-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathdataset.py
366 lines (309 loc) · 16.2 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
''' Helper class and functions for loading SUN RGB-D objects
Author: Charles R. Qi
Date: October 2017
TODO: code formatting and clean-up.
'''
import os
import sys
import numpy as np
from mayavi import mlab
import config
from tensorpack import *
import sys
import glob
from timeit import default_timer as timer
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append(BASE_DIR)
import utils
from sunutils import *
from viz_utils import draw_gt_boxes3d, draw_lidar
import cv2
from PIL import Image
data_dir = BASE_DIR
AUGMENT_X = 5
type2class = {'bed': 0, 'table': 1, 'sofa': 2, 'chair': 3, 'toilet': 4, 'desk': 5, 'dresser': 6, 'night_stand': 7,
'bookshelf': 8, 'bathtub': 9}
class2type = {type2class[t]: t for t in type2class}
type2onehotclass = {'bed': 0, 'table': 1, 'sofa': 2, 'chair': 3, 'toilet': 4, 'desk': 5, 'dresser': 6, 'night_stand': 7,
'bookshelf': 8, 'bathtub': 9}
type_mean_size = {'bathtub': np.array([0.765840, 1.398258, 0.472728]),
'bed': np.array([2.114256, 1.620300, 0.927272]),
'bookshelf': np.array([0.404671, 1.071108, 1.688889]),
'chair': np.array([0.591958, 0.552978, 0.827272]),
'desk': np.array([0.695190, 1.346299, 0.736364]),
'dresser': np.array([0.528526, 1.002642, 1.172878]),
'night_stand': np.array([0.500618, 0.632163, 0.683424]),
'sofa': np.array([0.923508, 1.867419, 0.845495]),
'table': np.array([0.791118, 1.279516, 0.718182]),
'toilet': np.array([0.699104, 0.454178, 0.756250])}
class_mean_size = np.zeros((len(type2class), 3), dtype=np.float32)
for t, idx in type2class.items():
class_mean_size[idx] = type_mean_size[t]
def angle2class(angle, num_class):
''' Convert continuous angle to discrete class
[optinal] also small regression number from
class center angle to current angle.
angle is from 0-2pi (or -pi~pi), class center at 0, 1*(2pi/N), 2*(2pi/N) ... (N-1)*(2pi/N)
return is class of int32 of 0,1,...,N-1 and a number such that
class*(2pi/N) + number = angle
'''
angle = angle % (2 * np.pi)
assert (angle >= 0 and angle <= 2 * np.pi)
angle_per_class = 2 * np.pi / float(num_class)
shifted_angle = (angle + angle_per_class / 2) % (2 * np.pi)
class_id = int(shifted_angle / angle_per_class)
residual_angle = shifted_angle - (class_id * angle_per_class + angle_per_class / 2)
return class_id, residual_angle
def class2angle(pred_cls, residual, num_class, to_label_format=True):
''' Inverse function to angle2class '''
angle_per_class = 2 * np.pi / float(num_class)
angle_center = pred_cls * angle_per_class
angle = angle_center + residual
if to_label_format and angle > np.pi:
angle = angle - 2 * np.pi
return angle
def size2class(size, type_name):
''' Convert 3D box size (l,w,h) to size class and size residual '''
size_class = type2class[type_name]
size_residual = size - type_mean_size[type_name]
return size_class, size_residual
def class2size(pred_cls, residual):
''' Inverse function to size2class '''
mean_size = type_mean_size[class2type[pred_cls]]
return mean_size + residual
def get_3d_box(box_size, heading_angle, center):
''' box_size is array(l,w,h), heading_angle is radius clockwise from pos x axis, center is xyz of box center
output (8,3) array for 3D box cornders
Similar to utils/compute_orientation_3d
'''
R = roty(heading_angle)
l, w, h = box_size
x_corners = [l / 2, l / 2, -l / 2, -l / 2, l / 2, l / 2, -l / 2, -l / 2]
y_corners = [h / 2, h / 2, h / 2, h / 2, -h / 2, -h / 2, -h / 2, -h / 2]
z_corners = [w / 2, -w / 2, -w / 2, w / 2, w / 2, -w / 2, -w / 2, w / 2]
corners_3d = np.dot(R, np.vstack([x_corners, y_corners, z_corners]))
corners_3d[0, :] = corners_3d[0, :] + center[0]
corners_3d[1, :] = corners_3d[1, :] + center[1]
