-
Notifications
You must be signed in to change notification settings - Fork 0
/
PlotRateSimulatedSqueezing.nb
3656 lines (3542 loc) · 195 KB
/
PlotRateSimulatedSqueezing.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 10.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 195422, 3647]
NotebookOptionsPosition[ 194065, 3600]
NotebookOutlinePosition[ 194570, 3620]
CellTagsIndexPosition[ 194527, 3617]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[BoxData[
RowBox[{"(*",
RowBox[{"run", " ", "with", " ",
RowBox[{"CVnoisyStorageRates", " ", "!!"}]}], " ", "*)"}]], "Input",
CellChangeTimes->{{3.644027959250845*^9, 3.6440279754867735`*^9}, {
3.6666615835549793`*^9, 3.6666615836329837`*^9}, {3.7223656996390123`*^9,
3.7223656998806057`*^9}, {3.7224023727904377`*^9, 3.722402373553966*^9},
3.723878380872346*^9}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
StyleBox[
RowBox[{"(*", " ", "Parameters", " ", "*)"}], "Subsection"],
StyleBox[" ", "Subsection"], "\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"n", " ", "=", " ",
RowBox[{"2", "*",
RowBox[{"10", "^", "5"}]}]}], ";"}], " ",
RowBox[{"(*", " ",
RowBox[{"number", " ", "of", " ", "signals"}], "*)"}], " ",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"\[Epsilon]A0", "=",
RowBox[{"10", "^",
RowBox[{"-", "7"}]}]}], ";"}], " ",
RowBox[{"(*", " ",
RowBox[{"security", " ", "epsilon"}], " ", "*)"}], " ",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"\[Delta]", " ", "=", " ", "0.1"}], ";"}], " ",
RowBox[{"(*",
RowBox[{
"the", " ", "bin", " ", "size", " ", "in", " ", "the", " ",
"discretization", " ", "of", " ", "the", " ", "data"}], "*)"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{"alphabet", "=",
RowBox[{"2", "^", "10"}]}], ";"}], " ",
RowBox[{"(*", " ",
RowBox[{
"the", " ", "size", " ", "of", " ", "the", " ", "alphabet", " ", "for",
" ", "discretization"}], " ", "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[Alpha]", "=",
RowBox[{"\[Delta]", " ", "*", " ",
RowBox[{"alphabet", "/", "2"}]}]}], ";"}],
RowBox[{"(*",
RowBox[{
RowBox[{"the", " ", "cut"}], "-",
RowBox[{"off", " ", "parameter"}]}], " ", "*)"}], "\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{
"Parameter", " ", "for", " ", "the", " ", "attackers", " ", "memory"}],
" ", "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Nmax0", "=", "100"}], ";"}], " ",
RowBox[{"(*",
RowBox[{
"number", " ", "of", " ", "maximal", " ", "photon", " ", "numbers"}], " ",
"*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"eta0", "=", "0.75"}], ";"}], " ",
RowBox[{"(*", " ",
RowBox[{"transmission", " ", "of", " ", "QM"}], "*)"}], " ",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"betasimulation", " ", "=", " ", "0.925"}], ";"}], " ",
RowBox[{"(*", " ",
RowBox[{"error", " ", "correction", " ", "efficiency"}], " ", "*)"}],
"\[IndentingNewLine]", "\[IndentingNewLine]",
StyleBox[
RowBox[{"(*", " ",
RowBox[{
"two", " ", "graphs", " ", "for", " ", "different", " ", "number", " ",
"of", " ", "QM", " ", "fractions"}], " ", "*)"}], "Subsubtitle"],
StyleBox[" ", "Subsubtitle"], "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[Nu]0", "=", "0.001"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[Nu]1", "=", "0.01"}], ";"}]}]}]], "Input",
CellChangeTimes->{{3.6666640119388747`*^9, 3.666664082987939*^9},
3.6666641130256567`*^9, {3.6666642244410295`*^9, 3.6666642778100815`*^9}, {
3.6666643570266128`*^9, 3.6666643722034807`*^9}, {3.6666646624040794`*^9,
3.6666646809631405`*^9}, {3.6688978318932357`*^9, 3.6688978889585*^9}, {
3.668907324461171*^9, 3.6689073315125747`*^9}, {3.668907375262077*^9,
3.668907384893628*^9}, 3.6689074777809405`*^9, {3.6690621115956993`*^9,
3.669062112099728*^9}, {3.6690622518767233`*^9, 3.6690622760441055`*^9}, {
3.669062331769293*^9, 3.669062332525336*^9}, 3.6733241221903563`*^9, {
3.6733243874718227`*^9, 3.673324412821867*^9}, {3.6733245320326767`*^9,
3.67332453373308*^9}, {3.6856007995317106`*^9, 3.6856008167385406`*^9}, {
3.6856008764554462`*^9, 3.685600892398674*^9}, {3.685600922678327*^9,
3.685601009228279*^9}, {3.685602355112088*^9, 3.6856023560480895`*^9}, {
3.6856025011907444`*^9, 3.6856025364624066`*^9}, 3.6856026188617516`*^9, {
3.685604142147428*^9, 3.6856041434890304`*^9}, {3.685604338068172*^9,
3.685604339050974*^9}, {3.6856044696388035`*^9, 3.685604469810404*^9}, {
3.685604827615632*^9, 3.6856048284424334`*^9}, {3.6856048898481417`*^9,
3.6856049205957956`*^9}, {3.6856049896103168`*^9,
3.6856049896883173`*^9}, {3.6856050953941026`*^9, 3.685605098451708*^9}, {
3.6856051657970266`*^9, 3.6856052207091227`*^9}, {3.6856052731292152`*^9,
3.685605276998022*^9}, {3.685605310709681*^9, 3.6856053588045654`*^9}, {
3.6856054527353306`*^9, 3.6856054568849382`*^9}, {3.6856058608650494`*^9,
3.685605937648384*^9}, {3.685606144038993*^9, 3.6856061443977933`*^9}, {
3.6987420051905603`*^9, 3.698742008029253*^9}, {3.6987420604978333`*^9,
3.698742072531258*^9}, {3.698742191216103*^9, 3.698742256313232*^9}, {
3.698742326600017*^9, 3.6987424251170263`*^9}, {3.6987424580764017`*^9,
3.6987424762172937`*^9}, {3.6987427921466913`*^9, 3.698742830962788*^9}, {
3.6987428628354597`*^9, 3.698742863494658*^9}, {3.6987429503612223`*^9,
3.698742950573427*^9}, {3.698743095935453*^9, 3.698743101482615*^9}, {
3.6987432690930767`*^9, 3.6987433189543753`*^9}, 3.698743583905023*^9,
3.698743919328539*^9, {3.6987440037908907`*^9, 3.698744004379613*^9}, {
3.698744404630335*^9, 3.6987444513061953`*^9}, {3.698748818957292*^9,
3.698748821749374*^9}, {3.698749971589731*^9, 3.6987499868977118`*^9}, {
3.6987755644682198`*^9, 3.698775617476725*^9}, {3.6987756556575623`*^9,
3.698775656154686*^9}, {3.698775732772376*^9, 3.698775735106037*^9}, {
3.698775778111435*^9, 3.698775786008115*^9}, {3.6987758419027853`*^9,
3.698775845128446*^9}, {3.6987759171520433`*^9, 3.698775917480136*^9}, {
3.698775952003231*^9, 3.698775998125215*^9}, {3.6987760438370037`*^9,
3.698776067442237*^9}, {3.698776146159514*^9, 3.6987761756754713`*^9}, {
3.698776234310848*^9, 3.6987762601902723`*^9}, {3.698776339192294*^9,
