-
Notifications
You must be signed in to change notification settings - Fork 45
/
Copy pathutils.py
127 lines (100 loc) · 4.32 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import torch
import random
import numpy as np
from transformers import set_seed
import json
import os
from torch.utils.data import Dataset
class GLM2PromptDataSet(Dataset):
def __init__(self, data_path, tokenizer, max_len, max_src_len, is_skip):
self.all_data = []
skip_data_number = 0
with open(data_path, "r", encoding="utf-8") as fh:
for i, line in enumerate(fh):
sample = json.loads(line.strip())
skip_flag = False
src_tokens = tokenizer.tokenize(sample["instruction"])
# print(src_tokens)
if len(src_tokens) > max_src_len:
# 当输入内容超长时,随向后截断,但保留“\n\n答:”内容
src_tokens = src_tokens[:max_src_len - 4] + src_tokens[-4:]
skip_flag = True
max_tgt_len = max_len - 3 - len(src_tokens)
tgt_tokens = tokenizer.tokenize(sample["output"])
if len(tgt_tokens) > max_tgt_len:
tgt_tokens = tgt_tokens[:max_tgt_len]
skip_flag = True
tokens = src_tokens + tgt_tokens + ["</s>"]
assert len(tokens) <= max_len
# ChatGLM2需要增加[gMASK]、sop两个标记
input_ids = [tokenizer.get_command("[gMASK]"),
tokenizer.get_command("sop")] + tokenizer.convert_tokens_to_ids(tokens)
context_length = len(src_tokens) + 2
labels = [-100] * context_length + input_ids[context_length:]
assert len(input_ids) == len(labels)
assert len(input_ids) <= max_len
if is_skip and skip_flag:
skip_data_number += 1
continue
self.all_data.append({"input_ids": input_ids, "labels": labels})
print("the number of skipping data is {}".format(skip_data_number))
def __len__(self):
return len(self.all_data)
def __getitem__(self, item):
instance = self.all_data[item]
return instance
class DataCollator(object):
def __init__(self, tokenizer):
self.tokenizer = tokenizer
self.pad_token_id = tokenizer.pad_token_id
def __call__(self, batch):
lengths = [len(instance["input_ids"]) for instance in batch]
batch_max_len = max(lengths)
input_ids_batch, labels_batch = [], []
for instance in batch:
input_ids = instance["input_ids"]
labels = instance["labels"]
padding_len = batch_max_len - len(input_ids)
input_ids = input_ids + [self.pad_token_id] * padding_len
labels = labels + [-100] * padding_len
input_ids_batch.append(input_ids)
labels_batch.append(labels)
return {"input_ids": torch.tensor(input_ids_batch, dtype=torch.long),
"labels": torch.tensor(labels_batch, dtype=torch.long)}
def print_trainable_parameters(model):
trainable_params = 0
all_param = 0
for _, param in model.named_parameters():
num_params = param.numel()
if num_params == 0 and hasattr(param, "ds_numel"):
num_params = param.ds_numel
all_param += num_params
if param.requires_grad:
trainable_params += num_params
print("trainable params: {} || all params: {} || trainable%: {}".format(trainable_params, all_param,
100 * trainable_params / all_param))
def print_rank_0(msg, rank=0):
if rank <= 0:
print(msg)
def to_device(batch, device):
output = {}
for k, v in batch.items():
try:
output[k] = v.to(device)
except:
output[k] = v
return output
def set_random_seed(seed):
if seed is not None:
set_seed(seed)
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def save_model(model, tokenizer, output_dir, model_name, state_dict=None):
save_dir = os.path.join(output_dir, model_name)
if state_dict == None:
model.save_pretrained(save_dir, torch_dtype=torch.float16)
else:
model.save_pretrained(save_dir, state_dict=state_dict, torch_dtype=torch.float16)
tokenizer.save_pretrained(save_dir)