corners_3d[2, :] = corners_3d[2, :] + center[2]
corners_3d = np.transpose(corners_3d)
return corners_3d
class sunrgbd_object(object):
''' Load and parse object data '''
def __init__(self, root_dir, split='training', idx_list=None):
self.root_dir = root_dir
self.split = split
self.split_dir = os.path.join(root_dir, split)
# if split == 'training':
# self.num_samples = 10335
# elif split == 'testing':
# self.num_samples = 2860
# else:
# print('Unknown split: %s' % (split))
# exit(-1)
self.samples = idx_list if idx_list is not None else list(range(1, 10336 if split == 'training' else 2861))
self.image_dir = os.path.join(self.split_dir, 'image')
self.calib_dir = os.path.join(self.split_dir, 'calib')
self.depth_dir = os.path.join(self.split_dir, 'depth')
self.label_dir = os.path.join(self.split_dir, 'label_dimension')
# self.label_dimension_dir = os.path.join(self.split_dir, 'label_dimension')
def __len__(self):
return len(self.samples)
def get_image(self, idx):
img_filename = os.path.join(self.image_dir, '%06d.jpg' % (idx))
return load_image(img_filename)
def get_depth(self, idx):
depth_filename = os.path.join(self.depth_dir, '%06d.txt' % (idx))
return load_depth_points(depth_filename)
def get_calibration(self, idx):
calib_filename = os.path.join(self.calib_dir, '%06d.txt' % (idx))
return SUNRGBD_Calibration(calib_filename)
def get_label_objects(self, idx):
# assert (self.split == 'training')
label_filename = os.path.join(self.label_dir, '%06d.txt' % (idx))
return read_sunrgbd_label(label_filename)
class MyDataFlow(RNGDataFlow):
def __init__(self, root, split, training, idx_list=None, cache_dir=None):
self.dataset = sunrgbd_object(root, split, idx_list)
self.training = training
self.type_whitelist = ('bed', 'table', 'sofa', 'chair', 'toilet', 'desk', 'dresser', 'night_stand',
'bookshelf', 'bathtub')
self.cache_dir = cache_dir
if self.cache_dir:
if not os.path.exists(self.cache_dir):
os.mkdir(self.cache_dir)
def __len__(self):
return len(self.dataset)
def __iter__(self):
if self.training:
self.rng.shuffle(self.dataset.samples)
for idx in self.dataset.samples:
objects = self.dataset.get_label_objects(idx)
if not objects:
continue
if self.cache_dir is None:
cache_cnt = 0
else:
cache_cnt = len(glob.glob(os.path.join(self.cache_dir, 'data%d_*.npy' % idx)))
# augment each scene 5 times
if cache_cnt < (AUGMENT_X if self.training else 1):
calib = self.dataset.get_calibration(idx)
pc_upright_depth = self.dataset.get_depth(idx)
pc_upright_depth = pc_upright_depth[
self.rng.choice(pc_upright_depth.shape[0], config.POINT_NUM, replace=False), :] # subsample
pc_upright_camera = np.zeros_like(pc_upright_depth)
pc_upright_camera[:, 0:3] = calib.project_upright_depth_to_upright_camera(pc_upright_depth[:, 0:3])
pc_upright_camera[:, 3:] = pc_upright_depth[:, 3:]
pc_image_coord, _ = calib.project_upright_depth_to_image(pc_upright_depth)
if self.training:
if self.cache_dir is None:
augment = self.rng.randint(AUGMENT_X)
else:
fns = glob.glob(os.path.join(self.cache_dir, 'data%d_*.npy' % idx))
exists = set([int(fn.split('_')[-1].split('.')[0]) for fn in fns])
cands = set(range(AUGMENT_X)) - exists
if not cands:
augment = self.rng.randint(AUGMENT_X)
else:
augment = list(cands)[0]
else:
augment = 0
try:
if self.cache_dir is None:
raise FileNotFoundError
batch = pickle.load(
open(os.path.join(self.cache_dir, 'data%d_%d.npy' % (idx, augment)), 'rb'))
if not batch:
continue
yield batch
except Exception as ex:
if ex.__class__ not in [OSError, FileNotFoundError]:
pass
if self.training:
if np.random.rand() > 0.5:
flip_x = True
else:
flip_x = False
if np.random.rand() > 0.5:
flip_z = True
else:
flip_z = False
rand_roty_angle = (np.random.rand() * 2 - 1.) * 5. / 180 * np.pi
rand_scale = (np.random.rand() * 2 - 1.) * 0.1 + 1.