3.698776392762748*^9}, {3.6987764656277122`*^9, 3.698776466770832*^9}, {
3.698776577742434*^9, 3.698776591158091*^9}, {3.698776655257016*^9,
3.6987767571910048`*^9}, {3.698776812922985*^9, 3.698776864098679*^9}, {
3.6987776339530497`*^9, 3.6987776770357533`*^9}, {3.698777742137006*^9,
3.698777777727491*^9}, {3.6987780142060843`*^9, 3.698778014760333*^9}, {
3.6987780516097927`*^9, 3.6987780708313017`*^9}, {3.698778926539895*^9,
3.698778926721167*^9}, {3.6987791846259127`*^9, 3.698779206178132*^9}, {
3.703525751592087*^9, 3.703525751754342*^9}, {3.7035258329505787`*^9,
3.703525833681614*^9}, {3.703526353858046*^9, 3.7035263539086447`*^9}, {
3.703526399504491*^9, 3.7035263996593943`*^9}, {3.703527103058258*^9,
3.703527123205873*^9}, {3.703527219478347*^9, 3.703527219557897*^9}, {
3.703527264661935*^9, 3.703527344032196*^9}, {3.70352743107518*^9,
3.703527477657089*^9}, {3.70352814246734*^9, 3.7035282080208597`*^9},
3.703528462191064*^9, {3.7035636778337517`*^9, 3.7035636784773397`*^9}, {
3.703563750636114*^9, 3.703563840200698*^9}, {3.703563917990814*^9,
3.703563918314433*^9}, {3.703565263726605*^9, 3.703565305378458*^9}, {
3.703565371731863*^9, 3.703565423535055*^9}, {3.703565462451909*^9,
3.703565499762186*^9}, {3.7035655352075453`*^9, 3.70356553709818*^9}, {
3.70356564012941*^9, 3.703565646516013*^9}, {3.7035657318581133`*^9,
3.70356573382194*^9}, {3.708654144596655*^9, 3.7086541872614098`*^9}, {
3.7086542214113283`*^9, 3.7086542216068707`*^9}, {3.708654390849719*^9,
3.708654417413513*^9}, {3.708655571675458*^9, 3.708655590839493*^9}, {
3.708655759753051*^9, 3.7086557706786137`*^9}, {3.70865584176921*^9,
3.708655851924973*^9}, {3.708684682029193*^9, 3.708684682503668*^9}, {
3.708685511302971*^9, 3.708685545056253*^9}, 3.708685624096345*^9, {
3.708685684136997*^9, 3.708685685310089*^9}, 3.7087009312309628`*^9, {
3.708700977259553*^9, 3.708700977542592*^9}, {3.708701036852149*^9,
3.708701039330841*^9}, 3.7087011890316668`*^9, {3.708701354345995*^9,
3.7087013544645147`*^9}, {3.7087018639995203`*^9, 3.708701900249077*^9}, {
3.7223623941913223`*^9, 3.722362444913871*^9}, {3.722362498724629*^9,
3.722362508373624*^9}, {3.7223629522058697`*^9, 3.722362952508849*^9}, {
3.72236574312582*^9, 3.722365773030344*^9}, 3.722366041935837*^9,
3.722366078926277*^9, {3.722402197505041*^9, 3.722402210849594*^9}, {
3.7224022409389257`*^9, 3.722402313957623*^9}, 3.7224024906270742`*^9}],
Cell[CellGroupData[{
Cell[BoxData[""], "Print",
GeneratedCell->False,
CellAutoOverwrite->False,
CellChangeTimes->{3.722365773360276*^9, 3.722366219902501*^9,
3.722402514520651*^9}],
Cell[BoxData[""], "Print",
GeneratedCell->False,
CellAutoOverwrite->False,
CellChangeTimes->{{3.7035271175065413`*^9, 3.7035271237719183`*^9},
3.70352721986207*^9, {3.703527329856983*^9, 3.703527344434472*^9}, {
3.703527434461164*^9, 3.7035274784978733`*^9}, {3.7035281699439297`*^9,
3.7035282084176188`*^9}, 3.703528316286758*^9, 3.703528389191927*^9,
3.703528462966613*^9, 3.70352908024227*^9, 3.703562664502673*^9,
3.703562745097875*^9, 3.703562808839982*^9, 3.703563841334386*^9,
3.7035639193430634`*^9, 3.703565538474237*^9, 3.703565646989244*^9,
3.703565734295835*^9, 3.7036922358236017`*^9, 3.704559354388064*^9,
3.704737060664629*^9, 3.704737137372713*^9, 3.7086544429082108`*^9,
3.708655610874133*^9, 3.708655712120523*^9, {3.7086557712935343`*^9,
3.708655781013851*^9}, {3.7086558431745167`*^9, 3.7086558651315813`*^9},
3.708655909972382*^9, 3.708684688949175*^9, 3.708685135618895*^9,
3.7086855475181828`*^9, 3.7086856296581078`*^9, 3.708685691299575*^9,
3.708700815032236*^9, 3.7087009354461927`*^9, 3.708700981229335*^9,
3.708701043450511*^9, 3.7087011919078827`*^9, 3.708701379044335*^9,
3.708701873858429*^9, 3.70870190466835*^9, 3.7087065937641773`*^9,
3.722362918167571*^9, 3.7223629560607862`*^9, {3.7223635398510942`*^9,
3.722363565696615*^9}, 3.7223636418899927`*^9, 3.722365686997834*^9}]
}, Open ]]
}, Open ]],
Cell[BoxData[""], "Input",
CellChangeTimes->{{3.6856060686574144`*^9, 3.6856060903258524`*^9}, {
3.698742542556814*^9, 3.698742545903428*^9}, {3.6987439764873753`*^9,
3.698743980950296*^9}, {3.703526505312757*^9, 3.7035265188659286`*^9}, {
3.703527871952012*^9, 3.703527880267475*^9}, {3.703564943397534*^9,
3.703564962930051*^9}, {3.7035655510458097`*^9, 3.703565568245347*^9}, {
3.708655681844233*^9, 3.708655687047463*^9}, {3.708655857650516*^9,
3.7086558612592154`*^9}, {3.708655902845913*^9, 3.70865590576997*^9}, {
3.7086851273448668`*^9, 3.7086851288635817`*^9}, {3.708685534206503*^9,
3.708685536039894*^9}, {3.7087006765492153`*^9, 3.70870068015819*^9},
3.722365681933751*^9}],
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"eta", "=",
RowBox[{"1", "-",
RowBox[{"5.8", "/", "100"}]}]}], ";"}], " ",
RowBox[{"(*", " ",
RowBox[{"optical", " ", "efficiency"}], " ",
"*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"TplusL", " ", "=", " ", "0.1018"}], ";"}], " ",
RowBox[{"(*", " ",
RowBox[{
RowBox[{"T", ":", " ",
RowBox[{"transmissivity", " ", "of", " ", "coupling", " ", "mirror"}]}],
",", " ",
RowBox[{"L", " ", "intra", " ", "cavity", " ", "loss"}]}], " ",
"*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"l", "=", " ",
RowBox[{"79.8", "*",
RowBox[{"10", "^",
RowBox[{"-", "3"}]}]}]}], ";"}], " ",
RowBox[{"(*", " ",
RowBox[{"cavity", " ", "length"}], " ", "*)"}]}]}], "Input",
CellChangeTimes->{
3.7035278125941477`*^9, {3.722365814816903*^9, 3.722365986431222*^9}}],
Cell[BoxData[""], "Input",
CellChangeTimes->{3.722365875742552*^9}],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{"Clear", "[", "sq", "]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"sqz", "[", "x_", "]"}], " ", ":=", " ",
RowBox[{"1", "-",
RowBox[{"eta", "*", "4", "*",
RowBox[{"x", "/",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"1", "+", "x"}], ")"}], "^", "2"}], "+",
RowBox[{"4", "*",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"2", "*", "Pi", "*", "8", "*",
RowBox[{"10", "^", "6"}]}], ")"}], "/", "TplusL"}], "/",
"3"}], "/",
RowBox[{"10", "^", "8"}]}], "*", "l"}], ")"}], "^", "2"}]}]}],
")"}]}]}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"anti", "[", "x_", "]"}], " ", ":=", " ",
