-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathtrain_classify.py
453 lines (366 loc) · 20 KB
/
train_classify.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
#!/usr/bin/env python
from __future__ import division
import onmt
import onmt.markdown
import onmt.modules
import argparse
import torch
import time, datetime
from onmt.data.mmap_indexed_dataset import MMapIndexedDataset
from onmt.data.scp_dataset import SCPIndexDataset
from onmt.data.wav_dataset import WavDataset
from onmt.modules.loss import NMTLossFunc, NMTAndCTCLossFunc
from options import make_parser
from collections import defaultdict
from onmt.constants import add_tokenidx
import os
import numpy as np
parser = argparse.ArgumentParser(description='train_distributed.py')
onmt.markdown.add_md_help_argument(parser)
# Please look at the options file to see the options regarding models and data
parser = make_parser(parser)
opt = parser.parse_args()
# An ugly hack to have weight norm on / off
onmt.constants.weight_norm = opt.weight_norm
onmt.constants.checkpointing = opt.checkpointing
onmt.constants.max_position_length = opt.max_position_length
# Use static dropout if checkpointing > 0
if opt.checkpointing > 0:
onmt.constants.static = True
if torch.cuda.is_available() and not opt.gpus:
print("WARNING: You have a CUDA device, should run with -gpus 0")
torch.manual_seed(opt.seed)
def numpy_to_torch(tensor_list):
out_list = list()
for tensor in tensor_list:
if isinstance(tensor, np.ndarray):
out_list.append(torch.from_numpy(tensor))
else:
out_list.append(tensor)
return out_list
def run_process(gpu, train_data, valid_data, dicts, opt, checkpoint):
# from onmt.train_utils.mp_trainer import Trainer
from onmt.train_utils.classify_trainer import ClassifierTrainer
trainer = ClassifierTrainer(gpu, train_data, valid_data, dicts, opt)
trainer.run(checkpoint=checkpoint)
def main():
if not opt.multi_dataset:
if opt.data_format in ['bin', 'raw']:
start = time.time()
if opt.data.endswith(".train.pt"):
print("Loading data from '%s'" % opt.data)
dataset = torch.load(opt.data)
else:
print("Loading data from %s" % opt.data + ".train.pt")
dataset = torch.load(opt.data + ".train.pt")
elapse = str(datetime.timedelta(seconds=int(time.time() - start)))
print("Done after %s" % elapse)
dicts = dataset['dicts']
onmt.constants = add_tokenidx(opt, onmt.constants, dicts)
# For backward compatibility
train_dict = defaultdict(lambda: None, dataset['train'])
valid_dict = defaultdict(lambda: None, dataset['valid'])
if train_dict['src_lang'] is not None:
assert 'langs' in dicts
train_src_langs = train_dict['src_lang']
train_tgt_langs = train_dict['tgt_lang']
else:
# allocate new languages
dicts['langs'] = {'src': 0, 'tgt': 1}
train_src_langs = list()
train_tgt_langs = list()
# Allocation one for the bilingual case
train_src_langs.append(torch.Tensor([dicts['langs']['src']]))
train_tgt_langs.append(torch.Tensor([dicts['langs']['tgt']]))
train_data = onmt.Dataset(numpy_to_torch(train_dict['src']), numpy_to_torch(train_dict['tgt']),
train_dict['src_sizes'], train_dict['tgt_sizes'],
train_src_langs, train_tgt_langs,
batch_size_words=opt.batch_size_words,
data_type=dataset.get("type", "text"), sorting=True,
batch_size_sents=opt.batch_size_sents,
multiplier=opt.batch_size_multiplier,
augment=opt.augment_speech, sa_f=opt.sa_f, sa_t=opt.sa_t,
upsampling=opt.upsampling,
num_split=1)
if valid_dict['src_lang'] is not None:
assert 'langs' in dicts
valid_src_langs = valid_dict['src_lang']
valid_tgt_langs = valid_dict['tgt_lang']
else:
# allocate new languages
valid_src_langs = list()
valid_tgt_langs = list()
# Allocation one for the bilingual case
valid_src_langs.append(torch.Tensor([dicts['langs']['src']]))
valid_tgt_langs.append(torch.Tensor([dicts['langs']['tgt']]))
valid_data = onmt.Dataset(numpy_to_torch(valid_dict['src']), numpy_to_torch(valid_dict['tgt']),
valid_dict['src_sizes'], valid_dict['tgt_sizes'],
valid_src_langs, valid_tgt_langs,
batch_size_words=opt.batch_size_words,
data_type=dataset.get("type", "text"), sorting=True,
batch_size_sents=opt.batch_size_sents,
multiplier=opt.batch_size_multiplier,
cleaning=True,
upsampling=opt.upsampling)
print(' * number of training sentences. %d' % len(dataset['train']['src']))
print(' * maximum batch size (words per batch). %d' % opt.batch_size_words)
# Loading asr data structures
elif opt.data_format in ['scp', 'scpmem', 'mmem', 'wav']:
print("Loading memory mapped data files ....")
