This code is licensed under the Apache License, Version 2.0. You may obtain a copy of this license in the LICENSE.txt file in the root directory of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
Any modifications or derivative works of this code must retain this copyright notice, and modified files need to carry a notice indicating that they have been altered from the originals.
"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "import qiskit.tools.jupyter\n",
+ "\n",
+ "%qiskit_version_table\n",
+ "%qiskit_copyright"
+ ]
+ }
+ ],
+ "metadata": {
+ "language_info": {
+ "name": "python"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/docs/migration/index.rst b/docs/migration/index.rst
new file mode 100644
index 000000000..257ca60dd
--- /dev/null
+++ b/docs/migration/index.rst
@@ -0,0 +1,16 @@
+###################################
+Qiskit Optimization Migration Guide
+###################################
+
+
+.. nbgallery::
+ :glob:
+
+ *
+
+
+.. Hiding - Indices and tables
+ :ref:`genindex`
+ :ref:`modindex`
+ :ref:`search`
+
diff --git a/docs/tutorials/03_minimum_eigen_optimizer.ipynb b/docs/tutorials/03_minimum_eigen_optimizer.ipynb
index 9117dd96d..72be4e1dc 100644
--- a/docs/tutorials/03_minimum_eigen_optimizer.ipynb
+++ b/docs/tutorials/03_minimum_eigen_optimizer.ipynb
@@ -21,12 +21,17 @@
"An interesting class of optimization problems to be addressed by quantum computing are Quadratic Unconstrained Binary Optimization (QUBO) problems.\n",
"Finding the solution to a QUBO is equivalent to finding the ground state of a corresponding Ising Hamiltonian, which is an important problem not only in optimization, but also in quantum chemistry and physics. For this translation, the binary variables taking values in $\\{0, 1\\}$ are replaced by spin variables taking values in $\\{-1, +1\\}$, which allows one to replace the resulting spin variables by Pauli Z matrices, and thus, an Ising Hamiltonian. For more details on this mapping we refer to [1].\n",
"\n",
- "Qiskit provides automatic conversion from a suitable `QuadraticProgram` to an Ising Hamiltonian, which then allows leveraging all the `MinimumEigenSolver` implementations, such as\n",
+ "Qiskit provides automatic conversion from a suitable `QuadraticProgram` to an Ising Hamiltonian, which then allows leveraging all the `SamplingMinimumEigensolver` implementations, such as\n",
"\n",
- "- `VQE`,\n",
+ "- `SamplingVQE`,\n",
"- `QAOA`, or\n",
"- `NumpyMinimumEigensolver` (classical exact method).\n",
"\n",
+ "Note 1: `MinimumEigenOptimizer` does not support `qiskit.algorithms.minimum_eigensolver.VQE`. But `qiskit.algorithms.minimum_eigensolver.SamplingVQE`\n",
+ "can be used instead.\n",
+ "\n",
+ "Note 2: `MinimumEigenOptimizer` can use `NumpyMinimumEigensolver` as an exception case though it inherits `MinimumEigensolver` (not `SamplingMinimumEigensolver`).\n",
+ "\n",
"Qiskit Optimization provides a the `MinimumEigenOptimizer` class, which wraps the translation to an Ising Hamiltonian (in Qiskit Terra also called `Operator`), the call to a `MinimumEigensolver`, and the translation of the results back to an `OptimizationResult`.\n",
"\n",
"In the following we first illustrate the conversion from a `QuadraticProgram` to an `Operator` and then show how to use the `MinimumEigenOptimizer` with different `MinimumEigensolver`s to solve a given `QuadraticProgram`.\n",
@@ -55,9 +60,10 @@
"metadata": {},
"outputs": [],
"source": [
- "from qiskit import BasicAer\n",
- "from qiskit.utils import algorithm_globals, QuantumInstance\n",
- "from qiskit.algorithms import QAOA, NumPyMinimumEigensolver\n",
+ "from qiskit.utils import algorithm_globals\n",
+ "from qiskit.algorithms.minimum_eigensolvers import QAOA, NumPyMinimumEigensolver\n",
+ "from qiskit.algorithms.optimizers import COBYLA\n",
+ "from qiskit.primitives import Sampler\n",
"from qiskit_optimization.algorithms import (\n",
" MinimumEigenOptimizer,\n",
" RecursiveMinimumEigenOptimizer,\n",
@@ -201,12 +207,7 @@
"outputs": [],
"source": [
"algorithm_globals.random_seed = 10598\n",
- "quantum_instance = QuantumInstance(\n",
- " BasicAer.get_backend(\"statevector_simulator\"),\n",
- " seed_simulator=algorithm_globals.random_seed,\n",
- " seed_transpiler=algorithm_globals.random_seed,\n",
- ")\n",
- "qaoa_mes = QAOA(quantum_instance=quantum_instance, initial_point=[0.0, 0.0])\n",
+ "qaoa_mes = QAOA(sampler=Sampler(), optimizer=COBYLA(), initial_point=[0.0, 0.0])\n",
"exact_mes = NumPyMinimumEigensolver()"
]
},
@@ -301,14 +302,14 @@
"output_type": "stream",
"text": [
"variable order: ['x', 'y', 'z']\n",
- "SolutionSample(x=array([0., 1., 0.]), fval=-2.0, probability=0.12499999999999994, status=)\n",
- "SolutionSample(x=array([0., 0., 0.]), fval=0.0, probability=0.12499999999999994, status=)\n",
- "SolutionSample(x=array([1., 1., 0.]), fval=0.0, probability=0.12499999999999994, status=)\n",
- "SolutionSample(x=array([1., 0., 0.]), fval=1.0, probability=0.12499999999999994, status=)\n",
- "SolutionSample(x=array([0., 0., 1.]), fval=3.0, probability=0.12499999999999994, status=)\n",
- "SolutionSample(x=array([1., 0., 1.]), fval=3.0, probability=0.12499999999999994, status=)\n",
- "SolutionSample(x=array([0., 1., 1.]), fval=3.0, probability=0.12499999999999994, status=)\n",
- "SolutionSample(x=array([1., 1., 1.]), fval=4.0, probability=0.12499999999999994, status=)\n"
+ "SolutionSample(x=array([0., 1., 0.]), fval=-2.0, probability=0.4410306097905226, status=)\n",
+ "SolutionSample(x=array([0., 0., 0.]), fval=0.0, probability=0.22763693649873265, status=)\n",
+ "SolutionSample(x=array([1., 1., 0.]), fval=0.0, probability=0.14136368254300133, status=)\n",
+ "SolutionSample(x=array([1., 0., 0.]), fval=1.0, probability=0.12574358779906872, status=)\n",
+ "SolutionSample(x=array([0., 0., 1.]), fval=3.0, probability=0.020510231887331747, status=)\n",
+ "SolutionSample(x=array([1., 0., 1.]), fval=3.0, probability=0.030444770051099967, status=)\n",
+ "SolutionSample(x=array([0., 1., 1.]), fval=3.0, probability=0.012349858838771063, status=)\n",
+ "SolutionSample(x=array([1., 1., 1.]), fval=4.0, probability=0.0009203225914718031, status=)\n"
]
}
],
@@ -353,14 +354,13 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "SolutionSample(x=array([0., 1., 0.]), fval=-2.0, probability=0.12499999999999994, status=)\n",
- "SolutionSample(x=array([0., 0., 0.]), fval=0.0, probability=0.12499999999999994, status=)\n",
- "SolutionSample(x=array([1., 1., 0.]), fval=0.0, probability=0.12499999999999994, status=)\n",
- "SolutionSample(x=array([1., 0., 0.]), fval=1.0, probability=0.12499999999999994, status=)\n",
- "SolutionSample(x=array([0., 0., 1.]), fval=3.0, probability=0.12499999999999994, status=)\n",
- "SolutionSample(x=array([1., 0., 1.]), fval=3.0, probability=0.12499999999999994, status=)\n",
- "SolutionSample(x=array([0., 1., 1.]), fval=3.0, probability=0.12499999999999994, status=)\n",
- "SolutionSample(x=array([1., 1., 1.]), fval=4.0, probability=0.12499999999999994, status=)\n"
+ "SolutionSample(x=array([0., 1., 0.]), fval=-2.0, probability=0.4410306097905226, status=)\n",
+ "SolutionSample(x=array([0., 0., 0.]), fval=0.0, probability=0.22763693649873265, status=)\n",
+ "SolutionSample(x=array([1., 1., 0.]), fval=0.0, probability=0.14136368254300133, status=)\n",
+ "SolutionSample(x=array([1., 0., 0.]), fval=1.0, probability=0.12574358779906872, status=)\n",
+ "SolutionSample(x=array([0., 0., 1.]), fval=3.0, probability=0.020510231887331747, status=)\n",
+ "SolutionSample(x=array([1., 0., 1.]), fval=3.0, probability=0.030444770051099967, status=)\n",
+ "SolutionSample(x=array([0., 1., 1.]), fval=3.0, probability=0.012349858838771063, status=)\n"
]
}
],
@@ -446,14 +446,13 @@
{
"data": {
"text/plain": [
- "{'x=0 y=1 z=0': 0.12499999999999994,\n",
- " 'x=0 y=0 z=0': 0.12499999999999994,\n",
- " 'x=1 y=1 z=0': 0.12499999999999994,\n",
- " 'x=1 y=0 z=0': 0.12499999999999994,\n",
- " 'x=0 y=0 z=1': 0.12499999999999994,\n",
- " 'x=1 y=0 z=1': 0.12499999999999994,\n",
- " 'x=0 y=1 z=1': 0.12499999999999994,\n",
- " 'x=1 y=1 z=1': 0.12499999999999994}"
+ "{'x=0 y=1 z=0': 0.4410306097905226,\n",
+ " 'x=0 y=0 z=0': 0.22763693649873265,\n",
+ " 'x=1 y=1 z=0': 0.14136368254300133,\n",
+ " 'x=1 y=0 z=0': 0.12574358779906872,\n",
+ " 'x=0 y=0 z=1': 0.020510231887331747,\n",
+ " 'x=1 y=0 z=1': 0.030444770051099967,\n",
+ " 'x=0 y=1 z=1': 0.012349858838771063}"
]
},
"execution_count": 15,
@@ -476,9 +475,9 @@
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAc0AAAGICAYAAAAj0LvCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAA4QElEQVR4nO3deZwU9ZnH8c/DDIwgoIACchgOgQ0QURxDJiKQrG6MbrI53GjiEZP1jrrGzeZYEzenms2u0U3WNbrZGDXZaHQTk6hRcwCLEnBAMYACCiKMHHIooDDA8Owfv2pom+6Z6qF7qmr4vl+vftFdVV3z7eqinq5fVf3K3B0RERFpW5ekA4iIiGSFiqaIiEhMKpoiIiIxqWiKiIjEpKIpIiISk4qmiIhITCqaIiIiMXV40TSzy81shZntMLN5ZnZyK9MeZWY/NbPnzazFzO4sMs0FZuZFHodU9YOIiMhBp0OLppmdBdwCXA8cDzwJPGJmR5d4Sx2wAbgRmNPKrN8Ejsp/uPuOSuUWEREBsI7sEcjM5gDPuvtFecOWAfe7+5faeO9vgA3ufkHB8AuA77t7z8onFhER2afD9jTNrBtwAvBYwajHgHcf4Oy7m9lKM1ttZr8xs+MPcH4iIiL7qe3Av3UEUAOsKxi+DjjlAOa7BPg0sADoBfw98ISZTXD3ZYUTm9nFwMUAPXr0OGHIkCEA1NXVUVNTw5tvvglAbW0t3bt3Z+vWrbn30bNnT958801aWloAOPTQQ9m1axc7d+4E4JBDDsHM2L59OwBdu3alrq6Obdu2AdClSxcOPfTQiszjjTfeYM+ePQD07NmT5uZmdu3aBUD37t1xd3bsCC3U3bp1o2vXrrzxxhsA1NTU0KNHj4rMY9u2beRaK3r16sX27dvZvXs30fKlpaWF5ubmWMu4EvPQ96TvSd+TvqcD/Z6effbZDe5+JEV0ZNGsCnefDczOvTazJ4FngCuBq4pMfztwO0B9fb03NjZ2TFAREckEM1tZalxHngi0AWgBBhQMHwCsrdQfcfcWoBEYVal5ioiIQAcWTXffCcwDTi0YdSrhLNqKMDMDjgXWVGqeIiIi0PHNszcBd5vZXOAJ4FJgEHAbgJndBeDu5+feYGbHRU97A3ui1zvdfXE0/p+BPwHLommuIhTNy6r/cURE5GDSoUXT3e81s37AlwnXUy4ETnf3XPtxses1ny54/QFgJTAsen044RjlQOD1aPop7j63ouFFROSg16HXaaaNTgQSEZFCZjbP3euLjVPfsyIiIjGpaIqIiMSkoikiIhKTiqaIiEhMKpoiIiIxqWiKiIjEpKIpIiISk4qmiIhITCqaIiIiMaloioiIxKSiKSIiEpOKpoiISEwqmiIiIjGpaIqIiMSkoikiIhKTiqaIiEhMKpoiIiIxqWiKiIjEpKJ5gH77298yZswYjjnmGG688cb9xs+cOZOJEydSW1vL/fffv3f4M888Q0NDA+PGjePYY4/l3nvv3TvuggsuYPjw4Rx33HEcd9xxPPPMM8reyfIru9abgy17Z8gPgLsftI8TTjjBD8Tu3bt9xIgR/uKLL3pzc7Mfe+yxvmjRordMs2LFCl+wYIGfd955/vOf/3zv8CVLlvjSpUvd3b2pqckHDhzomzdvdnf3T37yk2+ZthqynD3r+ZVd683Blj1r+YFGL1E3aqtbkju3uXPncswxxzBixAgAzj77bB588EHGjh27d5phw4YB0KXLW3fqR48evff5oEGD6N+/P6+++iqHH3541XNDtrNDtvMru9ab9shydsh+/hw1zx6ApqYmhg4duvf1kCFDaGpqKns+c+fOZefOnYwcOXLvsGuvvZZjjz2Wz372szQ3N1ckb74sZ4ds51d2rTftkeXskP38OSqaCVuzZg3nnXceP/rRj/b+urrhhht4/vnneeqpp9i0aRPf/va3E05ZXJazQ7bzK3tyspw/y9khHflVNA/A4MGDWbVq1d7Xq1evZvDgwbHfv2XLFs444wy+9a1v8a53vWvv8KOOOgozo66ujk996lPMnTu3orkh29kh2/mVXetNe2Q5O2Q/f46K5gE48cQTWbZsGStWrGDnzp387Gc/44Mf/GCs9+7cuZMPf/jDnH/++Zx55plvGbdmzRognKT1y1/+kvHjxyt7gSznV3atNwdbdsh+/r1KnSF0MDwO9OxZd/eHHnrIR40a5SNGjPBvfvOb7u7+la98xR988EF3d587d64PHjzYe/To4X379vWxY8e6u/vdd9/ttbW1PmHChL2Pp59+2t3d3/Oe9/j48eN93Lhxfs455/jWrVsPOGdny571/Mqu9eZgy56l/LRy9qyF8Qen+vp6b2xsTDqGiIikiJnNc/f6YuPUPCsiIhKTiqaIiEhMKpoiIiIxqWiKiIjEpKIpIiISk4qmiIhITCqaIiIiMaloioiIxKSiKSIiEpOKpoiISEwqmiIiIjHVJh2gM7jo5urO/46rqzfvLGeH6ubPcnbQetMarTelab1pnfY0RUREYlLRFBERiUlFU0REJCYVTRERkZhUNEVERGLq8KJpZpeb2Qoz22Fm88zs5FamPcrMfmpmz5tZi5ndWWSai8zs/8xss5m9ZmZ/NLPJVf0QIiJyUOrQomlmZwG3ANcDxwNPAo+Y2dEl3lIHbABuBOaUmGYacC/wXmASsAR41MxGVS65iIhIx1+neQ1wp7vfEb2+0sxOAy4DvlQ4sbu/BFwFYGZnFpuhu5+T/9rMLgM+BJwGLKtUcBERkQ7b0zSzbsAJwGMFox4D3l3BP9UNOATYXMF5ioiIdOie5hFADbCuYPg64JQK/p1vAtuAXxUbaWYXAxcDDBo0iOnTpwMwYsQIevXqxYIFCwDo168f48aNY+bMmQDU1tYyefJk5s+fz5YtWwCor69n3bp1wMgKxt9fc3Mzs2fPBqB79+5MmjSJOXPmsH37dgAaGhpYsWIFa9euBWDs2LG0tLSwZMkSAAYPHsyQIUOYMye0cPfs2ZP6+vpong1Vzf7yyy+zfPlyAIYNG0bfvn2ZP38+AH369GHChAnMmDEDd8fMmDp1KgsWLGDz5vCbZ+LEiWzatImXXnoJ2P97Cq3z1dHY2Mi2bdsAmDRpEqtXr6apqQmAMWPGUFNTw+LFiwEYOHAgw4cPL+t7qmZ2gOnTp9O7d28mTpzIrFmz2L17NwBTpkxh0aJFbNy4EYAJEyawdevWsr4nmFr17KNGjaKuro6FCxcC0L9/f0aPHs2sWbMAqKuro6GhoV3fUzjyU73skydPZunSpaxfvx6A8ePH09zczLJlofFr6NChDBgwgMbGRoCyvicodTSrMvbs2RNru7dq1SqAsr4nqK9q9jVr1sTa7jU3NwOU/J5aY+5exY+Q94fMBgFNwFR3n5k3/DrgHHcf08b7fwNscPcLWpnm74FvAKe4+9y2MtXX13tupT0QWe4aKsvZQd2htUbrTWlab0rTegNmNs/di1b4jjwRaAPQAgwoGD4AWLv/5OUxs6sJe5mnxymYIiIi5eqwounuO4F5wKkFo04lnEXbbmZ2DWEP8wx3n3Ug8xIRESmlo8+evQm428zmAk8AlwKDgNsAzOwuAHc/P/cGMzsuetob2BO93unui6Px/wh8CzgXWGpmA6Ppt7v769X+QCIicvDo0KLp7veaWT/gy8BRwEJCc+rKaJJiR7ifLnj9AWAlMCx6/RmgK+FazXw/Bi448NQiIiJBh99P091vBW4tMW5akWHWxvyGVSSYiIhIG9T3rIiISEwqmiIiIjGpaIqIiMSkoikiIhKTiqaIiEhMKpoiIiIxqWiKiIjEpKIpIiISk4qmiIhITCqaIiIiMaloioiIxKSiKSIiEpOKpoiISEwqmiIiIjGpaIqIiMSkoikiIhKTiqaIiEhMKpoiIiIxqWiKiIjEpKIpIiISk4qmiIhITCqaIiIiMaloioiIxKSiKSIiEpOKpoiISEwqmiIiIjGpaIqIiMSkoikiIhKTiqaIiEhMKpoiIiIxqWiKiIjEpKIpIiISk4qmiIhITCqaIiIiMaloioiIxFRW0TSzLmbWJe/1QDO70MxOqnw0ERGRdCl3T/Mh4EoAM+sJNALfAaab2fkVziYiIpIq5RbNeuAP0fOPAFuA/sBFwOcqmEtERCR1yi2aPYHXoud/BfzC3XcRCunICuYSERFJnXKL5svASWZ2KPA+4PFoeF/gzUoGExERSZvaMqe/Cbgb2AasBGZGw6cAf65gLhERkdQpq2i6+w/MbB4wFHjc3fdEo14EvlLpcCIiImlS7p4m7t5IOGs2f9hDFUskIiKSUmV3bmBml5vZIjN708xGRMO+YGYfK+P9K8xsh5nNM7OT25h+ajTdDjNbbmaXFozvZWY3m9lKM9tuZk+a2Ynlfi4REZG2lNu5wdXAl4HbAcsb9QpwRYz3nwXcAlwPHA88CTxiZkeXmH448HA03fHADcD3zOyjeZP9F+GkpE8C7wAeA35nZoPL+WwiIiJtKXdP81LgIne/BdidN3w+MC7G+68B7nT3O9z9OXe/ElgDXNbK33vF3a+Mpr8D+DHRNaFm1h34KPBFd5/u7i+4+1eBF1qZp4iISLuUWzTfBiwsMnwX0L21N5pZN+AEwp5gvseAd5d4W0OR6R8F6s2sK+GYbA2wo2Ca7cDk1vKIiIiUq9wTgZYDEwmXm+Q7HVjcxnuPIBS4dQXD1wGnlHjPQOB3RaavBY5w9zVmNhv4spktBNYCHycU2xeKzdDMLgYuBhg0aBDTp08HYMSIEfTq1YsFCxYA0K9fP8aNG8fMmeGqmtraWiZPnsz8+fPZsmULAPX19axbt45q9+vQ3NzM7NmzAejevTuTJk1izpw5bN++HYCGhgZWrFjB2rVrARg7diwtLS0sWbIEgMGDBzNkyBDmzJkDQM+ePamvr4/m2VDV7C+//DLLly8HYNiwYfTt25f58+cD0KdPHyZMmMCMGTNwd8yMqVOnsmDBAjZv3gzAxIkT2bRpEy+99BKw//cE06qWvbGxkW3btgEwadIkVq9eTVNTEwBjxoyhpqaGxYvDaj9w4ECGDx9e1vdUzewA06dPp3fv3kycOJFZs2axe3doHJoyZQqLFi1i48aNAEyYMIGtW7eW9T3B1KpnHzVqFHV1dSxcGH6n9+/fn9GjRzNr1iwA6urqaGhoaNf3BHVVzT558mSWLl3K+vXrARg/fjzNzc0sW7YMgKFDhzJgwAAaG8M5leV8T1D0aFbF7NmzJ9Z2b9WqVQBlfU+hU7nqWbNmTaztXnNzM0DJ76k15u6xA5nZp4BvAp8HfgBcAhwTvf60u9/bynsHAU3AVHefmTf8OuAcdx9T5D1LgXvc/et5w6YAM4BBUdEcCfw34VrRFkJT8VLgBHd/e2ufp76+3nMr7YG46OYDnkWr7ri6evPOcnaobv4sZwetN63RelOa1hsws3nuXrTCl3ud5o/MrJZwIk8PQkcHrwBXtVYwIxsIRW1AwfABhD3EYtaWmH53ND/c/UVgatRLUe+okN5L2CsWERGpmLIvOYlO4nkboaP2ge4+xN1/GON9O4F5wKkFo04lnB1bzOwS0zdGfd7mz/+NqGD2IZxN+2Dbn0ZERCS+sjs3yHH3De14203A3WY2F3iCcHbsIOA2ADO7K5p37jZjtwFXmNnNhObgk4ALCMctid7zPkLxf57QVPyd6PmP2pFPRESkpDaLppk9SzgOudnM/gyUPAjq7se2Ni93v9fM+hGu9TyKcCbu6e6eO7Ho6ILpV5jZ6cB3CZeQ5JqCH8ib7DDC9ZtDgE3AA8C1hXuiIiIiByrOnuYDQHPe8/hnDhXh7rcCt5YYN63IsBmEM3ZLze8+4L4DySQiIhJHm0XT3b+W9/yrVU0jIiKSYuV2o/cHMzu8yPDeZvaHiqUSERFJoXLPnp0GdCsy/BCg1Y7XRUREsi7W2bNmln9M8Vgz25T3uoZwiUdTJYOJiIikTdxLThoJJwA5+/cFC6Gv1ysrFUpERCSN4hbN4YRbgS0H3gm8mjduJ7De3VsqnE1ERCRVYhXNvOsoy+5BSEREpLOI07nBR4Bfu/uu6HlJ7v6/FUsmIiKSMnH2NO8n3KJrffS8FCecFCQiItIpxencoEux5yIiIgcbFUEREZGY4h7TjEXHNEVEpDOLe0wzDh3TFBGRTq2sY5oiIiIHMxVEERGRmHSdpoiISEy6TlNERCQmXacpIiISk4qgiIhITGUXTTObaGZ3mVlj9Li74H6bIiIinVJZRdPMzgGeAo4CHo4eA4C5ZnZu5eOJiIikR9z7aeZ8C/iKu1+fP9DMvgR8E7inUsFERETSptzm2SOB+4oM/znQ/8DjiIiIpFe5RfOPwLQiw6cBMw40jIiISJqV22H7I8ANZlYP/Cka9i7gI8BXK55OREQkRdrbYfvF0SPf94BbDziRiIhISqnDdhERkZhUEEVERGIq95ITzKwP8H7gaKBb/jh3/3qFcomIiKROWUXTzN4FPAQ0Ey4/aSJ0dNAMvASoaIqISKdVbvPsd4CfAIOBHcB7CXucjcC3KxtNREQkXcotmscC33d3B1qAOndfB3wBXXIiIiKdXLlFc2fe83XA26Ln24BBFUkkIiKSUuWeCDQfOBFYCkwHvmlmA4BzgWcrG01ERCRdyt3TvBZ4JXr+ZeBVQqcGfdi/swMREZFOpaw9TXdvzHv+KuHSExERkYNC2ddpApjZSODt0cvF7r68cpFERETSqdzrNPsBPwQ+COzZN9h+A3za3TdWOJ+IiEhqlHtM87+AY4CTgUOixxRgOHBHZaOJiIikS7nNs+8D/tLdZ+cNe8LMLgF+V7lYIiIi6VPunuarwBtFhr8JqGlWREQ6tXKL5teBm81scG5A9PzfUL+zIiLSybXZPGtmfwY8b9Bw4CUza4pe5/qh7U845ikiItIpxTmmeX8l/6CZXQ78I+HuKIuAq939/1qZfipwEzCO0LHCv7j7bQXTHAXcCJwO9AKWA5e5+4xKZhcRkYNbm0XT3b9WqT9mZmcBtwCXA7Oifx8xs7Hu/nKR6YcDDwP/TeiqbzJwq5m96u4PRNMcDjwRze8MwnHXEcD6SuUWERGB9ndu8F5gLKHZdpG7T4/51muAO909d3nKlWZ2GnAZ8KUi018KvOLuV0avnzOzScDngAeiYZ8H1rj7+XnvWxH7w4iIiMRU1olAZjbYzOYCjxNuB/ZF4PdmNsfMWr3LiZl1A04AHisY9Rjw7hJvaygy/aNAvZl1jV5/CJhjZvea2Xoze8bMrjAzi/3BREREYih3T/PfCffRPMbdVwCY2Qjgnmjcma289wighnBLsXzrgFNKvGcg+1//uY6Q+whgDaEp9nLgu4TjmscROpEH+H7hDM3sYqLO5QcNGsT06dMBGDFiBL169WLBggUA9OvXj3HjxjFz5kwAamtrmTx5MvPnz2fLli0A1NfXs27dOmBkKx/7wDU3NzN7drg0tnv37kyaNIk5c+awfft2ABoaGlixYgVr164FYOzYsbS0tLBkyRIABg8ezJAhQ5gzZw4APXv2pL6+PppnQ1Wzv/zyyyxfHnpZHDZsGH379mX+/PkA9OnThwkTJjBjxgzcHTNj6tSpLFiwgM2bNwMwceJENm3axEsvvQTs/z3BtKplb2xsZNu2bQBMmjSJ1atX09QUzn8bM2YMNTU1LF68GICBAwcyfPjwsr6namYHmD59Or1792bixInMmjWL3bt3AzBlyhQWLVrExo3hKrEJEyawdevWsr4nmFr17KNGjaKuro6FCxcC0L9/f0aPHs2sWbMAqKuro6GhoV3fE9RVNfvkyZNZunQp69eHo0Tjx4+nubmZZcuWATB06FAGDBhAY2Pozruc7wmOrlp2gD179sTa7q1atQqgrO8J6quafc2aNbG2e83NzQAlv6fWWLifdDxmtgWY5u7zC4bXA79398Naee8goAmY6u4z84ZfB5zj7mOKvGcpcI+7fz1v2BRgBjDI3deY2U6g0d3fnTfN9cCH3f3thfPMV19f77mV9kBcdPMBz6JVd1xdvXlnOTtUN3+Ws4PWm9ZovSlN6w2Y2Tx3L1rhy71OE956+UlrwwptIOylDigYPgBYu//kEA0vNv3uaH4Q9jYXF0zzHNX+OSYiIgedcovm74HvmdnQ3AAzOxq4ORpXkrvvBOYBpxaMOhV4ssTbZpeYvtHdd0WvnwAK91JHAytbyyMiIlKucovmVcChwHIzW2lmK4EXo2FXxXj/TcAFZnahmb3dzG4BBgG3AZjZXWZ2V970twGDzezmaPoLgQuAf82b5rvAu8zsWjM7xsz+NsryH2V+NhERkVaVeyLQRuCdhDMY/iIa9py7x+qs3d3vjW4v9mVC5wYLgdPdPbdXeHTB9CvM7HRCYbyM0LnBVblrNKNpnjKzDwHXA18BXo7+vbXMzyYiItKq2EXTzGqA14EJ7v444bKTsrn7rZQoaO4+rciwGcDENub5EPBQe/KIiIjEFbt51t1bCMcJu1UvjoiISHqVe0zzG8CNZnZENcKIiIikWbnHND9HuMtJk5mtpuDemu5+bKWCiYiIpE25RfN+wjWZ6qJOREQOOrGKppn1AL5D6Oe1K+GazCvdfUNr7xMREelM4h7T/Brh+siHgP8h9BX7n1XKJCIikkpxm2c/Avydu/8MwMx+AjxhZjXRWbUiIiKdXtw9zaHA/+VeuPtcQv+vrd4OTEREpDOJWzRrgJ0Fw3bTzptYi4iIZFHcomfAPWaWf6OxQ4A7zOzN3AB3/2Alw4mIiKRJ3KL54yLD7qlkEBERkbSLVTTd/VPVDiIiIpJ27bkJtYiIyEFJRVNERCQmFU0REZGYVDRFRERiUtEUERGJSUVTREQkJhVNERGRmFQ0RUREYlLRFBERiUlFU0REJCYVTRERkZhUNEVERGJS0RQREYlJRVNERCQmFU0REZGYVDRFRERiUtEUERGJSUVTREQkJhVNERGRmFQ0RUREYlLRFBERiUlFU0REJCYVTRERkZhUNEVERGJS0RQREYlJRVNERCQmFU0REZGYVDRFRERiUtEUERGJSUVTREQkJhVNERGRmFQ0RUREYurwomlml5vZCjPbYWbzzOzkNqafGk23w8yWm9mlBeM/Y2bPmtmW6DHbzM6o7qcQEZGDUYcWTTM7C7gFuB44HngSeMTMji4x/XDg4Wi644EbgO+Z2UfzJlsNfAGYCNQDfwB+aWbHVutziIjIwamj9zSvAe509zvc/Tl3vxJYA1xWYvpLgVfc/cpo+juAHwOfy03g7g+6+yPu/oK7L3X3a4GtQEOVP4uIiBxkOqxomlk34ATgsYJRjwHvLvG2hiLTPwrUm1nXIn+jxszOBnoS9k5FREQqprYD/9YRQA2wrmD4OuCUEu8ZCPyuyPS10fzWAJjZO4DZwCHANuDD7v7nYjM0s4uBiwEGDRrE9OnTARgxYgS9evViwYIFAPTr149x48Yxc+ZMAGpra5k8eTLz589ny5YtANTX17Nu3TpgZIyP337Nzc3Mnj0bgO7duzNp0iTmzJnD9u3bAWhoaGDFihWsXbsWgLFjx9LS0sKSJUsAGDx4MEOGDGHOnDkA9OzZk/r6+mie1d0hf/nll1m+fDkAw4YNo2/fvsyfPx+APn36MGHCBGbMmIG7Y2ZMnTqVBQsWsHnzZgAmTpzIpk2beOmll4D9vyeYVrXsjY2NbNu2DYBJkyaxevVqmpqaABgzZgw1NTUsXrwYgIEDBzJ8+PCyvqdqZgeYPn06vXv3ZuLEicyaNYvdu3cDMGXKFBYtWsTGjRsBmDBhAlu3bi3re4KpVc8+atQo6urqWLhwIQD9+/dn9OjRzJo1C4C6ujoaGhra9T1BXVWzT548maVLl7J+/XoAxo8fT3NzM8uWLQNg6NChDBgwgMbGRoCyvicoejSrYvbs2RNru7dq1SqAsr6ncAStetasWRNru9fc3AxQ8ntqjbl7FT9C3h8yGwQ0AVPdfWbe8OuAc9x9TJH3LAXucfev5w2bAswABrl7rmh2I6xJhwFnAhcB09x9YWuZ6uvrPbfSHoiLbj7gWbTqjqurN+8sZ4fq5s9ydtB60xqtN6VpvQEzm+fuRSt8R+5pbgBagAEFwwcAa/efHKLhxabfHc0PAHffCbwQvZxnZicCnwX+7gAzi4iI7NVhxzSjwjYPOLVg1KmUPv44u8T0je6+q5U/14Vqtr+IiMhBqSP3NAFuAu42s7nAE4SzYwcBtwGY2V0A7n5+NP1twBVmdjPwA+Ak4ALg47kZmtmNwEPAKqAX8AnCwSJdqykiIhXVoUXT3e81s37Al4GjgIXA6e6+Mprk6ILpV5jZ6cB3CZelvAJc5e4P5E02ELgn+vd14Fng/e7+aFU/jIiIHHQ6ek8Td78VuLXEuGlFhs0gdFxQan4XVCqbiIhIa9T3rIiISEwqmiIiIjGpaIqIiMSkoikiIhKTiqaIiEhMKpoiIiIxqWiKiIjEpKIpIiISk4qmiIhITCqaIiIiMaloioiIxKSiKSIiEpOKpoiISEwqmiIiIjGpaIqIiMSkoikiIhKTiqaIiEhMKpoiIiIxqWiKiIjEpKIpIiISk4qmiIhITCqaIiIiMaloioiIxKSiKSIiEpOKpoiISEwqmiIiIjGpaIqIiMSkoikiIhKTiqaIiEhMKpoiIiIxqWiKiIjEpKIpIiISk4qmiIhITCqaIiIiMaloioiIxKSiKSIiEpOKpoiISEwqmiIiIjGpaIqIiMSkoikiIhKTiqaIiEhMKpoiIiIxqWiKiIjE1OFF08wuN7MVZrbDzOaZ2cltTD81mm6HmS03s0sPdJ4iIiLt0aFF08zOAm4BrgeOB54EHjGzo0tMPxx4OJrueOAG4Htm9tH2zlNERKS9OnpP8xrgTne/w92fc/crgTXAZSWmvxR4xd2vjKa/A/gx8LkDmKeIiEi7dFjRNLNuwAnAYwWjHgPeXeJtDUWmfxSoN7Ou7ZyniIhIu5i7d8wfMhsENAFT3X1m3vDrgHPcfUyR9ywF7nH3r+cNmwLMAAYB1o55XgxcHL0cAyypwMcr1xHAhgT+biUoe3KynD/L2SHb+ZW9fG9z9yOLjajt6CRJc/fbgduTzGBmje5en2SG9lL25GQ5f5azQ7bzK3tldWTR3AC0AAMKhg8A1pZ4z9oS0++O5mftmKeIiEi7dNgxTXffCcwDTi0YdSrhjNdiZpeYvtHdd7VzniIiIu3S0c2zNwF3m9lc4AnC2bGDgNsAzOwuAHc/P5r+NuAKM7sZ+AFwEnAB8PG480ypRJuHD5CyJyfL+bOcHbKdX9krqMNOBNr7B80uBz4PHAUsBD6bO4nHzKYDuPu0vOmnAt8FxgGvAN9299vizlNERKRSOrxoioiIZJX6nhUREYlJRTPFzMySznCw0rJPjpZ9MrTc41HRTDFX23li3N3NTP8/EqBln4xouR+adI600zHNFDKzWuCvgHcCqwjXpL4AvODuzUlma4uZWfSfrwbA3VuSzlSOaKNxFvAuYB1h2T8LPOXu25LM1tlp2SfDzI4ALgQmAa8DrxEu93vM3TcnGC2VVDRTyMz+BzgZ2AQMBbYTuvv7PaFz+tUJxmuTmfV39/V5rzNTQM3sYUL3iquBvoTOM7YTNt53u/usBOO1ysxOAJ7JwnIuRss+GWY2C+gNvAh0BeqAfoQOYn4K/CTNrV5m9mHgaaDJ3XdV/Q+6ux4pegDnElbeaXnDpgJ3AJuBpYS+diH60ZOmB3A2sAeYS7hmtlvB+BrgUMLeRLckMraS/RxgBTAhb9hE4DpgPmFj/uE0LnvCHtoeYDHwdWB0kWl6AH8LHJZ0Xi37dDyi5b4cGJY3bBTwKeABwmV+FyWds5X8H4uW/Srgh8D7gCOBLnnTdCfcDWtgJf6m9jRTJtrL3ODuV5pZF3ffkzeuF3AnYaWYlj8uLczsPkLnEsuB9wN9gMeBW93919E0pwH/4+59EgtahJn9EGhx94uLLPta4N+B9wDvdPetSeUsxsx+RthbeBY4ExgOPAXcBdzv7uvN7AOEGyAcllzS4rTsk2Fm/w4c7vs6lCkc/8+EG1yc6O6vdGi4GMzsp4Qf4k8C5xF+aL1AKPi/ABYBpxFa6HpV4m/qYHv6PAtMiZo495hZFzOrM7O6aGNxE6ETh9OSjbk/MzsE6Ak8CFxJaGK+NBp9n5ltMbPbgS8S7lST2yCmRSNwmpkdW7Dsu7r7bkInGxB+DKSGmdUR/i8/AfwT4Wbs7yPs+XwNWGlm/wt8Ffhd9J40LXfQsk/Kk8AHzex9uQFmVpM7pAJ8D3iVdG5vugI7gefd/RYPHbuPBu4jtHg9CfwWuAF4JHrPgS/7pHev9divuWEsoUnkQWBskfFdgY2EX36QoqYq4DDgH4Dz84YZ4fjUiYRiOZ/QnHJCNL5LEllL5D8qyvckMKXI+DrCceZJaVr2hObu84Ezi4wbSOh28rG0Lnct+0Tz537kPks4NFRXML4X4bBQQwqzH0L4EXVa9LqmYHwD4ZhsRZe9mmdTJO/M0wbCHuUxwDOElfo3wAjgk4QVeHRiQdsQ7R3sKtLMZsAXgKvdfWByCfeXt+xHATcTzl5eCfyEsNEbBXwIGOnu70gqZ2vMrNbdd+c+S8G4K4Dr3L1/QvFK0rJPRt5yHwhcTyjwrwO/IrQEjSScT9HL3d+ZXNLW5bYzeZ9n73bHzC4A/s3d+1Xs76loppOZjSQ080wh7KUNJ6zQ0wnHBx83sxpP0dl6xTYYhcPN7NfAMne/Jreh6fCgbYiamd8D/DVwCmGj3UQ4e/l2d38yTcs+5nK/D1id5uUOWvZJMrO3E36c/A3wdsJ5CTOBH7r7s2la7nFE1/r+CNhYyWWvopkiJX6lDiSc/r2bcFJNY4r/0xXdgOSNryPcpeYXHk6OaHX6jpT3K7W7u2+PhnUnNIc7MMTdn0s0ZAl52Q8hnEyzq2B8LaEZ6wl335Sm5Q5a9knJy34EsNvdXysYP9jdm5JJ17a8/H0IfTO8VjC+C+EY81J331qpZa8TgdKlC4CZfdvM3gng7mvdfZG7L3H3PxHa59Mql/9GM9vvbuvu3uzuP/DoGs60bDwiuf8L/2JmufuztgDb3H2ruz8XNS+n0d7shJYJzKxHtNHA3Xe7+6/dfVP0Ok3LHbTsk5LLfiPwXgjXWJtZTwB3b0rxcod9+b9DaJ3AzAZEP7hw9z3uPs+js60rtexVNFPE3VvMrDfwj8AuADO72cwG5U2T2qKZl//zhI0eZnaTmR0VPU/tf8C87J8h9EQD4Z6sI/KmSdMGb6+87FcQTpaBcNbjCEj3cgct+6TkZf80oSkW4FYysNxhv/wrosH/QTgXpGpUNFPC9p3ifSGhCfZpMzsJuArYkVyyeFrJfzXQDOn9D1iQfV5e9nPZtyFMpVayn0eUPa3LHbTsk1Ik+zNR9jMIHQWkWhv5q9pjmopmeuT2ID9FuM4I4BLgrlzTTsplOX9+9nuj55cAP1X2qsty/s6Y/V7PRn+zyeX3FFxvc7A/2HdC1jHAFmBQ9Hoj8JdJ5+vM+ZVd+ZU9O9nTkF97mumQa2q4DPiTu79iZmcS7jaQ2k6q82Q5v7InJ8v5lT05ieZX0UwB33cJyceAH0fPLwEe8JTfCgyynb8g+53Rc2XvAFnO30my/y0Zyw7J59d1mgnLu9bo3cCvgcGE69NWAye7+7OJBmxDlvPnZW8AHiZ0NF+LslddlvNnOXuOmU0i9LY0kH3ZJ7v7nxMNFlOS+bWnmTDf96tlIHCDu+8gdJX3Uhb+82U5f172rsA1Hi6sPw94WdmrK8v5s5w9z+vAuVH2TxDuRZmJghlJLL/2NFPAzHq4+5tm1s3dd5rZ5wj/Ae9r880pkNX80TV0g919te3rL/cTwGvu/nDS+VqT5eyQ7fwZz94FGO953eKZ2TRCj0CpP56ZivzVPtNIj5JngNVG//4N8N/AkQXjazo608GSPy/7hwm3DBpZMD41d3LoTNmznr+TZD8TWEAK75KUlfyJL4yD9ZH7D0a4Jc8e4IuFK0GaV+gs58/L/uco+81FpumadM7Olj3r+TtZ9vuKTNMj6ZxZyK9jmgmITiTYY2bDgDHA5cC1Zna8u3te11tnmdmRiQUtIcv5C7KPJtzV4UIzOyMan/s/8RkLd5pJjSxnh2zn72TZJwHvNbMLo/G57F8xs4kJxSwpdfmT/gVxMD7Y19RwE/BI9Pwe4Bd540YTflEdmnTezpS/IPuj0fN/IdwCqbuyK38nzv5vwOPR888Smjn7RK9HRdl7Jp037fm1p5kA33ed0fnsu67xRmAccFr0+u8ItxN6I6+fxVTIcv687Bew7xqvWwi3Xzsnev13wJPKXllZzt9Jsl9IOP8A4L+AnYRO8mFf9m1pyg4pzJ/0r4iD9UH4ZfQs0C1v2HeBudHz5cBZ0fPUnVST5fzA0YTr67rmDft8lLkX8KKyK38nyz4AuL0g+ycJd5U5Os3Z05Zfl5wkIO/i6EHu/kre8COA6YQV4FR375FUxtZkPT+AmfVz9415r7sBjwPdgOPcvXti4dqQ5eyQ7fwZz97Lo3tL5g27j3Cj5qPdvS6ZZPGkJb+aZxPg0S+VgoLTxd03AN8APgDcHQ2vTSRkK7KeH6Bgw1fj7juBrwPHEX7RKnuVZDl/xrPvLTh5J89cT+hR55ZoeCqzQ3rya08zRaIVoSvhGMkMd38xKkapvfF0viznj7J3IdyP72l3f1nZO0aW82c8e+4s95OAF919TVayQ3L5VTRFpEPkmvWTztEeWc4ulaXm2YSYWZe8X0r5w63Y8LTJev5SlL162io6ac6f5exSWdrT7EBmdgjhxqlrCo+NEP5fprpZJMv5o2Y0z+LeQpazw94TxN4BrADWAc25dSXtzYEZz94FIM0ZW5PW/NrT7CAWOnT+E/BTYKWZLTSza6Oz8VrStmIUynJ+C51q78kVnVb2klP3/yHL2QHM7GrgCcL1dS8CS4Dvm1k9pG+DmC/j2eui9WZvgS+2jqTtmsycNOdP5X+0zsbMphLO8poJ3EC4QPqPhBunrjGzW8ysb3IJW5fl/GY2AbjPzC41s3EQNnYFRSiVv2iznB3AzN4D/AOht6hzCd2f/QdwMjDHzH5uZkMTjFhSxrOfCDxlZt+ycJ9bihSgmmh4S4JRi0p7fjXPdgAL1xJtc/dPR68NMOAoQq/9nwZ+6u7fTi5laVnOb2Z3EzI+DewAniPsPTzh7iujaU4Evg+c5Pt6H0lclrMDmNlPgJ3u/qki4/4GuI7wWa7q8HBtyHj2O4G/JnQ+0gdYA/wBeMjdn4umOQm4n3B9466EohaV9vypvSank9lF2OgBe08qcKAJyO2lXWhm97v7iwllbE2W848CvgosBv6ScD3dO4FzzWwBoTOGTxDux7fbonv0JRN1P1nODvAa0D/3IvqxlTs++6CZHQV8wcx+7O7zEspYymtkN/tI4F8JLUMnEtaZM4FPmNlSQq9GpwKrPNwLNG3rTarzq2h2jIeBu81sLvALd3+9YPx3CV1C9QdeNEvd6e2ZzG9mg4ClhL3kXwO/joadArwXmBr9eyLhvqCpkeXseX4FPGJmXwR+6O6vAvkbtx8CXwJ6Quou68hkdgt3FVoCtLj7k8CT0Y/aeqCB0HvO30f/fiCxoCVkIb+aZzuImX0bOJ1wLHAGsMjdn4/GXQDc4u6HJZewdVnNb2b9CffiW1v4i9TMRgP/BHzI3Q9PKmMpWc6eE51McwnwPPB/hJPJZru7m9nfA1919z4JRiwp49n7uPvmIuvNYOAa4CJ3751cwtalOb+KZgeJNoAXAWcROndeRjguOBx4A/i5u3/TzGrTdmwKOkX+XH+5RihELdHwh4At7v5xZa88MzuU0LT2EULH2tuBI4DDCc37d7n7d1PYRJjJ7Pl7vJZ3SUzB818QLp05O23rTRbyq2h2sOisr78mHKPqAmwBfkO4O8jutDTzlJL1/PCWItQTeBC4zt2fsJRfdwfZzW7hLN/JhObkLoTj5I/mndiR2vUmy9lz8tabHsAPCC1DjWlfb3LSlF9Fs8pyv0LN7K+BZ9x9dd64VP3KKybL+fOyv5/QL+japDPFleXs8Jb85xDuc7gi6UxxdZLsZxPO7l2VdKZyZCG/rtOssrxmm9uAwRBOWTezQ3N7Zsmla1uW8+dlvwN4G4CZnWFm3aPnqV3/s5wd3pL/dmAogJmdb2a9oudZWG+ynP2HhEMnmNk5UVNzltab1OZPPEBnFjVl5nrT2eXuc8zsGOB7wKHQdp+WScpy/lay/yfhmGwqOwSAbGeHt+T/OKHLxZlmNorww6snZGK96UzZ7wB6Q2bXm1TlV9HsGJcA90XPLwcWu/v6BPOUK8v5lT05lwIPRM8vAf7o7msSzFMOZU9OuvO7ux5VeLDveHEfYCswLnr9MnBW0vk6c35lT2X+VWnPr+zKH+ehPc3qyXUkfCGwxN0XmdnJQB3w2+RixZbl/MqenFL5u5H+/MqenMzkV9GsntwB7QuAn0TPLwce9v171EmjLOdX9uTk578nep6V/MqenOzkT3pXtzM+CBegA7wd2AQMiF5vAt6TdL7OnF/ZE82fa2L7C0Lfrfn5pyWdT9nT+chafu1pVoHvO8Pr44SmhnXRmZDrCHepSLUs51f25Hi0pQNOA2ZE+c8GNgBPJpesbcqenKzlV+cGVWZmR7j7BjN7BFju7p9JOlM5spxf2ZNjZn3dfZOZ/Yhw+cA/JZ0pLmVPThbyq2hWUK5LJzNrAEa6+z0F43u5+9aE4rUpy/mVPTl5+acC9e7+bwXjD3X3NxKK1yplT05W86t5toLymtcagOvN7LSC8and8EG28yt7cvLyH0O4x+SVBeNTt+HLUfbkZDZ/0gdVO+MDGEjoVLgZ+AbQOxreJelsnT2/sieav45wj8kthF5ccid0pD6/sit/3IeaZ6vIzM4HrgYecPdvJRynbFnOr+zJMbO/BL4DzAaucffmhCPFpuzJyUz+pKt2Z34AhwCfJJxG/SvC8SqAmqSzdfb8yp74Z5hK6MXoT8DELOVXduVv7aE9zQow23uvt1rCDWqHAS9Ezx2YAPwr0Ahc7u6vJRK0hCznV/bk5OU/BBgH9AOWA0MIXaEdRWhuexH4pLu/mFjYAsqenKznT7xqd4YH+85C/mdgM2EjtwN4HvgzsJtwrd0GYDFwUtKZO0t+ZU/+AfwTsDHKvAOYR9jgvRY9Xx6N/1jSWZU9PY+s5teeZgWZ2UigHlhPaGIYBqwlrAR9CWcrf4mwJ3G2p2/PIbP5lT05ZnYYIf9ywp7CUGAFsIeQ+Q1C/hOBj7v7K8kk3Z+yJyer+VU0O5iZDQHmEg50/yzpPOXKcn5l7zi5Jri814cBS4Dr3P325JK1TdmTk4X8uk6zwizvzuJmRe/wvpbQOfHcDgtVhiznV/bkFGb2/X+NbyXsSf+uw0LFpOzJyWJ+7Wl2MDPrDbzX3X+ZdJb2yHJ+ZU+OmfUAjnf31PehW0jZk5PG/CqaByi/OSG3t+D7erpIvSznV3YR6Whqnj1A7u5m1id6vie34ctvbstXouktMVnOr+zJKTdPmvIre3Kynh+0p9lu0TVGfwVcQbg0wICFwL3u3phktjiynF/Zk1N4okapYWmk7MnJev58KprtZGZfAz5KuK6oCagBjgUGAHOAm9z9qeQSti7L+ZU9OWb2fuAwwglJr7j7jiLTdEljU7OyJyfr+fOpaLaTmW0ArnL3n0avewMjgZMINxHeAZzv7k3JpSwty/mVPTlmtgnoBcwHHgWmEzpjeNXdd0XTfALo4e7/lVTOYpQ9OVnP/xbFejzQo82eLEYDS4HxJcaPJFyk/o2ks3a2/MqeaP53AsuATwDfB14hdMDwGKGD+RPZd4H6pdF7UnGnCmVX/op9nqQDZPFBaGZ4AvgtcCTRHnvBNFcSmiJS1dlw1vMre6L5PwT8GhidN+w04AHg9Whj+EfCsdpDks6r7Ol4ZD1/4UNnz7aDu79OuN/hEOAW4GQz621mXfMmGwVsdvcWM6tJImcpWc6v7Il6inC/z3W5Ae7+W3f/KHAE8EXgXYRbmu1IWX5lT07W87+Fjmm2U3Qq9EeBrwJvB54BHifcSPUUQk/9V7v7o2ZW4+4tCUUtKsv5lT09chu4XE4ze41wZ4oH055f2ZOT5fwqmhVgZu8GzgVOJXT59ArwA3dPTddPrclyfmVPDzNrAP7H3YclnaVcyp6crOVX0TwAZnYcsNDdd+cN6wds8gws2CznV/bkmNk44DkvuDzAQpdnR7r7yrRePqDsycl6/hwd0yxTrlnBzE4mNLHtMbNuZvYX0cW6G9O84ctyfmVPTkH+b0XPu1q4rRkA7v6mu6+Mnqdmw6fsycl6/mJUNNvvH4A3oy/508Alad7oFZHl/MqenML8VyScpxzKnpys599LRbNMeQeopwC3Rc//gXB9XeplOb+yJ6dE/s+RgfzKnpys5y9GRbMMeU0N5wEb3X2mmY0G+gH3JhouhiznV/bkZDm/sicn6/lLUdFsn4uBn0fPPwM86e6vJJinXFnOr+zJyXJ+ZU9O1vO/laegh4UsPNh3pvERhLuJ/0X0ugk4M+l8nTm/siu/smcne2fI39pDe5rx5XqpuJhwucDzZvaeaPhjycWKLcv5lT05Wc6v7MnJev6SVDRj8n3X1H0C+N/o+WXAr9x9SzKp4styfmVPTpbzK3tysp6/NercoExmNhV4yt3fNLNtwAfd/Q9J54ory/mVPTlZzq/sycl6/mJUNNsQXXjuZtbf3dfnDT8UmAw87im+IDfL+ZU9OVnOr+zJyXr+ONQ82wbf96vi52Y2CsjdYfwNd380wWixZDm/sicny/mVPTlZzx+HimYMZtYL6AFcBW/t6snd91jab2WT4fzKnpws51f25GQ9f5tKnVarx36nUJ8BvAGcF702YDBwOXBN0vk6c35lV35lz072zpC/tUdt+8vtwcXdHzKz/wQuMbNhwN8Q7n3owL/A3maIVLbXZzm/sicny/mVPTlZz98anQhUgkU3QrXQG//HgHGE+x4eGU3yWWAJ8Fjui88dBE8kcIEs51f25GQ5v7InJ+v5y6E9zRJ8X0fDdwHdgecI1xwNAK4FXnL33+a3z6dpBchyfmVPTpbzK3tysp6/LEm3D6f9AbwDOKRg2K3ASmBk0vk6c35lV35lz072zpA/zkPNs2XItcGbmQG/B15094uSzhVXlvMre3KynF/Zk5P1/KXokpMyRCtAFw+/NH4A5NrmM3EKdZbzK3tyspxf2ZOT9fylaE/zAJhZN3ffmdUD2lnOr+zJyXJ+ZU9O1vPnqGiKiIjEpOZZERGRmFQ0RUREYlLRFBERiUlFU0REJCYVTRERkZhUNEVERGL6f8xScvoJLUWcAAAAAElFTkSuQmCC\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnMAAAIhCAYAAAAl9jzyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB1LElEQVR4nO3dd1RU19oG8OcwICACKijYEI0tdk3s3Sh4NaYZe6y5aoyaGMs1amJJsSdXE00xiSVGr+bG5CZGBbE37GKLBQtFERRBmlJm5v3+8JuJCMicocwM8/zWylphz5nD3i97xmfOnLOPIiICIiIiIrJJDpbuABERERGZj2GOiIiIyIYxzBERERHZMIY5IiIiIhvGMEdERERkwxjmiIiIiGwYwxwRERGRDXO0dAdshV6vR0xMDNzd3aEoiqW7Q0RERCWciCAlJQWVK1eGg0Pex98Y5kwUExODatWqWbobREREZGeio6NRtWrVPB9nmDORu7s7gEcF9fDwsHBviIiIqKRLTk5GtWrVjBkkLwxzJjJ8terh4cEwR0RERMUmv9O7eAEEERERkQ1jmCMiIiKyYQxzRERERDaMYY7IDq1YsQL+/v5wcXFBq1atcOzYMZOet3HjRiiKgldeeSXPbd566y0oioKlS5dma//000/Rtm1blC5dGmXLljW/80RElA3DHJGd2bRpEyZNmoTZs2fj1KlTaNKkCQIDA3Hnzp2nPi8iIgJTpkxBhw4d8tzmt99+w5EjR1C5cuUcj2VmZqJv374YO3ZsgcdARER/Y5gjsjOff/45Ro0ahREjRqB+/fr45ptvULp0aaxatSrP5+h0OgwePBhz585FzZo1c93m1q1bmDBhAtavXw8nJ6ccj8+dOxfvvfceGjVqVGhjISIihjkiu5KZmYmTJ0+iW7duxjYHBwd069YNoaGheT7vo48+QsWKFfHmm2/m+rher8eQIUMwdepUNGjQoND7TUREeeM6c0R2JD4+HjqdDj4+PtnafXx8cOnSpVyfc/DgQfzwww8ICwvLc78LFy6Eo6Mj3nnnncLsLhERmYBhjojylJKSgiFDhuC7776Dt7d3rtucPHkSy5Ytw6lTp3jfYiIiC2CYI7Ij3t7e0Gg0iIuLy9YeFxcHX1/fHNtfu3YNERER6N27t7FNr9cDABwdHXH58mUcOHAAd+7cgZ+fn3EbnU6HyZMnY+nSpYiIiCiawRAREQCGOSK7UqpUKTz33HPYtWuXcXkRvV6PXbt2Yfz48Tm2r1evHs6dO5et7YMPPkBKSgqWLVuGatWqYciQIdnOwQOAwMBADBkyBCNGjCiysRAR0SMMc0R2ZtKkSRg2bBief/55tGzZEkuXLkVaWpoxeA0dOhRVqlTB/Pnz4eLigoYNG2Z7vmGNOEO7l5cXvLy8sm3j5OQEX19f1K1b19gWFRWFhIQEREVFQafTGc/Bq1WrFsqUKVNEoyUiKvkY5ojsTP/+/XH37l3MmjULsbGxaNq0KYKCgowXRURFRcHBofAvdJ81axbWrl1r/LlZs2YAgD179qBz586F/vuIiOyFIiJi6U7YguTkZHh6eiIpKQkeHh6W7g4RERGVcKZmD64zR0RERGTDGOaIiIiIbBjDHBEREZENY5gjIiIismEMc0REREQ2jGGOiIiIyIYxzBERERHZMIY5IiIiIhvGMEdERERkwxjmiIiIiGwYwxwRERGRDWOYIyIiIrJhDHNERERENoxhjoiIiMiGMcwRERER2TCGOSIiIiIbxjBHREREZMMY5oiIiIhsmKOlO0BExWfUUkv3IKfvJlq6B0REto1H5oiIiIhsGMMcERERkQ1jmCMiIiKyYQxzRERERDaMYY6IiIjIhjHMEREREdkwhjkiIiIiG8YwR0RERGTDGOaIiIiIbBjDHBEREZENY5gjIiIismEMc0REREQ2jGGOiIiIyIYxzBERERHZMIY5IiIiIhvGMEdERERkwxjmiIiIiGwYwxwRERGRDWOYIyIiIrJhDHNERERENoxhjoiIiMiGMcwRERER2TCGOSIiIiIbxjBHREREZMMY5oiIiIhsGMMcERERkQ2z2jB3/Phx9OzZE2XLloWbmxtat26Nn3/+2ez9JSYmokqVKlAUBT169CjEnhIRERFZjqOlO5CbPXv2IDAwEC4uLhgwYADc3d2xefNm9O/fH9HR0Zg8ebLqfY4fPx5JSUlF0FsiIiIiy7G6I3NarRajRo2Cg4MD9u/fj5UrV+Kzzz7DmTNnUKdOHcyYMQORkZGq9rl582Zs2LABCxcuLKJeExEREVmG1YW53bt349q1axg0aBCaNm1qbPf09MSMGTOQmZmJtWvXmry/u3fvYuzYsRgyZAh69epVBD0mIiIishyrC3N79+4FAAQEBOR4LDAwEACwb98+k/f31ltvQaPRYNmyZYXSPyIiIiJrYnXnzIWHhwMAateuneMxX19flClTxrhNfn766Sf8+uuv+N///ody5cqpOmcuIyMDGRkZxp+Tk5MBAFlZWcjKygIAODg4QKPRQKfTQa/XG7c1tGu1WoiIsV2j0cDBwSHPdsN+DRwdH/15tFqtSe1OTk7Q6/XQ6XTGNkVR4OjomGd7Xn3nmErmmKwRX08cE8fEMXFMeY/JFFYX5gyBy9PTM9fHPTw8TAplMTExeOeddzBw4EC8/PLLqvsxf/58zJ07N0f7jh07ULp0aQCAn58fmjVrhrNnzyIqKsq4Td26dVGvXj0cO3YMd+/eNbY3bdoU1atXx/79+5GSkmJsb9OmDSpWrIgdO3Zk+8N16dIFrq6u2LZtW7Y+9OzZEw8fPsSePXuMbY6OjujVqxfi4+MRGhpqbHd3d0fXrl0RHR2NsLAwY3uFChXQtm1bhIeH4/Lly8Z2jqlkj8kaGerGvxPHxDFxTBxT9jGdPHkSplDk8bhqBQICAhASEoLw8HDUqlUrx+NVqlRBampqvoGuZ8+eOHnyJC5cuABvb28AQEREBGrUqIHAwEAEBQU99fm5HZmrVq0a4uPj4eHhAcB+PyVwTLY7plFLYXW+GscjcxwTx8QxcUy5tSckJMDLywtJSUnG7JEbqzsyZzgil1dYS05ORrly5Z66j7Vr12L79u3473//awxyajk7O8PZ2TlHu5OTE5ycnLK1aTQaaDSaHNsaJoCp7U/u15x2BweHXL9Oy6s9r75zTCVzTNaIr6ecOCaOiWPimADT38ut7iQaw7lyuZ0XFxsbi9TU1FzPp3vc6dOnAQB9+/aFoijG/2rUqAEACA4OhqIo2a6WJSIiIrJFVvfxvVOnTpg/fz527NiBAQMGZHssODjYuM3TtGnTBqmpqTnaU1NTsWnTJlStWhWBgYHw8/MrvI4TERERWYDVnTOn1WpRt25d3Lp1C0eOHDEePUtKSkLLli0RERGBy5cvw9/fHwBw+/ZtJCUloVKlSnleNGGg5py5JyUnJ8PT0zPf762JrJk1njP33URL94CIyDqZmj2s7mtWR0dHfP/999Dr9ejYsSNGjx6NyZMno0mTJrhy5QrmzZtnDHIAMH36dDz77LP47bffLNdpIiIiIguxuq9ZgUeXBx88eBCzZ8/Gpk2bkJWVhUaNGmHhwoXo37+/pbtHREREZDWs7mtWa8WvWakk4NesRES2w2a/ZiUiIiIi0zHMEREREdkwhjkiIiIiG8YwR0RERGTDGOaIiIiIbBjDHBEREZENY5gjIiIismEMc0REREQ2jGGOiIiIyIYxzBERERHZMIY5IiIiIhvGMEdERERkwxjmiIiIiGwYwxwRERGRDWOYIyIiIrJhDHNERERENoxhjoiIiMiGMcwRERER2TCGOSIiIiIbxjBHREREZMMY5oiIiIhsGMMcERERkQ1jmCMiIiKyYQxzRERERDaMYY6IiIjIhjHMEREREdkwhjkiIiIiG8YwR0RERGTDGOaIiIiIbBjDHBEREZENY5gjIiIismEMc0REREQ2jGGOiIiIyIYxzBERERHZMIY5IiIiIhvGMEdERERkwxjmiIiIiGyY2WGufv36+Pe//4179+4VZn+IiIiISAWzw1xUVBSmTJmCqlWrYuDAgdi9e3dh9ouIiIiITGB2mIuNjcVXX32Fhg0bYtOmTejevTtq1aqFBQsWIDY2tjD7SERERER5MDvMlSlTBmPGjMHx48dx5swZvP3220hMTMSMGTPg5+eH1157Ddu3b4eIFGZ/iYiIiOgxhXIBRKNGjfDll18iJiYG69atQ/v27fH777/jxRdfRPXq1TF37lzcunWrMH4VERERET2mUK9mdXZ2RmBgIHr27AlfX1+ICG7evIm5c+eiZs2aGDduHB48eFCYv5KIiIjIrhVamNuxYwf69euHqlWrYtq0aVAUBR9++CGuXr2Kn3/+Gc2bN8c333yDcePGFdavJCIiIrJ7jgV58q1bt7Bq1SqsXr0akZGRAICAgACMGTMGvXv3hkajAQDUrFkTr7/+Onr37o3ff/+94L0mIiIiIgAFCHMvvvgigoODodPp4OPjg2nTpmH06NHw9/fP8zlt27bFtm3bzP2VRERERPQEs8Pctm3b0LVrV4wZMwavvvoqHB3z31Xv3r1RuXJlc38lERERET3B7DB35coV1KpVS9VzGjZsiIYNG5r7K4mIiIjoCWZfADFv3jz88ccfT93mzz//xMiRI839FURERESUD7PD3Jo1axAWFvbUbc6cOYO1a9ea+yuIiIiIKB+Fus7ck9LT0006l46IiIiIzFOgpKUoSq7tIoLo6Ghs376dFzwQERERFSFVR+YcHByg0WiM68fNmTPH+PPj/zk6OqJGjRo4deoUBgwYUCQdJyIiIiKVR+Y6duxoPBq3f/9++Pn55bqunEajQfny5dG1a1eMGjWqUDpKRERERDmpCnN79+41/r+DgwNGjBiBWbNmFXafiIiIiMhEZp8zp9frC7MfRERERGSGIr2alYiIiIiKlslH5kaOHAlFUTBv3jz4+PiYvBiwoij44YcfzO4gEREREeVNERExZUMHBwcoioKLFy+iTp06cHAw7aCeoijQ6XQF6qQ1SE5OhqenJ5KSkuDh4WHp7hCZZdRSS/cgp+8mWroHRETWydTsYfKRuRs3bgAAqlSpku1nIiIiIrIck8Nc9erVn/ozERERERU/XgBBREREZMNMPjIXFRVl9i/x8/Mz+7lERERElDeTw5y/v3+e92J9GkVRoNVqVT+PiIiIiPJncpgbOnSoWWGOiIiIiIqOyWFuzZo1RdiNnI4fP47Zs2fj8OHDyMrKQqNGjTBp0iT069fPpOdv374da9euRVhYGGJjY5GZmQk/Pz+0a9cO06ZNQ506dYp4BERERERFz+zbeRWlPXv2IDAwEC4uLhgwYADc3d2xefNm9O/fH9HR0Zg8eXK++9i2bRuOHDmCVq1a4R//+AecnJxw8eJFrF27FuvXr8e2bdvQtWvXYhgNERERUdExedHg4qLValGvXj3cvHkTR44cQdOmTQEASUlJaNmyJSIiInDlypV8l0ZJT0+Hi4tLjvZdu3ahW7dueP7553H8+HGT+8VFg6kk4KLBRES2o9AXDS6u23nt3r0b165dw4gRI4xBDgA8PT0xY8YMDB8+HGvXrsWsWbOeup/cghwAvPDCCyhXrhyuXr1qcp+IiIiIrJWqc+YURcG0adPg4+Nj8jl0asPc3r17AQABAQE5HgsMDAQA7Nu3z+T9PSk0NBSJiYlo37692fsgIiIishZWdzuv8PBwAEDt2rVzPObr64syZcoYtzHFjh07cPjwYWRkZCA8PBx//vknvL298e9///upz8vIyEBGRobx5+TkZABAVlYWsrKyADy6X61Go4FOp4Nerzdua2jXarV4/FtsjUYDBweHPNsN+zVwdHz053lyaZe82p2cnKDX67PdC1dRFDg6OubZnlffOaaSOSZrxNcTx8QxcUwcU95jMoXV3c4rKSkJwKOvVXPj4eFh3MYUO3bswGeffWb8uVatWti4cSOee+65pz5v/vz5mDt3bq77K126NIBHiyE3a9YMZ8+ezbaoct26dVGvXj0cO3YMd+/eNbY3bdoU1atXx/79+5GSkmJsb9OmDSpWrIgdO3Zk+8N16dIFrq6u2LZtW7Y+9OzZEw8fPsSePXuMbY6OjujVqxfi4+MRGhpqbHd3d0fXrl0RHR2NsLAwY3uFChXQtm1bhIeH4/Lly8Z2jqlkj8kaGerGvxPHxDFxTBxT9jGdPHkSprC6CyACAgIQEhKC8PBw1KpVK8fjVapUQWpqqqpABwCpqan466+/8NFHH2Hnzp1YtWoVBg0alOf2uR2Zq1atGuLj440nIdrrpwSOyXbHZI0XQHw1jkfmOCaOiWPimHJrT0hIgJeXV74XQBQ4zP32229Ys2YNTp8+jaSkJHh6eqJ58+YYPnw4XnnlFdX769u3L3755RecOHEi16Nn7u7uKFeunNm3F9NqtXj++edx9epV3LhxAxUqVDDpebyalUoCawxzvJqViCh3pmYPs0+i0Wq16NevH15//XVs2bIFsbGxKF26NGJjY/HHH3+gT58+6Nevn+pbeRnOlcvtvLjY2Fikpqbmej6dqRwdHdGlSxekpaXhxIkTZu+HiIiIyBqYHebmz5+PX375BR06dMCBAweQnp6O27dvIz09Hfv370f79u2xefNmLFiwQNV+O3XqBODRuWlPCg4OzraNuWJiYgA8OkRKREREZMvM/pq1Zs2acHFxwdmzZ43fJz8uKysLjRs3RkZGBq5fv27yfrVaLerWrYtbt27luWjw5cuX4e/vDwC4ffs2kpKSUKlSpWwXTZw4cQLPP/98jv0HBwejd+/ecHNzw82bN+Hm5mZSv/g1K5UE/JqViMh2FPnXrLdv30bv3r1zDXLAo6NevXv3xu3bt1Xt19HREd9//z30ej06duyI0aNHY/LkyWjSpAmuXLmCefPmGYMcAEyfPh3PPvssfvvtt2z7adGiBRo1aoTBgwdj2rRpGD9+PDp27IgePXoAAFatWmVykCMiIiKyVmbfm7VatWpITU196jZpaWnw8/NTve8uXbrg4MGDmD17NjZt2oSsrCw0atQICxcuRP/+/U3ax7x587Bnzx7s27cPd+/ehYODA/z8/DB69GhMnDgRzz77rOp+EREREVkbs79mXbRoERYvXoyzZ8+iUqVKOR6/desWmjRpgmnTpmHq1KkF7qil8WtWKgn4NSsRke0o9HuzPrkUSL9+/XDo0CE0a9YMEydORPv27eHj44O4uDgcOHAAy5YtQ/v27dG3b1/zR0FERERET2XykTkHBwcoipKjXUTybDc8T+3yJNaIR+aoJOCROSIi21HoR+aGDh2aa2gjIiIiIssxOcytWbOmCLtBREREROYwe2kSIiIiIrI8hjkiIiIiG2b2OnMAkJKSguXLl2Pnzp2IiYlBRkZGjm0URcG1a9cK8muIiIiIKA9mh7m7d++ibdu2uHbtGjw8PIxXXGRmZuLhw4cAgMqVK/P+p0RERERFyOyvWefMmYNr167hxx9/RGJiIgDgvffeQ1paGo4ePYqWLVvC398fFy5cKLTOEhEREVF2Zoe5bdu24YUXXsAbb7yRY8mSFi1aYPv27YiIiMDcuXML3EkiIiIiyp3ZYe727dto1qyZ8WeNRmP8ehUAypUrh3/84x/4+eefC9ZDIiIiIsqT2WHO09MTWVlZxp/LlSuHmzdvZtvGw8MDcXFx5veOiIiIiJ7K7DBXs2ZNREREGH9u1qwZQkJCcO/ePQDAw4cPsWXLFvj5+RW4k0RERESUO7PDXEBAAHbt2oUHDx4AAMaMGYM7d+6gSZMm6Nu3Lxo2bIhr165h+PDhhdVXIiIiInqC2WHurbfewnfffWcMc6+99hoWL16MtLQ0bN68GbGxsZg0aRKmTp1aaJ0lIiIiouwUEZHC3KFOp0N8fDwqVqyY4ypXW2ZYRy8pKQkeHh6W7g6RWUYttXQPcvpuoqV7QERknUzNHgW6A0RuNBoNfHx8Cnu3RERERJSLAoe527dvY+PGjTh9+jSSkpLg6emJZs2aYcCAAahUqVJh9JGIiIiI8lCgMLdixQpMnToVGRkZePzb2p9++gkzZ87EkiVL8Pbbbxe4k0RERESUO7PD3MaNGzFhwgR4e3tj5syZ6NChA3x8fBAXF4f9+/dj2bJlxsf79etXmH0mIiIiov9n9gUQzZs3x82bNxEWFobKlSvnePzmzZto1qwZ/Pz8cPLkyQJ31NJ4AQSVBLwAgojIdpiaPcxemuTixYvo169frkEOAKpWrYq+ffvi4sWL5v4KIiIiIsqH2WGubNmycHNze+o2ZcqUQdmyZc39FURERESUD7PD3EsvvYQtW7ZAq9Xm+nhWVha2bNmCl19+2ezOEREREdHTmR3mFi1aBDc3NwQEBODIkSPZHgsNDUVAQADc3d2xYMGCAneSiIiIiHJn8tWsNWvWzNGWmZmJU6dOoV27dnB0dIS3tzfi4+ONR+sqVaqE5s2b49q1a4XXYyIiIiIyMvnInF6vh4hk+8/JyQl+fn7w8/ND5cqVUapUKVSuXNnY5uTkBL1eX5T9L7FWrFgBf39/uLi4oFWrVjh27Fie23733Xfo0KEDypUrh3LlyqFbt27Zts/KysK0adPQqFEjuLm5oXLlyhg6dChiYmKy7efKlSt4+eWX4e3tDQ8PD7Rv3x579uwpsjESERFRwZl8ZC4iIqIIu0GP27RpEyZNmoRvvvkGrVq1wtKlSxEYGIjLly+jYsWKObbfu3cvBg4ciLZt28LFxQULFy5EQEAALly4gCpVquDBgwc4deoUPvzwQzRp0gSJiYl499138dJLL+HEiRPG/bz44ouoXbs2du/eDVdXVyxduhQvvvgirl27Bl9f3+IsAREREZnI7HXm7E1xrjPXqlUrtGjRAsuXLwfw6KhotWrVMGHCBLz//vv5Pl+n06FcuXJYvnw5hg4dmus2x48fR8uWLREZGQk/Pz/Ex8ejQoUK2L9/Pzp06AAASElJgYeHB0JCQtCtW7fCGyBZDNeZIyKyHUW+ztzjtFotLly4gNDQUFy4cCHPK1wpf5mZmTh58mS28OTg4IBu3bohNDTUpH08ePAAWVlZKF++fJ7bJCUlQVEU49IxXl5eqFu3Ln788UekpaVBq9Xi22+/RcWKFfHcc88VaExERERUdAoU5hISEjBq1Ch4enqicePGaN++PRo3boyyZcti9OjRuHfvXmH1027Ex8dDp9PBx8cnW7uPjw9iY2NN2se0adNQuXLlPI+mpaenY9q0aRg4cKAx6SuKgp07d+L06dNwd3eHi4sLPv/8cwQFBaFcuXIFGxQREREVGbPvzZqQkIDWrVvj6tWrKF++PDp06IBKlSohNjYWJ06cwPfff499+/YhNDT0qUeIqHAtWLAAGzduxN69e+Hi4pLj8aysLPTr1w8igq+//trYLiIYN24cKlasiAMHDsDV1RXff/89evfujePHj6NSpUrFOQwiIiIykdlH5j7++GNcvXoVU6dORWRkJIKCgrB69Wps374dkZGRmDZtGsLDw/Hpp58WZn9LPG9vb2g0GsTFxWVrj4uLy/cihCVLlmDBggXYsWMHGjdunONxQ5CLjIxESEhItu/fd+/ejT///BMbN25Eu3bt0Lx5c3z11VdwdXXF2rVrC2dwREREVOjMDnO///47OnfujIULF+a4rVfp0qUxf/58dO7cGb/99luBO2lPSpUqheeeew67du0ytun1euzatQtt2rTJ83mLFi3Cxx9/jKCgIDz//PM5HjcEufDwcOzcuRNeXl7ZHn/w4AGAR+fnPc7BwYHLyxAREVkxs8NcTEzMU8MFALRp0ybHWmaUv0mTJuG7777D2rVrcfHiRYwdOxZpaWkYMWIEAGDo0KGYPn26cfuFCxfiww8/xKpVq+Dv74/Y2FjExsYiNTUVwKMg9/rrr+PEiRNYv349dDqdcZvMzEwAj/5W5cqVw7Bhw3DmzBlcuXIFU6dOxY0bN9CrV6/iLwIRERGZxOxz5jw9PREZGfnUbSIjI+Hp6Wnur7Bb/fv3x927dzFr1izExsaiadOmCAoKMl4UERUVle0I2tdff43MzEy8/vrr2fYze/ZszJkzB7du3cIff/wBAGjatGm2bfbs2YPOnTvD29sbQUFBmDlzJrp27YqsrCw0aNAAv//+O5o0aVK0AyYiIiKzmb3OXL9+/fD7779j69atuV41uWvXLvTs2ROvvPIKNm3aVOCOWlpxrjNHVFS4zhwRke0wNXuYfWRu9uzZ2Lp1KwIDA9GzZ0906tQJPj4+iIuLw969e7F9+3aULl0as2bNMvdXEBEREVE+zA5zDRo0QHBwMIYPH46tW7di69atUBQFhgN9zzzzDNasWYMGDRoUWmeJiIiIKDuzwxwAtG/fHuHh4Th06BBOnz6N5ORkeHh4oFmzZmjXrh0URSmsfhIRERFRLswOcyNHjkSjRo3w3nvvoX379mjfvn1h9ouIiIiITGD20iQbNmzAnTt3CrMvRERERKSS2WHumWeewe3btwuzL0RERESkktlhbuTIkdi6dStu3bpVmP0hIiIiIhXMPmeuT58+2LNnD9q2bYt//etfaNGiBXx8fHK96MHPz69AnSQiIiKi3Jkd5mrWrGlciuSdd97JcztFUaDVas39NURERET0FGaHuaFDh3LpESIiIiILMzvMrVmzphC7QURERETmKNCiwVT4rPHemQDvn0lERGStChzmMjIysG3bNpw+fRpJSUnw9PREs2bN0LNnTzg7OxdGH4mIiIgoDwUKc3/88QdGjx6Nu3fvGu/JCjy66KFixYpYuXIlevfuXeBOEhEREVHuzA5zu3btQp8+faDRaDBy5Eh06NABPj4+iIuLw/79+/HTTz/htddeQ3BwMLp27VqYfSYiIiKi/2d2mJs9ezZcXV1x+PBhNGzYMNtjQ4cOxTvvvIN27dph9uzZDHNERERERcTsO0CcPn0a/fv3zxHkDBo3box+/frh1KlTZneOiIiIiJ7O7DBXunRpVKhQ4anbVKxYEaVLlzb3VxARERFRPswOc926dcPOnTufus3OnTvRvXt3c38FEREREeXD7DC3ZMkS3LlzB0OHDkV0dHS2x6KjozFkyBDEx8djyZIlBe4kEREREeXO7AsghgwZgnLlymH9+vXYuHEj/Pz8jFezRkVFQafToXHjxnjjjTeyPU9RFOzatavAHSciIiKiAoS5vXv3Gv9fq9Xi+vXruH79erZtzpw5k+N5vJ8rERERUeExO8zp9frC7AcRERERmcHsc+aIiIiIyPIKLcxFRUVh//79hbU7IiIiIjJBoYW51atXo0uXLoW1OyIiIiIyAb9mJSIiIrJhVhvmjh8/jp49e6Js2bJwc3ND69at8fPPP5v0XBHB9u3bMXbsWDRu3Bienp4oXbo0mjRpgnnz5iE9Pb2Ie09ERERUPMy+mrUo7dmzB4GBgXBxccGAAQPg7u6OzZs3o3///oiOjsbkyZOf+vyMjAz07NkTzs7O6Ny5MwIDA5Geno7g4GDMnDkT//vf/7B3717eaoyIiIhsXqGFOU9PT/j5+RV4P1qtFqNGjYKDgwP279+Ppk2bAgBmzZqFli1bYsaMGXj99ddRvXr1PPeh0WjwySef4O2330a5cuWM7VlZWejTpw+2bNmCFStWYOrUqQXuLxEREZElFdrXrBMnTsSNGzcKvJ/du3fj2rVrGDRokDHIAY/C4owZM5CZmYm1a9c+dR9OTk6YOXNmtiBnaJ8+fToAYN++fQXuKxEREZGlWd05c4Y7SwQEBOR4LDAwEEDBgpiTkxMAwNHRKr9hJiIiIlLF5ERjWEOuZcuWcHFxUbWmXMeOHU3eNjw8HABQu3btHI/5+vqiTJkyxm3MsWrVKgC5h8XHZWRkICMjw/hzcnIygEdf1WZlZQEAHBwcoNFooNPpst0Rw9Cu1WohIsZ2jUYDBweHPNsf7dfJ7LEVJZ1OV4Ax/c0QorVarUntTk5O0Ov10Ol0xjZFUeDo6Jhne15/j8L9O9nmmKxR0b6e/mZLfyeOiWPimDgmw5hMYXKY69y5MxRFwcWLF1GnTh3jz6Z4fED5SUpKAvDoa9XceHh4GLdRa/v27fj222/x7LPP4s0333zqtvPnz8fcuXNztO/YscN44YSfnx+aNWuGs2fPIioqyrhN3bp1Ua9ePRw7dgx37941tjdt2hTVq1fH/v37kZKSYmxv06YNKlasiB07dgDoZdbYilp4eLjZY3p8Mnbp0gWurq7Ytm1btv337NkTDx8+xJ49e4xtjo6O6NWrF+Lj4xEaGmpsd3d3R9euXREdHY2wsDBje4UKFdC2bVuEh4fj8uXLxvai+DvZ6piskaFu/DtxTBwTx8QxZR/TyZMnYQpFHo+rTzFnzhwoioIJEyagfPnyxp9NMXv2bJO2Ax4dMQsJCUF4eDhq1aqV4/EqVaogNTVVdaA7fvw4XnjhBTg6OuLAgQNo0KDBU7fP7chctWrVEB8fDw8PDwBF8ynh7RXWeWTumwk8MlcSxjRqKazOV+N4ZI5j4pg4Jo4pt/aEhAR4eXkhKSnJmD1yY/KRuTlz5jz158JiOCKXV1hLTk7OcWFDfk6cOIGAgAA4ODggODg43yAHAM7OznB2ds7R7uTkZDzvzkCj0UCj0eTYNq/z8vJqf3K/1sQwvsIak5p2BweHXL8izKs9r79HUf+dbGFM1qi4X0+28HfimDgmjoljAkx/L7e6k2gM58rldl5cbGwsUlNTcz2fLi8nTpxA9+7dodfrERwcjBYtWhRaX4mIiIgszewwl5KSguvXr+c4TLlp0yYMHjwYb775Jk6dOqV6v506dQKA/z9/LLvg4OBs2+THEOR0Oh2CgoLQqlUr1f0hIiIismZmh7l//etfaNKkSbYw9/XXX2PQoEH4z3/+g9WrV6NDhw64dOmSqv2+8MILqFmzJjZs2JDt5MGkpCTMmzcPpUqVwtChQ43tt2/fxqVLl3J8LXvy5El0794dWq0W27dvR5s2bcwbKBEREZEVM/vEmn379qFbt27Zbom1YMECVKlSBRs2bEBsbCyGDh2KxYsX44cffjC9Q46O+P777xEYGIiOHTtmu51XZGQklixZAn9/f+P206dPx9q1a7F69WoMHz4cAJCQkIDu3bvj/v376NGjB0JCQhASEpLt95QtWxYTJ040d/hEREREVsHsMHf79m306NHD+PPFixcRHR2NRYsWoX379gCAX375RdV6dAZdunTBwYMHMXv2bGzatAlZWVlo1KgRFi5ciP79++f7/OTkZCQmJgIAgoKCEBQUlGOb6tWrM8wRERGRzTM7zGVkZKBUqVLGn/ft2wdFUbItxluzZk388ccfZu2/ZcuW2L59e77brVmzBmvWrMnW5u/vDxNXXCEiIiKyaWafM1e1alWcPXvW+POff/6J8uXLo3Hjxsa2e/fuoUyZMgXrIRERERHlyewjc//4xz+wYsUKTJkyBS4uLggKCsp2YQIAXLlyBX5+fgXuJBERERHlzuwwN336dGzZsgWff/45AKBSpUr46KOPjI/fuXMHhw4dwvjx4wveSyIiIiLKldlhztfXFxcuXMCuXbsAAB07dsx2q4n4+HgsXrwYgYGBBe8lEREREeWqQPf8cXV1xYsvvpjrY/Xr10f9+vULsnsiIiIiyofV3c6LiIiIiExXoCNzOp0OP//8M3bu3ImYmBhkZGTk2EZRFONXsURERERUuMwOc2lpaQgICMCRI0cgIlAUJdvaboafFUUplI4SERERUU5mf836ySefIDQ0FHPnzkV8fDxEBHPmzMHt27exadMm1KxZE3379s31aB0RERERFQ6zw9yvv/6K1q1b44MPPkD58uWN7T4+Pujbty/27NmDnTt3YvHixYXSUSIiIiLKyewwFxUVhdatW/+9IweHbEfhqlatil69emHt2rUF6yERERER5cnsMOfm5gYHh7+f7unpidu3b2fbxtfXF1FRUeb3joiIiIieyuwwV7169WxBrWHDhti9e7fx6JyIYNeuXahUqVLBe0lEREREuTI7zL3wwgvYs2cPtFotAGDYsGGIiopCmzZtMHXqVLRv3x5hYWHo06dPoXWWiIiIiLIze2mSUaNGwcvLC3fv3kWlSpUwcuRInD59Gl999RXCwsIAAH369MGcOXMKqatERERE9CSzw1zt2rUxbdq0bG1ffvklZs2ahevXr6N69erw9fUtcAeJiIiIKG8FugNEbipUqIAKFSoU9m6JiIiIKBe8NysRERGRDTP7yFzNmjVN2k5RFFy7ds3cX0NERERET2F2mNPr9bnedzUpKQn3798HAFSqVAmlSpUyu3NERERE9HRmf80aERGBGzdu5PgvISEB169fxyuvvAJ/f39cuHChMPtLREREdmrFihXw9/eHi4sLWrVqhWPHjuW57YULF9CnTx/4+/tDURQsXbr0qftesGABFEXBxIkTs7WvXLkSnTt3hoeHBxRFMR6wsiZFcs6cv78/Nm3ahMTERMycObMofgURERHZkU2bNmHSpEmYPXs2Tp06hSZNmiAwMBB37tzJdfsHDx6gZs2aWLBgQb6raxw/fhzffvstGjdunOt+evTogRkzZhTKOIpCkV0A4eTkhO7du+Pnn38uql9BREREduLzzz/HqFGjMGLECNSvXx/ffPMNSpcujVWrVuW6fYsWLbB48WIMGDAAzs7Oee43NTUVgwcPxnfffYdy5crleHzixIl4//33s92P3toU6dWsDx48QEJCQlH+CiIiIirhMjMzcfLkSXTr1s3Y5uDggG7duiE0NLRA+x43bhx69eqVbd+2ptDXmTM4cOAA/vOf/6Bu3bpF9SuIiIjIDsTHx0On08HHxydbu4+PDy5dumT2fjdu3IhTp07h+PHjBe2iRZkd5rp27Zpru1arxa1btxAREQEAmDVrlrm/goiIiKhIREdH491330VISAhcXFws3Z0CMTvM7d27N9d2RVFQrlw5BAQEYNKkSejevbu5v4KIiIgI3t7e0Gg0iIuLy9YeFxdn9q1DT548iTt37qB58+bGNp1Oh/3792P58uXIyMiARqMpUL+LS4HWmSMiIiIqaqVKlcJzzz2HXbt24ZVXXgHwKIfs2rUL48ePN2ufL7zwAs6dO5etbcSIEahXrx6mTZtmM0EOKIRz5u7cuYNbt25Br9ejSpUqZidkIiIiorxMmjQJw4YNw/PPP4+WLVti6dKlSEtLw4gRIwAAQ4cORZUqVTB//nwAjy6a+Ouvv4z/f+vWLYSFhaFMmTKoVasW3N3d0bBhw2y/w83NDV5eXtnaY2NjERsbi6tXrwIAzp07B3d3d/j5+aF8+fLFMfR8mRXmMjIysGzZMnz33Xe4fv16tsfKlSuHIUOG4N1334W/v39h9JGIiIjsXP/+/XH37l3MmjULsbGxaNq0KYKCgowXRURFRcHB4e9FOmJiYtCsWTPjz0uWLMGSJUvQqVOnPE8Vy80333yDuXPnGn/u2LEjAGD16tUYPnx4wQZVSBQRETVPiI6ORq9evXDhwgWICCpXroxq1aoZH4uJiQEAlC9fHhs3bjRe6nv79m0cOHAA/fr1K+QhFI/k5GR4enoiKSkJHh4eRfZ7Ri0tsl0XyHcTLd0DKgzWOL84t4iIcmdq9lC1zlxWVhZ69uyJ8+fPY+DAgbh48SJu3ryJ0NBQhIaG4ubNm7h48SIGDx6MhIQEvPLKK4iIiMC1a9fQvn37Al0+TEREREQ5qQpz3377LS5cuIDZs2fjp59+ynUNubp162LdunWYO3cuHjx4gMGDB6Njx464efMmnnvuuULrOBERWZ/Cvnfm/Pnz0aJFC7i7u6NixYp45ZVXcPny5RzbhYaGomvXrnBzc4OHhwc6duyIhw8fFubQiKyWqjD3888/o1atWiatHffBBx+gdu3aCA0NRXp6OoKDg9GrVy+zO0pERNatKO6duW/fPowbNw5HjhxBSEgIsrKyEBAQgLS0NOM2oaGh6NGjBwICAnDs2DEcP34c48ePz3b+FFFJpuoCiL/++gsDBgyAoij5bqsoCgICAnD16lUcPXoUtWrVMruTRERk/R6/dybw6MTxrVu3YtWqVXj//fdzbN+iRQu0aNECAHJ9HACCgoKy/bxmzRpUrFgRJ0+eNJ6I/t577+Gdd97Jtg/efYjsiaqPLampqfD09DR5ew8PDzg6OjLIERGVcEV578zHJSUlAYBxSYg7d+7g6NGjqFixItq2bQsfHx906tQJBw8eLLTfSWTtVIW5ihUrGtdZMcW1a9dQsWJF1Z0iIiLb8rR7Z8bGxhbK79Dr9Zg4cSLatWtnXAfMsDzWnDlzMGrUKAQFBaF58+Z44YUXEB4eXii/l8jaqfqatU2bNti+fTtiY2PzXRw4NjYWW7duxYsvvligDhIREQHAuHHjcP78+WxH3Qx3IxozZozx691mzZph165dWLVqlXEBWbJt1risEmA9SyupOjL31ltvITU1Fa+++iri4+Pz3O7evXt49dVX8eDBA4wZM6bAnSQiIutWFPfOfNz48ePx559/Ys+ePahataqxvVKlSgCA+vXrZ9v+2WefRVRUVIF/L5EtUBXmunTpglGjRuHo0aN49tln8cEHH2D37t0IDw9HeHg4du/ejZkzZ+LZZ5/F0aNHMWrUKHTu3LmIuk5ERNbi8XtnGhjundmmTRuz9ysiGD9+PH777Tfs3r0bNWrUyPa4v78/KleunGO5kitXrqB69epm/14iW6L6dl5fffUVPDw88O9//xvz58/PcQhbRODg4IApU6bw8DYRkR0p7HtnAo++Wt2wYQN+//13uLu7G8+/8/T0hKurKxRFwdSpUzF79mw0adIETZs2xdq1a3Hp0iX88ssvFqgCUfFTHeY0Gg0WL16M0aNHY82aNQgNDTW+uHx9fdG2bVsMGzYMtWvXLvTOEhGR9SqKe2d+/fXXAJDjW57H74s5ceJEpKen47333kNCQgKaNGmCkJAQPPPMM0U3WCIrovrerPaK92a1dA+oMFjj/OLcIqL8WON7F1D0719Fcm9WIiIiIrIuDHNERERENoxhjoiIiMiGMcwRERER2TCGOSIiIiIbxjBHREREZMMY5oiIiIhsmOpFg4mIiJ5kr+uAEVkDHpkjIiIismEMc0REREQ2jGGOiIiIyIYxzBERERHZMIY5IiIiIhvGMEdERERkwxjmiIiIiGwYwxwRERGRDWOYIyIiIrJhDHNERERENoxhjoiIiMiGMcwRERER2TCGOSIiIiIbZrVh7vjx4+jZsyfKli0LNzc3tG7dGj///LPJz7927RrmzJmDl156CVWqVIGiKPD39y+6DhMRERFZgKOlO5CbPXv2IDAwEC4uLhgwYADc3d2xefNm9O/fH9HR0Zg8eXK++zhw4ADmzp0LjUaDZ599FrGxscXQcyIiIqLiZXVH5rRaLUaNGgUHBwfs378fK1euxGeffYYzZ86gTp06mDFjBiIjI/PdT8eOHREaGoqUlBScO3cOTk5OxdB7IiIiouJldWFu9+7duHbtGgYNGoSmTZsa2z09PTFjxgxkZmZi7dq1+e6nZs2aaN26NVxdXYuwt0RERESWZXVhbu/evQCAgICAHI8FBgYCAPbt21ecXSIiIiKyWlZ3zlx4eDgAoHbt2jke8/X1RZkyZYzbFKWMjAxkZGQYf05OTgYAZGVlISsrCwDg4OAAjUYDnU4HvV5v3NbQrtVqISLGdo1GAwcHhzzbH+3XOr8O1ul0BRjT3xwdH005rVZrUruTkxP0ej10Op2xTVEUODo65tme19+jcP9Otjkma1S0r6e/2dLfyRbHZK3vXY/XjH8nWx6Tdc6v4vg7mcLqwlxSUhKAR1+r5sbDw8O4TVGaP38+5s6dm6N9x44dKF26NADAz88PzZo1w9mzZxEVFWXcpm7duqhXrx6OHTuGu3fvGtubNm2K6tWrY//+/UhJSTG2t2nTBhUrVsSOHTsA9Cq6QRVAeHi42WN6fDJ26dIFrq6u2LZtW7b99+zZEw8fPsSePXuMbY6OjujVqxfi4+MRGhpqbHd3d0fXrl0RHR2NsLAwY3uFChXQtm1bhIeH4/Lly8b2ovg72eqYrJGhbvw72faYgJdhjR6vDf9Otjwm65xfRf13OnnypEn9UOTxCG4FAgICEBISgvDwcNSqVSvH41WqVEFqaqrqQOfi4gJfX19ERESYtH1uR+aqVauG+Ph4eHh4ACiaTz5vr7DOTx/fTOCRuZIwplFLYXW+GscjcyVhTNb63mWYXwD/TrY8JmudX9++U7R/p4SEBHh5eSEpKcmYPXJjdUfmDEfk8gprycnJKFeuXJH3w9nZGc7OzjnanZycclwZq9FooNFocmxrmNSmtlvzFbeG8RXWmNS0Ozg45PoVYV7tef09ivrvZAtjskbF/Xqyhb+TLY/J2uRWA/6dbHtM1sRa3sut7iQaw7lyuZ0XFxsbi9TU1FzPpyMiIiKyR1YX5jp16gQA/3/+WHbBwcHZtiEiIiKyd1YX5l544QXUrFkTGzZsyHbyYFJSEubNm4dSpUph6NChxvbbt2/j0qVLxXJRBBEREZG1sboTaxwdHfH9998jMDAQHTt2zHY7r8jISCxZsiTbPVanT5+OtWvXYvXq1Rg+fLixPT4+HlOmTDH+nJWVhfj4+GzbLFmyBN7e3sUwKiIiIqKiYXVhDnh0yfPBgwcxe/ZsbNq0CVlZWWjUqBEWLlyI/v37m7SP1NTUHHeKSEtLy9Y2Z84chjkiIiKyaVYZ5gCgZcuW2L59e77brVmzBmvWrMnR7u/vDytbdYWIiIio0FndOXNEREREZDqGOSIiIiIbxjBHREREZMMY5oiIiIhsGMMcERERkQ1jmCMiIiKyYQxzRERERDaMYY6IiIjIhjHMEREREdkwhjkiIiIiG8YwR0RERGTDGOaIiIiIbBjDHBEREZENY5gjIiIismEMc0REREQ2jGGOiIiIyIYxzBERERHZMIY5IiIiIhvGMEdERERkwxjmiIiIiGwYwxwRERGRDWOYIyIiIrJhDHNERERENoxhjoiIiMiGMcwRERER2TCGOSIiIiIbxjBHREREZMMY5oiIiIhsGMMcERERkQ1jmCMiIiKyYQxzRERERDaMYY6IiIjIhjHMEREREdkwhjkiIiIrsmLFCvj7+8PFxQWtWrXCsWPHnrr9f//7X9SrVw8uLi5o1KgRtm3blu3xOXPmoF69enBzc0O5cuXQrVs3HD16tCiHQMWMYY6IiMhKbNq0CZMmTcLs2bNx6tQpNGnSBIGBgbhz506u2x8+fBgDBw7Em2++idOnT+OVV17BK6+8gvPnzxu3qVOnDpYvX45z587h4MGD8Pf3R0BAAO7evVtcw6IixjBHRERkJT7//HOMGjUKI0aMQP369fHNN9+gdOnSWLVqVa7bL1u2DD169MDUqVPx7LPP4uOPP0bz5s2xfPly4zaDBg1Ct27dULNmTTRo0ACff/45kpOTcfbs2eIaFhUxhjkiIiIrkJmZiZMnT6Jbt27GNgcHB3Tr1g2hoaG5Pic0NDTb9gAQGBiY5/aZmZlYuXIlPD090aRJk8LrPFkUwxwREZEViI+Ph06ng4+PT7Z2Hx8fxMbG5vqc2NhYk7b/888/UaZMGbi4uODf//43QkJC4O3tXbgDIIthmCMiIirhunTpgrCwMBw+fBg9evRAv3798jwPj2wPwxwREZEV8Pb2hkajQVxcXLb2uLg4+Pr65vocX19fk7Z3c3NDrVq10Lp1a/zwww9wdHTEDz/8ULgDIIthmCMiIrICpUqVwnPPPYddu3YZ2/R6PXbt2oU2bdrk+pw2bdpk2x4AQkJC8tz+8f1mZGQUvNNkFRjmqEQozHWZsrKyMG3aNDRq1Ahubm6oXLkyhg4dipiYmGz7+PTTT9G2bVuULl0aZcuWLYphEZGdmTRpEr777jusXbsWFy9exNixY5GWloYRI0YAAIYOHYrp06cbt3/33XcRFBSEzz77DJcuXcKcOXNw4sQJjB8/HgCQlpaGGTNm4MiRI4iMjMTJkycxcuRI3Lp1C3379rXIGKnwMcyRzSvsdZkePHiAU6dO4cMPP8SpU6fw66+/4vLly3jppZey7SczMxN9+/bF2LFji3yMRGQf+vfvjyVLlmDWrFlo2rQpwsLCEBQUZLzIISoqCrdv3zZu37ZtW2zYsAErV65EkyZN8Msvv+B///sfGjZsCADQaDS4dOkS+vTpgzp16qB37964d+8eDhw4gAYNGlhkjFT4FBERS3fCFiQnJ8PT0xNJSUnw8PAost8zammR7bpAvpto6R7krVWrVmjRooVxXSW9Xo9q1aphwoQJeP/993Ns379/f6SlpeHPP/80trVu3RpNmzbFN998k+vvOH78OFq2bInIyEj4+flle2zNmjWYOHEi7t+/X3iDKiLWOL+seW6R6axxbgGcXyWFvc4vU7MHj8yRTSuOdZkAICkpCYqi8OtUIiKyOgxzZNOKcl0mg/T0dEybNg0DBw4s0qOyRERE5nC0dAeIrFlWVhb69esHEcHXX39t6e4QUQlhr18bUtFgmCObVpTrMhmCXGRkJHbv3s2jckREZJX4NSvZtKJal8kQ5MLDw7Fz5054eXkVzQDIJhTm0jcA8OuvvyIgIABeXl5QFAVhYWHZHk9ISMCECRNQt25duLq6ws/PD++88w6SkpIKe2hEVAIwzJHNK+x1mbKysvD666/jxIkTWL9+PXQ6HWJjYxEbG4vMzEzjfqKiohAWFoaoqCjodDqEhYUhLCwMqampxVsAKlKFvfQN8Gjtr/bt22PhwoW57iMmJgYxMTFYsmQJzp8/jzVr1iAoKAhvvvlmkYyRiGwbv2Ylm9e/f3/cvXsXs2bNQmxsLJo2bZpjXSYHh78/txjWZfrggw8wY8YM1K5dO9u6TLdu3cIff/wBAGjatGm237Vnzx507twZADBr1iysXbvW+FizZs1ybEO27/PPP8eoUaOMHw6++eYbbN26FatWrcp16Ztly5ahR48emDp1KgDg448/RkhICJYvX25c+mbIkCEAgIiIiFx/Z8OGDbF582bjz8888ww+/fRTvPHGG9BqtXB05Fs3Ef2N7whUIowfP954ZO1Je/fuzdHWt2/fPFc/9/f3hynLL65ZswZr1qxR002yMYalbx4/smvK0jeTJk3K1hYYGIj//e9/BeqLYZ0pBjkiehK/ZiUiykNxLH1jaj8+/vhjjB492ux9EFHJxTBHRGTFkpOT0atXL9SvXx9z5syxdHeIyArxeD3ZNK7VREWpKJe+MUVKSgp69OgBd3d3/Pbbb3ByclK9DyIq+XhkjogoD0W19I0pkpOTERAQgFKlSuGPP/6Ai4uL+gEQkV3gkTkioqeYNGkShg0bhueffx4tW7bE0qVLcyx9U6VKFcyfPx/Ao6VvOnXqhM8++wy9evXCxo0bceLECaxcudK4z4SEBERFRSEmJgYAcPnyZQCPjur5+voag9yDBw/w008/ITk5GcnJyQCAChUqQKPRFGcJiMjKMcwRET1FYS99AwB//PGHMQwCwIABAwAAs2fPxpw5c3Dq1CkcPXoUAFCrVq1s/blx4wb8/f2LarhEZIMY5oiI8lGYS98AwPDhwzF8+PA8H+/cubNJy+MQEQE8Z46IiIjIpjHMEREREdkwfs1KRJQLLntDRLaCR+aIiIiIbBjDHBEREZENs9owd/z4cfTs2RNly5aFm5sbWrdujZ9//lnVPjIyMvDRRx+hdu3acHFxQeXKlTF69GjcuXOniHpNREREVLys8py5PXv2IDAwEC4uLhgwYADc3d2xefNm9O/fH9HR0Zg8eXK++9Dr9Xj55ZcRHByM1q1bo0+fPggPD8f333+PXbt24ciRI6hQoUIxjIaIiIio6FjdkTmtVotRo0bBwcEB+/fvx8qVK/HZZ5/hzJkzqFOnDmbMmIHIyMh897N27VoEBwdj4MCBOHz4MBYsWIDNmzfjq6++wvXr1/HBBx8Uw2iIiIiIipbVhbndu3fj2rVrGDRoEJo2bWps9/T0xIwZM5CZmYm1a9fmu5/vvvsOADB//nwoimJsHzNmDGrWrIn169fj4cOHhd5/IiIiouJkdWHOsJp6QEBAjscCAwMBAPv27XvqPtLT03H06FHUrVsX1atXz/aYoijo3r070tLScOLEicLpNBEREZGFWN05c+Hh4QCA2rVr53jM19cXZcqUMW6Tl2vXrkGv1+e6j8f3HR4ejg4dOuS6TUZGBjIyMow/JyUlAXh0g+ysrCwAgIODAzQaDXQ6HfR6vXFbQ7tWq812Sx6NRgMHB4c827OyspCZ7vTUsVlKYqLO7DE9ztHx0ZTTarUmtTs5OUGv10On0xnbFEWBo6Mj9Ho9MtOt7vMIAODevSyzx5Rbe15zTO3cy0wv9KEW2L17Rfd6epzauWetr0VDvYDCfz0VZO7ZQr0K+/VUkLlnrfVKSLDMe3l+c89a63X/ftG+lyckJABAvrf3s7owZwhNnp6euT7u4eFh3KYg+3h8u9zMnz8fc+fOzdFeo0aNp/7ukurH6ZbugW1hvUzHWqnDeqnDeqnDeqlTXPVKSUnJM9MAVhjmrMX06dMxadIk4896vR4JCQnw8vLKdg6etUpOTka1atUQHR1tDK+UN9ZLHdbLdKyVOqyXOqyXOrZWLxFBSkoKKleu/NTtrC7MGZJnXkfNkpOTUa5cuQLv4/HtcuPs7AxnZ+dsbWXLln3q77VGHh4eNjFhrQXrpQ7rZTrWSh3WSx3WSx1bqtfTsoqB1Z1w9Pj5bE+KjY1FampqnufCGdSsWRMODg55nlv3tPPyiIiIiGyJ1YW5Tp06AQB27NiR47Hg4OBs2+TF1dUVLVu2xOXLl3OsSSciCAkJgZubG55//vlC6jURERGRZVhdmHvhhRdQs2ZNbNiwAWFhYcb2pKQkzJs3D6VKlcLQoUON7bdv38alS5dyfKU6evRoAI/OfXv8KpBvv/0W169fx+DBg+Hq6lq0g7EgZ2dnzJ49O8dXxZQ71ksd1st0rJU6rJc6rJc6JbVeiuR3vasF5HU7r8jISCxZsiTb7byGDx+OtWvXYvXq1Rg+fLixXa/Xo2fPnsbbeXXq1AlXr17Fr7/+Cn9/fxw9epS38yIiIiKbZ3VH5gCgS5cuOHjwINq1a4dNmzbh66+/ho+PDzZu3GjSfVmBR2u0/P7775gzZw7u3r2Lf//73zh06BDefPNNhIaGMsgRERFRiWCVR+aIiIiIyDRWeWSOiIiIiEzDMEdERERkwxjmiIiIiGwYwxzliqdSEhER2QaGOcqVoii4d++epbtBJcTjHw70ej1SU1MRFRVlwR5RScL5RZag1+st3QUjXs1KRmlpafjtt9/wn//8Bw8ePICbmxu8vb3RsmVLBAYG4plnnrF0F8mG3b17F2vXrsXGjRuRmZkJEYGXlxc6duyIfv36oWHDhpbuItkwzi8qCiICRVGg0+mQkZGB2NhYZGZmol69etm20+v1cHCw3PExhjkC8Oi+t1OmTMGGDRvg5OSEZ555BomJiYiLiwPw6Ea/vXr1wpAhQ9CpUye4uLgYJ7k9ysjIwMOHD+Hp6Wm3NVDj1q1beOutt7B161Z4e3ujYcOGiIyMxI0bN4zbtGvXDm+//TZefPFFuLu7W7C31seeX2um4PwyH+dW/iIiIvDFF1/gf//7HzIyMpCWloby5cujW7duGDhwILp06WLpLgJCJCLvv/++uLi4yAcffCB37tyR69evy+3bt+Xw4cPy7rvvSoUKFURRFPH19ZVFixZZursWN2fOHOnZs6f89NNPEh4eLg8fPsz3Offv3xedTlcMvbM+U6dOldKlS8vChQvlwYMHkpycLCIily9flvnz50vTpk1FURRRFEXGjh0rKSkpFu6xZaWkpMjFixdNmlfE+aUG55Y6UVFR0qlTJ1EURRo0aCADBw6UZs2aiYeHh3FO1axZU7744gtJSEiwWD8Z5khERKpUqSKDBg2Su3fv5rnNunXrpHnz5qIoiowfP96u3wzKli1rfCH7+/vLmDFj5M8//5SbN29KZmZmju2TkpJk7ty58sknn1igt5ZXrVo1GTRokMTHx4uIiF6vz7HNzp07pVu3bqIoivTr10/u3btX3N20Gh9++KE8//zzMm/ePNm9e7fcunVLtFrtU58TFxcnWVlZxdRD68L5ZTrOLXUmTZokZcqUka+++ipbe0REhPzwww/yyiuviJOTkyiKIv/4xz/kypUrFuknwxzJxYsXxd3dXSZOnCgiIlqt1vhmqNPpsr3QT58+Le3btxdFUWTXrl0W6a+lnTlzRpycnKRt27YyZcoUad68ufHF3KRJE5k5c6YcOHBA4uPjJSMjQ0REdu/eLaVKlZJBgwaJiNjVEbrw8HDx8vKSUaNGiYhk+0fhyfl1584d6du3ryiKIps2bSr2vloLLy8vURRFNBqNeHl5yUsvvSRffvmlHD161BhYHnf//n1555135J///KcFemtZnF/qcG6p4+/vLwMGDDCG/9w+rB8/flz69+8viqJIt27dJCoqqri7yTBHIjExMVKjRg3p0aOHSdtHRkaKoigyffr0XD8Bl3QbN24UBwcH+fLLL0VE5Pz587J69WoZPny41KpVSxRFERcXF+nSpYv8+9//lr/++kumT58uiqLI7t27RUTy/SRckqSkpEiDBg2kZcuWJs2XxMREKVOmjIwZM8YYhu3JuXPnxMXFRTp16iQrVqyQl19+WSpWrCiKokj16tVl2LBhsm7dOjl//rwkJiaKiMj+/fuldOnSMnDgQBGxrw8LnF+m49xS58aNG1KlShXj2B//oKDX63O8j0+ePFkURTH+21Cc/z4yzJGIiIwbN04URZEPPvgg21cVj09Ww0S+ffu21K1bV3r27GmRvlra8uXLRVEU2bJlS7b2hw8fyvHjx2Xp0qXy8ssvi4+PjyiKIl5eXuLu7i6+vr4W6rHlzZ07VxRFkWHDhsnFixdzfZMzzK+7d+9KkyZN5IUXXijublqFzZs3i6IoxnNTIyIiJDg4WObMmSMdO3YUd3d3cXR0lMaNG8t7770n27Ztk3fffdduPyyIcH6ZinNLHZ1OJ61atZLatWsbw21uDDXJyMiQypUrS79+/SQ1NbWYevkIwxyJyKOjS/Xq1RNnZ2cZOHCgHDt2LM9t9+zZI5UqVZKpU6eKiH29uEVEkpOT5euvv5aLFy+KyKMX/JP/eCQkJMiOHTtk3rx5xpOv33//fRERuzz35ObNm9KuXTtRFEVeeOEF+e9//5vnSeg7d+6USpUqyeTJk0XE/ubXTz/9JIqiyO+//56tPSsrS8LDw+WXX36Rd999V5o0aSKlSpWSMmXKiLOzs1SqVMlCPbY8zi/TcG6p99VXXxnn1f79++XBgwc5tjF89Xrv3j1p2bKltGvXrri7yTBHf7ty5Yq89tprxhP7n3vuOfniiy/k8uXLcuvWLbl69apcu3ZNOnToIK6urnLp0iURsa/D7vnJrRYjR44URVHsvl5JSUkyadIk48Uj9erVk+nTp0twcLAcO3ZMTp48KUeOHJHmzZuLu7u7XL58WUTsr15paWmyYcMGCQ8PF5Hcv6pJTU2VU6dOyX/+8x/jSf32/GFBhPPLFJxb6iUnJxv/XWzUqJEsWbJELly4IKmpqTnmTlBQkPj6+sqkSZNEpHg/KDDMkYj8/YZ28+ZNWbZsmTz33HPGUKcoitStW1eqVKkiiqKIq6ur8TC9PZ4zZ8qYDS/iK1euSIMGDaRu3bomP7ckMtTj3r17snHjRunTp494e3sb51eFChXE2dlZFEURT09P+frrr0XEfuuVl9zqMWbMGFEUJduRYnvD+VVwnFtP9+WXX0rt2rVFURSpVq2aDBs2TL799lv59ddfZffu3fLbb79J3bp1xcvLy3hFa3HWi4sGU57279+Pbdu24a+//sKDBw+QnJyMpk2b4o033kC7du2g0Wi44GQ+tm7disGDB2PWrFmYNGkStFotHB0dLd0tq3Dq1CkcOHAA165dQ3JyMuLi4tC2bVv07t0bTZs2BWCfC5qaMmbDavPh4eHo3bs39Ho9rly5Ypf1ygvnV06cW+oZ6vHw4UMcOXIEW7duxe7du3H58mWkp6cD+Pt2cj4+Pvjss88waNCgYu8nwxzlKyMjAykpKfD29oZOp4NGo7F0l2zGw4cPERQUhICAALi5udntG+LTaLVaiAicnJws3RWbs2/fPowePRrjxo3DO++8ww8LueD8Mg/nVt6uXLmCM2fOIDo6GgkJCbh58yY6deqEDh06oFatWhbpE8McZXPlyhU4OzujevXqyMrKyvYGyCCS0+P1MtSHdcrb2bNn4eLigjp16mSbX3q9HoqisG4qZWZmIjQ0FC1btoSrq6vdzz3Or8LDuZU/a6oJwxwZJ+T9+/cxefJkXLp0CYcOHQLw6AVdqlQpC/fQuqiplzW92C0tMTERb731FkJDQxEVFQUASE9Ph4uLi4V7Zr0eDyePf1gAwHn1BM4vdTi31Dl69ChKly6NRo0aGY9Sigh0Op1VHLF0sHQHyHpcvHgRf/zxB5o0aQIAiI6OxuTJk7FkyRIL98w6mVIvvin+fT7JpUuXsH//fvTu3RvAo5tXDxkyBFOmTLFk96xWYmIiPv30U3Tr1g3Ao7mUnp7OI0xP4PxSj3NLncTERMydO9d4rqWjoyMePHgARVGsIsgBDHOEvwPHkSNHcO/ePYwdOxYAcObMGfzwww/GyarX6y3WR2vCeqnzeL3i4uLw1ltvAQAuXLiArVu3omLFigAAnU5nsT5aE4YTdTi/TMe5pY6hXpcvX8a5c+eM7/XXrl1Djx49MHToUEt2LxuGOTtnmKy3b99GcHAwnnnmGTRq1AiZmZk4cuQI0tPTMWzYMAA8ygSwXmo9rV6HDx9Geno6Ro0aBQBwcODbEcBwogbnlzqcW+oY6hUaGopbt25hzJgxAB6FuxMnTqBu3boAHl1kY2mc3QQAOH/+PA4ePIjhw4cDePTJIygoCB07dkS5cuWg0+kYTh7DeqmTW72Cg4NZrycwnJiH8yt/nFvqPK1ehw4dQnp6Ot5++20AsIoVHvgXs3OKokCn0+HAgQN48OCB8cV85swZnDp1yvjJjR5hvdRhvczDcGIazi/1OLfUsZV6WceZe2QRhiuYIiIiEBwcjNatW6NixYpITk7Gvn374OzsjAEDBgCwjk8elsZ6qcN6qZdfONmwYYOFe2g9OL/U4dxSx9bqxTBnxwyfJk6fPo0TJ05g1apVAB6tnRYSEoJXXnkFALhY5P9jvdRhvdRhOFGH88t0nFvq2GK97HuGEx4+fIi9e/fC0dERQ4YMAQCcPHkS169fx+rVqwHwRP7HsV7qsF6mYzhRj/PLNJxb6thivayjF1TsDJ88DJOzd+/ecHBwQFxcHHbt2oUKFSqgQ4cOAKznk4clsV7qsF7mYTgxDeeXepxb6thavXgBhJ0yTMK//voL4eHh+Oc//wng7/WHDJPXGi65tgaslzqGel2+fBnh4eEYOXIkANYrL4Yr5xhOTMP5ZTrOLXUeX1suJCQEL730kk3Ui2HOjmm1WlStWhVTpkxBjx49AACHDx/GnTt3MHr0aAC8RP1xrJc6Op0ODRs2xNKlS9GzZ08AwKFDh1ivXDCcqMf5ZRrOLXUM9bp+/TrCw8ONV7FeunQJBw4csNp68WtWO2S4X6GjoyM6dOiAFi1aAABSUlKgKAp69eplvF8f3wxZL1MZvvpKS0uDm5sbNBoN6tevjzp16gB49LWFj48PBg4cyHrlguHk6Ti/zMe5ZToRgYigXbt22Lx5M3r16gUAOHDgAOLi4qy2XooYjilSiWZ4I0xKSsLMmTPRrVs340mcj4uLi0NGRgb8/Pyg1+utbsIWF9ZLHUO9EhMT8cYbb+Af//gHxo8fn2O7lJQUZGZmwsvLy67rBeQMJwaGk6ofPnyIDRs2YPfu3Vi/fr1xe3vE+aUO55Y6j7/fe3p65ng8KysL27dvx/bt2/H1119bZ72E7EJWVpaIiCxcuFAURZHmzZvLlStXnvocnU5XHF2zSqyXOk/Wq2bNmnLixImnPsee66XX60VEJCEhQXr27ClffvllrtslJydLfHy8iNh3vTi/TMe5pY6hXvfu3ZP69evLtGnTct1Oq9XKw4cPsz3HmjDM2QnD5KtXr554eXmJoijy3nvviYh9v5DzwnqpY6hX3bp1xd/fXxRFkcGDB1u4V9aL4UQdzi/TcW6pY6jXokWLRFEU8fb2lh07dohI3qFNq9UWW/9MxTBnBwwv1LNnz4qiKLJgwQIZOHCgKIoi58+fN25nmLhXr16VtWvXSnR0tEX6a2mslzpP1mvx4sUyceJEURRFdu/ebdzOUK8LFy7Ip59+KpcuXbJIf60Bw4npOL/U4dxSx1Cv2rVrS6NGjURRFAkMDJSMjIw8t7VGDHN2wPDJ4+2335aKFSvK8ePHJSwsTBRFkZdfftn4uMHChQulTJkyEhERYYnuWhzrpc7j9fLx8ZFjx45JdHS0uLq6Svv27SUxMTHb9osWLRInJye5du2aBXpreQwn6nB+mY5zS50n6/XZZ5/JvHnzRFEU+fHHH43bGep16tQpGTt2rJw8edIi/X0ahjk74uXlJYMHD5b79++LiMjYsWNFURT59ddfjdvExMRIQECA1KxZU0Ss+5NIUWO91DHUy/CP66xZs0RRFPn666+N28TExEj37t2lVq1aImKf9WI4MQ/nV/44t9R5vF6+vr5y9OhRSU5OlkqVKkn9+vVzfEBfsmSJKIoily9ftkR3n4phroQzfLe/Y8cOURRFVq9ebXzs7t274u7uLh07djS+yLdt2yalS5eWxYsXi4jkOApV0rFe6hjqFRwcLIqiyKpVq4yPpaenS40aNaROnTpy+/ZtERHZunWrXdfrcQwn+eP8Mg/nljre3t4yePBgSUhIEBGR5cuXi6IoMmvWLOM2hnrVqVNHRKyvXgxzJZxhwr3yyitSo0YNOXfunIiIZGZmiojI4sWLRVEU+fzzz0VEZObMmaIoivEqJ2ubsEWN9VLHMN4333xTGjVqZKyX4XyTNWvWZLt45IMPPrDrejGcqMP5ZTrOLXUMX7EGBQXlqJeISLt27aRs2bLGVQysvV4Mc3YiJCRE1q9fL+np6dna79y5Iw0aNJC6devKli1bpGXLltKhQwcRsc4rdooL66VOaGio/PnnnzlOGk5JSZGuXbtKhQoVZN26dfL888/bdb0YTszD+ZU/zi3zTJ06VVq3bp2jXn/++ac4OTnJgAEDRETkww8/tOp6McyR/PDDD6IoinTo0EGcnJzkp59+EhH7ezM0Feulzvbt20VRFGnSpIloNBrWSxhOChPnV3acW+qcP39eDh48aPz2xSAzM1MGDhwoTk5O8sUXX8hzzz1n1fVimLMTT1tHSKfTyauvviqKokipUqWKsVfWi/VSJ79PqRMmTBBFUcTJyamYemS7GE5y4vwqHJxb6pw7d05cXFyMS7xs2LBBRKyzXrydl50z3PImLCwMEyZMQMOGDfH1118bb/tC2bFe6sj/3/YmIiIC48ePR7Vq1VgvIN/bAb3zzjtYvnw5HB0dkZmZWYw9sy2cXzlxbqmTX70WLVqE999/H87Oznj48GEx9kwdhjnKJiMjA87OznZ9X0M1WC/zsF65YzgpHJxfOXFumScuLg4ffPABfHx88Mknn1htvRjmiKjI6XQ6AIBGo7FwT2wTw8nTcX6Zj3NLnfyO5FkKw1wJZq2TzlqxXmQtGE7+fj3ydVm4OLfU0ev1AGD1gZdhzs7wjVEd1ovIevD1mDsGX2KYK4EyMzMRGhoKHx8flClTBg4ODvDy8oKzs7Olu2aVWC/T8R8LKkoignv37mHfvn2oWLEiHB0dUaZMGdSoUQNlypSxdPdsCl+r9oVhrgS5d+8evv/+e6xYsQK3b9+GTqeDj48PGjRogNatW6Ndu3Zo3rw5fHx8II+WpbH6Q8dFifUyj16vh4jwaxoT8B9U092+fRtffPEFvvjiC+NVg+7u7qhatSqaNWuGTp06oVOnTqhduzYURbH7c70YfNUp6a9FhrkSZNiwYVi/fj1atmyJxo0bIzU1FcnJyfjrr79w48YNlC9fHj169MDEiRPx3HPPWbq7Fsd6qbNlyxZ07NgRnp6exjadTgdFUez6H9X8MPyapm/fvvjtt9/w8ssvo1GjRtBqtbh//z6OHTuGsLAwAED79u0xfvx4vPbaa5btrIUx+JqnRJ8vWCSr11GxCwsLE41GI2+99ZakpqYa22NjY+XEiROycuVKeemll6R06dJSqlQp+eijjyQtLc2CPbYs1kudM2fOiKIoUrVqVRk9erTs3LkzxzZarVb0er1xweWEhATjrW/s0R9//CH379/P1qbVap+6ILW9CgsLEwcHB5k0aVK2+qSmpsqtW7dkx44d8vbbb0ulSpVEURR5++23jTeRt0evv/66aDQaee2112T27Nkyc+ZMGTdunLRo0UKcnJzEyclJunTpIps3b7Z0V63CTz/9JPfu3cvWptVqrXLxX3MxzJUQ06dPlwoVKsiBAwdERHLcU1Sv10tkZKR8/fXX4uvrK6VKlbLrFzrrpc706dNFURRxdXUVRVFEURSpX7++fPDBB3LmzJls2xreID/++GNxd3eXEydOWKLLFsXwq86HH34o5cuXl/3794uI5LgVlYjI/fv3ZcuWLdKqVStRFEVWrFhR3N20Cgy+6pw+fdr4ntWjRw/55ZdfcmyTlZUlOp3OWM/Y2FgJCwuT5OTk4u6u2RjmSoi33npLvLy85NatWyLy9NuNXLx4UWrXri3Vq1cvUZ9M1GC91HnppZekfPnyEhYWJuvWrZN27doZ3yAVRZH27dvLF198IZGRkdmeoyiKBXttOQy/6kybNk1cXV3l+vXrIvL02+lFR0dL69atpXz58pKSklJcXbQaDL7qzJo1SxRFkSpVqhhfi25ubjJixAg5dOhQtm0Nr8VPPvlEXFxc5PDhw5boslkY5kqItWvXiqIosnDhQmPb45/6DT8bbiY8ZcoU8fT0tKnJWphYL9PFxMTIc889J76+vtnaIyIi5OOPP5a6detme5Ps16+ffPjhh1KmTBl54403RMQ672VYlBh+1fn9999FURSZMGGCMZw8fqTEICsrS0REFixYIK6urrJr165i76ulMfiq8/rrr4u7u7ucOXNGtm/fLoMHDxZvb2/ja7Fq1aoyY8YMuXLlivE5L730kmg0Ggv2Wj2GuRLi0qVLUq9ePXFzc5Mvv/wyx+HhJ98YFy1aJC4uLhIWFiYi+d/IuqRhvUwXFxcngwYNkhEjRohWq5XMzMwc/4AcP35c3n777WxvkoqiGD/52lOYY/hVLzo62hh4P/zwwxxfCz55ruHSpUvFyclJTp06JSL29Xpk8DVdXFyctGrVSry9vbO13759W1auXCk9evSQUqVKGV+PLVq0kHfffVfc3Nxk8ODBIvJ3Ha0dw1wJsnPnTqlWrZooiiJt27aVZcuWyblz53K8yOPj4yUgIECqVatmoZ5aB9bLNHq9Xi5fviyXL1/O9o+mTqfL9Y1uzZo14ubmZrf1Yvg1z6VLl6R9+/aiKIpUqlRJpk2bJocPH85Ri9jYWOncubP4+flZqKeWxeBruvv378v48eNl+PDhkp6eLllZWTnG/9dff8mnn34qLVq0sOnXIsNcCWGYoEeOHJEXX3zROCHr1q0rAwYMkHnz5klISIisXLlS2rdvLy4uLrJ48WIRsZ1PHoWJ9SpcOp3OeBHJzp07xcXFRaZOnSoi9lcvhl/1DHU6f/68/POf/zS+HkuXLi2tW7eWCRMmyI8//igzZsyQhg0bSunSpWXZsmUiYn/zS4TBV43ExES5fft2tteiXq/PNaRt3rxZvLy8bPK1yDBXQu3bt08mTJggtWvXzvZpw/DVzoIFCyQpKUlE7OuTWl5Yr8LzxhtviKIoEh4eLiJPP6fHXjH8Pl10dLTMmzdPmjZtmuP16OfnJ99++61xSSF7ez0y+BYunU5n/Lp6x44dNvta5KLBJYxOpzMuiJiRkYGEhATcvHkThw4dQmJiIurXr48aNWqgZcuWFu6pdWC9CtfDhw+xcOFC7N27F3v37i3xq64XhiFDhmD9+vW4cuUKatWqZdcLvOp0Ojg4OGSbM5GRkThw4AC0Wi38/f3h6+uLevXqWbCX1uXmzZtYt24dfv75Z5w5cybbY9WqVcPMmTMxePBguLm58fWYj8GDB+M///mPTb4WGeZKoMcDSl74ov4b66WOKW9w6enpcHFxsak3Q0tg+M1ORKDVauHk5GT82Z7r8TQMvoVLq9Xiyy+/xNatW7Fz506be+9imCshDG96kZGR2Lt3L1q1apXri5hvjo+wXuo8Wa/WrVujbt26lu6WTWD4zZ9hfl27dg2bNm1C586d0bZtW0t3y6ox+KrzZL0eb8+tbrb2WrSdntJTGSbj1q1bMWLECNy/fx8AEBsbi3PnziE9PT3bdvaO9VLnyXolJiYCyFkvesTwGTkyMhLr1q3D5cuXn7q9i4sLANjUPx6FyTC/QkJC8MEHHxjrFxERgZ07dyI5OdmS3bMqhtpcv34dixcvxuHDhwHwvSovedXLwFA3Q9gzsLXXom31lnJlmKyJiYk4cOAAvLy80Lp1awDATz/9hKFDhyItLc2SXbQqrJc6rJd6DL+me3x+7du3D97e3mjXrh0A4L///S9Gjx5tvJk8MfiqZWq9FEWBo6OjxfpZUAxzJchff/2FXbt2YfDgwQCAGzduYMuWLUhKSoKXlxf4jXp2rJc6rJdpGH7NY5hfgwYNAvBofm3duhUajQY+Pj6cX2DwVcue6sUwVwIYPnkcOXIE8fHxGDNmDADg3LlzOH78ON577z0Aj06YJdZLLdbLPAy/pnna/Dp69CjeeecdAJxfj2PwVcce6sUwZ+MMkzAmJgZBQUGoU6cOnn32WWRkZCA0NBTp6ekYNmwYAOR7xaY9YL3UYb3UY/g1XX7zKyMjg/PrMQy+6thTvRjmSoizZ8/i0KFDGDlyJADg6tWrCAoKQpcuXeDh4QGdTscTZB/DeqnDepmG4dc8nF/5Y/BVx97qxTBn4xRFgVarxcGDB5Geno4333wTABAWFoYzZ87g7bfftnAPrQvrpQ7rZR6GE9NwfqnHuaWOvdTLdi/dIOP6ODdu3EBQUBA6dOgALy8