RowBox[{"1", "+",
RowBox[{"eta", "*", "4", "*",
RowBox[{"x", "/",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"1", "-", "x"}], ")"}], "^", "2"}], "+",
RowBox[{"4", "*",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"2", "*", "Pi", "*", "8", "*",
RowBox[{"10", "^", "6"}]}], ")"}], "/", "TplusL"}], "/",
"3"}], "/",
RowBox[{"10", "^", "8"}]}], "*", "l"}], ")"}], "^", "2"}]}]}],
")"}]}]}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"f", " ", "=", " ",
RowBox[{"Solve", "[",
RowBox[{
RowBox[{
RowBox[{"sqz", "[", "x", "]"}], " ", "\[Equal]", " ", "sq"}], ",", " ",
"x"}], "]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"g", "[", "y_", "]"}], ":=",
RowBox[{
RowBox[{"x", "/.",
RowBox[{"f", "[",
RowBox[{"[", "2", "]"}], "]"}]}], "/.",
RowBox[{"sq", "\[Rule]", "y"}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"antisqz", "[", "linsqz_", "]"}], " ", ":=", " ",
RowBox[{"anti", "[",
RowBox[{"g", "[", "linsqz", "]"}], "]"}]}], ";"}]}], "Input",
CellChangeTimes->{{3.703528085631678*^9, 3.7035280874475203`*^9}, {
3.722362679932096*^9, 3.722362864986189*^9}, 3.722363198832645*^9, {
3.722363232743453*^9, 3.722363254242914*^9}, {3.722363341205557*^9,
3.72236340356315*^9}, {3.7223643745458927`*^9, 3.7223643955485573`*^9}, {
3.722365823602545*^9, 3.722365891451124*^9}, {3.722439189282555*^9,
3.722439252267831*^9}, {3.722439324789011*^9, 3.722439347445928*^9}, {
3.722439493438937*^9, 3.722439563377429*^9}, {3.722439713067996*^9,
3.7224398418501043`*^9}, {3.7224401771197357`*^9, 3.722440210872717*^9},
3.722440242386776*^9, {3.7224403385086403`*^9, 3.722440351934678*^9}, {
3.7224404159743223`*^9, 3.722440462542829*^9}, {3.722440622576421*^9,
3.7224407237414618`*^9}, {3.722440812232922*^9, 3.722440901041647*^9}, {
3.722441017156539*^9, 3.722441023075148*^9}, {3.7224411320260983`*^9,
3.7224412814799356`*^9}, {3.7224413686389923`*^9,
3.7224414212890778`*^9}, {3.722441456134622*^9, 3.722441465760763*^9}, {
3.722441506300994*^9, 3.7224415269048967`*^9}, {3.722441611350369*^9,
3.722441616483096*^9}}],
Cell[BoxData[
RowBox[{
StyleBox[
RowBox[{"Solve", "::", "ratnz"}], "MessageName"],
RowBox[{
":", " "}], "\<\"Solve was unable to solve the system with inexact \
coefficients. The answer was obtained by solving a corresponding exact system \
and numericizing the result. \\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", \
ButtonStyle->\\\"Link\\\", ButtonFrame->None, \
ButtonData:>\\\"paclet:ref/Solve\\\", ButtonNote -> \
\\\"Solve::ratnz\\\"]\\)\"\>"}]], "Message", "MSG",
CellChangeTimes->{{3.7224394959408283`*^9, 3.722439530248011*^9},
3.7224395655288143`*^9, 3.722439719425413*^9, 3.722439751357791*^9, {
3.722439792503311*^9, 3.722439820242647*^9}, 3.72243985235888*^9,
3.7224402113287897`*^9, 3.7224402427570057`*^9, {3.7224403405329323`*^9,
3.72244035237319*^9}, {3.722440417998335*^9, 3.722440462964786*^9}, {
3.7224406262530813`*^9, 3.722440676973529*^9}, {3.722440728826393*^9,
3.7224407387029457`*^9}, {3.7224408175768337`*^9, 3.722440886672605*^9},
3.722441024075276*^9, {3.722441144587864*^9, 3.722441183088773*^9}, {
3.722441223209229*^9, 3.722441240558484*^9}, 3.72244128211893*^9,
3.72244132110747*^9, {3.722441369177587*^9, 3.722441422059202*^9}, {
3.7224414582745667`*^9, 3.722441466122567*^9}, {3.722441509338531*^9,
3.722441531166359*^9}, {3.722441613236313*^9, 3.72244161680608*^9},
3.722442104887281*^9, 3.722442516886025*^9, 3.722443121398665*^9,
3.722448320963225*^9, 3.7224483887880077`*^9, 3.722448438811328*^9,
3.7224485137396927`*^9, 3.72244855048659*^9, 3.7224486058587418`*^9,
3.722448669536674*^9, 3.7224487381250277`*^9, 3.722448800603231*^9,
3.722448852204205*^9, 3.722448920933605*^9, 3.722448983151703*^9,
3.7224490540209837`*^9, 3.722449263116333*^9, 3.7224493059140787`*^9,
3.722449380414527*^9, 3.722449485783801*^9, 3.72244954308888*^9,
3.722449743102899*^9, 3.7224498667790623`*^9, 3.722450039947153*^9,
3.7224501655666018`*^9, 3.722450295514771*^9, 3.7224504767731*^9,
3.722450640152321*^9, 3.7224510190912733`*^9, 3.722451238050722*^9}]
}, Open ]],
Cell[BoxData[""], "Input",
CellChangeTimes->{{3.722440734207068*^9, 3.722440734275959*^9}}],
Cell[BoxData[""], "Input",
CellChangeTimes->{{3.722439835090917*^9, 3.722439835146502*^9}}],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"points", " ", "=", " ", "2000"}], ";"}], "\[IndentingNewLine]",
RowBox[{"PlotExp", "=",
RowBox[{"Show", "[",
RowBox[{
RowBox[{"LogPlot", "[",
RowBox[{
RowBox[{"{", "\[IndentingNewLine]",
RowBox[{
RowBox[{"rateOTgauss", "[",
RowBox[{"\[Delta]", ",",
RowBox[{"GAB", "[",
RowBox[{"x", ",",
RowBox[{"10", "*",
RowBox[{"Log10", "[",
RowBox[{"antisqz", "[",
RowBox[{"10", "^",
RowBox[{"(",
RowBox[{
RowBox[{"-", "x"}], "/", "10"}], ")"}]}], "]"}], "]"}]}],
",", "0.03", ",", " ",
RowBox[{"0.03", "+", "0.03"}], ",", "0", ",", "0"}], "]"}], ",",
"betasimulation", ",",
RowBox[{"2", "*",
RowBox[{"10", "^", "5"}]}], ",", "\[Epsilon]A0", ",", "\[Alpha]0",
",", "\[Nu]0", ",", "Nmax0", ",", "eta0"}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"rateOTgauss", "[",
RowBox[{"\[Delta]", ",",
RowBox[{"GAB", "[",
RowBox[{"x", ",",
RowBox[{"10", "*",
RowBox[{"Log10", "[",
RowBox[{"antisqz", "[",
RowBox[{"10", "^",
RowBox[{"(",
RowBox[{
RowBox[{"-", "x"}], "/", "10"}], ")"}]}], "]"}], "]"}]}],
",", "0.03", ",", " ",
RowBox[{"0.03", "+", "0.305"}], ",", "0", ",", "0"}], "]"}], ",",
"betasimulation", ",",
RowBox[{"2", "*",
RowBox[{"10", "^", "5"}]}], ",", "\[Epsilon]A0", ",", "\[Alpha]0",
",", "\[Nu]0", ",", "Nmax0", ",", "eta0"}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"rateOTgauss", "[",
RowBox[{"\[Delta]", ",",
RowBox[{"GAB", "[",
RowBox[{"x", ",",
RowBox[{"10", "*",
RowBox[{"Log10", "[",
RowBox[{"antisqz", "[",
RowBox[{"10", "^",
RowBox[{"(",
RowBox[{
RowBox[{"-", "x"}], "/", "10"}], ")"}]}], "]"}], "]"}]}],
",", "0.03", ",", " ",
RowBox[{"0.03", "+", "0.15"}], ",", "0", ",", "0"}], "]"}], ",",
"betasimulation", ",",
RowBox[{"2", "*",
RowBox[{"10", "^", "5"}]}], ",", "\[Epsilon]A0", ",", "\[Alpha]0",