start = time.time()
from onmt.data.mmap_indexed_dataset import MMapIndexedDataset
from onmt.data.scp_dataset import SCPIndexDataset
dicts = torch.load(opt.data + ".dict.pt")
# onmt.constants = add_tokenidx(opt, onmt.constants, dicts)
if opt.data_format in ['scp', 'scpmem']:
audio_data = torch.load(opt.data + ".scp_path.pt")
elif opt.data_format in ['wav']:
audio_data = torch.load(opt.data + ".wav_path.pt")
# allocate languages if not
if 'langs' not in dicts:
dicts['langs'] = {'src': 0, 'tgt': 1}
else:
print(dicts['langs'])
train_path = opt.data + '.train'
if opt.data_format in ['scp', 'scpmem']:
train_src = SCPIndexDataset(audio_data['train'], concat=opt.concat)
if 'train_past' in audio_data:
past_train_src = SCPIndexDataset(audio_data['train_past'],
concat=opt.concat, shared_object=train_src)
else:
past_train_src = None
elif opt.data_format in ['wav']:
train_src = WavDataset(audio_data['train'])
past_train_src = None
else:
train_src = MMapIndexedDataset(train_path + '.src')
past_train_src = None
train_tgt = MMapIndexedDataset(train_path + '.tgt')
# check the lang files if they exist (in the case of multi-lingual models)
if os.path.exists(train_path + '.src_lang.bin'):
assert 'langs' in dicts
train_src_langs = MMapIndexedDataset(train_path + '.src_lang')
train_tgt_langs = MMapIndexedDataset(train_path + '.tgt_lang')
else:
train_src_langs = list()
train_tgt_langs = list()
# Allocate a Tensor(1) for the bilingual case
train_src_langs.append(torch.Tensor([dicts['langs']['src']]))
train_tgt_langs.append(torch.Tensor([dicts['langs']['tgt']]))
# check the length files if they exist
if os.path.exists(train_path + '.src_sizes.npy'):
train_src_sizes = np.load(train_path + '.src_sizes.npy')
train_tgt_sizes = np.load(train_path + '.tgt_sizes.npy')
else:
train_src_sizes, train_tgt_sizes = None, None
# check the length files if they exist
if os.path.exists(train_path + '.past_src_sizes.npy'):
past_train_src_sizes = np.load(train_path + '.past_src_sizes.npy')
else:
past_train_src_sizes = None
if opt.data_format in ['scp', 'scpmem']:
data_type = 'audio'
elif opt.data_format in ['wav']:
data_type = 'wav'
else:
data_type = 'text'
train_data = onmt.Dataset(train_src,
train_tgt,
train_src_sizes, train_tgt_sizes,
train_src_langs, train_tgt_langs,
batch_size_words=opt.batch_size_words,
data_type=data_type, sorting=True,
batch_size_sents=opt.batch_size_sents,
multiplier=opt.batch_size_multiplier,
augment=opt.augment_speech, sa_f=opt.sa_f, sa_t=opt.sa_t,
cleaning=True, verbose=True,
input_size=opt.input_size,
past_src_data=past_train_src,
min_src_len=0, min_tgt_len=0,
past_src_data_sizes=past_train_src_sizes,
constants=onmt.constants)
valid_path = opt.data + '.valid'
if opt.data_format in ['scp', 'scpmem']:
valid_src = SCPIndexDataset(audio_data['valid'], concat=opt.concat)
if 'valid_past' in audio_data:
past_valid_src = SCPIndexDataset(audio_data['valid_past'],
concat=opt.concat, shared_object=valid_src)
else:
past_valid_src = None
elif opt.data_format in ['wav']:
valid_src = WavDataset(audio_data['valid'])
past_valid_src = None
else:
valid_src = MMapIndexedDataset(valid_path + '.src')
past_valid_src = None
valid_tgt = MMapIndexedDataset(valid_path + '.tgt')
if os.path.exists(valid_path + '.src_lang.bin'):
assert 'langs' in dicts
valid_src_langs = MMapIndexedDataset(valid_path + '.src_lang')
