-
Notifications
You must be signed in to change notification settings - Fork 25
/
sunutils.py
305 lines (250 loc) · 10.2 KB
/
sunutils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
''' Provides Python helper function to read My SUNRGBD dataset.
Author: Charles R. Qi
Date: October, 2017
'''
import numpy as np
import cv2
import os
class SUNObject3d(object):
def __init__(self, line):
data = line.split(' ')
data[1:] = [float(x) for x in data[1:]]
self.classname = data[0]
self.xmin = data[1]
self.ymin = data[2]
self.xmax = data[1] + data[3]
self.ymax = data[2] + data[4]
self.box2d = np.array([self.xmin, self.ymin, self.xmax, self.ymax])
self.centroid = np.array([data[5], data[6], data[7]])
self.unused_dimension = np.array([data[8], data[9], data[10]])
self.w = data[8]
self.l = data[9]
self.h = data[10]
self.unused_basis = np.zeros((3, 3))
self.unused_basis[0, 0] = data[11]
self.unused_basis[0, 1] = data[12]
self.unused_basis[1, 0] = data[13]
self.unused_basis[1, 1] = data[14]
self.unused_basis[2, 2] = 1
self.orientation = np.zeros((3,))
self.orientation[0] = data[15]
self.orientation[1] = data[16]
self.heading_angle = -1 * np.arctan2(self.orientation[1], self.orientation[0])
class SUNRGBD_Calibration(object):
''' Calibration matrices and utils
We define five coordinate system in SUN RGBD dataset
camera coodinate:
Z is forward, Y is downward, X is rightward
depth coordinate:
Just change axis order and flip up-down axis from camera coord
upright depth coordinate: tilted depth coordinate by Rtilt such that Z is gravity direction,
Z is up-axis, Y is forward, X is right-ward
upright camera coordinate:
Just change axis order and flip up-down axis from upright depth coordinate
image coordinate:
----> x-axis (u)
|
v
y-axis (v)
depth points are stored in upright depth coordinate.
labels for 3d box (basis, centroid, size) are in upright depth coordinate.
2d boxes are in image coordinate
We generate frustum point cloud and 3d box in upright camera coordinate
'''
def __init__(self, calib_filepath):
lines = [line.rstrip() for line in open(calib_filepath)]
Rtilt = np.array([float(x) for x in lines[0].split(' ')])
self.Rtilt = np.reshape(Rtilt, (3, 3), order='F')
K = np.array([float(x) for x in lines[1].split(' ')])
self.K = np.reshape(K, (3, 3), order='F')
self.f_u = self.K[0, 0]
self.f_v = self.K[1, 1]
self.c_u = self.K[0, 2]
self.c_v = self.K[1, 2]
def flip_axis_to_camera(self, pc):
''' Flip X-right,Y-forward,Z-up to X-right,Y-down,Z-forward
Input and output are both (N,3) array
'''
pc2 = np.copy(pc)
pc2[:, [0, 1, 2]] = pc2[:, [0, 2, 1]] # cam X,Y,Z = depth X,-Z,Y
pc2[:, 1] *= -1
return pc2
def flip_axis_to_depth(self, pc):
pc2 = np.copy(pc)
pc2[:, [0, 1, 2]] = pc2[:, [0, 2, 1]] # depth X,Y,Z = cam X,Z,-Y
pc2[:, 2] *= -1
return pc2
def project_upright_depth_to_camera(self, pc):
''' project point cloud from depth coord to camera coordinate
Input: (N,3) Output: (N,3)
'''
# Project upright depth to depth coordinate
pc2 = np.dot(np.transpose(self.Rtilt), np.transpose(pc[:, 0:3])) # (3,n)
return self.flip_axis_to_camera(np.transpose(pc2))
def project_upright_depth_to_image(self, pc):