",", "\[Nu]0", ",", "Nmax0", ",", "eta0"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "2", ",", "11"}], "}"}], ",",
RowBox[{"Filling", "\[Rule]",
RowBox[{"{",
RowBox[{"1", "\[Rule]",
RowBox[{"{", "2", "}"}]}], "}"}]}], ",",
RowBox[{"PlotPoints", "\[Rule]", "points"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"10", "^",
RowBox[{"-", "4"}]}], ",", "Automatic"}], "}"}]}], ",",
RowBox[{"PlotStyle", "\[Rule]", " ",
RowBox[{"Thickness", "[", "0.005", "]"}]}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Black", ",",
RowBox[{"FontSize", "\[Rule]", "12"}]}], "]"}]}], ",",
RowBox[{"FrameStyle", "\[Rule]",
RowBox[{"Thickness", "[", "0.0035", "]"}]}], ",",
RowBox[{"Frame", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"True", ",", "True"}], "}"}], ",",
RowBox[{"{",
RowBox[{"True", ",", "True"}], "}"}]}], "}"}]}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{
"\"\<Squeezing [dB]\>\"", ",",
"\"\<Oblivious Transfer Rate [bit/signal]\>\""}], "}"}]}], ",",
"\[IndentingNewLine]",
RowBox[{"BaseStyle", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"FontFamily", "\[Rule]", "\"\<Times New Roman\>\""}], ",",
RowBox[{"FontSize", "\[Rule]", "16"}]}], "}"}]}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"LogPlot", "[",
RowBox[{
RowBox[{"{", "\[IndentingNewLine]",
RowBox[{
RowBox[{"rateOTgauss", "[",
RowBox[{"\[Delta]", ",",
RowBox[{"GAB", "[",
RowBox[{"x", ",",
RowBox[{"10", "*",
RowBox[{"Log10", "[",
RowBox[{"antisqz", "[",
RowBox[{"10", "^",
RowBox[{"(",
RowBox[{
RowBox[{"-", "x"}], "/", "10"}], ")"}]}], "]"}], "]"}]}],
",", "0.03", ",", " ",
RowBox[{"0.03", "+", "0.03"}], ",", "0", ",", "0"}], "]"}], ",",
"betasimulation", ",",
RowBox[{"2", "*",
RowBox[{"10", "^", "5"}]}], ",", "\[Epsilon]A0", ",", "\[Alpha]0",
",", "\[Nu]1", ",", "Nmax0", ",", "eta0"}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"rateOTgauss", "[",
RowBox[{"\[Delta]", ",",
RowBox[{"GAB", "[",
RowBox[{"x", ",",
RowBox[{"10", "*",
RowBox[{"Log10", "[",
RowBox[{"antisqz", "[",
RowBox[{"10", "^",
RowBox[{"(",
RowBox[{
RowBox[{"-", "x"}], "/", "10"}], ")"}]}], "]"}], "]"}]}],
",", "0.03", ",", " ",
RowBox[{"0.03", "+", "0.239"}], ",", "0", ",", "0"}], "]"}], ",",
"betasimulation", ",",
RowBox[{"2", "*",
RowBox[{"10", "^", "5"}]}], ",", "\[Epsilon]A0", ",", "\[Alpha]0",
",", "\[Nu]1", ",", "Nmax0", ",", "eta0"}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"rateOTgauss", "[",
RowBox[{"\[Delta]", ",",
RowBox[{"GAB", "[",
RowBox[{"x", ",",
RowBox[{"10", "*",
RowBox[{"Log10", "[",
RowBox[{"antisqz", "[",
RowBox[{"10", "^",
RowBox[{"(",
RowBox[{
RowBox[{"-", "x"}], "/", "10"}], ")"}]}], "]"}], "]"}]}],
",", "0.03", ",", " ",
RowBox[{"0.03", "+", "0.15"}], ",", "0", ",", "0"}], "]"}], ",",
"betasimulation", ",",
RowBox[{"2", "*",
RowBox[{"10", "^", "5"}]}], ",", "\[Epsilon]A0", ",", "\[Alpha]0",
",", "\[Nu]1", ",", "Nmax0", ",", "eta0"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "2", ",", "11"}], "}"}], ",",
RowBox[{"Filling", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"1", "\[Rule]",
RowBox[{"{", "2", "}"}]}], ",",
RowBox[{"PlotPoints", "\[Rule]", "points"}]}], "}"}]}]}], "]"}]}],
"]"}]}]}], "Input",
CellChangeTimes->{{3.7035276336119423`*^9, 3.70352763785868*^9}, {
3.703527677888115*^9, 3.7035276925854607`*^9}, {3.7035278237203293`*^9,
3.703527851933692*^9}, {3.703528014354829*^9, 3.703528025149181*^9}, {
3.703562653900223*^9, 3.703562657406481*^9}, {3.703562845571034*^9,
3.703562882000486*^9}, {3.703563276423794*^9, 3.703563277568033*^9}, {
3.703563381772697*^9, 3.703563391245447*^9}, {3.70356396273906*^9,
3.703563990782415*^9}, {3.703565880991171*^9, 3.703565921055448*^9}, {
3.7036921908649063`*^9, 3.70369222751794*^9}, {3.70455931200216*^9,
3.704559344112831*^9}, {3.704559453415958*^9, 3.7045594571888437`*^9}, {
3.70455956063754*^9, 3.7045595606980343`*^9}, {3.70455968426551*^9,
3.704559700720355*^9}, {3.704737095376871*^9, 3.7047370990147247`*^9}, {
3.708684194459025*^9, 3.708684205217927*^9}, {3.708685122600481*^9,
3.708685124395136*^9}, {3.708685539245224*^9, 3.708685540961369*^9}, {
3.722362559428323*^9, 3.722362596946334*^9}, {3.7223628783028507`*^9,
3.722362909984352*^9}, {3.7223629776162243`*^9, 3.72236297970568*^9}, {
3.722363019607129*^9, 3.7223630227545424`*^9}, {3.7223631180532017`*^9,
3.722363133747642*^9}, {3.722363464953846*^9, 3.72236350388211*^9}, {
3.722363694084147*^9, 3.722363714092907*^9}, {3.722363849594142*^9,
3.722363993601912*^9}, {3.72236416189404*^9, 3.7223641954039087`*^9}, {
3.7223655068417683`*^9, 3.7223655147128973`*^9}, {3.722366017196944*^9,
3.7223660372478323`*^9}, {3.722366091926147*^9, 3.722366130037944*^9}, {
3.722366169464225*^9, 3.722366195873926*^9}, {3.722366391759213*^9,
3.7223664186434097`*^9}, {3.722402135168078*^9, 3.7224021508874407`*^9}, {
3.722402409360745*^9, 3.722402420011558*^9}, {3.7224416607043543`*^9,
3.722441809844811*^9}, {3.722442089923234*^9, 3.722442093076542*^9}, {
3.722442350011936*^9, 3.72244245393521*^9}, {3.722442495160562*^9,
3.722442496661175*^9}, {3.7224427372137747`*^9, 3.7224427545930767`*^9}, {
3.722442786274827*^9, 3.722442827640338*^9}, {3.722442979411545*^9,
3.722442994873857*^9}, {3.722448312794956*^9, 3.722448317880164*^9}, {
3.7224483815962753`*^9, 3.7224483854315653`*^9}, {3.722448434663536*^9,
3.722448434900879*^9}, {3.7224485100369587`*^9, 3.722448510857757*^9}, {
3.7224485468182497`*^9, 3.722448546960938*^9}, {3.722448602357663*^9,
3.722448602633884*^9}, {3.722448660052602*^9, 3.722448666895048*^9}, {
3.722448731643457*^9, 3.7224487351273518`*^9}, {3.722448795396285*^9,
3.722448797798443*^9}, {3.722448841989552*^9, 3.722448848889604*^9}, {
3.7224489150965242`*^9, 3.7224489180630493`*^9}, {3.722448976613113*^9,
3.722448980131583*^9}, {3.722449048307692*^9, 3.722449051012392*^9}, {
3.722449259408578*^9, 3.7224492600415983`*^9}, {3.72244930097505*^9,
3.722449301512038*^9}, {3.722449374602686*^9, 3.7224493758853683`*^9}, {
3.722449464322797*^9, 3.722449469345936*^9}, {3.7224495382320127`*^9,
3.7224495387893267`*^9}, {3.7224497321255827`*^9, 3.722449738913101*^9}, {
