrm82ecgIiLpEztXFRcXo1evXrh48SLKysrg6+uLM2fOYPjw4UhO\nToZSqcS2bdugVqvx1VdfAbCcf8zlqujoaOzfvx+xsbH4+eefUVJSYuUdcQ4WVETUusyb1+wZOlcZ\nMGCAye3ffvsNCxYswMqVK+Ht7d2i5xYEwaHHre0HAIWFhaiqqkKPHj0AACdPnkRAQAAGDhxo9/AP\nIiKyURvOVe3bt8f8+fPx17/+Fd27d0ePHj0gCALWrVuH8ePHY/bs2Thw4ADeffddfPjhh2afy1Ku\nmj17Nl577TU88cQTGD58uE150BlYUBEROYHhDBygn4Q7d+5cvPfee4iJiWmyrbVhFGFhYSZn+QoL\nCzFkyBCT5wgMDIRWq4Wfnx8KCwsRHh5u036NHTx4EPfcc4/x9p49e/DLL79g6tSpuHnzJmpqatCz\nZ0889NBDNr4TREQkVWLnqrCwMADAxIkTMXHiRADAk08+ie7du2Pbtm148cUXAQDDhw/HG2+8YfE4\nmstV//znPwEAp06dQkZGhj1vj8NYUBEROdmSJUvw+uuvo1+/fmYftzaMYtCgQVi6dCkqKiogk8nw\nyy+/mAzJA/TJZufOnZg0aRJ27tyJP/7xjxg4cCBeffXVZvdrfLYuMzMT9913n/H2yy+/bPz/tm3b\nkJ+f36SYctcZPyIich2xclVtbS1mzZqFTz/9FEVFRbhy5Qri4uIQGRmJ06dPIzY2FmfPnkVkZKTJ\nczXMPZZy1ZYtWwAASUlJ+PbbbzF69Gi73hNHsaAiInKi3377DadOncKHH34IQRAgk8kwa9Ysuxp1\nf39/zJ8/H08++SS8vLwwd+5cBAcHIzs7Gz/++COef/55zJ07Fy+//DJSU1PRrVs3/PnPf4a3t7fZ\n/Xbv3o0PP/wQRUVFOHbsGD766CN8/fXXAIDi4mKTMfCWbNy4Eampqbh27Rqef/559OnTB2vWrHH4\nfSIiIvGInavGjx+PqVOnoq6uDm+//Ta8vLwwe/ZsLFmyBOnp6ZDJZFi6dCkAffF0/vx5VFRUYNKk\nSZg4cSL+9re/mY3pT3/6E/7+979jy5Yt6NmzJ5RKpVPeL2tkQis+1ZiRkYH4+Hixw7AZ43U9T4vZ\n0+IF3B9zVVUVACAgIMBtr0nmWfosPPH32F3a0nvDY22d2tKxAo4fL3OVNLgqT/E6VERERERERA5i\nQUVEREREROQgFlREREREREQO4qIUROTxqqurxQ6BoP8c/P39xQ6DyCnU6ips3pwDlcoPCoUWSmU0\n5HLOfyHHMVeJz1V5igUVEXm0ljaM586dQ//+/R3a95tvLuLatWjIZDIIgoDu3XPw6KN3tCgea1oS\nr6v5+/uzoKJWY/PmHOTmxkEmk+H2bQGpqVmYOXOA9R2JzPDEtlHK+cZRrspTLKiIRMQzoC0nk8la\nvGqSo/sXFPhDrZab3HbHCk5cJYrI9VQqP8hkMgD6dkal8hM5IvGZy1lkG2fkKjF4Ysxi4BwqIhEZ\nzoBWVMQgNzcOqak5YodEdlAotMYLDQqCAIVCK3JEROQs/PtuijmLyDz2UBGJqLkzoGp1FdLS8rFv\nXzB7ryRKqYxGamoWz9YStUJS/PsWe1SD+ZzFQpOIBRWRiBQKLW7fFoxzcBqeAd28OQf5+fGIiIjg\n+H2JkssD+JkQtVJS/PsWe15XczmLqC3jkD8iESmV0YiKykJw8AVERWWZnAHl+H0iImpI7LzQXM4i\nasvYQ0XkJpaGalg6u6hQaHHhAsfvExGRnlg9RKb5C3juuUgOQSdqgD1URG5i72RepTIaEREZPBNI\nREQAxOsh4mIURM1jDxWRm9g7VEMuD8CkSRGIj49xR3hERCRxYs3rEnuoIZHUsYeKyE24BC8REXki\n5i+i5rGHishNpLgELyD+MrzO1JqOhagt4t+wNLkyf/Ezp9aABRW1GlJvlF0xVMMZxyz2MrzO1JqO\nhagtEutvWOr5wx6uOBZXDjVku02tAYf8UavRFifNOuOYW9PY+NZ0LERtkVh/w60pf3jasbDdptZA\nlB6qZcuW4cyZM5DJZHjllVcwYED9mYiff/4ZH3zwAby9vXHvvfdizpw5OH78OObNm4fo6GgIgoCY\nmBi8+uqrYoROEtYWG2VnHHNrulBjazoWEh9zlfuJ9TfcmvKHpx0L221qDdxeUJ04cQJ5eXnYtGkT\nLl++jCVLlmDTpk3Gx99++2189tlnCAsLw/Tp03H//fcDAIYNG4ZVq1a5O1zyIO5ulKUwRMQZxyzV\nuV2OaE3HQuJirhKHWH/DzmhLG+aEiop8xMb2F2XYoKcVKGy3qTVwe0F15MgRjBkzBgDQp08f3Lp1\nC5WVlQgKCsLVq1cREhKC8PBwAMDIkSNx9OhR49k+oua4u1GWwrhvZxyzWMvwukJrOBYpFOrEXCUW\nsf6GndGWNswJ+fnBSE3NkcyxSLldaQ3tNpHbCyqVSoW4uDjj7Y4dO0KlUiEoKAgqlQqhoaHGx0JD\nQ3H16lVER0fj8uXLmDNnDsrLy/Hcc88hMTHR3aGTxLm7UW5uWIU9yaslia4tJiIpfzFwBikU6sRc\n1da0tC1Vq6uQnq5CaelNBAbWIjS0zuxQO3e0X+aOJSUls0XtSmtvd4laSvRV/po7m2d4rFevXnj+\n+ecxYcIEXL16FTNmzMDu3bvh42M9/IyMDKfF6g6M1/WcFXNFRT7y84ONwyoiIi4gI6MCAJCWlo/8\n/HjIZDJcuCDgt992YdKkCLPPY23bQ4d+Rnp6AY4cqUJRERAWJsPw4f6YOLEbAgL8nXIszmbve6zR\nVOPHH1UoKwtESIgaY8cqLB6bPe+tq+J1pdOnS6FWdzLeLi8vREaG6ZAdKcXbVrgyV7Wlz7O1Hmta\nWj5u3OiA27f1RVRpaSl69rxozAkNt8vLG4zcXA00mkB8+20q/ud/ol3SljdsV8+fL0f37iHw8fEG\nYL5daU7DdjcrS4Nvv01Fr14Rxvbals/VnnZe6lrr77E5belYW8LtBVVYWBhUKpXxdlFRETp37mx8\nrLi42PhYYWEhwsLCEBYWhgkTJgAAevToAYVCgcLCQkREWP8SFR8f7+QjcJ2MjIw2H6+rz4I5M+bY\n2P5ITW0Y6zhjrPv2BZv8fgYHVyA+Psbs8zS3bUZGBi5daoesrDuQnx+Gqqpw1NRUICsrF9HRMkn2\nXDjyHqekZEIQhiMkRF+c5uRYPntqz3vrqnhdKTMzE7m5XY2FelTUTcTH178XUovXFp6YkN2Zqzzt\n83SUJ/7u2mrfvmD84Q+ROHcuB2q1H4DTePnlR5rkr337glFa6g9B6AG5XIbKyhrk5NSYtHfOyoMN\n21W5/Cxu3vTFkCFdzLYrthyf4ff49OlMVFZOREhIZwiCgN270/DGGw/ZFY+1dl7KWvPvcWNt7Vhb\nwu3Lpo8YMQI7d+4EAJw7dw7h4eEIDAwEAERERKCyshIFBQXQ6XTYv38//vCHPyAtLQ2rV68GANy8\neRMlJSXGsevUunjScq+GYRULFsRg5swBJgnPnqvKW9tWpfKDRuMPnc4HMpkMOp03NBp/m1duUqur\nkJKSiRUrLiAlJRMaTZW9h+py9qxKZc9764mUymhERWUhOPgCoqKyOEFbJMxVZA+FQgsfH38MHjwA\nw4ffgcTEQLNFkEKhRWWll/GESVBQTZP2zll5sGG7Ghd3BwICzjrcrjRsdysrfREUVAdA316XlQXa\nHY8tqw96Qu4iMnB7D9WQIUPQv39/TJ06Fd7e3njttdewbds2tGvXDmPGjMHrr7+Ol156CQDw4IMP\nIjIyEgqFAvPnz8fjjz8OQRDwxhtv2DTcjzyPpy33aok9E5ytbatQaCGXC/Dx0UGnE+DjUwu5vBoK\nhcymWKQ8J8dwJvbECRWqqqoRF3cHfHz8my2SWvuKUG1xXpwUMVeRPRq3S9HRCovbHTq0F3l5vREU\nVIPY2L5QKC6ZbOOsPNhwtT8fH39MmNAVjz0Wic2bc/Cvf+XZ1fvV8PgiI39FWNhYAPqTWiEharvj\nseVkmJRzF1FjorT0hiRkEBNTP1xn6NChJkvTAkBQUBA+/vhjt8RG7tdweEN29mWEhfWEn5/co3sf\n7PlSbG1bpTIaWm0WfH0zcPVqDXr08MO4cWFQKuMs7tOQpeTs7OGVhuc7fboUmZmZNj2fIWH27VuL\nrCwVLl06iAkTujZbJLHgIHdhrmqdXDG0vHG7ZGn4kFwegI8+uq/BcPFLZk+iOWPZc3Mnn1JTHStS\nGh6fRhOJ1NRsq8WjLfEYmPtMWlJYchENcjeeOiPRNTwLFRbWG0VFu9GvXx+X9T60pKEVo5GWywPw\n7LND8eyzju1vKTk7++yf4fnU6k7Ize1q0/MZEqavrw+GDOmC4OByzJzp+HwoIiJrxO75sOUkmjN6\n4c29jjN6vywVj9byY+P9DEP66k+mjoWfn6/xM1Eo4HBhKfZnTG0PCyoSXcMG3s/PF/369cGCBa77\nUt2ShtYTG2lLydnZwysdeT5PuwAlEXk+qQ8td2UvvCvbXHvzY8Pt8/IEqFQlGDw43PiZPPdcpMOF\npdQ/Y2p9WFCR6Nz9pbolDa27GmlHhs9ZYik5O/t9NzwfAGi1NcjOvowVK9BsT15rnw9FRNIjlRM5\nYox4cGWbq1L5QaerNq50mJ19vdljaphPg4JqUFmpXyfN8Jm0pLCUymdMbQcLKhKdu79Ut6ShdVcj\nvWFDFr7/3g8FBcE4cKAMaWk/YtKkSKcmXGe/74bnKy8vRFGRFmFho1FRIW/2TGUzl/aRLI7NJ/Js\nUjmRs3lzDi5e7Ivz5y+hstIXhw7txUcf3efS9sRckeKMNk2trkJ29mUcOVIAna4TOnfuCbm8A1JT\ncywWRQ3zaWxsXxQV7UNwsH64/6RJPYzDAR2JSSqfMbUdLKhIdO5eZKAlDa07Gmm1ugqbSYnPAAAg\nAElEQVTr1l2GSvUgbt26Dbm8M7TaPYiLi3PqEENnv++G58vI0GLfvmBUVMgBNN+T54lDKD0xZiKq\nJ5WFbVQqP5w/fwmlpYZhb52aLUBcxRlt2ubNOb+v/HcN1dUKXL16CP7+A5GeroJSWWXTCIWlS+uL\nyZSUzBbFJJXPmNoOFlTU5rSkoXVHI715cw4qK8NQWxuI6upaCIIOHTr4etQ4cFt78jxxnLsnxkzk\nUWbPBgyr5N1/PzBzJhDd+noY9Nek8m1wTao6UdoTZ7RpKpUf/Px8ER0diP/+V4aamh7Q6cJQVVVo\nsUhsLp+ynSVPw4KKSGJUKj9ERbVHTk4hfHxuQybzQ69e7T1qHLi5njxzw0o8cZy7J8ZM5FGKi+v/\nv3On/sdg8GBg1iwgMRGQ2XYtPqmqvyZVJwQF1SE2NhQKRZHTnt/WoXzOaNMMz9G/fydcvPgbfHyu\noGPHGvTvfwdUqjyHn4/tLHkKFlREEqNQaDFwYCx8fC6hXbtbCAzMRWLiQHTrZv/V7cVi7syjuSEc\nnjjO3RNjJvIo33wD3LoFbN0KrF8PaDT1j50+DcybV3+7Sxd9gTVpEuDnWb0YTa9JVeTU9sTWoXzO\naNMaPkdi4mWEhY1u0fUk2c6Sp2FBRWSBWIsPGC6+GBrqh4qKm3j55SlmX9fTFkcwN4TDE8e5e2LM\nRB6nfXvgySf1PwCg0wG7dukLrNzc+u1u3ACWLdP/GMyaBTz+OBAa6t6YHdDS9qS5PGDrsLmWxKBW\nVyEtLR/79gVDoQCeey4SQGSDItGxYojtLHkaFlRE0CeFjRvPYc+eWwBq8Kc/hUImk+HatbvcvvhA\nw0SSkVFhsUiS0uIIDZN6RUU+YmP7N4mbQziIyGE+PsDEifofQL9E6C+/6AusI0dMt12/Xv9jMGEC\n8MQTQN++7ovXTZrLAy1tcy0Vaw3vz86+jNrawYiM7Gny+q2tGLIlx1HbxoKKCPqk9N13ESgruwsA\n8N13mQgIuIk775TupFhbzz7a2pNlT49X42212mrk58dDJpMhPz/Y7CRkDuEgIqeRyYC77tL/GFy5\nAmzYAGzbZrpterr+x2DIEP1CF61gHpa5PGBon69fB/Ly0nD7tj98fGSIiAiFRmN+xT1zLBVrjS/I\nW1OjQWSke/KkWCMzGh6zpRxHbRsLKrJbSy8668oG0dHnVqn8oNH4GBOTRuOPgIAaCILzelTMxSYI\naPa+5s6ENTz7qNVqLF5I19aeLHt6vBpvm52922rxySEcRORSPXsCS5bofwD9PKwtW4CUFNN5WL/8\nov8x6NpVX2B52Dwsw7WfcnO1KC29ig4dItCnTz42brxtPMFVWtoZtbX5qK4WsGrVTaxb9wOefroH\npk+33sNi6aRd4wvyXr8eCADN5kln5X1HRmY099q2xsVVB8kaFlRkN0ODplZ3Qm5uV5uHmhkarvT0\n66iqGoi4OAVu3/Z26lA1R4fB6a/KrkN1tf5Ks3J5Nf70p1D4+TmvR8VcbABM7tuw4RSOHy9EXl5v\nBAVpERLS3+KZsIY9PtnZlxEWNhYVFb5NjtvWRGBPwmi8LeDr1OKTiKjF2rcHnnpK/wNYnod1/brp\nPCyZTF9gSXweluHaT6dO/YbS0nsBnEZY2Fjs2bPPeIJLo/FBQcEt1NR0QlXVOGg0auzYcRu+vtZ7\nWAwn7XS6amRlXURAwE2kpGjRvn21yQV5gc0IDtY1myedNUTdkcKmude2NS5Hhk962jxnahkWVGQ3\nR8/UGBqu0lI/VFeH49y5IgweHO7UMz2OxqZURqOm5hx+/PG/MMyhSk6Oc2rjZym2hvft2XMLJSV3\no6amM0pLBZSW/oS4uHCzz9ewx2fFCqC0tBanT2dDrfZDdvZ1Y+NtLhHYsoR5u3a3LV6pvvG2Y8a0\nh6+vvriLiLgApXKcze8Lkw4RuYW5eVinTul7sBrOwxKEpvOwAODtt/XXxZIIw7WfOnZsD7UaqKgI\nxPnzJfDx8TKe4JLLdRAELWpq/CEIddBoqvDf/1YjIMDyBXcNDCft0tOvAxiIvn1jkZvrje7dTyEq\nqv5k4wMPRGPEiBirsZrLf/a2//VFXi2yslQICMhDSkrz+zX3vcDW7wwNT2DamuOkNM+ZXI8FFdnN\n0KABzXfxN2ZouAIDtaiuBtRqb6f3Zjg6CVcuD8Azz8TjmWfsf01DQigoAH799Sp69+6Obt1kTRp4\nc7FptVr89NMNaDQ+kMt18PXVICioDqWl+u00Gn+bjkGh0OKnny6irEzfWFdVdTD2bJmbu5Sa2rSh\nb7xdTY3MYjJo+pz1w0eaW0jDHCYdIhKFTAbEx+t/DCzNwwJMhxMCQLduwLffAl5ero/VDENOKS29\nBbW6M+RyX5SUdEbv3mpjwfPggxU4dEiDkydVuHmzE/z8QiGT1aCqqhNSU3Pw2GPRFgsaw0k7/fDz\nLsbXLS8PxoIF9QVUhuEizA00LpQa9mo1zM0bNmTh++/9oNEAcrkArTYLzz471OIx1xd5KgCd0Lfv\nvcjN9W82bzT3vcDW7wy2LhbVEIcJti0sqMhuhgatvLwQUVE3bR4KV3/hv2hkZekXfYiKUjh1cQIx\nFj4wFAQZGddx8WJnHDlyFn37dmmSGMzFtmFDFoAiAP4AqhEUpEVERCjOny9CZaUXQkKyoVQqrcag\nVEYjPf0I/P1vIjCwFv37K6BSlQMwP3fJliXMV6y4YDEZOHM+FJMOEUlG43lY164Bjz0GaM180S4o\nAIYNM71v506gUyfXx4n6nBIergKQg5CQ7mjf/hzuuKOXSfs8fXp/bNiQhX/9ax9qaxXo1as94uL6\nQ6XKs+mEliMnKhs/b+NeLcPF3tetuwiV6i74+mrRuXM09uz5Cc8+a/l564u8C6ioqC/qmssbzX0v\ncOV3Bq5s27bYVFBdvHgRly5dgkwmQ0xMDHr37u3quEjCDA1aRoYW8fG2f6lu2HD9+c8yKJXDnT60\nS4yFDwwFQW6uBtXVvaHTRaKs7A7s2bPbmBgsDWu4dasdhgypTwp+fkC3btkIDdVvFx1t2/A3uTwA\nEyYokJvbyabG25aGXqHQoqSkBufPl6Cy0guRkZeh0US2+DOzdOay8Th9Dv0jezBPkUt07w78/HP9\n7aoqYNo0fU+WOb8PCeynVgOBgcCaNU2LLieRywPw2GPROHToKnS63ggKqkFsbF9063apyXbPPjsU\nfn7+xiLH0O6rVH7Q6apx7lxOk+HiBvYUHYb2/euvS+HtXYT+/TvB19enSa8WoL/Ye0XFPaitjUJt\nLVBcnImICN8mz2XLsPPm8l1z3wtc+Z2BK9u2LVYLqnfffRd79uxBXFwcBEHAypUr8eCDD+KFF15w\nR3zUikhxlbeWLBXeeI4SoB+37utraNjrE4PhbJ1OV4ufflIhPf0gJkzoig4dTJNCt24yk/fI3FAK\nS+xpvG3ZVqmMxty5u1FZqU/UYWGjnbJUrKUzl43H6XPoH9mKeYrcJiAA+Oab+tuCAPz1r4CltnrO\nHNPbTz7Z9L4WMCxMoVKVoLxci0OHvka7doOQktJ0BV5Lw78bDhevrAzG3Ll70a9fH5M8N3PmAGMO\n/Ne/8izmS0P77u2dhZKSzjh3rhiDBoWZLXhUKj/06ROAixcrodN5wcenGmPGtG/yXLYNO5desSLF\n7zzkOlYLqmPHjuG7776Dr6/+y6FWq8XUqVOZqMgqT1hswN6lwi9e7GfssTl0aC8++ui+34funUJg\n4G8oLT0LmawdgoPzTBKDoRfr3LmbKCsLh79/JHJz70BEREaTYRCOsqfxtiVByuUB6NevD7p3t21Y\nha0aD/EznLlsPE6fQ//IVsxTJBqZDPjkE9P7vvoKeOst89t/9pn+xyAiQj9fy8F5WIaFKQYPDsfp\n05morLwf1dWdkZurXzXWz8/PJL+Yuz5gw+HitbUy5OX1RvfuMQ6tiGdo3/v3j8a5c+dQW1uKqKgi\ns7lNodBiwIDO8PbW59Ru3fIB9MCKFRegUGhRUCDYPOxcra7CJ5+cxN69JQB8MWZMe5uWhidyFqsF\nlUKhgI9P/Wa+vr7o3r27S4Oi1kGKiw1oNNUmK9ddvw6b5++oVH44f74EpaVhv1/QsLexx8bPzw9j\nxz5kLLa6dj2B6dPvM+5r6MVSq70BAIGBWshkMty61a7JMAh3svYZWRv2Z65otsbSUA2ONydHMU+R\npEybhuyYGMQbFrs4fx6YMcP8tvn5TYcEpqYCffrY9FIN283KSl8EBdUBqF81tl+/Uc3mYEEA2rXT\noKREv9BUZaUX2revMT6HpRXxdLpapKerfp/LVH+9REM8vr4BGDQoDlFRlvO+vpepfoh7TU0PXLt2\nlzHe/Px0REQMaJITzOWdzZtz8P33figrGwsA2LGj0Kal4YmcxWpB1bFjR0yePBn33HMPBEHAiRMn\n0LNnT6xatQoAMG/ePJcHSZ5JiosN/PijCoIwvFGDHWfTl3iFQovKSi/jtkFBNSYXOjScJQSA4OA+\nZodaZGerUFXVCf373yGJosHaZ2Rt2J+5gmyAlfxlaaiGJwzhIGliniJJi40FTp6sv11RAYwaZXn7\nxgsR3XcfsHy5hU3r283IyF8RFqYvKARBAFBjNQfrhwyOhkp1CZWVvtDpTiI2drLxOSytiJeVpV9l\nr6IiBvn5wc2uKmuJtYWQ+vTpga5dmz6XubyjUulXCjTsr9H4SOI7B7UdVguqHj16oEePHsbbo5pr\nBIgakGKPQ1lZIEJC6hts/RLnts87OnRo7+8X3dVP/lUo9JN/rR2rIXEolVVITc2BSpXX7OsZzsCd\nPl36+zwqAbdutXP60Elb4m5u2J/5gqz5z9nS0ESONydHMU+RRwkONi2wBAG4+27L2+/dCwxttJT4\n7/s3bDc1mkikpmYb81lERCjy85vPwfqTgXIMHqx/Dn//GnTteqnZFfEKCoDr1zMRHByH06cz0bFj\nkDEvtKQdb5yPunZFk2F9KSmZvy94kYX+/aPh6xtgjFUuF1BdLfweh04S3zmo7bBYUNXV6buN51iY\nPOkl0nUXyHNIscchJERtvOChuUUgmiOXB+Cjj+77vSDyg0JxyabeFUfmkhnma50+7Yddu7zh738d\nEycOxu3bji/WYC4OWz4jS0WXWl2F7OzLyMsLRVBQHWJjQ80mMHfOpfOEeXvkPMxT5CrObEusPpdM\nZlpgAU0LqMYaP370aJNiRqOpsrl9b7jKateuCjz3XCQEAQ3yXf0crJSUTHTteh/KysJRWgqUlh7E\nyJGh9r4tTVjLR/ULXhT9vuDFOcTG9kV29mX06dMDISG/wtf3Kry9AzFmTHtMmtTH4sXpiZzNYkEV\nGxtrPPPckOHL6H//+1+XBkaeT4o9DmPHKpCT43iR50jviiNzyQzztW7d6orqai2qqnQ4d+4mBg8O\nd3gYg6U4rMViKck1HipSVJSBpUvvw/nz51p8/I6S4rw9ch3mKXIVZ7YlDj1X4wLrgw+AL7+0vP09\n95je/vhjyIcOtbl9N7fKKgCzcatUfoiLU+DcuaLf5wWroFQmNH88NrD2naF+wYtOOHeuGLW1pSgq\n2oewsLGorvZFr16mc7ZSUjKZD8htLBZU2dnZFncynBUk8jQBAf7NNqiu6OFwZC5Zw/laPj46AFqo\n1d5mh200jLl9+wpYGh7o6Jw2S0mu8VCR4GCZ2ffKnXPppDhvj1yHeYpcxZltiVOe68UX9T8GublA\nUpLl7f/6V9PbUVHAli1NNqu/UK75VVbNxa3v1fJG//6dkJWlgkZTgy++yIKXl37VVlf1BtUveOGD\nQYPCEBVVBJUqHBUVvk1iNByDre87RzdQS1kdDzFv3jyUl5cbb//222+YNm2aS4MicgbDeOsVKy4g\nJSUTGk2V1X0MZxIrKmKQmxuH1NScFsehUGh/nyDcdJKvJUplNCIjT8DH5zyio/PRt281OnbMRFRU\nlsVhEBUVMfjuuwh8952f2fgdicMZx+Xs13VGTNS6ME+RszmzLXFJuxQVpe/FMvycONH89rm5+mGC\nDX+sxGgpbqUyGlFRWcjO3oMrVzJQWtoDH39ciG+/7eTU3NmY4XWDgy8Yc2Fz760977srcj+1LVYX\npRg5ciSmT5+OF154AQUFBdi8eTMWLVrkjtiIWsSRFehc0cNhachcc2fEDPO13n13F4KDY35/fIDV\nHiCNxgeAPwBAp6tGevp14/M/9FAPbN/uvDltts6RM1yna8+eWwBqEBERCo2myiVn/1o6b49nKT0T\n8xQ5mzPnALtlPnEL52HNqBOwYc6/UVwWBIVCi0mTeuDrry8hO3s3DNd1Uir7A9Dnp8cei8aaNZko\nKxuEW7eKUFvbF4WFGRg8uItxoQhHWMuL5q6jZem9ted95+gGaimrBdWjjz6KoUOHIikpCSEhIdi6\ndSvatWvnjtiIWsSRFehcsTKhpSFzGzZk4fvv9Uu9yuUCtNosPPvsUJP9Jk2KQHx889epahizXK4D\nUA0AyMq6CGAgKiq64PZtAdu3O3f8uC1z5AzJcc+eW6iq6oS4uDuQn+/vsrHsLZ23Z3auwxNxQHEx\nkJ1d/1NUBMTHAyUlgEoFhIQA/foBlZWARgOo1fofS7c1GuvBLF+uXy6ZrGKeImdz5hxg0eYTNyqw\naub+HeU79kCnk8HHR0BoxwB4eelzpJeXDE98/KxxW9U/NJCN/jfuvHMcBEGAr2+WycmlzZtzUFFx\nD8rLQ1FR0RGC8At0ugCcOZOF+Ph4h3OnvfPNmntv7XnfpbgqMXkWqwVVWloa1q5di6VLl6KoqAhP\nPPEElixZUn/BOiKJMndR2uHDQ5rdx50rE+7dW4KysrGQyWSorhawZ89uPPus9f0aaxjzgw9WQBAE\n3Lp1AQEBN9G3bywA2864NT4zOGlSD6SlXW1Rb40hOZaW3kR1dSecO5eFwYMHmMaSlwf88AOwcydw\n5Yrdx99S/dRqIDAQADC+sAp1tfXH6OVdBay2cMyN5+/s3u3cwE6dYkFlI+Ypau2c0Xv+ZfwzyA1d\nZSwaBvv9P/x521uorRNQWlplUmjpdDI88MPfjft6eVcB++KBzz8HoD9h2adPAK5eLQHQA76+kQgM\nDMbVqycwZYq/1dxp6XjE6imS4qrE5FmsFlTp6elYv349FAoFAP31PV555RVs2rTJ5cERtYS5i9Lu\n3r0bI0ZY3qfhGS21uqrJkrHOHf7la+W2bSydhUtJ0aIs4zcMOJeKftnb4O+vATbJLT6P+qYGY6vl\nkAEQANz+n3KM8WmHKk016upkKPyfavTs0d54RtMScwVKsroGulpfeMmqEHQ8wGoszmTuy4KlY/Dx\nEVBdC+N74OMj2PdiXl76Yw8MBORyICjI8dthYS0+9raCeYo8nbWCyRmrDqpUftDpanHu3E3culWD\n9IpqZE9ej8uXryIsbDT8ff3x9L+HoaRUAx8fNG0Lz50zDhOceVODqVUBSGj/JcrL1QgOLkN0dAy6\ndcu1KS5LxyNWT5EUVyUmz2K1oFqzZo3J7d69e+M///mPywIi12sr80TMXZS2rCzQ5v2tJrCiIuDg\nQeDwYeDQIf3FGe2wWqVGeZkv6upk8PIS0CGvBhhaH19tnYCuN8pxwzvAaiFgzow6ASWGQsJfv39z\ndDoZDM8uA1BT4w1dTTV0tfoiS1vtg5LSKig62V4IGQoUudwHGk0NZF5a+NsQizOVllah+vdC8Vpo\nLH6N6YJhsycCgwYBHTvi/7d393FR1XnfwD/DAMMIKo4IKiqNQiiKYJSkuNmDWVpuu3dxsbdaaXtZ\nrWW26qWWubXburaFtV7r9up2vVq22u58Wl+31GplZls+pIupoKmgyCrIw8iDDgMMyLn/mGacGWY4\nM2dmzsyBz/v14lUD55z5ngP+vvM9v4dzuqjI1pMR3dKKj52KaPTAfxs9DfMUKZ1YvvFHz01cnBlf\nf21AY2MCqquLIQhT8e23KjQ3D4bBUIbMzHT8+cl/ISbmDJ55Jgkfby7F/av/ty3/ADduULWbgY6O\nq/iq48do7QAiTFFQF6uwb85Gl+/t/LmjqkpweT7sKSKlEi2oXHH13A9SDkU8q8dksgwFu3jRMgzs\n3/++8frqVY8PM+9Ki+3DtABAhUbgm+6H/Vl5NfxLgoE6LVQq+54Tx0KloaEV5vZoRCICbdeB+oYW\nr4qZsDCVbfvr9sWVm+LMuXcmIuI6zG3httfqMAEdHSL/9uPjYcjIQPQzzwDDhrksUOQu3gvyz8Bo\nvFFUx8ScwcQ7Xc9L87ImphDGPEVKIlYwifXceHKjNC8vBbt2/RMaTRIiIq5gwIA0mEyNiI6+juZm\nywgJ67FtPTbzShyOcWrmfOiqi6ECEBGhRXQfE/pozQhTdyI8XMATGxcCm+z+7W3YANx+e5fPHZWV\nu5CYmN7lfHpLT1FvubHdm0gqqHy1du1aHD9+HCqVCi+++CLS7ZZeO3DgAN566y2o1WrccccdWLhw\noeg+5J0rtWpozEb0u3oJMcZqDDx/HDB9DVy5YplgX1dn+W99fbfHsR/aFap0A6JQ39BiKySiNJ7/\nyfs8/EuEfcHjin3xogJQF6tH3ML/BUyfDgwb5tV7vW/3gENBEBwefmjlXPz8+MfDsXz5AVRU3Ibo\n6E6kpelw882nxR9KXFSEpB/iC4Xk6M0QEn/cbGCi7DmYq0guYu2UWM+NJ22XVhuFGTOGoLz8Zhw/\nbkZ9fRj69LmOtDQdamuLEBOjEu0V+vTulTBOTEV7u+Vh80MbP8VLZ3+D+EEa1yMonn0WwI0blFVD\nsvDxrP+DUaOGY8iQ3tsTpYgb2+QVjz9dCoJgW88fAMLCRB9h5dKRI0dQUVGBjz76COfOncOqVasc\nxrmvWbMG7777LuLj4zF37lzcd999qK+v73afkHL9uqV3xZOVvpxej6iosMyhcP65nx9Q+bhTr41G\n0wJ8L898Frk5Fy3NJpOrjYDJk4EpUyz/HToUQPCHf+0uKMb+/TokJibaiqAxEh9K7Hz3s7JSQEFB\ncZdtnRv0P/7xbrt5ZLWKTHpyL53LRBk8/spTQC/IVRRSxNopsZtT7tou57xgfXyGRiPg/PndGD58\nCC5eLMLIkcM8ugFkLfxOnryC+vpBgG4CXn7gK+Tk1Fvi6+wEJk7ssp/1BuXQy0VYsPFWaDR2Iy6c\nl3vvBbhMe88jWlBt2rQJ77zzDpqbmwFYEpZKpcL3338v6Q0PHjyIadOmAQBGjRqFq1evorm5GdHR\n0bh48SJiY2ORkJAAwPJskYMHD6K+vt7tPiGhvR2YNMnnw/SRqcfHudfGL/NZ+vUD4uK6fsX+MLxu\nxAjLV79+vr+XHW97A+zny7g9notCI5Axudv/8mWgrm4P9PoJGDpUhby8lG6P3d0Heee7n+Xll2A2\nzxD90O+PHiZvr4e/e3jkXjqXiVJ+/s5TQA/NVRSyfB1u7K7tcs4Ljo/PGI+CgmJ0ds6A2axCeXn3\nN4BMpla0t5tx+vQ+lJcbMHy4HmPHjkNdXf2Ndi4szOXzsHQDonDliglXr10HICAyIhydnYKlV8v5\neVnffguo1V3eWywvuNpGENDtfsEaUcBl2nse0YJq+/bt2LlzJ4b+cNfeVwaDAePGjbO9HjBgAAwG\nA6Kjo2EwGKDT6Ww/0+l0uHjxIhoaGtzuExLUauDmm4GzZ73bT6t1WNnLZDIhevhw6SuDRXi2SlwY\ngDjvz7ILseLEn9w1es7J4v33jyIyMlJy4+iP3gVfj2G//6BBOgwdWm/bv8Bu6J7zsbv7IO989zMq\najja2uT50O/qevzHf6RIKgwDzR8Topko5efvPAX00FxFIcvXds9d2+UqL9jn0yNHDEhOvo6IiHDR\nXLBlSykuXboFY8ao0NpaDaAWERFRtnbObXHyr38hDMAnP+Sve/a+hKhzn7qfF5yd7fh661Zs+coo\nen1cXUMA3e4n9jzIQOHiGz2PaEGVlJTk1yTlTOjmtoy7n3W3j7OioiKvY5Jk6VK/HMbjp/CYzZav\nxka/vK9Ucl3fwsJKVFZmQaVS4cwZARcufIZZsxJx7FgDTKaBtu0OHryApKTbu2znaczOx2tqqkFR\nkXcfiH09hv3+KpUKx47d2N/dsVta2vDNN6W4fDkcWm0Hhg9X4dq1Q7h06SJiY0249944pKdrYH2w\n8YULlais1Nk+9CcmnkFRkdGr8+yO/TV2FfOFC+Uuf59i57hnjwGNjX1s5xQVpfF7vJYpL5brdOrU\nSa+PlZLShgsXCm1xpqTE+f3fiWztmkIEOk8Bgc1Vven32RPP1V3b5M25+iP3uGq7jMZKVFbGOLT1\nr79+xtb+VleHobq6DKmp/URzgX2MAwdex6VLpWhsrEVioqWde/31zxza9bNnP0FkZITtutTVhaO9\nfSA+GPMMMOYZ9OlzCo8+OgCaixehf/FF9yf2wAO4+0oHOjstxddXYx7Dd00Ztutjvf5ffAGEhTVg\n5MhhiIiIQlNTDQB0e123by+DwTDTdn22bfsHsrLEF7Txx9+xr7lGLj3x32wgiBZUqampWLp0KSZO\nnAi1XRfsI488IukN4+PjYTAYbK9ra2sxaNAg28/q6upsP6upqUF8fDwiIiLc7iNGSQ92LJKxx8cf\n5Iz3yy9jkJh4ozCKiTEiKysVxcXFKC8fYmsMm5r6utzO05idj5eYeBnFxd71eDkfQ6+/gqws8TuN\nN4b6dcJoNEOlakBdnRnp6WakpY2FVhvl9tgFBcVIS/sPAGVobo5ARcURTJkyG5GRERAEAaWljr1C\nQ4cORWJiNZqaYn44r+l+G+bwzTcHcOqUBl98cRVAO7TaVgwdOsgWi15/BQZDpNvfU3fnKAiTEBur\nsp2TP3quAvF33N2zznyltHYCCHxC9neeAuTNVUr7fUqlxL9dT7hqm9LTzV6dq7Xd6+i4jpISA6Ki\nOlFcHOk253g6VC0tbazT8xSn409/qrC1v4MG6XDmzF40NWkBtOO224ba8o2rGK+bccgAACAASURB\nVM+eHYBTpyx5JilJi7Vrp+DUqZPIysrCV18Vo64uHCaTGn36XEdDQ3+MHXuP7bq0te1CYqKL3JiV\nBfzkJzfeyMU8rJaWFrS1RUAFYFrZ/8UDF99F3DeWAqtcPQjC/f/AwIG1qK8fhIaGk8jI0EOvvwIA\nOHt2EE6dqkdzcxiSkswO5zdgwFW0tfW1xTRgQILo762n/h270tvO1ReiM3Zra2sRGRmJY8eOoaio\nyPYlVU5ODj799FMAwMmTJ5GQkIA+P8wbSkxMRHNzM6qqqtDR0YF9+/ZhypQp3e5DvUNcnNl2t9d+\nGFVeXgr0+hLExJyBXl+Ce+7RudzOU3l5KRg6tAjff/8ZTp/ehwMHKnH2bDKMxlSUl4/D5s2lHh3D\nPiZPu/KtwxWSk+9AVdVJnD/fH1ptLOLj77W9r7tjGwyRiIzUIjMzHTk5o9G//whERlqGgFqHcViP\nbzSmorIyCxERkVi2LBXz5qX7dcz4nj0GfPJJIqqr70R19b2oqxuC2trPHWJ29/sUO0fOTSJX/J2n\nAOYq8pw/2iZru1dW9jWAWiQn39FtzrFvz7vbzjqH1L6tt29/w8M1iI0FRo++E2PGTEdlZZbbY+Xl\npaC29ks0Nw9GdPQAh9wEAOfPX0R9/SCYzXGorx+Ef//7isN1GTVqOPT6EkREnEBl5S5cvmwpRlta\nWh3fyDoPy+5rwKgh0GhaEKZuhUbT4jD3W1t1EU/9+Tb86duZePfEBLyxLxf6pBPIy0v5IebP0dzc\ngOjoasTH3+UQ87Rp/RAbW4PISANiY2swbZp/53lT7yHaQ7V27Vq/vuGECRMwduxY/OxnP4Narcav\nfvUr7NixA3379sW0adPw8ssvY8mSJQCABx98EElJSUhKSuqyD/Uu7sYbOy840NLS6tO4ZK02ChqN\nBqNH3wuVSoX9++vQ2Gh54KGnidLdIghidxStSTkiIgoDBgxHTc1ltLZG4NSp04iJEbo9tvO8nYQE\no21ivrVgMRgi0dFxHSdPXoHJpMbp0wbk5bX6fYGIxsY+aGkJtyXS9vZ+GD26H5Ytu9FT2N34cU/P\nMZBzk7j0ubL4O08BzFXkOX+0TdZ2z2BwfG6eu5wjtYizX1gCaMeUKdE4frwDhw4VQRDaoNcPQ5Sb\npk6rjYJePwzV1ZdQVnYdpaVlGD3aiJSUvgCAkSOHwWA4CZMpEn36mKFWRzvkoSFDgHnzLKMNzOYZ\naGsTXwjDSr1nj+Pc7w8/BN58E4DdI05UKmj7RECj6cC8t38O/PC879/WtKJgzjdojYq1XTuruXPH\nIiLCvq0f69F1JHLmtqB6/vnn8Yc//AFTp051+YDEffv2SX5TaxKySk290XjceuutLpeZdd6HehdP\nV2rzx6p09okqOrqzywMPpRKbdGyflBsaLqK9/Q60twP19dE4f343gPFuj+1coCxePBk7d954PWvW\ncKxYcQAHDkTg+vVoDBrUH1rtQGzeXNrt9ZIyUTo21gSttgNtbdYisA1xcY5tiJTfk5yTeLn0uTIE\nMk8BzFXkGVdtk9Q5MZ4WZ55u53xzqL3dbFtYQhAEHD++CxUVo3HtmqU9PXv2BAYPrgTgur0rL7+E\ns2d/hLa2GAiCgPPnd+Hzzw3IyQGGDlUhI+PG8w4TE9sQGenZQhlemz3b8gXLI072/PkQ7nzjWZcr\nF4eHC3j0vWmOj4q55wNgwoSQeFYi9QxuC6qXXnoJAPDhhx/KFgyRvzknk5SUNtF97BNVdw889LYX\nQyyJ2CflUaM0aGu7hrq6Vuh0JowaNbzbmF0lhXnzYm3/X1BQjPj4u6BSHUV7+0CYTEWYOvVuGAwV\n3R5XSuK79944JCZWYs+e7wG04557dMjLGye6nxg5Ex+HFyoD8xSFAn+2TZ7cOHLuZequjXW+OXT6\n9D6MGXOjbaupiYFO1x8tLbVob1cjMrIeI0cOs72Pc44bNWo4Dh6sxfXrbYiIuA6dbgQaG2vcxD7O\nZU7092gDrTYKP3vuTuC5khvfFATgttsAuHlUzIIFjgd5+mngP//Tpziod3NbUMXFWTpX7SeOEymN\nczK5cKFQdMEA56SwevXdLpOCJ70Y9gnp9OlziI8faVucwTmJ2CflggIzysuH4PLlyxgyJB5DhtT6\ndB2sc6xSUpLR0BAPjUaF8HCNaCKTkviiojSYM+fGMIrISOUtG86lz5WBeYp6Gk+KM/vlywVBQGRk\nidubec43h4B2h2F4CQlG1NUJtmeqxcYOxNChKtv7OOe4IUOA5ORoNDYOxPXrnaivP4tTpwwoKChG\nXl6KR4WlLKMNVCrb87Bsj4p57z3gv//b9fbvvGP5skpOtgwr9OHh4FJwuLlyic6hIlIy52TS2Cg+\nQdzTu42e9GLYJ6T4+BGorf0co0ePEk0i1oTT1FQDvf6KzwnHWiCMHTsQJSU1iIqqgF4vnsgsQwV3\noaYmBgkJRixePNmj91P6kDk+I4SIQpWnPegmUytOnz6HigoB0dHtSEtLxj336ByG4S1ePBnbt59z\nOaLA1fs880wS2ttPYs+e71FeXouhQ0ciPn4iysv1HrfzQRtm99hjli+rEyeAJ55wvW1ZWZeVBrFn\nDxAb63p7P1F67uzNWFBRj+bc0xAba/J4X7E7RZ70YtgnpMhILUaPHuWwOIM7XjxqzSP2BcJPf2pG\nXt4dHt31Kiy8iMTEGRg2zHKOO3eWOAwldEfpQ+Y4rp6IQpWnPehbtpQiPv5eGAyWJcNra790OeJi\nwYKsLiPg3L2PVhtl2z4/37KARlVVVZd2PpA9LX479vjxtl4sAMDVq8Ddd7vffto0AMBokwno0wfY\nuhXQ671/324oPXf2ZqIFldlsxtatW3H58mUsW7YMx48fx+jRo6HR+OeBmkSB5NzTkJISJ77TD8Tu\nFHnSiyF16Jj1vU2mgSgvH+L1XSpXCUdKgSC1ceeQOZIT8xT1Jp72oFuGXEcgM9MynC8mZpRXhYfz\n+8yaNRwFBcW21/36teHaNdePvwhkT0vAjt2vn2OBJQjAvHnASTcLjOTmOr5+/fXuCzIPMHcql2hB\n9corr6Bv3744evQoAMuzNQoKCvDWW28FPDjqffx9V8u5p8GbZ9OIFROe9GJIHTrmSSHT3bXyV8KR\n2rhzyBzJiXmKehNPcs+N4X46REd3Ii1N5/WHc+f3KSgodsgrw4YdhV7vemh6IHtaZOvFUamAv/4V\nwI18q/32O/zo//0G2igtwsKcVhZdvtzx9dy5wOLFluN4iLlTuUQLqvPnz+Ojjz7Co48+CgCYPXs2\nPvnkk4AHRr1TKI0f9uezRbzVr58RX39djZqaVtTUVOPBB41dtunuWvkr4Uhp3Fta2rB5MyfVknyY\np4gcWYb73QWDoQzNzRGorS3C6tXSe09Mplbs2nUZDQ2WZ0yNHZuCpqYYLFuWiqIiM7KyHPOcc/7s\n2/eaQ++WL3khGL04tnybkI49D9yDnJx6S76tqAAeftj1Th98YPmyGjcOePtty3BBNzjcXLlEC6rw\ncMsm1g9nJpMJra2t3e1CJFkojR8O7p0iAUAtgFYAUban2tvr7lr5K+FIadx37apCScnNaGkBtFoB\nZnMJnnzy1m734cpG5AvmKSJH1pVdMzMt7XdMjMqnNnXLllK0to5HW1sC2tqAkpJi/PSn7ntenPNn\ne7sK5eXj0NFxHV9/bcCuXf/EjBlDXLb1YvkgGLnZbb5NSnIcJmgyAYsWAcePdz1ISQlwxx2O39u2\nDbjppsAETbISLajuv/9+PP7447h06RJ++9vf4p///Cdm//AwNSJ/C6Xxw2LFhLtG3x/FwdWrfTFh\ngmWy79ChQ3H16pku23R3rdwlHDkKlyNHOtDWlg6VSoW2NgFffPE5nnyy+31CqWeSlId5isiRfX4w\nm9tx+vQ55OfD63bfmjO2b28AMBD9+l1GW1skoqKuIC9vktv9nPNnfv4ZqFQqnDx5BY2NCdBoklBe\nfrPLtl4sH0jtxfEl/3n82aRPH+B//ufGa0EANmywDR3s4pFHHF/7YR4WBYdoQTV37lyMHz8ehw8f\nRmRkJN58802MG+f7QzqJXFHS+GF3jb4/igNr4w10nexrZX+t+vUzwmwWkJ9/pttFKOQpXCJEXncV\nSj2TpDzMU0SO7POD5RmId8Fo1Hrd7ltzhlpdgvr6wdDp6jBp0kDo9XFe3Yyz5jSTSQ0A6NPH7Lat\nF8sHUgsjX/Kf/fVMTDyDvLzpHu0HlcrSY7Vo0Y3vffkl8F//5Xp7P8zDouAQLaiOHDkCAMjIyAAA\ntLS04OjRoxgxYoTtoYpE/hKs8cNSGmh3jb4/igNPnkPl+CDgG5OF6+tbsGjRXofnXVnPRY7C5bbb\ngJKSGrS0hEOr7cC0af1E9wmlnklSHuYpIkf2+SE/HzAatQC8b/cNhkh0dFxHR0c/XLlyEE1NDXjg\ngSHIyxvrVTzWnHb6tAGtrQNx880j8N13JxAVdQUFBY55SiwfSC2MfMl/9tezqMjo28iOu+5yHCbo\n53lYFByiBdWGDRtw9OhR3PTDGM+KigqMGTMGlZWV+MUvfoE5c+YEOkaigJPSQLtr9P25mIWryb6u\n2CeKU6fKcPXqLTAYVGhuDsM33+zFH/9oefaIP2ITKz5nzhyClJQ6u5+LJ14l9UxS6GGeot5Cys0/\nX9r9uDgzvv7agGvXRiAubgRiY4sREeH9fCxrTsvLa8XmzaXYteswgPFITk5DebnaIefm5aXg/feP\n4osvrgJoR2KiDi0trT7fGAzZG3ech9UjiBZUN910E1avXo3k5GQAQFlZGT744AP89a9/xdy5c5mo\nqEeQ0kC7KwKCURzYJ4rm5gg0Nl7D9evJUKlUqKgYic2bS39IZu5j8zRRixWfUVEaSXPPOGeKpGKe\nop7Kub00m9tQWZnl1c0/+3a/b99raG9XOQwP7644ystLwa5d/4RGk/TD6n43w2CokHw+1rbeYIiE\n0TjY9n37nKvVRiEyMhKjR98JlUqFykrH8+zxj/PgPCxFEi2ozpw5Y0tSAJCcnIyzZ88iKioKYWFh\nAQ2OSC5SGmh3RUAwigP7RJGUdB7Xr9+Czk7LuURHt9uSVXexedpL5+uwQX/M4+KqgGSPeYp6Kuf2\n8vTpzzFmjHftr7vh4Z60v1ptFGbMGILy8pv90rNjbbuPHLmM1tb+GDcuDuHh6i7H7C7PSC2MFHvj\nztd5WI89ZtmX87ACSrSgiouLw/PPP49bb70VKpUKJSUliIyMxOeff46BAwfKESNRwIX6nSuxAsI+\nUbS0JGHRor2oqBiJ6Oh2pKUlIy6uTPQ9PC2UfB024Y95XFwVkOwxT1FP5dxeAhEQBPnaX5OpFe3t\nZpw+vQ9AO+65R4e8POkLvljb7uTkFJSUnEVZ2feYMSOuS87tLs8otjDyJ2/mYb33nuXLKj0d+NOf\nOA/Lz0QLqjfeeAM7d+7E2bNn0dnZibS0NKxatQrNzc3IycmRI0aigAtUA+2vnhRvCgitNgp//OPd\ndg/XLfOoQPS0UPK1+PTHOHauCkj2mKeop3JuL6dN64eICPna3y1bSnHp0i0YM8ayfWRkiU+jAaxt\nd0REFCZMGI+YmDOYNy+1y3Ziq9hyRIITb+ZhFRffmIcVHg7Mnw/k5QGxsfLE2kOJFlRarRYzZ87E\n5MmTbd9raGjA8OHDAxoYUaiRUhz5qyfF2wJCSoHoaaHka/Hpj97AkJ1cTEHBPEU9Vdf2cqxPxYS3\n7a+/b1552nZb84zJ1IrnnrOOuDAjLS3ZNieYuuHpPKyODuDPf7Z8Wc2aBTz+OBe68JJoQfXb3/4W\n27dvh06nAwBbV/MXX3wR8OAotDgXFCkpbcEOSVZSiiN/JSM5Cgi5hlH4431CfYgmyYt5inoqf7fL\n3h7P37nH27Z7y5ZSVFTchvb2QWhoEHDqVAl0OmWMSAipub6u5mGVl1uGAhYWOm5bWGj73miTCfjJ\nT4BXXwXUahkDVh7Rgurbb7/FoUOHoNFo5IiHQphzQXHhQiGCPZomEA2Wu2NKKY78lYxYQDjiGHqy\nxzxF5Blvc6YnK8MeO9aA4uJij/Kvt223wRCJ6OhONDTcWMVWKSMSQn6ur14PvPyy5QsAGhuBzZuB\nv/zF0nNl9dlnwNSpwH33BSdOhRAtqJKSkpikCEDX3pbGRvknNPpjCVkx7hpBKcWRvwohFhBE7jFP\nEXnG2w/5nqwMazINRHn5kIAUDHFxZqSl6XDqVC2am8OQlHQeeXnKWBJcygIgQe3Rio0FnnrK8gUA\nZjMub9iA5JgYS0FF3RItqAYPHow5c+YgKysLarvuvsWLFwc0MAo9zgVFbKxJ9hj8sYSsGHeNoJTi\niIUQUeAxTxF5xp9zouRYHMiSd09Dp7Pm3bsVsyCFlAVAQqpHKzISTVOnAllZwYtBQUQLqtjYWEya\nNEmOWCjEORcUKSlxssfg7yVkXXHXCIoVR0G/u9SL8FqTPeYp6q28bQvt85vZ3I7Tp88hPx+S2lHr\nsQAofm5vIAR7ARCSl2hB9eyzz3b53u9///uABEOhzblhKyoqkj0Gfy8h64rUYXohd3epB+O1JnvM\nU9RbedsW2ue306fPIT7+LhiNWkntqPVYTU010Ouv9Pq5vc6CvQAIyUu0oNq/fz/efPNNNDY2AgDM\nZjNiY2OxYsWKgAdH5MzfS8i6IvWOGO8uyYfXmuwxT1Fv5csjNfLzAaNR6/G+7o5VVGRGVhZvaPmK\ni08pm2hB9Yc//AGrV6/G7373O6xZswaffPIJbrnlFjliI+oilLv/eXdJPrzWZI95inorX9pCtqOh\nJZQ/35C4MLENYmJikJmZiYiICKSkpOD5559HQUGBDKERKUteXgr0+hLExJyBXl8i+e6SydSKgoJi\n5OefQWFhJVpaWv0cqfL561pTz8A8Rb2VL22hr+2oNVe9/34DCgqKmauoVxPtoTKbzTh8+DD69euH\nHTt2YNSoUaiqqpIjNiJF8deiFfZj4isrY/hUeBd4J4/sMU9Rb+VLW+hrO+rrsulcXIh6EtGC6tVX\nX4XBYMDy5ctt///000/LERtRj+