v3L9/H/v27YOrqyv69OkDoGR88igo1ksd1ku9/MLJf//7Xwv30HpwfqnDuaWOvdWLYc6GGT5NnD59GqdOncK6desAAFeuXEFISAheffVVAI9WtrblS64LC+ulDuulDsOJOo/Pr9OnT+PHH38EwPmVG84tdeyxXvb9CikBHjx4gL1798LFxcV41dypU6cQGRmJ9evXA7C9xQ+LEuulDutlOoZf9R48eIA9e/ZAo9Fwfj0Fg6869livkjEKOxYTE4O9e/eiR48eAB4tSrpz505UqlTJeDscvhn+jfVSh/VSh+FXnfj4eFy5cgUDBgwAANy+fRs7duyAr68v59cTGHzVsbd6MczZML1ej1q1amH9+vXw9PQEAFy8eBHBwcEYN24cgJL1yaOgWC91WC/1GH5Np9fr4efnhxUrVqBMmTIAHq3/deTIEQwdOhQA59fjGHzVsbd68VViQ3Q6HTQaDW7dugUvLy/j/RybNWtm3KZGjRp47bXXMHbsWAAla7KqxXqpw3oVDMPv0xnm16VLl1C6dGn4+fkBAOrVq2fcxt/fH8OHD8f48eMBcH4ZMPiqY4/1UqQkLH1sJ/R6PRwcHNCxY0dUqFABy5cvR6VKlZCVlQUnJydLd8/qsF7qsF7q5BV+HxcREYHZs2fjo48+QvXq1Y01tkeGk9I7d+4MrVaLNWvWoFatWiXuH9XCkFfwfVxMTAyWL1+O8ePHo3LlynY9t1gvAEI25eHDhxIQECCKosiQIUPkwYMH2R7XarUW6pl1Yr3UYb1Mp9PpRESkQ4cO8tprr0lMTIyIiGRmZlqyW1YtMzNTxowZI4qiSKdOneTatWvZHjfU1N7p9XoREenUqZO0a9dOwsPDRUQkKyvLkt2yWqyXCMOcDUpISJBx48aJoijy/PPPy+HDh0Xk0RuhYVLT31gvdVgv0zH8qpeWliYfffSRODs7S61atWTLli2i1Wo5v57A4KuOvdeLYc5G3bt3z/gPbps2beTChQuW7pJVY73UYb1Mx/Crnk6nk88++0wURZFq1arJrl27LN0lq8Tgq44914thzsatXLlSPDw8xNvbW9avX29sL+kT11yslzqsl2kYfk33+Nz5888/pWbNmqLRaGTx4sWSlpYmIiX/KIoaDL7q2Gu9GOZskFarNZ4LkJqaKl988YWUKlVKKlWqJJs3bzZux39wH2G91GG9zMfwmz/DkRKDX3/9VXx9fcXZ2VlWrFhhwZ5ZHwZfdey5XgxzJcSZM2ekRYsW4uTkJPPmzbOrEz/NwXqpw3rljeFXvSfnT2xsrHTv3l0URZE333xT4uLiLNQz68Lgq44914tLk1i5xy+5PnLkCG7dugWtVosyZcrg5s2bAABHR0dERkbi5MmTuHHjBsqWLYvx48dj2rRpcHNzK3mXYD8F66UO61U0zp49i3/+858ICwvD3LlzMXXqVLtcfsMwv86dO4dffvkFsbGxcHR0hIODA27dugVXV1dkZmYiLi4OUVFRiIqKQunSpfHGG2/g008/hZeXl3FJE3v15NItcXFxGDJkCHbu3ImRI0di3rx5qFixogV7aF3stV4Mc1bO8EbWq1cvbN++3diu0Wig0+lQqlQpODs7IzMzE8888wzi4+MBAHfu3MHo0aPxzTffWKrrFsF6qcN6qcPwq45hfg0aNAgbN24EAJQqVQqurq548OABKlasaKxpjRo1EBMTg/Lly+PEiRMICAjAhg0bUL58eQuPongw+KrDemXHMGcj1q1bBzc3N1StWhWxsbGoWbMm9Ho90tLSUKtWLSQmJkKj0aBq1aq4fv06Zs+ejV9++QXjxo3D0qVLodFoLD2EYsV6qcN6mYbh1zzbt2+Hj48PypQpg3v37qFevXpITEyEoiioWrUq7ty5A3d3d3h4eCAiIgKff/45li9fjoEDB+L777+Hq6urpYdQ5Bh81WG9smOYK6FSU1PRs2dPXLlyBQcOHEDt2rUt3SWrxnqpY+/1YvgtfE8eJenXrx+CgoKwd+9eNG/e3II9K14MvuqwXv+vmM/RIzPo9XrjSZ2Pn0Sd1wnVhm0/+ugjcXR0tLtlElgvdVivopeSkiIdOnQQHx8fuXLliqW7U+wMc8mUi0AM82vRokWiKIqcPXu2SPtmi56sY9++fcXd3V1OnjxpoR5ZN3uol32cuGHjFEUxnmPz+CfXvL7rd3BwwP3793Hs2DEoioL69esXSz+tBeulDuuljohAr9cb///x9tzo9XqUKVMG3bt3x71795CVlVUs/bQmhrlkyvlJDg4OSE5Oxl9//QVvb280atSoqLtnVQzzKK/5BPxdR8M8bNGiBVJTU+3yHsqs1yP8mrUE++uvv3D9+nW8+OKLlu6KTWC91GG9THf//n0MGTIEwcHByMzMtHR3bMK1a9cQFRWFLl26WLorVi05ORnvvvsutm7dijt37li6O1avpNaLYY6IqBgw/FJRYfBVpyTWi2HOSsn/nwwsjxZ2NmspA3tcAoH1Mg3rRdZOStCyEURFjWHOhuh0umznN9HTsV7qsF55Y/gla8bgq05JrBfDnJXJysrC3r17ERkZicTERDg5OaFFixZo165dtu34D8MjrJc6rFfhYfglImvBMGdFLly4gEWLFmHdunU5HqtatSr69euHESNGoEGDBhbonfVhvdRhvdRj+DVdRkYGnJ2ds7WZcgSEtSMqOIY5KxIYGIg9e/bgrbfeQsuWLVG1alWcOnUKW7duxaFDh5CZmQlnZ2eMGTMG48ePR61atSzdZYtivdRhvdRh+FVn4cKFqFmzJpo3b44qVarAxcXF0l2yWgy+6rBeJijCNexIhZMnT4qiKDJ79uxcH79+/bp88sknUrlyZVEURfr16yd3794VEdMW4ixpWC91WC/1AgICxMnJSSZMmCDr1q2TPXv2yGeffSZdu3YVZ2dnURRFXFxc5N1335Xw8HBLd9eiDPOrbNmy0qZNG5k1a5bs3LlTbt68KVlZWdm21Wq1IiJy5coV+eqrr+TSpUuW6LJFLViwQH7++We5evWqPHz40NLdsXqsV/4Y5qzEnDlzpHz58rJv3z4R+fsNLysrK9s/pikpKTJlyhRRFEVGjRpl3M7esF7qsF7qMPyqM3v2bFEURTp16iR169YVBwcHKV++vPTs2VOWLl0qoaGhxvoYLFq0SJydnWXXrl0W6rVlMPiqw3qZhmHOSixdulQURZHjx4/n+rhOpzNO1Lt370qvXr2kXLlydntEgPVSh/VSh+FXncGDB4uDg4OcOnVKzpw5I8uWLZNXX31VfH19RVEUqVatmrzxxhuyevVquXz5sty4cUMCAwPF2dnZ0l0vdgy+6rBepmGYsxKhoaGiKIq89tprcvXq1Ty3M/xDsnr1anF0dJTffvutmHpoXVgvdVgvdRh+TXf37l3p3r27VKtWLVt7TEyMhISEyMcffyxdunQRDw8P0Wg00qhRI3nttddEURQZMWKEiEiOIywlGYOvOqyXaRjmrIRWq5URI0aIoijy6quvysGDB403nH6c4R/bL7/8UhwcHIw3Cra3r3ZYL3VYL3UYfk2Xmpoq//rXv2TYsGGSkpKS4/GsrCy5evWqbN68Wd577z1p3ry58ZzDo0ePiojkOhdLIgZfdVgv0zHMWZHk5GR56623xMXFRcqWLStDhw6VoKAgiY+Pl9TUVMnIyBARkTNnzkjLli2lVq1aFu6xZbFe6rBepmP4VS8jIyPbuPOqwY4dO8TPz0+qV69eTD2zHgy+6rBepuPSJFYmPj4eGzZswNq1a3H69GkAgL+/P1q2bAlPT0/cu3cPe/fuhU6nw2effYaRI0dCq9XC0dHRwj23DNZLHdbLdCkpKfjXv/6FNWvWwMXFBS+99BIGDRqE559/Hi4uLnByckKpUqVw9uxZjBo1CgkJCQgPD7d0t4udmHBXDBGBXq+HRqPBb7/9hj59+mDGjBn45JNP7HJ+ZWZmwsnJybi0huSxzEZISAj++c9/QlEUREREFHMvrQfrZQILBkl6ioiICPnuu++kX79+Ur9+ffHx8REnJydRFEXatGkjISEhxsPH9ngU4Emslzqsl2nu3r0ry5Ytk+bNm4uiKKIoitSoUUP69+8vo0ePlj59+oiXl5eULVtWfvjhBxGxn691zKHX62Xy5MmiKIrx62t7OXIi8mj8+Y1Xr9cbz8f89ddfRVEUmTlzpojY39xivUzHI3NWJrdFDq9evYp79+7B09MTOp0OtWrVyrGAor1ivdRhvcwTGRmJkJAQhISE4Pz587h37x4SEhKg1WrRunVrfPTRR+jcuTMcHR1L5H0f1dLpdNBoNDnaMzMz8csvv+DcuXOYP38+a/UUIoKpU6fi888/R3h4OJ555hn7WgRXJXuvF8OclXl88tnTRDQX66UO66UOw686ec2pJ0ObIewxzDH4qsV65Y5hzkoYJl5YWBhmzpyJkSNHok+fPpbultVivdRhvczD8GsaU+eX4Z8be/pHNi8MvuqwXk/HdyYrYZh0x44dw/bt2+Ht7Q0AOH36NFavXo20tDQwd/+N9VKH9VLHUIuzZ8+iV69e2Lx5M4PcU5g6vxRFsat/YHOT29x63OMn+YuI8SiUvdaN9TIN352sgGGy3rt3DyEhIfD19UWnTp0gIti6dSvefPNNJCQk2N3kzAvrpQ7rpR7Dr+k4v9Rh8FWH9TINw5wV+euvv7Bnzx4MHDgQAHD9+nXs3LkTTZs2RbVq1aDX6y3cQ+vCeqnDepmG4cQ8nF/549xSh/UyHcOcFTBMxNDQUCQkJOCtt94CAJw/fx6hoaH45z//CQB8M/x/rJc6rJd5GE5Mw/mlHueWOqxX/hjmLMzwyePmzZsIDg5G/fr1Ubt2bTx8+BAHDx5EVlYWhg0bBgB2t7BmblgvdVgv9RhOTMf5pQ7nljqsl+kY5qzE2bNncejQIbz55psAHi1/EBwcjICAALi5uUGn01m4h9aF9VKH9TINw4l5OL/yx7mlDuulDsOchSmKgqysLBw4cACZmZkYOXIkACAsLAznz5/H2LFjLdxD68J6qcN6mYfhxDScX+pxbqnDepmGYc6CDJ88bty4gaCgIHTu3Bmenp5ITEzE3r174ebmhpdffhkAcl0k0d6wXuqwXuoxnJiO80sdzi11WC91eGzSggznA5w+fRpnz57Fhg0bAACXL1/Gzp078frrrwOAXd6IOjeslzqslzqG5Q0YTkzD+WU6zi11WC/17PsVZgXS0tKwdetWiAj69+8PADh16hSio6Px9ttvAwAXK30M66UO62U6hhP1OL9Mw7mlDuulHl9lFpaeng5vb2+88847AIBbt25h27ZtqFq1Klq0aAGAb4aPY73UYb3UYThRh/PLdJxb6rBe6jDSWpiXlxemTJmCMmXKAADi4+Nx+fJlDBgwAAA/eTyJ9VKH9VKH4UQdzi/TcW6pw3qpowjvSVNsDDcKjoqKgqenJzw9PXNsc//+fRw4cAAdO3aEp6en3d0s+HGslzqsV+GIiYlBmTJl4OHhgTNnzuD111/Hq6++ikWLFtl1OOH8KjjOLXVYL9MxzBUjw5th9+7d0bNnT7z33nuckE/BeqnDeqnDcKIO55fpOLfUYb0KjmGumCUnJ+OZZ55B2bJlcejQIVSsWDHbpDT8v06n41U6YL3UYr1Mx3CiHueXaTi31GG9Co5fOBcjvV4PDw8PLFu2DNeuXcOECRMA/H3ljl6vN/6/RqPBvXv3LNZXa8B6qcN6qePg4IDk5GSEhYXhq6++wp07d+Do6IjHP98a/p8Lk3J+qcG5pQ7rVQiEil1aWpq88cYboiiKrFixIttjcXFxEhoaKuPGjZOhQ4daqIfWhfVSh/UyjU6nExGR9evXi6Io0q9fv1wfN4iPjy+2vlkzzq/8cW6pw3oVHMNcMdPr9SIikpiYKNWqVZPGjRvLiRMn5Msvv5Q33nhDfH19RVEUURRFPv30UxER0Wq1luyyRbFe6rBe6jGcmI7zSx3OLXVYL/PxnDkLuHnzJq5evYpPP/0Uu3btAvDoa4nSpUujbt26eOONN1C3bl107NgRrq6udn+iJ+ulDutlOsPY79+/j8aNG6NcuXJYtWoVQkNDcfToUezcuRNxcXEAgE8++QQzZsyw+/PBOL9Mw7mlDutVQBaLkXboxx9/lJdeeknKly8viqKIq6ur1KhRQxRFkQkTJkhkZKSlu2hVWC91WC/zREdHy549e6Rbt27Go0qOjo7i4eEhLVq0kGXLlklQUJA8ePBARP4+OmVvOL/U49xSh/UyHy8VKWLy/582tmzZgmHDhsHZ2Rndu3dHy5Yt0a1bNyQmJmLIkCE4ceKE8QRPe76Kh/VSh/Uy37p16/DLL7/g4MGDSExMhIuLC/z9/REREYGxY8diypQp8PPzy/E8ezrKxPllHs4tdVivQmC5HGlf/vOf/8jKlSvl5s2bOR774YcfRFEU+de//iUi/LQhwnqpxXqZxjD2P/74QxRFERcXF+ndu7d8/PHHEhoaKtu2bRMvLy9p06aNREREiIhIVlaWJbtsFTi/8se5pQ7rVbgY5izAcGWOTqcTnU4ner1eXn/9dVEURTZt2mTh3lkf1ksd1it/DCfm4/x6Os4tdVivwsEwZyWOHj0q/v7+UqVKFYmNjbV0d6we66UO65U3hpOC4/zKHeeWOqyX+Xg1qxX55ptv8Pbbb0Ov11u6KzaB9VKH9TLdsWPH0L9/f2RlZeHkyZPw8fGxdJesHueXaTi31GG9TMMwZ0VSUlJw+vRpdOzYkZdcm4D1Uof1UofhRB3OL9NxbqnDeuWPYY6IKBcMJ1RUOLfUYb3yxzBHREREZMMcLN0BIiIiIjIfwxwRERGRDWOYIyIiIrJhDHNERERENoxhjoiIiMiGMcwRERER2TCGOSIiIiIbxjBHREREZMMY5oiIiIhs2P8B4a3EZ1pvwvkAAAAASUVORK5CYII=\n",
"text/plain": [
- "
"
],
"text/plain": [
""
diff --git a/docs/tutorials/05_admm_optimizer.ipynb b/docs/tutorials/05_admm_optimizer.ipynb
index 0902f6b9e..ee4102b15 100644
--- a/docs/tutorials/05_admm_optimizer.ipynb
+++ b/docs/tutorials/05_admm_optimizer.ipynb
@@ -83,17 +83,14 @@
"metadata": {},
"outputs": [],
"source": [
- "import time\n",
- "from typing import List, Optional, Any\n",
- "import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"\n",
"from docplex.mp.model import Model\n",
"\n",
- "from qiskit import BasicAer\n",
- "from qiskit.algorithms import QAOA, NumPyMinimumEigensolver\n",
+ "from qiskit.algorithms.minimum_eigensolvers import QAOA, NumPyMinimumEigensolver\n",
+ "from qiskit.algorithms.optimizers import COBYLA\n",
+ "from qiskit.primitives import Sampler\n",
"from qiskit_optimization.algorithms import CobylaOptimizer, MinimumEigenOptimizer\n",
- "from qiskit_optimization.problems import QuadraticProgram\n",
"from qiskit_optimization.algorithms.admm_optimizer import ADMMParameters, ADMMOptimizer\n",
"from qiskit_optimization.translators import from_docplex_mp\n",
"\n",
@@ -112,7 +109,7 @@
"\n",
"To solve the QUBO problems we can choose between \n",
"\n",
- "- `MinimumEigenOptimizer` using different `MinimumEigensolver`, such as `VQE`, `QAOA` or `NumpyMinimumEigensolver` (classical)\n",
+ "- `MinimumEigenOptimizer` using different `MinimumEigensolver`, such as `SamplingVQE`, `QAOA` or `NumpyMinimumEigensolver` (classical)\n",
"- `GroverOptimizer`\n",
"- `CplexOptimizer` (classical, if CPLEX is installed)\n",
"\n",
@@ -134,7 +131,7 @@
"cobyla = CobylaOptimizer()\n",
"\n",
"# define QAOA via the minimum eigen optimizer\n",
- "qaoa = MinimumEigenOptimizer(QAOA(quantum_instance=BasicAer.get_backend(\"statevector_simulator\")))\n",
+ "qaoa = MinimumEigenOptimizer(QAOA(sampler=Sampler(), optimizer=COBYLA()))\n",
"\n",
"# exact QUBO solver as classical benchmark\n",
"exact = MinimumEigenOptimizer(NumPyMinimumEigensolver()) # to solve QUBOs\n",
@@ -208,7 +205,7 @@
"source": [
"## Classical Solution\n",
"\n",
- "3-ADMM-H needs a QUBO optimizer to solve the QUBO subproblem, and a continuous optimizer to solve the continuous convex constrained subproblem. We first solve the problem classically: we use the `MinimumEigenOptimizer` with the `NumPyMinimumEigenSolver` as a classical and exact QUBO solver and we use the `CobylaOptimizer` as a continuous convex solver. 3-ADMM-H supports any other suitable solver available in Qiskit. For instance, VQE, QAOA, and GroverOptimizer can be invoked as quantum solvers, as demonstrated later.\n",
+ "3-ADMM-H needs a QUBO optimizer to solve the QUBO subproblem, and a continuous optimizer to solve the continuous convex constrained subproblem. We first solve the problem classically: we use the `MinimumEigenOptimizer` with the `NumPyMinimumEigenSolver` as a classical and exact QUBO solver and we use the `CobylaOptimizer` as a continuous convex solver. 3-ADMM-H supports any other suitable solver available in Qiskit. For instance, `SamplingVQE`, `QAOA`, and `GroverOptimizer` can be invoked as quantum solvers, as demonstrated later.\n",
"If CPLEX is installed, the `CplexOptimizer` can also be used as both, a QUBO and convex solver."
]
},
@@ -313,14 +310,12 @@
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEICAYAAABF82P+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAAflklEQVR4nO3deZgcd33n8fenu+eQZI9sSYMNkkeSQYbIHDYZZI6EJMSHCI4FLGA5IXES72pJMIGw2awJASfKs89DgGUJizexAC1nMGCOzOYxCGPAsIBBkm1sS46xkC8JH8KWLWNdM93f/aN+PVPT6tG0pKlpMf15Pc8803V1faurpz5T9atDEYGZmVmjUrsLMDOz45MDwszMmnJAmJlZUw4IMzNrygFhZmZNOSDMzKypQgNC0kpJd0naJumKJsPfJOl2SbdK+n+SlueGvSNNd5ekC4qs08zMDqWiroOQVAZ+ApwH7AA2ApdExNbcOH0RsSe9vgj4s4hYmYLis8AK4BnAN4AzIqI60fwWLFgQS5YsKWRZzMxmqs2bN/88IvqbDasUON8VwLaI2A4g6RpgFTAaEPVwSOYA9bRaBVwTEQeAeyRtS+/3g4lmtmTJEjZt2jS1S2BmNsNJum+iYUUGxELggVz3DuCcxpEkvRl4O9ANvCI37U0N0y5sMu0aYA3AwMDAlBRtZmaZtjdSR8RVEfFM4L8Bf3OE066LiMGIGOzvb7qHZGZmR6nIgNgJnJbrXpT6TeQa4NVHOa2ZmU2xIgNiI7BM0lJJ3cBqYCg/gqRluc5XAXen10PAakk9kpYCy4AfFVirmZk1KKwNIiJGJF0ObADKwPqI2CJpLbApIoaAyyWdCwwDu4FL07RbJH2erEF7BHjz4c5gMjOzqVfYaa7TbXBwMHwWk5nZkZG0OSIGmw1reyO1mZkdnzo+IJ46MMIHrv8Jt9y/u92lmJkdVzo+IA6M1PjQDXfz4wceb3cpZmbHlY4PiO5K9hEcGKm1uRIzs+NLxwdETwqIgw4IM7NxOj4gKiUhwcGqA8LMLK/jA0IS3eWS9yDMzBp0fEBA1g7hNggzs/EcEEBPpeyAMDNr4IAga6j2ISYzs/EcEGSHmNxIbWY2ngMCUiO17wVoZpbngMCN1GZmzTggcBuEmVkzDghSG4QDwsxsHAcEbqQ2M2vGAQG+ktrMrAkHBNDT5QvlzMwaOSDwHoSZWTMOCHyaq5lZMw4I6qe5+kI5M7M8BwTegzAza8YBQdqDqNaIiHaXYmZ23HBAkDVSR8BIzQFhZlbngCA7xAR+LrWZWV6hASFppaS7JG2TdEWT4W+XtFXSbZJukLQ4N6wq6db0M1RknQ4IM7NDVYp6Y0ll4CrgPGAHsFHSUERszY12CzAYEXsl/SnwXuDiNGxfRJxVVH15PZUygBuqzcxyityDWAFsi4jtEXEQuAZYlR8hIr4VEXtT503AogLrmZD3IMzMDlVkQCwEHsh170j9JnIZ8NVcd6+kTZJukvTqAuobNRoQVV8LYWZWV9ghpiMh6Y3AIPAbud6LI2KnpNOBb0q6PSJ+2jDdGmANwMDAwFHPv7ucBYQPMZmZjSlyD2IncFque1HqN46kc4F3AhdFxIF6/4jYmX5vB74NnN04bUSsi4jBiBjs7+8/6kJ7Kg4IM7NGRQbERmCZpKWSuoHVwLizkSSdDVxNFg6P5PqfLKknvV4AvAzIN25PqR63QZiZHaKwQ0wRMSLpcmADUAbWR8QWSWuBTRExBLwPOAH4giSA+yPiIuBXgKsl1chC7D0NZz9NKTdSm5kdqtA2iIi4Driuod+7c6/PnWC67wPPK7K2PAeEmdmhfCU1+bOYHBBmZnUOCPJnMfk0VzOzOgcE2SNHwYeYzMzyHBCM7UE4IMzMxjggGGuD8HUQZmZjHBD4Qjkzs2YcEPgQk5lZMw4IoFQSXWX5NFczsxwHRNJdLnkPwswsxwGRdFccEGZmeQ6IpLtS8oVyZmY5Doikp1L2HoSZWY4DIumulNxIbWaW44BI3EhtZjaeAyLJ2iAcEGZmdQ6IpMcBYWY2jgMi8WmuZmbjOSCSHgeEmdk4DojEZzGZmY3ngEi6y75QzswszwGR+EI5M7PxHBCJG6nNzMZzQCQOCDOz8RwQiS+UMzMbzwGR9FRKjNSCWi3aXYqZ2XHBAZF0p+dS+1RXM7NMoQEhaaWkuyRtk3RFk+Fvl7RV0m2SbpC0ODfsUkl3p59Li6wTxp5L7cNMZmaZwgJCUhm4CnglsBy4RNLyhtFuAQYj4vnAtcB707TzgCuBc4AVwJWSTi6qVsgOMQFuqDYzS4rcg1gBbIuI7RFxELgGWJUfISK+FRF7U+dNwKL0+gLg+oh4LCJ2A9cDKwusdfQQky+WMzPLFBkQC4EHct07Ur+JXAZ89UimlbRG0iZJm3bt2nVMxfZUyoD3IMzM6o6LRmpJbwQGgfcdyXQRsS4iBiNisL+//5hqcCO1mdl4RQbETuC0XPei1G8cSecC7wQuiogDRzLtVKo3UnsPwswsU2RAbASWSVoqqRtYDQzlR5B0NnA1WTg8khu0AThf0smpcfr81K8wY20QDggzM4BKUW8cESOSLifbsJeB9RGxRdJaYFNEDJEdUjoB+IIkgPsj4qKIeEzS35OFDMDaiHisqFrBZzGZmTUqLCAAIuI64LqGfu/OvT73MNOuB9YXV9143Q4IM7NxjotG6uOBDzGZmY3ngEh6fBaTmdk4Doiku5xdB3Fg2BfKmZmBA2JUT5f3IMzM8hwQia+DMDMbzwGR+CwmM7PxHBCJz2IyMxvPAZFUSqIk70GYmdU5IBJJdFdKbqQ2M0scEDnd5ZL3IMzMEgdETnel7DYIM7PkiANCUklSXxHFtFtPpeQnypmZJS0FhKR/kdQnaQ5wB7BV0n8ttrTp11PxISYzs7pW9yCWR8Qe4NVkjwVdCvxBUUW1S7cDwsxsVKsB0SWpiywghiJiGIjCqmoTn8VkZjam1YC4GrgXmAN8R9JiYE9RRbVLd7nEgWEHhJkZtBgQEfGhiFgYEb8TmfuA3yq4tmnX0+U9CDOzusM+UU7S2yeZ/gNTWEvbdZdL7Nk30u4yzMyOC5M9cvTEaaniOOFGajOzMYcNiIj4u+kq5HjQXSn7EJOZWTLZHgQAknqBy4Azgd56/4j4k4LqaouskdoXypmZQetnMX0KOBW4ALgRWAQ8WVRR7eJGajOzMa0GxLMi4l3AUxHxCeBVwDnFldUe3eWS78VkZpa0GhDD6ffjkp4LzAWeVkxJ7eNbbZiZjWmpDQJYJ+lk4F3AEHAC8O7CqmqT7kq2BxERSGp3OWZmbdXqhXIfjYjdEXFjRJweEU+LiH+ebDpJKyXdJWmbpCuaDH+5pJsljUh6XcOwqqRb089Q64t09HrSY0eHqzPuLiJmZkes1bOYmu4tRMTaw0xTBq4CzgN2ABslDUXE1txo9wN/BPxlk7fYFxFntVLfVKk/l/pgtTb62sysU7V6iOmp3Ote4ELgzkmmWQFsi4jtAJKuAVYBowEREfemYcfFgf/ucgqIkRr0tLkYM7M2aykgIuJ/5LslvR/YMMlkC4EHct07OLIzn3olbQJGgPdExFcaR5C0BlgDMDAwcARv3Vx3pQzghmozM47+kaOzya6FKNLiiBgEfg/4oKRnNo4QEesiYjAiBvv7+495hvXDSn6qnJlZ620QtzP2/Icy0A9M2P6Q7AROy3UvSv1aEhE70+/tkr4NnA38tNXpj0a9kdp7EGZmrbdBXJh7PQI8HBGT3fZ0I7BM0lKyYFhNtjcwqXRK7d6IOCBpAfAy4L0t1nrUxvYgHBBmZoc9xCRpnqR5ZLfVqP/sA/pS/wmlALmcrK3iTuDzEbFF0lpJF6X3f5GkHcDrgaslbUmT/wqwSdKPgW+RtUFsPXQuUyt/FpOZWaebbA9iM9mhJQEDwO70+iSyU1SXHm7iiLgOuK6h37tzrzfSpC0jIr4PPG/S6qdYTzqLyU+VMzObZA8iIpZGxOnAN4DfjYgFETGf7JDT16ejwOnkPQgzszGtnsX04rQ3AEBEfBV4aTEltU+PT3M1MxvVaiP1zyT9DfDp1P37wM+KKal9un0Wk5nZqFb3IC4hO7X1y+nnaanfjDJ2iMnXQZiZtXol9WPAWwuupe1GT3N1I7WZ2eEDQtIHI+Jtkv4vYxfKjYqIiwqrrA163EhtZjZqsj2IT6Xf7y+6kOOB2yDMzMYcNiAiYnP6fWO9X7rK+bSIuK3g2qZd/W6uvpLazKzFRmpJ35ZUv3r6ZuAjkj5QbGnTr6dSoiTYd9CN1GZmrZ7FNDci9gCvBT4ZEecA5xZXVntI4sTeLvbsH558ZDOzGa7VgKhIejrwBuDfCqyn7ebO6mLPPgeEmVmrAbGW7KZ7P42IjZJOB+4urqz26ZtVYc/+yW5Ua2Y287V6HcQXgC/kurcD/6Gootqpr9d7EGZm0Hoj9RmSbpB0R+p+frr1xozT19vFEw4IM7OWDzF9BHgHMAyQTnFdXVRR7TR3lhupzcyg9YCYHRE/aug3Iw/U982qsGffjFw0M7Mj0mpA/FzSM0m325D0OuDBwqpqo77eLvYNV301tZl1vFZv9/1mYB3wHEk7gXvIbvk94/TN6gLgyf3DzD+hp83VmJm1T6tnMW0HzpU0h2yvYy9ZG8R9BdbWFn2zso/kiX0OCDPrbIc9xJRur/EOSR+WdB5ZMFwKbCO7aG7GmZv2IHwthJl1ulbu5rob+AHwn4B3AgJeExG3Fltae/T1poDwqa5m1uEmC4jTI+J5AJI+StYwPRAR+wuvrE36RvcgHBBm1tkmO4tpdCsZEVVgx0wOB8jvQfgQk5l1tsn2IF4gaU96LWBW6hYQEdFXaHVtUG+D8NXUZtbpJntgUHm6Cjle9HaV6CrLh5jMrOO1eqHcUZG0UtJdkrZJuqLJ8JdLulnSSLr4Lj/sUkl3p59Li6yzYb6+YZ+ZGQUGhKQycBXwSmA5cImk5Q2j3Q/8EfAvDdPOA64EzgFWAFemR51Oi75ZXT7N1cw6XpF7ECuAbRGxPSIOAtcAq/IjRMS96cZ/jfe1uAC4PiIei4jdwPXAygJrHaevt+I9CDPreEUGxELggVz3jtRvyqaVtEbSJkmbdu3addSFNuqb5Vt+m5kV2gZRtIhYFxGDETHY398/Ze/b51t+m5kVGhA7gdNy3YtSv6KnPWZZI7XbIMyssxUZEBuBZZKWSuomu7nfUIvTbgDOl3Ryapw+P/WbFtlzqb0HYWadrbCAiIgR4HKyDfudwOcjYouktZIuApD0Ikk7gNcDV0vakqZ9DPh7spDZCKxN/aZFX28XB0dq7B+uTtcszcyOO60+D+KoRMR1wHUN/d6de72R7PBRs2nXA+uLrG8io3d03TdMb1fHXStoZgb8kjdSF8U37DMzc0A01ddbf2iQG6rNrHM5IJrwHoSZmQOiqXwbhJlZp3JANOGnypmZOSCaOjG1QfiGfWbWyRwQTfR2lemplLwHYWYdzQExAd+Pycw6nQNiAnN9R1cz63AOiAlkz4RwG4SZdS4HxAR8iMnMOp0DYgJ+LrWZdToHxATm+rnUZtbhHBAT6JtV4Yl9w0REu0sxM2sLB8QE+nq7qNaCvQf9TAgz60wOiAn4hn1m1ukcEBMYux+T2yHMrDM5ICYw13sQZtbhHBAT6JuVHhq01wFhZp3JATGB0UNM3oMwsw7lgJhAnx8aZGYdzgExgT4/E8LMOpwDYgKVcok53WUedxuEmXUoB8RhPOOkWezYvbfdZZiZtYUD4jAWz5/D/Y85IMysMxUaEJJWSrpL0jZJVzQZ3iPpc2n4DyUtSf2XSNon6db0889F1jmRxfNnc++jT/l+TGbWkSpFvbGkMnAVcB6wA9goaSgituZGuwzYHRHPkrQa+Afg4jTspxFxVlH1tWLJ/NnsH67xyJMHOKWvt52lmJlNuyL3IFYA2yJie0QcBK4BVjWMswr4RHp9LfDbklRgTUdk8fw5ANz3qA8zmVnnKTIgFgIP5Lp3pH5Nx4mIEeAJYH4atlTSLZJulPTrBdY5ocXzZwNw76NPtWP2ZmZtVdghpmP0IDAQEY9K+lXgK5LOjIg9+ZEkrQHWAAwMDEx5EQtPmkWlJO5zQJhZBypyD2IncFque1Hq13QcSRVgLvBoRByIiEcBImIz8FPgjMYZRMS6iBiMiMH+/v4pX4BKucSik2dxrw8xmVkHKjIgNgLLJC2V1A2sBoYaxhkCLk2vXwd8MyJCUn9q5EbS6cAyYHuBtU5oYP4c7ndAmFkHKuwQU0SMSLoc2ACUgfURsUXSWmBTRAwBHwM+JWkb8BhZiAC8HFgraRioAW+KiMeKqvVwlsyfzS337yYiOI7az83MCldoG0REXAdc19Dv3bnX+4HXN5nui8AXi6ytVYvnz+HJ/SPs3jvMvDnd7S7HzGza+ErqSSyel53J5IZqM+s0DohJLFlQDwi3Q5hZZ3FATGLRybORfC2EmXUeB8QkervKPGPuLJ/JZGYdxwHRgoF5s70HYWYdxwHRgiULZrsNwsw6jgOiBYvnz+HRpw7y5H4/Xc7MOocDogVjp7p6L8LMOocDogW+7beZdSIHRAt8228z60QOiBbM6anQf2IP23c5IMysczggWrRiyTxu/MkuqjU/n9rMOoMDokXnn3kKP//FAW65f3e7SzEzmxYOiBb91nOeRldZbNjyULtLMTObFg6IFvX1dvHSZy5gw5aHifBhJjOb+RwQR+CCM0/l/sf28u8PPdnuUszMCueAOALnLT8FCR9mMrOO4IA4Av0n9jC4+GQ2bHm43aWYmRXOAXGELjjzVO58cI9v/21mM54D4ghdcOapgA8zmdnM54A4QqfNm81zF/bxyZvu9d1dzWxGc0Achb/93TPZuXsfVw5taXcpZmaFcUAchcEl83jLK5bxpZt3MvTjn7W7HDOzQjggjtJbXvEszh44iXd++XZ2Pr6v3eWYmU05B8RRqpRL/OPFZ1OrBZd9fCPbHvlFu0syM5tSDohjMDB/Nv/7jb/Kw3v2c+H/+i6fuuk+34bDzGaMQgNC0kpJd0naJumKJsN7JH0uDf+hpCW5Ye9I/e+SdEGRdR6L3zijnw1vezkrls7nXV+5gzdc/QM+fdN9PPLk/naXZmZ2TFTUf7ySysBPgPOAHcBG4JKI2Job58+A50fEmyStBl4TERdLWg58FlgBPAP4BnBGRFQnmt/g4GBs2rSpkGVpRUTw6ZvuY/337uWenz+FBMuf3seSBXMYmDebRSfP4tS+Xk7p62XBCT2US6IkKJdEd6VEd7lEpewdOjObXpI2R8Rgs2GVAue7AtgWEdtTEdcAq4CtuXFWAX+bXl8LfFiSUv9rIuIAcI+kben9flBgvcdEEn/wkiW88cWL+cnDv+CrdzzI5vt2s/Vne/j6locYrk4exPXAkFJ4SJRKSmGS/ZRLEAHN3q0kRscDKJVACAmUxqlGcGC4xoGRGrVaUCqJSppnmowIqEVQrQURQVe5RFe5RKVcf6/s90g1GK7WsvGoT5u9rtWCCJCy9ppySVRrwfBIjQPVGqRh2TKJrrKy8TRWr+oF1WuvBbX0/vVlzfcfqcXofKsR6XPKKquUsvorpRKVFM6lkoiAkVqNai2bR7k0/jOUss+jWovR9xyrb2xd1GrBwWpt9POoL1dZGreulNZxSRr9rCLGPjdyn1mpYZ1AjM2vvnzpH7z6PErK1melnM2j/pnUIiiXSqPLV/9k87Vln0WkzyNG10F+fZSUfZbdlRJdZVELGK7WGKnG2LTVgLSclZJG37u+3urrIgIOjNQ4OFJt+A7laiKoRVZoEKPfvZJET1eJnkpWS7m+zgT7D1Z56mCVfQer1CJG+1dK9e9a9h3IPqdSNo/a2PegWsuWpz5NpVz/zmTTB8HwSPruR6T3yr7jY59lMFxL4zT87Qdj662S/ra6ytnfR7WWfY7Zd3Hse0j6HPLrIf+3+NyFc/nIHzbdxh+TIgNiIfBArnsHcM5E40TEiKQngPmp/00N0y5snIGkNcAagIGBgSkr/FhI4tmnnsizTz1xtF+1Fjzy5H4eemI/D+/Zz6NPHaQW2UZlJH2JDo5kP7XIvgj1DXR945d1Z9MofTnGNvtQ33jUx4vsL2p0g1pXksb+qEoaraHxQXn5DclwLRhJG4H6lzvI/tC7ymr4IpO+vBq3cR2p1Ub/OLsr2cavFtnGq5r+OEfDJhjdcDbWVM5tcOobyXL6w88H6egfUKor24DVGK6meaZ5l9JGvDT6vvXPfOwzVArmbN4a/awjshCGbHhXOdsTLKXPtR4q9T/isZrH989viOvLlt9QjH23xoKpvm7yIVqfR32DXYugktaPENUIqql/4/vW5TeG9c9jNMTSRmqkmn2OB0dqlEqiKwVSfdr6OsovQ73u+vT1/j2VMj3pu6hcLY3LNVZPVkc1/XNyYCT9s5P7u5ndVWZOT4XerjIljQVqNR9itWC4mn2vlfvnq3EZ6t+bkerYPwgA3eUSXZWxEK4vUz16JUY3/PXPH8aHXP0zOlitMTyS/X1Uytn3EbJ/cur/uNS/z8DotqP+WUTAwLzZFKHIgChcRKwD1kF2iKnN5UyoXBJPnzuLp8+d1e5SzMxaVuRB753AabnuRalf03EkVYC5wKMtTmtmZgUqMiA2AsskLZXUDawGhhrGGQIuTa9fB3wzsoNzQ8DqdJbTUmAZ8KMCazUzswaFHWJKbQqXAxuAMrA+IrZIWgtsiogh4GPAp1Ij9GNkIUIa7/NkDdojwJsPdwaTmZlNvcJOc51u7T7N1czsl9HhTnP1ifdmZtaUA8LMzJpyQJiZWVMOCDMza2rGNFJL2gXcdwxvsQD4+RSV88uiE5cZOnO5O3GZoTOX+0iXeXFE9DcbMGMC4lhJ2jRRS/5M1YnLDJ253J24zNCZyz2Vy+xDTGZm1pQDwszMmnJAjFnX7gLaoBOXGTpzuTtxmaEzl3vKltltEGZm1pT3IMzMrCkHhJmZNdXxASFppaS7JG2TdEW76ymKpNMkfUvSVklbJL019Z8n6XpJd6ffJ7e71qkmqSzpFkn/lrqXSvphWuefS7ejn1EknSTpWkn/LulOSS+Z6eta0l+k7/Ydkj4rqXcmrmtJ6yU9IumOXL+m61aZD6Xlv03SC49kXh0dEJLKwFXAK4HlwCWSlre3qsKMAP8lIpYDLwbenJb1CuCGiFgG3JC6Z5q3Anfmuv8B+J8R8SxgN3BZW6oq1j8CX4uI5wAvIFv+GbuuJS0E/hwYjIjnkj1iYDUzc11/HFjZ0G+idftKsufpLCN7PPM/HcmMOjoggBXAtojYHhEHgWuAVW2uqRAR8WBE3JxeP0m2wVhItryfSKN9Anh1WwosiKRFwKuAj6ZuAa8Ark2jzMRlngu8nOx5K0TEwYh4nBm+rsmebzMrPZ1yNvAgM3BdR8R3yJ6fkzfRul0FfDIyNwEnSXp6q/Pq9IBYCDyQ696R+s1okpYAZwM/BE6JiAfToIeAU9pVV0E+CPwVkB7/znzg8YgYSd0zcZ0vBXYB/ycdWvuopDnM4HUdETuB9wP3kwXDE8BmZv66rpto3R7TNq7TA6LjSDoB+CLwtojYkx+WHvc6Y857lnQh8EhEbG53LdOsArwQ+KeIOBt4iobDSTNwXZ9M9t/yUuAZwBwOPQzTEaZy3XZ6QOwETst1L0r9ZiRJXWTh8JmI+FLq/XB9lzP9fqRd9RXgZcBFku4lO3z4CrJj8yelwxAwM9f5DmBHRPwwdV9LFhgzeV2fC9wTEbsiYhj4Etn6n+nrum6idXtM27hOD4iNwLJ0pkM3WaPWUJtrKkQ69v4x4M6I+EBu0BBwaXp9KfCv011bUSLiHRGxKCKWkK3bb0bE7wPfAl6XRptRywwQEQ8BD0h6dur122TPd5+x65rs0NKLJc1O3/X6Ms/odZ0z0bodAv4wnc30YuCJ3KGoSXX8ldSSfofsOHUZWB8R/729FRVD0q8B3wVuZ+x4/F+TtUN8Hhggu136GyKisQHsl56k3wT+MiIulHQ62R7FPOAW4I0RcaCN5U05SWeRNcx3A9uBPyb7h3DGrmtJfwdcTHbG3i3AfyQ73j6j1rWkzwK/SXZb74eBK4Gv0GTdprD8MNnhtr3AH0fEppbn1ekBYWZmzXX6ISYzM5uAA8LMzJpyQJiZWVMOCDMza8oBYWZmTTkgzBJJv0i/l0j6vSl+779u6P7+VL6/WREcEGaHWgIcUUDkrtadyLiAiIiXHmFNZtPOAWF2qPcAvy7p1vSMgbKk90namO6p/58hu/hO0nclDZFdtYukr0janJ5LsCb1ew/ZXUZvlfSZ1K++t6L03ndIul3Sxbn3/nbumQ6fSRc9Iek9yp7rcZuk90/7p2MdY7L/esw60RWkq64B0ob+iYh4kaQe4HuSvp7GfSHw3Ii4J3X/SbqCdRawUdIXI+IKSZdHxFlN5vVa4CyyZzYsSNN8Jw07GzgT+BnwPeBlku4EXgM8JyJC0klTu+hmY7wHYTa588nuZ3Mr2a1J5pM9gAXgR7lwAPhzST8GbiK7SdoyDu/XgM9GRDUiHgZuBF6Ue+8dEVEDbiU79PUEsB/4mKTXkt0+wawQDgizyQl4S0SclX6WRkR9D+Kp0ZGy+z2dC7wkIl5Adu+f3mOYb/6eQVWgkp5tsILsDq0XAl87hvc3OywHhNmhngROzHVvAP403S4dSWekB/A0mgvsjoi9kp5D9mjXuuH69A2+C1yc2jn6yZ4E96OJCkvP85gbEdcBf0F2aMqsEG6DMDvUbUA1HSr6ONkzJJYAN6eG4l00f3Tl14A3pXaCu8gOM9WtA26TdHO65Xjdl4GXAD8me8jLX0XEQylgmjkR+FdJvWR7Nm8/qiU0a4Hv5mpmZk35EJOZmTXlgDAzs6YcEGZm1pQDwszMmnJAmJlZUw4IMzNrygFhZmZN/X/RhPB5g8S6IAAAAABJRU5ErkJggg==\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAGyCAYAAAAMKHu5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA/gUlEQVR4nO3dfXxT5cH/8W+SJilQ2oKFlrJqQVBEHooUuuID3qOzoLeT6RS4nWC3yU/UTawPA52gN2qBKUOFyWQvJzqdzDndxrQbq8JuZ3kqoEMRUXFFoIWCbaBIH5Lz+yPNaQNFS0nPSdvP+2Ve0pOTk+tcSdpvrqfjMAzDEAAAQCfitLsAAAAAViMAAQCATocABAAAOh0CEAAA6HQIQAAAoNMhAAEAgE6HAAQAADodAhAAAOh0CEAAAKDTibG7ANEoEAho79696t69uxwOh93FAQAALWAYhg4fPqzU1FQ5nV/TxmNEgSVLlhhnnXWW4fV6jdGjRxvr168/6b6vvPKKMXLkSCMhIcHo2rWrMXz4cOO5554L2ycQCBj333+/kZKSYsTGxhrjxo0zPvrooxaXZ/fu3YYkbty4cePGjVs7vO3evftr/9bb3gK0cuVK5efna9myZcrKytLixYuVm5urHTt2qHfv3ifs37NnT913330aNGiQPB6PVq1apby8PPXu3Vu5ubmSpIULF+qJJ57QihUr1K9fP91///3Kzc3VBx98oNjY2K8tU/fu3SVJu3fvVnx8fGRPGAAAtAmfz6e0tDTz7/hXcRiGvRdDzcrK0qhRo7RkyRJJwe6ntLQ0/fjHP9asWbNadIwLLrhAV1xxhebNmyfDMJSamqo777xTd911lySpqqpKycnJevbZZzV58uSvPZ7P51NCQoKqqqoIQAAAtBOn8vfb1kHQtbW1KikpUU5OjrnN6XQqJydHxcXFX/t4wzBUVFSkHTt26JJLLpEk7dq1S2VlZWHHTEhIUFZW1kmPWVNTI5/PF3YDAAAdl60BqKKiQn6/X8nJyWHbk5OTVVZWdtLHVVVVKS4uTh6PR1dccYWefPJJffvb35Yk83GncsyCggIlJCSYt7S0tNM5LQAAEOXa5TT47t27a+vWrdq4caMefvhh5efna82aNa0+3uzZs1VVVWXedu/eHbnCAgCAqGPrIOikpCS5XC6Vl5eHbS8vL1dKSspJH+d0OjVgwABJUkZGhrZv366CggJdeuml5uPKy8vVp0+fsGNmZGQ0ezyv1yuv13uaZwMAANoLW1uAPB6PRo4cqaKiInNbIBBQUVGRsrOzW3ycQCCgmpoaSVK/fv2UkpISdkyfz6f169ef0jEBAEDHZfs0+Pz8fE2bNk2ZmZkaPXq0Fi9erOrqauXl5UmSpk6dqr59+6qgoEBScLxOZmamzj77bNXU1Oj111/X888/r6eeekqS5HA4NHPmTD300EMaOHCgOQ0+NTVVEydOtOs0AQBAFLE9AE2aNEkHDhzQnDlzVFZWpoyMDBUWFpqDmEtLS8NWc6yurtYtt9yizz//XF26dNGgQYP029/+VpMmTTL3ueeee1RdXa3p06ersrJSF110kQoLC1u0BhAAAOj4bF8HKBqxDhAAAO1Pu1kHCAAAwA4EIAAA0OkQgAAAQKdDAAIAAJ2O7bPAOpMjNfWqPFqrLm6Xzohj4UUAAOxCC5CFnv3XLl204C39/G877C4KAACdGgHIQm5XsLpr/QGbSwIAQOdGALKQJyZY3XV+ll4CAMBOBCALmS1A9X6bSwIAQOdGALKQx0ULEAAA0YAAZKHGLjDGAAEAYCcCkIUau8AIQAAA2IkAZCG3yyGJWWAAANiNAGQhN11gAABEBQKQhbyhQdD1DIIGAMBOBCALhVqA6AIDAMBeBCALMQgaAIDoQACyUOM6QAQgAADsRACykCeGWWAAAEQDApCF3OYgaAIQAAB2IgBZiIuhAgAQHQhAFjIHQfsDMgxCEAAAdiEAWSgUgCRagQAAsBMByEKesADEOCAAAOxCALJQaAyQRAACAMBOBCALuZwOOYMz4VkMEQAAGxGALNZ0IDQAALAHAchiTIUHAMB+BCCLcTkMAADsRwCyGBdEBQDAfgQgi7m5HhgAALYjAFnMw/XAAACwHQHIYswCAwDAfgQgizXOAiMAAQBgFwKQxTzmIGimwQMAYBcCkMXoAgMAwH4EIIu5YxgEDQCA3QhAFmMhRAAA7EcAspinYR0gAhAAAPYhAFksNAaohi4wAABsQwCymNvFxVABALAbAchirAMEAID9CEAW83AxVAAAbEcAspjbxSBoAADsRgCyWKgLjIUQAQCwDwHIYm66wAAAsB0ByGJuFkIEAMB2URGAli5dqvT0dMXGxiorK0sbNmw46b7Lly/XxRdfrB49eqhHjx7Kyck5Yf8bb7xRDocj7DZ+/Pi2Po0W8TANHgAA29kegFauXKn8/HzNnTtXmzdv1vDhw5Wbm6v9+/c3u/+aNWs0ZcoUvfXWWyouLlZaWpouu+wy7dmzJ2y/8ePHa9++febtd7/7nRWn87UYAwQAgP1sD0CLFi3STTfdpLy8PA0ePFjLli1T165d9cwzzzS7/wsvvKBbbrlFGRkZGjRokH79618rEAioqKgobD+v16uUlBTz1qNHDytO52sxBggAAPvZGoBqa2tVUlKinJwcc5vT6VROTo6Ki4tbdIyjR4+qrq5OPXv2DNu+Zs0a9e7dW+eee65mzJihgwcPnvQYNTU18vl8Ybe2wjR4AADsZ2sAqqiokN/vV3Jyctj25ORklZWVtegYP/3pT5WamhoWosaPH6/nnntORUVFWrBggdauXasJEybI7/c3e4yCggIlJCSYt7S0tNaf1NdgJWgAAOwXY3cBTsf8+fP10ksvac2aNYqNjTW3T5482fz30KFDNWzYMJ199tlas2aNxo0bd8JxZs+erfz8fPNnn8/XZiGIlaABALCfrS1ASUlJcrlcKi8vD9teXl6ulJSUr3zso48+qvnz5+vvf/+7hg0b9pX79u/fX0lJSfr444+bvd/r9So+Pj7s1lbMMUDMAgMAwDa2BiCPx6ORI0eGDWAODWjOzs4+6eMWLlyoefPmqbCwUJmZmV/7PJ9//rkOHjyoPn36RKTcp8Md6gKjBQgAANvYPgssPz9fy5cv14oVK7R9+3bNmDFD1dXVysvLkyRNnTpVs2fPNvdfsGCB7r//fj3zzDNKT09XWVmZysrKdOTIEUnSkSNHdPfdd2vdunX67LPPVFRUpKuuukoDBgxQbm6uLefYlIeFEAEAsJ3tY4AmTZqkAwcOaM6cOSorK1NGRoYKCwvNgdGlpaVyOhtz2lNPPaXa2lp973vfCzvO3Llz9cADD8jlcum9997TihUrVFlZqdTUVF122WWaN2+evF6vpefWHE9McBYY6wABAGAfh2EYDEY5js/nU0JCgqqqqiI+Hui9zyv1nSX/UmpCrN6ZfeKAbAAA0Dqn8vfb9i6wzqZxJWhyJwAAdiEAWaxxJejm1yQCAABtjwBkMS6GCgCA/QhAFmMlaAAA7EcAslioC6w+YCgQoBUIAAA7EIAsFroYqsRUeAAA7EIAslioBUiiGwwAALsQgCzmCQtAdIEBAGAHApDFnE6HYpwNq0FzPTAAAGxBALKBm+uBAQBgKwKQDRpXgyYAAQBgBwKQDRpXgyYAAQBgBwKQDTwNU+HpAgMAwB4EIBu4WQ0aAABbEYBs4DG7wJgGDwCAHQhANjDHANECBACALQhANjC7wBgEDQCALQhANvCyDhAAALYiANnAHdOwEjQBCAAAWxCAbMA6QAAA2IsAZAOP2QXGLDAAAOxAALJBaBB0bb3f5pIAANA5EYBsQAsQAAD2IgDZwO1iEDQAAHYiANnAw6UwAACwFQHIBswCAwDAXgQgG3hYCBEAAFsRgGzQ2AXGIGgAAOxAALJBqAushi4wAABsQQCygZsuMAAAbEUAskFoGjwBCAAAexCAbOBlGjwAALYiANmAafAAANiLAGQDMwAxCwwAAFsQgGxgToOnBQgAAFsQgGzQ2AJEAAIAwA4EIBt4YpgFBgCAnQhANvC4XJIYBA0AgF0IQDYIrQNEFxgAAPYgANnAzTpAAADYigBkA/Nq8PVMgwcAwA4EIBt4aAECAMBWBCAbsBI0AAD2IgDZgEHQAADYiwBkA7rAAACwFwHIBqFB0AFDqicEAQBgOQKQDUJjgCSpjguiAgBguagIQEuXLlV6erpiY2OVlZWlDRs2nHTf5cuX6+KLL1aPHj3Uo0cP5eTknLC/YRiaM2eO+vTpoy5duignJ0c7d+5s69NosaYBiHFAAABYz/YAtHLlSuXn52vu3LnavHmzhg8frtzcXO3fv7/Z/desWaMpU6borbfeUnFxsdLS0nTZZZdpz5495j4LFy7UE088oWXLlmn9+vXq1q2bcnNzdezYMatO6yuFBkFLzAQDAMAODsMwbO2DycrK0qhRo7RkyRJJUiAQUFpamn784x9r1qxZX/t4v9+vHj16aMmSJZo6daoMw1BqaqruvPNO3XXXXZKkqqoqJScn69lnn9XkyZO/9pg+n08JCQmqqqpSfHz86Z3gSZxz3xuq9Qf0zqxvKTWxS5s8BwAAncmp/P22tQWotrZWJSUlysnJMbc5nU7l5OSouLi4Rcc4evSo6urq1LNnT0nSrl27VFZWFnbMhIQEZWVlnfSYNTU18vl8Ybe2FmoFYiYYAADWszUAVVRUyO/3Kzk5OWx7cnKyysrKWnSMn/70p0pNTTUDT+hxp3LMgoICJSQkmLe0tLRTPZVTxlR4AADsY/sYoNMxf/58vfTSS3r11VcVGxvb6uPMnj1bVVVV5m337t0RLGXzQgOhaxgDBACA5WLsfPKkpCS5XC6Vl5eHbS8vL1dKSspXPvbRRx/V/Pnz9Y9//EPDhg0zt4ceV15erj59+oQdMyMjo9ljeb1eeb3eVp5F64QCENPgAQCwnq0tQB6PRyNHjlRRUZG5LRAIqKioSNnZ2Sd93MKFCzVv3jwVFhYqMzMz7L5+/fopJSUl7Jg+n0/r16//ymNazUsXGAAAtrG1BUiS8vPzNW3aNGVmZmr06NFavHixqqurlZeXJ0maOnWq+vbtq4KCAknSggULNGfOHL344otKT083x/XExcUpLi5ODodDM2fO1EMPPaSBAweqX79+uv/++5WamqqJEyfadZon4IKoAADYx/YANGnSJB04cEBz5sxRWVmZMjIyVFhYaA5iLi0tldPZ2FD11FNPqba2Vt/73vfCjjN37lw98MADkqR77rlH1dXVmj59uiorK3XRRRepsLDwtMYJRZo7hguiAgBgF9vXAYpGVqwD9N1f/ktbSiv19A0jddn5Xz3eCQAAfL12sw5QZ+ZhEDQAALYhANkktA5Qrd9vc0kAAOh8CEA2MafB19MCBACA1QhANgl1gTEIGgAA6xGAbOKOYRo8AAB2IQDZhIuhAgBgHwKQTRpngRGAAACwGgHIJh66wAAAsA0ByCbmpTBYBwgAAMsRgGzipgsMAADbEIBs4uFq8AAA2IYAZBNPwywwxgABAGA9ApBN3CyECACAbQhANmnsAmMQNAAAViMA2cRsAarnYqgAAFiNAGSTxoUQaQECAMBqBCCbuGO4FAYAAHYhANnE43JJYhYYAAB2IADZJHQxVGaBAQBgPQKQTdwshAgAgG0IQDbxhgZB1zMIGgAAqxGAbBJqAaILDAAA6xGAbNK4DhABCAAAqxGAbBIaBM0YIAAArEcAsomXLjAAAGxDALKJ2xwETQACAMBqBCCbuLkUBgAAtiEA2cTTpAvMMAhBAABYiQBkk1ALkEQrEAAAVotYAKqsrIzUoToFT1gAYhwQAABWalUAWrBggVauXGn+fN111+mMM85Q37599e6770ascB1ZqAtMIgABAGC1VgWgZcuWKS0tTZK0evVqrV69Wm+88YYmTJigu+++O6IF7KhcToecwaWAWAwRAACLxbTmQWVlZWYAWrVqla677jpddtllSk9PV1ZWVkQL2JG5XU7V1AdYCwgAAIu1qgWoR48e2r17tySpsLBQOTk5kiTDMOT3+yNXug7Ow1R4AABs0aoWoKuvvlr/8z//o4EDB+rgwYOaMGGCJGnLli0aMGBARAvYkXlinFINY4AAALBaqwLQL37xC6Wnp2v37t1auHCh4uLiJEn79u3TLbfcEtECdmRcEBUAAHu0KgC53W7dddddJ2y/4447TrtAnYk7JjgKmjFAAABYq8UB6M9//nOLD/qd73ynVYXpbDxcDwwAAFu0OABNnDixRfs5HA4GQreQ2QVGCxAAAJZqcQAKBPgjHWmhxRAZBA0AgLW4FpiNGgdBMw0eAAArtWoQtCRVV1dr7dq1Ki0tVW1tbdh9P/nJT067YJ2Bhy4wAABs0aoAtGXLFl1++eU6evSoqqur1bNnT1VUVKhr167q3bs3AaiF3DEMggYAwA6t6gK74447dOWVV+qLL75Qly5dtG7dOv3nP//RyJEj9eijj0a6jB2WxxWcBs8YIAAArNWqALR161bdeeedcjqdcrlcqqmpUVpamhYuXKh777030mXssBgEDQCAPVoVgNxut5zO4EN79+6t0tJSSVJCQoJ5jTB8vdAg6Bq6wAAAsFSrxgCNGDFCGzdu1MCBAzV27FjNmTNHFRUVev755zVkyJBIl7HDcnMxVAAAbNGqFqBHHnlEffr0kSQ9/PDD6tGjh2bMmKEDBw7o6aefjmgBOzK6wAAAsEerAlBmZqb+67/+S1KwC6ywsFA+n08lJSUaPnz4KR1r6dKlSk9PV2xsrLKysrRhw4aT7vv+++/rmmuuUXp6uhwOhxYvXnzCPg888IAcDkfYbdCgQadUJqt4uBgqAAC2sHUhxJUrVyo/P19z587V5s2bNXz4cOXm5mr//v3N7n/06FH1799f8+fPV0pKykmPe/7552vfvn3m7e23326rUzgtbmaBAQBgi1aNAerXr58cDsdJ7//0009bdJxFixbppptuUl5eniRp2bJl+utf/6pnnnlGs2bNOmH/UaNGadSoUZLU7P0hMTExXxmQjldTU6OamhrzZ5/P1+LHng6uBQYAgD1aFYBmzpwZ9nNdXZ22bNmiwsJC3X333S06Rm1trUpKSjR79mxzm9PpVE5OjoqLi1tTLNPOnTuVmpqq2NhYZWdnq6CgQGeeeeZJ9y8oKNCDDz54Ws/ZGqExQHSBAQBgrVYFoNtvv73Z7UuXLtWmTZtadIyKigr5/X4lJyeHbU9OTtaHH37YmmJJkrKysvTss8/q3HPP1b59+/Tggw/q4osv1rZt29S9e/dmHzN79mzl5+ebP/t8PqWlpbW6DC3VOAuMAAQAgJUiOgZowoQJeuWVVyJ5yFaV4dprr9WwYcOUm5ur119/XZWVlfr9739/0sd4vV7Fx8eH3azgYRo8AAC2iGgA+sMf/qCePXu2aN+kpCS5XC6Vl5eHbS8vLz+l8TtfJzExUeecc44+/vjjiB0zUswuMFqAAACwVKsXQmw6CNowDJWVlenAgQP65S9/2aJjeDwejRw5UkVFRZo4caIkKRAIqKioSLfddltritWsI0eO6JNPPtENN9wQsWNGiptp8AAA2KJVASgUWEKcTqd69eqlSy+99JTW3MnPz9e0adOUmZmp0aNHa/HixaqurjZnhU2dOlV9+/ZVQUGBpODA6Q8++MD89549e7R161bFxcVpwIABkqS77rpLV155pc466yzt3btXc+fOlcvl0pQpU1pzqm2KafAAANijVQFo7ty5EXnySZMm6cCBA5ozZ47KysqUkZGhwsJCc2B0aWmpec0xSdq7d69GjBhh/vzoo4/q0Ucf1dixY7VmzRpJ0ueff64pU6bo4MGD6tWrly666CKtW7dOvXr1ikiZI4mVoAEAsIfDMIwWjcA9lbVxrBpE3FZ8Pp8SEhJUVVXVpufyxr/3acYLmzUqvYdevnlMmz0PAACdwan8/W5xC1BiYuJXLn7YlN/vb+lhO7XGhRCZBQYAgJVaHIDeeust89+fffaZZs2apRtvvFHZ2dmSpOLiYq1YscIcr4Ov5w51gTEIGgAAS7U4AI0dO9b89//+7/9q0aJFYQOLv/Od72jo0KF6+umnNW3atMiWsoPysBAiAAC2aNU6QMXFxcrMzDxhe2Zm5ldezR3hPDHBLkXWAQIAwFqtCkBpaWlavnz5Cdt//etfW3IJiY7CvBQGXWAAAFiqVdPgf/GLX+iaa67RG2+8oaysLEnShg0btHPnTtsvhdGeNK4EzSBoAACs1KoWoMsvv1wfffSRrrzySh06dEiHDh3SlVdeqY8++kiXX355pMvYYTWuBM2sOQAArNSqFiAp2A32yCOPRLIsnQ4XQwUAwB4tDkDvvfeehgwZIqfTqffee+8r9x02bNhpF6wzcDMLDAAAW7Q4AGVkZKisrEy9e/dWRkaGHA6HmltE2uFwsBBiC4XGANUHDAUChpzOli00CQAATk+LA9CuXbvM62nt2rWrzQrUmYQuhioFp8LHOl02lgYAgM6jxQHorLPOavbfaL1QF5gU7AaLdROAAACwQqtmga1YsUJ//etfzZ/vueceJSYmasyYMfrPf/4TscJ1dJ6wAMRAaAAArNKqAPTII4+oS5cukoKrQi9ZskQLFy5UUlKS7rjjjogWsCNzOh2KaRj3U8tiiAAAWKZV0+B3796tAQMGSJJee+01fe9739P06dN14YUX6tJLL41k+To8t8up+oCfmWAAAFioVS1AcXFxOnjwoCTp73//u7797W9LkmJjY/Xll19GrnSdQGggNNcDAwDAOq1qAfr2t7+tH/3oRxoxYkTY6s/vv/++0tPTI1m+Dq+LxyXfsXp9WcvSAQAAWKVVLUBLly5Vdna2Dhw4oFdeeUVnnHGGJKmkpERTpkyJaAE7ujhvMIMeqam3uSQAAHQerWoBSkxM1JIlS07Y/uCDD552gTqbuFi3JOnIMQIQAABWaVULkCT93//9n77//e9rzJgx2rNnjyTp+eef19tvvx2xwnUG3RtagA7X1NlcEgAAOo9WBaBXXnlFubm56tKlizZv3qyamhpJUlVVFRdIPUVmFxgtQAAAWKZVAeihhx7SsmXLtHz5crndbnP7hRdeqM2bN0escJ1B99hQCxABCAAAq7QqAO3YsUOXXHLJCdsTEhJUWVl5umXqVOJiaQECAMBqrQpAKSkp+vjjj0/Y/vbbb6t///6nXajOpDuzwAAAsFyrAtBNN92k22+/XevXr5fD4dDevXv1wgsv6M4779SMGTMiXcYOjRYgAACs16pp8LNmzVIgENC4ceN09OhRXXLJJfJ6vbr77rv1ox/9KNJl7NDivMExVIwBAgDAOq1qAXI4HLrvvvt06NAhbdu2TevWrdOBAweUkJCgfv36RbqMHRotQAAAWO+UAlBNTY1mz56tzMxMXXjhhXr99dc1ePBgvf/++zr33HP1+OOPczX4U8Q6QAAAWO+UusDmzJmjX/3qV8rJydE777yja6+9Vnl5eVq3bp0ee+wxXXvttXK5XG1V1g6pOy1AAABY7pQC0Msvv6znnntO3/nOd7Rt2zYNGzZM9fX1evfdd+VwONqqjB2a2QXGGCAAACxzSl1gn3/+uUaOHClJGjJkiLxer+644w7Cz2kIrQR9mBYgAAAsc0oByO/3y+PxmD/HxMQoLi4u4oXqTLo3zAKrqQ+otj5gc2kAAOgcTqkLzDAM3XjjjfJ6vZKkY8eO6eabb1a3bt3C9vvjH/8YuRJ2cN28jWOmqmvq5YnxfMXeAAAgEk4pAE2bNi3s5+9///sRLUxnFONyqovbpS/r/DpSU68e3QhAAAC0tVMKQL/5zW/aqhydWlxsjL6s88t3jKnwAABYoVULISKyzOuBMRAaAABLEICiQHemwgMAYCkCUBRgLSAAAKxFAIoCrAUEAIC1CEBRIHRFeFqAAACwBgEoCnA9MAAArEUAigKhLjBagAAAsAYBKAqEBkGzDhAAANYgAEUBusAAALAWASgK0AUGAIC1CEBRgIUQAQCwFgEoCpjT4OkCAwDAErYHoKVLlyo9PV2xsbHKysrShg0bTrrv+++/r2uuuUbp6elyOBxavHjxaR8zGpgLIdICBACAJWwNQCtXrlR+fr7mzp2rzZs3a/jw4crNzdX+/fub3f/o0aPq37+/5s+fr5SUlIgcMxowCBoAAGvZGoAWLVqkm266SXl5eRo8eLCWLVumrl276plnnml2/1GjRunnP/+5Jk+eLK/XG5FjRoNQC9CXdX7V+wM2lwYAgI7PtgBUW1urkpIS5eTkNBbG6VROTo6Ki4stPWZNTY18Pl/YzUqhdYAkBkIDAGAF2wJQRUWF/H6/kpOTw7YnJyerrKzM0mMWFBQoISHBvKWlpbXq+VvL7XIq1h18KbggKgAAbc/2QdDRYPbs2aqqqjJvu3fvtrwMXBAVAADrxHz9Lm0jKSlJLpdL5eXlYdvLy8tPOsC5rY7p9XpPOqbIKt1jY1RxpIYABACABWxrAfJ4PBo5cqSKiorMbYFAQEVFRcrOzo6aY1rFXA2aLjAAANqcbS1AkpSfn69p06YpMzNTo0eP1uLFi1VdXa28vDxJ0tSpU9W3b18VFBRICg5y/uCDD8x/79mzR1u3blVcXJwGDBjQomNGK9YCAgDAOrYGoEmTJunAgQOaM2eOysrKlJGRocLCQnMQc2lpqZzOxkaqvXv3asSIEebPjz76qB599FGNHTtWa9asadExo1UcawEBAGAZh2EYht2FiDY+n08JCQmqqqpSfHy8Jc+Zv3Kr/rhlj+69fJCmX3K2Jc8JAEBHcip/v5kFFiVCq0EzDR4AgLZHAIoScQQgAAAsQwCKEqwDBACAdQhAUYJB0AAAWIcAFCW6h9YBogUIAIA2RwCKEqwDBACAdQhAUaKxC6zO5pIAANDxEYCiRGgaPF1gAAC0PQJQlOjeMAuMafAAALQ9AlCUCHWBHa31yx9gcW4AANoSAShKdPO6zH/TDQYAQNsiAEUJb4xLnpjgy0EAAgCgbRGAooi5FhDjgAAAaFMEoChiToWvYSo8AABtiQAURczFEGkBAgCgTRGAokh3rggPAIAlCEBRhCvCAwBgDQJQFOnOFeEBALAEASiKcEFUAACsQQCKInG0AAEAYAkCUBQJtQAxDR4AgLZFAIoiXBEeAABrEICiCNPgAQCwBgEoioSmwROAAABoWwSgKNI4BogABABAWyIARRHWAQIAwBoEoChCCxAAANYgAEWRuCazwAIBw+bSAADQcRGAokioBUiSqmtpBQIAoK0QgKJIrNsljyv4ktANBgBA2yEARRkuhwEAQNsjAEWZUDeYjwAEAECbIQBFGWaCAQDQ9ghAUYYuMAAA2h4BKMp054rwAAC0OQJQlInjgqgAALQ5AlCUYQwQAABtjwAUZbrHBq8IzxggAADaDgEoynSPpQUIAIC2RgCKMqEuMMYAAQDQdghAUSbUAlT1JbPAAABoKwSgKJMSHytJ2lf1pc0lAQCg4yIARZm+PbpIkvZUfinDMGwuDQAAHRMBKMr0Segih0M6VhfQwepau4sDAECHRACKMp4Yp3p390qS9nxBNxgAAG2BABSF+iY2doMBAIDIIwBFob49ukqiBQgAgLYSFQFo6dKlSk9PV2xsrLKysrRhw4av3P/ll1/WoEGDFBsbq6FDh+r1118Pu//GG2+Uw+EIu40fP74tTyGiaAECAKBt2R6AVq5cqfz8fM2dO1ebN2/W8OHDlZubq/379ze7/zvvvKMpU6bohz/8obZs2aKJEydq4sSJ2rZtW9h+48eP1759+8zb7373OytOJyK+0TAT7HNagAAAaBO2B6BFixbppptuUl5engYPHqxly5apa9eueuaZZ5rd//HHH9f48eN1991367zzztO8efN0wQUXaMmSJWH7eb1epaSkmLcePXpYcToR0XQqPAAAiDxbA1Btba1KSkqUk5NjbnM6ncrJyVFxcXGzjykuLg7bX5Jyc3NP2H/NmjXq3bu3zj33XM2YMUMHDx48aTlqamrk8/nCbnb6RmKoBeioreUAAKCjsjUAVVRUyO/3Kzk5OWx7cnKyysrKmn1MWVnZ1+4/fvx4PffccyoqKtKCBQu0du1aTZgwQX6/v9ljFhQUKCEhwbylpaWd5pmdnlAL0OFj9fId45IYAABEWozdBWgLkydPNv89dOhQDRs2TGeffbbWrFmjcePGnbD/7NmzlZ+fb/7s8/lsDUFdPTHq0dWtL47Wac8XXyq+j9u2sgAA0BHZ2gKUlJQkl8ul8vLysO3l5eVKSUlp9jEpKSmntL8k9e/fX0lJSfr444+bvd/r9So+Pj7sZjdzHBADoQEAiDhbA5DH49HIkSNVVFRkbgsEAioqKlJ2dnazj8nOzg7bX5JWr1590v0l6fPPP9fBgwfVp0+fyBTcAkyFBwCg7dg+Cyw/P1/Lly/XihUrtH37ds2YMUPV1dXKy8uTJE2dOlWzZ88297/99ttVWFioxx57TB9++KEeeOABbdq0Sbfddpsk6ciRI7r77ru1bt06ffbZZyoqKtJVV12lAQMGKDc315ZzbI2+iQ2LIRKAAACIONvHAE2aNEkHDhzQnDlzVFZWpoyMDBUWFpoDnUtLS+V0Nua0MWPG6MUXX9TPfvYz3XvvvRo4cKBee+01DRkyRJLkcrn03nvvacWKFaqsrFRqaqouu+wyzZs3T16v15ZzbA26wAAAaDsOwzAMuwsRbXw+nxISElRVVWXbeKC/vV+m//d8iYanJepPt15oSxkAAGhPTuXvt+1dYGieOQaIFiAAACKOABSlQpfDqDhSo2N1za9fBAAAWocAFKUSurjVzeOSxEBoAAAijQAUpRwOBwOhAQBoIwSgKMZaQAAAtA0CUBSjBQgAgLZBAIpiLIYIAEDbIABFMVqAAABoGwSgKMYYIAAA2gYBKIqlNbQA7av6UnX+gM2lAQCg4yAARbGkOK88LqcChlRWdczu4gAA0GEQgKKY0+lQamKsJLrBAACIJAJQlGMgNAAAkUcAinIMhAYAIPIIQFHOXAuIFiAAACKGABTlzC4wWoAAAIgYAlCUowsMAIDIIwBFuW80GQQdCBg2lwYAgI6BABTlUhJi5XRItf6AKo7U2F0cAAA6BAJQlHO7nEqJD64FtJuB0AAARAQBqB0YkNxdkrR1d6W9BQEAoIMgALUDFw9IkiT986MDNpcEAICOgQDUDlxyTi9J0vpdB3Wszm9zaQAAaP8IQO3AOclxSo736lhdQBs/O2R3cQAAaPcIQO2Aw+HQxQODrUD/t7PC5tIAAND+EYDaiVA3GOOAAAA4fQSgduLiAUlyOKQPyw6r3HfM7uIAANCuEYDaiR7dPBrWN0ESrUAAAJwuAlA7wjggAAAigwDUjoTGAb39cQXXBQMA4DQQgNqREWcmKs4bo0PVtdq2t8ru4gAA0G4RgNoRt8upMWefIYlxQAAAnA4CUDtzsTkdnnFAAAC0FgGonRnbMBB6c+kXOnyszubSAADQPhGA2pkzz+iq9DO6qj5gqPiTg3YXBwCAdokA1A6Zq0LvZBwQAACtQQBqhy5p6Ab763v79EV1rc2lAQCg/SEAtUNjz+2lc5O764ujdSp4Y7vdxQEAoN0hALVDbpdTj1w9RJL0+02fa8OuQzaXCACA9oUA1E6NPKunpoxOkyTd9+q/VVsfsLlEAAC0HwSgduyn4wfpjG4e7dx/RL9++1O7iwMAQLtBAGrHErt6dN8V50mSnijaqd2HjtpcIgAA2gcCUDv33RF9ld3/DB2rC+j+P22TYXCRVAAAvg4BqJ1zOBx66LtD5HE5tWbHAS382w75uVI8AABfiQDUAZzdK073jD9XkvTUmk9003ObVPUll8kAAOBkCEAdxI8u7q/FkzLkjXHqzQ/367tL/6WP9x+2u1gAAEQlAlAHMnFEX70yY4xSE2L1aUW1Ji59R6+UfK5jdX67iwYAQFSJigC0dOlSpaenKzY2VllZWdqwYcNX7v/yyy9r0KBBio2N1dChQ/X666+H3W8YhubMmaM+ffqoS5cuysnJ0c6dO9vyFKLGkL4J+vOPL9Lofj11pKZed778rkY//A/d9+q/VfKfLxgkDQCAoiAArVy5Uvn5+Zo7d642b96s4cOHKzc3V/v37292/3feeUdTpkzRD3/4Q23ZskUTJ07UxIkTtW3bNnOfhQsX6oknntCyZcu0fv16devWTbm5uTp27JhVp2WrpDivXvhRlvK/fY76JMTKd6xeL6wv1TVPvaOxP1+jW1/crEV/36HXtuzRu7srVXW0jmAEAOhUHIbNf/mysrI0atQoLVmyRJIUCASUlpamH//4x5o1a9YJ+0+aNEnV1dVatWqVue2b3/ymMjIytGzZMhmGodTUVN1555266667JElVVVVKTk7Ws88+q8mTJ39tmXw+nxISElRVVaX4+PgInak9AgFD6z49qFc279Eb2/bpaG3z3WFx3hj1Teyi1MRY9UnsIm+MUy6HQ06nQ06HQzFOh2LdTnljXPK6ncH7nU65nJLTEdzH1WRflzP42OAxJJejcZthBFvpDEnHv/scDsmh4Ow2p6Px2I7Qvxuez9Gwb8OjgudqGDpW51dNfSD4/7qAHA7J5XQoxulsKF/w2CGGYSjQUB6/YZgz6Dwup9wxTrldTrldwbI75DDLJ0l1fkP1gYDq/AHV+Q0FGh5rmMcOlsm8NSzWHeMKlif4f4fq/IZq6oPlrqkPqN4fMM+5aZ16YpzyuJzyxDgV43KadeBsOJ8mp3Xc80v+QLAMzdVtfSAgf8BQfcAw/x9o2D/4uMbXK2AYMozgc7ldjeVxu4L1G6xrh/la1fuDx6v3B1TfUD+hc3I2OT81OZdQXYXK5Q8YcpjvgeDr7XA0lMkI1ncgYKjOb6jW71dtQz36A8YJZQq99k1/7Tkd4e/X4GvYeOzG92rDNkPB97TTab7Xg++Pxtf++Nc/9LhA02M1ebMYCi+PxxV8jUPvvdBrU+cPnpdDjc/b9PlP9j4IPVV9w3u1PhBQvb/hPeEIvScaP1eh93ro9Qq992LdTnlcLgWM4DFq64NlCn4ODNX7DdU1HNshydXwHg99/hrrIvi+cjoU9jmLcTobXr/Q58GvOr/RcA6Nr0nT8wrVn/k+bajn0Psp9H53ORyKdbvkjXHK63Yp1h183qbvRcOQqmvrdeRYvY7UBG91fqPh90bj8WKcDrldwc+wu+Gz7G7yuXa7nObnx9/kc1XfpO7rA4ZcTpmPCb3m5u/MhvdjfcBQbX1Atf6AauqCdR3jbKivhs9gc695XSCg2vrQ76eA/E0uFuAw6y38d3Ho9fA2+VwHX2tDdfUB1TX8bnA2+Uy5nI2/f5v+bnc0+R0T+r1r1mHD+7xXd69SEmIVSafy9zsmos98impra1VSUqLZs2eb25xOp3JyclRcXNzsY4qLi5Wfnx+2LTc3V6+99pokadeuXSorK1NOTo55f0JCgrKyslRcXNxsAKqpqVFNTY35s8/nO53TiipOp0NjBiRpzIAkzZt4vtZ9elCf7K/WpxXV+vTAEX1aUa0Dh2t0pKZeO8oPa0c5A6cBAG1vxqVn66fjB9n2/LYGoIqKCvn9fiUnJ4dtT05O1ocfftjsY8rKyprdv6yszLw/tO1k+xyvoKBADz74YKvOoT3p6onRtwYl61vHvd+O1fm1p/JL7fniS+2p/FL7qo6p3h9QIPQNtuGbZ6iF4lidX8fq/PIbOq6loOHbjiH5A8FvHIFAsGXF/L9hmN8uQ98Ejhf6luwPBL9RhI7d9Ft4wGhsbQl9E3Q6pFi3K+xbnhpadur9obId1+TU0JrhOu7bTL0/eM61/uC3KPPbjRqfO8bplMflkDumsSXg+DNyOsNbOoLnFQhrGXG7nA2taq6GljWHeY6hcw99C6zzh77VNZx/k5aZ5jRtxWv6TS3UymIYwW9zoRacpt/qnA6Zj3U2tAo0/BfWmhAqU6ieQ+U1DMP85h/javL8gfBWqeNbRkLfsJuWJ/RaN74ORtg3STlktkaF/h9qcQi99qEWqJBgK1LT1j+ZrXihVpGmrWxm61/DA5u2mDVde8tx3HM0bcWUmhzruJaWUL2GWnrq/YZqG1p8Qq2GoTqRZD6v/7jnD70vmrZ0hoRaDUItGE5H42co1FoYah0L1bPZAtHw+a+tD5gtBaHPQIyraStGsKzBMgYaP3sB47i6DL4+dU3eR/UBI/jZjQl+HmLdwXNu+lqE3ofNvdebHt98rwdkvidr6v06Vhcw/2/+nmt4L0pSV2+MuntjFBcbo26eGLljnGadhI7nDwRfm9D51Ta8XvX+YCtJvT8Q3iLuCrbmNK374OfcUG3ocaGW5OM+9zFOh/me9sa45HI6gu+RUOtzvRHWghgSasHxuIL1GWp9D32WQk25ziat7qHXI/R61/kNs7U3xhksv8sp87NSHwjWX9PPSePn1Qj7GxIwmrSsNrzP4mPdJ76QFrI1AEWL2bNnh7Uq+Xw+paWl2Vgia8W6XTq7V5zO7hVnd1EAALCErYOgk5KS5HK5VF5eHra9vLxcKSkpzT4mJSXlK/cP/f9Ujun1ehUfHx92AwAAHZetAcjj8WjkyJEqKioytwUCARUVFSk7O7vZx2RnZ4ftL0mrV6829+/Xr59SUlLC9vH5fFq/fv1JjwkAADoX27vA8vPzNW3aNGVmZmr06NFavHixqqurlZeXJ0maOnWq+vbtq4KCAknS7bffrrFjx+qxxx7TFVdcoZdeekmbNm3S008/LSnYjzlz5kw99NBDGjhwoPr166f7779fqampmjhxol2nCQAAoojtAWjSpEk6cOCA5syZo7KyMmVkZKiwsNAcxFxaWiqns7GhasyYMXrxxRf1s5/9TPfee68GDhyo1157TUOGDDH3ueeee1RdXa3p06ersrJSF110kQoLCxUbG9npdgAAoH2yfR2gaNSR1gECAKCzOJW/37avBA0AAGA1AhAAAOh0CEAAAKDTIQABAIBOhwAEAAA6HQIQAADodAhAAACg0yEAAQCATocABAAAOh3bL4URjUKLY/t8PptLAgAAWir0d7slF7kgADXj8OHDkqS0tDSbSwIAAE7V4cOHlZCQ8JX7cC2wZgQCAe3du1fdu3eXw+GI6LF9Pp/S0tK0e/durjPWxqhr61DX1qGurUNdWydSdW0Yhg4fPqzU1NSwC6k3hxagZjidTn3jG99o0+eIj4/nA2UR6to61LV1qGvrUNfWiURdf13LTwiDoAEAQKdDAAIAAJ0OAchiXq9Xc+fOldfrtbsoHR51bR3q2jrUtXWoa+vYUdcMggYAAJ0OLUAAAKDTIQABAIBOhwAEAAA6HQIQAADodAhAFlq6dKnS09MVGxurrKwsbdiwwe4itXsFBQUaNWqUunfvrt69e2vixInasWNH2D7Hjh3TrbfeqjPOOENxcXG65pprVF5eblOJO4758+fL4XBo5syZ5jbqOnL27Nmj73//+zrjjDPUpUsXDR06VJs2bTLvNwxDc+bMUZ8+fdSlSxfl5ORo586dNpa4ffL7/br//vvVr18/denSRWeffbbmzZsXdi0p6rp1/vnPf+rKK69UamqqHA6HXnvttbD7W1Kvhw4d0vXXX6/4+HglJibqhz/8oY4cORKR8hGALLJy5Url5+dr7ty52rx5s4YPH67c3Fzt37/f7qK1a2vXrtWtt96qdevWafXq1aqrq9Nll12m6upqc5877rhDf/nLX/Tyyy9r7dq12rt3r66++mobS93+bdy4Ub/61a80bNiwsO3UdWR88cUXuvDCC+V2u/XGG2/ogw8+0GOPPaYePXqY+yxcuFBPPPGEli1bpvXr16tbt27Kzc3VsWPHbCx5+7NgwQI99dRTWrJkibZv364FCxZo4cKFevLJJ819qOvWqa6u1vDhw7V06dJm729JvV5//fV6//33tXr1aq1atUr//Oc/NX369MgU0IAlRo8ebdx6663mz36/30hNTTUKCgpsLFXHs3//fkOSsXbtWsMwDKOystJwu93Gyy+/bO6zfft2Q5JRXFxsVzHbtcOHDxsDBw40Vq9ebYwdO9a4/fbbDcOgriPppz/9qXHRRRed9P5AIGCkpKQYP//5z81tlZWVhtfrNX73u99ZUcQO44orrjB+8IMfhG27+uqrjeuvv94wDOo6UiQZr776qvlzS+r1gw8+MCQZGzduNPd54403DIfDYezZs+e0y0QLkAVqa2tVUlKinJwcc5vT6VROTo6Ki4ttLFnHU1VVJUnq2bOnJKmkpER1dXVhdT9o0CCdeeaZ1H0r3XrrrbriiivC6lSiriPpz3/+szIzM3Xttdeqd+/eGjFihJYvX27ev2vXLpWVlYXVdUJCgrKysqjrUzRmzBgVFRXpo48+kiS9++67evvttzVhwgRJ1HVbaUm9FhcXKzExUZmZmeY+OTk5cjqdWr9+/WmXgYuhWqCiokJ+v1/Jyclh25OTk/Xhhx/aVKqOJxAIaObMmbrwwgs1ZMgQSVJZWZk8Ho8SExPD9k1OTlZZWZkNpWzfXnrpJW3evFkbN2484T7qOnI+/fRTPfXUU8rPz9e9996rjRs36ic/+Yk8Ho+mTZtm1mdzv1Oo61Mza9Ys+Xw+DRo0SC6XS36/Xw8//LCuv/56SaKu20hL6rWsrEy9e/cOuz8mJkY9e/aMSN0TgNBh3Hrrrdq2bZvefvttu4vSIe3evVu33367Vq9erdjYWLuL06EFAgFlZmbqkUcekSSNGDFC27Zt07JlyzRt2jSbS9ex/P73v9cLL7ygF198Ueeff762bt2qmTNnKjU1lbru4OgCs0BSUpJcLtcJs2HKy8uVkpJiU6k6lttuu02rVq3SW2+9pW984xvm9pSUFNXW1qqysjJsf+r+1JWUlGj//v264IILFBMTo5iYGK1du1ZPPPGEYmJilJycTF1HSJ8+fTR48OCwbeedd55KS0slyaxPfqecvrvvvluzZs3S5MmTNXToUN1www264447VFBQIIm6bistqdeUlJQTJgrV19fr0KFDEal7ApAFPB6PRo4cqaKiInNbIBBQUVGRsrOzbSxZ+2cYhm677Ta9+uqrevPNN9WvX7+w+0eOHCm32x1W9zt27FBpaSl1f4rGjRunf//739q6dat5y8zM1PXXX2/+m7qOjAsvvPCE5Rw++ugjnXXWWZKkfv36KSUlJayufT6f1q9fT12foqNHj8rpDP9T6HK5FAgEJFHXbaUl9Zqdna3KykqVlJSY+7z55psKBALKyso6/UKc9jBqtMhLL71keL1e49lnnzU++OADY/r06UZiYqJRVlZmd9HatRkzZhgJCQnGmjVrjH379pm3o0ePmvvcfPPNxplnnmm8+eabxqZNm4zs7GwjOzvbxlJ3HE1ngRkGdR0pGzZsMGJiYoyHH37Y2Llzp/HCCy8YXbt2NX7729+a+8yfP99ITEw0/vSnPxnvvfeecdVVVxn9+vUzvvzySxtL3v5MmzbN6Nu3r7Fq1Spj165dxh//+EcjKSnJuOeee8x9qOvWOXz4sLFlyxZjy5YthiRj0aJFxpYtW4z//Oc/hmG0rF7Hjx9vjBgxwli/fr3x9ttvGwMHDjSmTJkSkfIRgCz05JNPGmeeeabh8XiM0aNHG+vWrbO7SO2epGZvv/nNb8x9vvzyS+OWW24xevToYXTt2tX47ne/a+zbt8++Qncgxwcg6jpy/vKXvxhDhgwxvF6vMWjQIOPpp58Ouz8QCBj333+/kZycbHi9XmPcuHHGjh07bCpt++Xz+Yzbb7/dOPPMM43Y2Fijf//+xn333WfU1NSY+1DXrfPWW281+/t52rRphmG0rF4PHjxoTJkyxYiLizPi4+ONvLw84/DhwxEpn8Mwmix3CQAA0AkwBggAAHQ6BCAAANDpEIAAAECnQwACAACdDgEIAAB0OgQgAADQ6RCAAABAp0MAAgAAnQ4BCAAkpaena/HixXYXA4BFCEAALHfjjTdq4sSJkqRLL71UM2fOtOy5n332WSUmJp6wfePGjZo+fbpl5QBgrxi7CwAAkVBbWyuPx9Pqx/fq1SuCpQEQ7WgBAmCbG2+8UWvXrtXjjz8uh8Mhh8Ohzz77TJK0bds2TZgwQXFxcUpOTtYNN9ygiooK87GXXnqpbrvtNs2cOVNJSUnKzc2VJC1atEhDhw5Vt27dlJaWpltuuUVHjhyRJK1Zs0Z5eXmqqqoyn++BBx6QdGIXWGlpqa666irFxcUpPj5e1113ncrLy837H3jgAWVkZOj5559Xenq6EhISNHnyZB0+fNjc5w9/+IOGDh2qLl266IwzzlBOTo6qq6vbqDYBnAoCEADbPP7448rOztZNN92kffv2ad++fUpLS1NlZaW+9a1vacSIEdq0aZMKCwtVXl6u6667LuzxK1askMfj0b/+9S8tW7ZMkuR0OvXEE0/o/fff14oVK/Tmm2/qnnvukSSNGTNGixcvVnx8vPl8d9111wnlCgQCuuqqq3To0CGtXbtWq1ev1qeffqpJkyaF7ffJJ5/otdde06pVq7Rq1SqtXbtW8+fPlyTt27dPU6ZM0Q9+8ANt375da9as0dVXXy2uPw1EB7rAANgmISFBHo9HXbt2VUpKirl9yZIlGjFihB555BFz2zPPPKO0tDR99NFHOueccyRJAwcO1MKFC8OO2XQ8UXp6uh566CHdfPPN+uUvfymPx6OEhAQ5HI6w5zteUVGR/v3vf2vXrl1KS0uTJD333HM6//zztXHjRo0aNUpSMCg9++yz6t69uyTphhtuUFFRkR5++GHt27dP9fX1uvrqq3XWWWdJkoYOHXoatQUgkmgBAhB13n33Xb311luKi4szb4MGDZIUbHUJGTly5AmP/cc//qFx48apb9++6t69u2644QYdPHhQR48ebfHzb9++XWlpaWb4kaTBgwcrMTFR27dvN7elp6eb4UeS+vTpo/3790uShg8frnHjxmno0KG69tprtXz5cn3xxRctrwQAbYoABCDqHDlyRFdeeaW2bt0adtu5c6cuueQSc79u3bqFPe6zzz7Tf//3f2vYsGF65ZVXVFJSoqVLl0oKDpKONLfbHfazw+FQIBCQJLlcLq1evVpvvPGGBg8erCeffFLnnnuudu3aFfFyADh1BCAAtvJ4PPL7/WHbLrjgAr3//vtKT0/XgAEDwm7Hh56mSkpKFAgE9Nhjj+mb3/ymzjnnHO3du/drn+945513nnbv3q3du3eb2z744ANVVlZq8ODBLT43h8OhCy+8UA8++KC2bNkij8ejV199tcWPB9B2CEAAbJWenq7169frs88+U0VFhQKBgG699VYdOnRIU6ZM0caNG/XJJ5/ob3/7m/Ly8r4yvAwYMEB1dXV68skn9emnn+r55583B0c3fb4jR46oqKhIFRUVzXaN5eTkaOjQobr++uu1efNmbdiwQVOnTtXYsWOVmZnZovNav369HnnkEW3atEmlpaX64x//qAMHDui88847tQoC0CYIQABsddddd8nlcmnw4MHq1auXSktLlZqaqn/961/y+/267LLLNHToUM2cOVOJiYlyOk/+a2v48OFatGiRFixYoCFDhuiFF15QQUFB2D5jxozRzTffrEmTJqlXr14nDKKWgi03f/rTn9SjRw9dcsklysnJUf/+/bVy5coWn1d8fLz++c9/6vLLL9c555yjn/3sZ3rsscc0YcKEllcOgDbjMJiTCQAAOhlagAAAQKdDAAIAAJ0OAQgAAHQ6BCAAANDpEIAAAECnQwACAACdDgEIAAB0OgQgAADQ6RCAAABAp0MAAgAAnQ4BCAAAdDr/H1/DGGgmjLCZAAAAAElFTkSuQmCC\n",
"text/plain": [
- "
"
]
},
"metadata": {},
@@ -959,10 +956,7 @@
}
],
"source": [
- "# create minimum eigen optimizer based on VQE\n",
- "import warnings\n",
- "\n",
- "warnings.filterwarnings(\"ignore\", category=UserWarning)\n",
+ "# create minimum eigen optimizer based on SamplingVQE\n",
"vqe_optimizer = MinimumEigenOptimizer(vqe)\n",
"\n",
"# solve quadratic program\n",
@@ -983,7 +977,7 @@
{
"data": {
"text/html": [
- "
Version Information
Qiskit Software
Version
qiskit-terra
0.22.0.dev0+4749eb5
qiskit-aer
0.11.0
qiskit-nature
0.5.0
qiskit-finance
0.3.4
qiskit-optimization
0.5.0
qiskit-machine-learning
0.5.0
System information
Python version
3.8.13
Python compiler
Clang 12.0.0
Python build
default, Mar 28 2022 06:16:26
OS
Darwin
CPUs
2
Memory (Gb)
12.0
Thu Sep 15 11:56:19 2022 EDT
"
+ "
Version Information
Qiskit Software
Version
qiskit-terra
0.23.0
qiskit-aer
0.11.1
qiskit-optimization
0.5.0
qiskit-machine-learning
0.6.0
System information
Python version
3.9.15
Python compiler
Clang 14.0.0 (clang-1400.0.29.102)
Python build
main, Oct 11 2022 22:27:25
OS
Darwin
CPUs
4
Memory (Gb)
16.0
Tue Dec 06 21:47:47 2022 JST
"
],
"text/plain": [
""
@@ -1036,7 +1030,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.8.13"
+ "version": "3.9.7"
}
},
"nbformat": 4,
diff --git a/docs/tutorials/07_examples_vehicle_routing.ipynb b/docs/tutorials/07_examples_vehicle_routing.ipynb
index c4c562948..ac72c649a 100644
--- a/docs/tutorials/07_examples_vehicle_routing.ipynb
+++ b/docs/tutorials/07_examples_vehicle_routing.ipynb
@@ -80,7 +80,7 @@
"\n",
"Here, we demonstrate an approach that combines classical and quantum computing steps, following the quantum approximate optimization approach of Farhi, Goldstone, and Gutmann (2014). In particular, we use the variational quantum eigensolver (VQE). We stress that given the use of limited depth of the quantum circuits employed (variational forms), it is hard to discuss the speed-up of the algorithm, as the solution obtained is heuristic in nature. At the same time, due to the nature and importance of the target problems, it is worth investigating heuristic approaches, which may be worthwhile for some problem classes. \n",
"\n",
- "Following [5], the algorithm can be summarized as follows:\n",
+ "The algorithm can be summarized as follows:\n",
"\n",
"- Preparation steps: \n",
"\t- Transform the combinatorial problem into a binary polynomial optimization problem with equality constraints only;\n",
@@ -168,10 +168,8 @@
"source": [
"## Initialization\n",
"\n",
- "First of all we load all the packages that we need: \n",
- " - Python 3.6 or greater is required;\n",
- " - CPLEX 12.8 or greater is required for the classical computations;\n",
- " - Latest Qiskit is required for the quantum computations."