3.722449852826564*^9, 3.722449860096785*^9}, {3.7224500053327827`*^9,
3.722450034939783*^9}, 3.7224501582086267`*^9, {3.722450270743734*^9,
3.722450274082204*^9}, {3.722450393216002*^9, 3.722450406649366*^9}, {
3.722450442553482*^9, 3.722450455967092*^9}, {3.722450632103292*^9,
3.7224506334664173`*^9}, {3.7224510020766563`*^9, 3.722451016120758*^9}, {
3.7224512346243887`*^9, 3.7224512347336683`*^9}}],
Cell[BoxData[
RowBox[{
StyleBox[
RowBox[{"LogPlot", "::", "exclul"}], "MessageName"],
RowBox[{
":", " "}], \
"\<\"\[NoBreak]\\!\\({\\(\\(\\(\\(Im[\\(\\(\\(\\(\\(\\(-1.29894125`*^11\\)\\)\
\\\\ 10.`\\^\\(\\(\\(-0.2`\\)\\)\\\\ x\\)\\)\\) + \\(\\(7.3528376345`*^12\\\\ \
10.`\\^\\(\\(\\(-0.1`\\)\\)\\\\ x\\)\\)\\)\\)\\)]\\)\\) - 0\\)\\), \
\\(\\(\\(\\(Im[\\(\\(\\(\\(\\(\\(-1.29894125`*^11\\)\\)\\\\ \
10.`\\^\\(\\(\\(-0.2`\\)\\)\\\\ x\\)\\)\\) + \\(\\(7.3528376345`*^12\\\\ 10.`\
\\^\\(\\(\\(-0.1`\\)\\)\\\\ x\\)\\)\\)\\)\\)]\\)\\) - 0\\)\\), \
\\(\\(\\(\\(1.6680442160539138`*^-10\\\\ \
\\(\\(Im[\\(\\(\\(\\(\\(-1.9968967057`*^10\\)\\) - \\(\\(2.258932925`*^10\\\\ \
\\(\\(Power[\\(\\(\[LeftSkeleton] 2 \[RightSkeleton]\\)\\)]\\)\\)\\)\\) + \\(\
\\(16464.26284411179`\\\\ \\(\\(Power[\\(\\(\[LeftSkeleton] 2 \
\[RightSkeleton]\\)\\)]\\)\\)\\)\\)\\)\\/\\(\\(\\((\\(\\(-1.`\\)\\) + \
\\(\\(Power[\\(\\(\[LeftSkeleton] 2 \[RightSkeleton]\\)\\)]\\)\\))\\)\\)\\\\ \
\\(\\((\\(\\(0.069002912071858` \[VeryThinSpace]\\)\\) + \\(\\(Power[\\(\\(\
\[LeftSkeleton] 2 \[RightSkeleton]\\)\\)]\\)\\))\\)\\)\\)\\)\\)]\\)\\)\\)\\) \
- 0\\)\\), \\(\\(\[LeftSkeleton] 46 \[RightSkeleton]\\)\\), \\(\\(\\(\\(0.94`\
\\\\ \\(\\(Im[\\(\\(10.`\\^\\(0.05`\\\\ \\(\\(Plus[\\(\\(\[LeftSkeleton] 2 \
\[RightSkeleton]\\)\\)]\\)\\)\\)\\\\ \\(\\(Cosh[\\(\\(0.2302585092994046`\\\\ \
\\(\\(Plus[\\(\\(\[LeftSkeleton] 2 \[RightSkeleton]\\)\\)]\\)\\)\\)\\)]\\)\\)\
\\)\\)]\\)\\)\\)\\) - 0\\)\\), \\(\\(\[LeftSkeleton] 26 \
\[RightSkeleton]\\)\\)}\\)\[NoBreak] must be a list of equalities or \
real-valued functions. \\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", \
ButtonStyle->\\\"Link\\\", ButtonFrame->None, \
ButtonData:>\\\"paclet:ref/LogPlot\\\", ButtonNote -> \
\\\"LogPlot::exclul\\\"]\\)\"\>"}]], "Message", "MSG",
CellChangeTimes->{{3.722442806422888*^9, 3.7224428290037394`*^9},
3.722442996805279*^9, 3.7224431218385363`*^9, 3.722448321361796*^9,
3.722448389205759*^9, 3.722448439233005*^9, 3.7224485141451406`*^9,
3.722448550899392*^9, 3.722448606295533*^9, 3.722448669948944*^9,
3.722448738525223*^9, 3.722448801024077*^9, 3.7224488526154213`*^9,
3.722448921348963*^9, 3.7224489835625277`*^9, 3.722449054435588*^9,
3.722449263530613*^9, 3.722449306326483*^9, 3.722449380852551*^9,
3.72244948619744*^9, 3.7224495435070133`*^9, 3.722449743606249*^9,
3.722449867269721*^9, 3.7224500400820436`*^9, 3.7224501661327477`*^9,
3.7224502966728277`*^9, 3.722450477366291*^9, 3.722450640699443*^9,
3.722451020959628*^9, 3.722451241544734*^9}],
Cell[BoxData[
RowBox[{
StyleBox[
RowBox[{"LogPlot", "::", "exclul"}], "MessageName"],
RowBox[{
":", " "}], \
"\<\"\[NoBreak]\\!\\({\\(\\(\\(\\(Im[\\(\\(\\(\\(\\(\\(-1.29894125`*^11\\)\\)\
\\\\ 10.`\\^\\(\\(\\(-0.2`\\)\\)\\\\ x\\)\\)\\) + \\(\\(7.3528376345`*^12\\\\ \
10.`\\^\\(\\(\\(-0.1`\\)\\)\\\\ x\\)\\)\\)\\)\\)]\\)\\) - 0\\)\\), \
\\(\\(\\(\\(Im[\\(\\(\\(\\(\\(\\(-1.29894125`*^11\\)\\)\\\\ \
10.`\\^\\(\\(\\(-0.2`\\)\\)\\\\ x\\)\\)\\) + \\(\\(7.3528376345`*^12\\\\ 10.`\
\\^\\(\\(\\(-0.1`\\)\\)\\\\ x\\)\\)\\)\\)\\)]\\)\\) - 0\\)\\), \
\\(\\(\\(\\(1.6680442160539138`*^-10\\\\ \
\\(\\(Im[\\(\\(\\(\\(\\(-1.9968967057`*^10\\)\\) - \\(\\(2.258932925`*^10\\\\ \
\\(\\(Power[\\(\\(\[LeftSkeleton] 2 \[RightSkeleton]\\)\\)]\\)\\)\\)\\) + \\(\
\\(16464.26284411179`\\\\ \\(\\(Power[\\(\\(\[LeftSkeleton] 2 \
\[RightSkeleton]\\)\\)]\\)\\)\\)\\)\\)\\/\\(\\(\\((\\(\\(-1.`\\)\\) + \
\\(\\(Power[\\(\\(\[LeftSkeleton] 2 \[RightSkeleton]\\)\\)]\\)\\))\\)\\)\\\\ \
\\(\\((\\(\\(0.069002912071858` \[VeryThinSpace]\\)\\) + \\(\\(Power[\\(\\(\
\[LeftSkeleton] 2 \[RightSkeleton]\\)\\)]\\)\\))\\)\\)\\)\\)\\)]\\)\\)\\)\\) \
- 0\\)\\), \\(\\(\[LeftSkeleton] 46 \[RightSkeleton]\\)\\), \
\\(\\(\\(\\(0.665`\\\\ \\(\\(Im[\\(\\(10.`\\^\\(0.05`\\\\ \\(\\(Plus[\\(\\(\
\[LeftSkeleton] 2 \[RightSkeleton]\\)\\)]\\)\\)\\)\\\\ \
\\(\\(Cosh[\\(\\(0.2302585092994046`\\\\ \\(\\(Plus[\\(\\(\[LeftSkeleton] 2 \
\[RightSkeleton]\\)\\)]\\)\\)\\)\\)]\\)\\)\\)\\)]\\)\\)\\)\\) - 0\\)\\), \
\\(\\(\[LeftSkeleton] 26 \[RightSkeleton]\\)\\)}\\)\[NoBreak] must be a list \
of equalities or real-valued functions. \\!\\(\\*ButtonBox[\\\"\
\[RightSkeleton]\\\", ButtonStyle->\\\"Link\\\", ButtonFrame->None, \
ButtonData:>\\\"paclet:ref/LogPlot\\\", ButtonNote -> \
\\\"LogPlot::exclul\\\"]\\)\"\>"}]], "Message", "MSG",
CellChangeTimes->{{3.722442806422888*^9, 3.7224428290037394`*^9},
3.722442996805279*^9, 3.7224431218385363`*^9, 3.722448321361796*^9,
3.722448389205759*^9, 3.722448439233005*^9, 3.7224485141451406`*^9,
3.722448550899392*^9, 3.722448606295533*^9, 3.722448669948944*^9,
3.722448738525223*^9, 3.722448801024077*^9, 3.7224488526154213`*^9,
3.722448921348963*^9, 3.7224489835625277`*^9, 3.722449054435588*^9,
3.722449263530613*^9, 3.722449306326483*^9, 3.722449380852551*^9,
3.72244948619744*^9, 3.7224495435070133`*^9, 3.722449743606249*^9,
3.722449867269721*^9, 3.7224500400820436`*^9, 3.7224501661327477`*^9,
3.7224502966728277`*^9, 3.722450477366291*^9, 3.722450640699443*^9,
3.722451020959628*^9, 3.722451321694256*^9}],
Cell[BoxData[
RowBox[{
StyleBox[
RowBox[{"LogPlot", "::", "exclul"}], "MessageName"],
RowBox[{
":", " "}], \
"\<\"\[NoBreak]\\!\\({\\(\\(\\(\\(Im[\\(\\(\\(\\(\\(\\(-1.29894125`*^11\\)\\)\
\\\\ 10.`\\^\\(\\(\\(-0.2`\\)\\)\\\\ x\\)\\)\\) + \\(\\(7.3528376345`*^12\\\\ \
10.`\\^\\(\\(\\(-0.1`\\)\\)\\\\ x\\)\\)\\)\\)\\)]\\)\\) - 0\\)\\), \
\\(\\(\\(\\(Im[\\(\\(\\(\\(\\(\\(-1.29894125`*^11\\)\\)\\\\ \
10.`\\^\\(\\(\\(-0.2`\\)\\)\\\\ x\\)\\)\\) + \\(\\(7.3528376345`*^12\\\\ 10.`\
\\^\\(\\(\\(-0.1`\\)\\)\\\\ x\\)\\)\\)\\)\\)]\\)\\) - 0\\)\\), \
\\(\\(\\(\\(1.6680442160539138`*^-10\\\\ \
\\(\\(Im[\\(\\(\\(\\(\\(-1.9968967057`*^10\\)\\) - \\(\\(2.258932925`*^10\\\\ \