''' Input: (N,3) Output: (N,2) UV and (N,) depth '''
pc2 = self.project_upright_depth_to_camera(pc)
uv = np.dot(pc2, np.transpose(self.K)) # (n,3)
uv[:, 0] /= uv[:, 2]
uv[:, 1] /= uv[:, 2]
return uv[:, 0:2], pc2[:, 2]
def project_upright_depth_to_upright_camera(self, pc):
return self.flip_axis_to_camera(pc)
def project_upright_camera_to_upright_depth(self, pc):
return self.flip_axis_to_depth(pc)
def project_image_to_camera(self, uv_depth):
n = uv_depth.shape[0]
x = ((uv_depth[:, 0] - self.c_u) * uv_depth[:, 2]) / self.f_u
y = ((uv_depth[:, 1] - self.c_v) * uv_depth[:, 2]) / self.f_v
pts_3d_camera = np.zeros((n, 3))
pts_3d_camera[:, 0] = x
pts_3d_camera[:, 1] = y
pts_3d_camera[:, 2] = uv_depth[:, 2]
return pts_3d_camera
def project_image_to_upright_camerea(self, uv_depth):
pts_3d_camera = self.project_image_to_camera(uv_depth)
pts_3d_depth = self.flip_axis_to_depth(pts_3d_camera)
pts_3d_upright_depth = np.transpose(np.dot(self.Rtilt, np.transpose(pts_3d_depth)))
return self.project_upright_depth_to_upright_camera(pts_3d_upright_depth)
def rotx(t):
"""Rotation about the x-axis."""
c = np.cos(t)
s = np.sin(t)
return np.array([[1, 0, 0],
[0, c, -s],
[0, s, c]])
def roty(t):
"""Rotation about the y-axis."""
c = np.cos(t)
s = np.sin(t)
return np.array([[c, 0, s],
[0, 1, 0],
[-s, 0, c]])
def rotz(t):
"""Rotation about the z-axis."""
c = np.cos(t)
s = np.sin(t)
return np.array([[c, -s, 0],
[s, c, 0],
[0, 0, 1]])
def transform_from_rot_trans(R, t):
"""Transforation matrix from rotation matrix and translation vector."""
R = R.reshape(3, 3)
t = t.reshape(3, 1)
return np.vstack((np.hstack([R, t]), [0, 0, 0, 1]))
def inverse_rigid_trans(Tr):
"""Inverse a rigid body transform matrix (3x4 as [R|t])
[R'|-R't; 0|1]
"""
inv_Tr = np.zeros_like(Tr) # 3x4
inv_Tr[0:3, 0:3] = np.transpose(Tr[0:3, 0:3])
inv_Tr[0:3, 3] = np.dot(-np.transpose(Tr[0:3, 0:3]), Tr[0:3, 3])
return inv_Tr
def read_sunrgbd_label(label_filename):
lines = [line.rstrip() for line in open(label_filename)]
objects = [SUNObject3d(line) for line in lines]
return objects
def load_image(img_filename):
return cv2.imread(img_filename)
def load_depth_points(depth_filename):
depth = np.loadtxt(depth_filename)
return depth
def random_shift_box2d(box2d, shift_ratio=0.1):
''' Randomly shift box center, randomly scale width and height
'''
r = shift_ratio
xmin, ymin, xmax, ymax = box2d
h = ymax - ymin
w = xmax - xmin
cx = (xmin + xmax) / 2.0
cy = (ymin + ymax) / 2.0
cx2 = cx + w * r * (np.random.random() * 2 - 1)
cy2 = cy + h * r * (np.random.random() * 2 - 1)
h2 = h * (1 + np.random.random() * 2 * r - r) # 0.9 to 1.1
w2 = w * (1 + np.random.random() * 2 * r - r) # 0.9 to 1.1
return np.array([cx2 - w2 / 2.0, cy2 - h2 / 2.0, cx2 + w2 / 2.0, cy2 + h2 / 2.0])
def in_hull(p, hull):
from scipy.spatial import Delaunay
if not isinstance(hull,Delaunay):
hull = Delaunay(hull)
return hull.find_simplex(p)>=0
def extract_pc_in_box3d(pc, box3d):
''' pc: (N,3), box3d: (8,3) '''
box3d_roi_inds = in_hull(pc[:, 0:3], box3d)
return pc[box3d_roi_inds, :], box3d_roi_inds
def compute_box_3d(obj, calib):
''' Takes an object and a projection matrix (P) and projects the 3d
bounding box into the image plane.
