-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathrnn.py
85 lines (66 loc) · 3.39 KB
/
rnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import tensorflow as tf
from common import EMBEDDING_DIM, WORD_METADATA_FILENAME, WORDS_FEATURE, \
tic, toc, create_parser_training, parse_arguments, \
preprocess_data, run_experiment, create_metadata, estimator_spec_for_softmax_classification
# Default values
MODEL_DIRECTORY = 'rnn_model'
NUM_EPOCHS = 2
BATCH_SIZE = 64
LEARNING_RATE = 0.002
def rnn_model(features, labels, mode, params):
"""RNN model architecture using GRUs."""
with tf.variable_scope('RNN'):
# This creates an embedding matrix of dimension (params.n_words, params.embed_dim).
# Thus an integer input matrix of size (num_docs, max_doc_len) will get mapped
# to a tensor of dimension (num_docs, max_doc_len, params.embed_dim).
word_vectors = tf.contrib.layers.embed_sequence(
features[WORDS_FEATURE], vocab_size=params.n_words, embed_dim=params.embed_dim)
# Unpack word_vectors into a sequence of length max_doc_len,
# of tensors of dimension (num_docs, params.embed_dim),
# so that the RNN is given the n-th word of the document at the n-th step.
word_sequence = tf.unstack(word_vectors, axis=1)
# Create a Gated Recurrent Unit cell with hidden layer size params.embed_dim.
cell = tf.nn.rnn_cell.GRUCell(params.embed_dim)
# Create an unrolled Recurrent Neural Networks of length params.max_doc_len,
# providing the length of each sequence (i.e. number of words in each document)
# so that the output from the last element get propagated to the output layer.
_, encoding = tf.nn.static_rnn(cell, word_sequence, dtype=tf.float32,
sequence_length=features['LENGTHS_FEATURE'])
# The output layer
logits = tf.layers.dense(encoding, params.output_dim, activation=None)
return estimator_spec_for_softmax_classification(logits, labels, mode, params)
def rnn():
"""Trains a multilayer perceptron with 1 hidden layer. It assumes that the data has already been preprocessed,
e.g. by perceptron.py"""
tf.logging.set_verbosity(FLAGS.verbosity)
print("Preprocessing data...")
tic()
train_raw, x_train, y_train, x_test, y_test, train_lengths, test_lengths, classes \
= preprocess_data(FLAGS, sequence_lengths=True)
toc()
# Set the output dimension according to the number of classes
FLAGS.output_dim = len(classes)
# Train the RNN model.
tic()
run_experiment(x_train, y_train, x_test, y_test, rnn_model,
'train_and_evaluate', FLAGS, train_lengths, test_lengths)
toc()
# Create metadata for TensorBoard Projector.
create_metadata(train_raw, classes, FLAGS)
# Run script ##############################################
if __name__ == "__main__":
# Get common parser
parser = create_parser_training(MODEL_DIRECTORY, NUM_EPOCHS, BATCH_SIZE, LEARNING_RATE)
# Add command line parameters specific to this example
parser.add_argument(
'--embed-dim',
type=int,
default=EMBEDDING_DIM,
help='Number of dimensions in the embedding, '
'i.e. the number of nodes in the hidden embedding layer (default: {})'.format(EMBEDDING_DIM))
parser.add_argument(
'--word-meta-file',
default=WORD_METADATA_FILENAME,
help='Word embedding metadata filename (default: {})'.format(WORD_METADATA_FILENAME))
FLAGS = parse_arguments(parser)
rnn()