-
Notifications
You must be signed in to change notification settings - Fork 101
/
model.py
159 lines (129 loc) · 5.75 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import torch
import torch.nn as nn
from pointnet_util import farthest_point_sample, index_points, square_distance
def sample_and_group(npoint, nsample, xyz, points):
B, N, C = xyz.shape
S = npoint
fps_idx = farthest_point_sample(xyz, npoint) # [B, npoint]
new_xyz = index_points(xyz, fps_idx)
new_points = index_points(points, fps_idx)
dists = square_distance(new_xyz, xyz) # B x npoint x N
idx = dists.argsort()[:, :, :nsample] # B x npoint x K
grouped_points = index_points(points, idx)
grouped_points_norm = grouped_points - new_points.view(B, S, 1, -1)
new_points = torch.cat([grouped_points_norm, new_points.view(B, S, 1, -1).repeat(1, 1, nsample, 1)], dim=-1)
return new_xyz, new_points
class Local_op(nn.Module):
def __init__(self, in_channels, out_channels):
super().__init__()
self.conv1 = nn.Conv1d(in_channels, out_channels, kernel_size=1, bias=False)
self.conv2 = nn.Conv1d(out_channels, out_channels, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm1d(out_channels)
self.bn2 = nn.BatchNorm1d(out_channels)
self.relu = nn.ReLU()
def forward(self, x):
b, n, s, d = x.size() # torch.Size([32, 512, 32, 6])
x = x.permute(0, 1, 3, 2)
x = x.reshape(-1, d, s)
batch_size, _, N = x.size()
x = self.relu(self.bn1(self.conv1(x))) # B, D, N
x = self.relu(self.bn2(self.conv2(x))) # B, D, N
x = torch.max(x, 2)[0]
x = x.view(batch_size, -1)
x = x.reshape(b, n, -1).permute(0, 2, 1)
return x
class SA_Layer(nn.Module):
def __init__(self, channels):
super().__init__()
self.q_conv = nn.Conv1d(channels, channels // 4, 1, bias=False)
self.k_conv = nn.Conv1d(channels, channels // 4, 1, bias=False)
self.q_conv.weight = self.k_conv.weight
self.v_conv = nn.Conv1d(channels, channels, 1)
self.trans_conv = nn.Conv1d(channels, channels, 1)
self.after_norm = nn.BatchNorm1d(channels)
self.act = nn.ReLU()
self.softmax = nn.Softmax(dim=-1)
def forward(self, x):
x_q = self.q_conv(x).permute(0, 2, 1) # b, n, c
x_k = self.k_conv(x)# b, c, n
x_v = self.v_conv(x)
energy = x_q @ x_k # b, n, n
attention = self.softmax(energy)
attention = attention / (1e-9 + attention.sum(dim=1, keepdims=True))
x_r = x_v @ attention # b, c, n
x_r = self.act(self.after_norm(self.trans_conv(x - x_r)))
x = x + x_r
return x
class StackedAttention(nn.Module):
def __init__(self, channels=256):
super().__init__()
self.conv1 = nn.Conv1d(channels, channels, kernel_size=1, bias=False)
self.conv2 = nn.Conv1d(channels, channels, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm1d(channels)
self.bn2 = nn.BatchNorm1d(channels)
self.sa1 = SA_Layer(channels)
self.sa2 = SA_Layer(channels)
self.sa3 = SA_Layer(channels)
self.sa4 = SA_Layer(channels)
self.relu = nn.ReLU()
def forward(self, x):
#
# b, 3, npoint, nsample
# conv2d 3 -> 128 channels 1, 1
# b * npoint, c, nsample
# permute reshape
batch_size, _, N = x.size()
x = self.relu(self.bn1(self.conv1(x))) # B, D, N
x = self.relu(self.bn2(self.conv2(x)))
x1 = self.sa1(x)
x2 = self.sa2(x1)
x3 = self.sa3(x2)
x4 = self.sa4(x3)
x = torch.cat((x1, x2, x3, x4), dim=1)
return x
class PointTransformerCls(nn.Module):
def __init__(self, cfg):
super().__init__()
output_channels = cfg.num_class
d_points = cfg.input_dim
self.conv1 = nn.Conv1d(d_points, 64, kernel_size=1, bias=False)
self.conv2 = nn.Conv1d(64, 64, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm1d(64)
self.bn2 = nn.BatchNorm1d(64)
self.gather_local_0 = Local_op(in_channels=128, out_channels=128)
self.gather_local_1 = Local_op(in_channels=256, out_channels=256)
self.pt_last = StackedAttention()
self.relu = nn.ReLU()
self.conv_fuse = nn.Sequential(nn.Conv1d(1280, 1024, kernel_size=1, bias=False),
nn.BatchNorm1d(1024),
nn.LeakyReLU(negative_slope=0.2))
self.linear1 = nn.Linear(1024, 512, bias=False)
self.bn6 = nn.BatchNorm1d(512)
self.dp1 = nn.Dropout(p=0.5)
self.linear2 = nn.Linear(512, 256)
self.bn7 = nn.BatchNorm1d(256)
self.dp2 = nn.Dropout(p=0.5)
self.linear3 = nn.Linear(256, output_channels)
def forward(self, x):
xyz = x[..., :3]
x = x.permute(0, 2, 1)
batch_size, _, _ = x.size()
x = self.relu(self.bn1(self.conv1(x))) # B, D, N
x = self.relu(self.bn2(self.conv2(x))) # B, D, N
x = x.permute(0, 2, 1)
new_xyz, new_feature = sample_and_group(npoint=512, nsample=32, xyz=xyz, points=x)
feature_0 = self.gather_local_0(new_feature)
feature = feature_0.permute(0, 2, 1)
new_xyz, new_feature = sample_and_group(npoint=256, nsample=32, xyz=new_xyz, points=feature)
feature_1 = self.gather_local_1(new_feature)
x = self.pt_last(feature_1)
x = torch.cat([x, feature_1], dim=1)
x = self.conv_fuse(x)
x = torch.max(x, 2)[0]
x = x.view(batch_size, -1)
x = self.relu(self.bn6(self.linear1(x)))
x = self.dp1(x)
x = self.relu(self.bn7(self.linear2(x)))
x = self.dp2(x)
x = self.linear3(x)
return x