Returns:
corners_2d: (8,2) array in image coord.
corners_3d: (8,3) array in in upright depth coord.
'''
center = obj.centroid
# compute rotational matrix around yaw axis
R = rotz(-1 * obj.heading_angle)
# b,a,c = dimension
# print R, a,b,c
# 3d bounding box dimensions
l = obj.l # along heading arrow
w = obj.w # perpendicular to heading arrow
h = obj.h
# rotate and translate 3d bounding box
x_corners = [-l, l, l, -l, -l, l, l, -l]
y_corners = [w, w, -w, -w, w, w, -w, -w]
z_corners = [h, h, h, h, -h, -h, -h, -h]
corners_3d = np.dot(R, np.vstack([x_corners, y_corners, z_corners]))
corners_3d[0, :] += center[0]
corners_3d[1, :] += center[1]
corners_3d[2, :] += center[2]
# project the 3d bounding box into the image plane
corners_2d, _ = calib.project_upright_depth_to_image(np.transpose(corners_3d))
# print 'corners_2d: ', corners_2d
return corners_2d, np.transpose(corners_3d)
def compute_orientation_3d(obj, calib):
''' Takes an object and a projection matrix (P) and projects the 3d
object orientation vector into the image plane.
Returns:
orientation_2d: (2,2) array in image coord.
orientation_3d: (2,3) array in depth coord.
'''
# orientation in object coordinate system
ori = obj.orientation
orientation_3d = np.array([[0, ori[0]], [0, ori[1]], [0, 0]])
center = obj.centroid
orientation_3d[0, :] = orientation_3d[0, :] + center[0]
orientation_3d[1, :] = orientation_3d[1, :] + center[1]
orientation_3d[2, :] = orientation_3d[2, :] + center[2]
# project orientation into the image plane
orientation_2d, _ = calib.project_upright_depth_to_image(np.transpose(orientation_3d))
return orientation_2d, np.transpose(orientation_3d)
def draw_projected_box3d(image, qs, color=(255, 255, 255), thickness=2):
''' Draw 3d bounding box in image
qs: (8,2) array of vertices for the 3d box in following order:
1 -------- 0
/| /|
2 -------- 3 .
| | | |
. 5 -------- 4
|/ |/
6 -------- 7
'''
qs = qs.astype(np.int32)
for k in range(0, 4):
# http://docs.enthought.com/mayavi/mayavi/auto/mlab_helper_functions.html
i, j = k, (k + 1) % 4
cv2.line(image, (qs[i, 0], qs[i, 1]), (qs[j, 0], qs[j, 1]), color, thickness,
cv2.LINE_AA) # use LINE_AA for opencv3
i, j = k + 4, (k + 1) % 4 + 4
cv2.line(image, (qs[i, 0], qs[i, 1]), (qs[j, 0], qs[j, 1]), color, thickness, cv2.LINE_AA)
i, j = k, k + 4
cv2.line(image, (qs[i, 0], qs[i, 1]), (qs[j, 0], qs[j, 1]), color, thickness, cv2.LINE_AA)
return image
import pickle
import gzip
def save_zipped_pickle(obj, filename, protocol=-1):
with gzip.open(filename, 'wb') as f:
pickle.dump(obj, f, protocol)
def load_zipped_pickle(filename):
with gzip.open(filename, 'rb') as f:
loaded_object = pickle.load(f)
return loaded_object