Lp5GHODyLyDvMUkfx8zVVcXIh6EtGCauTIkRg5ciQA4N133w14\nQEQ9lafJh+PaQxvvqoYe5ikiz/mrDfN12XTePKSeRLSgKiwsxMaNG2E0GiEIgu37+/btC2RcRD2O\np4VSXl4K3nuvCHv31qOh4RomTrwJLS2t/NAeInhXNfQwTxF5zl9tmK/Lpst185A3wUgOogXVhg0b\n8Lvf/Q6DBw+WIx6iHsvTJVG12ihoNBqMHn0vLl++jEuXvB+bToHDu6qhh3mKyHP+asN8XTZdrmXC\neROM5CBaUI0YMQJZWVl+e8OOjg6sXLkSVVVVUKvVWLt2LYYNG+awzc6dO/Hee+9BrVYjNzcXjzzy\nCHbs2IH169djxIgRAICcnBw89dRTfouLKNC8mQDMD+2hi0MyQw/zFJHnQqUNk2txIeZTkoPbgurg\nwYMAgFGjRmHdunXIzs6GWq22/XzSpEmS3vDjjz9G//79kZ+fj/3792PdunV46623bD9vaWnB22+/\nje3btyM8PByPPPIIpk+fDgCYOXMmli9fLul9iZTE17HpFDh8+GLoYJ4i8l5va8NCpYCkns1tQfX2\n2287vD527Jjt/1UqleREdfDgQfzkJz8BAEyePBkvvviiw8+PHz+O8ePHIzo6GgBwyy234OjRowDg\nMDaeqCfzdWy6v3DseVdcsj10ME8Rea+3tWG9oYBkrg4+twXV+++/b/t/o9GImJgYAEBdXR0GDRok\n+Q0NBgN0Oh0AS8ILCwtDR0cHwsPDu/wcAHQ6Herq6hAeHo4jR45gwYIF6OjowPLlyzFmzBjJcRCF\nMl/Hpkvh3CDPmjUcK1YcQEXFSERHm5GWlsxnYlFIYZ4iCg77fGE0ViItbazPH+ADVRT0hgKS88SC\nT3QO1d/+9jfs37/fdidwyZIluO+++zB37lzRg2/duhXbtm2zjV0VBAEnTpxw2Kazs7PbY1jv9mVm\nZkKn02Hq1Kk4duwYli9fjsLCQtEYiMgzzg3yihW7UFFxG9rbB6GhQcCpUyXQ6Tj2nEIP8xSRvALx\nAHoWBdJxnljwiRZUO3fuxN/+9jfb63fffRdz5871KFHl5uYiNzfX4XsvvPACDAYDUlNT0dHRYQki\n/EYY8fHxqKurs72uqanBhAkToNfrodfrAViSVkNDAwRBsP0BuVNUVCQaZyhhvIGntJjlivfYsQaY\nTANtr8+c6YBaXY+rVzVQqVRobTXBaCxHUZFR9Fi8xoGltHgDjXlKOXiuPYN9vlCpVDh2rAZFRb7N\nTXLOQU1Nvh8zUELtd2s0VqKyMsY2Tywx8YxHudoToXauoUq0oLp+/bpDIgkLC/PpDXNycrB7927k\n5ORg7969yM7Odvh5RkYGVq9eDaPRCJVKhe+++w6rVq3Cpk2b0L9/f+Tm5qKsrAw6nU40SQHw68pP\ngVZUVMR4A0xpMcsZb3FxMcrLh9ga5M7OcMTHj8SpU/Vobg5DUtIVrFgxXXQIxjffHEBZWV/FjOXm\n30TgBTohM08pgxL/dqXq6edqny8qKyuRmZmArKx0n4btOecgvf6KbEPevRGKv9u0tLHYvNn+uovn\nak+E4rkGiq95SrSguvvuu/Gzn/0MWVlZ6OzsxKFDh2yrGUkxc+ZM7N+/H7Nnz4ZGo8Frr70GANi4\ncSOys7ORkZGBpUuX4oknnkBYWBgWLVqEmJgYzJo1C8uWLcPOnTvR2dmJNWvWSI6BiLpynri7ePFk\n7Nx5GjqdtYG+26MGes8eAwRhEodtkGyYp4jkZZ8vEhPPIC/P8u/Nl2F7vWHxiEDpDfPEQp1oQbVw\n4UJMnDgRJ06cgEqlwssvv4zMzEzJbxgWFoa1a9d2+f6TTz5p+//p06d3SYYJCQkOE5CJyL9cNcjz\n5sV6fZzGxj6Ijb0xlruqCigoKFZMjxUpD/MUkXd8XQDCPl8UFRlt+/oyl4dFASmZaEEFALfeeitu\nvfXWQMdCRD1AbKzJNm9EEAScP38RbW0z2GNFAcU8ReS5QC0AwWc+UW/lUUFFROSpe++NQ2npjWEb\nGs0wmM1cfYiIKFQEalU4Dtuj3ooFFRH5VVSUxuFOZ0FBMcrLeceSiChUBKonicP2qLcSXQpp5cqV\nXb7385//PCDBEIUCk6kVBQXFyM8/g4KCYrS0tAY7JEXLy0uBXl+CmJgz0OtLeMeS/I55isg7wWiX\nmVupJ3PbQ7Vz50589NFHKC0txZw5c2zfb29vh8FgkCU4omDgwwX9i3csKVCYp4ikCUa7zNxKPZnb\ngurHP/4xsrOzsWzZMixatMj2/bCwMCQnJ8sSHFEw8InjRMrAPEWkHMyt1JN1O+QvISEB77zzDgwG\nAyZOnIiJEyeitLQUERERcsVHJLu4ODMEQQAAzvkhCnHMU0TKwNxKPZlHc6jsh060tLRg+fLlAQ2K\nKJg454dIWZiniEIfcyv1ZKKr/DU2NuKxxx6zvX7iiSfw5ZdfBjQoomDinB8iZWGeIgp9zK3Uk4n2\nULW3t+PcuXO21yUlJWhvbw9oUERERJ5iniIiomAS7aF64YUXsHDhQly7dg2dnZ0YMGAAXn/9dTli\nIyIiEsU8RUREwSRaUGVkZODTTz9FQ0MDVCoVYmNj5YiLiIjII8xTREQUTG4LKqPRiLfffhvnz5/H\nbbfdhscffxzh4aL1FxFRt0ymVmzZUgqDIRJxcWbk5aVAq40KdlikQMxTRETeYQ4ODLdzqF555RUA\nQF5eHsrKyrBhwwa5YiKiHsz6cEejMRXl5eOweXNpsEMihWKeIiLyDnNwYLi9lVdZWYn8/HwAwB13\n3IF58+bJFRMRySBYd6nkfLgj78T1bMxTRMriTZvM9jsw+IDlwHDbQ2U/bEKtVssSDBHJJ1h3qeR8\nuCPvxPVszFNEyuJNm8z2OzD4gOXAcFtQWatXd6+JSNmCdZdKzoc78k5cz8Y8RaQs3rTJbL8Dgw9Y\nDgy3Q/6+++473HnnnbbXV65cwZ133glBEKBSqbBv3z4ZwiOiQImLM+PaNcu/50DepXI1bEOuhzvK\ndY4UHMxTRBZKGR7nTZvM9jsw+IDlwHBbUO3evVvOOIhIZnl5Kdi8ucQhAQeCddiGSqXCtWsCNm8u\nka0xl+scKTiYp4gsgtnOesObNpntNymJ24IqMTFRzjiISGZy3aUK5rAN3onr2ZiniCyUMjzOmzaZ\n7Tcpids5VERE/sAJsEREgcV2lii4WFARUUBxAiwRUWCxnSUKLj5SnogCisM2iIgCi+0sUXCxh4qI\niIiIiEgiFlREREREREQSsaAiIiIiIiKSiAUVERERERGRRCyoiIiIiIiIJGJBRUREREREJBELKiIi\nIiIiIolYUBEREREREUnEgoqIiIiIiEiicLnfsKOjAytXrkRVVRXUajXWrl2LYcOGOWzT1NSEJUuW\nICYmBuvXr/d4PyJPmUyt2LKlFAZDJOLizMjLS4FWGxXssIgoBDBPkTvMHUTkiuw9VB9//DH69++P\nDz/8EE8//TTWrVvXZZtf//rXuP32273ej8hTW7aUorx8HIzGVJSXj8PmzaXBDomIQgTzFLnD3EFE\nrsheUB08eBDTpk0DAEyePBlHjx7tss2aNWuQkZHh9X5EnjIYIqFSqQAAKpUKBkNkkCMiolDBPEXu\nMHcQkSuyF1QGgwE6nQ6ApTEKCwtDR0eHwzZarVbSfkSeioszQxAEAIAgCIiLMwc5IiIKFcxT5A5z\nBxG5EtA5VFu3bsW2bdtsd3MEQcCJEycctuns7JR0bE/3KyoqknT8YGG8gVdUVISUlDZcuFCIxsY+\niI01ISUlLmTPJVTj6o7SYma8vRfzlLyUfq7e5A6ln6s3etO5Ar3rfHvTufoioAVVbm4ucnNzHb73\nwgsvwGAwIDU11XbnLjxcPIz4+HhJ+2VlZUmIPDiKiooYb4DZx5yTE+RgyYebnQAADCFJREFUPKD0\na6wEjDfwQjkhM0/JR4l/u654kjt6yrl6ojedK9C7zre3nasvZB/yl5OTg927dwMA9u7di+zsbJfb\nCYJg61b3Zj8iIiJfME8REZE3ZF82febMmdi/fz9mz54NjUaD1157DQCwceNGZGdnIz09HQ899BBa\nWlrQ1NSEWbNmYcWKFW73IyIi8ifmKSIi8obsBVVYWBjWrl3b5ftPPvmk7f8LCwtd7utqPyIiIn9i\nniIiIm/IPuSPiIiIiIiop2BBRUREREREJBELKiIiIiIiIolYUBEREREREUnEgoqIiIiIiEgiFlRE\nREREREQSyb5sek9kMrViy5ZSGAyRiIszIy8vBVptVLDDIiIiIiKSpKWlDQUFxfx86wH2UPnBli2l\nKC8fB6MxFeXl47B5c2mwQyIiIiIikmzPHgM/33qIBZUfGAyRUKlUAACVSgWDITLIERERERERSdfY\n2Iefbz3EgsoP4uLMEAQBACAIAuLizEGOiIiIiIhIuthYEz/feohzqPwgLy8FmzeXOIwxJSIiIiJS\nqnvvjUNpKT/feoIFlR9otVGYNy892GEQEREREflFVJSGn289xCF/REREREREErGgIiIiIiIikogF\nFRERERERkUQsqIiIiIiIiCRiQUVERERERCQRCyoiIiIiIiKJWFARERERERFJxIKKiIiIiIhIIhZU\nREREREREErGgIiIiIiIikogFFRERERERkUQsqIiIiIiIiCRiQUVERERERCQRCyoiIiIiIiKJWFAR\nERERERFJxIKKiIiIiIhIIhZUREREREREErGgIiIiIiIikogFFRERERERkUQsqIiIiIiIiCQKl/sN\nOzo6sHLlSlRVVUGtVmPt2rUYNmyYwzZNTU1YsmQJYmJisH79egDAjh07sH79eowYMQIAkJOTg6ee\nekru8ImIqIdjniIiIm/IXlB9/PHH6N+/P/Lz87F//36sW7cOb731lsM2v/71r3H77bejpKTE4fsz\nZ87E8uXL5QyXiIh6GeYpIiLyhuxD/g4ePIhp06YBACZPnoyjR4922WbNmjXIyMiQOzQiIiLmKSIi\n8orsBZXBYIBOpwMAqFQqhIWFoaOjw2EbrVbrct/Dhw9jwYIFmD9/Pr7//vuAx0pERL0P8xQREXkj\noEP+tm7dim3btkGlUgEABEHAiRMnHLbp7Oz06FiZmZnQ6XSYOnUqjh07huXLl6OwsFB0v6KiIu8D\nDyLGG3hKi1lp8QLKi5nx9l7MU/LiufZMvelcgd51vr3pXH0R0IIqNzcXubm5Dt974YUXYDAYkJqa\narvjFx4uHoZer4derwdgSVoNDQ0QBMGWBF3JysryIXoiIurpmKeIiMhXsg/5y8nJwe7duwEAe/fu\nRXZ2tsvtBEGAIAi215s2bcLWrVsBAGVlZdDpdN0mKSIiIimYp4iIyBsqwT4byKCzsxOrVq1CRUUF\nNBoNXnvtNSQkJGDjxo3Izs5Geno6HnroIbS0tKCpqQmDBw/GihUrkJKSgmXLltmOsXLlSqSnp8sZ\nOhER9QLMU0RE5A3ZCyoiIiIiIqKeQvYhf0RERERERD0FCyoiIiIiIiKJWFARERERERFJFNBl0wOt\no6MDK1euRFVVFdRqNdauXYthw4Y5bPOPf/wDf/nLX6BWq5GdnY1f/vKXHu0XzJibmpqwZMkSxMTE\nYP369QCAHTt2YP369RgxYgQAyypUTz31VMjGG+rXeOfOnXjvvfegVquRm5uLRx55JCjXeO3atTh+\n/DhUKhVefPFFhwnsBw4cwFtvvQW1Wo077rgDCxcuFN0n0LyN9/Dhw1i8eDFSUlIgCAJSU1Px0ksv\nyRavWMxmsxmrV6/GuXPnsG3bNo/2CYV4y8rKsH37dgAI+jXuLt5Dhw7Z/ib0ej3WrFkjuk9PpLR2\n3xdKzBlSKSnX+EJpecoXSsxxUiktN/pClrwqKNiOHTuE3/zmN4IgCMI333wjPP/88w4/b2lpEe66\n6y6hublZEARByM3NFcrKykT3C2bMgiAIv/zlL4WNGzcKzz33nO17f//734Xf//73ssVpJTXeUL7G\nJpNJuO+++wSj0Si0trYKDz74oNDU1CT7NT58+LDw1FNPCYIgCGVlZUJeXp7Dz2fOnClUV1cLnZ2d\nwuzZs4WysjLRfUIt3m+//dbh70JuYjG/+uqrwgcffCA8/PDDHu8TavEG8xqLxTt9+nShurpaEARB\neO6554SvvvoqqNc3WJTW7vtCiTlDKqXkGl8oLU/5Qok5Tiql5UZfyJVXFT3k7+DBg5g2bRoAYPLk\nyTh69KjDz6OiorBz50706dMHABAbG4vGxkbR/YIZMwCsWbMGGRkZssXUHanxhvI1Pn78OMaPH4/o\n6GhoNBrccssttm0EGRe9tI9z1KhRuHr1KpqbmwEAFy9eRGxsLBISEqBSqTB16lQcPHiw231CLd5D\nhw4BkPeaehMzACxduhR33nmnV/uEWrxA8K6xWLzbt29HQkICAECn03Vpf+W+vsGitHbfF0rMGVIp\nJdf4Qml5yhdKzHFSKS03+kKuvKrogspgMECn0wEAVCoVwsLCbE+1t4qJiQEAnDlzBlVVVcjMzPRo\nv2DGrNVqXe57+PBhLFiwAPPnz8f3338f8FgB6fGG8jW2/zlg+aBXV1cHADhy5Ihs19g5jgEDBsBg\nMHQbY3f7BJq38dbW1gIAzp07h4ULF2LOnDk4cOCALLF6EjMg/rfrap9AkhIvELxrLBavtf2tra3F\ngQMHMHXq1KBe32BRWrvvCyXmDKmUkmt8obQ85Qsl5jiplJYbfSFXXlXMHKqtW7di27ZttqfOC4KA\nEydOOGzT2dnpct8LFy5g2bJlWLduHdRqdZefu9vPV77E7CwzMxM6nQ5Tp07FsWPHsHz5chQWFoZs\nvM5C+Rpb70LIcY09icObnwXzzpgn8d5000149tlnMWPGDFy8eBGPPfYYPv/8c4SHB6fpkXK9QvUa\nWyUlJYXMNXYV75UrV/CLX/wCr7zyCvr37+/RPkqmtHbfF0rMGVL1pFzjC6XlKV8oMcdJpbTc6ItA\n5VXF/MZzc3ORm5vr8L0XXngBBoMBqamptrtCzidbXV2NRYsW4Y033kBqaioAID4+XnS/YMbsil6v\nh16vB2BpjBsaGiAIgq1xD7V4Q/kax8fH2+4SAkBNTQ0mTJggyzW2Z71GVrW1tRg0aJDbGOPj4xER\nEeF2n0CTEm98fDxmzJgBABg+fDji4uJQU1ODxMTEoMfsz338Rcp7JyQkBO0ai8VrNBqxYMECLF26\nFJMmTfJoH6VTWrvvCyXmDKmUnGt8obQ85Qsl5jiplJYbfSFXXlX0kL+cnBzs3r0bALB3715kZ2d3\n2WbVqlV4+eWXMXr0aK/2CxRP31sQBIcqetOmTdi6dSsAoKysDDqdTpbGV2q8oXyNMzIyUFJSAqPR\niObmZnz33XfIysqS/Rrn5OTg008/BQCcPHkSCQkJtvl+iYmJaG5uRlVVFTo6OrBv3z5MmTKl230C\nTUq8hYWF2LBhAwBLT0V9fb1tTk2wY7Zy9bcbitfYXbzBvMZi8b722muYP38+cnJyPN6nJ1Jau+8L\nJeYMqZSSa3yhtDzlCyXmOKmUlht9IVdeVQlK7bODpXt91apVqKiogEajwWuvvYaEhARs3LgR2dnZ\n6N+/P376058iPT3ddvdn/vz5mDp1qsv9QiHm9PR0PPTQQ2hpaUFTUxMGDx6MFStWICUlBcuWLbMd\nY+XKlbIsVyk13smTJ4fsNc7IyMBnn32GTZs2ISwsDI8++igeeOAB1NTUyH6N33zzTRw+fBhqtRq/\n+tWvcOrUKfTt2xfTpk3Dv/71L+Tn5wMA7r//fsybN8/lPtaeVzl4G29zczOWLl2KpqYmCIKAZ555\nBj/60Y9ki1cs5vnz56O6uhqXL1/G8OHDMW/ePDz88MNYt24djhw5EnLX2FW8M2bMwJIlS4J2jd3F\nO2XKFEycOBGZmZm29nfWrFnIzc0N6vUNBqW1+75QYs6QSkm5xhdKy1O+UGKOk0ppudEXcuRVRRdU\nREREREREwaToIX9ERERERETBxIKKiIiIiIhIIhZUREREREREErGgIiIiIiIikogFFRERERERkUQs\nqIiIiIiIiCRiQUVERERERCTR/wc+yzhi09as7gAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -398,75 +425,58 @@ } ], "source": [ - "def linreg_r2(X,Y, plot):\n", - " # Running the linear regression\n", + "# Choose which dimension we want to model using the others\n", + "exog = 'xlp'\n", + "\n", + "# Defining our linear regression function\n", + "def linreg_r2(X,Y):\n", + "\n", " Xc = sm.add_constant(X)\n", " model = regression.linear_model.OLS(Y, Xc).fit()\n", " params = model.params\n", " Y_hat = np.dot(Xc,params)\n", " \n", - " # Plot results\n", - " if plot:\n", - " plt.scatter(X, Y, alpha=0.3) # Plot the raw data\n", - " plt.plot(X, Y_hat, 'r', alpha=0.9); # Add the regression line, colored in red\n", - " return model.rsquared, Y_hat\n", - "\n", - "print 'rsquared', linreg_r2(data['Year Built'], data['log Price'],plot=True)[0]\n", - "plt.xlabel('Year Built');\n", - "plt.ylabel('log Price');" + " return model\n", + "\n", + "# Creating a figure with a grid of regressions\n", + "ncols = 2\n", + "nrows = (len(data.columns)-1)/ncols\n", + "fig, axes = plt.subplots(ncols=ncols,nrows=nrows)\n", + "\n", + "# iterating through and plotting regressions\n", + "for i, dimension in enumerate(data.columns[data.columns != exog]):\n", + " \n", + " model = linreg_r2(data[dimension], data[exog])\n", + " \n", + " ax = axes[(i)/ncols, i%ncols]\n", + " ax.scatter(data[dimension], data[exog], alpha = 0.5)\n", + " ax.plot(data[dimension], model.predict(), alpha = 0.8, c='r')\n", + " ax.set_title(dimension);\n", + " ax.set_ylabel('Pct change in %s'%exog);\n", + " ax.legend(['r2 = %5f'%model.rsquared]);" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Using only `Year Built` in our model explained only 1.9% of the variation on `log Price`. Using only one dimension to try and understand a multi-dimensional dataset is equivalent to trying to categorize a 3-d object as a cylinder by only approaching it from a single perspective. It cannot be done. In this model alone we ignore many features of the data and it can be improved by adding another dimension or 'view'.\n", + "None of the above four models explains a satisfactory amount of the variance in returns of `xlp`. `fx`, the USD-EUR exchange rate, explains the most with an $R^2$ value of 9.81%. The least insightful dimension is the change in the price of gold, `gold`, which only explains 0.1% of the variance in `xlp` returns.\n", "\n", - "Let's see what `log Price` looks like from the perspective of `Number Of Stories`:" - ] - }, - { - "cell_type": "code", - "execution_count": 145, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "rsquared 0.0561128798813\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAz8AAAHxCAYAAABDKAKuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3X10lPWd///XZCaTm5mQSYITIYVQgSKC1jRI2kL0K2VJ\n7dr11HrXFqzfnna3RXdd7W677ap8y677/a2rvdmqp3WtZfvbqrXdL6Juq7b9Sn/c6KAxWkAEgTXA\nEBIIGZKZyWRuf3+ECXIb4crkmuu6no9zPMcrkwzvOR/IXK95f25cuVwuJwAAAACwuRKzCwAAAACA\n8UD4AQAAAOAIhB8AAAAAjkD4AQAAAOAIhB8AAAAAjkD4AQAAAOAInkI+eTwe1ze/+U0dOXJEqVRK\nt956qxYuXDjy+KJFizR58mS5XC65XC7df//9CgaDhSwJAAAAgEMVNPysXr1aF1xwge644w719PTo\ni1/8on7zm9+MPO5yufToo4+qvLy8kGUAAAAAQGGnvdXW1qqvr0+SdOTIEdXW1h73eC6XE2esAgAA\nABgPrlyB08ef//mf691339XAwIAeeeQRXXzxxSOPLVq0SPPmzdO+ffs0b9483XnnnYUsBQAAAICD\nFXTa2zPPPKPzzz9fjzzyiN5++23dfffd+uUvfzny+O23367W1lYFAgEtX75cL774opYsWXLa52tv\nby9kuQAAAABsoLm5+ZRfL2j4ef3119Xa2ipJuvDCC3XgwAHlcjm5XC5J0jXXXDPyvZdffrl27Nhx\nxvAjnf6FwHzt7e2MT5FjjIob41PcGJ/ixvgUN8anuNltfM7UMCnomp/Gxka98cYbkqRwOKzKysqR\n4BONRrV06VINDQ1Jkl577TXNnDmzkOUAAAAAcLCCdn5uvPFGffvb39ayZcuUyWS0cuVKrV69WlVV\nVVq8eLHa2tp04403yufzafbs2WpraytkOQAAAAAcrKDhp7KyUt///vdP+/iyZcu0bNmyQpYAAAAA\nAJIKPO0NAAAAAIoF4QcAAACAIxB+AAAAADgC4QcAAACAIxB+AAAAADgC4QcAAACAIxB+AAAAADgC\n4QcAAACAIxB+AAAAADgC4QcAAACAIxB+AAAAADgC4QcAAACAIxB+AAAAADgC4QcAAACAIxB+AAAA\nADgC4QcAAACAIxB+AAAAADgC4QcAAACAIxB+AAAAADgC4QcAAACAIxB+AAAAADgC4QcAAACAIxB+\nAAAAADgC4QcAAACAIxB+AAAAADgC4QcAAACAIxB+AAAAADgC4QcAAACAIxB+AAAAADgC4QcAAACA\nIxB+AAAAADgC4QcAAACAIxB+AAAAADgC4QcAAACAIxB+AAAAADgC4QcAAACAIxB+AAAAADgC4QcA\nAACAIxB+AAAAADgC4QcAAACAIxB+AAAAADgC4QcAAACAIxB+AAAAADgC4QcAAACAIxB+AAAAADgC\n4QcAAACAIxB+AAAAADiCp5BPHo/H9c1vflNHjhxRKpXSrbfeqoULF448vnHjRn3ve9+T2+3W5Zdf\nruXLlxeyHAAAAAAOVtDOz+rVq3XBBRfoZz/7mX7wgx/o3nvvPe7xe++9Vw8++KCeeOIJbdiwQbt2\n7SpkOQAAAAAcrKDhp7a2Vn19fZKkI0eOqLa2duSxvXv3KhAIqL6+Xi6XS1dccYVeeeWVQpYDAAAA\nwMEKOu3tqquu0urVq7VkyRINDAzokUceGXns0KFDx4Wh2tpa7d27t5DlAAAAAHCwgoafZ555Ruef\nf74eeeQRvf3227r77rv1y1/+8pTfm8vl3tdztre3j2WJGGOMT/FjjIob41PcGJ/ixvgUN8anuDll\nfAoafl5//XW1trZKki688EIdOHBAuVxOLpdLwWBQBw8eHPne7u5uBYPBUZ+zubm5YPXCmPb2dsan\nyDFGxY3xKW6MT3FjfIob41Pc7DY+ZwpyBV3z09jYqDfeeEOSFA6HVVlZKZfLJUlqaGhQLBbT/v37\nlU6ntXbt2uN2ggMAAACAsVTQzs+NN96ob3/721q2bJkymYxWrlyp1atXq6qqSosXL9aKFSt05513\nSpKuvvpqNTY2FrIcAAAAAA5W0PBTWVmp73//+6d9fN68eXryyScLWQIAAAAASCrwtDcAAAAAKBaE\nHwAAAACOQPgBAAAA4AiEHwAAAACOQPgBAAAA4AiEHwAAAACOQPgBAAAA4AiEHwAAAACOQPgBAAAA\n4AiEHwAAAACOQPgBAAAA4AiEHwAAAACOQPgBAAAA4AiEHwAAAACOQPgBAAAA4AiEHwAAAACOQPgB\nAAAA4AiEHwAAAACOQPgBAAAA4AiEHwAAAACOQPgBAAAA4AiEHwAAAACOQPgBAAAA4AiEHwAAAACO\nQPgBAAAA4AiEHwAAAACOQPgBAAAA4AiEHwAAAACOQPgBAAAA4AiEHwAAAACOQPgBAAAA4AiEHwAA\nAACOQPgBAAAA4AiEHwAAAACO4DG7AACAvSSTKYVCPYpGPfL702ppCcrrLTW7LAAA6PwAAMZWKNSj\nSKRB6XS9IpEGhUI9ZpcEAIAkwg8AYIxFo54zXgMAYBbCDwBgTPn96TNeAwBgFsIPAGBMtbQEFQiE\n5fF0KxAIq6UlaHZJAABIYsMDAMAY83pL1draYHYZAACchM4PAAAAAEcg/AAAAABwBMIPAAAAAEdg\nzQ9wAg5oBAAAsCfCDwzLh4WOjrji8bDlw8L69WFt2lSlRKJE5eUepVJhLVo0zeyyAAAAYBDT3mBY\n/jT3TGaSLU5zb2+PKharUyZTo1isTu3tUbNLAgAAwBgg/MAw+53mnhvlGgAAAFZU0LvUX/3qV1qz\nZo1cLpdyuZy2bt2q119/feTxRYsWafLkyXK5XHK5XLr//vsVDHIYntX4/WlFIsdfW1lzc5U2bQor\nkfCovDyt5uYqs0sCAADAGCho+Lnuuut03XXXSZJeffVVPf/888c97nK59Oijj6q8vLyQZaDAWlqC\nCoXCcru7FAhUWP4094ULG1Ra2qNoVPL7pZYWDmsEAACwg3Gbn/TQQw/pgQceOO5ruVxOuRxTiqwu\nf5p7ZeUBNTdbPyhwOj0AAIA9jUv42bx5syZNmqS6urqTHluxYoX27dunefPm6c477xyPcgAAAAA4\nkCs3Dq2Xe+65R5/+9Kd12WWXHff1NWvWqLW1VYFAQMuXL9e1116rJUuWnPZ52tvbC10qAAAAAItr\nbm4+5dfHpfOzadMm3XPPPSd9/Zprrhn5/8svv1w7duw4Y/iRTv9CYL729nbGp8gxRsWN8SlujE9x\nY3yKG+NT3Ow2PmdqmBR8q+uenh75fD55PCduhxzV0qVLNTQ0JEl67bXXNHPmzEKXAwAAAMChCt75\nOXjw4HFrfVavXq2qqiotXrxYbW1tuvHGG+Xz+TR79my1tbUVuhwAAAAADlXw8DNnzhw98sgjI9ef\n+cxnRv5/2bJlWrZsWaFLAAAAAIDx2+oaAMZKMplSKNSjaNQjvz+tlpagvN5Ss8sCAABFruBrfgBg\nrIVCPYpEGpRO1ysSaVAo1GN2SQAAwAIIPwAsJxo9cQMVmtgAAGB0hB8AluP3p894DQAAcCqEH8AB\nksmU1q0La8OGuNatCyuZTJldkiEtLUEFAmF5PN0KBMJqaQmaXRIAALAA5ooADpBfI5PJDB5dIxNW\na2uD2WWdM6+31NL1AwAAcxB+gBPYcSexSETaurVXu3cPaWioV3PmmF0RAADA+GPaG3ACO+4k1tnZ\no1isTtlsjWKxOnV2Wv81AQAAnC06P8AJ7LiT2NSp5ykaDcvl6pbPl9PUqeeZXRIAAMC4s/5dHTDG\n/P60IpHjr62upsalOXMaVFY2qBkzGhQIhM0uCQAAYNwx7Q04gR13Esu/Jre7yzavCQAA4GzR+QEc\nIL87WmXlATU3s0saAABwJjo/wAnsuOEBAAAA6PxgDOS3hu7oiCseD1t+a+j8ttCJRInKy7NsCw0A\nAGATdH5g2LEDNCfZolOS3xY6k2FbaAAAADuh8wPD7LY1dH5b6ETCo/LyNNtCA2fJjgcFAwDswdp3\nqSgKdtsaOr8tdB7bQgNnJ98NloankYZCYbW2stEGAMB8THuDYXbbRtmOW10D48lu3WAAgH3wjgTD\n7LaNcv71ADg3dusGAwDsg84PDEsmU1q3LqwNG+Jaty6sZDJldkkATET3FABQrOj8wLBju70NHt3t\njfn9gJPRPQUAFCs6PzCM+f0AAACwAu5SYZjd5vezTW/xY4wAAMC5oPMDw+y221t+Gl86XW+LQ1vt\nyG5jxLo5AADGB+EHhuXn9y9YUKnW1gbLfwLPNL7iZ7cxOrZubpItwhwAAMWK8APD7Pap9YnT9qw+\njc+O7DZGdgtzAAAUK8IPDFu/PqwNG8q1ZUutNmwo1/r1YbNLMqSpqUadnR16441t6uzsUFNTjdkl\n4QR220rZbmEOAIBixceLMGzTpiPatq1WBw74NTRUKumIFi0yu6pz19HRp8bGJjU25q/Dam2tNLco\nHMduWym3tAQVCuXXzVVYPswBAFCsCD8wrLOzX4nEBOVyKSUSE9TZ2W92SYYwBQnjLR/mKisPqLnZ\nPqEOAIBiw10dDKuv96i9/TX19rpUV/ffmj3b2n+tysoG9eabYSUSHpWXpzV/vrXXMAEAAGCYte9S\nURQOHYrK779I6XRcfn+lDh16y+ySDEmlUvrv/44pGi2T3z+kpiav2SUBAABgDLDhAQyrq5ukKVPK\nNXFiiaZMKVdd3SSzSzLkj39MKBicowsumKFgcI7++MeE2SUBAABgDND5gWHnnZdSNlun0tIhTZpU\np/PO22N2SQa5RrkGAACAFdH5gWGf//wFGhh4Sfv3v6mBgZf0+c9fYHZJhjQ3++Xz9crt7pPP16vm\nZr/ZJeEE+bOlfvObblucLQUAAMYHnR8YtnVrVJ/4xJVqbNypGTNmaOvWsFpbq80u65wtXNig0tIe\nRaMe+f1ptbRYf/etZDKlUKhHHR1xxePD5+J4vaVml3XOQqEeRSLD4xKJSKFQ2FZbXwMAgMIg/MAw\nu20NbbczZKRjYSGTGVQk0mD5sNDXl9Nbbx3bke+ii3JmlwQAACzA2nepKAp+f1qRyPHXVpbvkhzr\n/Fi7SyLZL6Du2XNQsViTJCkWk/bs6ZD0AXOLAgAARY81PzCspSWoQCB/On3Y8qfT57sk6XT90S5J\nj9klGXZiILV6QG1sDB63Lqux0dp/5wAAwPiw9se/QAHYrUsiDQfUUCgfUCssH1ADAWnOnLr3XIdN\nrMY4u63JAgCgWNH5gWHr14e1YUO5tmyp1YYN5Vq/3to3onbrkkjH1jEtWFCp1tYGy99Y57uNHk+3\nrbqNmcwk23QbAQAoRtb/SBuma2+PKhabpmx2SLFYndrbu7RokdlVnbs5c/xaufIl9fb6VFcX0z33\nfMTsknACu21KYcduIwAAxYjODwwbGorr1Vd3qKPjkF59dYeGhuJml2TI44/vVlXVlZo2bb6qqq7U\n44/vNrsk2Jwdu40AABQjPl6EYT09ESWT05XNRpVM+tXT867ZJRly6FCp9uzpVzJZIq83K7fb2lPE\nUPzstibLbliTBQD2QfiBYVVVQXm9EUlD8nrTqqqy9o1bJHJQicRcSVIiMXwNFFJ+Gl9l5QE1N9tn\nOp9d2O2cLACwtD17pJ/9THrsseEbtVN59tnT/jjhB4bt2bNdL7+cVSJRo927+3TeeSWSLjW7rHP2\n0Y826PHHX1J/v08TJsT00Y9a/ybHbp9c2/EsJhQv1mQBwBhLpaQXXpB++lPp5ZfH9Y/mNzgMW7fu\niDKZpXK5pExGWrfuP8wuyZBDh2L68IevfM91h4nVjA27fXKdfz2SFInI8q8Hxc1uBzkDwJh5P12Y\nIkP4gWGDg+fJ7e5TLie53cPXVtbYGFQ02qtEokTl5VlbHKDZ15fTW2+FtWtXv4aGwrroopzZJRli\nt0/i7daZsxvWZAGwtVRK1evWSf/0T+PehTmjhgbpi1+UbrpJmjjx7H62vf20DxX0juFXv/qV1qxZ\nI5fLpVwup61bt+r1118feXzjxo363ve+J7fbrcsvv1zLly8vZDkoEJ/voGKxicpkcnK5XPL5rL1G\nxm4HaErSnj0HFYs1KZdzKRabrD17OiR9wOyyzpndPom3W2fObliTBcASDHRhpqZSUmmBPnT71Kek\nW26RFiyQXK7C/BlnoaDh57rrrtN1110nSXr11Vf1/PPPH/f4vffeq8cee0zBYFBLly5VW1ubpk+f\nXsiSUADXXfch/fu/b1As5pfPF9V1133I7JIMyX/K+971JFaX72aVlPTJ5yuzfDfLbmNkt04WAOAc\nmbgW5oyMdGGKzLi9wz700EN64IEHRq737t2rQCCg+vp6SdIVV1yhV155hfBjQbW11frkJ6eqqyui\nSZOmq7Z2j9kl4QT5blZZWZ9mzKizRTfLTuzWyQIAx8t3YVatkuJFdP7habowm9vb1dzcbF5d42hc\nws/mzZs1adIk1dUdm0p06NAh1dbWjlzX1tZq796941EOxlxU27bt0OHDUiTSo9mzrX3jtn59WJs2\nlSqRkMrLpVQqrEWLppldliF2W7NgtzGy2/gAgC3QhbGlcQk/v/zlL3Xttdee8Xtyufe3ALv9DAuY\nYI5XXtmv/v4W5XKl6u9P6ZVXQpYep6efPqB4vElSRpJL+/dvVXV1r9llGZJKpbV9e1SSV9u3v63S\n0n0qLbXu1Co7jlFlpbRgQaWkA9q8+YDZ5eA0rPy7zQkYn+Jm1viUHjiguueeU91zz6mkiHYk61+w\nQIc+/WnFPvzhc1sL09k5/N8Yccq/n3G5+9m0aZPuueee474WDAZ18OCxhfHd3d0KBkf/tNMpLTkr\nSSb7dN550xSN9svvn6Bkcqelx+n//t8t6u+fPHI9YcJhNTfPNbEi49atC6u+vkE7d+5Uff0MpVJh\nS59fZMcxkobfeKz8byfPrucw2WV87IrxKW6Gx2esujBjvajfQBdm4tH/ioHd/v2cKcgVPPz09PTI\n5/PJ4zn+j2poaFAsFtP+/fsVDAa1du3a49YEwTo+8IES7dzZKymq0tKUPvCBErNLMqS52a9Nm45t\ndd3c7De7JMN6epJ68cUOvftuTNOmDWjJkoDZJRlixzGyE85hAnBaFlsLA/spePg5ePDgcWt9Vq9e\nraqqKi1evFgrVqzQnXfeKUm6+uqr1djYWOhyUACLF0/Qxo2/V2+vX6lUVF/96gVml2TIpZfW6Jln\nXldvr091dTFdeulHzC7JsJde2ql33rlIkUhcqVSlSkvf0mc/+0Gzyzpn8+cH9dZb25VKlcvvT2j+\n/Flml4T3YPc6wObOoQtzcSG3Us5jLQzeh4K/I82ZM0ePPPLIyPVnPvOZkf+fN2+ennzyyUKXgAJb\nv75PweAnVVoaU02NT+vXh3TDDWZXde4ef3y3qqquVFVV/rpDt93WZG5RBvX3exSJSEeOeEaurWzT\nph5Fo1OVyZQoGs1q06YeS294YDfsXgdYBF0Y2Ex+2nVl5em/x9p3QCgKvb1+SSlJSUneo9fWdfCg\nW3v2hJVMeuT1plVS4ja7JMP6+5Py+RqUy/XL55ug/v4tZpdkSCjUp7ffLh0Zo1yuj/BTROx2DhNQ\n1Ip1R7JJk6T/+T9HujBO2koZ5slPu66sPP3GQYQfGDY42KVDh6YqGs0ok0koEOgyuyRDDh4Ma/Pm\nciWTpfJ6U/L5wpIuMbssQ+bNq9P69V2KxQbl88U0b17d6D9UxN59N6K9e6crnS6Rx5NVefkOs0vC\ne3i9pazxAc7W229LK1dKa9eaXcnx6MLAQt7PNGvCDwybNes8tbeH1d/vVSaT1KxZ55ldkiGJhFvR\naJmGhrwqKytRImH9zs/HPz5RHk9Wu3ZFNH16mebPt/Zc6ExGikQOKpn0yutNKpMxuyIA0HAXZtUq\nacUKsys53gldGMCuTpx2fSqEHxi2bVtcU6e2jmx1vW3bC2aXZMiBAyWqr298z/U7JlYzNvIbBLjd\nh+X3uyy/QYDbLQUCk5ROu+Tx5OR27zG7JAB2QhcGsKT8tOszIfyYwG5nYAQClerv75cUU2np8LWV\nNTRI7e1hJZNueb0ZXXih2RUZ19HRp8bGJqVSO9XYOEMdHWG1tlp3nKZNCyiR6BtZ8zNtmrW37gbG\nk93eg04r34X5X/9Lep8HqY+bG26Q/vZvh99wAIyZ/LTr9nbW/BQVu52BMXeuRwcO7JXLlZTX69Xc\nudb+azV9epnefHO3kkmfPJ6Ypk8vM7skwyIRaevWXu3ePaShoV7NmWN2Rca0tNTI5So/es6PR/Pn\n15hdkiH5m9GOjrji8bB9b0ZRFCz3HvQ+uzDjspXyewWD0ne+I33601KJtc+3A5zE2nepFmW3MzAu\nvnii3nknKSmlxkavLr7Y6vOJ/Zo9e6qSyRJ5vVlJ1p9S1dnZo1isSdnskGKxOnV2dkgq4pudUSxc\n2KDS0vd+cm3d1yIduxnNZAYViTQU/80oLM2U9yC6MACKhLXvui3KbmdgZLMTdPXV9dq5c6dmzJih\nbLbb7JIMGX5fTmj4n0e66N6nz8WkSQFt3tyhvXtjcru7demlTBMrJnb7QATFzdB70Pbtw92OYlsL\nEwxqz7JlmnHHHXRhAJwR77AmsNsZGCUl/XruuUPq7Izp7be36tprvZLqzS7rnFVUpCVVSSqRlFVF\nxX6TKzKuqyuiYLBJmcx+BYOT1dXVYXZJhqxfH9amTVUj095SqbClz/mx2wciKG4tH56gg1/+iup+\n/6xcLsnrLaKwYKALc6S9neADYFSEHxPY7QyMbdsiSiQuUDYbUSIR0LZtu9XWZnZV52769MlKJFJH\nb6yzmj59stklGdbYGFQ02quSkj75fGVqbLR24G5vjyoWmyZJisWk9vYuLVpkbk1G5D8Qcbu7FAhU\nWP4DEYyTDRuk668/6x/z6uik17ICBYVgcHir52uuIYwAKDqEHxjW1ZXTtm1vqbe3RJHIfp1/vrU3\nCPD5UpLKT7i2Nvu9phPnIlp7bmL+A5HKygNqbrbPByN4H4aGpNtvl555xuxKTsZaGAA2RPiBYevW\nbdO2bUuUSrnV05ORx/OipPlml2XQsTU/9pFQLjek4ddmbc3NVdq0KaxEwqPy8rSam6vMLskQdnuz\ngXPswoyLv/xL6RvfGD4gCwAcjvADwzo7vUqnB5TJeORypdXZ6TW7JEOGhio0Z079e66tvYGDdOw1\nlZUNasaMBsu/pmO7vUl+v9jtDWMjFpOuuELaf+p1fuO+lfJ7TZggPf20bHHwGACYiPADwxKJqFyu\nRrndWblcJUok/mB2SYYMb+CwX9Foufz+hK691i8rb+Ag2W9Bvd3WzbHb2xh7+mlp+XKzqzg1ujAA\nYCreYWFYba1bnZ1vKZMpl9udUG2ttd/Ut2zpVWfnJA0OlqqiolJbtnSprW2m2WUZ0tRUo1WrOrR9\ne69KSwd05ZWzzC4J72G3cDomRunCmIouDABYFuEHhk2fXqXDh/0aGvKorMyj6dOtvf7irbek6upG\nVVfnr7vMLWgMdHT0qbGxSanUTjU2zlBHR1itrZVml4WjbL3b2zPPSF/9qtlVnNqf/In02GPvuwuz\nub1dzc3NBS4KAFBIhB8T5Bc3v/ecHysvbq6rq1Vt7SENDLhVVZVRXV2t2SUZ4nYP6uDBXqXTJfJ4\nsqquHjS7JMOYVlXcin63t2hUmjVLRXvi75o10mWXmV0FAMACuAMyQX5xsyRFIrL84uahoX5VVFym\nTCahiopyDQ393uySDJk2rUTr1m1WPO5XZWVUixdb/5yKsrJBvflmWLt29WtoKKz5862+1TXOyS9+\nId1xh9lVnNpZdmEAADgXhB8T2O1T+A9+sEFbt27X4KBHZWVpffCD1g1ykrRz55AymZmSvMpkktq5\n8x2zSzJscHBIGzf2KxzOqbu7VxdfbO2zmBwtGh1ea5LNml3JqT31lLRwodlVAABwSta+67ao4d3E\nDikaLZPfP6Rrr/XKyruJvfvuAU2c+GcqL++X3z9B775bhIf1nYW33krI4/mgPJ789WZzCxoDzz13\nSBUVC1RX16uKijo999wG/emfWnfTA1tMHX3sMemuu477kqlbKb9XU9PwVDIPbxEAAHvhnc0E27ZF\nlEhcoGy2RIlEVtu27VZbm9lVnbtZs6ZoYGCH4vGEfL5yzZo1xeySDKmpKVU8fmzNT01NEdyMGpRK\n5c54bTVFM3V0YGB4LUyx+sUvpNZWs6sAAKBoEH5MMDDg19Spde+57jGxGuMmTkyrvv585XJ9qq+v\n0cSJ280uyZBPfCKg3/2u9+hW1yl94hMBs0sybO5crzo6wnK5IiovT2juXGsfRBuJSFu39iqRKFF5\neVZz5hh8wp/+VPr7vx+T2sYcXRgAAMYM76YmqKlJqLv7+Gsrmz07oG3bdkmKqbz8sGbPtnZY+NKX\nLtK+fa+rt9enurqYvvSlj5hdkmFf/vJcrVq1XVu29Gru3KRuuWWu2SUZ0tnZo1isSdLwcTCdnR3S\nwITi7sL87GfS4sVn/Ba2UgYAoLAIPya45ZZZWrWqQ3195aqpSeiWW4r4hu19yGYn6OqrZ2rnzp2a\nMWOGstnu0X+oiL3xRp/OP/8SBQLDXYU33ujTokXVZpdliN9fqdtua1J7e7uam5vMLufM3kcX5suJ\njFJpl5ST5JJKPTnpn8Zhl7ApU6QNG+jCAABgUbyDmyB/I2oXdjudvr09qlhsmqThrkJ7e5cWLTK3\nJqPyGwR0dMQVj4cLv0FAgdfCuEpcKi09tgW5y3WWO5+9jy4MAACwH8IPDLPf6fQnbgZg7c0BJGn9\n+rA2bSrVrl0+xeNSKhXWokXTRv/BIl0L4/WWKFod1IZ/+S/5qof/Dspqu70BAIBxR/iBYUV/Ov1Z\nuuSScv2f/9OhaLRcfn9CCxf6zS7JmFhMzZ/9uOalpWw2q5KSEpW40pK/SP75//u/Dx9weRZckqok\nfbIgBQEAALsqkrsfWNm4T6kqsHQ6q64utwYG3KqqciudLpLDJH/xC+mOO87pR0syKaUzbmWzWeVy\nksszxt1yqyL/AAAgAElEQVSsyZOll18ujjNqgDFmt99xAOBkhB8YtnZtp/7zP13q7KzS1q0JDQ52\nasmSGWaXdc7WrDmgaHSuMpkSRaNZrVmzZewOBI3FpIsuklKpsXm+98nlGu76ZLOSlJXLdZpvPIcu\nDGB3+XOlMplBRSIN5p0rBQAwjPADw1av7lYkskDZbK8ikTqtXr3B0uFn375+HTokpdPDm3qVl/ef\n/E0GujAFd/HF0n/913E7kj34/3Ro27bpOnCgT+efX6PZs3fp7/7OPptuAIUUjXrOeA0AsA5+g8Ow\naDShd97ZpSNHMqqujmjOHIucW3SaLsz/e3hImcyxKS3uHSlpctl4Vyc98YR0xRVj8lTpdE7d3TEd\nPJiRyxXTzJnW38QBGC9229ESAJzsfYWftWvXat++fVq6dKn27NmjKVOmyHXaeTNwmv7+XkUitYrH\nXcrlcurv7x3fAp56Svrrvx6zp/N6S5RManhtjGv4+pxdfLH03HOmr4Xp6TmkZLJRuVxSyaRXPT2H\nTK0HsBL77WgJAM41avj5l3/5F3V2dmr//v1aunSpnn32WR0+fFh33333eNRnS/nFs9GoR35/2vKL\nZzOZUu3dG1U67ZfHE9VFF53Da4nFpLlzpaGhsS/wLHk8Lg0lUsrmSlTiysrjcUuPPy79j/9hdmnn\nrKqqTl7vHpWUpOT1HlZVVZ3ZJQGWYbcdLQHAyUYNP6+++qqeeuopLVu2TJJ066236qabbip4YXaW\nXzwrSZGILL949g9/6FFJyWfk8WR0fe4/9cCv/1yafKvZZZ3swgulF14YtQvz1S/+p9asmapk0i+v\nN6prPr1H/27h4CNJsVi/qquvVDbbq+rqOsViL5ldEgAAwLgbNfyUlQ2vdchPc8tkMspkMoWtyuaK\nfvHs4KD0hS9Ir7zyvr59R2xQudzdGj595ehcsUL6+c+lK68s2NP/5jcJZbOXyeORslnpN7/ZUbA/\na7xceul5+t3vnlNvb7nq6hK66qppZpcEAAAw7ka96/7IRz6iv/u7v1NPT49++tOf6oUXXtD8+fPH\nozbbGrfFs7/7nXTzzYV57vfI5TKSSk+4HsWsWdKLL5q+FuZUUqmskskB5XIlcrmycruL5JwfA9as\neUeDg1cql8tocNCtNWte0i23zDW7LAAAgHE1avi544479Pzzz6uiokIHDhzQl770JS1ZsmQ8arOt\n/OLZ9675Oa3BQemmm6RXXx2/As/Gs89q7p90qK9vtiSfpJhqarbp8P4vm13ZOauu7tfg4LuSyiUl\nVF19iq2uLWbPnjJlMiWSMspkSrRnjwm71wEAAJhs1PATj8eVzWa1YsUKSdITTzyhWCwmn89X8OLs\nbOqq76n+6f+QyyWVGtlNbCxce630/e8fdy7M2RgaCkmaJMkraYKGht4cy+rG3ac+dZGeeGKLhobq\nVFbWq0996iKzSzLM6x1SZeUElZTEVV5eKa/X/I0lYF9229QFAGAfo97tfvOb39Rll102cj04OKhv\nfOMbeuihhwpamJ2tXx/WZb/8D6VyGl4mo4zKvG7jT/zcc9JHPmL8ec5SKpWSFFa+85M64dwcq+np\nOaIpU65VJiO53VJPz2/MLsmwq6+u0X/8x4uKx8tUVjakq6+uMbsk2JjdNnWxG8IpACcbNfxEIhHd\n/J51I1/60pf00kvsFGVEKHRYtRPmqLF369Hwkz0Wfq6/XnrggXPuwpihpMQr6cOSSiRlVVKyxeSK\njKmsrJPHc1jZrEceT1qVldbfFnrevAbt2ZNUZ2dMjY0TNW+e1+ySYGNFv6mLwxFOATjZqO9IqVRK\nu3bt0vTp0yVJW7Zssfwn+2b77/8+ojs/9JTS6RJ5PFnNmPFHPfJI4XYvK7Rs1ispouFpb8mj19bl\n8+U0c+ak91y/Y2I1YyObnaCrr67Xzp07NWPGDGWz3WaXBBsbt01dxkm+U9LREVc8HrZ8p4RwCsDJ\nRv2N961vfUvLly/XwMCAMpmMamtr9c///M/jUZtt5XIuRSIuJZMl8npzyuUKvDV0gVVWxnTkiEeS\nW5JHlZUxs0syZMmSat1//3+pv79aEyYc0U03fcDskgyz280oittZbepiAflOSSYzqEikwfKdEn4f\nAHCyUcPPhz/8Yb3wwgvq6+uTy+VSIBAYj7psLZMZ0sDAXiWT5fJ6E8pkrL34vKysQm53hzKZCXK7\n+1VWVmF2SYZ0diY1Y8ZHj4bTrDo7d5tdkmH5m1G3u0uBQIXlb0btxm6dBa+31NLh4ER265TYLZwC\nwNk47W/wH//4x/qLv/gL/e3f/u3IAafvdd999xW0MDs7cCCubNavXM6rbNajAwfiZpdkSHW1V7HY\nQqXTw0uVqqufNrskQ/r6yiQlNPzPI3302tryN6OVlQfU3Gyfm1K7sFtnwW7s1imxWzgFgLNx2vBz\n0UXD2/t+/OMfH7dinCKTKZNUKZfLI8lz9Nq6Jk3yad++PyqT8amkJKZJk6y9Dfrevbv161+7NTRU\nqbKyuD796d2SLjG7LNiY3ToLdkPnFOOJ3fiAwjrtO2xra6sk6cCBA/ra1742bgU5gdeblc9XO7KV\nstebNbskQ3p6DimV+qgymeFOSU/PVrNLMmT9+sM6cmRQ2ayUSAxq/frDZpdkWDQa16pV27VlS59e\nfrlDt9wyS35/pdll4Si7dRbshs4pxhO78QGFNerHi7t27VJnZ6caGxvP6Q945pln9JOf/EQej0d/\n9Vd/pSuuuGLksUWLFmny5MlyuVxyuVy6//77FQza/xO1lpagUqlODQ6WqqIiZflPEbu6ypTN7lcu\nV65sNqGuLmt3srq6XHK5Piy3O3+92dyCxsCqVdvV3d2kdHq/ursna9WqDt12W5PZZeEoOgsA8ugE\nA4U16r+o7du360//9E9VXV2t0tJS5XI5uVwurV27dtQnj0Qieuihh/T0008rFovpX//1X48LPy6X\nS48++qjKy8sNvQir+fjHg/J4SpVIeFRentb8+dbeGnpoaFDZ7MWSXMpmcxoaes3skgxxubJKpw8p\nv+anrMzanTlJOniwVHv29Kqra1CpVK9KSphCUUzoLADIoxMMFNao4edHP/rROT/5xo0btWDBAlVU\nVKiiokIrV6487vFcLqdcLnfOz29VCxc2qLS0R9Go5PdLLS3WvtlJpyWpU/lzftIW/z1dX59VZ+dB\n5XLlcrkSqq+3fvg5cuSgEom5kqREok5HjvzR5IoAAKfCbnxAYZ0x/PzhD3/Q7t271dzcrEsuOfsF\n3+FwWIODg/ra176mgYEB3XrrrfrYxz523PesWLFC+/bt07x583TnnXee9Z9hRXbbaaey0qX+/j2S\nqiUdUWWltc8tmj9/mqRBJZOS1zt49NraPvaxKfr5zzeptzet8nKPPvaxKWaXBAA4BbvdIwDF5rTh\n54c//KE2bNigpqYm3XXXXfryl7+sP/uzPzurJ8/lcopEInr44Ye1b98+3XzzzXrppZdGHr/99tvV\n2tqqQCCg5cuX68UXX9SSJUvO/dXAFOl0TNIsSaWSzlc6be2uwmWXVcvjaVAy6ZHXm1ZTU9jskgzr\n6upTTc2FGhrqU01Njbq6tptdEgAAwLg7bfhZv369fv7zn8vj8WhgYEB/+Zd/edbhZ+LEiWpqapLL\n5dKUKVPk8/l0+PBh1dbWSpKuueaake+9/PLLtWPHjlHDT3t7+1nVUIxSqbS2bIkqHveqsjKpuXP9\nKi218oLGgKQuSX5JUUkBS4/TJZcMatOmdTpypFqBwBFdcskkS78eSdq+vUvvvCMNDZVpYKBHlZVd\nln9NdsW4FDfGp7gxPsWN8SluThmf095xe71eeTzDD1dVVSmTyZz1ky9YsEDf/va39ZWvfEWRSETx\neHwk+ESjUX31q1/VT37yE5WVlem1115TW1vbqM/Z3Nx81nUUm3XrwqqvP9bSTqXC+uhHrdviTqXW\nqaTko8rlMnK53EqlXrH0OK1bF9bnPndsY47S0rDlF6E/+mhcU6Zcpr6+XtXU1ElaZ+kxsqv29nbG\npYgxPsWN8SlujE9xs9v4nCnInTb8uFyuM16/H/X19Wpra9MNN9wgl8ulu+++W6tXr1ZVVZUWL16s\ntrY23XjjjfL5fJo9e/b7Cj92YLdtLKurgzp8+DXlchVyuQZVXW3txZl2Gx9JmjrVp3g8LJcrovLy\nhKZOtfZBtAAAAOfitHd1u3bt0je+8Y3TXt93333v6w+44YYbdMMNN5zysWXLlmnZsmXvt1bbsNs2\nljNnpvT22+crmXTJ663WzJnWPuTUbuMjSS0ttXK5JK93SNOnS/Pn15pdEgAAwLg7bfj5m7/5m+Ou\nT9ylDeeuqalGq1Z1qK+vXDU1CV155SyzSzLkjjsu0Xe+84Z6e8tVV5fQHXec/c6AxcSO24zmt1ev\nrIypqcn626sDAACci9OGn8985jPjWYejdHT0qbGxSY2N+euwWlsrzS3KAL9/sv73/27Szp07NWPG\nDHk83WaXZIgdtxnlEE0AAACpxOwCnMhua0pOnBZmh2liAAAAsB/CjwnsFhZaWoIKBMJyu7sUCIRt\nMU0MAAAA9mPtloNF2W1NCVOqAAAAYAWjhp+5c+eedMaP2+3WtGnTtGLFCl122WUFK86u7LamJJlM\nKRTqUUdHXPH4cOfH6y01uywAAADgOKOGn29961vyer1avHixcrmcfv/732tgYEDz5s3TP/7jP+qp\np54ajzpRxEKhHkUiDcpkBhWJNCgUCtsq3AEAAMAeRl3z8/zzz+v6669XTU2Namtrdf3112vdunW6\n5JJL5PEwaw7228ABAAAA9jTqXerQ0JCeeOIJNTc3q6SkRJs3b1Zvb6/efPPNk6bDwZnseCgoAAAA\n7GfU8HPffffphz/8oR5//HFls1lNnz5d9913n9LptO69997xqBFFLr+Bw/BubxWW38ABAAAA9jRq\n+Jk2bZoeeOAB9fX1qaSkRNXV1eNRFwAAAACMqVHX/LS3t2vx4sX61Kc+pba2Nn3yk5/U5s2bx6M2\nWMSxDQ8mHd3woMfskgAAAICTjNr5+e53v6uHH35YH/rQhyRJb731lu699179/Oc/L3hxsAY2PAAA\nAIAVjNr5KSkpGQk+knTRRRfJ7XYXtChYy4kbHLDhAQAAAIrR+wo/L774oqLRqKLRqH79618TfnCc\nlpagAoH8hgdhNjwAAABAURp1ftJ3vvMd/cM//IP+/u//Xi6XS5deeqm+853vjEdtsAivt1StrQ2q\nrDyg5mYONwUAAEBxel+7vf3kJz8Zj1oAAAAAoGBOG34+//nPy+VynfYH2fAAAAAAgJWcNvz89V//\n9XjWAQAAAAAFddrwM3/+/PGsAwAAAAAKatTd3gAAAADADjiNEoZFo3GtWrVdW7b06eWXO3TLLbPk\n91eaXRYAAABwHDo/MGzVqu3q7m5SOn2RurubtGrVdrNLAgAAAE5C+IFhfX3lZ7wGAAAAigHT3mBY\nRUVEGzZsVU9PUsFgnxYv7je7JEOSyZRCoR5Fox75/Wm1tATl9ZaaXRYAAAAMovMDw4bPg/JL8kny\nn/F8KCsIhXoUiTQona5XJNKgUKjH7JIAAAAwBuj8wLB4vFqXXdaorq79mjRpsuLxuNklGRKNes54\nDQAAAGui8wPDamoSZ7y2Gr8/fcZrAAAAWBPhB4bdcsss1dd3yON5S/X1w1tdW1lLS1CBQFgeT7cC\ngbBaWoJmlwQAAIAxwHweGOb3V+q225rU3t6u5uYms8sxzOstVWtrg9llAAAAYIzR+QEAAADgCIQf\nAAAAAI7AtDcYlj8Xp6Mjrng8zLk4AAAAKEp0fmBY/lycTGYS5+IAAACgaBF+YBjn4gAAAMAKCD8w\njHNxAAAAYAWEHxiWPxfH7e7iXBwAAAAULeYnwbD8uTiVlQfU3Mz5OAAAAChOdH4AAAAAOALhBwAA\nAIAjEH4AAAAAOAJrfmDY4cNHtHLl69qxI6EPfegl3XPPR1RbW212WQAAAMBx6PzAsJUrX1dX15VK\np+erq+tKrVz5utklAQAAACch/MCw3l7fGa8BAACAYsC0NxMkkymFQj2KRj3y+9NqaQnK6y01u6xz\nVlNzRFu29KuvL6l0ul9z5x4xuyQAAADgJHR+TBAK9SgSaVA6Xa9IpEGhUI/ZJRmyZEmD/P43VVKy\nQ37/m1qyhLN+AAAAUHzo/JggGvWc8dpq3O46feUrF2nnzp2aMWOG3O5us0sCAAAATlLwzs8zzzyj\na665Rp/97Gf1hz/84bjHNm7cqOuvv1433XSTHn744UKXUjT8/vQZr63Gbq8HAAAA9lTQ8BOJRPTQ\nQw/pySef1I9//GP9/ve/P+7xe++9Vw8++KCeeOIJbdiwQbt27SpkOUWjpSWoQCAsj6dbgUBYLS1B\ns0syJP963O4uW7weAAAA2FNB51tt3LhRCxYsUEVFhSoqKrRy5cqRx/bu3atAIKD6+npJ0hVXXKFX\nXnlF06dPL2RJRcHrLVVrq33WxeRfT2XlATU32+d1AQAAwF4KGn7C4bAGBwf1ta99TQMDA7r11lv1\nsY99TJJ06NAh1dbWjnxvbW2t9u7dW8hyiobddnsDAAAArKCg4SeXyykSiejhhx/Wvn37dPPNN+ul\nl1467fe+H+3t7WNZoik6OiIaGGgcud6+/f9TU1PAxIrGjh3Gx+4Yo+LG+BQ3xqe4MT7FjfEpbk4Z\nn4KGn4kTJ6qpqUkul0tTpkyRz+fT4cOHVVtbq2AwqIMHD458b3d3t4LB0deKNDc3F7LkcdHT0610\nun7k2uOpUnNz/Rl+whra29ttMT52xhgVN8anuDE+xY3xKW6MT3Gz2/icKcgVdMODBQsWKBQKKZfL\nqa+vT/F4fGSqW0NDg2KxmPbv3690Oq21a9dq4cKFhSynaLA7GgAAADD+Ctr5qa+vV1tbm2644Qa5\nXC7dfffdWr16taqqqrR48WKtWLFCd955pyTp6quvVmNj4yjPaA8tLUGFQuHj1vwAAAAAKKyCn655\nww036IYbbjjlY/PmzdOTTz5Z6BKKjt12e8tv4NDREVc8HmYDBwAAABSlgh9yCvsLhXoUiTQok5mk\nSKRBoVCP2SUBAAAAJyl45wf2F4lIW7f2avfuIQ0N9WrOHLMrAgAAAE5G5weGdXb2KBarUzZbo1is\nTp2ddH4AAABQfOj8wLCpU89TNBqWy9Utny+nqVPPM7skAAAA4CR0fmAYW3cDAADACgg/GCPlcrnK\nJJWbXQgAAABwSoQfGBaNeiQllMsNSUocvQYAAACKC3epJsifi/PeQ06tfC7Onj0HFYs1KZdzKRab\nrD17OiR9wOyyAAAAgOPQ+TFB/lycdLreFufiNDYG5fP1qqSkTz5frxobg2aXBAAAAJyE8GOCE6eF\nWX2amM+XOuM1AAAAUAwIPyaw5+5ox9b8AAAAAMWI8GOCpqYadXZ26I03tqmzs0NNTTVml2SI3TpZ\nAAAAsCfCjwk6OvrU2NikSy+drcbGJnV09JldkiHDGx40KJc7X7FYg/bsOWh2SQAAAMBJ+IjeBHbr\nlDQ2BhWN5jc8KGPDAwAAABQla991W5Tfn1Ykcvy1lQUC0pw5dSor69OMGXUKBMJmlwQAAACchGlv\nJmhpCSoQCMvj6VYgEFZLi7U7Jfk1TNu3v2uLNUwAAACwJzo/JvB6S9Xa2mB2GWMmv4YpldqpxsYZ\n6ugIq7W10uyyAAAAgOPQ+YFhdlvDBAAAAHsi/MAwe55bBAAAALsh/MCw/Bomt7vLFmuYAAAAYE/M\nT4Jh+TVMlZUH1Nxsn7VMAAAAsBc6PwAAAAAcgc6PCZLJlEKhHkWjHvn9abW0BOX1lppdFgAAAGBr\ndH5MEAr1KBJpUDpdr0ikQaFQj9klGZJMprRuXVgbNsS1bl1YyWTK7JIAAACAk9D5MYHdtobOh7lM\nZvBomAtb+hwjOnMAAAD2ROfHBHbbGtquYc4unTkAAAAMI/yYIL81tMfTbYutoQlzAAAAsALu6kyQ\n3xraLlpaggqF8uf8VNgizEUix18DAADA+gg/MMxu5/zkw9x71/wAAADA+gg/wAns1pkDAADAMNb8\nAAAAAHAEwg8AAAAARyD8AAAAAHAEwg8AAAAARyD8AAAAAHAEwg8AAAAARyD8AAAAAHAEwg8AAAAA\nRyD8AAAAAHAEwg8AAAAARyD8AAAAAHAEj9kFOFEymVIo1KNo1CO/P62WlqC83lKzywIAAABsjc6P\nCUKhHkUiDUqn6xWJNCgU6jG7JAAAAMD2CD8miEY9Z7wGAAAAMPa46zZBWdmg3nwzrETCo/LytObP\nT5ldEgAAAGB7hB/TlGu48eaRZO3wk1/D1NERVzweZg0TAAAAihLhxwRDQxWaM6fuPddpE6sxbv36\nsDZtqtLu3bWKx8uVSoW1aNE0s8s6Z2xIAQAAYE8FDT+bNm3S7bffrpkzZyqXy2nWrFm66667Rh5f\ntGiRJk+eLJfLJZfLpfvvv1/BYLCQJRUFvz+tSOT4aytrb48qFpumbHZIsVid2tu7tGiR2VWdu/yG\nFJIUiUihUFitrQ0mVwUAAACjCt75mT9/vn7wgx+c8jGXy6VHH31U5eXlhS6jqLS0BBUKhY/rLFhb\nbpRra2FDCgAAAHsq+F1dLnf6G+FcLnfGx+3K6y21VSehublKmzaF5XJ1y+fLqbm5yuySDCkp6ddz\nzx1SNFomv39I117rlVRvdlkAAAAwqOBbXe/atUvLly/XF77wBW3cuPGkx1esWKHPf/7z+u53v1vo\nUlAgCxc2aMEC6eKLY1qwYPjayrZtiyiROF/ZbJ0SifO1bVtk9B8CAABA0XPlCth66e7u1uuvv66r\nrrpKe/fu1c0336zf/va38niGG05r1qxRa2urAoGAli9frmuvvVZLliw57fO1t7cXqlRgxL/9W5/S\n6YtGrj2et/SVr9SYWBEAAADORnNz8ym/XtBpb/X19brqqqskSVOmTNHEiRPV3d2thobhzsA111wz\n8r2XX365duzYccbwI53+hcB87e3tthifl1/uUHf35JHr+vpuNTc3mVjR2LHLGNkV41PcGJ/ixvgU\nN8anuNltfM7UMCnotLdnn31WDz74oCSpt7dXhw8fVn398NqJaDSqpUuXamhoSJL02muvaebMmYUs\nBwUSjcb14IMd+rd/69ODD3YoGo2bXZIht9wyS/X1HfJ6t6m+vkO33DLL7JIAAAAwBgra+Vm0aJG+\n/vWv63Of+5xyuZxWrFihZ599VlVVVVq8eLHa2tp04403yufzafbs2WpraytkOSiQVau2q7u7Sen0\nfnV3T9aqVR267Tbrdkr8/kpL1w8AAIBTK2j48fl8+tGPfnTax5ctW6Zly5YVsgSMg76+8jNeAwAA\nAMWg4Lu9wf5qahJnvAYAAACKAeEHhuXXyHg8b7FGBgAAAEWLo+thWH6NzPBOIayVAQAAQHGi8wMA\nAADAEQg/AAAAAByBaW8wLJlMKRTqUUdHXPF4WC0tQXm9pWaXBQAAAByHzg8MC4V6FIk0KJOZpEik\nQaFQj9klAQAAACch/MCwaNRzxmsAAACgGBB+YJjfnz7jNQAAAFAMCD8wrKUlqEAgLLe7S4HA8Jof\nAAAAoNgwPwmGeb2lam1tUGXlATU3N5hdDgAAAHBKdH4AAAAAOALhBwAAAIAjEH4AAAAAOALhBwAA\nAIAjEH4AAAAAOALhBwAAAIAjEH4AAAAAOALhBwAAAIAjEH4AAAAAOALhBwAAAIAjEH4AAAAAOALh\nBwAAAIAjEH4AAAAAOALhBwAAAIAjEH4AAAAAOALhBwAAAIAjEH4AAAAAOALhBwAAAIAjEH4AAAAA\nOALhBwAAAIAjEH4AAAAAOALhBwAAAIAjEH4AAAAAOALhBwAAAIAjEH4AAAAAOALhBwAAAIAjEH4A\nAAAAOILH7AJgfclkSqFQjzo64orHw2ppCcrrLTW7LAAAAOA4dH5gWCjUo0ikQZnMJEUiDQqFeswu\nCQAAADgJ4QeGRaOeM14DAAAAxYDwA8P8/vQZrwEAAIBiQPiBYS0tQQUCYbndXQoEhtf8AAAAAMWG\n+UkwzOstVWtrgyorD6i5ucHscgAAAIBTovMDAAAAwBEIPwAAAAAcgfADAAAAwBEKuuZn06ZNuv32\n2zVz5kzlcjnNmjVLd91118jjGzdu1Pe+9z253W5dfvnlWr58eSHLAQAAAOBgBd/wYP78+frBD35w\nysfuvfdePfbYYwoGg1q6dKna2to0ffr0QpcEAAAAwIEKPu0tl8ud8ut79+5VIBBQfX29XC6Xrrji\nCr3yyiuFLgcAAACAQxU8/OzatUvLly/XF77wBW3cuHHk64cOHVJtbe3IdW1trXp6egpdDgAAAACH\nKui0t8bGRt1222266qqrtHfvXt1888367W9/K4/n5D/2dB2iE7W3t491mRhDjE/xY4yKG+NT3Bif\n4sb4FDfGp7g5ZXwKGn7q6+t11VVXSZKmTJmiiRMnqru7Ww0NDQoGgzp48ODI93Z3dysYDI76nM3N\nzQWrF8a0t7czPkWOMSpujE9xY3yKG+NT3Bif4ma38TlTkCvotLdnn31WDz74oCSpt7dXhw8fVn19\nvSSpoaFBsVhM+/fvVzqd1tq1a7Vw4cJClgMAAADAwQra+Vm0aJG+/vWv63Of+5xyuZxWrFihZ599\nVlVVVVq8eLFWrFihO++8U5J09dVXq7GxsZDlAAAAAHCwgoYfn8+nH/3oR6d9fN68eXryyScLWQIA\nAAAASBqH3d4AAPj/27v3oKjqBozjz4IsIqhochkvaWKG+UeZ4y0yUBFsxkbMMcGE0ZoxRWvKkQbx\n7pAK3hXJuwGWCJlE1gym0zA6MJg2meVokWRpAspF5ZKI7PvHmzuAaG/zuh30fD9/sefs/vY5/IbL\ns7+zZwEAaA0oPwAAAABMgfIDAAAAwBQoPwAAAABMwaEXPEDL6upuqaCgVFVVbeThUa8hQ7xltboY\nHfYd3psAAA6ZSURBVAsAAAB4pLHyY4CCglJVVnZTfb2PKiu7qaCg1OhIAAAAwCOP8mOAqqo2970N\nAAAA4MGj/BjAw6P+vrcBAAAAPHiUHwMMGeItT89LatOmRJ6elzRkiLfRkQAAAIBHHudbGcBqddHw\n4d2MjgEAAACYCis/AAAAAEyB8gMAAADAFCg/AAAAAEyB8gMAAADAFCg/AAAAAEyB8gMAAADAFCg/\nAAAAAEyB8gMAAADAFCg/AAAAAEyB8gMAAADAFCg/AAAAAEyB8gMAAADAFCg/AAAAAEyB8gMAAADA\nFCg/AAAAAEyB8gMAAADAFCg/AAAAAEyB8gMAAADAFCg/AAAAAEyB8gMAAADAFCg/AAAAAEyB8gMA\nAADAFCg/AAAAAEyB8gMAAADAFCg/AAAAAEyB8gMAAADAFCg/AAAAAEyB8gMAAADAFCg/AAAAAEyB\n8gMAAADAFCg/AAAAAEyB8gMAAADAFCg/AAAAAEyB8gMAAADAFCg/AAAAAEyB8gMAAADAFCg/AAAA\nAEyhjaOf4ObNmxo7dqxmzZqlsLAw+/aRI0eqa9euslgsslgsWr16tby9vR0dBwAAAIBJObz8JCcn\ny9PT867tFotFO3bsUNu2bR0dAQAAAAAce9rb+fPnVVRUpMDAwLv22Ww22Ww2Rz49AAAAANg5tPwk\nJiYqNjb2nvsXL16syZMna+3atY6MAQAAAACy2By0/JKVlaWysjK98cYbSkpKUrdu3TR+/Hj7/s8+\n+0zDhw+Xp6enoqOj9corrygkJOS+Y548edIRUQEAAAA8QgYOHNjidoe95yc3N1cXL17UoUOHVFxc\nLFdXV/n6+mrYsGGSpHHjxtnv++KLL+qnn3762/Jzr4MAAAAAgL/jsPKzbt06+9dJSUnq3r27vfhU\nVVVpxowZ2rlzp1xdXXXixAmFhoY6KgoAAAAAOP5qb40dOHBA7du3V3BwsEJDQzVp0iS5u7urX79+\nlB8AAAAADuWw9/wAAAAAQGvi0Ku9AQAAAEBrQfkBAAAAYAqUHwAAAACm8NCUnxUrVig8PFwRERE6\nffq00XHQTGJiosLDwzVx4kR99dVXRsdBC27evKnRo0crKyvL6ChoJjs7W+PGjdOECROUm5trdBw0\nUlNTo7feektRUVGKiIjQsWPHjI6Ev5w9e1ajR4/WRx99JEkqLi5WZGSkpkyZonfffVe3bt0yOKG5\nNZ+fy5cva9q0aYqMjNTrr7+usrIygxOaW/P5uePo0aPy9/c3KNW/46EoP998840uXLig9PR0xcfH\n6/333zc6EhopKChQYWGh0tPTtX37di1fvtzoSGhBcnKyPD09jY6BZiorK7V582alp6dr69atOnLk\niNGR0MiBAwfUu3dvpaamasOGDfz9aSVqa2uVkJCggIAA+7YNGzYoMjJSe/bs0eOPP679+/cbmNDc\n7jU/r776qtLS0jRq1Cjt2rXLwITm1tL8SFJdXZ22bdsmb29vg5L9Ox6K8pOfn6/g4GBJkp+fn65f\nv67q6mqDU+GOQYMGacOGDZKkDh06qLa2VlxEsHU5f/68ioqKFBgYaHQUNJOXl6eAgAC5ubmpS5cu\nWrZsmdGR0Ejnzp1VUVEhSbp27Zo6d+5scCJIkqurq7Zu3aouXbrYtx0/flwjRoyQJI0YMUJ5eXlG\nxTO9luZn8eLF9o816dy5s65du2ZUPNNraX4kacuWLYqMjJSLi4tByf4dD0X5uXr1apM/OJ06ddLV\nq1cNTITGnJyc5ObmJknKzMxUYGCgLBaLwanQWGJiomJjY42OgRZcunRJtbW1mjlzpqZMmaL8/Hyj\nI6GRl156ScXFxQoJCVFUVBQ/R62Ek5OTrFZrk221tbX2f9oee+wxXblyxYhoUMvz4+bmJicnJzU0\nNOjjjz/W2LFjDUqHluanqKhIhYWFCgkJeeRfwP5XP+T0QXnUJ+VhdfjwYX366afauXOn0VHQSFZW\nlgYNGqSuXbtK4uentbHZbKqsrFRycrIuXryoqKgoff3110bHwl+ys7Pl6+urbdu26ezZs1q4cKEy\nMzONjoW/we+51qmhoUExMTEaOnSohg4danQcNJKQkKBFixYZHeNf8VCUH29v7yYrPaWlpfLy8jIw\nEZo7evSotm3bpp07d8rDw8PoOGgkNzdXFy9e1KFDh1RcXCxXV1f5+vpq2LBhRkeDpC5dumjAgAGy\nWCzq0aOH3N3dVV5ezulVrcS3336r4cOHS5L8/f1VXFwsm83G6nYr5O7urrq6OlmtVpWUlDzy71t4\nGM2bN09PPPGEZs2aZXQUNFJSUqKioiLNmTNHNptNV65cUWRkpNLS0oyO5hAPxWlvAQEBysnJkST9\n+OOP8vHxUbt27QxOhTuqqqq0atUqbdmyRe3btzc6DppZt26dMjMztW/fPk2cOFHR0dEUn1YkICBA\nBQUFstlsqqioUE1NDcWnFenZs6e+++47Sf89RbFdu3YUn1Zq2LBh9v8VcnJy7KUVrUN2drasVqtm\nz55tdBQ04+Pjo5ycHKWnp2vfvn3y8vJ6ZIuPJFlsD8na8Nq1a3X8+HE5Oztr0aJFeuqpp4yOhL9k\nZGQoKSlJvXr1sr8impiYKF9fX6OjoZmkpCR1795dYWFhRkdBIxkZGcrMzJTFYlF0dLSCgoKMjoS/\n1NTUKC4uTmVlZbp9+7beeecdDR482OhYpnfq1CktWLBA5eXlcnZ2VseOHbVz507Fxsaqrq5OXbt2\n1YoVK+Ts7Gx0VFNqaX4aGhrk6uoqd3d3WSwW9enTxzSnWbU2Lc3Pnj171LFjR0nSqFGjHukrjz40\n5QcAAAAA/h8PxWlvAAAAAPD/ovwAAAAAMAXKDwAAAABToPwAAAAAMAXKDwAAAABToPwAAAAAMAXK\nDwBA0n8/xNPf318HDx5ssn3kyJEPZHx/f381NDQ8kLFu376tjRs3aty4cQoPD1dYWJg2bdpkH//G\njRt6+eWXW/xAxaysLEVERCgqKkoTJkzQkiVLdOvWLUlSbm6url+//o+yREVFiU+NAICHA+UHAGDX\nq1cvJSUlqaamxr7NYrE8kLEf1DiStH79el24cEGffPKJ0tPTlZGRocLCQm3cuFGSdO7cObVr105J\nSUlNHldSUqL169dr9+7dSk1N1f79+1VdXa3Dhw9LklJSUlRZWfmPsqSmpj7QYwMAOE4bowMAAFoP\nLy8vDR8+XJs3b1ZMTEyTfQcOHFBeXp5WrVolSYqMjFR0dLScnZ21ZcsW+fj46IcfftAzzzyjJ598\nUkeOHFFlZaW2b98uHx8f2Ww2JScnq6CgQNXV1UpMTFSfPn107tw5JSQkqL6+XvX19Vq0aJH8/f0V\nGRmpfv366cyZM0pLS7MXjKqqKu3bt09HjhyRi4uLJMlqtWrJkiUKDQ3V9OnTFR8fr0uXLuntt9+2\nFyJJunbtmurr61VTU6O2bdtKkv149u7dqxMnTigmJkbLly9XdXW1Vq5cKRcXF1ksFi1cuFB+fn5N\ncqWmpurpp5/WmTNndPv2bS1btky//fabqqurNXbsWE2dOlU///yzFi5cKFdXV/3555+Kjo5WYGCg\nw+cSAHA3Vn4AAHYWi0XTpk1Tbm6ufv311xb3t+T06dOKi4vT/v379fnnn6tTp05KTU1V//79lZOT\nY79f3759lZaWpsmTJ2vTpk2SpLlz52rp0qVKTU3VokWLFBcXZ7+/u7u79uzZ0+R5z58/L19fX7Vv\n375Jhk6dOsnHx0e//PKL4uLi1Ldv3ybF587zjxkzRsHBwZoxY4Y+/PBDFRcXS5IiIiLUpUsXrV69\nWn5+fnrvvfc0f/58paSkaOrUqVq6dOlduZycnOzZUlNT5ePjo5SUFGVkZOjgwYM6d+6cMjIyFBwc\nrJSUFH3wwQeqqKj4X6YCAOAArPwAAJpwcXFRTEyM4uPjtWPHjv/p/Sx+fn72MuLp6akBAwZIknx8\nfHTjxg37/Z5//nlJ0oABA7R7926Vl5erqKhI8+fPtz9PTU2N/es74zTm5uZ2z0w2m01OTvd/XW/B\nggV68803dezYMeXl5SkpKUmrV69WUFCQ/T43btxQeXm5+vfvL0kaPHiw5syZY9/fUq6CggKVlJSo\noKBAklRXV6fff/9doaGhio2N1R9//KHAwECFhYXdNx8AwHEoPwCAuwQGBio9PV2HDx+2r2w0X/W5\nc5EASXJ2dm6yr/HtxkWl8RgWi0VWq1VWq1Wpqakt5rhzWltjPXv2VGlpqSoqKtSpUyf79srKSpWX\nl6tPnz46derUPY/t5s2b8vLy0vjx4zV+/HhlZmYqIyOjSflpfqw2m63JtpZyWa1WzZo1SyEhIXft\n++KLL5Sfn6+srCxlZ2drzZo198wHAHAcTnsDANg1LipxcXFas2aN6urqJEkeHh66fPmyJKmsrEyF\nhYX/ePz8/HxJ0smTJ9W3b195eHioe/fuys3NlSQVFRVp8+bN9x3DarUqMjJSixcvtmerq6tTfHy8\npk6dKldX13s+dt++fYqOjrY/TpIuXryonj17SpKcnJx069YteXh4yMvLS99//70kKS8vT88++2yL\nY975ng0cOFBffvmlJKmhoUErV67U9evXtWfPHl2+fFlBQUGKj4/X6dOn//b7BABwDFZ+AAB2jVc3\nevToodDQUG3dulWSFBAQoF27dik8PFy9e/fWc88997djNNamTRsVFhZq7969qqystF9oICEhQfHx\n8dq+fbvq6+s1b968+44jSbNnz1ZKSoomTpwoNzc31dXVacyYMZo+ffp9j2/SpEkqLS1VRESEPDw8\nVF9fLz8/P8XGxkqSXnjhBc2cOVMJCQlKSEjQihUr5OzsLGdnZ/t7fprnunP7tddeU2FhocLDw9XQ\n0KCgoCB16NBBvXv31pw5c9S+fXs1NDRo7ty5980IAHAci40PJwAAAABgApz2BgAAAMAUKD8AAAAA\nTIHyAwAAAMAUKD8AAAAATIHyAwAAAMAUKD8AAAAATIHyAwAAAMAU/gP06qrioxDMxgAAAABJRU5E\nrkJggg==\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "print 'rsquared', linreg_r2(data['Number Of Stories'], data['log Price'], plot=True)[0]\n", - "plt.xlabel('Number Of Stories');\n", - "plt.ylabel('log Price');\n", - "plt.xlim(0,15);" + "Using only one dimension to try and understand a multi-dimensional dataset like in this example is equivalent to trying to categorize a 3-d object as a cylinder by only approaching it from a single perspective. It can not be done. In this model alone we ignore many features of the data and it can be improved by ensembling independent views.\n", + "\n", + "Each of these dimensions provides unique insight into the problem of predicting the returns of `xlp`. Let's now average the predictions of all four models, combining their unique insights, to see if we can build a more accurate model:" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "`Number Of Stories` explains about 5.6% of the variation in `log Price`. While better than `Year Built`, it still provides a mostly incomplete understanding. Let's take a look at the final dimension, `Total area`:" + "*Note: In the below plot, the blue line is not the model but the line $predicted=observed$. Points along this line mean the combined model perfectly predicted the observed returns of `xlp`.*" ] }, { "cell_type": "code", - "execution_count": 146, + "execution_count": 293, "metadata": { "collapsed": false }, @@ -475,14 +485,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "rsquared 0.168804441783\n" + "rsquared: 0.909701113542\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1AAAAHxCAYAAABjxF1TAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3X94m/V97/+XbEmRbZkoDrHBLjitiyFxaOsqxFDi0KYZ\nGS0r33Y0dGvCWLexNXRjZWu7dqU5Zc05ZwzWdgWuNod2nH7XwVV6rgw4p1B6KLQBFgWMyTcJJQYX\nQiI3Vn5YIbLjSLL1/UOR/CP6cevHLd2Sno/r4iK3Jd1665bu+/68Pz9tsVgsJgAAAABAVnXlDgAA\nAAAAKgUJFAAAAAAYRAIFAAAAAAaRQAEAAACAQSRQAAAAAGAQCRQAAAAAGGQ3c+cTExP60pe+pBMn\nTigSieiWW27R6tWrk4+vXbtW7e3tstlsstlsuuuuu9Ta2mpmSAAAAACQN1MTqO3bt+td73qXPv/5\nzysQCOiP/uiP9Pjjjycft9lsuv/+++VyucwMAwAAAACKwtQufC0tLRobG5MknThxQi0tLXMej8Vi\nYh1fAAAAAJXCFjM5g7n55pv15ptv6uTJk9q2bZsuvfTS5GNr167VypUrdejQIa1cuVK33XabmaEA\nAAAAQEFM7cL36KOP6rzzztO2bdv06quv6vbbb9fDDz+cfPzWW29Vf3+/PB6PNm/erCeffFJXX311\n2v0NDAyYGS4AAACAKuD1ek3bt6kJ1EsvvaT+/n5J0iWXXKLDhw8rFovJZrNJkq677rrkc9esWaOh\noaGMCZRk7sEAKsnAwADnAyDOBSCBcwGIM7vRxdQxUJ2dnXr55ZclSX6/X42NjcnkKRQKaePGjTp9\n+rQk6cUXX9RFF11kZjgAAAAAUBBTW6BuuOEGfeUrX9GmTZs0NTWlO+64Q9u3b1dzc7PWrVun9evX\n64YbblBTU5OWLVum9evXmxkOAAAAABTE1ASqsbFR3/rWt9I+vmnTJm3atMnMEAAAAACgaEztwgcA\nAAAA1YQECgAAAAAMIoECAAAAAINIoAAAAADAIBIoAAAAADCIBAoAAAAADCKBAgAAAACDSKAAAAAA\nwCASKAAAAAAwiAQKAAAAAAwigQIAAAAAg0igAAAAAMAgEigAAAAAMIgECgAAAAAMIoECAAAAAINI\noAAAAADAIBIoAAAAADCIBAoAAAAADCKBAgAAAACDSKAAAAAAwCASKAAAAAAwiAQKAAAAAAwigQIA\nAAAAg0igAAAAAMAgEigAAAAAMIgECgAAAAAMIoECAAAAAINIoAAAAADAIBIoAAAAADCIBAoAAAAA\nDCKBAgAAAACDSKAAAAAAwCASKAAAAAAwiAQKAAAAAAwigQIAAAAAg0igAAAAAMAgEigAAAAAMIgE\nCgAAAAAMIoECAAAAAINIoAAAAADAIBIoAAAAADCIBAoAAAAADCKBAgAAAACDSKAAAAAAwCASKAAA\nAAAwiAQKAAAAAAwigQIAAAAAg+xm7nxiYkJf+tKXdOLECUUiEd1yyy1avXp18vHnn39e3/zmN1Vf\nX681a9Zo8+bNZoYDAAAAAAUxtQVq+/btete73qUf/vCH+va3v62tW7fOeXzr1q2655579OCDD+q5\n557T8PCwmeEAAAAAQEFMTaBaWlo0NjYmSTpx4oRaWlqSjx08eFAej0dtbW2y2Wy66qqrtHPnTjPD\nAQAAAICCmNqF75prrtH27dt19dVX6+TJk9q2bVvysaNHj85JqFpaWnTw4EEzwwEAAACAgpiaQD36\n6KM677zztG3bNr366qu6/fbb9fDDD6d8biwWM7TPgYGBYoYIVDTOByCOcwGI41wAzGdqAvXSSy+p\nv79fknTJJZfo8OHDisVistlsam1t1ZEjR5LPHR0dVWtra9Z9er1e0+IFKsnAwADnAyDOBSCBcwGI\nM7siwdQxUJ2dnXr55ZclSX6/X42NjbLZbJKkjo4OjY+Pa2RkRNFoVM8888ycGfoAAAAAwGpMbYG6\n4YYb9JWvfEWbNm3S1NSU7rjjDm3fvl3Nzc1at26dtmzZottuu02SdO2116qzs9PMcAAAAACgIKYm\nUI2NjfrWt76V9vGVK1fqoYceMjMEAAAAACgaU7vwAQAAAEA1IYECAAAAAINIoAAAAADAIBIoAAAA\nADCIBAoAAAAADCKBAgAAAACDSKAAAAAAwCASKAAAAAAwiAQKAAAAAAwigQIAAAAAg0igAAAAAMAg\nEigAAAAAMIgECgAAAAAMIoECAAAAAINIoAAAAADAIBIoAAAAADCIBAoAAAAADCKBAgAAAACDSKAA\nAAAAwCASKAAAAAAwiAQKAAAAAAwigQIAAAAAg0igAAAAAMAgEigAAAAAMIgECgAAAAAMIoECAAAA\nAINIoAAAAADAIBIoAAAAADCIBAoAAAAADCKBAgAAAACDSKAAAAAAwCASKAAAAAAwiAQKAAAAAAwi\ngQIAAAAAg+zlDgBAdQmHI/L5AgqF7HK7o+rra5XT6Sh3WAAAAEVBCxSAovL5AgoGOxSNtikY7JDP\nFyh3SAAAAEVDAgWgqEIhe8ZtAACASkYCBaCo3O5oxm0AAIBKRgIFoKj6+lrl8fhlt4/K4/Grr6+1\n3CEBAAAUDX1rABSV0+lQf39HucMAAAAwBS1QAAAAAGAQCRQAAAAAGEQCBQAAAAAGkUABAAAAgEFM\nIgEAAABUmHA4Ip8voFDILrc7qr6+VjmdjnKHZQqrfVZaoAAAAIAK4/MFFAx2KBptUzDYIZ8vUO6Q\nTGO1z0oCBQAAAFSYUMiecbuaWO2zmvruP/nJT/TII4/IZrMpFotp3759eumll5KPr127Vu3t7bLZ\nbLLZbLrrrrvU2sqimwAAAEAmbndUweDc7Wpltc9qagJ1/fXX6/rrr5ckvfDCC3riiSfmPG6z2XT/\n/ffL5XKZGQYAAABQVfr6WuXz+eeMC6pWVvusJWv/uvfee3X33XfP+VssFlMsFitVCAAAAEBVcDod\n6u/vKHcYJWG1z1qSBGrPnj06//zztXjx4rMe27Jliw4dOqSVK1fqtttuK0U4AAAAAJAXW6wETUBf\n+9rX9Hu/93u67LLL5vz9kUceUX9/vzwejzZv3qxPfOITuvrqq9PuZ2BgwOxQAQAAAFQ4r9dr2r5L\n0gK1a9cufe1rXzvr79ddd13y32vWrNHQ0FDGBEoy92AAlWRgYIDzARDnApDAuQDEmd3oYvo05oFA\nQE1NTbLb508/GNLGjRt1+vRpSdKLL76oiy66yOxwAAAAACBvprdAHTlyZM7Yp+3bt6u5uVnr1q3T\n+vXrdcMNN6ipqUnLli3T+vXrzQ4HAAAAAPJmegLV09Ojbdu2Jbc//vGPJ/+9adMmbdq0yewQAAAA\nAKAoqnfJYgAAcJZwOCKfLzBnPRWn01HusACgYpg+BgoAAFiHzxdQMNihaLRNwWCHfL5AuUMCgIpC\nAgUAQA0JheZP6kRnFADIBQkUAAA1xO2OZtwGAGRGtRMAADWkr69VPp9/zhgoACinShubSQIFAEAN\ncTod6u/vKHcYAJCUGJspScGg5PP5LX2dIoFCUVRazQEA1AKuzQAqQaWNzWQMFIqCWZ0AwHq4NgOo\nBJU2NpMECkVRaTUHAFALuDYDqAR9fa3yePyy20fl8fgtPzaTKymKwu2OKhicuw0AKC+uzQAqQaWN\nzaQFCkVRaTUHAFALuDYDQPHRAoWisGrNAQOoAdQyq16bAaCS0QKFqsYAagAAABQTLVCoamYOoKZ1\nCwAAoPbQAoWqZua0mLRuAQAA1B5aoGBYJba49PW1yufzz4m5WJgeGAAAoPZQ4oNhiRYXSQoGJZ/P\nb/nByWYOoGZ6YAAAgNpDFz4YRovLXEwPDAAAUHtquwSMnNDiMhfTAwMAANQeWqBgGC0uAAAAqHW0\nQMEwWlwAAABQ62iBAgAAAACDaIEqQCVO6w0AAADkinLvDFqgCsBCquYLhyPascOvxx8f1Y4dfoXD\nkXKHBAAAUHMo984ggSoA03qbj5MVAACg/Cj3zqjdT14ETOttPk5WpENXAgAASody7wxKowXo62uV\nz+efU4BDcXGyIp1E66QkBYOSz+dnlkgAljK/oqe3d5EGB8eo+EFFotw7gwSqAEzrbT5O1uKoxtYa\nWicBWN38ip4HHhhUZ2dvcpuKH1QSyr0zKHHA0jhZi6MaW2tonQRgdfMrdsbGXOrsTP84gMrAmYuS\nq8bWkGIx69hUY2sNrZOoNlwbq8/8ip5FiybPehxA5an8UhQqTjW2hhSLWcemGltrrNA6SYEXxcS1\nsfrMr+j50Icu1uAgFT9ApSOBQslVY2tIsZh1bGitMQcFXhQT18bqk6qip7+/sUzRACgWrs4ouWps\nDSkWs46NFVprqhEFXhQT10YAqAzc7VFytIakx7GpLBR4UUy9vYv0wAODGhtzadGiSX3oQxeXOySg\nptAtG0aRQCElMy8itIakx7GpLCS8KKbBwTF1dvYmZ2kbHPTT3QsoIbplwygSKKTERQTIrhgJLzWe\nSKBLKFBenIMwqq7cAcCauIgApZGorIhG2xQMdsjnC5Q7JJTJ/C6gdAnNLhyOaMcOvx5/fFQ7dvgV\nDkfKHRIqGOcgjCKBQkpcRIDSoLICCX19rfJ4/LLbR+Xx+OkSagAVECgmzkEYxZ0aKTG242y13tWq\n1j+/WZiIAgmMgcwdFRAoJs5BGMWVBilxETlbrY8Lq/XPb5Zqrqwg6YbZqIAAUA4kUIBBtV7TWeuf\n3yxmVVZYIXkh6YbZqrkCAkBcyvvZ7pel665L/6LHHjM1JkpAgEG1XtNZ658/H+VMYqyQvJB0w2z0\nlgCsy/A9cOdO6ROfSLufWHhal8Vmpm2I2aYlZ3mnceBuhoqQa0HUjIJrrdd01vrnz0c5kxgrJC8k\n3QBQY158UfrYxyQVL/GJxTJvlwMJFCpCrgVRMwquudR0WqH7VLFR05u7ciYxVkheSLoBoIK9/LL0\nkY/k/fJiJT42mzStOv3iu69pekGDPB4DZbqBgfzezKCaSaDMLNBarbBstXjSMRpnOBzRzp3HNT5u\nl8sVVXd3a9aCaLlr363QfaqWWeUcKGcSY4XkhaQ7Nav8PgtRDZ+h1vEd1pg9e6T160v6ljbb3KTJ\nZpv14GuvSU1NxvYTjuhFX0B1obd1jvu4JSrjaiaBMrNAa7XCstXiScdonD5fQFNT7ZqaWqzxcWlo\nyK8rr8y873LXvpc7gat1VjkHypnEkLxYl1V+n4Wohs9Q6/gOK9jgoPTRj5Y7ihn790vNzWf92RaO\naNe8JF15JOlWvJ/VTKkuXYG2GDUw8/cdDEo7dvjLVqtTKYV3o3GGQnZ1dy/U0NAxTU7Wqb5+TH19\nF2fcd7lr38udwNU6q5wDVrzoo/ys8vssRDV8hmKo5FYcvkOLKEPLUEa//rW0cGFRdlXN90BTz5af\n/OQneuSRR2Sz2RSLxbRv3z699NJLyceff/55ffOb31R9fb3WrFmjzZs3mxZLugJtMWpg5u/7wIGA\npN6C9lmIVJ/Vihd5o0mG2x1VNGpXT89iSZLHM5E19nKftOVO4GodCSysrBp+n9XwGYqhkltx+A5N\n8Oqr0tq15Y5ixp490uLF5Y6iKpmaQF1//fW6/vrrJUkvvPCCnnjiiTmPb926VT/4wQ/U2tqqjRs3\nav369erq6jIllnQF2mLUwMzfdyy2pOB9FiLVZ7XiRd5oklGJyUi5E7haV4m/GdSOavh9VsNnKIZK\nbsXhO8zi9delNWvKHcWMgQHp/PPLHQXOKNmZfu+99+ruu+9Obh88eFAej0dtbW2SpKuuuko7d+40\nLYFKV6BNVwOTS4vN/H3v2OEvawtQqs9qxYu80SSDZKQ2FPMc4TcDK6uG32c1fIZiqORWnJr6Dt98\nU/rAB8odxYwXXpA6auTYV6mSlKL37Nmj888/X4tnNSMePXpULS0tye2WlhYdPHiwFOHMka4G5tln\n/dq1y6HJScnlkiIRv9auXZr3PvNtASpWobKSL/IwxordNHNhxVZSAMiEVpwyOHhQ6usrdxQznn9e\nWrq03FGgxEqSQD388MP6RIYVhiUpZnBy+AET5nVvbIz/J0l79hyWJP3HfxzWxESvpClJNo2M7NPC\nhcfy3ufg4ISmpk4lH6+v/60aGw9n3c/gYFAnT3Ymt/fv/5V6ez2G40hwOKIaHX1VExNONTaGtWSJ\nWwMD2d+/1CKRqPbuDSXjXLHCLYejtK1lVojBqNnnQ7F+K+WS7zkCSObcGwAjUpUhyqmSzgX70aNa\ntnFjucNI2n///Qq/4x25vejYsfh/qCklKRXu2rVLX/va1+b8rbW1VUeOHEluj46OqrU1e82N1+st\nenyp/OIXe/X22+3J7XPOOS6vd0Xe+5uY8Cdr1yXJ42mQ15u9dj0QGFU02pbcttub5fW2ZXhFepdf\nntfLTJOqxcTnC6itbea4RCJ+XX55aVshduzwlz0GIwYGBuacD8X8rZRDvucIMP9cAGpVWc+FQEB6\n3/tyf53DpJ4STz0lLVuW00suNScSlIHZFQmmJ1CBQEBNTU2y2+e+VUdHh8bHxzUyMqLW1lY988wz\nc8ZIlUKmLk9er1u7dsWnzXa5puX1ugt6r3yb+au5612qLltWGKuVSwxW6jZX6b8VusIAgEUcPy6t\nyL/SuOh+/nOpp6fcUQBJppdOjxw5Mmfs0/bt29Xc3Kx169Zpy5Ytuu222yRJ1157rTo7O9PtxhSZ\nxlysXt0hh2N2wbiwmvBMgzUzFcJTFSqtVGgvRKpEpdRJQKpjmUsMVhm3Ew5HFIlE9OqreyXF5PU2\nF/ybLbVyDmgu9TlVLecwUAycDyYLBqXly8sdxYz/83+k3t5yRwEUxPQEqqenR9u2bUtuf/zjH0/+\ne+XKlXrooYfMDiGtRAE+EolqaOiEIpG3JSl58U4U5sy+uGcqhKcqVMZn+St/ob1QqRKVUrdCpDr2\nucRghRYzKf45xseX6pJL4tsOh58CSA5KnQhbJfEGrIDzIQcnT0oXp19I/tJIxLwucak8+qi0cmXp\n3g85o4LCHNYcGV8iiQL80NAJjY8vVlPTpILBjrMu3mZf3HMthM9+PBKJaOfO4xV5YqRKVErdCpHq\n2OcSg5HWqlJcvKySyFWqUh+/XN+PGyCqWc1ev8bHpYsuKncUM/7X/5KuuKLcUaDIqKAwR41cpVJL\nFOAjkbe1YMFJRaPSwMCompqOzymgmH1xz7Xb2uznDw0FJLUrGl1ccSeG0UTFzMJjoV0GjbRWmXXx\nikSi2rEj/t7DwyNqb2+R40zNY6WNfyq3UncdzfX9uAFWBxLh1Cp9/KYk6dQpyaR1LPPy0EPWWgQW\nZVOzFRQmq9mjOPtGtmjRpILBBp0+vVSSNDVll88XSBZQCr24Z7tp5tptbfbz6+vH1NV1SfKxSpnw\nIBdmFh4L7TJoJAk06+K1d28oOVtge/tijYzsUVdXOxMw5KHUXUdzfT9ugNWBRDg1y00gc/q09M53\nljeG2f7t36S1aw09dQ8zUpqqEstRVVFBYUE1exeefSNrb1+sffv+U21tC+VyTau7e6FCoZkfWKEX\n92w3zVy7rc1+fvzEmPkayznhgVkXFjMLj6XoMmjWxWtiwpn8t8NhV1dXu665pnKmLbeSUncdzfX9\nuAFWBxLh1Ew9/yIRqcQTVGV0//3SRz5S7iiQp0qsBLFcBUWVqNmr9+wbl8Nh17vetUiXXLIo+bfZ\nBZRCL+7pbprhcETPPuvXwMBJSTZ5vW6tXt2RU9JhpQkPzLqwVHrh0ayLV2NjeM52pR0XGGelG2Al\n1sBaRaVfy8rOasnQd78rfexj5Y4CJVSJlSDlnOG2mln/mzfJ/BuZ1+uWwzFTQOntXZQcX1JoISHd\nTdPnC2jXLofGx+NLt+3adUwORyDv1qhMwuGIhodHdPSo5HJF1d3dKo8n/5t3qkKUWRcWKxUe82HW\nxWvFCrcikco9LjDOSjfAZ5/1a9cuhyYnJZcrvtD02rVLyx1WRaj0a1lRTU1JF1xQ7ihmfOtb0oYN\n5Y4CFkclCBJqNoE6+0Y2t+WnmFOFp7tphkJ2TU7OPG9yss602gyfL6D29ksVCp3Q5KRTIyN7de21\n+S+Sl6q1ye2WKRcWKxUercThsOvyyzkuKK2BgZPJSp/xcWlgYI/R4Rk1r2qvZdPT0jveUe4oZtx9\nt/QHf1DuKFCFqARBQs0kUKlaTDLdyMbGYnrlFb8mJ+1yuaJavjyW93unu2m63VG5XPFCiCS5XNOm\n1WaEQnY5HHb19MQXNbbbwwV1u0nV2vThD7dwYalxdO+qBbYs26hoVkuGvvEN6TOfKXcUgKQqrgRB\nzmomgcp1fM5bbx3R+Hh8pezxcemttwYlFfem0tfXqkjEr4GBPUqMgerrM+fEzNTsnE+hN9X+5l9Y\nwuFI0bpBojJU4gBbK7NiQur1urVr1zFNTtbJ5ZqW1+suazzIIBaTOix0/m3ZIv35n5c7CgAoWM0k\nULmOz+nsbFUoNFNI6OwsfmuK0+nQ2rVLS9L9JVOzcz6F3nKufwTrqsQBtlZmxXNo9eoOORyBOd2f\nUQKxWHxq7XA4+3NL4XOfk77ylXJHAQBlUTOlm1wH/nk8SnZ3i2/7ixpPqWuWM7UO7d07pq6uNjkc\n8Z+DkUJvMdY/smLtOnI3+3ustAV9rf4btGJCSheWIrn0UunYsXJHEXfzzdJ/+S/ljgIAKkb578Yl\nUshitWaM5ylHzfLZBd1L5XDYNTUV1dDQiWTCWKxCb7akNdMxsELB1goxVIL5a6pV0oK+Vmzhma1Y\nMz7xWzbZBz4gvflmuaOI+6M/kv7bfyt3FAAKwDXb+momgSpksVozlKNmeXZh8ehRKRSKJ03d3a0a\nHn5Vdnu0qIXebElo4jNHIhENDQUUibw963XlL9haIYZKMH9NtUpa0NeKLTyzFasih99yDj70IWn/\n/nJHEbdhQ3x6bQA1hWu29VmrtFBDyrGWwOzCocsV1eSkU5LkcDh0+eUt6u8vbqE3WxKaOAZDQwGN\nj3eoqcmlYHBxssCYLvZCGa3ZsXrh2irM+C2n+o4kFb1GzuprehSrIqdmf8sf/ag0OFjuKOI+9rH4\nwqsAkEXNXrMrCN9ImZRjLYHZhcXu7laNjOyV3R4uW1erxDGIRN5WU5NL3d0LJSl5TMwq2Bqt2bFC\n4TpTIjE4OKETJ96UJJ0+3VC2Zn4zfsupvqP4v4tbI1cra3pY4bdcsOuvl55/PuVDl0YiksP47z4m\nKRyeViwm2WyS01mX22Ts69ZJP/xhLq8AAMOq4ppd5UigyqQcA7FnFxY9nqiuvXZFWfvUzj4GweDM\nhB2JgqxZBVujNTtWKFxnSiSmpk5p165mSZPq6WkrWzO/Gb9lI99RMWrkamVCBCv8lufYtEl66qmy\nvX08eaqTJB1dvka/2Xp3TfwOAFQGy12zcRYSKFlzsJ4ZMVm1sJjqQmFmrEZrdooRQ6HfY7ZEYnKy\nTrNP42pp5k/3HVEjlx9Tz/2bb5b+9/82Z9+5ev/7DcXyi8dHFY3OdFm2h0bNjKrqWPGeCVQTq5bX\nMKM6SlsFKveMeKluQLU0gLDUF4pS1uwU+j1mSyRcrmlJ0bMer3TpvqNCvjcKfQbceqv08MNF3WXe\n3eVWrJCefNLQe+wZGJDX6zUcE91jClNL9ycASKXqEygjhSYj3YWy7SeXwlk4HNG2bXt19Gi7XK6o\nurvjs87NvgExgNA8pUzYCl0LK1MiUV//W61aFd/f6dOjVdXMn+47KuR7q7lC39/9nSXG6YTD0xo/\n95167p/+U1J8Tb1yH3e6xxSmVu5PVLoASKc6r3qzGCk0GamNzLafXApnPl9AR48u1dTUIo2PS0ND\nfjU0zP0qUsWU78Wcm0D5FLIWlpQ5kWhsPCyvd6kpcVejii70bdki/Y//Ue4o4s47T+GdPsPXlPnd\n5axw3OkeU5haacGruUoXAIaV/05mMiOFJiO1kdn2k0vhLBSyy+Wa1vh4fHty0n7WDShVTPlezLkJ\nlI/RtbDSbaN4LFPo++//XfqXfynPe8+3cKH061/n/DLfDr/ha4pljjuKplZa8Lg+A0in6q8GRm7e\nRmojs+3H7Y7qyJGohoZOaHKyTueeO6JwuCVlrazbHVV392INDR1LPrevb0XWmPK9mAeD0r598fdy\nuabV02PoZSgCo2thzd6GOUwp9G3dKt17b+H7KYaGBun11+MDjUyWy7WoVgrbtaRWWvC4PgNIp+oT\nqGLdvLPtp6+vVdu27dHkZHxcU3v7irPGNc3d16gaGhL7MjadeL4X8wMHAhof75UkjY9LBw4MSqr+\nm18loHBZOlkLff/8z9Jdd5UuoGz8/pIkQ/lYsOCUdu+eqZRZtepU2ufWSmEb1YfrM4B0qj6BKtbN\nO9t+nE6Hurra1dmZva9/vjHlezG/8MIlCoX8mpy0y+WK6sILl+T83rWklGPGKFya5O674/9ZxaFD\nUl1duaMosknFbyHUyqM6cX0GkE7VJ1ClZHZzf74X80WLbOrpmXmdx+MvZlhVhzFjFnPffdI3vlHu\nKGYcPCjV15c7irI6fbpBPT1ts7atuY4SE+gAAMxAAlVEVm3ut2pcVmX1gcOJQuHg4IQmJvyVVSj8\n/vel228vdxQz3npLslvr+60ElTI2hMoQAIAZKDkUkVWb+60aVy5KWZNs9cJholA4NXVKwWBH+QqF\n//Zv0he/WPr3TefNNyWns9xR1IRKqZSxemUIAKAycTfJU6JAPzYW01tvHVFnZ6s8HhWlYG8kWai1\nrimlrEm2euHQlELhj38s/fVfF76fYnnjDWnBgnJHgTQqpVLG6pUhQLFUdM8EoALVVAJVaNIx+/XD\nwyNqb1+hoaH4DHeh0DH19Cw+q2AfDkf07LN+DQyEJMXk9TZr9eqOjO9rJFmota4ppaxJtnrhMGuh\n8PHHpT/5k9IGlcnrr0uNjeWOAjXI6pUhQLFYpmcCUCNqKoFKl3QYTaxmv/7oUadCoYAmJ+OHcHIy\nPsPW/IK9zxfQrl3NGh9fKknatcsvhyP19OYJRpKFWuuaUrM1yT/7mfTHfzznT6slhcPT+lAkKofD\nLqezhLNLh+J0AAAgAElEQVS77d8vNTeX7v2AAli9MgQollorEwDlVlNnWLoLjM8X0JEjbWcWwXVq\n9+69uvnms9dmmv16l2s6OS34+Hh8Wzq7YB8K2RUKTengQb/CYbtcruNavnxRxjiNJAu1llBURU3y\n009Ln/50wbuxSVrgrJPNZpPTUUDy9OtfSwsXFhwPMFumCqla63oMlEqtlQmAcjOUQD3zzDM6dOiQ\nNm7cqLfeeksXXHCBbBZd4DGTdBeYUMiuoaETGh9fLEk6ejScchHc2a/v7l6okZE9uvDCJXrrrcEz\nY6D8ZxXs3e6ojhwJanKyR5I0PW3XW2+9JekdaeM0kixURUKRA8vVJD/7rLRhQ7mjmLFvn7QonphT\nSEU5ZepeXGtdj4FSSZQJ6ut/K4+noerLBEC5ZU2g/umf/kkHDhzQyMiINm7cqMcee0zHjx/X7Vaa\nitigxAUmGJQOHAgoFluiHTv8WrAgosnJmZp4lyuasvl7dtLi8UR17bWJVqq5ydDsCSZ+85sRnTp1\nWm+//YpaWxfooovc6uxsnfO8+QVdI8lC4jmh0IQeeGC/nnnmbTU0BGWz2TQxsVCLFk3qppsults9\nM/aEgnUaL7wgXXdduaOY8fLLUmv2m9+egQF5vd6z/l4NhdR8f6v8xssvU1ciuhkB5kiUCRobD8vr\nrazrPVCJst69XnjhBf34xz/Wpk2bJEm33HKLPvWpT5kemBkSF5gdO/ySeiVJR45E9dZbL2l09C1N\nTp6vri6nurvb5XYH0r4+m0QB9pVX/BofX6WGhn1auXK5mpriE00kFrI1UtCdXSBcsOCUpPgilol/\nP/ywXxMTS9Xe3qrnnhuS5NZll3VqdFR64IFBfe5zvWfFlen9KlXiOGnPa1r1tU/J6ayTJdpIBwak\n888v6VtWQyE1399qNf/GK0WmrkR0MwIAVIOsJasFZ6YSTnTZm5qa0tTUlLlRmWx2gTI+7qlTv/M7\nLRoaCqi+fkxLlgQKav5O7D8xwcSSJUvU1ORXJPK2PJ5J9fYu0o4dfj3zzNtyOKTu7lY5HI6UBd3Z\nBcLdu/2SXOrpWazdu49JmtTbb1+oaLRDIyN+nTq1QNJMbfvYmCvt5061XQhTav7375c+9CFDT42F\np/S+sE2K2RS2SdKUFjjrc37LmOITNMRiks2muYmYz6dw23mWb+GohkJqvr/VakgeK12q7sWJ60O8\n9X9QF164RIsW2YrSzSgcjmhwMKhAYNSy5yQAoLpkLV28//3v19/93d8pEAjoX//1X/Wzn/1Mq1at\nKkVspomPS4rqlVeO6Ze/HJPDEZDdfqGWL+9QQ4NdfX0tBa3xlCjAJiaYcLvr1dMT30eiBSwY7JDD\n4dL4+GINDfnV09ORsqA7uwAYT8jqzvy7TtGodPLkbzU25tSCBcfldMZUXz8T36JFkynjmr2di/lJ\nUm/vIg0Ojs2a1v1SORz21DX/v/mNtHp1Tu+Xi0g4pljsTMIUsykSjmpBpjVV//M/pc7Os/787Jnv\nJsHjmfs5fLMet2oLRzWMj8v3t1oNyWOlS9VSv2PWedPZ2XHWeVUIny+gkyc7FY22WfacBABUl6wJ\n1Oc//3k98cQTamho0OHDh/WZz3xGV199dSliM01fX6u2bduj4WG36uvr1Nh4hV57LSC7PaArr5zf\nBS/9Gk+Z9u/z+bV8eSzlBBOJpKi7e6GGho6daZlSyoLu7AKhyxVV4itzuab1xhsBLVvWq927j2p6\nul7vfvcBdXVNaGJiIjkGKlVc+RasE8elIXBAl33xCk1FI7rMHk/YVoenJZvkSM4KNy0tKGx67Uyt\nQbMf+//u265fvOHS+PhMd8VzztmjL3zh0pzfM1sLRiW0cFhuwo085PtbrYbksRqZed5UwjkJAKgu\nWe80ExMTmp6e1pYtWyRJDz74oMbHx9XU1GR6cGZxOh3q6mrX6KhdkUidDh8+rhMnjmnZspj6+pbr\nqaeOS1LWNZ6k9F3XZgqwZ8+2l0iKHA77mTFRkykLvOFwRBMTE/rpT3coHHZo2bKY3vOeJZqaimrV\nqlOKxaTTp0P64Aed6u7uVkPDYl1zTVvGz33W+4yMSCtXGjlsuuz0tBItYJI0HbMp2UnOJik2M+oo\n70kan35aujie+GVqDZr/mMu1S5I/ObW815vfWkWZWjDC4YiGh0d09KhTLte0ursXyuMpfgtHYmKQ\nsTFXyslAakG+SWA1JI9Wl093XTNbBufvi1ZHwJqY5AfVJGsC9aUvfUmXXXZZcvvUqVP64he/qHvv\nvdfUwMzmdkcVCIQUiXTJ44kqFBrRgQMT8vkCWrAgomhUWdd4klIPWo/Xgqe/SBitJff5AhocbNS5\n5/ZLkqLRY2pomFR//0yStGvXtCYn6zQ0dEKr3/2W1N6bcl/FYLNJsdjMdp1tZsNur9P0VERSfbK1\nSP/3/0rLl2fc51kX1He2KtHzLpfZvLq6OuTxSKGQ5HZLfX2ZC9HpLuSZvhufL6D29hXJBZRHRvbo\n2mtXZHyffDzwwH6NjvYqGo3o9dcD2rdvUH/4h0u52RSIm3dx5DNRh5ktg319rdq//1ey25tpdQQs\njEl+UE2yJlDBYFA33nhjcvszn/mMnn76aVODKoW+vlY999xe7d+/V6Ojx3Xuud1avNiuYPBcNTW9\nKY8nfRe82UIhuyKR6JnJKOrU1DSmSCSi8fGlklJfJAzVkr/9ti77f7x6X1iKnWn1sSkmhzOW7Bp3\nZXhKl4Vt8f5sNsnpjEl5TJxgyE9/KtvyHu2aNwbqhTNjoPItkGa6oOYym1difFmh75vpuwmF7HI4\nHOrpiT9ut8uUAnhi8o+RkYAmJzsUjU4rGOzI+WZDwjCX1W/elfJ95dNlzsyWQafTod5ej7ze9K3v\nVlYp3ztQKLrboppk/fVGIhENDw+rq6tLkrR3715FIhHTAzOb0+nQlVe2qqenQwMDo5qaalNT0zFJ\n8WnC165N3IzTL3ib6NI1MDCp6Wm32tub5XIt0sDAmC65ZOZ5p46eltrbc47RZtOZrnGJP8TmdI2L\nxWyzxhxJsdh0xv0lxg29+LUfarq3J+cbtVNnJyn9/XPXmdqxw59TQSDTBTVTrXWhNdr5XMjz7YaU\nawFp0aJJjY5K4bD9zPuEDcc4m9UThlKz+s27Ur4vJuoorkr53oFCce1ANclagvjyl7+szZs36+TJ\nk5qamlJLS4v+8R//sRSxmS5RCG9qOq6pKbu6u+OL6S5YcCp9InDqlHQmmYyFp/Un03X69GRUitXJ\nVjelBQscmopGZXfMHFqbbUqnZUs9NXYGTmedpClFwvGLjMNpk9NZn0yEopFp/WTT/6tzPvwhORz2\nrDNbzRk3ZMKNOp+CQOKCGolEktPIpx5LNlehNdr5XMjzTdpyPS433XSxHnhgUL/97bjq60P68Iff\nYThGaSZhMzJNfi2x+s3b6gleAhN1FFelfO9Aobh2oJpkvVK/973v1c9+9jONjY3JZrPJ4/GUIq6S\ncNqk/n+9XaufeGLObG/SrCmxJcVs04o5686aES7xb7u9TrFYnaam4kmNrS4mm21KsZhNNltMkci0\nYtP10pnnhsPTWuBMMUPdz38u9fQkN22SFpz5b7bElMCRSESHhwI6MvyqLr98UdaLkdk36nz2n7ig\n7tx5XFK7urouUTBoN70WNp8Leb5J2+zjEIlEtXNn5m6PbnejPve53lktV8G8Erb50+RnrBioAVa/\neVs9wUtgoo7iqpTvHSgU1w5Uk7Ql3O9973v68z//c33hC19ILqI725133mlqYDmLxaTRUen115P/\nxX7wg/SLos5ik+YkNJOn53aFi8USU2bXzdlOTKpgt9fp9Omp5M7q6x3a90//U+//49/Rjh1+PfVU\no6amFkmSmpr8eu977Rlny8smUSBPjMex2+1zJpZIx+wbdT77T1xQQyG7otHFyb+bXQtbygv57OMy\nNHRC0iJDa9YUmrDNnyY/EpGOHGk7M17Pqd279+rmm1fUTBJl9Zu31RM8mIPvHQAqT9pS6vIzs6d9\n4AMfKFkwebvnHsX+6389K1lKlfSkbPmZZ/5sc/vu/jcF2i5VNNqWnDDi1Knfqrn5pF577bSiUZfs\n9kmtXdunxsYGSZLdPiopXph1uaY1Ph7f1+SkveDEJd9EyOwbdab9ZxsHtGDBKe3ePTMN+apVlT/O\nLmH2camvD6ira2aAXLpEcfbxWrDglKT42DwjLUfppsl//PFRDQ2d0Ph4PFE9ejSsZ5/1J7v31WKr\nVL5yHddm5PlWT/BgDr53AKg8aROo/v741NmHDx/WZz/72ZIFlJclS85Klk45GlUXHp/ztJH3XaVn\nrvpjHVJncn0dp9NxVsHGJiVnm0sUXvcOBDQ1ZVc0GtXp020KBN7Sm292S3LowgvPUSAwqDfemFBP\nTzyBSiQ1bndU3d2LNTR0TJOTdTr33BH19RU29fX8RKW3d5GhrlmpbtTFnAEqU0HAyDigaNSuAwdO\nSbLJ5Tqi1as7qqIwP/u4xJObmc+ULvmdfbx27z4maVI9PdlbraT0iazbHdXkpDP5PJcrqoGBkC65\nJP57ZAC7cZl+z6nOKSYKAACgemTtJzU8PKwDBw6os7Mzrzd49NFH9f3vf192u11/9Vd/pauuuir5\n2Nq1a9Xe3i6bzSabzaa77rpLra15tIrccIN+cc4HFY3OdGOz20fPFFZnCilPPfW0msMfkhTv7ffA\nA4N673tb5xRsnn32zTk18pGIND6+VF1d8UkO3njjoC66KKolS5ZoeLhOiYVllyxZovr6Ednt0TmF\n1njhaVQNDYnCVOFdpuYnKjtmTQ6Ra+GsVAW7bOOjTp9ukN1u1zvesfRMLC75fIG8YrHytMBGWwFn\nH5/4Qs7p18CaL10i29fXqt279+ro0bBcrqi6u1s1PHw87fsivUy/51TnFBMFoFSsfP0DgGqR9S6+\nf/9+ffSjH9XChQvlcDgUi8Vks9n0zDPPZN15MBjUvffeq//4j//Q+Pi4/uVf/mVOAmWz2XT//ffL\n5XIV9CGk1N3a5hdWPZ4lmjozVCkajWpw8LTGxt6Ww+FSd/dCORx2DQyE1NV1iV555ZiGh6MKBIZ0\nxRUNWr58sXp6OlRfP6ZLLunQvn1+OZ3TkhKL7Nrk9TbL4YgqFLLL5wuknUku2w0u1xtgIYWzUhXs\nsnU7TNU6km8shSSFRo59IQUUo911Zh+v+ELOc9fAyofT6dDNN6+YFXtAHk9zsntpIfuuNZl+z6nO\nKSYKQKnQ2gkA5staQv3ud7+b986ff/55XXnllWpoaFBDQ4PuuOOOOY/HYjHFZg82KkCqmv35hdXd\nuwMajQ9N0sjICblczXI4zjkzU9kx9fQslhTT0NAJvfZagyYn23T69Em99ppddvsJ9fQsltfrlsMR\nX2TX5fqNJiedqq+vk9fbLEmGblzZbnC53gALKZyVqmCXreUlVeuI2x3I670KSQqNHPtSFFBmH69V\nqxJjoEYLHrs2/5yIJ4MMYM9Vpt+zkcocjjPMQmsnAJgv45X1l7/8pX7zm9/I6/XqPe95T8479/v9\nOnXqlD772c/q5MmTuuWWW3TFFVfMec6WLVt06NAhrVy5UrfddlvO75FgpGb/ppsu1v33v6A9e6Z1\n9OgJXXbZcr3znS164w3/mZnKJuX1NutXv6pTOJzomrdAR47s0/S0S273W7rppovldicWj527yO7j\nj4/O2U5348p2g8v1BlhI4awYBbtiDJBP1TqSbyEz16Rwdvx7946pq6tNjjPreKU69qUooGQ6XokF\niwcHJzQx4Tdt3Fo1MKs7U6bjZqQyBzALrZ0AYL60Jb/vfOc7eu6559Tb26uvfvWr+tM//VN97GMf\ny2nnsVhMwWBQ9913nw4dOqQbb7xRTz/9dPLxW2+9Vf39/fJ4PNq8ebOefPJJXX311fl/mllSFZzc\n7kZ5ve3q6op3wRsf79AbbxxTT0+HPB6pv79D4XBEr7yyVwcOuDU93aipKYeWLOnRsmVSZ+diDQ76\n1d/fmPI9jd64sj0v1xnpCimcFaNgV6wWmXSx5FoIzjUpnB3/1FR8lsV4a2Tq77DcBZREvFNTpxQM\ndtBFJ4NydGciWUI50doJAOZLm0A9++yz+tGPfiS73a6TJ0/qL//yL3NOoM4991z19vbKZrPpggsu\nUFNTk44fP66WlhZJ0nXXXZd87po1azQ0NJQ1gRoYGDD03oODQZ08OTPxxf79v1Jvr0eDgxOamjql\n+vqIgsFDOnz4hMbGTqmt7Rzt3/+qVqxwa+VKyeF4Q6+8Mq3XXz8lh6NNr73WLL//kN75zjE1Nh5O\n7jcSiWrv3pAmJpyqqwvpjTd2anx8oRYuHNe1156rgYHDZ8XmcEQ1OvqqJiacamwMa8kS95znvfba\nMfn9bTp92q4FC6J67bVRLVx4zNDnLsTsz9LYGNaKFe5kS0ym5wwOhjU1dSr5nPr63845RoVK911m\n0tgY/0+S9uzJHEviNyFJ9fURHTz4shobz0n53UjZvz8jjBxrI/G+/vrrRT/elWz+cX377TrZbOb9\nNmEdRu8NtSCX6x+qD+cCYL60JTan0ym7Pf5wc3OzphKzL+Tgyiuv1Fe+8hX92Z/9mYLBoCYmJpLJ\nUygU0l/8xV/o+9//vhYsWKAXX3xR69evz7pPr9dr6L0DgdF5s/I1y+tt08TEzIx1l1wiHTgwqM7O\n3uTzIpF4DfXll8e377lnUKOjM487nYPyeme2d+zwq60tvr99+45pyZJJffCDidpnv7ze1DXRif2n\ni729fe6Mgl5v/gvvGjX7s0jxY3H55R1Zn9PbOzP2S5I8noa0nzsf6b7LYpn9m5Ckyy8/J2sLQqbv\nzwgjxzqdRLyvv/663v3udxf9eFey+cd1cnJQnZ3vTm5zrKrTwMCA4XsDUM04F4A4sysS0iZQNpst\n47YRbW1tWr9+vTZs2CCbzabbb79d27dvV3Nzs9atW6f169frhhtuUFNTk5YtW2YogTIqXTer+d0b\nYrElc143fzzLhRcuUSg0053uwgvTPz/X6aZzjd1sRsb2pHrOhz/cYmqXEbOPRzm6vBQyjioRb339\nb+XxNNBFZ5b5x7Gzs1UeD92ZAABA8aQttQ0PD+uLX/xi2u0777zT0Bts2LBBGzZsSPnYpk2btGnT\nJqOx5iRdoTj1Gkozr5tfOF+0yKaentmtK/45j7vdUR05El8j6sCBCTmdIUUiLXI4HHkX9MvVh91I\nopLqOWaP+TD7eJRjzEohSWEi3sbGw7SmzDP/uCbGNgIAABRL2gTqb//2b+dsz589z+qMFoqNTK+d\n7fFt2/ZqcnKpurrsks7R8PCruvzylrwL+uUahG4kUSlHclfpg/JTTYLBQG9zcFwBAIDZ0iZQH//4\nx0sZR9kYmV472+NdXe3q7FyU/JvdLvX3mz9mqdiMJCqVnsyUQ7qZ4DiOxcfvEwAAmK2u3AFUg/nd\nr1h3A7OxsCUAAED1IIEqgr6++EB1u31UHo+fbkOYgwQbAACgelAVXgR0G0ImjMsBAACoHlkTqBUr\nVpy1BlR9fb2WLl2qLVu26LLLLjMtOOQn1aQFTqej3GHVLBJsAACA6pE1gfryl78sp9OpdevWKRaL\n6amnntLJkye1cuVKfeMb39CPf/zjUsSJHKSbtAAAAABAYbKOgXriiSf0yU9+UosWLVJLS4s++clP\naseOHXrPe94ju50egFbEpAUAAACAObKWrE+fPq0HH3xQXq9XdXV12rNnj44dO6bdu3ef1bUP1lDI\nIq0AAAAA0suaQN155536zne+o3//93/X9PS0urq6dOeddyoajWrr1q2liBE5YtICAAAAwBxZE6il\nS5fq7rvv1tjYmOrq6rRw4cJSxIUClHvSAiaxAAAAQLXKOgZqYGBA69at00c+8hGtX79ev/u7v6s9\ne/aUIjZUqMQkFtFom4LBDvl8gXKHBAAAABRF1haof/7nf9Z9992n7u5uSdIrr7yirVu36kc/+pHp\nwaEyMYkFAAAAqlXWFqi6urpk8iRJy5cvV319valBobLNn7SCSSwAAABQLQwlUE8++aRCoZBCoZB+\n+tOfkkAho76+Vnk8ftnto/J4/ExiAQAAgKqRtW/V17/+df3DP/yD/v7v/142m03ve9/79PWvf70U\nsaFClXsSCwAAAMAshmbh+/73v1+KWAAAAADA0tImUH/4h38om82W9oVMIgEAAACg1qRNoP76r/+6\nlHEAAAAAgOWlTaBWrVpVyjgAAAAAwPKyzsIHAAAAAIirmRVOw+GIfL6AQiG73O6o+vpa5XQ6yh3W\nWSolTgAAAKAW1UwLlM8XUDDYoWi0TcFgh3y+QLlDSqlS4gQAAABqUc0kUKGQPeO2VVRKnAAAAEAt\nqpnSudsdVTA4d9uoUnarSxUn3fqqA98jAABA5auZFqi+vlZ5PH7Z7aPyePzq62s1/NpSdqtLFSfd\n+qoD3yMAAEDlq5kWKKfTof7+jrxeW8pudanipFtfdeB7BAAAqHw10wJViPnd/XLp/lcN74/i4HsE\nAACofCRQBhTS/a8a3h/FwfcIAABQ+ehDZEAh3f+q4f1RHHyPAAAAlY8WKAAAAAAwiAQKAAAAAAyi\nC1+FYk0hAAAAoPRogapQrCkEAAAAlB4JVIViTSEAAACg9EigKhRrCgEAAAClRwJVoVhTCAAAACg9\n+n1VKNYUAgAAAEqPFigAAAAAMIgECgAAAAAMIoECAAAAAIMYAzVLLovTmvVcAAAAANZFC9QsuSxO\na9ZzAQAAAFgXCdQsuSxOa9ZzAQAAAFgXJfkzwuGIhodHNDpqVyAQ1JIlC3XeeSMKh1tSdrdzu6MK\nBudup5PLcwEAAABYFy1QZ/h8AbW3r1AgcFhvv+3WkSMH1d6+Im13u1wWsmXRWwAAAKA60AJ1Rihk\nl8Ph0Pnnt6u1dZHq6yWHw5G2u10uC9my6C0AAABQHUxvgXr00Ud13XXX6fd///f1y1/+cs5jzz//\nvD75yU/qU5/6lO677z6zQ8ko0a3O5Zo+8//onL8DAAAAgKkJVDAY1L333quHHnpI3/ve9/TUU0/N\neXzr1q2655579OCDD+q5557T8PCwmeFklOhm19Mzqba2QS1fHqO7HQAAAIA5TO3C9/zzz+vKK69U\nQ0ODGhoadMcddyQfO3jwoDwej9ra2iRJV111lXbu3Kmuri4zQ0prbjc7utsBAAAAOJupCZTf79ep\nU6f02c9+VidPntQtt9yiK664QpJ09OhRtbS0JJ/b0tKigwcPmhlOWix0CwAAAMAIUxOoWCymYDCo\n++67T4cOHdKNN96op59+Ou1zjRgYGChmiJKkwcGgTp7sTG7v3/8r9fZ6iv4+QLGZcT4AlYhzAYjj\nXADMZ2oCde6556q3t1c2m00XXHCBmpqadPz4cbW0tKi1tVVHjhxJPnd0dFStrdnHG3m93qLHGQiM\nKhptS27b7c3yetsyvAIov4GBAVPOB6DScC4AcZwLQJzZFQmmTiJx5ZVXyufzKRaLaWxsTBMTE8lu\nex0dHRofH9fIyIii0aieeeYZrV692sxw0po/0x4z7wEAAABIxdQWqLa2Nq1fv14bNmyQzWbT7bff\nru3bt6u5uVnr1q3Tli1bdNttt0mSrr32WnV2dmbZozn6+lrl8/nnjIECAAAAgPlMX0h3w4YN2rBh\nQ8rHVq5cqYceesjsELKy4kK3TGwBAAAAWI/pC+kiPz5fQMFgh6LRNgWDHfL5AuUOCQAAAKh5prdA\nVSIrtP6EQvaM2wAAAABKjxaoFKzQ+sPEFgAAAID1kEClYIXWn76+Vnk8ftnto/J4/ExsAQAAAFgA\n/cJScLujCgalSCSioaGA6uvHSt6Vz4oTWwAAAAC1jhaoFBKtP8PDr0pyqavrEiZyAAAAAEALVCqJ\n1p9QyK5odHHy79m68llh8gkAAAAA5qEFKoNcJ3Lw+QI6cqRNu3fb9dRTjdq2ba/C4YiZIQIAAAAo\nIRKoDHKdyCEUsmto6ITGxxdramqRjh5tp9sfAAAAUEWqrgtfMbvR5TqRg9sd1eSkM7ntckVZvwkA\nAACoIlXXAlXONZz6+lp17rlvqr5+VE1NfnV3t7J+EwAAAFBFqq55ZHaLTyQS0XPPBbRz55ikmLze\nZq1e3WHaxA5Op0M337xiVgtYgPWbAAAAgCpSdQlUYg0nSRoaCuiNN85Ra2uXJGnXLr8cjoCp6yux\nfhMAAABQvaquC9/siR/q68e0ZMnC5GOTk3bGJAEAAADIW9VlE7NbgNzuqJ57zqbx8fhjLldUbncZ\ngwMAAABQ0aougZqtr69VkYhfAwO/VWIMVF/f3O51LH4LAAAAwKiqTqCcTofWrl2qtWvTPycxa58k\nBYOSz+dnDBMAAACAlKpuDFSu5o+JYowUAAAAgHRqPoGav04T6zYBAAAASKfmE6jZs/Z5PH7WbQIA\nAACQVs33V2PdJgAAAABG1XwLFAAAAAAYVTUtUExHDgAAAMBsVZNAmTEdOUkZAAAAgNmqJoEyYzry\nbEkZCRYAAABQW6pmDJQZ05FnS8oSCVY02qZgsEM+X6Dg9wQAAABgXVWTQJkxHXm2pIxFeAEAAIDa\nUjUlfjOmI+/ra5XP55/TRW82tzuqYHDuNgAAAIDqVTUJlBmyJWXZEiwAAAAA1YUEqgAswgsAAADU\nlqoZAwUAAAAAZiOBAgAAAACDSKAAAAAAwCASKAAAAAAwiAQKAAAAAAwigQIAAAAAg0igAAAAAMAg\nEigAAAAAMIgECgAAAAAMIoECAAAAAINIoAAAAADAIHu5A6h04XBEPl9AoZBdbndUfX2tcjod5Q4L\nAAAAgAlogSqQzxdQMNihaLRNwWCHfL5AuUMCAAAAYBISqAKFQvaM2wAAAACqR1WV9svRnc7tjioY\nnLsNAAAAoDpVVQKV6E4nSUeORLRt2151dbWbmkz19bXK5/PPSdoAAAAAVKeqSqBmd5975RW/hocX\n6TuHGIYAABNcSURBVOhRp1wuuyIRv9auXVr0Viqn06H+/o5ihA8AAADA4kxNoHbt2qVbb71VF110\nkWKxmC6++GJ99atfTT6+du1atbe3y2azyWaz6a677lJra/4tOLO70w0PhzQ9faGmps7R+Lg0MPBb\nrV07t5UqGJR8Pj8JEAAAAABDTG+BWrVqlb797W+nfMxms+n++++Xy+UqynvN7k7nco3J41k269GY\nJCZ9AAAAAJA/07OHWCyW8bFMj+dqdne6BQtOadeuw5qctMvlisrrbZaUetKHcDiiZ5/1a2DgpCSb\nvF63Vq/uYD0nAAAAAHOYnkANDw9r8+bNOnHihG655RZ94AMfmPP4li1bdOjQIa1cuVK33XZb0d53\n9eoOORwBhUKS2y319cUTq1STPvh8Ae3a5dD4+KWSpF27jsnhCNC1DwAAAMActlgxm4DmGR0d1Usv\nvaRrrrlGBw8e1I033qif//znstvjedsjjzyi/v5+eTwebd68WZ/4xCd09dVXp93fwMCAKXE+99yE\n9uxpUix2niSprm5MK1Yc15VXNpryfgAAAADM4/V6Tdu3qS1QbW1tuuaaayRJF1xwgc4991yNjo6q\noyPesnPdddcln7tmzRoNDQ1lTKAkcw7GxIRfExPS+Hi7JKmpaYF6ez3yemmBgnUNDAyYenEAKgXn\nAhDHuQDEmdXoklBn5s4fe+wx3XPPPZKkY8eO6fjx42pra5MkhUIhbdy4UadPn5Ykvfjii7rooovM\nDGeOUGhC99wzqH/4h19rYGBEK1ac0Dnn7NE55+zVqlUnWc8JAAAAwFlMbYFau3at/uZv/kZ/8Ad/\noFgspi1btuixxx5Tc3Oz1q1bp/Xr1+uGG25QU1OTli1bpvXr15sZzhwPPLBfo6O9kqRjxyS7fVBf\n+EJvyd4fAAAAQOUxNYFqamrSd7/73bSPb9q0SZs2bTIzhLTGxlwZtwEAAABgPlO78FnZokWTGbcB\nAAAAYL6aTaBuuulitbUNyun8tdraBnXTTReXOyQAAAAAFmf6OlBW5XY36nOfY8wTAAAAAONqtgUK\nAAAAAHJFAgUAAAAABlV1F75wOCKfL6BQyC63O6q+vlY5nY5yhwUAAACgQlV1C5TPF1Aw2KFotE3B\nYId8vkC5QwIAAABQwao6gQqF7Bm3AQAAACAXVZ1Aud3RjNsAAAAAkIuqTqD6+lrl8fhlt4/K4/Gr\nr6+13CEBAAAAqGBV3afN6XSov7+j3GEAAAAAqBJV3QIFAAAAAMVEAgUAAAAABpFAAQAAAIBBJFAA\nAAAAYBAJFAAAAAAYRAIFAAAAAAaRQAEAAACAQSRQAAAAAGAQCRQAAAAAGEQCBQAAAAAGkUABAAAA\ngEEkUAAAAABgEAkUAAAAABhEAgUAAAAABpFAAQAAAIBBJFAAAAAAYBAJFAAAAAAYRAIFAAAAAAaR\nQAEAAACAQSRQAAAAAGAQCRQAAAAAGEQCBQAAAAAGkUABAAAAgEEkUAAAAABgEAkUAAAAABhEAgUA\nAAAABpFAAQAAAIBB9nIHUEzhcEQ+X0ChkF1ud1R9fa1yOh3lDgsAAABAlaiqFiifL6BgsEPRaJuC\nwQ75fIFyhwQAAACgilRVAhUK2TNuAwAAAEAhqiqBcrujGbcBAAAAoBBVlUD19bXK4/HLbh+Vx+NX\nX19ruUMCAAAAUEWqqo+b0+lQf39HucMAAAAAUKWqqgUKAAAAAMxEAgUAAAAABpFAAQAAAIBBpo6B\n2rVrl2699VZddNFFisViuvjii/XVr341+fjzzz+vb37zm6qvr9eaNWu0efNmM8MBAAAAgIKYPonE\nqlWr9O1vfzvlY1u3btUPfvADtba2auPGjVq/fr26urrMDgkAAAAA8mJ6F75YLJby7wcPHpTH41Fb\nW5tsNpuuuuoq7dy50+xwAAAAACBvpidQw8PD2rx5sz796U/r/2/v7mOqrPs4jn8ujogKGiKe00Rn\nD+bDnKaiQ1N8IKcxXTrTmZHGsqzQQDEnaUE5pyamtbE0h39kNlsPs+EqIXOajQJFpzOHTnMlOEEe\n1B2Q6OTv/sN57pAHr7vO8QD3+/XXuZ5+53sxv158zu86F/n5+d71FRUVioiI8C5HRESovLzc3+UA\nAAAAwD/m11v4+vbtqyVLlig+Pl4XL17UggUL9N1336lDh8Zv29xM1Z2Kiop8XSbQZtEPwC30AnAL\nvQD4n18DlMvlUnx8vCSpT58+ioyMVFlZmaKiouR0OnXlyhXvvmVlZXI6nXcdMzo62m/1Am1JUVER\n/QCIXgBuoxeAW/z9QYJfb+Hbu3evsrKyJEmVlZWqqqqSy+WSJEVFRammpkaXLl2Sx+PRwYMHNW7c\nOH+WAwAAAAD/il9noOLi4rR8+XLNmzdPxhhlZGRo79696tq1qyZPnqyMjAylpqZKkqZPn66+ffv6\nsxwAAAAA+Ff8GqBCQ0O1bdu2ZrePHDlSn376qT9LAAAAAACf8ftT+AAAAACgvSBAAQAAAIBNBCgA\nAAAAsIkABQAAAAA2+fUhEvdCff2fKigol9vdQWFhHsXEONWxY3CgywIAAADQDrX5GaiCgnJdvRol\nj8elq1ejVFBQHuiSAAAAALRTbT5Aud0dWlwGAAAAAF9p8wEqLMzT4jIAAAAA+EqbD1AxMU6Fh5eq\nQ4cyhYeXKibGGeiSAAAAALRTbf5+t44dgxUbGxXoMgAAAAD8H2jzM1AAAAAAcK8QoAAAAADAJgIU\nAAAAANhEgAIAAAAAmwhQAAAAAGATAQoAAAAAbCJAAQAAAIBNBCgAAAAAsIkABQAAAAA2EaAAAAAA\nwCYCFAAAAADYRIACAAAAAJsIUAAAAABgEwEKAAAAAGwiQAEAAACATQQoAAAAALCJAAUAAAAANhGg\nAAAAAMAmAhQAAAAA2ESAAgAAAACbCFAAAAAAYBMBCgAAAABsIkABAAAAgE0EKAAAAACwiQAFAAAA\nADYRoAAAAADAJgIUAAAAANhEgAIAAAAAmwhQAAAAAGATAQoAAAAAbCJAAQAAAIBNBCgAAAAAsIkA\nBQAAAAA2EaAAAAAAwCYCFAAAAADYRIACAAAAAJsIUAAAAABgUwd/v8Eff/yh6dOna/HixZo5c6Z3\nfVxcnHr16iXLsmRZljZt2iSn0+nvcgAAAADgH/N7gPrggw8UHh7eaL1lWcrOzlanTp38XQIAAAAA\n+IRfb+H79ddfdeHCBU2YMKHRNmOMjDH+fHsAAAAA8Cm/BqiNGzcqLS2t2e0ZGRl65plntHnzZn+W\nAQAAAAA+4bdb+L766iuNGjVKvXr1kqRGs00pKSmKjY1VeHi4kpKSlJeXpylTptx13KKiIr/UC7RF\n9ANwC70A3EIvAP7ntwB16NAhlZSUKC8vT5cvX1ZISIjuv/9+jRkzRpI0Y8YM777jx4/X2bNn7xqg\noqOj/VUuAAAAANyV3wLUli1bvK+zsrLUu3dvb3hyu916+eWXtWPHDoWEhOjo0aOaOnWqv0oBAAAA\nAJ/w+1P4/m7Pnj3q2rWrJk+erKlTp2ru3LkKDQ3VoEGDCFAAAAAAWj3L8Cg8AAAAALDFr0/hAwAA\nAID2hAAFAAAAADYRoAAAAADApnv6EIl/Y/369Tpx4oQsy9KqVas0ZMiQQJcE+ERhYaFSUlL0yCOP\nyBijAQMG6IUXXtCKFStkjFHPnj21ceNGBQcHKycnRzt37pTD4dCcOXM0e/ZseTwepaWl6dKlS3I4\nHFq/fr169+6t4uJivfXWWwoKCtKAAQOUkZER6FMFmlVcXKxXX31ViYmJSkhI0OXLl/3WA9nZ2crN\nzVVQUJCSkpI0YcKEAJ898F939sLrr7+uU6dOqXv37pKkhQsXasKECfQC2r2NGzfq2LFj+uuvv7Ro\n0SINGTKk9VwXTBtQWFhoXnrpJWOMMefOnTNz584NcEWA7xQUFJjk5OQG69LS0kxubq4xxpjNmzeb\n3bt3m9raWjN16lTjdrtNXV2dmT59url27ZrZs2ePWbNmjTHGmB9//NEsXbrUGGPM/PnzzalTp4wx\nxqSmppoffvjhHp4VYF9tba1JTEw0GRkZZteuXcYY//XAxYsXzaxZs4zH4zGVlZXmiSeeMDdv3gzA\nWQONNdcLBw8ebLQfvYD27OeffzYvvviiMcaY6upqM3HiRJOWlmb27dtnjAn8daFN3ML3008/afLk\nyZKkhx9+WNevX1dNTU2AqwJ8x9zxMMzCwkJNmjRJkjRp0iTl5+frxIkTGjp0qEJDQxUSEqIRI0ao\nqKioQX889thjOn78uP7880+VlJRo8ODBkqS4uDjl5+ff25MCbAoJCdGHH36oyMhI7zp/9UBBQYHG\njx8vh8OhiIgIRUVF6dy5c/f+pIEmNNULTaEX0N6NGjVK77//viSpW7duqq2t1ZEjRxQXFycp8NeF\nNhGgKioqFBER4V3u3r27KioqAlgR4Fvnz59XUlKSEhISlJ+fr7q6OgUHB0uSevToofLyclVWVjbo\ng4iICF25cqVBf1iWJcuyVFFRofDw8Eb7Aq1RUFCQOnbs2GDdjRs3fN4DLY0BtAZN9YIk7dq1S889\n95yWL1+u6urqRr8X0Qtob4KCgtS5c2dJ0hdffKGJEye2qutCm/kO1N/d+Wk90Jb17dtXS5YsUXx8\nvC5evKgFCxbI4/F4tzf3772l9ZZl0SdoN/zZA/QJWrsZM2YoPDxcAwcO1Pbt25WVlaXhw4c32Ide\nQHu1f/9+ffnll9qxY4emTJniXR/o60KbmIFyOp0NZpzKy8vVs2fPAFYE+I7L5VJ8fLwkqU+fPoqM\njNT169dVX18vSSorK5PL5ZLT6Wzwicjf19/uD4/H4/1y5dWrVxvs63Q67+FZAf9OaGioz3uguTHo\nDbRmo0eP1sCBAyVJjz/+uM6ePSuXy0UvoN07fPiwtm/fruzsbIWFhbWq60KbCFBjx45Vbm6uJOmX\nX36Ry+VSly5dAlwV4Bt79+5VVlaWJKmyslKVlZWaNWuW9u3bJ0nKzc1VbGyshg4dqlOnTsntdqum\npkbHjx9XdHS0xo4d6933wIEDiomJkcPh0EMPPaRjx45JkvLy8hQbGxuYEwT+gTFjxnj/3/dlD8TE\nxOjQoUPyeDwqKytTeXm5+vXrF7DzBO4mOTlZZ86ckXTru4H9+/enF9Duud1uZWZmatu2beratauk\n1nVdsEwbmbPdvHmzCgsL5XA4lJ6ergEDBgS6JMAnampqtHz5cl27dk3GGC1evFgDBw7UypUrVV9f\nr169emn9+vVyOBzKy8tTdna2goKCNH/+fE2bNk03b97U6tWr9dtvvykkJEQbNmyQy+XS+fPnlZ6e\nLmOMHn30Ua1cuTLQpwo06cSJE3rjjTdUVVUlh8Oh++67Tzt27FBaWppfeuCTTz5RTk6OLMvSsmXL\nFBMTE+CfAHBLU72QnJysrVu3KjQ0VKGhoVq3bp0iIiLoBbRrn332mbKysvTAAw94b7975513tHr1\n6lZxXWgzAQoAAAAAAq1N3MIHAAAAAK0BAQoAAAAAbCJAAQAAAIBNBCgAAAAAsIkABQAAAAA2EaAA\nAAAAwKYOgS4AANB+ZWZm6uTJk6qvr9fp06c1fPhwSdLs2bP15JNPNntcTk5Oi9t///13JSYm6sCB\nAz6vGQCAlhCgAAB+s2LFCklSaWmpEhIStHPnzrseU1paqs8//7zFACVJlmX5pEYAAP4XBCgAQEDU\n1NQoPT1dZWVl8ng8euqppzRnzhy99tprOn/+vFatWqW1a9cqPT1dFy5ckMfj0fDhw5WWltbsmLf/\nynxwcLBqamqUmpqqMWPG6L333lNZWZlKSkq0atUqdevWTWvWrFFdXZ1u3Lih1NRUjR49utnjAQC4\njQAFAAiIjz76SD169NC7776ruro6xcfHa9y4cUpOTtbWrVu1bt06VVdXa9CgQVq7dq0kacqUKZo7\nd64cDkeTY165ckXLli3TyJEjdfToUWVmZnoD0KVLl/Txxx9LkhYuXKikpCRFR0ervLxc8+bN0/ff\nf9/i8QAASAQoAECAnDx5UvPmzZMkderUSYMHD9bp06fVpUsX7z7dunVTaWmpnn76aQUHB6uqqkrV\n1dWKjIxscsyePXsqMzNTW7ZsUX19va5fv+7dNmzYMO/rgoIC1dfXe5dvj93S8QAASAQoAEArcfPm\nzUbfa8rJydGZM2e0e/duWZalmTNntjjG22+/7X1ARXFxsVJSUrzbgoODva87deqkrVu3KiwsrMHx\nS5cubfZ4AAAkHmMOALhHjDENlocNG6bDhw9Lktxut4qLizV48GBZliWPxyNJqqys1IMPPijLsnTy\n5EmVlJR4Z47uHE+Sqqqq1K9fP0nS119/3WCW6e9GjBihb775xvseGzZs+J+OBwD8/yJAAQDuiTtn\nlxYsWKDq6mo9++yzWrhwoVJSUuRyudS/f39dvnxZixYt0rRp03TkyBHNnz9f+/fvV2JiotasWaPa\n2tomn8KXmJio1NRUPf/884qJiVHnzp21adOmRvu++eab+vbbb5WQkKBXXnnF+z2n5o4HAOA2yzT1\nER4AAAAAoBFmoAAAAADAJgIUAAAAANhEgAIAAAAAmwhQAAAAAGATAQoAAAAAbCJAAQAAAIBNBCgA\nAAAAsOk/5Hwj6NucW/4AAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1QAAAHxCAYAAABqL/0pAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xtg0+Wh//FP2qQNNIW29IItUBRXHBexlFEmIojovDH9\nbXJkzG1unnmcOnWyo3iZOqd26hg/93PqONt0O85xJh63oaLzuqFC0YoIbFBFKdBCL9AWm5ImafP7\nIyQ0bdK0ae55v/4Z+Sbf5EmbQT4+z+f5Glwul0sAAAAAgCFLi/UAAAAAACBREagAAAAAIEQEKgAA\nAAAIEYEKAAAAAEJEoAIAAACAEBGoAAAAACBEMQlUVVVVWrp0qb72ta9p27ZtPvfZ7XbdcsstuvTS\nSwd9DgAAAADEQtQD1bvvvqu6ujqtWbNG9957r+677z6f+x988EGdeuqpQzoHAAAAAGIh6oFq48aN\nWrRokSRp0qRJOnLkiKxWq/f+5cuXa8GCBUM6BwAAAABiIeqBqqWlRXl5ed7bubm5amlp8d4eMWLE\nkM8BAAAAgFgwxnoALpcrYufU1NQM+bkBAAAApJaKioqQz416oCosLPSZXWpqalJBQUHYz/EYzg8H\nGIqamho+b4gaPm+IJj5viDY+c4im4U7CRH3J39y5c/Xyyy9Lknbs2KGioiKNHDnS5zEul8tnFmow\n5wAAAABAtEV9hqq8vFxTp07V0qVLlZ6erjvvvFPPPfecsrOztWjRIn3729/WwYMHdeDAAS1evFhX\nXHGFvvrVr2rKlCk+5wAAAABArMWkQ3XTTTf53J48ebL3z0888YTfc5YvXx7RMQEAAAAeLpdLXV1d\nsR4GwiwzM1MGgyGszxmTC/sCAAAA8ayrq4tAlWQi9TuN+S5/AAAAQDzKzMyU2WyO9TAQ55