bboxes_xyz = []
bboxes_lwh = []
bboxes_roty = []
semantic_labels = []
heading_labels = []
heading_residuals = []
size_labels = []
size_residuals = []
for obj_idx in range(len(objects)):
obj = objects[obj_idx]
if obj.classname not in self.type_whitelist:
continue
# 2D BOX: Get pts rect backprojected
box2d = obj.box2d
xmin, ymin, xmax, ymax = box2d
box_fov_inds = (pc_image_coord[:, 0] < xmax) & (pc_image_coord[:, 0] >= xmin) & (
pc_image_coord[:, 1] < ymax) & (pc_image_coord[:, 1] >= ymin)
pc_in_box_fov = pc_upright_camera[box_fov_inds, :]
# Get frustum angle (according to center pixel in 2D BOX)
# 3D BOX: Get pts velo in 3d box
box3d_pts_2d, box3d_pts_3d = compute_box_3d(obj, calib)
box3d_pts_3d = calib.project_upright_depth_to_upright_camera(box3d_pts_3d)
if np.max(box3d_pts_3d[:, 1]) - np.min(box3d_pts_3d[:, 1]) < 1e-7: # SUNRGBD sometimes gives a degenerate bbox
continue
_, inds = extract_pc_in_box3d(pc_in_box_fov, box3d_pts_3d)
# Get 3D BOX size
box3d_size = np.array([2 * obj.l, 2 * obj.w, 2 * obj.h])
box3d_center = (box3d_pts_3d[0, :] + box3d_pts_3d[6, :]) / 2
if self.training:
if flip_x:
box3d_center[..., 0] = -box3d_center[..., 0]
obj.heading_angle = np.pi - obj.heading_angle
if flip_z:
box3d_center[..., 2] = -box3d_center[..., 2]
obj.heading_angle = -obj.heading_angle
box3d_center = (roty(rand_roty_angle) @ box3d_center.T).T
obj.heading_angle += rand_roty_angle
box3d_center = box3d_center * rand_scale
box3d_size = box3d_size * rand_scale
# Size
size_class, size_residual = size2class(box3d_size, obj.classname)
angle_class, angle_residual = angle2class(obj.heading_angle, config.NH)
# Reject object with too few points
if len(inds) < 5:
continue
# VISUALIZE
# img2 = np.copy(self.dataset.get_image(idx))
# cv2.rectangle(img2, (int(obj.xmin), int(obj.ymin)), (int(obj.xmax), int(obj.ymax)), (0, 255, 0),
# 2)
# draw_projected_box3d(img2, box3d_pts_2d)
# Image.fromarray(img2).show()
bboxes_xyz.append(box3d_center)
bboxes_lwh.append(box3d_size)
bboxes_roty.append(obj.heading_angle)
semantic_labels.append(type2class[obj.classname])
heading_labels.append(angle_class)
heading_residuals.append(angle_residual / (np.pi / config.NH))
size_labels.append(size_class)
size_residuals.append(size_residual / type_mean_size[obj.classname])
if len(bboxes_xyz) > 0:
if self.training:
if flip_x:
pc_upright_camera[..., 0] = -pc_upright_camera[..., 0]
if flip_z:
pc_upright_camera[..., 2] = -pc_upright_camera[..., 2]
pc_upright_camera[:, :3] = (roty(rand_roty_angle) @ pc_upright_camera[:, :3].T).T
pc_upright_camera[:, :3] = pc_upright_camera[:, :3] * rand_scale