valid_tgt_langs = MMapIndexedDataset(valid_path + '.tgt_lang')
else:
valid_src_langs = list()
valid_tgt_langs = list()
# Allocation one for the bilingual case
valid_src_langs.append(torch.Tensor([dicts['langs']['src']]))
valid_tgt_langs.append(torch.Tensor([dicts['langs']['tgt']]))
# check the length files if they exist
if os.path.exists(valid_path + '.src_sizes.npy'):
valid_src_sizes = np.load(valid_path + '.src_sizes.npy')
valid_tgt_sizes = np.load(valid_path + '.tgt_sizes.npy')
else:
valid_src_sizes, valid_tgt_sizes = None, None
# check the length files if they exist
if os.path.exists(valid_path + '.past_src_sizes.npy'):
past_valid_src_sizes = np.load(valid_path + '.past_src_sizes.npy')
else:
past_valid_src_sizes = None
# we can use x2 batch eize for validation
valid_data = onmt.Dataset(valid_src, valid_tgt,
valid_src_sizes, valid_tgt_sizes,
valid_src_langs, valid_tgt_langs,
batch_size_words=opt.batch_size_words * 2,
multiplier=opt.batch_size_multiplier,
data_type=data_type, sorting=True,
input_size=opt.input_size,
batch_size_sents=opt.batch_size_sents,
cleaning=True, verbose=True, debug=True,
past_src_data=past_valid_src,
past_src_data_sizes=past_valid_src_sizes,
min_src_len=0, min_tgt_len=0,
constants=onmt.constants)
elapse = str(datetime.timedelta(seconds=int(time.time() - start)))
print("Done after %s" % elapse)
else:
raise NotImplementedError
print(' * number of sentences in training data: %d' % train_data.size())
print(' * number of sentences in validation data: %d' % valid_data.size())
else:
print("[INFO] Reading multiple dataset ...")
# raise NotImplementedError
dicts = torch.load(opt.data + ".dict.pt")
# onmt.constants = add_tokenidx(opt, onmt.constants, dicts)
root_dir = os.path.dirname(opt.data)
print("Loading training data ...")
train_dirs, valid_dirs = dict(), dict()
# scan the data directory to find the training data
for dir_ in os.listdir(root_dir):
if os.path.isdir(os.path.join(root_dir, dir_)):
if str(dir_).startswith("train"):
idx = int(dir_.split(".")[1])
train_dirs[idx] = dir_
if dir_.startswith("valid"):
idx = int(dir_.split(".")[1])
valid_dirs[idx] = dir_
train_sets, valid_sets = list(), list()
for (idx_, dir_) in sorted(train_dirs.items()):
data_dir = os.path.join(root_dir, dir_)
print("[INFO] Loading training data %i from %s" % (idx_, dir_))
if opt.data_format in ['bin', 'raw']:
raise NotImplementedError
elif opt.data_format in ['scp', 'scpmem', 'mmem', 'wav']:
from onmt.data.mmap_indexed_dataset import MMapIndexedDataset
from onmt.data.scp_dataset import SCPIndexDataset
if opt.data_format in ['scp', 'scpmem']:
audio_data = torch.load(os.path.join(data_dir, "data.scp_path.pt"))
src_data = SCPIndexDataset(audio_data, concat=opt.concat)
elif opt.data_format in ['wav']:
audio_data = torch.load(os.path.join(data_dir, "data.scp_path.pt"))
src_data = WavDataset(audio_data)
else:
src_data = MMapIndexedDataset(os.path.join(data_dir, "data.src"))
tgt_data = MMapIndexedDataset(os.path.join(data_dir, "data.tgt"))
src_lang_data = MMapIndexedDataset(os.path.join(data_dir, 'data.src_lang'))
tgt_lang_data = MMapIndexedDataset(os.path.join(data_dir, 'data.tgt_lang'))
if os.path.exists(os.path.join(data_dir, 'data.src_sizes.npy')):
src_sizes = np.load(os.path.join(data_dir, 'data.src_sizes.npy'))