\\(\\(Power[\\(\\(\[LeftSkeleton] 2 \[RightSkeleton]\\)\\)]\\)\\)\\)\\) + \\(\
\\(16464.26284411179`\\\\ \\(\\(Power[\\(\\(\[LeftSkeleton] 2 \
\[RightSkeleton]\\)\\)]\\)\\)\\)\\)\\)\\/\\(\\(\\((\\(\\(-1.`\\)\\) + \
\\(\\(Power[\\(\\(\[LeftSkeleton] 2 \[RightSkeleton]\\)\\)]\\)\\))\\)\\)\\\\ \
\\(\\((\\(\\(0.069002912071858` \[VeryThinSpace]\\)\\) + \\(\\(Power[\\(\\(\
\[LeftSkeleton] 2 \[RightSkeleton]\\)\\)]\\)\\))\\)\\)\\)\\)\\)]\\)\\)\\)\\) \
- 0\\)\\), \\(\\(\[LeftSkeleton] 46 \[RightSkeleton]\\)\\), \
\\(\\(\\(\\(0.8200000000000001`\\\\ \\(\\(Im[\\(\\(10.`\\^\\(0.05`\\\\ \
\\(\\(Plus[\\(\\(\[LeftSkeleton] 2 \[RightSkeleton]\\)\\)]\\)\\)\\)\\\\ \
\\(\\(Cosh[\\(\\(0.2302585092994046`\\\\ \\(\\(Plus[\\(\\(\[LeftSkeleton] 2 \
\[RightSkeleton]\\)\\)]\\)\\)\\)\\)]\\)\\)\\)\\)]\\)\\)\\)\\) - 0\\)\\), \
\\(\\(\[LeftSkeleton] 26 \[RightSkeleton]\\)\\)}\\)\[NoBreak] must be a list \
of equalities or real-valued functions. \\!\\(\\*ButtonBox[\\\"\
\[RightSkeleton]\\\", ButtonStyle->\\\"Link\\\", ButtonFrame->None, \
ButtonData:>\\\"paclet:ref/LogPlot\\\", ButtonNote -> \
\\\"LogPlot::exclul\\\"]\\)\"\>"}]], "Message", "MSG",
CellChangeTimes->{{3.722442806422888*^9, 3.7224428290037394`*^9},
3.722442996805279*^9, 3.7224431218385363`*^9, 3.722448321361796*^9,
3.722448389205759*^9, 3.722448439233005*^9, 3.7224485141451406`*^9,
3.722448550899392*^9, 3.722448606295533*^9, 3.722448669948944*^9,
3.722448738525223*^9, 3.722448801024077*^9, 3.7224488526154213`*^9,
3.722448921348963*^9, 3.7224489835625277`*^9, 3.722449054435588*^9,
3.722449263530613*^9, 3.722449306326483*^9, 3.722449380852551*^9,
3.72244948619744*^9, 3.7224495435070133`*^9, 3.722449743606249*^9,
3.722449867269721*^9, 3.7224500400820436`*^9, 3.7224501661327477`*^9,
3.7224502966728277`*^9, 3.722450477366291*^9, 3.722450640699443*^9,
3.722451020959628*^9, 3.72245141284085*^9}],
Cell[BoxData[
RowBox[{
StyleBox[
RowBox[{"General", "::", "stop"}], "MessageName"],
RowBox[{
":", " "}], "\<\"Further output of \[NoBreak]\\!\\(\\*StyleBox[\\(LogPlot \
:: exclul\\), \\\"MessageName\\\"]\\)\[NoBreak] will be suppressed during \
this calculation. \\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", \
ButtonStyle->\\\"Link\\\", ButtonFrame->None, \
ButtonData:>\\\"paclet:ref/message/General/stop\\\", ButtonNote -> \
\\\"General::stop\\\"]\\)\"\>"}]], "Message", "MSG",
CellChangeTimes->{{3.722442806422888*^9, 3.7224428290037394`*^9},
3.722442996805279*^9, 3.7224431218385363`*^9, 3.722448321361796*^9,
3.722448389205759*^9, 3.722448439233005*^9, 3.7224485141451406`*^9,
3.722448550899392*^9, 3.722448606295533*^9, 3.722448669948944*^9,
3.722448738525223*^9, 3.722448801024077*^9, 3.7224488526154213`*^9,
3.722448921348963*^9, 3.7224489835625277`*^9, 3.722449054435588*^9,
3.722449263530613*^9, 3.722449306326483*^9, 3.722449380852551*^9,
3.72244948619744*^9, 3.7224495435070133`*^9, 3.722449743606249*^9,
3.722449867269721*^9, 3.7224500400820436`*^9, 3.7224501661327477`*^9,
3.7224502966728277`*^9, 3.722450477366291*^9, 3.722450640699443*^9,
3.722451020959628*^9, 3.722451412882566*^9}],
Cell[BoxData[
GraphicsBox[{GraphicsComplexBox[CompressedData["
1:eJwUVnc81d8b113udvdy7yWhrUJUpKckI5TsFklCiLIiNDS0NGSkUBRC0pBQ
PSQN0i4SDQ2K9C0pafw+v7/u67zOOc/zXs+5n5F+axetImloaJzhaWj8//dz
q0Jjn4kuMEvzJveWj8A6Zaa6KJYB0x4wGy7J9VD6d1OK5RYGeDR7Xq2nj8Sh
5altE3czYNR567jDK3Tx/a120ddDDKjqELVVNelgq3OGbdQxBviwmB7K72r0
dIv1cT/FgNBNOooMZzU+j7oVNlDOAN35a2wkF1T4UWK18ksVA172SVeqzFRI
rftvzrU6BsTMiRz8clOJBjtECqcmBvCdGgZXLFXig+alT80fM2DbUY6p0Qgl
bjES7XrdwYDCEZZXT53SRqssxtjlHxig0eQZ2O6mjTu26peZf2FA3j3WwCBH
Gx+nnBlzf4gB9RbdCpNGBZ7RWp5yg8QEZtK9zat2KPBQzvwne1lMWHos2svJ
SYEJ9kUysZgJDT73Amv5Cvy2ftzsIRUTZrXcPs7rkGNYtfaKo6OZcHH5qouP
TslxgDE/RDCFCTO/SP5OipSjZlvu0nfTmTC642WEwFaO6oaVc2OsmZCLGYaz
ZHKsN3LiBzgywfDJ+37vzzJcc/HkE6EHE8pjGvfcqJehjo3ltjQfJow9M2VV
WZYMfdx+ytcFMuEdN/BAbaQMC5JGneKuY8Kc1CNWCmcZRo+LlNLjmVA2yjRy
7ngZunaSIh9vZcLGqHA9E6YMTc9o3PLZy4QA6rVv0R+keOLPqBF26Uwws5iZ
zb4lRXFQ5ZT+XCacyp70glYoxYMd252CiplweePJO2k7pHj0wUZnOMeExasN
2vhrpFjy+vW8pzVMSGp/Y/jPUYq2ESH6txuYsMfCxrl0ihT7GFP79t1lgoNF
8vO9UilmXg0pEz5jQt/jcQG9wxK8//X2ou8vmfA4sSqq8Y0EOdbp/Yd7mJA6
qqV+/C0Juh3Ni2F8Y0KNkU1E+RkJjom6/7ZtmAmb7cuPR2ZIcETwWvsgKguM
en+8f5AowdWdJofcuSw4/tJpilugBB+GrX6sIWMB5VSzRfxCCdrS2zSSRrJg
O13ldGi6BO1HhgsWj2PBJvct9AJ9CS70iNYeMCH2/07YuoorwbfME4xPliwo
i/UuZPwS45ZbrK4LNix4d9Pq6Lr3YjQ48fb8zAUs2OkclJfxQIzuw2+CRnmx
4Pz8xz4JV8W4K3yh9NYKFrR9Uhwbe1qMtz8Pl89aw4KsrUNfDqaL8XBv80RR
JAs+zPK8nJMsxgAaJ78wgQWMX1fC4yPE2JC77k/GdhYUr5wV+slHjBPmSKyX
pLIgyeAx5ZezGLM0xm7qyGRBR1LDrC5LMR6yWnGi9jgL5qmVZ20niPFgJr12
cQkLso03L05ViFG97km1+wUWhHebltswxXjB7VXBqCssGOPBfZ3yS4QLXBdv
P9vIgjmnnDjVPSKMeTDkeOQeC+K9ixrmPhdhwRo6y7qNBZrztLWv3xZhO9f9
wtU3BJ8Hi0c3XxZh7pSbczI+sWCzb9YcVYkIA8OLbhl9Z8HKEw304GwRXjUq
Nxn1lwX6EQ+Tvu8RoXrwW8pHGhsuukR3/UwU4da2wmfhPDacuPN11b+1Ioyy
3Mx0k7Ph49FHDlP9RBhSc9t0UI8NHnYTL0S6ijDUeqHDmglsWGh4cto4GxEO
O/yeO3MqGx55wyuNaSLcFyY1b7Fiw/g5H/o+jBXhGb4Xt9aWTcxf8MtupQgf
3dfsCHRhg6z2/dA/rghJWd/Tuxez4fTeMcFbRxB4X9HNbqxkQ86igMWi70JM
mru72TeUDRWjhi7UfRDi3dEmdt7RbMAFX6yi24VoIJKX6yexoc33TPSue0Lc
ogzjlO9kg3t60wesF2JIQffC9AME33LV72+VQlxi93C3ZTYbRpE5Js6nhej2
fajiYgEbjtWBl2aOEJ+PtL2yu4wNe0dWjTl/UIirgsmoe4kNCclfk3dvF2KC
8btCAbLBrk8W5RIvxFwyNf7ZLTZ802XohoQLsfHLIZslD9nws/mGT5W/EOOW
2X23aGfDZt2BrB5vIZq8X3O0/S0bXAK+5C90FuKGzxfGtPaxQXhGpcq0FuLt
fxZ5hYNsIK2y/2U0XYjqicZaZhocmGcQbq9hJESN504rRzI4cEC3duHpUUL8
cKL1TJOAAw8TwksPyoTYGnn8nZ2SA1XLGsff4QjRozF1xCgDDnw91kt+RBZi
m0mfqNaIA4cKbu5SDwmwRzecc86cA4E2UGDeL0CydMp/ccCBEg55UeY7AeqN
XdFMcuDAnONLr81qF2BLdeWeD4s4ED8cbHfmgQCTAuPn7l7KAcfR1oMBNwU4
Qyfxw4gADjw7qh69+ooAt7ifWvskjANL/UQzx1wQ4L3Cmf2rYzlQ+W27s/lp
ARZv+OXquZkDUwp1JJTjAty52vAsdTcHFo2/8WdkhgAjlu//sT2NA57Nsbu3
7hXgh8c6+quOcWDdNbnBsWQB+q1W25EKOfDH8dNaVrwAgzfMcfldzgHK5TEv
jdYJcGNagc3tKg50dSWP2h8kwENNUVPc6zkQuZ8RYe8rQPMtISSrJuI+Y3b7
OU8BvnJ7eOfdYw5stMuUxDgT5ydHJ/p2coCz6M/MDTYCfLR7lnTaBw78eLcu
33CmAGXk2MKWLxzolV3VNDYV4MehJ8r6IQ5EaZwb9368ABuHIhJ2krgwZ6Lf
9EejBFgoTnjCYXPh6EZD65HaAhRXlAm+iLhg9npOhVBI8A90sj2g5sKUww/T
gpgCpI4dv5o6hgtL3Wp2/RwhQK0go5Cnk7mww72vePQvPqpv5AUGzODCPsFf
6ZX/+FidN83B1ZoLHlfKt37p4ePizFmj/jlywTLHa/+e13ykZiV/SPDgQk4g