batch = [idx, pc_upright_camera[:, :3], np.array(bboxes_xyz), np.array(bboxes_lwh), np.asarray(bboxes_roty), np.array(semantic_labels),
np.array(heading_labels), np.array(heading_residuals), np.array(size_labels), np.array(size_residuals)]
if self.cache_dir is not None:
with open(os.path.join(self.cache_dir, 'data%d_%d.npy' % (idx, augment)), 'wb') as f:
pickle.dump(batch, f)
yield batch
else:
with open(os.path.join(self.cache_dir, 'data%d_%d.npy' % (idx, augment)), 'wb') as f:
pickle.dump([], f) # dummy
if __name__ == '__main__':
# dataset_viz()
# get_box3d_dim_statistics('/home/rqi/Data/mysunrgbd/training/train_data_idx.txt')
# extract_roi_seg('/home/rqi/Data/mysunrgbd/training/val_data_idx.txt', 'training',
# output_filename='val_1002.zip.pickle', viz=False, augmentX=1)
# extract_roi_seg('/home/rqi/Data/mysunrgbd/training/train_data_idx.txt', 'training',
# output_filename='train.pickle', viz=False, augmentX=1)
if __name__ == '__main__':
import mayavi.mlab as mlab
import config
from viz_utils import draw_lidar, draw_gt_boxes3d
median_list = []
dataset = MyDataFlow('/data/mysunrgbd', 'training', training=True, idx_list=list(range(5051, 10336)), cache_dir=None)
dataset.reset_state()
# print(type(dataset.input_list[0][0, 0]))
# print(dataset.input_list[0].shape)
# print(dataset.input_list[2].shape)
# input()
for obj in dataset:
for i in range(len(obj[2])):
data = [o[i] for o in obj[1:]]
print('Center: ', data[1], 'angle_class: ', data[4], 'angle_res:', data[5], 'size_class: ', data[6],
'size_residual:', data[7], 'real_size:', type_mean_size[class2type[data[6]]] + data[7])
box3d_from_label = get_3d_box(class2size(data[6], data[7] * type_mean_size[class2type[data[6]]]), class2angle(data[4], data[5] * np.pi / config.NH, config.NH), data[1])
# raw_input()
print(box3d_from_label)
break
## Recover original labels
# rot_angle = dataset.get_center_view_rot_angle(i)
# print dataset.id_list[i]
# print from_prediction_to_label_format(data[2], data[3], data[4], data[5], data[6], rot_angle)
# ps = obj[0]
# fig = mlab.figure(figure=None, bgcolor=(0.4, 0.4, 0.4), fgcolor=None, engine=None, size=(1000, 500))
# mlab.points3d(ps[:, 0], ps[:, 1], ps[:, 2], mode='point', colormap='gnuplot', scale_factor=1,
# figure=fig)
# mlab.points3d(0, 0, 0, color=(1, 1, 1), mode='sphere', scale_factor=0.2, figure=fig)
# # draw_gt_boxes3d([dataset.get_center_view_box3d(i)], fig)
# draw_gt_boxes3d([box3d_from_label], fig, color=(1, 0, 0))
# mlab.orientation_axes()
# print(ps[0:10, :])
# mlab.show()
# extract_roi_seg_from_rgb_detection('FPN_384x384', 'training', 'fcn_det_val.zip.pickle', valid_id_list=[int(line.rstrip()) for line in open('/home/rqi/Data/mysunrgbd/training/val_data_idx.txt')], viz=True)