ihAgAA\nAIAQEagAAAAAIEQEKgAAAAAIEYEKAAAAiEOPPfaYVq1a5b3tcrl0ySWXqLa2NuA53/jGN7Rp0ybv\n7fvvv9/vLtqPPPKI6uvrvbdvvfXWkMa4a9cu1dXVhXTuQDo7O7Vw4cKA92/evFnXX3+993bv8dfX\n1+uRRx4J+5gCYVMKAAAAIA595zvf0SWXXKKvf/3rKiws1Nq1azVjxgyVlZUFPOfuu+/WTTfdpGef\nfVaffPKJ3n//ff3pT3/yeczy5cvV0tKi+vp6nXbaafr73/+uxsZG3XXXXVq4cKHmz58/6DG+8sor\nmjZtmkpLS0N+n/64XK6g25sbDAa98cYb+sc//qFdu3bp2muv1YIFC/T+++9r//792rt3rx588MGw\njssfAhUAAAAQhzIzM3XNNddo1apVuuuuu/TEE0/oD3/4gyTphhtuUGtrqyR3+MjIyNBvfvMbTZo0\nSeecc45+/etfq7q6WnfeeafS0nwXpVVVVenKK69USUmJLrvsMi1atEhXXnmlZsyYofnz5+sb3/iG\n5s6dq02bNqmtrU2PP/64xo4dq4ceekjvv/++enp6tGzZMn3+85/XmjVrlJeXpzFjxmj69OmS3DNE\nN998syZMmKAtW7Zo6dKl2rVrl7Zt26Zly5Zp2bJlqq6u1qpVq2QymTR27Fjdf//96urq0vXXXy+7\n3a6ZM2d6x/vee+95H3vCCSfoJz/5ife+s846SwcPHtTWrVtVVVWlUaNGae/evTp48KCqqqoi/SuS\nRKACAAAAgvrtuh16e2t98AcOwdwZJfrO4qkDPmbx4sV66qmndMcdd+grX/mKcnNzJUkPP/xwwHOu\nuuoqffnLX9asWbN06qmn9rv/nXfe0bXXXqt33nlH3d3devXVV/Xzn/9czz77rPcx2dnZevLJJ7Vy\n5Ur97W9/05QpU/Txxx/rj3/8o44ePaovf/nL+stf/qJ58+bpvPPO84Ypj507d+qxxx5Ta2urLrzw\nQr3xxhuy2Wy6/vrrtWzZMt1999168sknVVRUpHvvvVfr1q2TzWZTWVmZVqxYoRdffFEvvPCCJOm+\n++7T7373O40aNUoPPfSQ1q9fr6KiIu9r7d27V1VVVXrjjTd0/vnnKy0tTVdccYVqamo0e/bs4L+I\nYSJQAQAAAHHsBz/4gW6++eZBz7gcOnRIGRkZ2rVrl9+lcwsWLJAkzZkzR5J02WWXSZL+8z//0/uY\niooKSdLYsWPV1tam7du36wtf+IIkacSIETr55JO1Z8+egGOYMGGCRo0aJaPRqPz8fBUUFKizs1Of\nffaZ2tvblZaW5g1Fs2fP1ubNmyXJ+xqVlZXe97Jnzx5dd911crlcstlsysvL8wlUt9xyiyRp8uTJ\n3p9XNBGoAAAAgCC+s3hq0NmkSBk/frwKCwtlMpm8xwIt+ZOkH//4x7rjjjv05ptv6ne/+52uuOKK\nIb+m0Xg8JnhCmcvl8h6z2+39lhL2lp6e7vfPLpdLaWlp6unp8R5zOBxKS0tTd3e39zk992dkZKio\nqEi///3vfZ7fE8DiAYEKAAAAiHO9w4wUeMnfiy++qKysLM2ePVtTp07VkiVLdOGFF6qgoGBYrz99\n+nQ99thj+u53vyur1ar9+/dr4sSJMhgMcjgcA46379izs7OVlpamgwcPauzYsdq8ebNmzZql9vZ2\nbdu2Teecc453p8Ls7GwZDAbt3r1bkyZN0lNPPRWVZXxDQaACAAAA4lywHe8k6bPPPtMvfvELPfXU\nU5KkrKwsfe9731NVVZV+/vOfD+u1Zs6cqSlTpujyyy+X0+nUD3/4Q5nNZs2aNUv333+/LBaLdwlh\n3+fw93z33HOPbrrpJhmNRk2YMEEXXnihrFarrr32Wn3729/22ZTi3nvv1a233qqMjAwVFhbqsssu\n05YtWwb9fiLN4OobGZNITU2Nd/0nEGl83hBNfN4QTXzeEG3x8Jmz2WySJLPZHNNxIHwC/U6H+3nj\nwr4AAAAAECICFQAAAACEiEAFAAAAACFiUwoAAADAj66urlgPAWHU1dWlzMzMsD8vgQoAAADoIxJf\nvBFbmZmZBCoAAAAgGgwGAzv8YVDoUAEAAABAiAhUAAAAABAiAhUAAAAAhIhABQAAAAAhIlABAAAA\nQIgIVAAAAAAQIgIVAAAAAISIQAUAAAAAISJQAQAAAECICFQAAAAAECICFQAAAACEiEAFAAAAACEi\nUAEAAABAiAhUAAAAABAiAhUAAAAAhIhABQAAAAAhIlABAAAAQIgIVAAAAAAQIgIVAAAAAISIQAUA\nAAAAISJQAQAAAECICFQAAAAAECICFQAAAACEiEAFAAAAACEiUAEAAABAiAhUAAAAABAiAhUAAAAQ\nJ7q7e3So/Wish4EhMMZ6AAAAAACk/3l1l55av1OS9IvlC3Ri8egYjwiDQaACAAAAYmjrR8264/F3\nfI6NK8yO0WgwVAQqAAAAIAYOtR/VFff8zefYVZdM1+J5J8VoRAgFgQoAAACIou7uHt3yy7e0q67V\ne2z2lLG6/duzlZZmiOHIEAoCFQAAABAlX71lnezOHu/ttDSDfn/XlzTakhnDUWE4CFQAAABAhD21\n/l/6n1drfY49dP08nVKaF6MRIVwIVAAAAECEfLSvVTf933/4HCspyNLjKxbFaEQINwIVAAAAEGZd\njm5duuL5fsf//OBipadzKdhkQqACAAAAwqhvT0qSHl9xtkoKLDEaESKJQAUAAACEgb+eFNugJz8C\nFQAAADAM9KRSG4EKAAAACAE9KUgEKgAAAGDI6EnBg0AFAAAADBI9KfRFoAIAAACCoCeFQAhUAAAA\nQAD0pBAMgQoAAADwg54UBoNABQAAAPRCTwpDQaACAAAARE8KoSFQAQAAIKXRk8JwEKgAAACQsuhJ\nYbgIVAAAAEg59KQQLgQqAAAApAx6Ugg3AhUAAACSXqfNoctuf7HfcXpSGC4CFQAAAJLa4uV/6XeM\nnhTChUAFAACApOQvSF0yf5Ku/PK0GIwGyYpABQAAgKSyfuMePbp2a7/j61ZeHP3BIOkRqAAAAJAU\nOjrt+tqP1vc7/uxPL1KGKT0GI0IqIFABAAAg4flb3vejKys1e8rYGIwGqYRABQAAgITlL0gV52fp\nV7eyDTqig0AFAACAhENPCvGCQAUAAICEQU8K8YZABQAAgIRATwrxKCaBqqqqSlu3bpXBYNBtt92m\n6dOne+975513tGrVKqWnp+vMM8/UNddco82bN+uGG27Q5z73OblcLk2ePFl33HFHLIYOAACAKKMn\nhXgW9UD17rvvqq6uTmvWrNHu3bt1++23a82aNd7777vvPv32t79VYWGhLr/8cn3pS1+SJM2ePVsP\nP/xwtIcLAACAGKEnhUQQ9UC1ceNGLVrk/q8JkyZN0pEjR2S1WpWVlaV9+/YpJydHRUVFkqT58+dr\n06ZN3pkpAAAAJL+j9h6/s1L0pBCPoh6oWlpaNG3aNO/t3NxctbS0KCsrSy0tLcrLy/Pel5eXp337\n9ulzn/ucdu/erWuuuUbt7e269tprdfrpp0d76AAAAIgwelJINDHflGKgmSfPfRMnTtR1112n888/\nX/v27dM3v/lNvfLKKzIaYz58AAAAhAE9KSSqqCeSwsJCtbS0eG83NTWpoKDAe19zc7P3vsbGRhUW\nFqqwsFDnn3++JGn8+PHKz89XY2OjSkpKgr5eTU1NmN8BEBifN0QTnzdEE583RMp7H3Xo+Xfb+h2/\ne9k4SXz2EP+iHqjmzp2rRx55RP/2b/+mHTt2qKioSCNHjpQklZSUyGq1qqGhQYWFhXrzzTe1cuVK\nrVu3TnV1dbruuut06NAhHT582NuzCqaioiKSbwfwqqmp4fOGqOHzhmji84ZIGOh6Uts+/IDPHKJm\nuKE96oGqvLxcU6dO1dKlS5Wenq4777xTzz33nLKzs7Vo0SLddddduummmyRJF110kUpLS5Wfn6/l\ny5fra1/7mlwul+6++26W+wEAACQoelJIJjFJJZ7A5DF58mTvn2fNmuWzjbokZWVl6fHHH4/K2AAA\nABAZ9KSQjJjmAQAAQERxPSkkMwIVAAAAImKgnhTXk0KyIFABAAAg7OhJIVUQqAAAABA29KSQaghU\nAAAAGDZ6UkhVBCoAAACEjJ4UUh2BCgAAACGhJwUQqAAAADBE9KSA4whUAAAAGBR6UkB/BCoAAAAM\niJ4UEBiBCgAAAAHRkwIGRqACAABAP/SkgMEhUAEAAMCLnhQwNAQqAAAA0JMCQkSgAgAASHH0pIDQ\nEagAAABSFD0pYPgIVAAAACnmuTc/1m/X7eh3nJ4UMHQEKgAAgBRxxGrX1++kJwWEE4EKAAAgBfjt\nSX2nUrOn0pMChoNABQAAkMT8BanMjHStrbooBqMBkg+BCgAAIAn97xsf64nn6UkBkUagAgAASCL0\npIDoIlABAAAkCX/L+2755iydMaMkBqMBUgOBCgAAIMHRkwJih0AFAACQoOhJAbFHoAIAAEgw9KSA\n+EGgAgAASCD0pID4QqACAABIAPSkgPhEoAIAAIhjT7+8U3/8265+x+lJAfGBQAUAABCH2ju6dPld\nL/U7Tk8qedntDlVXN6mjwyiLxanKykJlZJhiPSwEQaACAACIM/6W9938jVmadxo9qWRWXd2ktjb3\n77itTaqurte8efzO4x2BCgAAIE74C1ISy/tSRUeHccDbiE/8lgAAAGKMnhQkyWJxqq3N9zbiH4EK\nAAAgRgL1pNb+9CJl0pMKq0ToJ1VWFqq6ut5njIh/BCoAAIAY8Le878al5Tr7CxNiMJrklwj9pIwM\nU9yNCcERqAAAAKKInlRs0E9CpPBJAgAAiAJ6UrFFPwmRQqACAACIIHpS8YF+EiKFQAUAABAh9KTi\nB/0kRAqBCgAAIMzoSQGpg0AFAAAQJvSkYisRtkZH8iFQAQAADBM9qfgQ663RCXSpiUAFAAAwDPSk\nIm+wQSXWW6PHOtAhNghUAAAAIaAnFb0ZmcEGlVhvjR7rQIfY4LcMAAAwBPSkjgvHjIy/UNbXYINK\nrLdGH0ygY1lg8iFQAQAADAI9qf7CMSPjCWUOh0M1NfV6+unNMpna1N6+R2ecUaKMDNOgZ55ivTX6\nYAIdywKTD4EKAAAgCHpS/oVjiZ0nhNXWNumjj7Jlt89QVtYRbd7sksnUpHnzSgY98xTO2Z9Qnmsw\ngY5lgcmH3yAAAEAA9KQGFsoSu75BJTPTIadTstmMstvTlJHRI8l9u6PDfc5gZ57COfsTqZmkWPe8\nEH4EKgAAgD7oSQ1OKEvsqqub1NxcpNradtlsGcrJ+VinniplZX2mUaNGKi9vopqbO2Q2O2WxDG08\n4Zz9idRMUqx7Xgg/AhUAAMAx9KQir6PDqNradlmtYyRJbW0TZDI5dcMNp+itt+pVU/MvWa11mj17\nqiorhxbW+s7+ZGYe1YYN9SEtAYzUTFKse14IPwIVAACAUqsnFcud5iwWp2y2DO9ts9mpjg6jMjJM\nWrhwohYulGpqulRRMXHIz9139sfhUMjL9phJwmARqAAAQEpLhp7UUANSuPtBQ3n9yspCbd26XS0t\ndpnNTpWVFcpiaQr5tXvrO/uzfn2jz/1DWbbHTBIGi0AFAABSUjL1pIYakAL1g0KduQr2+n2fd9my\nk/T005+otdWshoYmnXvu5CG/58FgAwhEA4EKAACklGTsSQ11A4VAQSPUmatgr9/3eZ9+eotKS8tV\nWuq+f8uWes2bNzLo6wwVy/YQDQQqAACQMpK1JzXUmZhAQSPUne2CvX7f52ltNau0VHI4HKqtbZLD\nccQ7rnB2uVi2h2ggUAEAgKSXDD2pgYRrJibUJXLBXr/v8+bm2iS5L+bb3j5Whw/b9NprI7V163Zd\nddW0kMYOxAqBCgAAJK1470mFa7e9oc7EBFraV16eqyef3KLWVrNyc20666zJAcfpeZ7BbkTRO3Cd\nddZkbdlSL4fjiA4ftikvr1Td3Ua1tNhVXd2kkeFf/QdEDIEKAAAknUTpSYV7t73BCrS0b8uWVr/d\nprfeqtfmzdmy2dJkNhvlcNTLZDL5HXugkNj3fXk6U6+9NlLd3e7X92yhTqBCIiFQAQCApBLpnlS4\nZpXsdoc2bWqV1TpSRqNdkuRy+XaJ7HbHsYvdfqbu7h6ZzXaddNIJys01DOt1d+9uUEuLvNuW5+S4\nl/YFClo1NR2yWidKkqxWqabmgKZNK/D72KGExEhuoQ5EC4EKAAAkhUA9qWsWzVGGzSm73RGWDQ+q\nq5vU3Fyo2tom2WxGb+/H33N7wldbm1RX16QJEwq8Yai6uknd3bnq7s7Vp58ekmTS5z8/Sm1tJd4Q\nUl3dpM2bTbJap2vvXvdjbLbPNHVqScizWW+9Va+2tmLV1R2VZJDZ/IEuuug0SQN1qFx9nsUV8LFD\n2dgiI8Okq66a1iugNqmyslDbth0c8vsCYoVABQAAElqgntQPLpyhzZtNqq6WzGbJ4ajXwoUTh/16\nHR1G1dY2yWp1h5mWlgxVVzf5DTee2ZodOw7Jai1XR0e9Nwx1dBhVVpan2tp6OZ1HZDT2yGYbrf/9\n3z1KS2uUw+FQR4dRNps7qNntaZLSZLMZveMIRU1Nh7q6JmrcOPdth+MzbxgMtLlERUW2Nm+ul81m\nlNnsVEVFdsDHDnVjC3biQ6IjUAEAgIQUrCf10EPbZLVOl+RZprZNCxcO/3UtFqc31EiS2dwTMNx4\njttsacf+1yiHw6FNmw5LMqi7273Mzel0aPPmI6qv71ZPT7aKi6XNm7NlseyV2Vwoq1XKyOiR1COz\n2ekdR2jcs01Op1MNDe0ymdq0YUN9wK6TJJ1xRolMpiZ1dEgWi1RZWRLwsVz7CamGQAUAABLO4HpS\nhj6P6Ht7cPp2psrLc7V16y61tGTIbO5RWdloWSyNfs/Zvr1V3d1OGY3p6u52d5Zqa5skFausbLRq\na9u1e/dOWSxHlZMzUu3tDqWnu7cUt9nSNHVqobKyHKqp2abPf/54hyonpz7koOKZbdq1q1VSriZO\nPFltbWMHXELoLzwF6pIx44RUQ6ACAAAJYyjXk6qosGjz5kPHdqbrUUWFJaTX9Czbczic2rq1XZs2\n7VZFRa6kdnV1jZDF0tgv3Hh2xevoGKvm5naNH9+qoqIDmjChQLt2tWnSpFNkMhk1deoYGY3umSab\nzSiDQbLZxqi7u1Fmc49ycqR58ybqjDPCsxGGdHy2yeFIl8lkVlnZaElDX0IYqx0KgXhDoAIAAHEv\nlOtJHV+m5gkhoX3Zb2116Z//rNeuXZ3q6Rmp8eNzZbWOU05OvRYuLPJ7jmdXPINBKizMV2bmdl13\nnfuCtRs2GNTWdvwrmMXilMPhkNM5Qi5Xh44cOagJE5o1e/ZE75jDGV56zyC1tY3xGcdQDGXzCSCZ\n8ckHAABxazjXkxrs0rPeS9cyM49K0rGZJ/dM0N69zbJay2Wzdainx6Lm5i2SxgUJEP13xfPw1zF6\n6616GY1OnXSSRVOmmDV7dpbPBhqRCC/D7ToNdfMJIFkRqAAAgF+eoLFlS6c6O+t9ro0UruswDfQ8\noV5Paijjs9sdWr16u1paimU2O+V0SkZjtqZOHeOdCSotLVRHxyGZzR1yOKw6ejRNNTWNys9vkN2e\n5/e5++6Kd+qpZm3YUB9wTF1dI47t+Ofeir2m5rDOOOP4Nu+RCC/D7Tqx+QTgRqACACBFBQsenmVm\n3d1H+10baTjLzzyvu2lTq7q7c1VWlien0+R9nqH0pPxxXyeqSLW17bLZMnyuE9X3PTscDrW0TFR3\nd66sVmn//u0qLR3tfa6ODqNycpyaOnWMyspG6+WX62S3Z8hsNqq4eLqqqxu97913pkuaPduhri6j\nMjMd+vDDNrW15R/bxGKMz3mSOyBt3Xp8K/bubqPPVuzxGF7YfAJwI1ABAJCiggWjQMvMhrv8zPO6\nVutIdXfnqrbWfW2m17ce0IN/fq/f469acLFycuoH/fzu60S1y2p194NaWuzecNL3Pe/cuU1mc7as\nVs/ZLpnNPd7n8oQXT5g5+eTOYxtKmPq9997P7XTK27HasKFebW0TvKGttvaQRozw/ZlVVhZq06Zd\nSk8f6d05sKPj+CwU4QWIXwQqAABSkN3uvhaS1epeklZWVtgvGAVaZjac5We9X/fAgRbl5Vn0WadL\nq9/sPyv1jTnnaYQ5U9Lx4OKZBWprk+rqmjRhQoFycw0+s2vu60RlSJKcToeamhr05ptmSe4NJgw+\nu6cbjm1ffujYNuWfyWj8RB980KTcXJvOOmuyT5hxv/fjs3i93/tAAdRsdnpDm82W5j2v96zWiBEO\nTZpk8YY1OklAYkiL9QAAAED0VVc3qbu7WN3dRbJaS1Rb29TvC3xlZaFycuqVnn7A57pH5eW5qqvb\nog8++Jfq6raovDzX5zy73aENG+q1fn2jNmyol93u8Pu6eXmnaLv9RX1orfE5/3PZn1P+4TK99up+\nORy+F7H1LOd7/nmb3n57ol54oVnNzYWqrm7yGXd+/h6lpzfq8OHtysubLpOpUG1tJdq7t9nntSoq\nLCooaNSMGU6dfXanZs4s1qRJX9DUqZ9TR8cEPfbYbp/34PmZGI2N/a4F1ffn1zuAlpUVKiurXunp\njcrP3+M9zzOr5XQWqbh4uhoatvt9bgDxixkqAABSUEeH0WdmJj29VZWVk30e45mZGTnyoCoqji83\n27KlVaWl5Sot9dyu17x5I733D7SU0PO6T7ztvydV3DFNWSMnKXOsQwcP7lRt7Q5ZLD1yuQqOLZ2T\namvbdeRIkXp6LDpyxK7a2iafJXQZGSZdddU0VVc36c03zTKZ2r3XWiotdQei3lupe2a27HaHfv7z\nf2rXrj06eNCqMWOKNXFinrc/5l76579zZrc75HA4tHPndkkuVVRke7c895w3YoTnvGne8zo6jHI4\nnMf6XmnKyjLp7LN9N7oI1yYgACKDQAUAQBIK9iXcYnHK6XRfWFaScnI6A+7g11ewDlXf262tLu8O\ndy+/90/tbjvS7zmvWnCxduyo17aDPSoslIxGkyZPzlN6+mGVls6QpGPL/LbIZpuojIwe2WxSRoZT\nNpux3+xQoGstuS+U67+LVF3dpE8/7VFn50RZra3q6spUVlaDpBJ1dBgHDIrV1U2yWifqlFPcz2Uy\n1Xt/3gP1n9ybURzve3V3d/psRuF5bi6gC8QvAhUAAEko0JdwT2BqbXVp794tx2Zs5A1Ob71Vr82b\ns2WzpclsNsrhqNfo0b7PHaxDZbE41dzs8G4B3tb2kWZ/8Qv64+bX+o3z++dNV5ftJElSWVmhDh58\nSy5Xmpqbm1RQUKBDh9o0aZLD2yuaMKFA0h45nYVqbt6ngoIC5efXq7Jymt+fw1B2x+voMKqgoEA2\nW70yMlolZaqgoMD7ngYKjqFu1OHejGKn0tOdvbpshwd8Li6gC8QX/h8JAECCGcwSsLY2aceOQ8eC\nUY+mTnUf9wQtg0EqLR2nnBzf2Y6amg5ZrRMlSVarVFNzQPPmOX2uoVRenqstWwKHlMrKQq1evV02\n20SZzT3anX5Eu/uEKc/1pNzvpd67Pfm991bqySd3yWh0n2s2l6m2tklTp7rHmJtr0HnnTTv2/vNl\nsTh8ltD5+9kMdjbHYnHKYjFowoQSFRcX6vDhWo0e3aScHId32V6gIBnqRh0ZGSbNmZOntraigOdy\nAV0gvhGoAABIMJ5Q5HC4l4tt2rRTc+bk+QSruromWa3lktzBqK5uizxL1xyO47NHWVmH+wQylyT3\n7ngNDU0yGjvU0tKoysqZMplMamtzd6Z694mqq5t8niMjw6RJk4r18qf/kD7rP/4fXDhDC49dnNff\ncrhJk4pVWure6MLhcGr37p0yGn3D40DL9gJdgyqYyspCORz1qqnZJsmgc86x6IwzjnesBprtGs51\nooKdG4/XoAJwHIEKAIAE41ny5bnWUnq6U21tRd5lfR0dnfrww1Z9+ukmmUwOzZ499thSueMXkG1v\nH6uGBqvS0rK1evXx0FFRka3Nm+u1a9dhScU68cQTtXdvts8sUbA+0dMv79QfX93Vb9wV2Wceu8aT\nn5TVi3vJ4PGNGvLzHf02ahjoZxPoGlTBZGSYtHDhRC1cGPj+QM8znOtEBTuXa1AB8Y1ABQBAgvEs\nAbPZ3Fclt5i4AAAgAElEQVQ/MZvdS8A8QevJJ3epq2uW8vJGSZIOHNii3Fz3LnyeC8gePOiUZNHY\nsePU0jLCGzrOOKNEJlOTHA6jDAbnsfM75XBkqKzMKZPJGLBP1N7RpcvveqnfeOcWTVTZyVO8Paiu\nLueAyxbdSwa3yWYrltnsVHHxtEGHot7XoPL8bOgcAYgk/oYBACDBeJaAZWW1qru7U2Vl7iVgnm5N\na6tZxcVZamg4Irs9TU6n3btMzN3ZyZXVOlJdXdlqaGhXWlqTNm1Sv+V0f/+79NFHRh09OkqHDu1X\nbW2n5s7N99snevTVTXr0Vd9xenpS7u3OfXcYHGiGy7NksLT0eK+odygKFsa2bt2ulha7d5MHi+X4\nNariAdugA8mFQAUASFmBtgiP1JfdoXyRHuixntBzvMd02Gf8ubk2dXYef67s7E6f53U4HGps3K5P\nPulRT0+WcnPH6uOP2/XWW/VauHCiJHcwefrpjbLbJ8tsPqqpU89QevpOb+jxhLoH//ye3/GvW3mx\n98/+OkCvvTbwTnYDbcQQLIx5rkHlfr2muOscsQ06kFwIVACAlOXvi637z6F/2R0oCA3li/RAj/V9\nDfXrF11xxWTdccc/5HSO1ahRNn3xi5XeJXOe6yWdc844/frX76m7e7xGjBihvLwTVFPzT29/KCPD\npJNOytORI0U6cKBbRqNJksH7Gmvf2K0//q1/T6p3kPLw1wEKtnPdQBsxBNtGPN47R2yDDiSXmPw/\nuKqqSlu3bpXBYNBtt92m6dOne+975513tGrVKqWnp+vMM8/UNddcE/QcAABCMZgvtoG+7AYKTgMF\nIc9zeXbZczjcF7j1N1M10NiCBTOLZaS+9KUpcjp7L5n7zOd5TCajioosstmyNGGC5dijDN739tZb\n9froo8Pav/89SQ5NnJiuigpLwJ7U2p9epExTut+flT/Bdq4LdjHcRN5GPNHHD8BX1APVu+++q7q6\nOq1Zs0a7d+/W7bffrjVr1njvv++++/Tb3/5WhYWFuvzyy/WlL31Jhw8fHvAcAABCEeiL7WC+7Lq3\n5y70bj/u2Z57oCDkeb3a2iZZrSXKyjKrrW2M35mqgb50DyYI9j7f4XCorq5B69dLu3c3qLg4TyaT\nSZMmWbRvX6PS0x0ym3tUUWHxvrd33hmhzs7Jsttt6uzcKoslXateOCC9sNXndW5cWq55M05Q9aaD\nQ1omOZxZpETfRjzRxw/AV9QD1caNG7Vo0SJJ0qRJk3TkyBFZrVZlZWVp3759ysnJUVGR+7+ozZ8/\nXxs3btThw4cDngMAQCg8XaKdO7dLcqmiIluVle4v+L2/7JaX5/pc1NYTFtzbc7uDkSQ1Nhq1evV2\nHT1qVHe3UWVlo7074nl4vkg7HEeUlWVWWdloSe5A1HfGq/fFczMzj8rhkNavb5TF4lRmpkPOXjnP\nX+jr/aW9rq5BxcXT5XQaVVw8Rg0N2zRpUrFOP12S0tXVZT/23o7PpO3efVQOx0SNGSONmPGBXtt3\noN9reJb3uTediF4nKN6X9AWT6OMH4CvqgaqlpUXTpk3z3s7NzVVLS4uysrLU0tKivLw87315eXna\nt2+fWltbA54DAEAgwfpMVutEnXKK+7EmU733vt5fdgOFBff23Mf/GW1qalN6erFOPTVPtbVN2r37\ngObMyfWZfej9RbqtbYz3uGfXO98L0u7yXhuq7xiysvYoJ2fgGY7er7V+veR0Hl/qN2lSsc4/v6jf\nOb3HIxlkH7VTzlHBe1J0ggCkspj/jedyuYZ830Dn9FVTUzPkMQGh4vOGaOLzFtyWLW367LNS7+1d\nu/6h8vKcY/d1qrv7qPe+9PQDGjnyoPe2w+HU9u0deu89l0ym/ZowYZSMRpP3cSaTU0ePHlRr68nK\nzHSqq6tH27btVn19vsxmh048sVMjR3Zp27bjz+lhMjnV2LhTnZ0ZGjnSroICizZvtuujj1p09Kj7\nArz19S79/vfu8fob69y5IzXSfWkpv6/RW319mz777PjFdLOz61RTsz/g4+09drXk9d9q/PZ/K5HJ\naOj32Rvq8wODwd9xSBRRD1SFhYVqaWnx3m5qalJBQYH3vubmZu99jY2NKiwslMlkCnhOMBUVFWEa\nOTCwmpoaPm+ImkT/vA1m+/BwXKunqanRZ2MGozFbFRXu252dx2d9JCknZ4QqKnxnpoqKSjRx4iFZ\nrWPU3V2vU04p8T7Obneos7NeNTUdktJUV9ekE044S0ajSU6nU3v3blBT07iAY58zx3esDke9Dh8e\nqe7uXElSVpZLJSUlqqgoCjrWYKZPd/8sW1td2ru3WUVFp6iz0/9mGIuX/6Xf+eUnZOqO688O+PP3\nPP/x39WZXFcJw5Lof8chsQw3vKeFaRyDNnfuXL388suSpB07dqioqEgjj/0ntpKSElmtVjU0NMjp\ndOrNN9/UGWecMeA5AIDE49mlzuksUlubeyvvUB4TTN9uUd8+U05OvYzGRuXk1PdbNudZtlZWNlpZ\nWYdks7Wqrm6LWltd2rChXm+9VX9syeA0nXLKdI0bl6/Ro48oPb1Vhw/XyWIpG9LYKysLlZ+/R+np\njcrKqj92QVrnoMYajGf5X26uQaWl5ZJK+o1r8fK/+A1T61ZerIvPKhgwIHme//zzizRvXglhCkBK\nifoMVXl5uaZOnaqlS5cqPT1dd955p5577jllZ2dr0aJFuuuuu3TTTTdJki666CKVlpaqtLS03zkA\ngMQVynblofRyBtpNLdjGAJ5d8kwmo6ZOHaO6ur3Hwoi7x7Rz53Zv/0qS0tNNOuUUdy+qpkYym49f\nTHcwYw90QdpwzNQFGkdHh1FPv7xz0NeTAgD0F5MOlScweUyePNn751mzZvndEr3vOQCAxGS3O7R7\nd4NaWiSz2amyskLl5PTfpS4c1+rpG5rsdoffHfv8hZa+Yczl6rvU3LfPW1Fhkcnkfnx+foOKi49v\npjTYsfsLeeHcQa/3z/SovUv//eamfo8Z6vWkACDVxXxTCgBAaqmublJx8XR1dLh3s2to2K6LLprW\n73GeQNPWJtXVNcnlKtCGDfXDmqEJdEHcQMf77/Z3/LkqKrK9Acqz5bhnXHZ7Xr8t0P0FucEI5w56\nnp/pg39+r999Ny4t19lfmBDycwNAqiJQAQCiqqPD6F1GJ0lGo91vuPDM1mzYUC/p+FK73jM0Q10O\nFyicDCa09F8+GLgr1HemaTizTOGYqfP46q0v+j3O8j4ACB2BCgAQVUMNCAOFnd4zS83NTq1e7b5g\nbaBwFei1BzOm4VyMdTizTAP1wAaLnhQARA6BCgAw6JmecGyQMNSAMFDY6R1M3BfELVZpaVHAWaBA\nrx2O0BLqewhmOEGuvaNLl9/1Ur/j9KQAIHwIVACAgB2iUB83kKEGhIHCTu+gYrOlyWz2H7aCvfZw\nQstgRDqw+eNvC3R6UgAQfgQqAMCgl6SFc4OEwRoo7PQOKqHurBcNkQ5svfkLUhLL+wAgUghUAIBB\nL0kL5wYJ4dA7qPTdWS8as0DxhJ4UAMQGgQoAEkDf7pLJFN4gM9CStN6vnZnpUFbWHnV1jYi70BLN\nWaB4Qk8KAGKLQAUACaBvd6mxcafmzAnf8w8URnq/ttMp5eTUa+HCovC9OEJGTwoAYm9Qgaq2tlYf\nf/yxDAaDJk+erJNOOinS4wKApDeUHfM6OoxyOByqrW2SzWbU4cM22e2OkC9wO9TXHug2oo+eFADE\nj6D/Kj7wwAN67bXXNG3aNLlcLq1cuVIXXXSRbrzxxmiMDwASVrDQMpQd8ywWp7ZubZLV6r7f5Rqn\n6uqmkJe4DfW146k3lcroSQFA/AkaqKqrq/XCCy/IZHJ/CbDb7Vq6dCmBCgCCCBZahjLzU1lZqE2b\ndik9faTM5h6NGmUe1kzRUF87mlt+Bwqi4bgGVqKiJwUA8Svov8b5+fkyGo8/zGQyady4cREdFAAk\ng2ChZSgzPxkZJs2Zk6u2tlxJ0scftw5rpmiorx3NzR4CBdFwXAMrEdGTAoD4FjRQ5ebm6qtf/arm\nzJkjl8uld999VxMmTNDDDz8sSbrhhhsiPkgA8S8ZZw+G+56ChZahzvz0fnx2dp0qK88c0vsZzmtH\nU6AgmmpdLnpSAJAYgv5rNH78eI0fP957e8GCBZEcD4AElYyzB8N9T8FCy1Bnfno/vqZm/7ACazxv\nMR4oiKZKl4ueFAAkloCBqqenR5J0zTXX+L0/LS0tMiMCkJCScfZguO8pnkNLPAsURON5Vi0c6EkB\nQGIK+O1gypQpMhgM/Y67XC4ZDAb961//iujAACSWZJw9SMb3lAgCBdFkDqj0pAAgcQUMVDt37gx4\nkmf2CgA8knH2IBnfE+ILPSkASHxB16/ccMMNuueeezR69GhJ0p49e7RixQqtWbMm4oMDkDiGOnuQ\nCJtYJPOMCGKLnhQAJI+ggWr+/Pm6/PLLdeONN6qhoUF/+tOftGLFimiMDUgKiRAcYiEZN7GIBT5f\niYWeFAAkn6CB6itf+YpmzZqlJUuWKCcnR2vXrlV2dnY0xgYkBYKDf8m4iUUs8PlKHPSkACA5Bf0G\ns27dOq1evVo/+tGP1NTUpG9961u6/fbbVVFREY3xAQmP4OBfZuZRbd16SDZbmszmHs2efTTWQ0pI\nfL7iHz0pAEhuQf/lXb9+vZ544gnl5+dLcl+H6rbbbqNDBQwSO8UNxCb3X0P8TELF5yt+0ZMCgNQQ\nNFA9+uijPrdPOukk/fGPf4zYgIBkw05x/nV1jdDUqUW9bjfGcDSJi89X/KEnBQCpJaS1If6uTwXA\nP3aK84+ZlfDg8xVf6EkBQOphsT2AmGBmBcmEnhQApC4CFYCYYGYFyYCeFAAgYKA65ZRTAi7tS09P\n1/bt2yM2KAAA4hk9KQCAR8BAtWPHDrlcLj3++OOaPHmy5syZo+7ubr3zzjv69NNPozlGACmIC9Yi\nXtGTAgD0FjBQpae7/wtbdXW1rrvuOu/xCy64QP/+7/8e+ZEBSGlcsBbxhp4UAMCfoB2qo0ePas2a\nNaqoqFBaWpref/99HT58OBpjA5DCuGAt4gU9KQDAQIJ+Q3nooYf0yCOP6A9/+IMk6eSTT9YDDzwQ\n8YEBSG1sq45YoycFABiMoIHqxBNP1EMPPaSWlhYVFrKtMYDoYFt1xBI9KQDAYAUNVBs3btTtt9+u\njIwMvfTSS7r//vv1xS9+UWeddVY0xgcgRbGtOmKBnhQAYKjSgj1g1apV+tOf/qSCggJJ0tVXX63H\nHnss4gMDACBann55p98wtW7lxYQpAMCAgs5QjRw5Uvn5+d7beXl5MpnYuhgAkPjoSQEAhitooDKb\nzdq8ebMkqb29XS+88IIyMzMjPjAAACKJnhQAIByCBqq77rpLd999t7Zt26Zzzz1XM2fO1E9+8pNo\njA0AgLCjJwUACKeggWrv3r361a9+5XPs1VdfVUkJZXEAQOLgelIAgEgIGKj279+vffv26YEHHtCK\nFSvkcrkkSU6nU/fff78WLVoUtUECABAqelIAgEgKGKiam5v14osvqr6+Xr/85S+9x9PS0rR06dKo\nDA4AgOGgJwUAiLSAgaq8vFzl5eWaP3++zj77bBkMBknuGSqjMehKQQAAYoaeFAAgWoJeh8rpdOp7\n3/ue9/ayZcv00kv9l04AABBrXE8KABBtQaeannzySf3Xf/2X9/ZvfvMbXXnllTrvvPMiOjAAAAaL\nnhQAIFaCBiqXy6Xs7Gzv7ezsbKWlBZ3YAgAgKuhJAQBiKWigmjZtmm688UbNnj1bLpdLGzZs0LRp\n06IxNgAAAqInBQCIB0ED1R133KG//vWv+vDDD2UwGLR48WKdf/750RgbAAD9cD0pAEA8CRiompqa\nVFhYqP3792vmzJmaOXOm9776+nqNHz8+KgMEAECiJwUAiE8BA9UDDzyglStX6lvf+la/+wwGg157\n7bWIDgwAAA96UgCAeBUwUK1cuVKS9Prrr0dtMAAA9EZPCgAQ7wIGqltvvXXAE6uqqsI+GAAAJHpS\nAIDEETBQeTpTH3zwgVpbW1VZWamenh5t3LhR48aNi9oAAQCpg54UACDRBAxUS5YskSS98sorWr16\ntff4FVdcoWuvvTbyIwMApBR6UgCARBR02/QDBw7oyJEjGjVqlCTJarVq3759ER8YACA10JMCACSy\noIFq6dKlOuecczRu3DgZDAbt379fV199dTTGBgBIYvSkAADJIGig+vrXv66LL75YdXV1crlcmjBh\ngne2CgCAoaInBQBIJkEDVXt7ux5//HE1NzfrZz/7mV5//XWddtppysvLi8b4AABJhJ4UACDZpAV7\nwB133KETTjhB+/fvlyTZ7XbdcsstER8YACB5LF7+F79hat3KiwlTAICEFnSG6vDhw/rmN7+pV155\nRZJ03nnn6Q9/+EPEB4bkZ7c7VF3dpI4OoywWpyorC5WRYYr1sACEET0pAECyCxqoJMnhcMhgMEiS\nWlpa1NnZGdFBITVUVzepra1EktTWJlVX12vevJIYjwpAONCTAgCkikFtSnHppZequblZV199tbZt\n26bbb789GmNDkuvoMA54G0Bi8re074bLyrVoNkv7AADJJ+g32AsuuEAzZ87Uli1blJGRoXvuuUeF\nhYXRGBuSnMXiVFub720AiYvrSQEAUlHQQHX99dfrF7/4hc4///xojAcppLKyUNXV9T4dKgCJh54U\nACCVBQ1UEyZM0Nq1a1VeXq6MjAzv8fHjx0d0YEh+GRkmOlNAAgvUk3qm6kKZM1jCCwBIDUH/xXvx\nxRf7HTMYDHrttdciMiAAQPyjJwUAgFvQQPX6669HYxwAgARATwoAAF8BA1VHR4ceffRRffLJJ/rC\nF76gb33rWzIaWcIBAKmInhQAAP6lBbrj7rvvliRddtll+vjjj/XII49Ea0wAgDjR3tGlxcv/0i9M\nPVN1IWEKAAANMENVX1+vn/3sZ5KkM888U1dccUW0xgQAiAP0pAAACC5goOq9vC89navaA0CqoCcF\nAMDgBQxUBoNhwNsAgORCTwoAgKELGKi2bNmiBQsWeG8fOnRICxYskMvlksFg0JtvvhmF4QEAIo3r\nSQEAELqA/1K+9FL/f1wBAMmFnhQAAMMTMFCVlJREcxwAgCiiJwUAQHiwlgMAUsj6jXv06Nqt/Y4T\npAAACA2BCgBSQEenXV/70fp+x5/96UXKMLGTKwAAoSJQAUCS87e870ffqdTsqWNjMBoAAJILgQoA\nkpS/IFWcn6Vf3booBqMBACA5EagAIMnQkwIAIHoIVACQJOhJAQAQfVEPVE6nUytWrFBDQ4PS09NV\nVVWlcePG+Tzmr3/9q37/+98rPT1dS5Ys0aWXXqrnnntODz/8sCZMcF8bZe7cufqP//iPaA8fAOIS\nPSkAAGIj6oHq+eef1+jRo/Wzn/1Mb7/9tlauXKlVq1Z57z969KgeffRRPfvsszIajbr00kt17rnn\nSpIuuOAC3XzzzdEeMgDELXpSAADEVtQD1caNG3XJJZdIkk4//XTddtttPvdv3bpVp556qrKysiRJ\nM2fO1Pvvvy9Jcrlc0R0sAMSp9z7q0N1P9w9T9KQAAIiuqAeqlpYW5eXlSZIMBoPS0tLkdDplNBr7\n3S9JeXl5am5ultFo1Lvvvqvvfve7cjqduvnmm/X5z38+2sMHgJiiJwUAQHyJaKB65plntHbtWhkM\nBknuGaYPP/zQ5zE9PT0DPodnVuq0005TXl6e5s+frw8++EA333yz1q1bF3QMNTU1IY4eGDo+b4ik\nu5/e3+/Y184co8njRmjbhx/EYERIJfz9hmjjM4dEEdFAtWTJEi1ZssTn2K233qqWlhZNnjxZTqfT\nPQjj8WEUFhaqubnZe7uxsVHl5eU68cQTdeKJJ0pyh6vW1la5XC5vWAukoqIiXG8HGFBNTQ2fN0SE\nv55UXrZRv7v7whiMBqmIv98QbXzmEE3DDe9pYRrHoM2dO1cvvfSSJOn1119XZWWlz/0zZszQ9u3b\n1dHRIavVqi1btqiiokK//vWv9cwzz0iSPv74Y+Xl5QUNUwCQyNZv3OM3TK1bebGuX8zufQAAxIOo\nd6guuOACvf3221q2bJkyMzP105/+VJK0evVqVVZWasaMGVq+fLm+853vKC0tTd///vdlsVi0ePFi\n/fCHP9Rf//pX9fT06L777ov20AEgKuhJAQCQOKIeqNLS0lRVVdXv+FVXXeX987nnnuvdKt2jqKhI\n//3f/x3x8QFALHE9KQAAEkvUAxUAoD+uJwUAQGIiUAFADK3fuEePrt3a7zjXkwIAIDEQqAAgBuhJ\nAQCQHAhUABBl9KQAAEgeBCoAiBJ6UgAAJB8CFQBEGD0pAACSF4EKACKEnhQAAMmPQAUAEUBPCgCA\n1ECgAoAwoicFAEBqIVABQBjQkwIAIDURqABgGOhJAQCQ2ghUABAielIAAIBABQBDRE8KAAB4EKgA\nYJDoSQEAgL4IVAAQBD0pAAAQCIEKAAZATwoAAAyEQAUAftCTAgAAg0GgAoBe6EkBAIChIFABgOhJ\nAQCA0BCoAKQ8elIAACBUBCoAKYueFAAAGC4CFYCUQ08KAACEC4EKQMqgJwUAAMKNQAUgJdCTAgAA\nkUCgApDU6EkBAIBIIlABSEr0pAAAQDQQqAAkFXpSAAAgmghUAJIGPSkAABBtBCoACY+eFAAAiBUC\nFYCERU8KAADEGoEKQMKhJwUAAOIFgQpAQqEnBQAA4gmBCkBCoCcFAADiEYEKQFyjJwUAAOIZgQpA\nXKInBQAAEgGBCkDcoScFAAASBYEKQNzwF6ROyM/SanpSAAAgThGoAMQcPSkAAJCoCFQAYoaeFAAA\nSHQEKgAxQU8KAAAkAwIVgKi6+f9t0L/2HPY5xvWkAABAoiJQAYiKzTsO6ie/re53nJ4UAABIZAQq\nABHVaXPosttf7Hf8fx9YLJMxLQYjAgAACB8CFYCI8deTeuj783TKxLwYjAYAACD8CFQAws5fT2rB\nzHFa/vWKGI0IAAAgMghUAMJmxyeHtOKXb/U7Tk8KAAAkKwIVgGHrcnTr0hXP9ztOTwoAACQ7AhWA\nYfnqLetkd/b4HKMnBQAAUgWBCkBInlr/L/3Pq7U+x666ZLoWzzspRiMCAACIPgIVgCH5aF+rbvq/\n//A5VlJg0eMrzo7RiAAAAGKHQAVgUAL1pP784GKlp9OTAgAAqYlABSAofz2px1ecrZICS4xGBAAA\nEB8IVAACoicFAAAwMAIVgH7oSQEAAAwOgQqAFz0pAACAoSFQAZBETwoAACAUBCogxdGTAgAACB2B\nCkhR/ntSWXp8xaIYjQgAACDxEKiAFENPCgAAIHwIVEAKoScFAAAQXgQqIAXQkwIAAIgMAhWQxOhJ\nAQAARBaBCkhC9KQAAACig0AFJBl6UgAAANFDoAKSBD0pAACA6CNQAQmOnhQAAEDsEKiABEVPCgAA\nIPYIVEACoicFAAAQHwhUQAKhJwUAABBfCFRAAqAnBQAAEJ8IVEAcoycFAAAQ3whUQJyiJwUAABD/\nCFRAnKEnBQAAkDgIVECcoCcFAACQeAhUQIzRkwIAAEhcBCoghuhJAQAAJDYCFRAD9KQAAACSA4EK\niCJ6UgAAAMmFQAVEAT0pAACA5ESgAiLsN3/drj//fbfPMXpSAAAAySHqgcrpdGrFihVqaGhQenq6\nqqqqNG7cOJ/HtLe366abbpLFYtHDDz886POAeLL1o2bd8fg7PsfoSQEAACSXqK81ev755zV69Gg9\n/fTTuvrqq7Vy5cp+j/nxj3+sOXPmDPk8IB4caj+qxcv/4hOm/uP/TNe6lRcTpgAAAJJM1APVxo0b\ntWiRu4B/+umn6/333+/3mPvuu08zZswY8nlALHX3uHTz/9ugK+75m/fY7Clj9ZeHvqyLziBIAQAA\nJKOoL/lraWlRXl6eJMlgMCgtLU1Op1NG4/GhjBgxIqTzgFj5n1d26amX6r23jekG/e6u8zQqKyOG\nowIAAECkRTSNPPPMM1q7dq0MBoMkyeVy6cMPP/R5TE9Pj79Tgwr1PCCc/PWkfnb9PE0uzYvRiAAA\nABBNEQ1US5Ys0ZIlS3yO3XrrrWppadHkyZPldDrdgxjELFNhYWFI59XU1IQwcmBgRzq79fM/H/A5\ndn5FjionW9TR8qlqWj6N0ciQSvj7DdHE5w3RxmcOiSLq6+Xmzp2rl156SXPnztXrr7+uyspKv49z\nuVxyuVxDPq+vioqKsIwbkCRnd49ue/Rt/WvPYe+x2VPG6vZvz9aWLe/zeUPU1NTU8HlD1PB5Q7Tx\nmUM0DTe8Rz1QXXDBBXr77be1bNkyZWZm6qc//akkafXq1aqsrNT06dN18cUX6+jRo2pvb9fixYt1\nyy23BDwPiBZ3T2qn9zY9KQAAAEQ9UKWlpamqqqrf8auuusr753Xr1vk91995QKTRkwIAAEAgbJEH\nBHCo/ajPFuiS+3pSbIEOAAAADwIV0MdAPam0NEMMRwYAAIB4Q6ACeqEnBQAAgKEgUAGiJwUAAIDQ\nEKiQ0uhJAQAAYDgIVEhJ9KQAAAAQDgQqpBx6UgAAAAgXAhVSBj0pAAAAhBuBCkmPnhQAAAAihUCF\npEVPCgAAAJFGoEJSoicFAACAaCBQIanQkwIAAEA0EaiQFOhJAQAAIBYIVEho9KQAAAAQSwQqJCx6\nUgAAAIg1AhUSDj0pAAAAxAsCFRIGPSkAAADEGwIV4h49KQAAAMQrAhXiGj0pAAAAxDMCFeISPSkA\nAAAkAgIV4go9KQAAACQSAhXiAj0pAAAAJCICFWKOnhQAAAASFYEKMfX+ziafMEVPCgAAAImEQIWY\nKi7I0pQT8zTvtBJ6UgAAAEg4BCrE1NgxWXrgunmxHgYAAAAQkrRYDwAAAAAAEhWBCgAAAABCRKAC\nAAAAgBARqAAAAAAgRAQqAAAAAAgRgQoAAAAAQkSgAgAAAIAQEagAAAAAIEQEKgAAAAAIEYEKAAAA\nAIcvQ6UAAApqSURBVEJEoAIAAACAEBGoAAAAACBEBCoAAAAACBGBCgAAAABCRKACAAAAgBARqAAA\nAAAgRAQqAAAAAAgRgQoAAAAAQkSgAgAAAIAQEagAAAAAIEQEKgAAAAAIEYEKAAAAAEJEoAIAAACA\nEBGoAAAAACBEBCoAAAAACBGBCgAAAABCRKACAAAAgBARqAAAAAAgRAQqAAAAAAgRgQoAAAAAQkSg\nAgAAAIAQEagAAAAAIEQEKgAAAAAIEYEKAAAAAEJEoAIAAACAEBGoAAAAACBEBCoAAAAACBGBCgAA\nAABCRKACAAAAgBARqAAAAAAgRAQq4P+3c2+hTd5/HMc/T6MUrVIXtBFPW9GSq1oPg0rr1l1UNt3A\ngQbB4bQXUlDxTFuPqKXUgVojuxilF2NsMGhZ2boLDyBeqN2i1gMeblIPKNVqnMuwngj57UIMpsYc\nntnkn/zfr6ua5/eN38C3P59PnscHAAAAsIlABQAAAAA2EagAAAAAwCYCFQAAAADYRKACAAAAAJsI\nVAAAAABgE4EKAAAAAGwiUAEAAACATQQqAAAAALCJQAUAAAAANhGoAAAAAMAmAhUAAAAA2ESgAgAA\nAACbCFQAAAAAYBOBCgAAAABsGpbuvzAUCqmhoUF9fX1yOBxqbm7WpEmTotYEg0Ft3LhRo0aNktfr\nlSR1dnbK6/VqypQpkqTKykrV1tamu30AAAAAiEh7oPr9999VWFioffv26dSpU9q/f79aWlqi1uze\nvVtz5szR5cuXo15fsGCB6urq0tkuAAAAALxV2m/56+7uVnV1tSSpoqJCPT09b6xpampSWVlZulsD\nAAAAgJSkPVAFAgE5nU5JkmVZysvLUygUilozYsSImLU+n08rV65UTU2Nrl27NuS9AgAAAEA8Q3rL\nX3t7uzo6OmRZliTJGKNLly5FrQmHw0m914wZM+R0OlVVVaULFy6orq5OXV1dCevOnTuXeuOATcwb\n0ol5Qzoxb0g3Zg7ZYkgDlcfjkcfjiXpty5YtCgQCcrvdkStTw4YlbqO4uFjFxcWSXoarR48eyRgT\nCWuxzJ49+z90DwAAAADxpf2Wv8rKSh0+fFiSdPz4cZWXl8dcZ4yRMSby57a2NrW3t0uS/H6/nE5n\n3DAFAAAAAEPNMq+nljQIh8Patm2bbt26pfz8fO3du1cul0utra0qLy9XaWmpFi5cqKdPnyoYDGr8\n+PGqr69XSUmJNm/eHHmPhoYGlZaWprN1AAAAAIiS9kAFAAAAALki7bf8AQAAAECuIFABAAAAgE0E\nKgAAAACwaUgfmz7UQqGQGhoa1NfXJ4fDoebmZk2aNClqTTAY1MaNGzVq1Ch5vV5JUmdnp7xer6ZM\nmSLp5ZMHa2tr094/so/dmUumDhgsmbn57bff9MMPP8jhcMjj8Wjx4sXscUhZc3OzLl68KMuytHXr\n1qiHPp0+fVotLS1yOBz6+OOPtWrVqoQ1QDypzpvP59O6detUUlIiY4zcbre2b9+ewU+AbBJv3l68\neKEdO3aot7dXHR0dSdXEZLJYZ2en2bNnjzHGmJMnT5r169e/sWbDhg2mtbXVrF27NvLaL7/8Yr75\n5pu09YncYXfmkqkDBks0N0+ePDGffvqpefz4sXn27Jn54osvTDAYZI9DSnw+n6mtrTXGGOP3+82S\nJUuiji9YsMDcu3fPhMNhs3TpUuP3+xPWAG9jZ97+/PPPqH9TgWQlmrfGxkbz448/mkWLFiVdE0tW\n3/LX3d2t6upqSVJFRYV6enreWNPU1KSysrJ0t4YcZXfmkqkDBks0NxcvXtT06dNVUFCg/Px8zZo1\nK7LG8ABXJOn1OZs6dar++ecfDQwMSJJu376tMWPGyOVyybIsVVVVqbu7O24NEE+q8/bHH39IYk+D\nPYn2qk2bNumTTz5JqSaWrA5UgUBATqdTkmRZlvLy8hQKhaLWjBgxImatz+fTypUrVVNTo2vXrg15\nr8gNdmcumTpgsERz8/pxSXI6nXrw4IEk6cyZM+xxSMrgOXrvvfcUCARiHns1Y/FqgHhSnbf79+9L\nknp7e7Vq1Sp99dVXOn36dHqbRtZKtFclOmeLVRNL1vwfqvb2dnV0dMiyLEkvv6m4dOlS1JpwOJzU\ne82YMUNOp1NVVVW6cOGC6urq1NXV9c57RnZ7lzM3mN065K53MW+vvsFlj8N/Ee9KwNuOcfUAdiUz\nbx988IHWrFmj+fPn6/bt2/r666917NgxDRuWNaex+B9hZ69KpiZrJtHj8cjj8US9tmXLFgUCAbnd\n7si3tsn8chUXF6u4uFjSyxOPR48eyRgTOZEBpHc7c0VFRbbq8P/DzrwVFRVFrkhJUn9/v2bOnMke\nh5S82p9euX//vsaNGxc5NnjGioqKNHz48LfWAPHYmbeioiLNnz9fkjR58mSNHTtW/f39mjhxYnqb\nR9aJN2/vsiarb/mrrKzU4cOHJUnHjx9XeXl5zHXGmKh02dbWpvb2dkmS3++X0+nkRANJsTtzydYB\nr0s0N2VlZbp8+bIeP36sgYEBnT9/XrNnz2aPQ0oqKyt15MgRSdKVK1fkcrk0cuRISdLEiRM1MDCg\nvr4+hUIhnThxQnPnzo1bA8RjZ966urr07bffSpIePnyov/76Sy6XK2OfAdkjmb0q1jlbqvubZbL4\nOn04HNa2bdt069Yt5efna+/evXK5XGptbVV5eblKS0u1cOFCPX36VMFgUOPHj1d9fb1KSkq0efPm\nyHs0NDTwuFckxe7MVVRUxKwD4kk0b2VlZTp69Kja2tqUl5enZcuW6fPPP1d/fz97HFJy4MAB+Xw+\nORwO7dy5U1evXtXo0aNVXV2ts2fPat++fZKkzz77TCtWrIhZ43a7M/gJkE1SnbeBgQFt2rRJwWBQ\nxhitXr1aH330UYY/BbJFvHmrqanRvXv3dPfuXU2ePFkrVqzQokWLtH//fp05cybp/S2rAxUAAAAA\nZFJW3/IHAAAAAJlEoAIAAAAAmwhUAAAAAGATgQoAAAAAbCJQAQAAAIBNBCoAAAAAsIlABQDIecuW\nLVN3d3em2wAA5CACFQAAAADYNCzTDQAA8C59//336u3tVWNjo65fv67Vq1dr5MiRkiSfz6eDBw9q\nwoQJunPnjgoLC3XgwAEVFBRkuGsAQLbiChUAIKcsX75cN2/eVE9Pj/bs2aPGxsZIoJKkq1evqr6+\nXj///LMKCwvV2dmZwW4BANmOQAUAyCmWZampqUnr16+X2+3Whx9+GHV82rRpGjdunCRp1qxZ8vv9\nmWgTAJAjCFQAgJzz999/q6CgQHfv3n3jWDgcjvxsjJFlWelsDQCQYwhUAICc8vz5c+3atUvfffed\nhg8frl9//TXq+I0bNxQIBCRJ586dk9vtzkSbAIAcwUMpAAA55dChQ5o3b57ef/99bd26VUuWLJHD\n4Ygcnzp1qlpaWnTjxg2NGTNGX375ZQa7BQBkO8sYYzLdBAAA6eDz+eT1evXTTz9luhUAQI7glj8A\nAAAAsIkrVAAAAABgE1eoAAAAAMAmAhUAAAAA2ESgAgAAAACbCFQAAAAAYBOBCgAAAABs+heqg3XX\nIw628QAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -490,124 +500,37 @@ } ], "source": [ - "print 'rsquared', linreg_r2(data['Total area'], data['log Price'], plot=True)[0]\n", - "plt.xlabel('Total area');\n", - "plt.ylabel('log Price');\n", - "plt.xlim(0,200000);" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "`Total area` was the most insightful dimension, with its model explaining 16.8% of variance. Still, however, this is not a great result and we are still attempting to understand a complex, multidimensional dataset from a single perspective. Let's see if averaging the models, combining information from all 3 dimensions, can produce a more accurate model. \n", + "combined = np.mean([linreg_r2(data[_], data[exog]).predict() for _ in data.columns[data.columns != 'unemployment']], axis=0)\n", "\n", - "*Note: In the below plot, the blue line is not the model but the line $Y=X$. Points along this line mean the combined model perfectly predicted the observed `log Price`.