a6JPGx9nyvv3e/twQSN2TnvTAz7GXbw1ZSCQC5t/OjzLv81H6wc3L32K4ELZ
woTXwno+SgcpYyvjuFBRMLC+spqPX8wqDsxK5oLzO5e2xnN89Pix5aXBXqL/
tM3X15TwER9d129K54J29sf0Tfl8nHp5jrt1HhfMWwINbmXz0Vz9IVhWzIW4
HV4NeWl8tMr9FVN6jgubMrdd+rSHjw9yTYKP1XCha7/x9xvb+Li2+LTtigYu
sL1MVtxL5KPg3n7l27tcuPk2NMgpho9zIo8+vf6UC/4z/hzxDOdj9FTpTr9X
XPgo+TS/NZDoF31JvbyHC91/lyV0reAjGQ/nTfjKhfbu2pHKJXx8bNAlrx7m
woapd0PvuvJxCssjtoCiBb+vyefTnPh4iD2txYmrBb6Md5mXbfioIfXSuiPV
gvXT0g4cseLjr7xjU/N1tWBc+eEZGtP4+HPeIleLcVrE98+ewDeT+bg1ZILH
ZBMtiA7f0Gw7jo/y7Llzf1poQZbk87tno/h4/l3T2CQbLZDUtcW/V/LxeXns
gJ+zFrCdvxRGSfhIS0+rpHppwfbRu74kaxH+bfu8Mn6FFsxp3jPmGp2PIwZC
B52CtWDWvdF+MSQ+3k5cuunlei0IIDNyK4Z5qE4J77+7UQuOdS/fFfidh7Hl
39zjt2sBy/Q5Of8zD190XigcTtWCyLOxw7RuHt7dm93ZmqkFf37aGr97zcPr
Xv+xo05owdeLH27YtfNwXn6IbliJFrz0O+1l8ISHjwYNdGZc0ALnqMHuMfd4
uCrAWXzjihY45ibsOX+Lh8nuR7+UNmrB5P5P3y7U87DI1/u6630tcN+6udWq
lodPI902323Tgl8vbAb6L/LwAD1Kv+CNFuzakpgnPstDlyrKtem9WrC4ym79
jWIe5ny4bDXhuxYo706/2J3Pw+86ZcX//dECkwzXT5NzeDi2WpNWQ+YB9+OB
dkomwb+gqXg8nQdG//02dTjIQ7HS9vYwmweaI7YcVu4h8Lu6L4nj86Dk7z5H
n+08lOwnrXwj5kHMKsn7G5t4uGTx6vfFCh4ct/Cm18TxcPXb5S90dHiQpahL
U0fxMOo3x/n7KB7IlaRu/loe0uVLp14Yw4Pc5Gb3sUE89PtumTpyIg+ay67P
K1vJw6s+T/w/T+FBW8afqPplPHydolEWZMaD/gFvI2svHqZU3QlumcGDKv+n
7PeLeGgS5VhwcBYPLvu57dN24mHBf74LqXN5kBAe9qzalofS3xNin9nxoNuy
vKdvNg+1WJniQ048ePdY4W1tycOWtsMGf1x4kOJ396GGOQ9TzeZXNHrw4Pq3
wgjXKcR910PlVkt4gMvGmXEm8FA/Mm5Ung8Ppn9bsO+DIdF/lFy4wp/Ao5fn
4TWSh4yDDlH3A3mQnbStyEhJ4N9n4pobygNIWBV/VMLDpPnl+cp1PHixPvhP
GJ+H+ew7QVujCT2jwqxWsHl4e8nREvt4HgStt7HqpfGwMniE79UkHlQ76qx8
PoKHJzXV+w8m88CwLT6r4acWyovbpi5M4cFH6glX0WctdGOOca7dywP7ZVb2
o99q4YGhiW92HOTBpMNjzcLbtDCtqLF7RAYPWMvvN8fd00LV0r/+q7J5UHd1
vWH9DS0sOta3dEweD87lnbw5u0YLf+WsvZlVwAMzMc9yU4UWOhsVlwUX82Ao
feDlz1NaOLp+M8PgDA9WrrpXeuaoFt4U9z3be44Hx1gn4nQPaWHQDy09j0sE
v3VmtS07tfBB5o3O5hoeBMzj7TFP0kLLW8bSfCT0cDY42RmphRN+W93wu8GD
fcucwuqCtbCrv+Pd/dtEv8om3tIVWng0wnRLTgvBX3PueHNPLdQ+rzqgeMSD
zVm+NbectFB36KR40zMehFrdMTk0l8B3953Y5gUPyn+IpufN0MIB36qdVa94
4Ml4aLRiihY2bJkTs/sdwTfbJTBg9P/1XNNu+5EHX95u+Fig0kLT1NHnzn3m
wZSy/c/TRFq4iJxNSfjGA5LHJXkTUwvNzI/f/v6DB69mcxIqRmhh3tp5FK/f
RP9zZodbfnKRbZZfLR/Bh/qpXf0m/Vy0qj3YlULlQ+ePGKntey6uvz99pzeT
D3FDt5UFL7gYVrA+9xmXD9d6EyrKHnHx80bHCbOEfCgPVd/rvcPFiK4XpjQZ
H3gjOWUxdVysZmicjVfy4faujtbSKi7Srj4/tXAkH/Z1OC6aVM7FZ9FuQi1D
Ppw0PFT+4SRRv9/3a/w4PqReqlPYHeMifVDfyW4SHwISVpz5cYiLgbXxiusm
fCBreY5x3s1Fpx0Ry0ZP48OILxfNWrdwceortfKTJR8+jTYxOb+Bi10/lzst
m82Hb5lbho0juJiW6/HLaB7BL2XlaGogF+849Ck/OvBhDWvXLJYPFxsvSs65
LuDDJc12xgUPLt4486Ne6caHmju1g2eduLhr9Zp5aV58iJ3Vv3mBDRcXnUm3
WbOMD0u6BFnWllzMHfKtHu/HB2b8rj3BJlw8R7l6/EgAHyaWSKRTxnPx1rGH
lKA1fFgY6dHprMfFgsENz9+t5cPei5bGLAUXqW5o4BjJh62my5x+8rkYNOtq
L38DH7yrZdZWDC4e+uhsuD2BD/Thb526I7iIozLavbfwQXCce3rZTw6uW5FI
k+4g7pcYpjb1c/Dj8p/5W3YT/G01TB9/4OCqj2OvOO3nw/rc7LxpLzl4aupn
u5tpfPjLi3pk9oyDIdtcHMZl8SE8hzPR/x4Hp64Mudl7jA/H37o++dzIwQYN
xaVlJ/jAZuyI51/joMeEJD2jQoI/XXzuYCUHQ5duJXeX8CHbzd7H+gwHHRwV
ngvP8kH04snsXac4OO5OoKHsIh+OXaGYT8nh4H1Nh8B9l/kgvrg0JjSdgxse
vTHwv8qHBvttJNY+DhbmK7xHXeeDe7XNyGfbOJht8u7v/pt8+Dzjzn2zRA4e
dFmtu7yZD/cjDeYMRXFwwaSNF9ruE/n64b7COYyDB/iTr1o94cMdJ77z/QAO
Pt2cbU1+zod72x6vrFzOwdcVWRbRnXx4nZK5Y6InB/vXLii36+LDrPkfhxkL
OLjFuCCT0s2HuRHiFKEtB9sv7B4I6+VDy+YrW0tncdD8xrjmaf/xoez1KuNS
cw56H14qqfhO5P9fX+yMyRzUCJ74VPCLD23MjxMGxnDwdPNF/uO/fPjB3NQj
HslBRf/9a9ZkAXh8pVU2yDm4Nze/R0AXQA3FO/8Fn4ONWozt+9kCiDmoerCJ
ycHkZE7mD54ATuntKl9A5qDNjtsGV8UCWHvI8tfOYTY228sMTRQC0HmRSHca
YKPHEfUJTR0BxEovHdrYy8ZV/dcP3RglgNCqIsmzt2ycQfn9Y8oYARw4afey
uoONgsJPz/5MEIDfU7dQ1lM2nmWEjYudIoA2zoyEty1sfBSe+rV9qgA0Sul/
3t9k49CqQLPcGQJYSJ2V4IlsfKd43MubJQCvj/7SBZfZ+HjZD/UbawFEODMu
Xqxgo93Jy41H7QSwOWC65rzTbNxSyn1NdRIArrBgLs1n47XZ2jEtLgIY1De0
f5PNxvr06iQbDwEE9NUm9aWx8dYGPkW5RAB1zvmfg/ay0XWF5t92HwH8YKX4
aW1nYwF9f7CDvwA00yvDpiWx8efM+4tkQQL46Jvf9SiG4GeSX5YWKgCLimLL
r+FsrJggTvwVIQCuxNh4WjBR74LVnWvRAqgdnXfhPz821gz/2mkSL4CNpxLv
TVjKRsMHYddpmwSQdnn36hdubJSUbF5/PVkAzMyBF+edCP3njk43ShHAuxt1
x1i2bNwWkmw6tFcAO1zb/rTOYiPFLdJm3UEBGPhl/DWYzkY6kJsfpwtgboZ0
R5YxG7Wq7VvSswXAZq68sXU8G19807PWzBOA2ZfKoF59NpbWnDd5VkDoXfeq
qFnFxjnWz9LdiwXA6E0vHCdl47J7WWuvlBH91plnneGxMb5H2JB8TgDJbTlT
Sxhs9Lmuu/tXpQD+TStfrk9m47zx7+7eqxGA48bxAulvFp7LsNu+DwWwRfb1
+6TvLHx73apiuEEAN3qGpjR8ZqE8sdfz1m0BvF9VT3v0gYWinxMirFsE0Pz2
/OGlr1mYFs3WKHooAKNnBTJWOwulW/OZIc8E8OQ0ZdrUxyz0XXB3R2e7AEx/
POtrvcvC0uIzm86+Is4/OSkeamRhAn1S/5p3Amg81BRihUT90XPuP+kRQHkt
b+rvyyw884g9MfezAM5MPx1hfp6FXAj+LfkmgLcl7JSPpSz8djZgduwPAUzI
GZFfd4qF7eUK0vTfAmhw2T1WmsfClLAVU4s0hPD069SoriwWzqjxeRtNFcLB
ExlDRodYWHHzC3WAIQSfZeZnv+xhYVmr7rHFXCHcbvP98GQ7gTeGflZXKIR1
XhIHi00sjHi6ZephqRAOO5bcE8excNr1C2ZBSiHMS9tgF7GehdsubCszHCkE
l2xZ3JcQFmau6kk/aEDst+280hVA1C+g/F42Tgi8aPJ7L18CX/65R8+MhOB+
widt9mIWfjz1T9fCRAgOcRldjm4sdJ5G+fjHXAgTl3pptDuxMDYl22CtpRCC
7abntduysCDw44tZs4WQe/Vus89sFno4tjJ+2QghyuHifZoFC1v6vYr9HIQw
vMfCVWcqC+1GHmgYt0AIOaaGDrVGRH/B0kXHXYUQlmk6484YFjYf6FwS40Xg
f3nDe5keCw+LNdrNlgnBfHH9E4GShfreF5oLVgih/DzfcZqEhRfH6c5YFyCE
leGVj7u0WMipVSs+BxP8SIonfxkEH5fata5rhbAayiZYUFh4O4o/WxYphILj
N8P//mHiWu+h5N2xQlBEfpgx+ScTpU2Zc5cnCOH4woGCnv+YaDP72QbFFiHU
zenLavjExOkxRSO3bSf8qVwzkvOeiZMsptgs2C2EyNpovc6XTOy96th+M1UI
H1xtpiufM9HIVvPD2DQhbGQGv457zMR1yzaEfcoUws28zY/9WpiYYJIYuOSY
EERrLQYrbzFxV8aMznEnhGDRw9M6XM/E5TUpjUWnhIDmC1501jLxUleMPq9E
CINqnft2l5goOKL6+7RcCP3Tlu2cWcFEU56Hg+MFIXhM3CY4VsJEL9E8wcjL
QnB70cPYeZKJI1RPFry8IoRxJLn3oVwmRrwb/De/XghpL3sO048wscvi/njZ
TYKPZw+bmcZE5SLLOwebhFCB6b8j9zHxeYht5+A9IdQ0Sxb/28nEI2JmWPVj
IaS/5l2SbGXiyESf8AlthL7dT86nJzDxdGTI5z8dQthjYbeoIIaJVWtlb6re
COEAZ+6+BxFM3DvO007vA+HnL8/UgBAm+q93GvfpkxD6bEb/SAlgImnj00S/
L0KIPUi/IFrBxBMC6YLp34Wgq9cYbbSEiTfLBtOGhoSQ2OkXsdqdiefpQU6B
f4UQU5TzkbaQicf/O7jZjCwCFw2t8WYOTOL/acGY85oiiL45Z2PTXCbuty2Z
K2eLQN6UOjZpFhObt1x90ckTgXaxrdf16Uy8l+D/YZFYBDernzaFmDLxMa0+
1FAhgs0977wLjQh/0q4GdalF8CZie4TGWCaWv3ZqdR4lghH1czWujiLwX0mr
l48RwX+U4ys5akJPrzCdQxNEcJlX+xhlTKz58f6/75OJepVHfx8QMnGpgRSq
popghtGq0u8cJjYInmuMnSGC3e+NT9XSiTztc5s5ZCWCKRHzayRkJvrcXtEb
Yy2C9tiv5x79YaCYweW/shXBjjAq/cxPBt59GlFR6CiC6627xii/MdDRP7BB
5ULU37xqTW8fsZ8kcf3mLgK3gc1Ml24GPspd6XlusQiKT6w1fvSGgXlJ1i06
PiJQVp6truxg4Nq+59i7UgTBKSsWTGplIFWbahgYKILvlfTX9EcM1HVq0bgb
IoINu6pN/91l4EzOAs8DESJoWnTSavctBo7c66dLiRZBTM7dPTHXGaiZPXHV
