-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathquantize_pretrained_hubert_kmeans.py
174 lines (149 loc) · 5.45 KB
/
quantize_pretrained_hubert_kmeans.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import logging
import os
import numpy as np
import joblib
from fairseq_utils.clustering.utils import get_audio_files
from fairseq_utils.pretrained.utils import get_features, get_features_generator
import tqdm
def get_logger():
log_format = "[%(asctime)s] [%(levelname)s]: %(message)s"
logging.basicConfig(format=log_format, level=logging.INFO)
logger = logging.getLogger(__name__)
return logger
def get_parser():
parser = argparse.ArgumentParser(
description="Quantize using K-means clustering over acoustic features."
)
parser.add_argument(
"--feature_type",
type=str,
choices=["logmel", "hubert", "w2v2", "cpc"],
default='hubert',
required=True,
help="Acoustic feature type",
)
parser.add_argument(
"--acoustic_model_path",
type=str,
help="Pretrained acoustic model checkpoint"
)
parser.add_argument(
"--layer",
type=int,
help="The layer of the pretrained model to extract features from",
default=-1,
)
parser.add_argument(
"--kmeans_model_path",
type=str,
required=True,
help="K-means model file path to use for inference",
)
parser.add_argument(
"--features_path",
type=str,
default=None,
help="Features file path. You don't need to enter acoustic model details if you have dumped features",
)
parser.add_argument(
"--manifest_path",
type=str,
default=None,
help="Manifest file containing the root dir and file names",
)
parser.add_argument(
"--out_quantized_file_path",
required=True,
type=str,
help="File path of quantized output.",
)
parser.add_argument(
"--extension", type=str, default=".mp3", help="Features file path"
)
parser.add_argument(
"--channel_id",
choices=['1', '2'],
help="The audio channel to extract the units in case of stereo file.",
default=None,
)
parser.add_argument(
"--hide-fname", action='store_true',
help="Hide file names in the output file."
)
return parser
def main(args, logger):
# Feature extraction
# if args.features_path is not None:
# logger.info(f"Loading acoustic features from {args.features_path}...")
# features_batch = np.load(args.features_path)
# else:
# logger.info(f"Extracting {args.feature_type} acoustic features...")
# features_batch = get_features(
# feature_type=args.feature_type,
# checkpoint_path=args.acoustic_model_path,
# layer=args.layer,
# manifest_path=args.manifest_path,
# sample_pct=1.0,
# flatten=False,
# channel_id=int(args.channel_id) if args.channel_id else None,
# )
# logger.info(
# f"Features extracted for {len(features_batch)} utterances.\n"
# )
# logger.info(
# f"Dimensionality of representation = {features_batch[0].shape[1]}"
# )
# K-means model
logger.info(f"Loading K-means model from {args.kmeans_model_path} ...")
kmeans_model = joblib.load(open(args.kmeans_model_path, "rb"))
kmeans_model.verbose = False
_, fnames, _ = get_audio_files(args.manifest_path, args.extension)
os.makedirs(os.path.dirname(args.out_quantized_file_path), exist_ok=True)
print(f"Writing quantized predictions to {args.out_quantized_file_path}")
with open(args.out_quantized_file_path, "w") as fout:
features_generator, num_files = get_features_generator(
feature_type=args.feature_type,
checkpoint_path=args.acoustic_model_path,
layer=args.layer,
manifest_path=args.manifest_path,
sample_pct=1.0,
flatten=False,
channel_id=int(args.channel_id) if args.channel_id else None,
)
i = -1
iterator = features_generator
for feats in tqdm.tqdm(iterator, total=num_files):
i += 1
pred = kmeans_model.predict(feats)
# convert each number to string and concat
pred_str = " ".join("__" + str(p) + "__" for p in pred)
base_fname = os.path.basename(fnames[i]).rstrip('.'+args.extension.lstrip('.'))
if args.channel_id is not None:
base_fname = base_fname+f'-channel{args.channel_id}'
if not args.hide_fname:
fout.write(f"{base_fname} |||| {pred_str}\n")
else:
fout.write(f"{pred_str}\n")
if __name__ == "__main__":
parser = get_parser()
args = parser.parse_args()
logger = get_logger()
logger.info(args)
main(args, logger)
# Step 1: quantize all data [DONE]
# Step 2: add Kmeans groups to DeltaLM [DONE]
# Step 3: make tokenizer [DeltalmQ] to add special tokens to the vocabulary (the Kmeans group) [DONE]
# Step 4: merge the steps with the same cluster
# Step 5: prepare data using MBart50Cluster (which is also compatible with deltaLM)
# STep 6: trainz`
# Step 4: train MT model to translate from Kmeans unit to deltalm bpe
# Research
# experiment with mixed continuous + discrete
# experiment with VQ-VAE
# experiment with Discrete + LLMs
# experiment with ....