*" - ] - }, - { - "cell_type": "code", - "execution_count": 147, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "rsquared: 0.185624465575\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0YAAAHsCAYAAAD2PL25AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xt01PWd//HXJDPJhEwgCSSBBIk2NigXbYwSu0jxgqXo\nWlsXq0er1fWUtupqt3Zb3bVqL0qtpbQ9XlrOWmm3/rbH2rW2W3HrrRplGWrIImAhigJmkFwgE5iB\nycwk8/tjmGEmmcnMJHOf5+Ocnvqd6+c73++Qz2ven8/na/D5fD4BAAAAQAErynQDAAAAACDTCEYA\nAAAACh7BCAAAAEDBIxgBAAAAKHgEIwAAAAAFz5jpBiSio6Mj000AAAAAkOVaW1sTfk5OBSNpYjuJ\n7NDR0cHxy1Ecu9zG8cttHL/cxbHLTZfd8Wzwv/+45vIMtgQTNdFiCkPpAAAAAIWHovuumZ3BliAT\nCEYAAAAACl7ODaUDAAAAEuXz+TQ0NBT1/i9//yVNr/B3jX9250XasWOHXC5XupqHCSotLZXBYEjK\naxGMAAAAkPeGhoY0NDSk0tLSiPf/7M6Lwrbnz5+fjmZhEgJB12w2J+X1CEYAAAAoCKWlpUnrRCP/\nMMcIAAAAQMEjGAEAAAAoeAQjAAAAAAWPYAQAAACkwWOPPaa1a9cGt30+nz7zmc+oq6sr6nOuu+46\nbdq0Kbj9wAMP6IknnhjzuIcfflg2my24fdddd02ojbt27dLevXsn9NzxHD16VBdeeGHU+zdv3qzb\nbrstuB3afpvNpocffjjpbRqNxRcAAACANPjHf/xHfeYzn9G1116r2tpaPf300zrzzDPV3Nwc9Tn3\n3Xefvva1r+l3v/ud3nvvPW3ZskVPPfVU2GPuuOMO9ff3y2az6WMf+5heffVV9fT06N5779WFF16o\npUuXxt3GF154QQsWLFBjY+OE9zMSn88Xc1ltg8GgV155Ra+99pp27dqlW265Reeff762bNmi7u5u\n7du3Tz/4wQ+S2q5QBCMAAAAgDUpLS3XzzTdr7dq1uvfee/XEE0/oySeflCTdfvvtGhgYkOQPESUl\nJXr88cfV1NSkiy++WP/+7/8uq9Wqe+65R0VF4YO+Vq9erZtuukkNDQ266qqrtGzZMt10000688wz\ntXTpUl133XVavHixNm3aJLvdrp/97GeaOXOmHnroIW3ZskUjIyO65pprdPrpp+s3v/mNqqurNX36\ndC1cuFCSv2LzjW98Q3PmzFFnZ6euvvpq7dq1S9u2bdM111yja665RlarVWvXrpXJZNLMmTP1wAMP\naGhoSLfddpvcbrfOOuusYHvffPPN4GNnzZql7373u8H7LrjgAh04cEBbt27V6tWrNXXqVO3bt08H\nDhzQ6tWrU3p8CEYAAAAoOL/44w69sdUW+4EJWHxmg/7xsvGvf3TZZZfp17/+te6++25dccUVqqqq\nkiT95Cc/ifqcVatW6dOf/rTOPvtsnXHGGWPu37hxo2655RZt3LhRw8PDevHFF/WjH/1Iv/vd74KP\nqaio0Pr167VmzRr9+c9/1rx58/Tuu+/qP//zP3Xs2DF9+tOf1rPPPqslS5boU5/6VDAUBezcuVOP\nPfaYBgYGdOmll+qVV16Ry+XSbbfdpmuuuUb33Xef1q9fr7q6On3ve9/TH//4R7lcLjU3N+vOO+/U\nc889pz/96U+SpPvvv1+//OUvNXXqVD300EPasGGD6urqgu+1b98+rV69Wq+88opWrFihoqIi3XDD\nDero6NCiRYtiH4gJIhgBAAAAafTP//zP+sY3vhF3BeTgwYMqKSnRrl27Ig5JO//88yVJ5557riTp\nqquukiT9y7/8S/Axra2tkqSZM2fKbrdr+/btOueccyRJZWVlOvXUU7Vnz56obZgzZ46mTp0qo9Go\nGTNmqKamRkePHtWRI0c0ODiooqKiYLhZtGiRNm/eLEnB92hrawvuy549e3TrrbfK5/PJ5XKpuro6\nLBh985vflCTNnTs3+HmlA8EIAAAABecfL5sfs7qTKieddJJqa2tlMpmCt0UbSidJ3/72t3X33Xfr\nL3/5i375y1/qhhtuSPg9jcYT3f5AuPL5fMHb3G73mCF6oYqLiyP+t8/nU1FRkUZGRoK3eTweFRUV\naXh4OPiagftLSkpUV1enX/3qV2GvHwhSmUQwAgAAANIsNJRI0YfSPffccyovL9eiRYs0f/58XXnl\nlbr00ktVU1MzqfdfuHChHnvsMX3xi1+U0+lUd3e3Tj75ZBkMBnk8nnHbO7rtFRUVKioq0oEDBzRz\n5kxt3rxZZ599tgYHB7Vt2zZdfPHFwZX1KioqZDAYtHv3bjU1NenXv/51SofHJYJgBAAAAKRZrBXa\nJOnIkSP66U9/ql//+teSpPLycn3lK1/R6tWr9aMf/WhS73XWWWdp3rx5+vznPy+v16uvf/3rMpvN\nOvvss/XAAw/IYrEEh+aNfo1Ir/ed73xHX/va12Q0GjVnzhxdeumlcjqduuWWW3TjjTeGLb7wve99\nT3fddZdKSkpUW1urq666Sp2dnXHvT6oYfKMjXxbr6OgIjo9E7uH45S6OXW7j+OU2jl/u4thlF5fL\nJUkym80ZbgmSJdoxneh3jwu8AgAAACh4BCMAAADkvS9//6VMNwFZjmAEAAAAoOCx+AIAAADy2mV3\nPKvpFUYNDQ1luilIoqGhIZWWlibt9agYAQAAIO8dcnh1+9rX4378jh07UtgaJENpaWlSgxEVIwAA\nAOSty+54VpLk80nr77s0oeeygl1hoWIEAAAAoOARjAAAAJCXAtUiSfrjmssz2BLkAoIRAAAAgIJH\nMAIAAEDeoVqERBGMAAAAABQ8ghEAAADyCtUiTATBCAAAAEDBIxgBAAAgb1AtwkQRjAAAAAAUPIIR\nAAAA8gLVIkwGwQgAAABAwSMYAQAAIOdRLcJkEYwAAAAAFDyCEQAAAHIa1SIkA8EIAAAAQMEjGAEA\nACBnUS1CshhT+eJPP/20nn32WRkMBvl8Pu3YsUNbtmwZ87g1a9bo//7v//Qf//EfqWwOAAAAAESU\n0mC0cuVKrVy5UpL017/+Vc8///yYx+zevVtvvvmmTCZTKpsCAACAPEO1CMmUtqF0jzzyiG6++eYx\ntz/44IO644470tUMAAAAABgjpRWjgG3btmnWrFmaPn162O3PPPOMPv7xj2vWrFnpaAYAAADSyO32\nyGrtlcNhlMXiVVtbrUpKkjNKiGoRki0twei3v/2trrjiirDbBgcH9eyzz+oXv/iF9u/fL5/PF9dr\ndXR0pKKJSBOOX+7i2OU2jl9u4/jlrkI/dp2ddh050hjc3rXrNbW0VCb9fVL1ORf68Ss0aQlGmzdv\n1j333BN226ZNm3Tw4EFdc801Ghoa0gcffKDvf//7uvPOO8d9rdbW1lQ2FSnU0dHB8ctRHLvcxvHL\nbRy/3MWxk3p7e+T11gW3jcYKtbbWjfOM+KSjWsTxy10TDbQpD0a9vb0qLy+X0Rj+VsuXL9fy5csl\nSTabTXfddVfMUAQAAIDcYbF4ZbeHbwPZKuWLL/T19YXNLXrmmWf04osvpvptAQAAkGFtbbWqrLTJ\naOxRZaVNbW21k35N5hYhVVJeMZo/f77WrVsX3P7sZz875jENDQ361a9+leqmAAAAII1KSkxasqQh\n080A4pK25boBAACAyaBahFQiGAEAAAAoeAQjAAAAZD2qRUg1ghEAAACAgkcwAgAAQFajWoR0IBgB\nAAAAKHgEIwAAAGQtqkVIF4IRAAAAgIJHMAIAAEBWolqEdCIYAQAAACh4BCMAAABkHapFSDeCEQAA\nAICCRzACAABAVqFahEwgGAEAAAAoeAQjAAAAZA2qRcgUghEAAACAgkcwAgAAQFagWoRMIhgBAAAA\nKHgEIwAAAGQc1SJkGsEIAAAAQMEjGAEAACCjqBYhGxCMAAAAABQ8ghEAAAAyhmoRsgXBCAAAAEDB\nIxgBAAAgI6gWIZsQjAAAAAAUPIIRAAAA0o5qEbINwQgAAABAwSMYAQAAIK2oFiEbEYwAAAAAFDyC\nEQAAANKGahGyFcEIAAAAQMEjGAEAACAtqBYhmxGMAAAAABQ8ghEAAABSjmoRsh3BCAAAAEDBIxgB\nAAAgpagWIRcQjAAAAAAUPIIRAAAAUoZqEXIFwQgAAABAwSMYAQAAICWoFiGXEIwAAAAAFDyCEQAA\nAJKOahFyDcEIAAAAQMEjGAEAACCpqBYhFxGMAAAAABQ8ghEAAACShmoRchXBCAAAAEDBIxgBAAAg\nKagWIZcRjAAAAAAUPIIRAAAAJo1qEXIdwQgAAABAwSMYAQAAYFKoFiEfEIwAAAAAFDyCEQAAACaM\nahHyBcEIAAAAQMEjGAEAAGBCqBYhnxCMAAAAABQ8ghEAAAASRrUI+YZgBAAAAKDgEYwAAACQEKpF\nyEcEIwAAAAAFj2AEAACAuFEtQr4iGAEAAAAoeAQjAAAAxIVqEfIZwQgAAABAwSMYAQAAICaqRch3\nBCMAAAAABY9gBAAAgHFRLUIhIBgBAAAAKHgEIwAAAERFtQiFgmAEAAAAoOARjAAAABAR1SIUEoIR\nAAAAgIJHMAIAAMAYVItQaAhGAAAAAAoewQgAAABhqBahEBGMAAAAABQ8ghEAAACCqBahUBGMAAAA\nABQ8Yypf/Omnn9azzz4rg8Egn8+nHTt2aMuWLcH7N23apLVr16q4uFinnHKK7r///lQ2BwAAAOOg\nWoRCltJgtHLlSq1cuVKS9Ne//lXPP/982P333nuvfvWrX6murk633367XnvtNX3iE59IZZMAAAAA\nYIyUBqNQjzzyiNasWRN22+9+9ztZLBZJUnV1tex2e7qaAwAAgBBUi1Do0jLHaNu2bZo1a5amT58e\ndnsgFPX29mrjxo1aunRpOpoDAAAAAGEMPp/Pl+o3ueeee3TZZZfpnHPOGXPfwYMHtWrVKn3961/X\nxz/+8XFfp6OjI1VNBAAAKFj3/b/uE/99zewMtgRIjtbW1oSfk5ahdJs3b9Y999wz5naHw6EvfvGL\nuuOOO2KGooCJ7CSyQ0dHB8cvR3HschvHL7dx/HJXTh27kGCUM21OsZw6fggz0WJKyofS9fb2qry8\nXEbj2Az2/e9/XzfeeKMWL16c6mYAAAAgAuYWAX4prxj19fWFzS165plnVFFRofPOO09/+MMftG/f\nPj311FMyGAy67LLLdOWVV6a6SQAAAAAQJuXBaP78+Vq3bl1w+7Of/Wzwv996661Uvz0AAACioFoE\nnJCWVekAAAAAIJsRjAAAAAoQ1SIgHMEIAAAAQMEjGAEAABQYqkXAWAQjAAAAAAWPYAQAAFBAqBYB\nkRGMAAAAABQ8ghEAAECBoFoEREcwAgAAAFDwCEYAAAAFgGoRMD6CEQAAAICCRzACAADIc1SLgNgI\nRgAAAAAKHsEIAAAgj1EtAuJDMAIAAABQ8AhGAAAAeYpqERA/ghEAAACAgkcwAgAAyENUi4DEEIwA\nAAAAFDyCEQAAQJ6hWgQkjmAEAAAAoOARjAAAAPII1SJgYghGAAAAAAoewQgAACBPUC0CJo5gBAAA\nAKDgEYwAAADyANUiYHIIRgAAAAAKHsEIAAAgx1EtAiaPYAQAAACg4BGMAAAAchjVIiA5CEYAAAAA\nCh7BCAAAIEdRLQKSh2AEAAAAoOARjAAAAHIQ1SIguQhGAAAAAAoewQgAACDHUC0Cko9gBAAAAKDg\nEYwAAAByCNUiIDUIRgAAAAAKHsEIAAAgR1AtAlLHGM+DBgYG1N3drYULF2pkZERFReQpAAAKgdvt\nkdXaK4fDKIvFq7a2WpWUmDLdLABIupgJ57//+7911VVX6a677pIkffe739Vvf/vblDcMAABkntXa\nK7u9QV5vnez2BlmtvZluUsGiWgSkVsxg9MQTT+jZZ59VVVWVJOmb3/ymnnrqqZQ3DAAAZJ7DYRx3\nGwDyRcxgVFFRobKysuC22WyWyUQJHQCAQmCxeMfdRnpQLQJSL+bPPlVVVXrmmWc0NDSkHTt26Lnn\nnlN1dXU62gYAADKsra1WVqstbI4RAOSjmMHo29/+tn784x/L6XTq7rvvVmtrq773ve+lo20AACDD\nSkpMWrKkIdPNKGhUi4D0iBmMpk6dquuvv1733HOPJOntt99WZWVlyhsGAAAAAOkSc47R2rVr9fOf\n/zy4/fOf/1w//OEPU9ooAAAAUC0C0ilmMLJarVq9enVw+yc/+YnefPPNlDYKAAAAANIpZjDyeDxy\nu93BbafTqeHh4ZQ2CgAAoNBRLQLSK+Yco6uvvlqXXHKJFixYoJGREW3btk233nprOtoGAAAAAGkR\nMxhdeeWVWrx4sbZt2yaDwaC77rpLs2bNSkfbAAAAChLVIiD9ogajV199VUuXLtXTTz8ddvsbb7wh\nSVq5cmVqWwYAAAAAaRI1GO3atUtLly5VR0dHxPsJRgAAAMlHtQjIjKjBaNWqVZKk5cuX6/zzz09X\newAAAAAg7WKuSvfLX/5SXq83HW0BAAAoaFSLgMyJufhCRUWFLr30Us2bN08mkyl4+w9+8IOUNgwA\nAAAA0iVmMLrgggt0wQUXpKMtAAAABYtqEZBZ4wajwcFBNTc3q6mpSWazOV1tAgAAAIC0ijrH6IUX\nXtAll1yib33rW1qxYoW2b9+eznYBAAAUDKpFQOZFrRg9/vjj+v3vf6+amhq98847WrNmjX72s5+l\ns20AAAAAkBZRK0Ymk0k1NTWSpI9+9KNyOp1paxQAAEChoFoEZIeowchgMIy7DQAAAAD5IupQut7e\nXj399NPB7b6+vrDtlStXprZlAAAAeY5qEZA9ogajlpYWdXR0BLc/9rGPhW0TjAAAAADki6jBaPXq\n1elsBwAAQEGhWgRkl6hzjAAAAACgUBCMAAAA0oxqEZB9CEYAAAAACl7UOUYB11133Ziluo1Go04+\n+WR96UtfUl1dXcoaBwAAkG+oFgHZKWbFaMmSJaqtrdW1116ra6+9VjNnztTChQtVX1+vO++8Mx1t\nBAAAAICUilkx2rhxo9avXx/cXr58uVatWqV169bp1VdfTWXbAAAA8grVIiB7xawYHTx4ULt37w5u\nd3d3q7u7WwcOHNCRI0dS2jgAAAAASIeYFaPbb79dN954o4aGhmQwGFRUVKRvfOMb2rFjh770pS+l\no40AAAA5j2oRkN1iBqNly5Zp2bJlGhgYkM/nU1VV1ZjFGAAAAAAgl8UMRr29vfrxj3+sbdu2yWAw\n6GMf+5i++tWvqrq6Oh3tAwAAyHlUi4DsF3OO0T333KP58+frRz/6kX74wx/qIx/5iP71X/81HW0D\nAAAAgLSIWTE6duyYrr322uB2c3OzXn755ZQ2CgAAIF9QLQJyQ8yK0bFjx9Tb2xvcPnDggNxud0ob\nBQAAAADpFLNidPPNN+uKK65QTU2NfD6fDh06pPvvvz8dbQMAAMhpVIuA3BEzGJ1//vl68cUXtWfP\nHknSKaecotLS0rhe/Omnn9azzz4rg8Egn8+nHTt2aMuWLcH7N27cqLVr16q4uFif+MQndPPNN09s\nLwAAAABgEqIGo5/85CfjPvH222+P+eIrV67UypUrJUl//etf9fzzz4fdf//99+sXv/iFamtr9fnP\nf17Lly9XU1NTPO0GAADIavf9v+7gf1MtArJf1DlGxcXF4/4vUY888khYReiDDz5QZWWl6urqZDAY\ntHTpUm3atGliewEAAAAAkxC1YnTrrbcm7U22bdumWbNmafr06cHb+vv7w66FVF1drQ8++CBp7wkA\nAJApzC0Cck/MVemS4be//a2uuOKKcR/j8/nS0RQAAAAAGCPm4gvJsHnzZt1zzz1ht9XW1qqvry+4\n3dPTo9ra2piv1dHRkfT2IX04frmLY5fbOH65jeOXW0LnFt13zWyOXw7j2BWWlAej3t5elZeXy2gM\nf6uGhgY5nU7t379ftbW1+stf/qI1a9bEfL3W1tZUNRUp1tHRwfHLURy73Mbxy20cvxwUEow4drmL\n717ummigjRqMTjvtNBkMhoj3FRcXa/v27XG9QV9fX9jcomeeeUYVFRVatmyZ7r33Xn3ta1+TJP39\n3/+9GhsbE2k7AABAVgmdW3TfNbMz2BIAiYoajHbs2CGfz6ef/exnmjt3rs4991wNDw9r48aNev/9\n9+N+g/nz52vdunXB7c9+9rPB/z777LP1m9/8ZoJNBwAAAIDkGHe5bqPRKKvVqosvvlgVFRWqrKzU\nJZdcos7OznS2EQAAIOsleyU6t9uj9nabNmzoUXu7TW63Z9KvCSC6mHOMjh07pt/85jdqbW1VUVGR\ntmzZokOHDqWjbQAAAAXLau2V3d4gSbLbJavVpiVLGjLcKiB/xQxGDz30kB5++GE9+eSTkqRTTz1V\nDz74YMobBgAAkCtScd0ih8M47jaA5Ir5DTvllFP00EMPqb+/P67ltAEAADB5FotXdnv4NoDUiXmB\n1//93//VsmXLdP3110uSHnjgAb3yyispbxgAAEAuSEW1SJLa2mpVWWmT0dijykqb2tr4gRpIpZjB\naO3atXrqqadUU1MjSfryl7+sxx57LOUNAwAAKGQlJSYtWdKgFSvqtGRJg0pKTJluEpDXYgajKVOm\naMaMGcHt6upqmUx8MQEAAFJVLQKQfjHnGJnNZm3evFmSNDg4qD/96U8qLS1NecMAAAAAIF1iVozu\nvfdePf7449q2bZs++clPqr29Xd/97nfT0TYAAICsRbUIyC8xK0b79u3Tz3/+87DbXnzxRTU0sI4+\nAAAAgPwQNRh1d3frgw8+0IMPPqg777xTPp9PkuT1evXAAw9o2bJlaWskAABANqFaBOSfqMGor69P\nzz33nGw2mx555JHg7UVFRbr66qvT0jgAAAAASIeowailpUUtLS1aunSpLrroIhkMBkn+ipHRyJWX\nAQBAYaJaBOSnmIsveL1efeUrXwluX3PNNXr++edT2igAAAAASKeYwWj9+vV66KGHgtuPP/64fvGL\nX6S0UQAAANmIahGQv2IGI5/Pp4qKiuB2RUWFiopiPg0AAAAAckbMyUILFizQV7/6VS1atEg+n0/t\n7e1asGBBOtoGAACQNagWAfktZjC6++679Yc//EFvvfWWDAaDLrvsMq1YsSIdbQMAAACAtIgajHp7\ne1VbW6vu7m6dddZZOuuss4L32Ww2nXTSSWlpIAAAQKZRLQLyX9Rg9OCDD2rNmjX6whe+MOY+g8Gg\nl156KaUNAwAAAIB0iRqM1qxZI0l6+eWX09YYAACAbEO1CCgMUYPRXXfdNe4TV69enfTGAAAAAEAm\nRF13OzCvqKioSIODgzrttNPU3NysgwcPqqysLJ1tBAAAyAiqRUDhiFoxuvLKKyVJL7zwgtatWxe8\n/YYbbtAtt9yS+pYBAAAAWc7t9shq7ZXDYZTF4lVbW61KSkyZbhYmIOaVWj/88EMdPnw4uO10OvXB\nBx+ktFEAAACZRrUI8bBae2W3N8jrrZPd3iCrtTfTTcIExbyO0dVXX62LL75Ys2fPlsFgUHd3t778\n5S+no20AAABZYcOGHqoBiMjhMI67jdwR88hde+21uvzyy7V37175fD7NmTNHU6dOTUfbAAAAMiK0\nWrTq/Mvl9Up2u2S12rRkSUMGW4ZsY7F4ZbeHbyM3xRxKNzg4qEceeURPPPGEFixYoDfffFOHDh1K\nR9sAAACyCtUAjNbWVqvKSpuMxh5VVtrU1lab6SZhgmIGo7vvvluzZs1Sd3e3JMntduub3/xmyhsG\nAACQCaHVom985uyw+6gGYLSSEpOWLGnQihV1WrKkgaGWOSxmMDp06JCuv/56mUz+g/ypT31KLpcr\n5Q0DAADINKoBsbndHrW327RhQ4/a221yuz2ZbhIwIXHVgz0ejwwGgySpv79fR48eTWmjAAAAMiHS\nSnTMKRpfYFU2iXlYyG1xLb6wcuVK9fX16ctf/rK2bdumf/u3f0tH2wAAAJDlWJUN+SLmmXvJJZfo\nrLPOUmdnp0pKSvSd73xHtbWUkQEAQH7hukUTw6psyBcx5xjddtttmjlzplasWKGLLrqIUAQAAIAg\n5mEhX8SsGM2ZM0dPP/20WlpaVFJSErz9pJNOSmnDAAAA0oVq0cQFVmUDcl3MYPTcc8+Nuc1gMOil\nl15KSYMAAAAAIN1iBqOXX345He0AAADICKpFAKRxgpHD4dCjjz6q9957T+ecc46+8IUvyGhklREA\nAAAA+Sfq4gv33XefJOmqq67Su+++q4cffjhdbQIAAEgLqkUAAqKWgGw2m374wx9Kkj7xiU/ohhtu\nSFebAAAAACCtolaMQofNFRcXp6UxAAAA6UK1CECoqMHIYDCMuw0AAAAA+SLqULrOzk6df/75we2D\nBw/q/PPPl8/nk8Fg0F/+8pc0NA8AACD5qBYBGC1qMHr++efT2Q4AAAAAyJiowaihgSsYAwCA/EO1\nCEAkXJgIAAAAaeN2e2S19srhMMpi8aqtrVYlJaZMNwuIvvgCAABAvqFalHlWa6/s9gZ5vXWy2xtk\ntfZmukmAJIIRAAAA0sjhMI67DWQKwQgAABQEqkXZwWLxjrsNZArBCAAAAGnT1larykqbjMYeVVba\n1NZWm+kmAZJYfAEAABQAqkXZo6TEpCVLWP0Y2YeKEQAAAICCRzACAAB5jWoRgHgQjAAAAAAUPIIR\nAADIW1SLAMSLYAQAAACg4BGMAABAXqJaBCARBCMAAAAABY9gBAAA8g7VIgCJIhgBAAAAKHgEIwAA\nkFeoFgGYCIIRAAAAgIJHMAIAAHmDahGAiTJmugEAACB93G6PrNZeORxGWSxetbXVqqTElOlmAUDG\nEYwAAMhBEw04Vmuv7PYGSZLdLlmtNi1Z0pDq5qYF1SIAk8FQOgAAclAg4Hi9dbLbG2S19sb1PIfD\nOO42ABQqghEAADloogHHYvGOu52rqBYBmCyCEQAAOWiiAaetrVaVlTYZjT2qrLSpra02Fc0DgJxD\n/RwAgBzU1lYrq9UWNscoHiUlpryZUxRAtQiZwEIm+YdgBABADsrHgAPkknxeyKRQMZQOAADkLKpF\nyBQWMsmHRICLAAAgAElEQVQ/BCMAAAAgQfm6kEkhIxgBAICcRLUImcRCJvmHmh8AAACQIOb55R+C\nEQAAyDlUi9Ivm1Zhy6a2IH8wlA4AACALud0etbfbtGFDj9rbbXK7PRltT2AVNq+3TnZ7g6zWXtqC\nvEIwAgAAOaVQqkXZ1vnPplXYsqktyB+cRQAAAJMUaWjXZGVb599i8cpuD9+mLcgnVIwAAEDOyNZq\nUSqqO9m2HHQ2rcKWTW1B/qBiBAAAMEmRqjtTpkzuNdvaamW12pJahZqMbFqFLRvawgIQ+YdgBAAA\nckK2Vouk1AztyobOP6ILVAklyW6XrFYbxyvHpXwo3R/+8Addfvnl+od/+Ae9+uqrYfc9+eSTuvrq\nq3Xttddq9erVqW4KAABASjC0q/Bk2xwwTF5Kj6Ddbtcjjzyi3//+93I6nfrpT3+qpUuXSpIcDoce\nf/xxvfTSSzIYDLrpppv01ltv6YwzzkhlkwAAQA7K5mqRRHWnELEARP5JaTDauHGjFi9erLKyMpWV\nlek73/lO8L6SkhKVlpbK4XCorKxMLpdL06ZNS2VzAAAA8h5zX9Ij2+aAYfJSGoxsNpuOHTumr3zl\nKzpy5IhuueUWffzjH5fkD0b/9E//pGXLlslsNuvTn/60GhsbU9kcAACQg7K9WpRtmPuSHlQJ809K\ng5HP55Pdbtejjz6q7u5uXX/99XrllVck+YfSPfroo/rzn/+s8vJyfeELX1BXV5eam5vHfc2Ojo5U\nNhkpxvHLXRy73Mbxy20cvxNy7bOYSHs9Hq+2b3fo6NESTZni1oIFFplM8XfZOjuPanj4WHC7uPhD\nTZlyIOF2IPfON0xOSoPRjBkz1NLSIoPBoJNOOknl5eU6dOiQqqur9d577+mkk04KDp9rbW3V9u3b\nYwaj1tbWVDYZKdTR0cHxy1Ecu9zG8ctthX78crlaNNFj195uU13diUqEx2PTuefGX5k4etQWrBhJ\nUmVlmVpbqWwkqtC/e7lsooE2pavSLV68WFarVT6fTwMDAzp69Kiqq6slSQ0NDXrvvffkdrslSdu3\nb9ecOXNS2RwAAICsN9nVzlghD5iYlFaM6urqtHz5cn3uc5+TwWDQt771LT3zzDOqqKjQsmXLdNNN\nN+m6666T0WhUS0uLzj777FQ2BwAApECqJvvncrVoMia72hlzX4CJSfmC65/73Of0uc99LuH7AABA\nbmCyf3JlarUzVrNDoeNKVAAAYFJScaHLdFeLsikUZKrik28BN5uOKXJDSucYAQCA/Dd6qFcuXugy\nEAq83jrZ7Q2yWntT/p5ut0ft7TZt2NCj9nab3G5Pyt9zPKkIuJmUiWOK3EYwAgAAk5Lsyf6ZmFuU\niVCQbR33fAi4ofIt6CH1OEMAAMCk5MNk/8kueDAR2dZxz9TcplTJxDFFbiMYAQCArJGplegyEQpS\n0XGfzLyafAi4ofIt6CH1CEYAAKDgZSIUpKLjnm8LKExGvgU9pB7BCAAAZIWJVItyeeWxyXbcI+17\ntg3PA3IJiy8AAICclW0LGKRTpH3PtwUUgHQiGAEAgIyb6NyiQq6QRNr3ZK8QCBSSwvnXAwAA5J1C\nXnks0r7n67yaXB4yidxBxQgAgByVbRcInajJrERXyBWSQtr3Qh4yifShYgQAQI5iBbLCXnmskPa9\nkIdMIn04qwAAyFH50FnM1HWLClWuDkkr5CGTSB+G0gEAkKNYgQyJGm9IWjYPzSykYYPInNz7aQkA\nAEhKzQVC04lqUfqNV2XM5qGZhTBsMFerefmEYAQAQI4qhM5ivsiWTu94Q9LyYWhmLsvmYFooOOMB\nAEDaRaoWZUt4SEU7UtXpTbSt41UZmceTWQTTzGOOEQAAyArZsiRzKtqRqk5vom0NVBlXrKjTkiUN\nYSGKeTyZxZzBzCOKAgCAtIo2tyhbfjFPRTtSVY1JZlsZmplZuT5nMB8QjAAAQFbIlqFcqWjH6E5v\nS0uV2tttkx6uly2fGSaPYJp5BCMAAJA2461Ely2/mKeiHaM7ve3ttjFzjvzvm9jcpmz5zIB8QDAC\nAKAAZMvCBuPJll/M09GOSEPgJrJAQ7Z8ZkA+IBgBAFAAsmEp4NBq0Tc+c7bcbk9C4SwXwl28Ig2B\ny5Y5VkCh4hsHAEAByLZOt38FtcTCWTLCXSBcDQz4tG9fnxoba1VZqbSHrEhD4Pz7d+IxpaXHkjIP\nCUB8CEYAABSATE/SD60WrTrfP7co0XCWjHAXCFdvv22T09kih+Og5s+fnvYKWqQhcKPDksejjFf5\ngEJCMAIAoABMdpJ+KoaxJRrOkhHuAmHK5Qr8f1HY7ekS7fMMDT4bNvSEPSfTVT4g3/ENAwAgR0wm\nnEx2kv5khrGNnlvkcPRMKJwlYwW2QLgym71yOiWzeSR4eyzJDIfxfJ7JrPLl0/wsIFUIRgAA5IhM\nLqCQrDlKibQ3Umd+svsbCFfz5vm0b1/n8TlGtrhCVjI//3g+z2QuxZ0Ni28A2Y5gBABAjkg0nCSz\nSjDR6sV41y2KJRWd+fDK2eyoj4v02YV+3h6PV5s2DUz4s43n80zmUtzZtvgGkI2KMt0AAAAQn9Gd\n51jhJBAsvN6646vA9crt9qi93aYNG3rU3m6T2+2J673b2vyVFaOxJ+4Ky2RlsjMf6bML/by7ugY1\nPFwVdn8i0v15JnruAIWInwsAAMgRiQ6tStZFRCV/9SKwpHTgdWJVSSZTLZImN8cm3mpZtMdF+uwu\nuqg6+PkXF/eqqem0sPsTEa0alKq5QMkclgfkK4IRAAA5ItGhVYlcRNThOKr163dpYMCsqiqXbrhh\nriyWKWGPTfc8lcl05uNta7THRfrsQj9///2msPuTIVJ7QgPpRMNSMoflAfmKYAQAQA6Kp7IQz0VE\nAx369et3qaenRZLU0yOtX9+pW29tCXu9eIa2Bdr1g9+/GbxtItUiKf6qSktLlTo7B6LOB4rW1ki3\nB7ZjhbJUVWCSWeUDkBiCEQAAOSieznI8FxENdOgHBsxhjxu9LcU3tO1Eu94cc1+yjN739es7VV+/\nUF1dg3K5SrR163bNm1clr1fyeDzq6upVcfFAxAAZbZ9iVVhSVYFJpMoHILlYfAEAgBw00c5yoEO/\nYkWdlixpCIaEqipX2ONGb0vxLRjgcBi17i8n5hbdvOzcuNqViNGrw3V2uvXHP3brb38zaWhoqvr7\n6yVJlZU27d69U5JZTU2nRVwkIROLSownUntYOAFID35yAAAgB1ksXvX1eY9XSYo0Y8Z+ud3VE56o\nf8MNc7V+fWfYHKPR4qmSpKMTH1pV6eoalNFYosOHp2lkZKr27z+s00/3amioTBdeWCeHwyivd3rw\nuaMDZLIrP6HD/Gw2uxYu9CR0TBKp8gFILoIRAAA5qK2tVuvWbZPLVS+z2av6+gWyWnsn3Mm3WKaM\nmVM0EaFzi5afMkcDAz61t9vGXTAg0ZXYQoNCcXGvLrxwrl5+eZcOH3arqOiQmptPlcXSe3y/Jr6y\n3URYrb3q66tVV1evdu+uksu1XatWLZjUynIsnACkB8EIAIAcVFJiUlNTvRob64K3RRtOl6oloGNp\nbPQHrVgLBiS6uMDY1eGmaPnyBcfnEg2rpqY3WFVJd7XF4TCqq6tXTmeDfD6D+vvLJhVYAaQPwQgA\ngBwVbzUkXauahV636OZl58ob0pzx5kBNZnGB0OCzeLHU1jY3LPRNttqSaKi0WLxyuU6032weYbEE\nIEfwTQUAIEfFWw2ZTPCYaLUpkSFskxnuluphZomGyra2Wm3dul39/SUqK+tTc/N8WSw9KWsfgOQh\nGAEAkEGTGeYWbyiIN3hEasvrr9u0eXOFXK4imc1GeTw2XXjhyWOeG1ot+uOay4+/VnxD2EIDXmnp\nMR096tFDD22TZFBrq0Xnneffx0wMB0w0VJaUmLRqlX++V2fnYdXU9LBYApAjCEYAAGRQOoa5xVtZ\nitQWq3VAO3ea5HYbVVLilc83EDEYjTY6tLndHrW32yIGm9DHtrfbtHmzSU7nRyVJmzcflMnUe7xN\n6b/I6USqWYH9mTLlgFpbC3tuUbLmt2VqnhwKC9cxAgAgg1J98c5EOpSR2rJv3xG5XA0aGamTy9Wg\nffuOjHne6GpRJIHQ5fXWRbyeUOh7hs7RcbmK5HAYx7TNbveHqA0betTebpPb7Yn8AUxS4LpCPl+3\ndu/+q954o18PPbRNL7+8J2XvmU/iPe7peh1gPFSMAADIoEgVicleCyf0+bt371d9/UKZTMaYlZZI\nbWlsnKajRw/K7S5SScmIGhunTWg/4w2AFotXZrM0OOjV/v2DKipyaMaMQ5o3rypsMYe9e3slxbfq\n3WQEqj8vv7xHf/tbtQ4frlNJyYiGhgZkMk18tblsr4Akq33JCv6p/gEBkKgYAQCQUYGKhNHYo8pK\n2/Fhbyd+HT9ypDHhX8dDn9/fX6+ursHgfeN1KCO1ZdGiaTr9dGnuXOn006VFi8KDUTzVIin+C7/6\n39Mju32jiooOqalJqq9fIElhbZszpybseanuKHd0OHT4cLVGRixyuaZq9273pN4z2ysgyWpfsi74\nm44LBwPEbQAAMijSAgrx/joe7Vf9gQGf3n7bJpfLqA8/3K+amhOvP16HMlJbzjuvQSZT6HtMrEIS\n7zynkhKTLrzwZA0NlcnrPXGNpqGhMl14YV1wv9et267+/nKZzSNqbp6myspUd5R9KikZkcsV2PZO\nqnOe7RWQZLUvWdeRSvf1qFCYsutbCABAAQoNOKWlx7RrV6/sdsls9qq42JPw9Yn27euT0+kfZlZd\nPV0OR7uMRt+EOpTjrXwXWi363epLoi6uEOt1Ihlv0QOrtVf19QvkcPTK5TJq//5t+vu/X5DAXo0v\nUuBsba3Q0NAR7d79oYaHPSov75fdPk/t7bYJDTMrLT2mrVsPHl/tb0SLFh1LWvuTYTJLqIdK1nLq\nqV6WHZAIRgAAZNSJ6sfJMptH5PWWSaqT2WyUy1WiY8feVFvbJRGfG+1X/cbGWjkc/k53efmI/u7v\nmrViRV2kl0iaZK+uN16FwOEwymQyaf58/+sbjUrq/JxI+xKonLW21hyft3WBpNjztsbnkr8rFl/o\nSOe8pNFLqHs80oYNPZN+32yfW4XCRjACACCDrNZe9ffXa3i4Sk6n1N29V42NZp155nRJ0vvvV0ft\nOEb7Vb+yUpo/f3rw9spKW/C/k9UxHT23aMOG8IuYTnZo2HgVgmj7ncoFA0Lbs2GD5PUaoz4+HkND\nZZo/P3SoYOyLwMZ7TalkGL2EerJCbzqWpwcmisUXAADIIIfDKLM5tGLgC9ueMsU95jmBawLZ7dLe\nvZ3y+bpVXr5HHo9HGzb0yOPxqLx8T9giCoHnrVu3XS+9ZNTWrV719dUmbdJ/OibHR9rv0P1L14IB\nydjXibxGR4dDTuf04yF6ujo6HGH3Bz6fZC9hnsz5UNk+twqFjbMRAIAMsli8am6uVVeXf7GEM8/s\n0xln1GhoyD9sqabGMuY5ob+6NzY2HK8ImYK3eb3+KlFgsYLQ5/X3nxysTnV12VRWlnhXINJKdMma\nHD9e1SfSfodWG5LV6W5pqdL69Z0aGDCrqsqlCy6YG3Z/MvZ1Yq/hG3c7VdWYZM03SvZrAclGMAIA\nIIMCy3OXlQU6yB8LG/7V0XFgzHMiXex0584BOZ1Tgqu0RQoF/urUiJxO/7bLZYzYMZ3IkLRkTY4f\nr3MfK/gk2umOtp+dnQNqbGxRY6P/cZ2dNi1ZMiX4vGTs60Reo7W1Qps3+wO02exVa2tF2P2pqsYk\nc0U4VpdDNiMYAQCyXj5P2J5IBzkQADwer7q6BrV3726NjExXdfVUDQ8Xq6vroBYvHhsK/NWp6erq\n8i/MMGPGfrW1LRjz+Xo8HjmdJ0saG07ivW7RRLjdHm3aFD3gxVrJLdFOd7QQlq3DvU4snS5ZLBqz\ndPpEqjHxfLeSuSIcq8shm2XHNx0AgHHk84TtREOf2+3R0aNH9dxzr2nvXq8aGqZq+vSTNDw8Szt2\ndKiiolpTp36oW29tHfP6paUeVVZ268wzy46/1wKVlJjGTK7fuXObTjvtxHumKxhYrb0aHq4KGeoX\nKeD5V3Lzeo/prbf65HSatHdvr+bMqVFVlSGh0BwtAEUKGNkQzmOFiolUY/L5uwUkimAEAMh62foL\nfjIk2jF9/XWb/uu/HDp8eKHc7kEdOzZNAwN75HJNV3n5R/WRj1SpvLxMnZ0DamszHV8KvF5ms1fN\nzf55ORaLVw6HUVZrr9raaiN8noawrUDlIZXVIsl/XJubq4PzrYqLe9XWdiKhha7ktmOHTXb7qdqx\nY0ROZ4scDpvmz29IqGMfrcISKWAkO0CMDlotLVXq7ByYVPCaSDUmW75b2RA8gfz5ywIAyFv5PGE7\n0nyh0Aulmkzh+9rRcUSHD9drZKRKXq/0t799qI9+1KTDh9/SjBnlKi8/qubmWjkch8IWWxgc9Op/\n/mebhoedOvXU09XcPE1er1FWq00Wi8I+39ZWi0ym9M8D8Q+V6w2bQxPaOQ49D/yPGZHLVSSv16td\nuwbkchlVXn4o7k716ADU0lIV8tlLF110Yqn0ZAeI0UFr/fpONTa2BLfTVbnJlu8WlStkA4IRACDr\n5fOE7dEd0717eyWd6CB3d2+Xx3Ni34eHR1RS4pXLJUkeSRaVlTk1bdosnXRScfCip6Wlx7Rp0xHt\n3XtUIyNHNTxcrOHhepnNh+V0Ttfbb/fIaDTK4zmsxYvLVF6+R0NDgSF2DWOCRaqrRSeY5b+aiPH4\n/p0Qeh7MmLFf9fUL1dU1qPffH5RUpeHhOg0P+yth8XSqR1dYXn55jzZvNsnlksxmhV0nKNkBYnSw\nGhgwBxd7iHR/skSuVGX+u5UtlSsUNs46AEDWS/eE7XiH9SRj+M/o0Ofz1YTd/7e/eTV7doM8Hq+2\nbh3U++8fkslUKmmHTCaXzjqrRCtWnCbJoN27d8po7Dm+gII0PFyvmTMrtX+/UwcOvKumplKddJJF\nQ0PS7t0uzZ7dqPJyl5zOhojLe6ebf6ic/8K0Ho9XHR0fBpctD3y2gfPA7a6W1dojk0nau/c9TZ8+\nV+XlB48v2DCx0NLRcURO50JJktMpdXRs04UX+u+LFs4neg6MDlpVVa4x96fC6MqMf8W9zFdmsqVy\nhcJGMAIAYJR4h/UkY/jP6NAXuIBpgMFQLEnq6hqU0zldNTUflcViUHHxgM45p0j19afLZPL/OT/3\n3Cq1tVXLau3VG28ck8FQpvLyfp1ySommTDmmiy9eePy1bCoq+lDl5UY1N9fK4/Fo06ZDxy+cOnYh\ng3RVi0I7x11d/iqQ/2KtYz/b0M+tslKy22vDXmdiDFG3o4XziZ4DoUGrtPSYmpsrtHXrdkk+tbZW\njFlxLlmytTKTz1Vh5I7s+DYAAJBF4u08pqKTObqDOG9ekSTJ5fL/v8Vi0Pz5DTIajbroIn/VJLQz\n+frrNm3ebNJ773k1MmLURz/qVWtrlcrLGyTZ1NFxRMXFBi1cWKxZs6rU1dWrXbsGVFJSpKGhYg0N\nhS9kMLqD+sc/2lRZqZRMjg/d9+LiXjU1nVh4YbzP1r/fe9TRcUSSQa2tFrndnoTb19pq0ebNJ5YD\nb20de3Hd0SZ6DpSUmIKLOmza5NDwcJWamxtlMplkMtlStvBAtlZmWMYb2YBgBADAKPF2HlPRyRzd\nQTSZuuXx2FRePqDh4aPBCs/evfuPv2f4IgGB4WAzZ9Zq//5evf/+B1q61D9vyGrtVVPT6erqGtTh\nw9Ibb7youXP/TlKFqqtna/fuLs2ePVMul7974HAY9Q93PRdsS3X/2dq6tVhnnjlzUpPjow0/C913\n/2cbvvDCeJ+ZyWTSaaedGAYXCHWJDHM7cZ2gwONj799kzoFAtcnpnKLh4Sp1dfkDaSqrOFRmgOgI\nRgCQgHQuKcvytZkTb+cxFZ1Mt9uj11+3BasfU6cO6sYbzwrp5B/S7t3+hQe8XmOE4Vv+4V9Go0lz\n5jRo6tSB4H0Oh1FdXYMaHPTPO+rrm63q6kE1NVk0NFSs4WGf9u2zqahoQGazV4sWhS9+8MEHZvl8\nH+rMM2dOqvMez/CzRD9bh8MYvOCty1Wk8vKBcS9UGyr8uxYeNCM/5sT3caLnQOjFbD/88JCqqyuC\ngTSVVZzQSlXoku382wIQjABM0OjOW2urReedN3Ylq3yTziVlWb42c+Id1pOM4T+jO9wej0ebN5uC\niwDs2zccXGUt8F4bNkhe74k/4aEhJTAczOHwqa9vUOXlHrW3+6snFotXLleJ9u93yuWaKrPZoMOH\nqyW5VVraI7t9tzyeU1RTUya326C1f9oafN0jHZ/Q8HCV+vp2S5pc5z2e4WeJfrYWi39xCqfTv3jD\n8PBRdXQcinqh2tDPPRA0TaZIQdPPau1VX1/d8eBVoq1bt2vVqgUTPgdCL2ZbXT1Vhw7t0amnHlVl\nZeqrOPzbAkRGMAIwIVZrb1jnbfPmgzKZ4lsiN5elc+Jytk6STlShV75i7f/oTurOndvkcp3oGA8N\nGccc+8DwrUCFpLi4N/jageFgmzYNyGKpUnPzHNntpuDQsq1bt+uddypkNh/RnDlzdfjwLvl8ZlVV\nuXTGGWfJYPC3xWbbLYVMsTEYXCov/1AzZw6psnLs3KNEpGIIYltbrTZt2qniYu/xi9nWavfugTHv\nGxD6uff3Sw7HYHBFvEjftUC1LRC8+vvdwcAazzk++jEDAz41N9cFL2Z76qlHdfvtp6Xlu5Ev/7YA\nycY3AcCEOBzG49dR8XO5igrij2s6Jy5n6yTpRKXy1+lcCF2x9n/s98Ygs9krp9O/VVrqHXPsA8O3\n3nijX++/P6Kamhq98caJ6+4sWeKfp+L1nlh+2+EwqqTEpFWrFkjarv7+CpnNA/r4xxeopqZXDke1\nHI4T77vfsj34XM+O0+XzHVRjo0FXXDFz0scvFUMQS0pMOvfcatntJ/Y52oVq/cPYDsnp9F9I1mj0\nyOWaFnxe6OcdOMe2bx/Qrl3FmjlzqoxGk8xmb/DYxXOOj37Mvn2damycHbzuVGWlN23nbr782wIk\nW/73YgCkhMXildmsYCfKbB4piD+u6Zy4nC+TpFP563QuDAmKtf+jO6n+ldA86ujYJsmg2bN71NY2\nL+w5geFbmzYdUm3tmZLGXncnWuc3EI5OBMre4JyT5ubaYAUjVF1duYqK3DrllEqZTOHzjqTEA2qq\nViAb+50ZO7zX7fZo3brtevvtao2MGFVfP13l5d2aMWOPjEb3mO9a4BxraqrTu+/u1YEDOzV3brWa\nm2tlsfRKiu8cH31bY2OtKisz8/3Ol39bgGQjGAGYkLa2Wnk8tmDnrbXVkrLrbiRLMqoLyerQhbal\ntPSYJP/FLaOt0JXMfUi3VP46nQtDgmLtf7TOfCDgdHQMjXOMT1xnx+v16L337NqwwX9B1JaWKnV2\nhnd+oy0y4HZ75PF4tHv3LhUX+9Rx5L3g604/WC2jyaaZM+slRf6MJxNQk3lOx/P9tFp71d9fr5kz\nZxy/8G235s1zBOcLjRbYX5PJqOXLG7V7904tWHAiUErxneOjH1NZqYyFeJbGBiLLvr8gAHKCv+N2\ncrDzlguyqboQ2patWw9Kcmn+/MgXsoz2vEzvQ7xS+et0LgwJStb+RwoQZ5xRqv/6rx1yOEp15MiH\nam1tCl4QtbNz7Lnhv3js2PPHau2V03lycKGC1w6cCEalpfVyucwyGBrkdPqHgEmzw153MgF1vHM6\n0dAUz+MdDv/wueHhYs2ZM1XFxcM691xT1NcNPcdMJqPOPbdKS5bUhT1m9MVaPR5pw4Ye2Wx2LVzo\nr7B5PB7t3Jk7PyQBhYhgBEAOx1GtX79LAwP+Cdg33DBXFsuUTDcr6TJdXQjttG3fPqCmpjqZTMbj\nF+6MvMLYaJneh4lI5a/TuTAkKNb+xxN2A8O/+vvrgwsLWK29MhgMksySSuTxWGQ4UUCKazhXYHtg\nwKe337bJ4fBp67GO4P03Lr5EnZ2H1d19SMXFAzKbR9TYeGKeTviqbtNlMiW+3PR453SiPwTE83iL\nxRs2ZHDGjP1qa1sQ9TXjOcdCj3Fo+Dxy5IisVv9wu9DgGbiAay5WgIF8lv1/UQGk3Pr1u9TT0yJJ\n6umR1q/v1K23tmS4VcmX6epCaKdteNi/mtj8+dNlNo9IOtGW8dqVqn3I1Q5aPgwJiifs+od/nazh\n4SoNDnr1P/+zTbNnm7V//yFVV7epttYoo7FI77/vUcvxr26kc6O09Ji2bvUHgtDrFO3b1yens0Uf\nfGCTZpx4fFdXr0pLjSopcUiaKsmr8nJPsE2B87m+vlr7929TU1N9zIA6+lwrLfXIG9LU0HYn+kNA\nPI8PzKcqKwuc65GH0AUkeo4lMt8oFyvAQD4jGAHQwIB53O18kYnqQrQqkX8p4Z0yGr1atCgwx6gn\nZrtStQ/JHM6ExMQTdv3Dv0bkdEr79w/q2LE6Sce0e3eZjEabWlpmq76+Vnb7/8poNMc4N8ySAlVK\nj9xujxwOqbv7HR2a8XbwUW1VbXr33XdVVDQin69SXm+gOuUJtinAZDKpqaleK1aEDzGLZPS5Vl6+\nJ+oiBIn+EBDP41Mdpi0Wr/r6/D98vPfekEymI5o3rypi+Mu1CjD/FiDfZfc3EEBaVFW51NMTvp0M\n2fZHNBPVhWhVIpPJv7Tw6LkKsaRqH6J10Nxujx59tFNbt1ZIMqqpqSS4JDSSI56wa7F4NWeORU8+\n2amdOz3yenvU1na6ampq1Ndn14ED72nu3Cm6+OI5uvDCupALMDsk+dTaWqHzzmvQ0FBZ8Fo9kjQ0\n5JXV2iuvt14jI2WSTgQjo3FYp556ugYHversdOn9999XU5NFzc3lwTb5r6XkUVdXr4qLB+L6no8+\n14aGynThhZG/B4n+EBDt8ZP9tyje5wcWsXjhBevxC+geVn39Ikm2iOEv01XsRFHhQr4jGAHQDTfM\n1WQh/XIAABazSURBVPr1nWFzjJKBP6LhncDQKlGqK1ahHbnABPDxOoLROmhWa6+2bi3T0aOnS5Le\neeewSkv35tSiG9ku1uqDNptdV199un7729d14EC5pBJJ5+idd4Y1f75XTU1ezZ7t1eLFCk7o91+A\nuUJO58mSpI0b9+jtt7fr2DGjhoeNam6eJpPJ30kPnKOHZrwSfP/FNSeruHhATU2naf36t+V0niHJ\nLLu9Tq+99oquuOLkYAjZtOmQvN5aeb01eumlEm3duj3qCm9SYmEg0R8Coj0+3n+LAp+73S7t3dur\nOXNqVFVlkMfjCX6W4z0/sIhFXd00DQ9XyW63ymQyRQ1/uTBHLlSuVbiARHFGA5DFMiUlc4r4Izp6\nRauJVYkmIrQjGJgAPl4Hs6WlKiwcX3CBPxz7j9mJGf1ud1HYNiYvUjXi9ddt2rzZJJdLOnjQoo98\npFdHj07RlCmnqrR0unp6emW398tkKtby5f4LtAbmzviHbR6Sw1EXXIxh926HGhtP1hlnWPT22za9\n8MJOfeQjU9XaWnF8js+0sDadeebM4+euUVOmTJPDcVhFRYdkNhs1bVpN2GNdLqO6u/tVXd0so9Gk\n/n73uOdbusJAtGGsUvR/iwLfmx07DsrpbJHDYdP8+Q3auXNbcOGE8Z4fuD0w7NHl8ofDaOEv1+bI\n5VqFC0hU4fVSEFW2DXtC7uOPaOZ+EU40lHZ2DqixsUWNjYFtm5YsmSKLxaumJoveeeeg3O4iTZ16\n6PgFSJEskaoZHR1H5HQulCQdOzasjo6DMpkMMpm8koyaMaNaDsdOFRVN0f792/XJT84dNWzTqL6+\nA6qtDZxvPpnNIzKZTDIaTaqrm6fTTquS0+mf49Nx5LVge25cfEnIRV9tqqrqVmmpUfX1p8poNKmm\nZl9Yu00msw4fLpXL1as5cxpkNnvHPd/SFQaiDWOVov9bFGi3f6VIhVzoNvzHAIvFG/FvZuDfvObm\naerqOqiysg9VWWmLcA2p3Pwbm2sVLiBRBCMEMewJycYf0cz9IpxoKI0WpAIX8i0t3a/A9VfOO49/\nF5Jp9Gc/MOBTV9chvf/+3yQZVVJyRE1NBn32s3V66qkj2rNni9zuQZ17boMuvbRJJpMxeCHXgObm\naZK6VVy8XZJPZ555THPm+KtC/hXpRoKPHRoqC3v/QNAKnLvz51v0ne9sUXe3TdOnO/XP/3xWWLub\nm6fp3Xff0969h1RUNKCmJotKSz0JfQbRQsNkwsREhrEGvjeBio/Z7P/enHFGqd55J7yiGulv5ujK\n65VXVkZcxjtX/8bmWoULSBTBCEEMe0IkbrdHnZ129fb2JNwx4Y9o5oSG0oqKvWpr+8S4j48WpLLl\nQr758Gt7NKM/+337+iSVa2SkUV6vQUeP7lVZ2RH93d/Vq6trlxoby7R//zFdcMHJYUPDRl+IdPHi\nGaNWFuyRw+G/bk99/cLg+z364qbgf686/3JJJyqGkrRjh0MXXXRB8DE7dti0ZMm04PuZTEadfPI0\nFRd7NGtWvYzGEUlHEvoMov0wN5kf7CYyjDXwvZk/X9q7t1Nz5tSostImj8c0pqIa6W/m6Mrrrl0v\nacmSE/ePfjyA7MK3EkG5NOwpnztJ2cZq/f/t3X1QVGX/x/HPsgsJiOKGbKHIdJNY6q9iyEGH0PmZ\nmTbd08OUNqZMTU0Fls7YZI1plOV0p/50nNJGZ+ofmh6khsJmshpHq5HCEZ91jCkfwQDlwYBVFDi/\nP7h3cWlZHmThLOf9+kfcc3b32r3Od/f6nu+5rq1SfX2SmptdIXuW04quTUpLSsq6jA+zV/cGc0W7\nY5UhIcGpigqHrly5pCtXwtTQUK/k5ATvoDshoVllZb/ru+/+0rhxMUpJGa7Y2OaAfRgREe6dg5SQ\nMEI///yLhg8fqZEj/Vd2rh20+xvQe1ZfO368rSJlt1/V/ff/j8LD246zpqaefX80NDi8q9tdvuxQ\ndHSN0tPjryuZ6M0x7Xsyp/34+u67Sp/9OiaiknwWsvBwuyN8tofKdyxgVSRG8DL7wOhag3mQZDac\n5bQGs1f3Ai0nHuonSTpWGU6f3q+hQ+M1ZkzbfJi6ugjFxra/5tLSi3I6U1RRcVyXL0fq3LnDevDB\niV32oedzs7S0WjEx/6vIyHJ9f3Kvd7unWiT5zqE5cqTmHyvZeVZf8yxIcPr0fm9S5Ll/Twwd2qyD\nB6vU2Ng+R6q4uEpDh6rXyURfHtP+khp/35meFe08oqKueP8Ope9YwKoY4cDL7AOjazFY7z8dByKD\n6SznYBhUW0Wg5cRD5SRJZ8dbx8+vMWNGaujQqyopOSzJptGjK5WePt476L58OUwOR7jGjXNqwgSX\nHA5167jtfGGBNh1/Z8fz3iYnx6u0tEp//vmXJk8eofT0eO3YUeNz36Sk+E5/pLU70tPj9dtvv8tu\nj9KQIa1KSRmuhoZm3Xuv0xTJhL+kxt93Zsf9Ro5sX6gklL5jAasK+miysLBQH330kRwOhxYtWqRp\n06Z5t1VUVGjJkiVqbm7W+PHj9eabbwa7ORgkuCSh/6Snx+v333+WwxETsmc5OxuQBmNQTbLV9zpe\ntpWWFuP9vZ5QOknS2fHW8fNsxAibMjPb53WVlDRdcylcuaKja9XS4lZKSvuPhHaH53kcjiadPFmu\nmrj2atG2/3voH/t73svw8HBNmDBKDofDO0enY5ujo69K6v1xHhERrsmTR6iuboRPe82STHS3HR33\nKympCGazAPSxsGA+eF1dnTZu3KjPP/9cmzdv1o4dO3y2/+c//9EzzzyjrVu3ym63q6KCDxB0T3p6\n29lJh6PSuxQqgiMiIlwTJw71Xj9fXFylK1d6tuLUQPMMSNvmSbVN6JaCM6ju7LnQe+2XbU3Ubbe1\nzWPxJJuhVNEMtPJfdz7PPIPuxYvHKSNDioys6dHnX/vz/KUhQy53uX+g97ZjmyVd93HP5zqAgRbU\nU2tFRUXKyMhQZGSkIiMjtXLlSu82wzBUUlKi9evXS5JWrFgRzKZgkDHLWUSrOHKkQS6X75nua39M\n0uyVkc4GpMGoPIZSBSNUBHpPQ2neRqCV/3ryedbbzz/P/RoaHNp9vn0lupwZk/3u7++99a2ISvfe\n61RERLjfxQl62z4AGChB/cYuLy/XpUuXlJ2drfr6ei1cuFBTpkyRJNXU1CgqKkqrVq3SsWPHdPfd\nd2vJkiXBbA6AXrp2ZSVJ3spRqMzt6GxAGoxBNZd59r1A72koDaaDcbx5EpXaWkNnzpz/71wfBTxR\n0d0qm7/3trPf4unL457LUQEMFJthGEawHnzLli3av3+/Nm3apLKyMmVlZWnnzp2SpAsXLui+++7T\ntm3blJCQoOeee04LFizwmYPUUUlJSbCaCiCA/fvrVF+f5P1/TMxpud0Ramm5WZLU3NyisrKTSk6O\nVlTUFU2cONT7+ypmcPVqs44caZDbHRH09vXnc1kF72nnPLF54kS1Ll1KVGTkef3rX9GKiTmt1NRY\nv/d589My798P3T60R+/n7t1ub9xLkmGc1bBhrfr77zBVVv4tl2u4hg1rua4+8vd509lrAYDOpKWl\n9fg+Qf1miYuLU2pqqmw2mxITExUdHa2amho5nU6NGDFCo0aN0ujRoyVJU6ZM0R9//BEwMZJ69yJh\nDiUlJfRfH+uvM6tXrxbr6tXIa55nqk/F6OjRat1881Ddcsuo/+5frsmTzXUWf7L/q4VC/rm6YzDE\nntne0/4UqP+qqirV3OzSxYsxamlxyW6P1K23jpDDEaO0tE5+zPSaxOjZZ+/tUVvc7vaKkSSdPl0v\nlytVLpc0dmzbynbXW8HzvCaPgK/F5AZD7FkZ/Re6eltMCeriCxkZGSouLpZhGKqtrZXb7ZbT6ZQk\n2e12jR49WmfOnJEkHT16VLfcckswmwMMOv010T883KHMzFGaPdulzMxR3hWyPBOl7fZz3hWyJObV\nAP3Fc8nakCGef1t9bu/o3y9/4/3b30p0Xem4QEJSku/lgH0R+6G0oAaAwSWooxeXy6X7779fc+bM\nkc1m04oVK1RQUKCYmBjNmDFDy5Yt02uvvSbDMJSSkqLpnrVJAXTLQE70v3b+Qdv8gt7/uONgwdwI\n9DfPvKXx4w2dObPf+3tCwVqEouO8o7Y5R+3b+yL2Q2lBDQCDS9BHUXPmzNGcOXP8bhszZow+/fTT\nYDcBGLTMMtGfgUybUFqQAoODb6IyOuC+11st8icYsR+MBTU4aQGgO7jeBQhhZklIQmllsGBiqW5Y\nTajEPictAHQH39pACAuVQYlVmKWCB3QUjGpRKOGkBYDuCOriCwBgJR0nplv1kkLAbFjQAUB3cMoE\nAPoIFTyYkdWrRZJ5LjsGYG4kRgAAYFDjpAWA7uBSOgAABimqRQDQfSRGAAAAACyPxAgAgEGIahEA\n9AyJEQAAAADLIzECAGCQoVoEAD1HYgQAAADA8kiMAAAYRKgWAUDvkBgBAAAAsDwSIwAABgmqRQDQ\neyRGAAAAACyPxAgAgEGAahEAXB8SIwAAAACWR2IEAECIo1oEANePxAgAAACA5ZEYAQAQwqgWAUDf\nIDECAAAAYHkkRgAAhCiqRQDQd0iMAAAAAFgeiREAACGIahEA9C0SIwAAAACWR2IEAECIoVoEAH2P\nxAgAAACA5ZEYAQAQQqgWAUBwkBgBAAAAsDwSIwAAQgTVIgAIHhIjAAAAAJZHYgQAQAigWgQAwUVi\nBAAAAMDySIwAADA5qkUAEHwkRgAAAAAsj8QIAAATe/PTMu/fVIsAIHhIjAAAAABYHokRAAAmxdwi\nAOg/JEYAAAAALI/ECAAAE6JaBAD9y2YYhjHQjeiukpKSgW4CAAAAAJNLS0vr8X1CKjECAAAAgGDg\nUjoAAAAAlkdiBAAAAMDySIwAAAAAWB6JEQAAAADLIzECAAAAYHkkRgAAAAAszzHQDehMU1OTHnzw\nQS1cuFAPP/yw9/bp06crISFBNptNNptNa9euVXx8/AC2FNfas2ePFi9erLFjx8owDI0bN07Lly/3\nbi8qKtL69etlt9s1depU5eTkDGBr0VFX/Uf8mVthYaE++ugjORwOLVq0SNOmTfNuI/bML1D/EXvm\n9uWXX+qbb76RzWaTYRg6evSo9u3b591O/JlXV31H7Jmb2+3Wq6++qosXL+rq1atauHCh7rnnHu/2\nHseeYVLr1q0zHnvsMaOgoMDn9unTpxuXLl0aoFahK8XFxcaiRYs63f7AAw8YFRUVRmtrqzFv3jzj\njz/+6MfWoStd9R/xZ161tbXGzJkzDbfbbZw/f95YsWKFz3Ziz9y66j9iL3Ts2bPHWLlypc9txF9o\n8Nd3xJ65ffLJJ8a6desMwzCMyspKY9asWT7bexp7pryU7sSJEzp58qTP2TIPwzBk8Ju0ptZZ/5w9\ne1axsbFyuVyy2WyaNm2afvvtt35uHboSKL6IP/MqKipSRkaGIiMjFRcXp5UrV3q3EXvmF6j/JGIv\nlGzcuNHnrDTxFzo69p1E7Jmd0+lUbW2tJOnixYtyOp3ebb2JPVMmRqtXr9Zrr73W6fbc3FzNmzdP\n69at68dWobv+/PNP5eTk6Mknn1RRUZH39gsXLvgcsE6nU1VVVQPRRATQWf95EH/mVF5erkuXLik7\nO1vz58/Xr7/+6t1G7JlfoP7zIPbM7/Dhw7r55pt14403em8j/kKDv77zIPbMa/bs2aqoqNDMmTOV\nlZXlkz/0JvZMN8fo66+/1qRJk5SQkCDpn2evFy9erMzMTMXGxionJ0c//PCDZs6cORBNhR9JSUl6\n8cUXNXv2bJ09e1ZZWVn68ccf5XD881DjDIz5dNV/xJ95GYahuro6bdq0SWVlZcrKytLOnTs73Rfm\n0lX/EXuhIT8/X48++mjAfYg/c+qs74g9cyssLNRNN92kLVu26Pjx41qxYoXy8/P97tud2DNdxein\nn37S9u3bNXfuXOXn5+vDDz/0OXP20EMPyel0KiwsTFOnTlVpaekAthYduVwuzZ49W5KUmJiouLg4\nVVZWSpLi4+N1/vx5776VlZVMYDSZQP0nEX9mFhcXp9TUVNlsNiUmJio6Olo1NTWSiL1QEKj/JGIv\nVOzZs0epqak+txF/ocFf30nEntnt27dPmZmZkqTbbrtNFRUV3gSoN7FnusRo/fr1ys/P1xdffKHH\nH39cOTk5mjJliiSpoaFB8+fPV1NTkyRp7969Gjt27EA2Fx1s27ZNH3zwgSSpurpaNTU1crlckqRR\no0apsbFR586dU3Nzs3bt2uWzcggGXqD+I/7MLSMjQ8XFxTIMQ7W1tXK73d5LCIg98wvUf8ReaKiq\nqlJ0dPQ/rpAg/syvs74j9swvKSlJBw4ckNR2SXJUVJRsNpuk3sWezTBxTfeDDz7Q6NGjZRiGYmJi\nNGPGDOXl5emrr75SdHS0br/9dp+lhDHwGhsb9fLLL+vixYsyDEM5OTmqrq729t/evXu1du1aSdKs\nWbP01FNPDWyD4aOr/iP+zG3r1q3Kz8+XzWZTdna26urqiL0QEqj/iD3zO3r0qDZs2KAtW7ZIkgoK\nCoi/EBGo74g9c3O73Vq2bJmqq6vV0tKixYsX69y5c72OPVMnRgAAAADQH0x3KR0AAAAA9DcSIwAA\nAACWR2IEAAAAwPJIjAAAAABYHokRAAAAAMsjMQIAAABgeSRGAIB+sWfPHs2bN++6H6egoEAZGRnK\nysrSggULNHfuXL3//vt+9/3ll1+0efPm635OAMDg5+h6FwAA+obnF8mvV0ZGhlavXi1Jam5u1vz5\n83XHHXdo2rRpPvtlZmYqMzOzT54TADC4kRgBAPrdqVOnlJubq9bWVrW2tmrJkiVKS0vTqVOntHTp\nUt1www2aNWuW3n33XR05ciTgYzkcDqWmpurEiRO69dZb9cILL2jcuHFKTk7WTTfdpKKiIq1Zs0YH\nDx7Uu+++q/DwcMXGxuq9995TVFSU1q9fr3379qmpqUmTJk3SK6+80k/vAgDATLiUDgDQ795++209\n+eSTysvLU25url599VVJ0vvvv69HHnlEeXl5ioiIUEtLS5ePVV9fr927dystLU2SdPLkSb300kvK\nzs6W1F6lWrp0qVatWqW8vDxNmjRJu3bt0vbt21VZWam8vDxt3bpVp0+f1q5du4LzogEApkbFCADQ\n7w4dOqQNGzZIklJSUtTY2Kja2lqVlpbq+eeflyTNmDFDb7zxht/77969W1lZWTIMQ3a7Xc8++6zu\nuOMOlZeXa/jw4UpKSvLZv7a2VvX19UpOTpYkZWVlSZLeeustHThwwPtYjY2NKisrC9bLBgCYGIkR\nAKDfdZxrZBiGwsLC1NraqrCwMO9tnbl2jlFH4eHhfp/PX/UpIiJCc+fO1dNPP92T5gMABiEupQMA\n9Lu77rpLP//8syTp2LFjio2N1fDhw5WcnKzDhw9Lknbs2NGrx/aXUMXGxsrpdHrnK3388cf67LPP\nlJaWpu+//96bNG3cuFFnzpzp1fMCAEIbFSMAQL9bvny5cnNz9fnnn6ulpUVr1qyRJOXk5Gjp0qUq\nLCxUZmam7HZ7jx+7s5Xv3nvvPb3zzjsKDw/XsGHDtHr1akVHR+vgwYN64oknZLfbNWHCBCUmJl7X\nawMAhCabEehaBQAA+tGRI0fU0tKiO++8U4cOHdKyZcv07bffDnSzAAAWQMUIAGAaQ4YM0euvvy67\n3a7m5mbl5uYOdJMAABZBxQgAAACA5bH4AgAAAADLIzECAAAAYHkkRgAAAAAsj8QIAAAAgOWRGAEA\nAACwvP8HPsMxM4K+9LMAAAAASUVORK5CYII=\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "combined = (linreg_r2(data['Total area'], data['log Price'],plot=False)[1]\n", - " + linreg_r2(data['Number Of Stories'], data['log Price'],plot=False)[1]\n", - " + linreg_r2(data['Year Built'], data['log Price'],plot=False)[1])/3\n", - "\n", - "plt.scatter(data['log Price'],combined, alpha = 0.3);\n", - "plt.plot(data['log Price'],data['log Price'], label='Y=X **not model**')\n", - "plt.ylim(6.5,7.5);\n", - "plt.xlabel('log Price');\n", - "plt.ylabel('Predicted log Price');\n", + "plt.scatter(data[exog],combined, alpha = 0.3);\n", + "plt.plot(data[exog],data[exog], label='Y=X **not model**');\n", + "plt.xlabel(exog);\n", + "plt.ylabel('Predicted %s'%exog);\n", "plt.legend();\n", "\n", - "print 'rsquared:', np.corrcoef(combined,data['log Price'])[0][1]**2" + "print 'rsquared:', np.corrcoef(combined, data[exog])[0][1]**2" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "By taking a simple equally weighted average of all the models we saw $R^2$ increase to 18.6%. While still indicative of a poorly fit model, the result is still interesting considering the $R^2$ values of the individual single-dimension models were 1.9%, 5.6%, and 16.9% respectively. The $R^2$ of the combined model was higher than any of the single models alone.\n", - "\n", - "Simply averaging the model outputs ignores some of the interplay between variables which can be better captured by using a multiple linear regression. Let's run a single multiple linear regression model on the pricing data:" - ] - }, - { - "cell_type": "code", - "execution_count": 181, - "metadata": { - "collapsed": false, - "scrolled": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "rsquared: 0.188016012536\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0YAAAHsCAYAAAD2PL25AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3X98m3W9//9n1qRL1xbSbmtdCys4KJMOP5Zy6Dhj/Bhw\ndob8UM5AbqiIH44I6FE/wlFABARBfh6OHuHovgLT89HDV/GMDWWoDJECLoOyA904UBmwsZS129qM\nJVvWpMvnj5o0aZPmR3Pluq7kcb/dvHldTZO8misZ72de1/V+O6LRaFQAAAAAUMammV0AAAAAAJiN\nYAQAAACg7BGMAAAAAJQ9ghEAAACAskcwAgAAAFD2nGYXkIvu7m6zSwAAAABgcR0dHTnfx1bBSMrv\nj4Q1dHd3c/xsimNnbxw/e+P42RfHzn4OHozq/H9eE99/4r7zTawG+cq3mcKpdAAAAICUFIpuueQw\nEyuBGQhGAAAAKHv7QmGzS4DJCEYAAAAoe5/61pPxbU6hK08EIwAAAJS1HbuDZpcACyAYAQAAoKx9\n4Y6n49t0i8oXwQgAAABlq+etXfHtow471MRKYDaCEQAAAMrWDf/+Qnz7/v9zmnmFwHQEIwAAAJSl\ntX9+N7597uIPm1YHrIFgBAAAgLL04GOvxrev+MRxJlYCKyAYAQAAoOwkhqKvfupjJlYCqyAYAQAA\noOwknkZ35oktptUB6yAYAQAAoKx86Z5n4tt3f3mxiZXASghGAAAAKCvbduyNb3/kyHoTK4GVEIwA\nAABQNs69ZnV8++Eb/87ESmA1BCMAAACUpdl1VWaXAAshGAEAAKAsJHaLfnXHx02sBFZEMAIAAEDZ\ncU93ml0CLIZgBAAAgJKX2C1afc95JlYCqyIYAQAAoKRFo9Gk/WnTHCZVAisjGAEAAKCknXftmvj2\nE/edb2IlsDKCEQAAAEpWOHLQ7BJgEwQjAAAAlKwLvvlEfJtuESZDMAIAAEBJ8u89YHYJsBGCEQAA\nAErSZ295Kr5NtwiZEIwAAABQct7p2xPfrp3hMrES2AXBCAAAACXnK/c9G9/+xW1nm1cIbINgBAAA\ngJLy4mt98e2TjptjYiWwE4IRAAAASsr3fvpSfPuGy040sRLYCcEIAAAAJeM/f/dGfPtzHz/WxEpg\nNwQjAAAAlIxf/P7N+PbyJUebWAnshmAEAACAkvCdn6yPb3/7f3eaWAnsiGAEAACAkvDy//THt09s\n+5CJlcCOCEYAAACwvX+47jfx7R/+8+kmVgK7IhgBAADA9obDI/Htlg8dYmIlsCuCEQAAAGzt3GtW\nx7d/fusyEyuBnRGMAAAAUDIOqa40uwTYFMEIAAAAtpXYLVp197kmVgK7cxr54I899phWr14th8Oh\naDSqzZs365VXXpnwe/fdd5/++7//W//xH/9hZDkAAAAoYc4KvvNH/gwNRsuXL9fy5cslSS+99JKe\neuqpCb+zZcsWvfzyy3K5XEaWAgAAgBKT2C164r7zTawEpaBosfqBBx7Q1VdfPeHnd911l6655ppi\nlQEAAIAScPBg1OwSUGKKEox6eno0Z84czZw5M+nnq1at0kknnaQ5c+YUowwAAACUiPP/eU18m24R\nCsHQU+lifvWrX+mCCy5I+tmePXu0evVqPfzww+rr61M0ml3q7+7uNqJEFAnHz744dvbG8bM3jp99\nceyMsX/4YNK+Ua8zx6+8FCUYbdiwQTfddFPSz9avX6/du3frkksu0YEDB/Tee+/pzjvv1HXXXTfp\nY3V0dBhZKgzU3d3N8bMpjp29cfzsjeNnXxw74xTj2iKOn33lG2gND0YDAwOqrq6W05n8VEuXLtXS\npUslST6fT9dff33GUAQAAIDytm3HB2aXgBJl+DVGO3fuTLq2aNWqVXr66aeNfloAAACUoC/d88f4\nNtcWoZAM7xi1tbVpxYoV8f1PfvKTE36nublZP/vZz4wuBQAAADb2557349sOh4mFoCSxChYAAABs\n4Y6VG+Lba+6lW4TCIhgBAADA8n7+1Bvx7RM+0mhiJShVBCMAAABY3qN/eDO+ffM/LjSxEpQqghEA\nAAAsLXF67kvP/oiJlaCUEYwAAABgGxee0Wp2CShRBCMAAABYVmK36MsXfszESlDqCEYAAACwhaUL\nW8wuASWMYAQAAABLSuwW3f9/TjWxEpQDghEAAAAs76jDPGaXgBJHMAIAAIDlJHaLfnHbMhMrQbkg\nGAEAAMDSamdUml0CygDBCAAAAJaS2C1afc95JlaCckIwAgAAgGVEo9Gk/WnTHCZVgnJDMAIAAIBl\nnHftmvj2E/edb2IlKDcEIwAAAFhC6EDE7BJQxghGAAAAsIQLb/htfJtuEYqNYAQAAADTbR/Ya3YJ\nKHMEIwAAAJjuqrueiW/TLYIZnGYXAAAAgImGh8PyegcUCDhVUxNRZ2eDKitdZpdliD/39JldAkDH\nCAAAwIq83gH5/c2KRBrl9zfL6x0wuyTD3LHypfg23SKYhWAEAABgQYGAc9L9UvH/re4xuwRAEsEI\nAADAkmpqIpPul4o1z70d36ZbBDMRjAAAACyos7NBHo9PTme/PB6fOjsbzC6p4C6//Q/x7Q83HWpi\nJQCTLwAAAFhSZaVLixc3m12GoQYG98W3v3/NaeYVAoiOEQAAAExw7jWr49sXndlqYiXAKIIRAAAA\nTPXZZR8xuwSAU+kAAACQv3zWW0rsFt38jwuNLhHICh0jAAAA5G2q6y2d8JFGgyoDckMwAgAAQN5y\nXW8psVv0k2+dZUhNQD4IRgAAAMjbVNZbaqyfUehygLwRjAAAAJC3XNZbSuwW/frOc4pRHpA1Jl8A\nAABA3vJdb6nSVWFANcWXz+QTsCY6RgAAADBcYrfoifvON7GSwprq5BOwDoIRAAAADDUyctDsEgyT\n6+QTsC6CEQAAAAz1iW88Ed8upW6RNLXJJ2AtBCMAAAAYZufQfrNLMFQuk0/A2uj1AQAAwDD/+7u/\nj2+XWrdIyn/yCVgPHSMAAAAY4oVX+8wuAcgawQgAAACGuPNnL8W3S7FbhNJCMAIAAEDB/eujr5hd\nApATghEAAAAKbt1L78W36RbBDghGAAAAKKjExVwBuyAYAQAAwDB0i2AXBCMAAAAUTGK3qLrKZWIl\nQG4IRgAAADDEo9892+wSgKwRjAAAAFAQid2i8075sImVALkjGAEAAKDgvnD+cWaXAOSEYAQAAIAp\nS+wW3fKFhSZWAuSHYAQAAICC6pjfaHYJQM4IRgAAAJiSxG7RT29eamIlQP4IRgAAACiY+kPcZpcA\n5IVgBAAAgLwldosev+c8EysBpoZgBAAAgLxEo9Gk/YppDpMqAaaOYAQAAIC8nHftmvj2E/edb2Il\nwNQRjAAAAJCz4P6w2SUABUUwAgAAQM4uvvHJ+DbdIpQCghEAAABy8sbWQbNLAAqOYAQAAICc/PMP\nuuLbdItQKghGAAAAyNp//fEvZpcAGIJgBAAAgKw98pvX49t0i1BKCEYAAADIylf/5VmzSwAMQzAC\nAABAVt727Ylv0y1CqSEYAQAAIKNzr1ltdgmAoQhGAAAAyAndIpQighEAAAAmldgt+nDzoSZWAhjH\naXYBAAAAVjU8HJbXO6BAwKmamog6OxtUWekyuyxTff/rp5ldAmAIOkYAAABpeL0D8vubFYk0yu9v\nltc7YHZJRZfYLfr8OW0mVgIYi2AEAACQRiDgnHS/3Fxw+lFmlwAYhmAEAACQRk1NZNL9UpfYLbr3\nK4tNrAQwHsEIAAAgjc7OBnk8Pjmd/fJ4fOrsbDC7JNMc01JvdgmAocq7HwwAADCJykqXFi9uNrsM\nUyR2i/7/2882sRKgOOgYAQAAYFIz3OU9Ex/KA8EIAAAASRK7RSzminJBMAIAAEBcOHLQ7BIAU3CN\nEQAAAOIu+OYT8W0jukUsmguromMEAAAASZJvZ8Dw52DRXFiVoR2jxx57TKtXr5bD4VA0GtXmzZv1\nyiuvxG9fv3697r//flVUVOjII4/U7bffbmQ5AAAAmMSVd66Lbxt1bRGL5sKqDH0nLl++XMuXL5ck\nvfTSS3rqqaeSbr/55pv1s5/9TI2NjfrqV7+q5557TqeccoqRJQEAACCF363fWpTnqamJyO9P3ges\noGin0j3wwAO6+uqrk37261//Wo2NjZKk+vp6+RM/JQAAACiaH/7qv+PbRs5Ex6K5sKqi9C57eno0\nZ84czZw5M+nnNTU1kqSBgQG9+OKL+trXvlaMcgAAAJDghgdfKNpzlfOiubA2RzQajRr9JDfddJPO\nPfdc/c3f/M2E23bv3q0rrrhC1157rU466aRJH6e7u9uoEgEAAMrWLb/YPrZ9yWEmVgIURkdHR873\nKUrHaMOGDbrpppsm/DwQCOgLX/iCrrnmmoyhKCafPxLW0N3dzfGzKY6dvXH87I3jZ192OXaJi7lK\njLVi7HL8MFG+zRTDrzEaGBhQdXW1nM6JGezOO+/U5z//eS1atMjoMgAAAJCBkdcWAVZneMdo586d\nSdcWrVq1SrW1tTr55JO1Zs0abdu2Tb/85S/lcDh07rnn6sILLzS6JAAAAGhitwgoZ4YHo7a2Nq1Y\nsSK+/8lPfjK+/dprrxn99AAAAMgC3SKUu6JN1w0AAADrSOwW/e1H55hYCWANBCMAAIAyd/3nTjS7\nBMB0BCMAAIAyk9gt+sZnTzCxEsA6CEYAAABlbPHHWGwVkAhGAAAAZSWxW/TQjWeZWAlgLQQjAACA\nMtVQN8PsEgDLIBgBAACUicRu0eP3nGdiJYD1EIwAAADKQDQaTdqvmOYwqRLAmghGAAAAZeC8a9fE\nt1nMFZiIYAQAAFDi9gQOmF0CYHkEIwAAgBL3mZufim/TLQJSIxgBAACUsA2bd5hdAmALBCMAAIAS\ndtvD3vg23SIgPYIRAABAibrv591mlwDYBsEIAACgRD37yvb4Nt0iYHIEIwAAgBKUuJgrgMwIRgAA\nACWObhGQGcEIAACgxNAtAnJHMAIAAChhdIuA7BCMAAAASgjdIiA/BCMAAIASRbcIyB7BCAAAoEQk\ndovOWXSkiZUA9kMwAgAAKEFfvOCjZpcA2ArBCAAAoAQkdovuuGqRiZUA9kQwAgAAKDHHHTXL7BIA\n2yEYAQAA2Fxit+jR755tYiWAfRGMAAAASkh1lcvsEgBbIhgBAADYWGK3iOm5gfwRjAAAAGwqHBkx\nuwSgZBCMAAAAbOqCb/4mvk23CJgaghEAAIANbX3/A7NLAEoKwQgAAMCGvnzvH+PbdIuAqSMYAQAA\n2Mx//fEts0sASg7BCAAAwGYe+c3m+DbdIqAwCEYAAAA2cvntfzC7BKAkEYwAAABsZGBwX3ybbhFQ\nOAQjAAAAm0hczBVAYRGMAAAAbIhuEVBYBCMAAAAboFsEGItgBAAAYDN0i4DCIxgBAABYXGK3qHl2\njYmVAKWLYAQAAGAjP7ruDLNLAEoSwQgAAMDCErtFX/zkcSZWApQ2ghEAAIBNnHPyh80uAShZBCMA\nAACLSuwW/ZhT6ABDOc0uAAAA5G54OCyvd0CBgFM1NRF1djaostJldlkwUBOTLgCGyqpjNDQ0pJ6e\nHknSwYMHDS0IAABk5vUOyO9vViTSKL+/WV7vgNklocASu0WP332uiZUA5SFjMPrNb36jT33qU7r+\n+uslSbfddpt+9atfGV4YAABILxBwTroPe4tGo0n7FRVc/QAYLeOn7JFHHtHq1atVV1cnSfrmN7+p\nX/7yl4YXBgAA0qupiUy6D3s779o18W0WcwWKI2Mwqq2tVVVVVXzf7XbL5eIcZgAAzNTZ2SCPxyen\ns18ej0+dnQ1ml4QCGfogZHYJQFnK2Hevq6vTqlWrdODAAW3evFlPPvmk6uvri1EbAABIo7LSpcWL\nm80uAwa49Du/i2/TLQKKJ2PH6Dvf+Y56enoUDAZ144036sCBA/rud79bjNoAAADKyjMvbzO7BKBs\nZewYHXLIIbr00kt10003SZJef/11eTwewwsDAAAoN/f/58b4Nt0ioLgydozuv/9+/fjHP47v//jH\nP9a9995raFEAAADl5trvP2d2CUBZy9gx8nq9evTRR+P73//+93XxxRcbWhQAAEC5eXPbUHybbpH1\nschy6cnYMQqHwxoeHo7vB4NBjYyMGFoUAABAOUlczBX2wCLLpSdjx+jiiy/W2WefrQULFujgwYPq\n6enRl7/85WLUBgAACoxvua2PbpE9sMhy6cl4BC+88EItWrRIPT09cjgcuv766zVnzpxi1AYAAAos\n9i23JPn9ktfrY9pvk9Etsqeamoj8/uR92FvaYPSnP/1Jp556qh577LGkn7/wwguSpOXLlxtbGQAA\nKDi+5bY2ukX20dnZIK/Xl9R9hb2l/dfwzTff1Kmnnqru7u6UtxOMAACwH77ltha6RfbFIsulJ20w\nuuKKKyRJS5cu1WmnnVasegAAgIH4ltu6xneLuB4MKK6M/fOf/vSnOvnkk+V00moHAMDu+JbbOhK7\nRSce+6EJt3M9GFBcGdNObW2tPv7xj+vYY4+VyzX2LcXdd99taGEAAADl4tuXd074GdeDpUc3DUbI\n+Ak7/fTTdfrppxejFgAAAFtKNVCfTGK36JpLjk/5O1wPlh7dNBhh0mC0Z88etba2at68eXK73cWq\nCQAAwFZSDdRnzMjuvqd1HJ7y51wPlh7dNBgh7bvoD3/4g2655RY1NjZqaGhI//Zv/6YFCxYUszYA\nAABbSDVQTxeMErtF//c7f5/2MbkeLD26aTBC2mD00EMP6fHHH9fs2bP1l7/8Rffdd59+9KMfFbM2\nAAAAW8h3oH5ozXSDKio8K13XQzcNRkgbjFwul2bPni1JOvrooxUMBotWFAAAgJ2kGqj39OyY8HuJ\n3SK7LeZqpet66KbBCGmDkcPhmHQfAAAAo7IZqIeG7X26F9f1oNSlfUcPDAzosccei+/v3LkzaX/5\n8uXGVgYAAFBCLrz+t/Ftu3WLJK7rQelLG4za29vV3d0d3//Yxz6WtE8wAgAAyE7PW7vMLmHKuK4H\npS5tMPre975XzDoAAABK1g3//kJ8247dIonrelD6ppldAAAAQCm75z9eNrsEAFkgGAEAABjouf/2\nxbft2i0CygHBCAAAwCCJ03MDsLaM8yx+9rOfnTBVt9Pp1BFHHKEvfvGLamxsNKw4AACAUkG3CLC2\njMFo8eLF6u3t1VlnnSVJWrdunebMmaPa2lpdd911euSRR9Le97HHHtPq1avlcDgUjUa1efNmvfLK\nK/HbX3zxRd1///2qqKjQKaecoquvvroAfxIAAID5bvnFdrNLAJCDjMHoxRdf1MqVK+P7S5cu1RVX\nXKEVK1boT3/606T3Xb58eXxa75deeklPPfVU0u233367Hn74YTU0NOgzn/mMli5dqnnz5uXxZwAA\nAFgX3aLSMzwcltc7kDR9eWWly+yyMAUZrzHavXu3tmzZEt/fvn27tm/frh07dmjv3r1ZP9EDDzyQ\n1BF677335PF41NjYKIfDoVNPPVXr16/PsXwAAADr4dqi0uf1Dsjvb1Yk0ii/v1le74DZJWGKMnaM\nvvrVr+rzn/+8Dhw4IIfDoWnTpukb3/iGNm/erC9+8YtZPUlPT4/mzJmjmTNnxn+2a9cu1dfXx/fr\n6+v13nvv5fEnAAAAWBfdotIUCDgn3Yf9ZDyCZ555ps4880wNDQ0pGo2qrq5uwmQMmfzqV7/SBRdc\nMOnvRKPRrB6ru7s7p+eGtXD87ItjZ28cP3vj+NnL+GuLOH72Ndmx8/n8SWdP1dZuVXc315XZWcZg\nNDAwoH/9139VT0+PHA6HPvaxj+lrX/taUrcnkw0bNuimm25K+llDQ4N27twZ3+/v71dDQ0PGx+ro\n6Mj6eWEt3d3dHD+b4tjZG8fP3jh+NpQQjPLpFnHtijVk+uwdd9z443QKx8ki8v0yIuM1RjfddJPa\n2tr0L//yL7r33nv14Q9/WDfccEPWTzAwMKDq6mo5nckZrLm5WcFgUH19fYpEInr22Wd18skn5/4X\nAAAAWETitUUnHFWd12Nw7Yo9VFa6tHhxs5Yta9Tixc2EohKQsWO0f/9+ffrTn47vt7a26plnnsn6\nCXbu3Jl0bdGqVatUW1urM888UzfffLO+/vWvS5LOOecctbS05FI7AACAZZ1zYl1e9+PaFcAcWQWj\ngYGB+GluO3bs0PDwcNZP0NbWphUrVsT3P/nJT8a3TzjhBD366KO51AsAAGBJid2if/naKfpg4O28\nHqemJiK/P3kfgPEyBqOrr75aF1xwgWbPnq1oNKrBwUHdfvvtxagNAADAlo4+vE7deZ4B19nZIK/X\nl3SNEQDjZQxGp512mp5++mm9++67kqQjjzxS06dPN7ouAAAA20jsFq26+9wpPVbs2hUAxZU2GH3/\n+9+f9I5f/epXC14MAACA3YxfcsRZkXFuKwAWlDYYVVRUFLMOAAAAWzrv2jXxbSss5sp030B+0gaj\nL3/5y8WsAwAAwHb6B/eZXcIEsem+Jcnvl7xeH6fmAVmg1wsAAJCnf7z9D/FtK3SLJKb7BvJFMAIA\nAMjDqmffMruElMZP781030B2CEYAAAB5ePiJzfFtq3SLpNHpvj0en5zOfnk8Pqb7BrKUtrc6f/58\nORyOlLdVVFRo06ZNhhUFAABgZf/wzSfMLiEtpvsG8pM2GG3evFnRaFQ/+tGPdMwxx2jhwoUaGRnR\niy++qHfeeaeYNQIAAAsrx1nQhiMH49tW6hYByF/aU+kqKirkdDrl9Xp11llnqba2Vh6PR2effbY2\nbtxYzBoBAICFxWZBi0Qa5fc3y+sdMLskQyUu5gqgdGScpmT//v169NFH1dHRoWnTpumVV17R4OBg\nMWoDAAA2UM6zoNEtAkpHxn+57rnnHv3whz/Uz3/+c0nSUUcdpbvuusvwwgAAgD3U1ETk9yfv2022\npwPSLQJKV8ZgdOSRR+qee+7Rrl271NDArCYAACBZZ2eDvF5fUqiwm3wWRaVbBJSWjMHoz3/+s771\nrW+psrJSTz31lO644w6ddNJJOv3004tRHwAAsLhSmAUtm9MB6RYBpS3jOkb333+/fvnLX2r27NmS\npCuvvFL//u//bnhhAAAAxZLroqh0i4DSkzEYzZgxQ7NmzYrv19fXy+Uq7Sk4AQBAecm0KGpit6ja\nXT6TSwDlJOMn2+12a8OGDZKkPXv26Le//a2mT59ueGEAAACZFGoNpVxOB3z09o/n/PgArC9jx+jm\nm2/WQw89pJ6eHv3d3/2durq6dNtttxWjNgAAgEkVYw2lxG7R1f/w0YI/PgBryNgx2rZtm3784x8n\n/ezpp59Wc7O9L7IEAAD2V+w1lJb97ZGGPj4A86T912P79u167733dNddd+m6665TNBqVJEUiEd1x\nxx0688wzi1YkAABAKkavoZTYLfrZzUsL+tgArCVtMNq5c6eefPJJ+Xw+PfDAA/GfT5s2TRdffHFR\nigMAAJhMMddQqjvEbdhjW0GhrtcC7CptMGpvb1d7e7tOPfVUnXHGGXI4HJJGO0ZOJ7OxAAAA8xm5\nhlJit8iI6bmtFkTyWeQWKCUZJ1+IRCK66qqr4vuXXHKJnnrqKUOLAgAAMFPoQGFPyUulGBNH5KLY\n12sBVpMxGK1cuVL33HNPfP+hhx7Sww8/bGhRAAAAZrrwht/Gt41azNVqQSTXRW6BUpMxGEWjUdXW\n1sb3a2trNW1axrsBAADY0sv/01+U57FaEMm0yC1Q6jJ+NbFgwQJ97Wtf04knnqhoNKquri4tWLCg\nGLUBAAAU3Xd+sj6+bVS3SCruxBHZMPJ6LcAOMgajG2+8UWvWrNFrr70mh8Ohc889V8uWLStGbQAA\nAEV1/YPPF+25CCKAtaQNRgMDA2poaND27dt1/PHH6/jjj4/f5vP5dPjhhxelQAAAgGLZtGV3fNvI\nbhEA60kbjO666y7dd999+tznPjfhNofDoXXr1hlaGAAAQDElTs8N+7PadOiwvrTB6L777pMkPfPM\nM0UrBgAAwAroFtkf6zIhV2mD0fXXXz/pHb/3ve8VvBgAAAAz0C0qPVabDh3Wl3be7dh1RdOmTdOe\nPXs0f/58tba2avfu3aqqqipmjQAAAEVDt6g0WG06dFhf2uh84YUXSpL+8Ic/aMWKFfGfX3bZZfrS\nl75kfGUAAABFQLeoNFltOnRYX8ae4vvvv68PPvhAhxxyiCQpGAzqvffeM7wwAACAYqNbVDqYDh25\nyhiMLr74Yp111lk67LDD5HA4tH37dl155ZXFqA0AAMBQdIsAxGQMRp/+9Kd1/vnna+vWrYpGo5o7\nd268ewQAAFAq7NYtYjpqoLDSTr4Qs2fPHj3wwAN65JFHtGDBAr388ssaHBwsRm0AAACGSewWndp+\nmImV5Cc2HXUk0ii/v1le74CGh8Pq6vJp7dp+dXX5NDwcNrtMwDYyBqMbb7xRc+bM0fbt2yVJw8PD\n+uY3v2l4YQAAAMVy7Wc6zC4hZ6mmo04VlgBkJ2MwGhwc1KWXXiqXa7Q1+/d///cKhUKGFwYAAGCU\nxG7RPf+02MRK8pdqOmrW7gHylzEYSVI4HJbD4ZAk7dq1S/v27TO0KAAAgGKZf0S92SXkpbOzQR6P\nT05nvzwenzo7G1i7B5iCrCZfWL58uXbu3Kkrr7xSPT09+ta3vlWM2gAAAAousVv0X3eda2IlU5Nq\nOmrW7gHylzEYnX322Tr++OO1ceNGVVZW6tZbb1VDAx8yAABgP9FoNGnf5czq5BnbYO0eIH8Zg9FX\nvvIV/eAHP9CyZcuKUQ8AAIBhzrt2TXzbbtNzG43pv1HuMgajuXPn6rHHHlN7e7sqKyvjPz/88MMN\nLQwAAKCQ3t8VNLsES4vNaCdJfr/k9froPqGsZAxGTz755ISfORwOrVu3zpCCAAAAjHDF956Obxe7\nW2SHbgwz2qHcZXzHP/PMM8WoAwAAwDD/+fs3TX1+O3Rjamoi8vuT963CDsES9pf2isNAIKC7775b\nV155pR566CFFItb5cAAAAOTiF797I75txrVFdujGpJr+2ypYuBbFkDYY3XLLLZKkT33qU3rrrbf0\nwx/+sFjrR4H5AAAgAElEQVQ1AQCAMjQ8HFZXl09r1/arq8un4eFwQR43cXpus9hhfaHYjHbLljVq\n8eJmS3Vk7BAsYX9p31U+n0/33nuvJOmUU07RZZddVqyaAABAGSrG6WZmzUTH+kJTY+XT/FA60gYj\np3PspoqKiqIUAwAAypcRXQErdIsk1heaKoIliiHtvzgOh2PSfQAAgEIyuivAukX2RbBEMaQNRhs3\nbtRpp50W39+9e7dOO+00RaNRORwOPfvss0UoDwAAlItCdwWs0i2yEmZ3A9JLG4yeeuqpYtYBAADK\nnJFdAbpFo+wwbThglrTBqLmZDwkAALAnukWpMbsbkF7a6boBAABKAd2iMXaYNhwwC8EIAACUlMRu\nUbWbjkgiKy/iCpiNfy0AAEDJevT2j5tdgqUwuxuQHsEIAACUjMRu0dX/8FETK5kcs8MB1kMwAgAA\nJWnZ3x6Z1/2KEVqYHQ6wHq4xAgAAJSGxW/Szm5fm/Tix0BKJNMrvb5bXO1CI8pIwOxxgPQQjAABQ\ncuoOced932KEFmaHA6yHYAQAAGwvsVs01em5ixFamB0OsB76tgAA2BQX8I8KHShscOnsbJDX60t6\nXQuN2eEA6yEYAQBgU1zAP+rCG34b3y7EYq7pQgtBFChtnEoHAIBNcQG/9PL/9BftuYoxKQMA8xCM\nAACwKS7gl77zk/Xx7UJ0iyZDEAVKG8EIAACbKvcL+G948IWiPh9BFChtfNUBAIBNlfsF/D1bdsW3\nje4WScWZlAGAeQhGAADAdhKn5y4WKwZRJoQACodgBAAAbCExBCQqRrfIqpiZECgcghEAALCk8d2Q\ncDisYPAIrXi2+N0iq2JCiNJB9898fHoAALCJchs4je+GvPHGJs2fn/w7du0WFepY1tRE5Pcn78Oe\n6P6Zj1npAACwiamsozM8HFZXl09r1/arq8un4eGwgZUWxsTuR7RkukWFWhOp3GcmLCV0/8zHKw4A\ngE1MZeBkx2+jx3dDOjpq9dxvx/Z//b2zi19UgRRqEGzFCSGQH7p/5qNjBACATUxlHR0rfBuda9dq\nfDfk/t++mnS7nU8jZE0kjEf3z3yG/6u4Zs0aPfTQQ3I6nfrKV76iU089NX7bz3/+cz3xxBOqqKjQ\nggULdP311xtdDgAAtjWVdXSm+m10Ia6JybVrNb4bcvfjL8e37XptUQxrImE8un/mMzQY+f1+PfDA\nA3r88ccVDAb1gx/8IB6MAoGAHnroIa1bt04Oh0OXX365XnvtNX30ox81siQAAGxrKgOnqQ7EC3Eq\n3lS6VonrFp3aflhOz2tFDIIB6zE0GL344otatGiRqqqqVFVVpVtvvTV+W2VlpaZPn65AIKCqqiqF\nQiEdeuihRpYDAEDZmupAvBCn4hXqGoprP9OR1/2k8pvZD0D2DL3GyOfzaf/+/brqqqv0mc98Rn/+\n85/jt1VWVuqf/umfdOaZZ+qMM87Q8ccfr5aWFiPLAQAAeSrENTH5XkOR2C26558W5/y8iQo1GxyA\n0mNoxygajcrv9+vBBx/U9u3bdemll+qPf/yjpNFT6R588EH9/ve/V3V1tT73uc+pt7dXra2tkz5m\nd3e3kSXDYBw/++LY2RvHz96scPxcroj6+9/Qvn2VmjFjWLNn16i7e0fOjzNjxuj/JKmnJ/f7B3e/\no+7d7+R8v5iNG/dpZGR/fL+i4n3NmJF7HdmayrELhyPatCkQf80XLKiRy8WEwsVkhc8eisfQT9es\nWbPU3t4uh8Ohww8/XNXV1RocHFR9fb3efvttHX744fHT5zo6OrRp06aMwaijI//2OczV3d3N8bMp\njp29cfzszUrHb+HC4j9nYrfov+46Vy7n1E522bfPF79WSpI8nip1dBhzrc9Uj11Xl0+NjWO1hcM+\nLVzIdUnFYqXPHnKTb6A19FS6RYsWyev1KhqNamhoSPv27VN9fb0kqbm5WW+//baGh4clSZs2bdLc\nuXONLAcAANhINBpN2p9qKJLsNSWyFaZYB8qJoZ+wxsZGLV26VBdddJEcDoe+/e1va9WqVaqtrdWZ\nZ56pyy+/XJ/97GfldDrV3t6uE044wchyAACAjZx37Zr4dqGm57bTbHAs+AkUl+FfPVx00UW66KKL\ncr4NAACUL9/OgNklmI61joDioicLAAAs58o718W37b6Ya77s1N0CSgHBCACAMpJuHR8rre/zk9Wb\nTHleAOXN0MkXAACAtaRbx8dK6/usfm5LfDvfbtHwcFhdXT6tXduvri6fhofDhSoPQImiYwQAQBlJ\nN9OZ3y9t3rxbodA0ud0H1dY28b65dJXy7UAlTs89FbGgJ43+bV6vz/KnpRnZtbNSRxCwKjpGAACU\nkfEzm8X2t24dUDA4UyMjdQoGZ2rr1okdo1y6SoXoQE3l2qJsp7q2Umcp3WtWiBqt1BEErIqOEQAA\nJS6xWzB9eljV1e/qwIGqpJnO5s6drUDAp1DIKbc7orlzZ094nFzW1clnDZ5CdYuk7Ke6TtdZMqPD\nku41K0T3izWRgMz4VAAAUOISB9aRiOTx+LRkSWPS79TVOdTWNjbY9nh8Ex4nl3V1proGz1Rnost2\nqmsjw0iu0r1mhQg1rIkEZEYwAgCgxGUzsM4mSOSyrk6ua/AUslskZT/VtZFhJFfpXrNChBrWRAIy\nIxgBAFDishlYZxMkcllXZypr8BRz3SIjw0iu0r1mhQg1rIkEZEYwAgDAhnK5Bsbq3YJCd4tyYWQY\nyUe640qoAYxHMAIAwIZyuQbGTgPrYnaLJmPWa2bHacaBUkEwAgDAhkpllrGpdotKbX2eUjmugB2x\njhEAADaUbj0iO3vivvNzXrOn1NbnKcXjCtgFwQgAABvq7GyQx+OT09kvj8dnueuGspHYLTq17TCt\nXduvFSs2aefOxqyDTql1WErhuAJ2Ze9/PQAAKFN2um4oG8fM7lAkIu3aJQUCe9TWNlNS5qCT7+xx\nVj0Fr9SOK2AnBCMAAFB0id2iS08+Pr7tdkcUClXG91MFncRQM316WNXV7+rAgaqcZo9jkgMA4xGM\nAACwKat2PXL1oVnT4l2f1tYG9fVtktM5nDboJIaaSETyeHw6+eR6eb0DWrduMKvXotROwQMwdfwr\nAACATdm165HYLYpNuBBbM8jjieiccxbkHGpyfS3MWMAVgLURjAAAsCk7dj32H5gYQHK9riZVqMn1\ntZjqAq6l0q0DMMb6/4ICAICU7Nj1uOiG38a3813MNVWoGe0Yjf1O7LVIF2CmOsmBXbt1ANIjGAEA\nYFNT7XoU2wuv9RXkcVKFmnSvhVEBxo7dOgCT41MMAIBNWXFq58lOMbvzpy/Ffy/fblE66V4LowKM\nHbt1ACbHAq8AAKBgYh2a8Qu0Xnnn06bUMz6wFCrAsBArUHroGAEAgIJJ16Hx7QzGf1bobtFkjDrd\ncLJuXaxrtnHjPu3b52NiBsAmCEYAAKBgUp1iljg9txEmO33PjNMNY12zkZH9f+2aMTEDYAcEIwAA\nSlixp5VO2aF5fOz2bLpFudZcjBnicqmJiRkAe+KTCgBAiRoeDmvFik3atatJbndEra2j01rnEhpy\nDSnjOzT5dItyDTrFCCLZ1jQ8HNaWLX3atatSu3cH1dISkcfDxAyAHTD5AgAAJhoeDqury6e1a/vV\n1eXT8HC4YI/t9Q5o164jNDLSqGCwWb29AzmHhnSTKeQj22uLcg06Rk2wkE9NXu+AmpoWyO3ep1Bo\nRH19PUzMANgEwQgAABMVMniMFwg45XYfjO+HQs6cQ4PfL23evFvd3UPavHl30vVDmeR7bVGuQacY\nM8RlW1Mg4JTL5VJbW7OOPfYQzZvXxMQLgE1wKh0AACYy8jSwmpqIWltnqrd3t0KhaZo1q0+dnQty\neoytWwcUDLZLkoJBaevWjZJyv34nl5nocp1JrhgTLLS312nlyo0aGnKrri6k008/JuXvsb4RYF8E\nIwAATGTkQHo0YPSrqioWMBbk3L2YO3e2AgGfQiGn3O6I5s6dndX9pjITnRUXrt24cUgtLe1qaYnt\n+7R48YwJv5cY6mprt6qz85QiVwogXwQjAABMlKo7kjjhgc/n13HHhfM6HasQAaOuzqG2trHH8Hh8\nOT9GMdctMkq2nb3E17y7e3va41bs2QIBZEYwAgDARKnCS1eXLz4D2t69e3OeSa6Q8lkgNbFb1N6a\nXYcpE7ODRKE7e8WYYnwqzH69ATMQjAAAsBgrrYMz1a7TrV/824LUYVaQiAUEv3/0+qq5c2errs4x\n5QkerHSMU7F6cAOMwKx0AABYTDGmnzZKYrfojqsWFexxzQoSYwGhWS0t7aqrc2jx4uYpd0+sfoyt\nHtwAI/AuBwDAYsy6gD/V6VOS8j6l6rijZhWstsRT2cLhiLZu7dPatTL8NC+jAkI+pygWE7ProRwR\njAAAsJhsL+AvtFSnT41uZ3dKVWK36L/uOregtSUGia1b+9TUtECRiMvw07yMCghWnHkvkdWDG2AE\nghEAACUm3wvns+mOpOuYRKPRpH2Xs7Bn6ycGibVrpUhk7O8x8jSvcg0IVg9ugBEIRgAAlJh8L5xP\n1x3JpmNy3rVr4ttGT89dzNO8CAhTw+x2sBOCEQAAJSbf62LSdUcydUy2D+zN+NiFHCCXaxfHjpjd\nDnZCMAIAoMTk21FJ1x3JNJC96q5n4tvpukWFHCDTxbEPZreDnfDuBADAptJ1YYrZUfnJ6k1Z/V6u\nA+RMHaZCz6CXDbNPCzP7+fPB7HawE4IRAAA2la4LU8yOyurntsS3J7u2KNcBcqYO01Rn0MtH7DnD\n4bBefXVA69e/qYUL64oWUJ5/3qcNG2oVCk2T2+1UOOzTkiVHGP68U1GokG7HUAj7IRgBAGAh4weA\nLlf6AGH2aUqJ03NnkusAOdPfNpUZ9DJJNwiPPV5v74CCwWZVVMyQ319XtOtmursDCgaPkCQFg1J3\n9/tassTwp52SQoV0rlVCMRCMAACwkPEDwP7+N7RwYerfzec0JaO+ec80E12uA+RMf9tUZtDLJN0g\nPPacodDo8MntPiipmIE0mmG/dJn9JQDKQ2EXGQAAADkbHg6rq8untWv7tX79oMLhcPy2ffsq096v\ns7NBHo9PTme/PB5fVqcpxQb9kUij/P5meb0DedWcS7coH5n+tlS35/N6pJJuEB57/OrqAVVX71Zr\n66GSinfdTEdHraqrfaqo6Fd1tU8dHbVFed7E92dXl0/Dw+HMdyqwVMEYKDTiNgAAJkvsUIyMONXb\nO6C2ttH9GTOG094vn9OUjPjm3Yh1izL9bfnOoJeNdN2o2HOOnhY4oEAgUtTpwk8+uVku14ACAamm\nRursLM6pZIU8jS3fjiVTtKMYCEYAAJgsMZy0th6qLVvel9M5OgCcPbsmq8dIHHBOn75fknTgQNWE\nwWchZgkzsls02cC5WBfgZxqEmzVduFnPW8gwnW/IYop2FAPBCAAAkyWGFZfLqYUL67R4caMkqbt7\nR1aPkTjgfPXV3ZJCamtrTBp8Dg+HFQ6H9cYbmyRF1dFRO+WuQ6xbVKjQMtnAuVgX4DMIT1bIKbe5\nVghWxrsRAACT5XqaUKoQkjjADIWmKfE/8bHbvN4BBYNHaP780Z+7XL6cw0u6blGhQstkA2cG1eYo\n5GlsrGsEK+NfFAAATJZrh2J8CHn++Xe1ZcuQdu2qlNt9UE5nRE7n2IAzNvgsdLBIvLaoUI892cCZ\nQXXhZdPpK2QHjWuFYGUEIwAAbGZ86OjuDmjevAUKBAYUCjnl8WzTRz86WwcO9Gv69P0Kh6W1a/u1\nZUufmppmyuUavX+uwWKya4sKFVomGzgzqC68Yq8PxGmKsDKCEQAANhMLIeFwRL29e/TWW36NjHyg\n1tZGuVxOOZ3SkiWj1yh1dfniA9+mpnr19fVo3rymKQeL8TPRFSq0WHXgXKyJH4qN0xOBMbz7AQCW\nV6qD0nzFQsj69UOS6nTEEYcpGJyp3t7damubmdStSRzoulwuzZvXpGXLGnN+zsRu0efPOXbC7cUI\nNMXubhj53FZ5T3N6IjCGYAQAsDwzB8RWFAshgYBTkUijwuGwent9Coc/kMcTSurWGDHwveD0o6f8\nGPkoVncj0+QWhXhuq7ynOT0RGEMwAgBYHqf7JIsN3DdtGtLISEStrQ1qbW1UX9+AAoF6eb0D8Q7E\n+IFve3udurp8OXUqErtFK2/6O6P/vLSK1d1IFVpqalTQ5zbiPZ1PF8qqpy4CZphmdgEAAGQyfhBa\n7qf7xAbu8+bNl+TWli1vqK+vR01NCxSJNMrvb5bXO5ByoLxx45D8/uak38vFzEOrjPmjstDZ2SCP\nxyens18ej8+w7kaq0FLo5zbiPR17X+R7bIFyV95fuQEAbIHTfcYMD4e1fv2QgsEZcrsPqrX1UFVV\njQ6qI5Gx7kAg4EzZ+ci1U5HYLRo/4UKxFau7kaozVejnNuI9TWcVmBo+MQAAy+N0nzFe74BGRuo0\nMlKnYFDq7d2tRYtGg9H4wXyqgXIup6PtC4ULWrtdFCOIG/GezubYWmXSB7vUhfJCMAIAwES5DggD\nAadaW+vV2+tTKORURcWAOjvnS9KEwfxox2jsvmM/z27Q/6lvPRnfNrtbVExmBPFCBINsjq1VJn0Y\nz6p1obwQjAAAMFGuA8KamogiEZfa2kZ/x+OJxAfQ4++XaqCc7aD/uY3b8/2Tis6O3YbxNYfDYQWD\nR0jKPxhkc2yterqdVetCeeFdBwCAibIdEMYG0kNDUW3btlEtLQ3yeDRpxyfbEJQqWNzzf7vjt1ux\nW5RY85YtfWpqWiCXy2WbbsP4QPzGGz2aP3/sdqOCgVXXLbJqXSgvBCMAAEyUaUAYDkfU1TW6mOvI\nSJ1aWxvV0nKYPJ7cBv+TdVXGD9I/e/NvJ9zXah2YxJp37apUIDAQ76LZoduQWGM4HNbbb/sVDPbL\n7R6dft3jMSYYWHUiE6vWhfJi/X85AAAoYZkGhJs2BdTY2KxgcIZGRurU2+tTW1tzzoP/yU7Ziz1W\nOBxRb+8e7RseG5Rfcdr5luzAJP79bvdBhUJj+8XsNuR7Gl9iIO7tHVBzc6ucTqdCoUr19W3SOecs\nMKReq05kYtW6UF4IRgAAmCjTgHDfvkpJo4P/YFDxAJDr4H98kPL7FV/odfRUtJnq7d2jF3Y+n/G+\nVpAYLFpbD1VfX4+cTuXUbSjEtUn5ThqQGIgrKobU2jpfLtfo6+x0DluuQweUA+v9SwcAAOJmzBiW\nNDr47+3drYqKAXk8o4P4XAb240/Z27p1QFK7JKmpqV59fT0Kh91J9+moXRi/r9XEgoXfL/X1DWju\n3Nk5h5tCzISW76QBiYF49NiY0/ECMIZgBACAhYwPO8cc45Y02llYtCiizs758YF/V5cv64F9Z2eD\nnn/+XXV375Xk0MjI6LUtLpdLLpdL8+Y16cGn1yfdp7p6LIRZTSxYdHX5FAt4uYab8SFmaCga76Jl\nG7IKMWkA19cA1kAwAgDAQsZ3Mfr739A//mPqgX4u3YrKytEANH/+cZKkzZt3q7d3bMKC8QP6b3zi\nhKJPe53PqW1TmeZ5fKjZtm2nHI7cQlYhQg3X1wDWQDACAGAcM9fFGT+wj11jlKq22LVBsWtTMnUr\nEh979NS87XrjjUFJDj23Y0vS75oxUM/n1LapdGzGhxopOdRkE7IINUDpIBgBADBOIa49ydb4EDZ9\neliRhLF97BqjxNp27mxQb++AAoEGvfVWl5YsOVp1dY6kbkWqcJcYIlwup2pqDqql5X9JUlIwMmvd\noqGhqF5/3adQyCm3O6Jjj41mvM9UOjbjQ83oqYljt3OtD1BeCEYAAIwzldOzxsvUfRofwqqr35XH\nMzbQnz27ZkItvb0DCgab5XBIHs8M1dXtmxDcUoW7xAkLtm4d0M6dFQoEdqecic5I6V6Tbdt2Khgc\nPZUtGJS2bdso6bBJH6uQHRuu9QHKG8EIAIBxsj09K5tT7jJ1n8aHrmDQJY9n8toS1+xxuw+mDG6p\nwt34CQsCAZ+CwZlJv/eNT5ygtWv7DT2FMN1r0tLSoEBgt0KhaXK7D6qlpTjBJPk4SmecUZ/T323m\nqZcACodgBADAONl2DrI55S5T92myabRjky8sXJhc26uvbtKuXZVyuw+qtfVQ1dT0x2+PDdI3bRrU\nyIhTra2H/vW0ubFwF6uhtbVBj7ywOv5z18g0PfxwWPPmOXXssY3yevsNOYUw3Wvi8UhtbWNBzePx\nZf2YqcKJpLSBZeK1WsfJ5XLmdepkPqdemhmmCHJAagQjAADGyfb0rGxOucvUfRofwqLR2Um3j598\nobLSpSuuWJAwsO1PCm6xQfq8eaPXIW3Z8r4WLqxL+p1YTS5X8mB4ev+J2newUX/5y245nXtUVTX2\n9xRyMJ3uNUl8LaZP369wWFl3r0avvWpUb+8ehUKVevXVTTr22DoFg0dImhhYEsPMrl1SILBHra2H\nqLd3QOHwB/F6svkb8zn1spjXsVnpuQErIxgBAJCnbE65y9R9SjUBwM6dYfX2DigUcmr//kEND4eT\nBuiTBTe/f3Qq7tHT0dyaP79uwu/Garr78ZfjPzuqaoEGKyMKhaTh4WkKhUb/nkBgn1aufFMbNw7L\n6azUkiXHKBKZMaXBdLrXJPHvymWNJil27dWe+KmBu3YNq7t7QPPnJ/9Oqm23O6JQqDJ+7VZ1tVt+\n/8yk55wsGOYzM14hr2PLlZnPDVjZNLMLAADArjo7G+Tx+OR09svj8aU85S422F+2rFGLFzdn7EB0\ndjaor2+TQqEZcrudmjVrvrzegaxr2rp1QMHgTI2M1CkYnPnXU/NS15SoscajpqYGud0+ud0+zZr1\nrjo7G/STn2zWSy/N01tvfVh/+csxevrp1yVNbTCdzWuS6+B99NqrsWGN2x2R5JjwO6m2W1sbNGvW\nuwqHP1B19W61th464TljXZZIpFF+f3PSMcnmfZCq3sn2jWTmcwNWZvhXBGvWrNFDDz0kp9Opr3zl\nKzr11FPjt+3YsUNf//rXFYlEdOyxx+qWW24xuhwAAAqmEDOipepEzJvXpJaWOknSW28N5RRC5s6d\nrUBgbMrruXNnp/y9c68Zu7bo0duWyrt+h7q731d9fVQf/ahbLleN1q0b1O9/v1czZlSrokIKh2fo\n3XdHw4bRg+lcuzBj114Ny+2OqLW1QR5PWC5X6m5dYtfK44nonHMW/DX8jF3jlOq6rFT72bwPxh/n\n9vY6bdxozgx4zL4HpGZoMPL7/XrggQf0+OOPKxgM6gc/+EFSMLrzzjt1+eWX64wzztBtt92mHTt2\n6EMf+pCRJQEAYCmprveoqVHe6+nU1TnU1tascHj0dLw33/Srq8sRP/VreDis9ev7k+5TPcOtJUuO\n0JIlo/uJp7FJf9HgYFD19dUaHPxA06dn3xWZilwH7xOvvRpQZ2f6Dl2qMJPqOccmsxjSgQMhSdMV\niUzXrFl9Gh7Ofva68cd540bzruthUVogNUOD0YsvvqhFixapqqpKVVVVuvXWW+O3RaNRdXd36/77\n75ckffvb3zayFAAALClVJ+KMM+rjA/Ta2q3q7Dwl68eLDe7Xrx+U1KR58+bL73fGr5fxegd0z+ru\n+O9/4xMnpKwpHI6ot3eP6upmasuWLjU0tOjoo8O64IKjCzqoTnftTj6D96kO+FPdPxYS581r1O9+\nt1XDwx/omGPq1dQ0GsKyfT6u6wGsz9BPpc/n0/79+3XVVVdp7969+tKXvqSTTjpJkjQ4OKgZM2bo\n9ttv1+uvv64TTjhBX//6140sBwAAy0l1yljiAL27e3tOs7/F7hsIOBWJjJ0WFhuIb9sxnPT76WbS\ne/XV0YkM5s71qKbmoI466qAWLmwoeKfIjBnScplhL/b6uFxOzZlTL6lGbW2NSbdlI58JGgAUl6HB\nKBqNyu/368EHH9T27dt16aWX6o9//GP8toGBAV122WVqamrSFVdcoT/96U9Jp9ql0t3dPentsDaO\nn31x7OzNzOMXDke0aVNA+/ZVasaMYS1YUCOXi2/LY1yuiPr734i/PrNn16i7e0fS76Q7fpO9tj6f\nX3v37o3/bm3tVnV3b9ej67fHf7bksDb5fJvU3b096XFdroj6+nZp//45crvDOuqoQzR9+qBmzBhW\nT09ybVO1ceM+jYzsj+9XVLyvGTMK+xwTn9OvvXtb4vtvvvmc2ttTr6qb+Dru3h2UFNJbb43ux17T\nycSOXTbHGdbDf/vKi6H/ZZo1a5ba29vlcDh0+OGHq7q6WoODg6qvr1ddXZ2am5t12GGHSZJOOukk\nvfXWWxmDUUdHh5Elw0Dd3d0cP5vi2Nmb2cevq8unxsaxDkA47NPChVzfkChxAdfxJjt+k722xx03\nvityin60alPS/U84oUqdnaek7JaEw4nXGY0uttrRUfjjtm/f+OepMuR5Eg0M9CsSaYzvO5216uho\nTPm7ia/j//pfTkmH6sCBqvhrOlk3b/yxG3+cWWjV2sz+txP5yzfQGhqMFi1apBtuuEFf+MIX5Pf7\ntW/fPtXX10uSKioqdNhhh2nbtm2aO3euNm/erHPOOcfIcgBgyhjI5I5rK4yT60xpf9iwLb79xH3n\nT/rYsWuV/P7RKcCj0dnq6vKlfM9P5XNR7BnShofD2rKlT7t2VcrtPqjW1kPl8aQ/rc3IiQpYaBWw\nFkP/69TY2KilS5fqoosuksPh0Le//W2tWrVKtbW1OvPMM3XDDTfouuuuUzQaVWtrq5bEpsMBAIsq\n5kCmVEKYkddWlMprlK/p0/fr1Vdji7ke1Ikn7k/7u4nTc2cjFgi6unyS2iWlf89P5XNR7BnSvN4B\nNTUtUCAwuoBuX1+PzjlnQdGePxFfGgDWYvgn8KKLLtJFF12U8ra5c+fqF7/4hdElAEDBFHMgUyrf\nJhvZESiV1yhf4XBY77yzTYGAWzU1IbW312R1v0zdokTZvOetMsDPJigHAk65XC61tY2+T5xOGR6m\n019zo9EAABqISURBVNXFhAyAtfDVBIC8DA+H9fzzPnV375XkUEdHjU4+Of2aIaWimAOZVINNO3ZI\njOwIWGVAXmiJx9nn8+u448Ipj/Nrr4XU0NCuhobYfo+WLp34eOO7RWvX9ie9f2LPNzQU1bZtO9XS\n0iCPZzTUjnalxhaMPfHE8ITHt8oAP5ugbHStqY5durra2+u0cuVGDQ25VVcX0umnH1PQWgDkZprZ\nBQCwJ693QBs2uPTBB8fpgw8WaMOGWnm9A2aXZbjOzgZ5PD45ncYvcjl+wFZTE4kPsCKRRvn9zWXx\nmk8m1WtkN8PDYXV1+bR2bb+6unzxgXXsOO/d2zLJcXZk2J/oitPOn/D+iT3f66871N/frs2b3ePe\nX25JlX/9/4mK+bmYTDZB2ehaUx27dHVt3DiklpZ2fexjH1FLS7s2bhwqaC0AclMaX60BKLpAwKlQ\naGw/FJpWMt/WT6aY10OkOgVt3brBpN8ph9d8MsW+cN8IqboJ2XbCOjpqtGHD2DVGHR0TT6Wb7Nqi\n2OPG/j8Uiv3/tISfO9XWNrYe0oEDE8OnUZ+LXDuk2XSDjP4Mpzp26eoq1Y4nYFd8AgHkpaYmIrdb\nCgZH993ug5b/tt5Kp6El1jJ9+ugF82NTAI/WlWoAZ5VTlqyi2BfuGyHbgXSq98zo725TW1vs1LfJ\nX4tvfOKElO+f2CQOW7cO6uDBKh199LDC4bC2bu3T/v0ujYxE1NraIJfLVdT3XK7XkFkhKKc6dunq\n4vMMWAvBCEBeOjsbFA771N3do9g1RpkGZWaz0oX6ibW8+upuSSG1tTVmrMsKAz8UVqaBdG3tVrW3\nn6QVKzZp164mud0RRSJuOZ0jamtrVkvLYfFTwsYH/3+4/smk55r8/RNSc3Otdu7cIqdzmvr6+tTU\ndJwkqbd3j7ZseUMLF9bH71OMLxpy7ahYISiPP3axtY5S1WW3z7OVvlwCjEAwApCXykqXliw5Qnaa\nZd9Kp60kPvfoaUvOlLeNZ4WBHwor1eA48Th3d2/Xxo1D2rXrCI2M1CkYlLZv/x+1tNTHHyMQcKYM\n/oliM9Glev8cOFCltrbYAqeHyenslyRFIqPvxba2mXI6I1q8eGwR1GJ80WDHjkplpSseUvftq5TX\nO5A2QNjt82ylL5cAIxCMAJQNKw2yEmtxuw9KiiTdhvKRzeA4EHDK7T4YP3VVGp0hLhwOq7d3QBUV\noxftz5vXKJdr9D/tdz/+8oTHSfWNv6S/Lngqud2jp8zFFjz1+6VwOKLe3j2qqBhICm7F+KKhUB2V\nYnU6Ys+zfv2QRkbqVFEx66+TWJRGgLDSl0uAEXhHAygbVjptJbGW2KKcBw70m14XrKmmJqIPf9ij\ndeu2KBCo1MyZ76q9/Qi99tobkpo0b9589fb2q7d3T9JECTGxblG6rlJT03EKBPYoFKpUX9+m+IKn\nXq9PL7ywS++849Ts2Y164YUKhcM+LVlyRFK4j12PtHatMgaPXELKVDoqic+zZcvoaYEulzOrTsf4\nGtvb67Rx41DGmmOvbzA4QyMjdfL7t2v+/NIJEFb6cgkwQml8UgFMSSCwTytXvhlfS+Oyy45RTc0M\ns8sqOLNPW7Hj+fl2rLkUdXY2aMWKTZozp0lO535JR+u11wKSpNbWQ+RyOdXa2qAtW96Q0xnRg0+v\nj9/3wjOOjm9n843//v2jxzf2eXn++QGFQh5t2RJVZWVI0eiQliw5Iincb906GjwikczBo1inYyU+\nz65dUiAwFhrTBZXxHZ/W1npFIi6tXLlRLS3tGWuOPW6suxcKjb6WpRIgrPTlEmAE1jECoJUr31R/\nf7uGhz+i/v52rVz5ptkllSQrr0GUai0dabTmvr46Pf54n370ow/0jW88r0Bgn8nVlp/KSpfmzWtS\nR0ejnE6XDhw4QsFgs0ZGmtTbO/o+crlcWriwXsuWNSbdd7ZjZvyYplr3qaZm9FS5YHCmRkbqNDJS\nl/Te3LZtr0KhZh082KhQqFnbtu2N17R4cbPOOKNe+/c79dpru7V5s0/hcHjSDkmxTsdKfFy3OxKf\nglxKH1TGOj6j/4u9tkNDyes3pas59ritrYequnq3qqreN3Vdp0KLHfNlyxq1eHHpL+iN8kMwAjDh\nP/rj91EYVj4/P11oCwSceuaZN+X3tysS+Yj6+/+G4GySioq9Wr36DT366Nt68snX9d57W3XkkTNU\nUTGUtFhp4rpFlyw8S5FIo3buHO04DQ1FtWXLS9q8+VW98UaPwuGw2tvrVFHRp4qKflVX+9Ta2pD0\n3mxpOVRu925NmzYkt3u3WloOTarL6x3QyEiTRkYa42Fisg5JsRblTXzc1tYGzZr1bsZFXRM7PtLY\nuk51daGk30tXc2zx2Kqq3Vq0KKRLLplFgABsxDr/VQZgmrq6kPr7k/cLgdOwkln5/Px0oa2mJqJA\nYCwoV1YeJDib5PXXB7V9u0vR6OEKh+v13nt79c47g1q0qC5ptrhEb27eK7d7SJFIWJHIEWppqVMo\n5JDk1vz5MxUMShs3+rRwYb38/rHHSHxvnnjiaBAKhSS3e2w/9vl+9tkP5HBENH16WJHIdFVUDKmz\n85i0f0exTsdKfB6PJ6JzzlmQ8d+f2Ge0tfVQ9fbuVkXFgDyeiE4//Rht3Ji55vGn63Z37yjo3wTA\nWAQjALrssmO0cuXGpGuMCoGpXccv5BpWdfW7SQu5WkW60NbZ2aBf/7pX/f2Hq7LyoJqaqgsWnJFe\n4vvG5/PruOPC2ru3VnV19aqpmanBwT0Kh4OqqBhOCiGJ3aJFs09WMDjzr9N79+iYY2olxbogYyeM\nBAJOnXFGfdqwcvLJzXK5Er/gGP0Mxz7fLpdbe/YcqsHBHs2Z06SqqvCkf1uxrvXL53kSw9SiRRF1\nds5XZaUrfmopgNJGMAKgmpoZ+vKX2wv+uFY+daxYEsNhJCJ5PD4tWZL6230zpfsWv7LSpe9+t3PC\n5Bww1vPP+7RhQ61CoWnavXuWnn/ep7q6kCorIzp40KnZs2fK4/Fr4cK6eBdkXyh58B7reoRC0+R2\nf6DW1o9IGr3eJvE//zU1kbxCROzz3Np6qH73u60KBGrldjvV1HScvN5+W34Jku51SPUlT6oFdWO/\nG/uZyzXWeaODDlhf+Y1SABSNlU8dKxa7hMPJBsZGBedclNugsrs7oGDwCEnS/v371d09qKuuOkaR\nyCZt2vSOHI4RHXPM/2vv/mOjKvc8jn+Gdkqh/Cilt8Ui29xUKAYv2juXi6YWNkhYMN74IxpcwAYT\ns0pByGoEg2BXrobw40IIoJFEl6QmKpUFwb2iropWqm0o8tN4uwooFGkRCtt2oPTH2T9qpzNlZvpz\n5jwz8379Ncwczjyd53xnzvf5Puc5ibp8+WaVlLSdpM9+4e+e//8vv/8nSZZnFbakpNFyOqt/Wx6+\nSVKTGhubu1W5DFT5bY9vpzNeN92UosREd5ervgViev/6i+NAS597P1dd/b3uvLPt/1BBB8xn5i80\ngKjA0q72JYf+pmIFO9E0/cQ0mk8q/d901eq0laWEBKdcrtHKzu64L4/Utjz29p3HfLbOyPiDzp07\npqysDM/0t972Z6Dk3ju+U1PPKSPjNs82PT3OA/WvKcelvzjuzqCH250Q8HVTB0mAWEZUAggZu+8b\nZAK7kkPvE826ujqVldUE7QvTE49oPqn099m7XENVXl6la9fiNWjQGblc6UHvy7P34EnP/v7tn9tu\n5pqVlXHD0t29ESi5947v69dT/E4r665A/WvKcekvjtva1rFN++fi/dzgwdd9Xo/1Cjpguuj5ZQEQ\nEtevN+nbby+rpqbayEqC6exKDnuaSJieeETzSaW/z/6ee9J+W/BAqqqq1913/1GffnpJktTU1Kxf\nfvlV9fXDJEnfXjnod789+YyCVWa6k9z39TgP1L+mHJf+/r5An4v3c7/73ZAutwdgDrN++QAYp6ys\nRnV1mb/d38a8SgL862kiYXriEc0nlQMHXtWRI+2LJLTqz3++6nMiXlFxVgkJTk8fVVZeUUrKOEnH\nde1ahtzXO1YJXPrAn1RfX93jzyhYZcZfUtDfU9wmT07TV1+dVkVFnSSHXK4hnhvSmnpcBkoGAy3X\nTQUdMB+JETxMmcsNs5gyYoue8U4khg79SZMnT+n29iYmHtF/UnlNbT/JzWpqalJJSUdftK9s1t5H\nTU3/p+HDr2nSpNv0nwf+7rOXYJ9RsO94f3EebPv+nuKWkOCU0+nU+PF/kCQ1NHiv/GbucQkgunCG\nAw9T5nLDLOG6S30oxWLS76/i0N3tERqBjsPGxkGaMKHjWqCjR49p/PixknxXNvPuo/bvam97/3Z/\n0Pdv/453u69q9+6T2r79jHJyBmr+/Gy/lZlgvwmhGDDxt0+OSwDhNKDrTRArIqkycP1624jqhx9W\nq6SkipvvhdDkyWkaOvQnxcdXKzm5KiJHbNtP8NqmA45WWVmN3U1CDAp0HN442ODw+Zf3ymZSW0wm\nJ1dp2/731RPt3+mffXZSly9PkNudrerqHG3f/g/PPr3jPNhvQigGTKJhEAZAZDP3zBdhZ/Jc7s6o\nboVPQoJTOTnJcrnMuylpd0VS0o8bBav4RVI1sDvLXg8Z0iyXa4gaGjq2817ZTOqoHK3d3bHoQlfV\nIqnjO76+fuBv+2mVJNXWJvqtzAT7Tejc5pycET7T/3rTD0ybA2A3zg7gEUk/SpzooiciKenHjYIN\nhETSIEl3lr2W2pM9/yubtfvLsz2rFkkd3/HDhv0it3uEMjKGS5JGjLgWdHt/vwmd21xSUtXnfmDa\nHAC7cTYJj0j6UeJEN7yampr7PBpsp0hK+nGjYAMhkTRI0t3jsPN3sffKZv50p1rkvd+cnBHavv0f\nqq1N1IgR1zR/fna32hFMJPUDAATCNxciEie64XX8eL3S031Hg9tvcBgJyVI4k/5ImtoVKYINhETS\nIEl/HYe9qRZ5GzJksBYtyulzO3z3GTn9AACBkBghIkVSdSsadL74u74+PqKmMAUSiiQmGj4X0wQb\nCIn1QZLuVov6S6CYifV+ABAdSIwAdKnzxd9DhjRHxdSZUCQx0fC5mCbYQEisDZJ4V4um/WmM53G4\nKpWdY+arr07L6XT+9r7SPfek9Pl9qboCsAvLdQPo0m23DblhKd9oWFo3FElMNHwuiAz//q9/9Ny6\nYNOm73XgQKKuXh0Z0iXpO8dIRUVdvy+Fz/L6AOzCUCaALjmd8brzTt9R+WiYOhOK6yKi4XOBmbyr\nResW50nqSCIaGuLV0jJSlZUXNWHCyJBVKjvHTOd7LoXqRq8AEA582wDolWiYwhSKJCYaPheYb3xm\niqSOpCExsVkNDdK1a20TQUJVqezqnkv9daNXFnIAYAcSIyCCMRe/b0hiECm8q0X/teYvnsftScS4\ncWmqrKxSXFytkpPdIatUdnXPpf54X6quAOxCYgREMFZAA6KfZVk+/3bGd1we7J1E5OZKkydnh3Vw\nJBSDC6HYJ4NIALqDxAiIYKbMxeekAwidl96u8jzuvDw3Vc/uYRAJQHewKh0QwUxZAY1VpIDQqL7k\ntrsJUcGUQSQAZiMxAiLY5MlpNyyjbQdOOoDQeOKVTzyPw30z12hiyiASALNx9gJEMFOm0bCKVBum\nFKI/7fzsf+1uQtRgQQcA3UFiBKDPOOlow3UM6E/b//s7z2OqRX1jyiASALORGAHoM0462jClEP3l\nydX/Y3cTACDmcI0RAPQTrmNAfzn3a8ddU/9jzs02tgQAYgeJEQD0E1MWw0Bk876ZKwAgfJjnAQD9\nhCmF6G97/3a/Kioq7G4GAMQEKkYAABiCahEA2IfECAAAA7ESHQCEF4kRAAAGoFoEAPYiMQIAwDBU\niwAg/EiMAACwmXe16PaxqTa2BABiF4kRAAAGefmpXLubAAAxicQIAAAbeVeL1i7Ks7ElABDbSIwA\nADDErb9PsbsJABCzSIwAALCJd7Xo3VfutbElAAASIwAADDA40Wl3EwAgppEYAQBgA+9qEctzA4D9\nSIwAAAizpuZWu5sAAOiExAgAgDB7aNlez2OqRQBgBhIjAADC6GxNnd1NAAD4QWIEAEAYLVjzmecx\n1SIAMAeJEQAAYfJh6Sm7mwAACIDECACAMHl151HPY6pFAGAWh2VZlt2N6K6Kigq7mwAAAADAcC6X\nq8f/J6ISIwAAAAAIBabSAQAAAIh5JEYAAAAAYh6JEQAAAICYR2IEAAAAIOaRGAEAAACIeSRGAAAA\nAGJevN0NCKSxsVH33XefFi5cqAceeMDz/LRp05SRkSGHwyGHw6H169crLS3NxpbCW3l5uZYsWaKx\nY8fKsixlZ2drxYoVntdLS0u1ceNGxcXFacqUKSooKLCxteisq/4j/sy2Z88evfHGG4qPj9fixYs1\ndepUz2vEnvmC9R+xZ7b33ntP77//vhwOhyzL0okTJ3To0CHP68SfubrqO2LPbG63W8uWLdOVK1fU\n1NSkhQsX6u677/a83uPYswy1YcMG6+GHH7Z27drl8/y0adOsq1ev2tQqdKWsrMxavHhxwNfvvfde\n6/z581Zra6s1Z84c64cffghj69CVrvqP+DNXbW2tNWPGDMvtdlsXLlywVq5c6fM6sWe2rvqP2Isc\n5eXl1qpVq3yeI/4ig7++I/bM9tZbb1kbNmywLMuyqqurrZkzZ/q83tPYM3Iq3cmTJ3Xq1Cmf0bJ2\nlmXJ4p60RgvUP2fOnFFycrLS09PlcDg0depUffPNN2FuHboSLL6IP3OVlpYqNzdXgwYNUmpqqlat\nWuV5jdgzX7D+k4i9SLJ161afUWniL3J07juJ2DNdSkqKamtrJUlXrlxRSkqK57XexJ6RidHatWv1\n/PPPB3y9sLBQc+bM0YYNG8LYKnTXjz/+qIKCAs2dO1elpaWe53/99VefAzYlJUU1NTV2NBFBBOq/\ndsSfmaqqqnT16lUtWLBA8+bN09dff+15jdgzX7D+a0fsme/YsWO66aabNHLkSM9zxF9k8Nd37Yg9\nc82aNUvnz5/XjBkzlJ+f75M/9Cb2jLvGaPfu3Zo0aZIyMjIk3Th6vWTJEuXl5Sk5OVkFBQX6+OOP\nNWPGDDuaCj8yMzO1aNEizZo1S2fOnFF+fr4++eQTxcffeKgxAmOervqP+DOXZVm6fPmyXn31VZ09\ne1b5+fn6/PPPA24Ls3TVf8ReZCguLtZDDz0UdBviz0yB+o7YM9uePXs0atQobdu2Td9//71Wrlyp\n4uJiv9t2J/aMqxh98cUX2rdvn2bPnq3i4mK99tprPiNn999/v1JSUjRgwABNmTJFlZWVNrYWnaWn\np2vWrFmSpDFjxig1NVXV1dWSpLS0NF24cMGzbXV1NRcwGiZY/0nEn8lSU1OVk5Mjh8OhMWPGKCkp\nSZcuXZJE7EWCYP0nEXuRory8XDk5OT7PEX+RwV/fScSe6Q4dOqS8vDxJ0vjx43X+/HlPAtSb2DMu\nMdq4caOKi4v17rvv6pFHHlFBQYHuuusuSVJ9fb3mzZunxsZGSdLBgwc1duxYO5uLTvbu3astW7ZI\nki5evKhLly4pPT1dkjR69Gg1NDTo3Llzam5u1v79+31WDoH9gvUf8We23NxclZWVybIs1dbWyu12\ne6YQEHvmC9Z/xF5kqKmpUVJS0g0zJIg/8wXqO2LPfJmZmTp8+LCktinJgwcPlsPhkNS72HNYBtd0\nt2zZoptvvlmWZWno0KGaPn26ioqKtHPnTiUlJenWW2/1WUoY9mtoaNCzzz6rK1euyLIsFRQU6OLF\ni57+O3jwoNavXy9JmjlzpubPn29vg+Gjq/4j/sy2Y8cOFRcXy+FwaMGCBbp8+TKxF0GC9R+xZ74T\nJ05o06ZN2rZtmyRp165dxF+ECNZ3xJ7Z3G63li9frosXL6qlpUVLlizRuXPneh17RidGAAAAABAO\nxk2lAwAAAIBwIzECAAAAEPNIjAAAAADEPBIjAAAAADGPxAgAAABAzCMxAgAAABDzSIwAAGFRXl6u\nOXPm9Hk/u3btUm5urvLz8/XYY49p9uzZ2rx5s99tS0pK9Prrr/f5PQEA0S++600AAOgf7Xck76vc\n3FytXbtWktTc3Kx58+Zp4sSJmjp1qs92eXl5ysvL65f3BABENxIjAEDYnT59WoWFhWptbVVra6ue\neeYZuVwunT59WkuXLtXAgQM1c+ZMrV69WsePHw+6r/j4eOXk5OjkyZO65ZZb9NRTTyk7O1tZWVka\nNWqUSktLtW7dOh05ckSrV6+W0+lUcnKy1qxZo8GDB2vjxo06dOiQGhsbNWnSJD333HNh+hQAACZh\nKh0AIOz++te/au7cuSoqKlJhYaGWLVsmSdq8ebMefPBBFRUVKSEhQS0tLV3uq66uTgcOHJDL5ZIk\nnTp1Sk8//bQWLFggqaNKtXTpUr3yyisqKirSpEmTtH//fu3bt0/V1dUqKirSjh079NNPP2n//v2h\n+aMBAEajYgQACLujR49q06ZNkqRx48apoaFBtbW1qqys1JNPPilJmj59ul588UW////AgQPKz8+X\nZVmKi4vTE088oYkTJ6qqqkrDhw9XZmamz/a1tbWqq6tTVlaWJCk/P1+S9NJLL+nw4cOefTU0NOjs\n2bOh+rMBAAYjMQIAhF3na40sy9KAAQPU2tqqAQMGeJ4LxPsao86cTqff9/NXfUpISNDs2bP1+OOP\n96T5AIAoxFQ6AEDY3XHHHfryyy8lSd99952Sk5M1fPhwZWVl6dixY5KkTz/9tFf79pdQJScnKyUl\nxXO90ptvvqm3335bLpdLH330kSdp2rp1q37++edevS8AILJRMQIAhN2KFStUWFiod955Ry0tLVq3\nbp0kqaCgQEuXLtWePXuUl5enuLi4Hu870Mp3a9as0csvvyyn06lhw4Zp7dq1SkpK0pEjR/Too48q\nLi5OEyZM0JgxY/r0twEAIpPDCjZXAQCAMDp+/LhaWlp0++236+jRo1q+fLk++OADu5sFAIgBVIwA\nAMZITEzUCy+8oLi4ODU3N6uwsNDuJgEAYgQVIwAAAAAxj8UXAAAAAMQ8EiMAAAAAMY/ECAAAAEDM\nIzECAAAAEPNIjAAAAADEvP8HkhYyyfgweLkAAAAASUVORK5CYII=\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "dimensions = [data['Number Of Stories'],data['Total area'],data['Year Built']]\n", - "mlr = linreg_r2(np.column_stack(dimensions), data['log Price'],plot=False)\n", - "\n", - "print 'rsquared:', mlr[0]\n", - "\n", - "plt.plot(data['log Price'], data['log Price'], label='Y=X **not model**');\n", - "plt.scatter(data['log Price'], mlr[1], alpha=0.3);\n", - "plt.xlabel('log Price');\n", - "plt.ylabel('Predicted log Price');\n", - "plt.ylim(6.45, 7.5);" + "By taking a simple equally weighted average of all the models we saw $R^2$ increase dramatically to 90.97%. The $R^2$ values of the individual single-dimension models were 0.4%, 1.7%, 0.2%, and 9.8%. The $R^2$ of the combined model was dramatically higher than all of the previous ones combined. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "This model performed slightly better than the aggregated model explaining 18.8% vs. 18.5% of variation in `log Price`. For more information on regression models with more than one explanatory variable, refer to the [Quantopian Lecture on Multiple Linear Regression](https://www.quantopian.com/lectures/multiple-linear-regression).\n", + "### More Dimensions Exist\n", "\n", - "Despite our best efforts with the data we were given, the best model or combination of models we could generate only explained 18.8% of the variance in `log Price`. What this means is that the dimensions we were given (`Number Of Stories`, `Total area`, and `Year Built`) were not enough to give us a good understanding of what drives multifamily development prices. While dissapointing, this makes perfect sense as none of our models included important dimensions such as:\n", + "We got a relatively good $R^2$ of 90.97% with the above model using only four data dimensions. However, there are still many more dimensions beyond the four we used (`fx`,`cpi`,`unemployment`, and `gold`) that could help fill out the last 10% such as:\n", "\n", - "* Location desireability\n", - "* Lot size\n", - "* Number of family units\n", - "* Occupancy rate\n", - "* ...and probably many more\n", + "* Broad market ETFs like SPY or IWM\n", + "* Models which take into account interactions between dimensions like [multiple linear regression](https://www.quantopian.com/lectures/multiple-linear-regression)\n", + "* ... and probably many more\n", "\n", - "Furthermore, oftentimes datasets do not have obvious principal dimensions. In this situation you must develop a set of many possible influencers and whittle it down to only the most significant ones through [dimensionality reduction](https://en.wikipedia.org/wiki/Dimensionality_reduction). " + "Furthermore, oftentimes datasets do not have obvious dominant dimensions. In this situation you must develop a set of many possible influencers and whittle it down to only the most significant ones through techniques like [dimensionality reduction](https://en.wikipedia.org/wiki/Dimensionality_reduction). " ] }, { diff --git a/notebooks/lectures/Model_Ensembling/preview.html b/notebooks/lectures/Model_Ensembling/preview.html index 40e11fb2..49d19452 100644 --- a/notebooks/lectures/Model_Ensembling/preview.html +++ b/notebooks/lectures/Model_Ensembling/preview.html @@ -1,6 +1,6 @@ - Model Ensembling Lecture + Model Ensembling Lecture V3