0zgRJH5C5a8rDFxXlqFzMEkEpU9eZWZVMbAgKc3x91YRPLWqyck8z8DWl3bf
b+wUAaPCdr/RGQLvv1Se1V4R+BmzS0cVM9BVP/p47gER6F3sHTAtYOCTp8Iz
vukiSL5kfbcjh4Fq+7kT7x8RATdtjPpdFgOD7CeMyc0Vwc88vW3JaQyMZxQe
VhaIwOJcA21LKgMFLRi7tUgEoY+++2fvYmCJ7sFn9mUiMN29KM5pGwNZJoNF
VytEoCIVDC/dxMDQR/zBg5UimJ6+u4oaz0C32OaqhTUieBA9P+5OFANJHfLP
tddEsLUl5cencAaeu6fO3dkgApZxsUvhGgaO3VJZT7otgnnLPrGvBTDQYHrf
koC7Inh91Vr2dQUDRyW2h499SORXj3L02lIGdm9Z+vPIUxF4W1S0dnsysFx8
eHhNuwhy5TmcskUMHC4NiTR8JYLFZ29e3uPEQC7lmU/qWxHwXd9F3rQj6vX8
bPTsEUFEMq/hmDUD/+0ty2vpE8Fc23FNLVYM7ED5YMFXEdyyVL/Nns5A+Klf
5/+D8PvUG8NkUwYG99f/fTgsgjLbFXGNkxiYHimrytMQg6SYveHkOAamXNZ4
q6SKgWP/xLjTgIEjyDu3bWGIoSZn3JopIwm9nzeesOWKwbjzwJuRSgbWRmQa
1wjEYNieEbVGSuBJH2m1TyqGkCqoWyRg4E20v+agFMNph29n3TgM9DhNOX9R
VwwlTmztcjoDP4yM0dtkIIblg5SHhWQGzvLeSBkaK4b20udnf/6lo/Kw7tIl
RsQ+P2ffyl90HF6+cZLKRAzHLObahX6n4/Hu4Ki95mLI3tWf2vKFjvYafPNl
lmJQnGCOvfeJjlXP7Ne0A8En9M1fww90LD0/UmxtI4azjqn7Mt/Q8YSqYgbT
QQy3Lu3/XdxBRx/bRw+TnAl8Lxq1BG10VP8rfe/mKoakLbpRisd09KsxCBd6
ieEZZ3aV5T06hppPCdm0VAypl5dpXrxDx7jZA12OK8Qw36x7assNOjqzHFpu
rhKDTvXfkTPr6FjYZmU0IVgMf0O/Od+opSPJ7BPjS5gY/rw42/X5Eh31F43z
8lsvhsGosvzQ83S0+62rZxorhmkrt1vsO0PH/05XrujfKIaFjdPMbxXTcYX8
pdB7sxg2yifd8ThJx0fia7P1tovhfHHLlR15dGQ/nPIma5cY2rZ8+80+Skdb
5dK/4alimCSfypqaQUfNNQb7p6SJoeC/rBnRB+m4b8PmtLxMMey1qBzF2kdH
qeSwaO0xMdQm1/lZp9AxYJ2FZu9xMRzlvubdS6ajxaNNaxedEkN13hOH9Zvo
KKhPcJWViOFBwqulNfF0LA/nnN5TLgafF+cWecTQcUGZ20bfC2LQyzu8+/A6
OkZ+ntGguiyGc0ZdEX2hdPTtP5+YckUM//2hlWcEEfolvr3gVi+GvKzOivf+
hF53C5e1NIpB+T3w+g5fOlrqMjdOaRJDfYnWV1hKx9gR+pKBe2JQPdntn+tJ
+HHivt6qx2K4J6T7LHClY9ID05KpbWK460WlnnSmI4M6rbi/g/Bzw5NugQMd
F/+8K/d6I4b+BJfmBzZ0LNugTdP9IIY+xmCb2Ww6NlYP+6d/EsOET5uP91rS
8U3KoVkhX8RgfiRmyG4aHbcuu5M6/rsYSCXjF10xoePHL4cWZQ2JYZ6ue+fm
SXR0E4gPBPwVQzjlaUzfODomfxsz5w1JAp/bf/8rMqTjjLb2QFtNCbi5Wv6L
16PjV8d5LDZbAu0FccmDKjqGb7LWTeJJwGP8/RiUE3mY/fOsi1gCWwwWuBmL
6fhD0/ESRyGBFaFLbtbw6Hh9r/HkWLUE2q55Gaax6Xjw+H39OaMkwHt3/oOI
TsfRUSP2VI+WANxbtegtmY5znB4EKidIgP09qOXOP030Oe9V1zFZAnJ558jF
w5o4p23dHqepEhhRNeGE+Q9NHLN37iPlDAmwPo1afPWrJj7WKN5zxEoC59zN
/xz8rInUDaU1I6wl4HI2PC7xoyZOT1odcMtWAnU7u08I32uiic3FrTMdJfBt
V4bF4GtNnJxVrRS4SGBZc3Lnlg5NPPff8vH33SUgmPRqg2GbJv5ipJdaLpZA
qbkGQ/pEE23OJhfTfSSwU7JDcu6+JnpIaPKtKyVQ0jWqNatZE3s3Gf59v1oC
TNcmQeYtTdy24e/y0yFEvx6h5ewGTXw7JchYGSGB/6YuOWGGmjgvdvfmvigJ
vHyyyfVZjSZOvO44ryhOAnv3Ts/ed0kTn9/NS+AnSaDiyYLCA+c1cVdA6eTn
WyVgoiNbC+WaqHHNwcNlpwSWrt92ZUaJJm44mfdj9F4JLLpYo/f6lCbG7D/M
7T4ggeCiz93HTmiihYUq0yNdAhPvFl89maOJpMilx/SzJWDfnqVYfEQTU0OM
xMdzJRDfqLb3TtfE40G5JM0CCWRKLiwPO6iJlQM31zQXSaDAe0LA5H2aeGDW
Vlsok0DzvEktlrs0ca1sMEd4TgJk/uFNg9s08eF3zZD7lRIQ1mw2a9ysicMH
S0ssagh9X4e1vUzQxNFX6atpKIHzYqZJ4QZNlBf/SEtqkMBQ0E6rqihN3J+5
bdqbWxKYs8PpWWeEJjIlTZ4FdyVQ5L0m9XyoJjq45veIHkog5GnjrgdBmrhX
bfLj7VMJFH/dNHxslSamF7vHrGyXwA4+J+r8Ck3Uny4NbXopgRl7xs/vXKaJ
Fz32dx58S+QjW/n3krcmsk2P1tN7JBBdu9XxubsmBuT66HX2SWDXuevNJS6E
/1r1P45+lYDVJ9aNg06a+NHq0izmDwlwBn701Nlr4sHfK8nPhiXg3Xa/KM+G
8Ccuf/oiDSnsLj6y5OZsTfw2vPldJUUKO/tHiMlWmtjDknHiGVLYxxto/jxd
E0+2Q2EfRwpGCae5emaa6D995JVrAikc8Tt2nGqsiUXZeXbxUinkNf5x/zuR
yOuVc/PeaUvBfN7WMVbjNPFa6EY8o0t8I77aUWFkSODpaC01JL4ZSzfmjwzQ
I/C6PObuHCsFzWyWzTk1wcdtR6+dkRTCE9o2lSsIvpK7llXGUlh5+KjlN8n/
83aHvsNcCkuOW6zoFmhiZPRiW4qlFDquLrs3SksTu3alDAeDFAw/pV9fz9JE
94nh46fYSKFo5KbNUZqEH6k9d0/aS0FL0at3hayJt5IUvRucpQAuRzsq/9Fw
Z+THJHNXKYxf7zDtxjANuWOdtud7SmFTJ19L/pOGGWtW09culQK1M8NXZ4CG
70NFf7p9iXXNwqHgLzSsjvRd7bhKCsVTzG7d6aXhAYa/k1awFORu6vCObhoa
Lf91clOYFOp6xL9N39GwBeziXNZLYZljyplZr2n4bfTUBlasFP7pxZ5d3kHD
zpYLmyI3SqEsv29KfRsNm8m9VZabCb2eNk9re0LDTT8vrjy/TQqO5xp3mz6k
oXm8+a6UXQS/FXfPWrfQcD3Jy9A+VQrRAuOhgDs0jLJnTb10SAoTD88a19JI
wzh19LXkTCkkus3e3VNPQ5vz62s1jkkhzptzwu4aDQ878iYFHCf0l0VH19TQ
sHu9v2r8KSn8yS988uYSDUcsmZ+Yc1oKlzhzdztdoKHqfs/iiHIp+DkvkISe
peFV+9FlEy8QeJnhMXmlNDTY+iMis0oK20dAi6SYhqkOSef8rkiB3vTHfc5J
Gl57kLWqvU4KXzu/HD97nIaRy1z3zWyUgvXOESuMc2g4IabB+N8dKYx8sbk4
6AgNTy+8Zb/2nhT22oZ6d6XTcHzV1hdWj6WwrmZbu+AQDde9fPC6tlUKM6O1
0pJTaWjFurZUv4M4n2WTwdhDQ86Nla6fXkvhwet5DXN30vCEVXat73spMPw7
muqSaTh93q7jUz8R+71g830TDT0WyX5/65eC7UyNkZYJxL56+m3fASKPzgZx
DRtoqBPLF0wcIvzV8T1GjqZh04GNdwv/SKFnmyc3eR0Nf5dv/8siycAxw22L
dC0NJy+1K7lHI9abH4r91tBw3K2jd2azZNC95fixPuIlMqwvWiXkyWBNvv7u
yf40LELX6BaRDCJfPju43ZeGXxIPDJnLZbDvj66pahkNLZq2/9RQy2DDQrMD
a7xp6PiMGxyrJyP0j/f+5U5DnwhnzwWjZeAg5IyavYiGP7UmVmtNIO6fhpdH
nGnoGZaTmjhZBm5T75Wazqdh1eKbrxynymBoWvf97bY0fEXbWnB7ugzO5QW3
yubScO+ljo5JVjK4/qkw+grQcOZg/8Hvc2Tw+U3vFcVMGp4fSKsOspXB8CTf
g5emE/5s/m/ZTEcZrOw/6coxo+FYQV/0r4UEf39pfZQxDfv84kkB7jK49d40
QDWJuD+7jjFlsQyYh50dEsfTEF5lbT29nLj/2dVcPYaGi7by13NWymDBQ43Y
+/o0XH0BOu+tlkFcv4G95UgazjlJqoUQGawNNb73XkX4o79RzI+QAdX1xej5
ChpuKUx7eydKBgs5+h/rJDQs+TjL0CSOOG/NYscIafi05kTXr0QZVEK1y3st
Gt5yzBRGbJXBR5vQpkNsGtausbk2b6cMImaFnR6m03Bq6oFX1L0ySO6jtERR
iXlbFx65/oAMjF7pP5hIouGlLloypBP+7BlKyftLRRRNptUekcGq7lE/Fg5T
0dnh5x/dXBnMP7JhkfAnFTs5sRHv8mXwuNmzYv8AFace2OXpVSQD+d/A9fP/
o+K+E26Xx5XJ4Gb2z9i6PiqGVF3Z/75CBpev/9ts/5GK/H2Xny+slMGYy+3Z
3A9UrPovJE9RI4PO6ZdsU7uoaCg+33rwmgxCD9g/d3xFRfnMzO0D12VgsE6k
VHZQkfvN9OzFWzK4Ed9hUdhGxTuB/o4Gd2VwBq2+hT2l4s6Q+f4DD2Tws0xw
8+tDKnIm3/gc8VQGh5yv0c/fo6L0Z8fn1udE3gbWPUtupuIo5zPBuS8JvhV9
HOFtKg6u5HuL3sqgdfHDlR03qNikOeF6d7cMHq0J8PGvp6LB2XcnTvXJgKJb
9vv3VSrOkxl/F3yVwflZNUEPaqgYxDW73jkog2z/Dbf8qqjo2tBM9h6Wwe2+
eS2TLlKxPpFUXfuPwDPKTZ97joomN/s/JVHkEBxTeLH4DBXX3Fu7/z+6HLYl
bDu+qYSKJ1cVnq3nyEFpP4oqLqKiv0bivASBHOZNhrvVBVT8uPiD83uJHDyb
jE9kH6fiOmv6ozPacohNGzN9Rg4V6z7V3DbQlcOEmOkXhdlUFOiNtvytL4cI
p9mTSjKo2L10in7tWDmM+Ty91zWNits8WxLHGcnhdszc2eYHqKj/Ss/9p7Ec
RKvfdrTupeKuMcycSHM59KYaf7qwi4pRUfuXPreQg5F/Ye/xHVT0W9iSngty
OGD9e6NTMhUln3KshTZy2KQeMDHZTMVm4eiQ9/Zy6L/sd+FZAhU1Zzsz853l
sDLzhOXeOCoyjOjaXFc5TFnskrcxhvCveENhq6ccnruGisdHUrG1K+GUy1I5
OKzaNksYQcUxo0ZqX/CVw6ON2/XZYVSM+xLPil4lh9TUk74NwVQ8lBAU9j5I
Dor3UYzK1VQ8k8l1qgyTg8HM03NW+1Nx//p5OabrCX4mIfUuK6j4Y5Fq1dEY
OSx9+7vDcTkVfbGkcOVGOdSVCe5pLiHO9zUvbdskh+t1f68OexJ+Fp3ce2ab
HPRSZ10pd6PihkCVaeguOZS9DAmOdCHqfRjt9HyfHCaGZ9yNcKZizPee16cO
yaGW9SZ50nwqXq236hmZKYec3Z+aDewIfdOMA7YflcNyd78NE2yo6DXQsdzh
uBy+LDx05dtsKvYJlXdqT8rBuiPa8ZsVFZPr+BX7TsvBXZ1/+rwFFfPWn+I4
lMvBOexXUvI0Km59d/fF+fNyCIpv89o7lYqB70pHJ1TJYarNPBtPYyqKTqrf
DdTK4a5nG897EsHnq626uU4OW52lo5UTqPh9Lu/unkYCj7zvcP8YKvZ7rPk8
fEcOFjoLjv0yoOKnwYTdd+4ReTUSm9zUI/T1GJVt+1gOvCkLZjbpEPNUvVr3