tgt_sizes = np.load(os.path.join(data_dir, 'data.tgt_sizes.npy'))
else:
src_sizes, sizes = None, None
if opt.data_format in ['scp', 'scpmem']:
data_type = 'audio'
elif opt.data_format in ['wav']:
data_type = 'wav'
else:
data_type = 'text'
train_data = onmt.Dataset(src_data,
tgt_data,
src_sizes, tgt_sizes,
src_lang_data, tgt_lang_data,
batch_size_words=opt.batch_size_words,
data_type=data_type, sorting=True,
batch_size_sents=opt.batch_size_sents,
multiplier=opt.batch_size_multiplier,
src_align_right=opt.src_align_right,
upsampling=opt.upsampling,
augment=opt.augment_speech, sa_f=opt.sa_f, sa_t=opt.sa_t,
cleaning=True, verbose=True,
input_size=opt.input_size,
constants=onmt.constants)
train_sets.append(train_data)
for (idx_, dir_) in sorted(valid_dirs.items()):
data_dir = os.path.join(root_dir, dir_)
print("[INFO] Loading validation data %i from %s" % (idx_, dir_))
if opt.data_format in ['bin', 'raw']:
raise NotImplementedError
elif opt.data_format in ['scp', 'scpmem', 'mmem', 'wav']:
if opt.data_format in ['scp', 'scpmem']:
audio_data = torch.load(os.path.join(data_dir, "data.scp_path.pt"))
src_data = SCPIndexDataset(audio_data, concat=opt.concat)
elif opt.data_format in ['wav']:
audio_data = torch.load(os.path.join(data_dir, "data.scp_path.pt"))
src_data = WavDataset(audio_data)
else:
src_data = MMapIndexedDataset(os.path.join(data_dir, "data.src"))
tgt_data = MMapIndexedDataset(os.path.join(data_dir, "data.tgt"))
src_lang_data = MMapIndexedDataset(os.path.join(data_dir, 'data.src_lang'))
tgt_lang_data = MMapIndexedDataset(os.path.join(data_dir, 'data.tgt_lang'))
if os.path.exists(os.path.join(data_dir, 'data.src_sizes.npy')):
src_sizes = np.load(os.path.join(data_dir, 'data.src_sizes.npy'))
tgt_sizes = np.load(os.path.join(data_dir, 'data.tgt_sizes.npy'))
else:
src_sizes, sizes = None, None
if opt.encoder_type == 'audio':
data_type = 'audio'
else:
data_type = 'text'
valid_data = onmt.Dataset(src_data, tgt_data,
src_sizes, tgt_sizes,
src_lang_data, tgt_lang_data,
batch_size_words=opt.batch_size_words,
multiplier=opt.batch_size_multiplier,
data_type=data_type, sorting=True,
batch_size_sents=opt.batch_size_sents,
src_align_right=opt.src_align_right,
min_src_len=1, min_tgt_len=3,
input_size=opt.input_size,
cleaning=True, verbose=True, constants=onmt.constants)
valid_sets.append(valid_data)
train_data = train_sets
valid_data = valid_sets
if opt.load_from:
checkpoint = torch.load(opt.load_from, map_location=lambda storage, loc: storage)
print("* Loading dictionaries from the checkpoint")
del checkpoint['model']
del checkpoint['optim']
dicts = checkpoint['dicts']
else:
dicts['tgt'].patch(opt.patch_vocab_multiplier)
checkpoint = None
if "src" in dicts:
print(' * vocabulary size. source = %d; target = %d' %
(dicts['src'].size(), dicts['tgt'].size()))
else:
print(' * vocabulary size. target = %d' %
(dicts['tgt'].size()))
os.environ['MASTER_ADDR'] = opt.master_addr # default 'localhost'
os.environ['MASTER_PORT'] = opt.master_port # default '8888'
# spawn N processes for N gpus
# each process has a different trainer
if len(opt.gpus) > 1:
torch.multiprocessing.spawn(run_process, nprocs=len(opt.gpus),
args=(train_data, valid_data, dicts, opt, checkpoint))
else:
run_process(0, train_data, valid_data, dicts, opt, checkpoint)
if __name__ == "__main__":
main()