+ "First of all we load all the packages that we need.\n",
+ "CPLEX is required for the classical computations. You can install it by `pip install 'qiskit-optimization[cplex]'`. "
]
},
{
@@ -180,16 +178,9 @@
"metadata": {},
"outputs": [],
"source": [
- "# Load the packages that are required\n",
"import numpy as np\n",
- "import operator\n",
"import matplotlib.pyplot as plt\n",
"\n",
- "import sys\n",
- "\n",
- "if sys.version_info < (3, 6):\n",
- " raise Exception(\"Please use Python version 3.6 or greater.\")\n",
- "\n",
"try:\n",
" import cplex\n",
" from cplex.exceptions import CplexError\n",
@@ -197,13 +188,11 @@
" print(\"Warning: Cplex not found.\")\n",
"import math\n",
"\n",
- "# Qiskit packages\n",
- "from qiskit import BasicAer\n",
- "from qiskit.quantum_info import Pauli\n",
- "from qiskit.utils import QuantumInstance, algorithm_globals\n",
- "from qiskit.algorithms import NumPyMinimumEigensolver, VQE\n",
- "from qiskit.circuit.library import TwoLocal\n",
- "from qiskit.algorithms.optimizers import SPSA"
+ "from qiskit.utils import algorithm_globals\n",
+ "from qiskit.algorithms.minimum_eigensolvers import SamplingVQE\n",
+ "from qiskit.algorithms.optimizers import SPSA\n",
+ "from qiskit.circuit.library import RealAmplitudes\n",
+ "from qiskit.primitives import Sampler"
]
},
{
@@ -436,14 +425,12 @@
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEICAYAAABRSj9aAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAAzLklEQVR4nO3deXhU5fn/8fc9k5UsQAiELSSyVTYFww9RqIKgIoKgQkWRL+pXqbig1ZaqXXBpRYut+lWRirVoUaNSUbDgylYQZN+RVVbZIZCEkExm7t8fM2LAhCRkkjOT3K/rOldm5px5zmdOJvecPOeZc0RVMcYYU325nA5gjDGmclmhN8aYas4KvTHGVHNW6I0xppqzQm+MMdWcFXpjjKnmrNCbEonI4yIyuRLbXyciPSrYRqVmNKY6sEJfw4nILSKyVERyRGSviMwUke5VsW5Vbaeqc6piXcEgIukioiISUQlt9xSR2SJyTES2FzN/togcFJHjIrJKRAYUmXetiMwXkSwR2Scir4tIwlnW9ZSIrBGRQhF5/Ix5jURkmoh8H3it6UF8mcYhVuhrMBF5CHgBeBpIAZoB44EBZ3maqRy5wBvAb0qY/wDQSFUTgRHAZBFpFJhXG/gT0BhoAzQBxp1lXVuA0cB/ipnnAz4FbizvCzChywp9DSUitYEngXtV9UNVzVVVj6pOV9Vii42IfBDYYzwmIvNEpF2ReX1FZL2IZIvIHhH5deDxZBH5JLC3eURE/isirsC87SLSO3DbLSKPicjWQBvLRCQ1MO9FEdkV2JtdJiI/L8frHCAiKwPP3SoifQKPNw7suR4RkS0icleR53QJ/JdzXET2i8jfArPmBX5mBf4DuqSsOUqjqotV9V/AthLmr1bVwh/uApFAamDeO6r6qaqeUNWjwESg21nW9aaqzgSyi5m3X1XHA0sq9opMKLFCX3NdAsQAU8vxnJlAK6ABsBx4u8i8fwC/VNUEoD0wK/D4w8BuoD7+/xoew1+ozvQQcDPQF0gE7gBOBOYtAToCScA7wAciElNaWBHpAryFfy+5DnAZsD0wOzOQqzEwCHhaRK4IzHsReDGw99wCeD/w+GWBn3VUNV5VFxazzlsCH2olTc1Ky32W1/OJiJwEvgHmAEtLWPQyYN25rsdUP0HvazRhox5wqMheYqlU9Y0fbgf6do+KSG1VPQZ4gLYisiqwV3k0sKgHaASkqeoW4L8lNH8nMFpVNwburyqy3qIHW/8qIr8HflZ0mRL8L/CGqn4RuL8nkD0V/x7vtap6ElgpIq8D/4P/A8oDtBSRZFU9BCwqZT2nqOo7+D+Mgk5V+4lIJNAbaKOqvjOXEZErgeHAxZWRwYQn26OvuQ4DyWU9sBjoWnkm0P1xnB/3jJMDP2/Evze+Q0TmFunWGIe/T/hzEdkmIo+UsIpUYGsJ6/61iGwIdBll4e+TTi5u2TK22Rg4oqpFuy524O/bBv8HRGvgWxFZIiL9yrCuKhHoXpsJXCUi1xWdJyJd8X/IDFLVTY4ENCHJCn3NtRDIBwaWcflb8B+k7Y2/0KYHHhcAVV2iqgPwd+t8RKC7Q1WzVfVhVW0OXAc8JCK9iml/F/5uktME+uNHA78A6qpqHeDYD+stRbFtAt8DSWeMTGlGYI9fVTer6s2B1/IsMEVE4ii+y+nMvEMD/fclTefcdXOGCIq8NhHpBEwD7lDVr4K0DlNNWKGvoQLdLX8EXhGRgSJSS0QiReQaEflLMU9JwP/BcBiohX+kDgAiEhUocLVV1QMcxz96AxHpJyItRUTwF2jvD/PO8DrwlIi0Er8LRKReYL2FwEEgQkT+iL8Pvyz+AdwuIr1ExCUiTUTkfFXdBXwNjBWRGBG5AP9e/ORA5ltFpH6gayQr0JYvkMEHNC9phar6dqD/vqRpZ3HPC+SLwX+QVQK5ogLzzg/8XmIDv6Nb8ffDzw3Mb49/pMz9qjq9tI0SaCMG/99/RGBd7iLzY4DowN3oshwPMSFOVW2qwRMwFP9BvVxgH/4hd5cG5j0OTA7cjgc+xj9SYwf+/mwFWgJR+AvNUfxFfgnQPfC8X+Hv5snFf/DzD0XWvR3oHbjtBn4PfBdYxxKgaeDxNwLt7sW/d1/0eacylvD6rgdWB9rcAlwdeLwp8AlwBH/3zt1FnjMZOADk4D+oObDIvCfxF/wsoGsQfw89Atuz6DQnMK8N/gOw2YH1LgGuL/Lcf+L/AMopMq0rMn8CMKHI/UnFrOu2IvPPnKdOv09tqtgkgV+sMcaYasq6bowxppqzQm+MMdWcFXpjjKnmrNAbY0yoE2mKyEuILETkBCJKOU4458g3Y5OTkzU9Pb1K15mbm0tcXFyVrjNYLLszLLtzwjl/ZWTPaN2ap7dtY1lhYcFV/tNfXFWuBpwY6pORkaFVbfbs2VW+zmCx7M6w7M4J5/yVkt3rVVVVYKnCnQqqkK5lrLnWdWOMMZWo0Ovj+EkPXl8FhrK7Klaq7aRmxhgTZPmFXmas2curc7ay+UAOES6h0Ke0bhDP3T1a0LdDI6Ij3KU3FCRW6I0xJojyPF4u/vNXeLw+cgu8AHi8/r35jftz+P3UtTwxbT1v3tGFC1PrVEkm67oxxpggWbUri20Hc8nK85wq8mfKLfCSledhyGuLWLUrq0pyWaE3xpggyC/0MvyNxfjKeFqZPI9/+fzC4j8QgqnChT5w5rvF4r9g8ToReSIYwYwxJpzMWLMXj7e4E7OWzOP1MXPNvkpK9KNg7NHnA1eo6oX4L/fWJ3ABBGOMqTFenbO1xO6akuQWeHl1zpZKSvSjChf6wCjPnMDdyMBkp8Q0xtQYXp+y+UBOsfN8hQXk7y/2mu8AbDqQU7ahl1OmcBvUBTICj1yDyCBELi/tqUE5TXHgogXL8J+b/BVV/W0xy4wARgCkpKRkZGZmVni95ZGTk0N8fHyVrjNYLLszLLtzwi2/T5X1e7NRVVJiYX8eqLcQX95xvDlHAIhq2LLY54oIbRsl4JKzXzStR8+eJc2ai2qPsz03qOejF5E6wFT8V7pZW9JynTt31qVLS7qAfeWYM2cOPXr0qNJ1Botld4Zld0645ff6lJa/m4HPpzx8fg6PPvsyedtXovm5ALhrp9Dgxj8QVT/9J88VgS1/7ovbVfrVMUVkmap2Lm++oI66UdUsYDbQJ5jtGmNMKMvNySZ64+fs/ce9FB4/SHRqezT/BACN//dVYpq0oWBv8ddrb90gvkxFviKCMeqmfmBPHhGJBa4Evq1ou8YYE+rWrVvHnSPuplHTZuzftIKkq+4mMrkZWXPfBJRGt79EZHIqUY1akb9380+eHxflZmSP4rt0gikY34xtBLwZ6Kd3Ae+r6idBaNcYY0KOx+Pho48+4tm/vci3GzcR3e5K6g57kYiEZAAKDmxGPSdpOPwFohqcB0BUw9bkrpvzk7Yi3S6u6dCw0jNXuNCr6mqgUxCyGGNMyPr+++8Z/+oExv/9NaR2Q1xt+1Cv+28Q949ldM+E/4U//IaGtz5HdJGDr1Ep5+E5vBMt9CARkQDERrp5844uVXLOGzvXjTHGlEBVmTdvHuOe/z+++vJL4tr8nJj+xR9U/f4f91B4bD+RSU2IbpJw2jxXZAwRdRpRcPA7ktLaEOl2Vem5bqzQG2PMGbKzs3nrrbd47oWXOJqbj7v91dS/ayKu6OIvKLL3rV/hObSTBjf9CYmKLXaZ6EatqZu7iz9f/wuu6dDQzl5pjDFO+fTTz7hh0CDycnOIbdmFWp264aqViOfwblyxCbhiE3FF10LEP5Zl3zuPULB3Mw0GP0FsekegsNh2oxq25MKYwwzs1KTqXkyAFXpjjCmiXbu2PPeXZzl06BB7Dxxi3/7vOXBoNYcPH+bokSNkZx0hPy+PmPhEThw/CkDtZuej2xZyfNdqvM37kb1qOe4fPhRiE3HHJhDVoDmLvnndkddkhd4YY4pITU3lnnvuOesyHo+HlIYNOQHceuut3HjjjRw6dIjDhw+TXCuCq5KPsf/AFg7t9H84HDt6lNzjWTRo1BhVRUr5FmywWaE3xphyatmqFUePHOGee+7hlVdeOW3enDlzePdfb/7kOT6fD4/HU+VFHux89MYYUy6tW7dm544d3H777T8p8mfjcrmIjo6uxGRnWbcjazXGmDDUoUMHNm/ezJAhQ3jjjTecjlNmVuiNMaYMOnfuzNq1axk4cCDvvvuu03HKxQq9McaUolu37ixbtoyrr+7D1KlTnY5TblbojTHmLHr16s3XXy/g8st78OmnM52Oc06s0BtjTAmuvbYfs2Z9RdeuXZkzZ7bTcc6ZFXpjjCnG4MGDmTHjP3Ts1ImFCxc6HadCrNAbY8wZhg0bxpQpU2jTpg0rli93Ok6FWaE3xpgiRowYweTJk2nRogXr1693Ok5QWKE3xpiAUaNGMXHiRJqmprJlyxan4wSNFXpjjAFGjx7NSy+9REpKQ3bt3Ol0nKAKxjVjU0VktoisF5F1IvJAMIIZY0xVGTNmDOPGjaNu3ST27dvrdJygC8ZJzQqBh1V1uYgkAMtE5AtVrR6dW8aYam3s2LE8+eSTJCQkcuTIYafjVIoK79Gr6l5VXR64nQ1sAKr+zPrGGFNOL7zwAo899hgxsbEcP37M6TiVRlQ1eI2JpAPzgPaqevyMeSOAEQApKSkZmZmZQVtvWeTk5BAfH1+l6wwWy+4My+6cqsh/8OBBdu7ciYhw0UUXBa3dyszes2fPZaraudxPVNWgTEA8sAy4obRlMzIytKrNnj27ytcZLJbdGZbdOZWd/4033lBA3W530NuuzOzAUj2H+hyUUTciEgn8G3hbVT8MRpvGGFMZMjMzueOOOxARCguLv75rdROMUTcC/APYoKp/q3gkY4ypHFOnTuXmm28GqDFFHoIzjr4bMAy4QkRWBqa+QWjXGGOCZubMmdxwww0AeL1eXK6a8zWiCg+vVNX5QNVfBNEYY8po1qxZ9O3r3/+saUUe7JuxxphqbsGCBfTq1QuomUUerNAbY6qxJUuW0L17dwA8Hk+NLPJghd4YU02tXr2aLl26AJCfn09ERDBOBBCerNAbY6qdDRs2cOGFFwKQl5dHVFSUw4mcZYXeGFOtbN26lbZt2wKQm5tLTEyMw4mcZ4XeGFNt7Ny5k5YtWwJw7NgxatWq5XCi0GCF3hhTLXz//fekpaUBcPToURITEx1OFDqs0Btjwt6BAwdo0sR/0tyDBw9Sp04dZwOFGCv0xpiwdvToUVJSUgDYu3cvycnJDicKPVbojTFh6/jx4yQlJQGwY8cOGjZs6HCi0GSF3hgTlk6cOEHt2rUB2LJlC82aNXM4UeiyQm+MCTsnT54kLi4O8I+Zb9GihcOJQpsVemNMWCkoKCA2NhaAVatWcf755zucKPRZoTfGhI3CwkKio6MB/3lsLrjgAocThQcr9MaYsODz+YiMjARg/vz5dO5c/kun1lRW6I0xIc/n8+F2uwH46quv6Natm8OJwosVemNMSCta5GfMmMEVV1zhcKLwE6yLg78hIgdEZG0w2jPGGDi9yE+dOpVrrrnG4UThKVh79JOAPkFqyxhjAE6dQz4zM5OBAwc6GyaMBaXQq+o84Egw2jLGGAB3RASqyqRJk7jpppucjhPWRFWD05BIOvCJqrYvYf4IYARASkpKRmZmZlDWW1Y5OTnEx8dX6TqDxbI7w7I7Z//+/ezevZu0tLSwO3dNZW77nj17LlPVcg83qrJra6nqa8BrAJ07d9YePXpU1aoBmDNnDlW9zmCx7M6w7M6Ija3Fn/70FG63m0GDBjkdp9xCcdvX3IsoGmNCTkJCIidP5tGkSROGDBnidJxqw4ZXGmNCQlJSPXJyshkzZoydhTLIgjW88l1gIfAzEdktIv8bjHaNMTVDSkoKR48eYfTo0Tz++ONOx6l2gtJ1o6o3B6MdY0zN0zQ1lQMHDjBq1CieffZZp+NUS9Z1Y4xxTIsWLdmzezd33XUXL774otNxqi0r9MYYR7Rp25Zt27YybNgwXnvtNafjVGtW6I0xVa5jp058u2EDgwcP5q233nI6TrVnhd4YU6Uu7tqVVStXcu21/Xj//fedjlMjWKE3xlSZHj16sPibb+jVqzeffDLd6Tg1hhV6Y0yVuPrqPsydO5du3brz5ZdfOB2nRrFCb4ypdAMHXs/nn39G586dmT//v07HqXGs0BtjKtXNN9/Mxx9/RIcOHViyZInTcWokK/TGmEpz++23k5mZSevWrVm9erXTcWosK/TGmEoxcuRIJk2aRFp6Ohs3bnQ6To1mhd4YE3QPPfQQEyZMoFHjxmz/7jun49R4VuiNMUH12GOP8fzzz5OcnMz3e/Y4Hcdghd4YE0RPPvkkY8eOpXbtOhw8eNDpOCbACr0xJijGjRvHmDFjqBUXR1bWUafjmCKs0BtjKuzll19m9OjRREfHkJuT43QccwYr9MaYCnn99de5//77iYiI4OTJPKfjmGJYoTfGnLPJkydz11134XK58Hg8TscxJQjWpQT7iMhGEdkiIo8Eo01jTGibMmUKw4YNA7AiH+IqXOhFxA28AlwDtAVuFpG2FW3XGBO6pk2bxuDBgwHwer24XNY5EMqC8dvpAmxR1W2qWgBkAgOC0K4xJgR99tlnDBjg/xO3Ih8eRFUr1oDIIKCPqt4ZuD8MuFhV7ztjuRHACICUlJSMzMzMCq23vHJycoiPj6/SdQaLZXeGZS++3R9OZ5CRkRH09ouux7b9T/Xs2XOZqnYu9xNVtUITMAh4vcj9YcDLZ3tORkaGVrXZs2dX+TqDxbI7w7Kf7uuvv1ZAAfV4PEFvvyjb9sUDluo51Olg/M+1B0gtcr9p4DFjTDWxfPlyLr30UsB/4DUiIsLhRKY8glHolwCtROQ8EYkChgDTgtCuMSYErF279lQ3TX5+vhX5MFTh35iqForIfcBngBt4Q1XXVTiZMcZxmzdvpkOHDgDk5eURFRXlcCJzLoLy0ayqM4AZwWjLGBMavvvuO1q3bg1AdnY2MTExDicy58rGRRljfmL37t00b94cgGPHjoXtCBjjZ4XeGHOaffv2kZrqH19x+PBhEhMTHU5kKsoKvTHmlCNHjtCoUSMA9u/fT1JSksOJTDBYoTfGAJCVlUW9evUA2LVrFw0aNHA4kQkWK/TGGHJycqhbty4A27dvp2nTpg4nMsFkhd6YGu7EiRMkJCQAsGnTJtLS0hxOZILNCr0xNVhBQQFxcXGA/4tRrVq1cjiRqQxW6I2poQoKCoiOjgZgxYoVtGvXzuFEprJYoTemBiosLDxV5BctWkTHjh2dDWQqlRV6Y2oYn89HZGQkAHPnzuXiiy92OJGpbFbojalBfD4fbrcbgM8//5zLLrvM4USmKlihN6aGKFrkp0+fzpVXXulwIlNVrNAbUwMULfIffPAB/fr1cziRqUpW6I2pASICffL/+te/GDRokMNpTFWzQm9MNRcZGYn6fEycOJFbb73V6TjGAVbojanGomNiKCws5KWXXuLOO+90Oo5xiBV6Y6qpuPh4CvLzee6557jvvvucjmMcVKFCLyKDRWSdiPhEpHOwQhljKmblypWcyM3lqaee4uGHH3Y6jnFYRffo1wI3APOCkMUYEwTJyfXxer089thj/P73v3c6jgkBFbpmrKpuABCR4KQxxlRIo8aNOXz4ECkpKbYnb06xPnpjqom09HT27d3LPffcY+eTN6cRVT37AiJfAg2LmfU7Vf04sMwc4NequvQs7YwARgCkpKRkZGZmnmvmc5KTkxO2Fzi27M4Ip+xr164lPz+f5ORk0tLSwip7ccI5f2Vm79mz5zJVLf/xUFWt8ATMATqXdfmMjAytarNnz67ydQaLZXdGuGRv3769AnrzzTefeixcspcknPNXZnZgqZ5DjbauG2PCWOfOnVm7di3XX38977zzjtNxTIiq6PDK60VkN3AJ8B8R+Sw4sYwxpenWrTvLli3j6qv78OGHHzodx4Swio66mQpMDVIWY0wZ9erVm6+/XkCPHj349NOZTscxIc66bowJM9de249Zs76ia9dLmD17ttNxTBiwQm9MGBk8eDAzZvyHjh07snDh107HMWHCCr0xYWLYsGFMmTKFNm3bsmLFCqfjmDBihd6YMDBixAgmT55M8xYtWL9undNxTJixQm9MiBs1ahQTJ04kNbUZW7dscTqOCUNW6I0JYaNHj+all14iJaUhO3fucDqOCVNW6I0JUWPGjGHcuHHUTUpi3769TscxYcwKvTEhaOzYsTz55JPEJyRw5PBhp+OYMGeF3pgQ88ILL/DYY48RGxtL9vHjTscx1YAVemNCyKuvvsqvfvUrIqOiOHHihNNxTDVhhd6YEPHPf/6Te+65B7fbTUF+vtNxTDVihd6YEJCZmckdd9yBiFBYWOh0HFPNWKE3xmFTp07l5ptvBrAibyqFFXpjHDRz5kxuuOEGALxeLy6X/Uma4LN3lTEOmTVrFn379gWsyJvKZe8sYxywYMECevXqBViRN5XP3l3GVLElS5bQvXt3ADwejxV5U+nsHWZMFVq9ejVdunQBID8/n4iICl3kzZgyqeg1Y8eJyLcislpEpopInSDlMqba2bBhAxdeeCEAeXl5REVFOZzI1BQV3aP/AmivqhcAm4BHKx7JmOpn69attG3bFoDc3FxiYmIcTmRqkgoVelX9XFV/GPi7CGha8UjGVC87d+6kZcuWABw7doxatWo5nMjUNKKqwWlIZDrwnqpOLmH+CGAEQEpKSkZmZmZQ1ltWOTk5xMfHV+k6g8WyOyMY2T0eD6tXrwagY8eOuN3uYEQrVThvdwjv/JWZvWfPnstUtXO5n6iqZ52AL4G1xUwDiizzO2AqgQ+O0qaMjAytarNnz67ydQaLZXdGRbPv379fAQX04MGDwQlVRuG83VXDO39lZgeWahlq7JlTqYf8VbX32eaLyG1AP6BXIIgxNV5WVhYpKSkA7N27l+TkZIcTmZqsQmO7RKQPMBq4XFXtnKrGAMePH6du3boA7Nixg4YNGzqcyNR0FR118zKQAHwhIitFZEIQMhkTtk6cOEHt2rUB2LJlC82aNXM4kTEV3KNX1ZbBCmJMuDt58iRxcXEAfPvtt7Ro0cLhRMb42TdjjQmCgoICYmNjAVi1ahU/+9nPHE5kzI+s0BtTQYWFhURHRwP+89hccMEFDicy5nQ1q9BPmQI33ghpaRAbCz/7GTz6KGRnO53MhCmfz0dkZCQA8+fPp3Pn8g9xNqay1axC/9xz4HbD00/Dp5/CyJHw6qtw5ZXg8zmdzoQZn8936gtQX331Fd26dXM4kTHFq1mnzps+HerX//H+5ZdDUhIMHw5z5sAVVzgWzYSXokV+xowZXGHvHRPCwmqPvtDr4/hJD17fOX4vq2iR/8H/+3/+n3v2nHswU6MULfJTp07lmmuucTiRMWcX8nv0+YVeZqzZy6tztrL5QA4RLqHQp7RuEM/dPVrQt0MjoiMqcP6QuXP9P9u0CU5gU+39cA75zMxMBg4c6GwYY8ogpAv9yl1Z3PbGYjxeH7kFXgA8Xv/e/Mb9Ofx+6lqemLaeN+/owoWpdcq/gj174I9/hN69wQ6imTJwR0SgqkyaNImbbrrJ6TjGlEnIdt2s2pXFza8tIivPc6rInym3wEtWnochry1i1a6s8q0gJwcGDICICPjnPyse2FR7UVFR+LxeJkyYwPDhw52OY0yZhWShzy/0MvyNxeR5ii/wZ8rz+JfPLyzb8uTlQf/+sG0bfPYZNLXT6Juzi42thcfj4fnnn+eXv/yl03GMKZeQLPQz1uzF4y3fcEeP18fMNfvKsKAHBg2CpUthxgzo0OEcU5qaIiEhkZMn8xg7diwPPvig03GMKbeQLPSvztlaYndNSXILvLw6Z8vZF/L5YOhQmDULPvoIunY995CmRkhKqkdOTjZjxozhkUcecTqOMeck5A7Gen3K5gM5xc7zeQrY9bcbiKiXSu1LhxDTrAMR8Umn5m86kIPXp7hdUnzj994LH3wAv/sdxMXBokU/zmva1LpwzGlWrVrF0aNHGD16NI8//rjTcYw5ZyFX6HMLColwyanRNadxuXDFJ1F4eBeHp48D8d+PTW1PdJM2xDVry/G8fOrGlXDh5Zkz/T///Gf/VNSYMWB/zCagaWoqv3rwQUaNGsWzzz7rdBxjKiTkCn1cVASFJXwhyuWOoMmdE9j3ziO44+py8rtl+LIPkbt+Dt6TORxfNp3GmY/S8aLOXNnzcn7evRtdu3YlISHB38D27VX3QkzYatGiJXt27yY5OZmHH37Y6TjGVFjI9dG7XUKrBiVfWNcVXYsGg8bgObyT5P6/JmXI0wCc3LaUwiO7icm4kS31u/PyF+u5ZeRvSG7QkJZtOrBjx07eeecdduzYgV3x0JSkTdu2bNu2lWHDhpGWluZ0HGOCIuQKPcDIHi2Iiyr5264RCfVoMGgMR76aCC4Xab/9hCYj/4k7IZmseW9y6MM/kX/sALUGPk7D+94mt/NtHM1XHnxmAm0vzKBeSiP6DriB559/niVLluDxeKrw1ZlQ1bFTJ77dsIHBgwfz1ltvOR3HmKCp6DVjnwIGAD7gAHCbqn5f0VB9OzTiiWnrgZJH3kTVTye5/284+NEzNLxlLJH1Uml6zyS0sIBD/3meE+vnsnP9XCJqp5Ay9C+442pTq+9viVWlMGsfi/dsYPE7X+L723hOHPqedhd2onePn3PZz7tzySWXkJSUVOK6TfVzcdeurFq5kmuv7cf777/vdBxjgqqie/TjVPUCVe0IfAL8seKRIDrCzZt3dCE28uznsIlN70jdHrdx4IPH8eYeBUAioqg/4Lc0Gz2dur3uovDYfvaMH07Bvi2c3LUWESGybiPi219BfK97SBz6Ag1++Qa7m13FxPnbue2hMTRqmkqzFq259bY7mDRpku3xV3M9evRg8Tff0Lt3bz75ZLrTcYwJuopeM/Z4kbtxQNA6vy9MrUPmiK4MP+NcN0XFRbmp0+UaBjSP4MPpT5Nw41O4Iv0jbkSExM4DSOw8gJO71gKw/x3/OOi6V9xFQufrEPEPw5SoWCLqNEQL8/G43CRG1eL7jYt5919vsWjhQgYNGnTq4hKmern66j7MnTuX7t2788UXXzgdx5hKIRU9MCkifwb+BzgG9FTVgyUsNwIYAZCSkpKRmZlZpvYVOJbn4WB2Pic9XkQEVSUm0k39hGhqx0YiwLbvviP7RAGuOg2LbSclFvblFOI5shu8hT+kwh0Vhc/jwR0RQWxsDLVq1aJWbCyxsbHExMSc+jBwUk5ODvHxJR+gDmWhnH3r1q1kZWVRKy6ONuef/5P5oZy9NOGcHcI7f2Vm79mz5zJVLf8ZGFX1rBPwJbC2mGnAGcs9CjxRWnuqSkZGhp6LQq9Pj+UVaKHX95N5+fn52rX75VqvywBN++0n2vSBTE255RlNuuoerff/+ukLL72iMfGJmlg3WS/q2k1TmzVT/J8jKiK6aNGic8pUFWbPnu10hHMWqtmHDBmigHbo0KHEZUI1e1mEc3bV8M5fmdmBpVqGGnvmVGrXjar2LuNnxtvADGBM+T5qys7tEhJjiu9CiYqKYub0j7ioyyXsnzAcnyefFq1/RqeOF9K5b2+ap6WyY+tmGjRocOo5Pp+PIUOG8MEHH9A1cDqEv/71rzz00EOV9RJMCLj99tvJzMykdevWrF692uk4xlS6Ch2MFZFWRe4OAL6tWJyKqVOnDquWLWbdyqWcyDnO2hVL+dc//8EDDzxAQkLCaUUewOVy8f7776OqvPrqqwA8/PDDiAj9+vXDZ9eRrXZGjhzJpEmTSEtPZ+PGjU7HMaZKVHTUzTMislZEVgNXAQ8EIVOFJCQkkJ6eXu6+9bvvvhtVZcWKFURGRvKf//wHt9tN48aNOXLkSCWlNVXpoYceYsKECTRq3Jjt333ndBxjqkyFCr2q3qiq7dU/xLK/qob9hVc7duxIQUEB2dnZtGjRgr1791KvXj3cbjcLFixwOp45R4899hjPP/88ycnJfG/XBzY1TEh+MzYUxMfHs2XLFlSVW265BZ/PR/fu3RERnnnmGafjmXJ48sknGTt2LLVr1+HgwWIHhRlTrVmhL4O3334bVWXixIkAPProo4gIffr0sX78EDdu3DjGjBlDXFwcWVlHnY5jjCOs0JfDnXfeiaqyZs0aoqKi+eyzz3C73aQ0bMihQ4ecjmfO8PLLLzN69Giio2PIySn+GgfG1ARW6M9B+/btyc8/SW5uLq1bt+bA/v3Ur18fl8vFvHnznI5ngNdff53777+fiIhITp7MczqOMY6yQl8BtWrVYuPGjagqw4cPR1W5/PLLERH+9Kc/OR2vxpo8eTJ33XUXLpcLj6fA6TjGOM4KfZBMmjQJVWXSpEkA/OEPf0BE6NWrl/XjV6EpU6YwbNgwADsZnTEBVuiD7Ic9+/Xr1xMTE8OsWbNwu93Ur1+fAwcOOB2vWps2bRqDBw8GwOv14nLZ29sYsEJfadq0aUNeXh55eXm0bduWQ4cOkZKSgojw1VdfOR2v2vnss88YMGAAYEXemDPZX0Mli4mJYd26dagqd955JwC9e/dGRPjjH4Ny+v4ab968efTp0wewIm9McewvogpNnDgRVWXy5MkAPPXUU4gIl19+ufXjn6OFCxdy+eWXA/4+eSvyxvyU/VU4YOjQoagqmzZtIrZWLebNm4fb7SapXj327t3rdLywsXz5ci699FLAX+QjIip0HR1jqi0r9A5q1aoVJ3Jzyc/Pp0OHDhw9coTGjRsjInz66adOxwtpa9euJSMjA4D8/Hwr8sachRX6EBAVFcXq1atRVUaOHAnANddcg4jw6KOPOpwu9GzevJkOHToAkJeXR1RUlMOJjAltVuhDzPjx41FV3nvvPQCeeeYZli1bxqWXXkphYWEpz67+vvvuO1q3bg1AdnY2MTExDicyJvRZoQ9Rv/jFL1BVtm7disvlYuHChURGRlKnTh12797tdDxH7N69m+bNmwNw7NixsL2mqDFVzQp9iGvevDmdOnUiPz+fTp06cezYMVJTUxERPvnkE6fjVZl9+/aRmpoKwOHDh0lMTHQ4kTHhwwp9mIiKimL58uWoKqNGjQKgf//+iAi/+c1vHE5XuY4cOUKjRo0A2L9/P0lJSQ4nMia8BKXQi8jDIqIikhyM9szZvfjii6gqH374IQDPPfccIkKXLl2qXT9+VlYW9erVA2DXrl0/ue6vMaZ0FS70IpKK/3qxOysex5TH9ddfj6qyfft2EhISWLJkCZGRkSQmJrJjxw6n41VYTk4OdevWBWD79u00bdrU4UTGhKdg7NE/D4wGNAhtmXOQlpbG8ePH8Xg8dOnShezs7FMXSJ86darT8c7JiRMnSEhIAGDTpk2kpaU5nMiY8CWq516fRWQAcIWqPiAi24HOqlrspZZEZAQwAiAlJSUjMzPznNd7LnJycsJ2lMa5ZN+9ezf79+8/db9BgwanDmZWpXPJrqosX74cgHbt2jk2hLKmvWdCSTjnr8zsPXv2XKaqncv9RFU96wR8CawtZhoAfAPUDiy3HUgurT1VJSMjQ6va7Nmzq3ydwVKR7B9//LHi/29LAe3UqZPm5+cHL1wpyps9Pz//VNYVK1ZUSqayqqnvmVAQzvkrMzuwVMtQY8+cSu26UdXeqtr+zAnYBpwHrArszTcFlotIw3J/2phKc91116Gq7Nq1i9p16rBixQqio6OJj49n27ZtTsc7TWFhIdHR0QAsWrSIjh07OhvImGrinPvoVXWNqjZQ1XRVTQd2Axep6r6gpTNB07RpU7KOHsXj8XDppZeSm5tLixYtEBHef/99p+Ph8/mIjIwEYO7cuVx88cUOJzKm+rBx9DVMREQECxYsQFV55JFHALjpppsQEe69995Sn19QUMCaNWt49913+e0jjzL2mb/80MV3mvET/k5Kk2asW7+eS3v0YuCgm7j7nvt54okneOWVV8jMzOTLL79kxYoV7NixA7fbDcDnn3/OZZdddnpju3bBoEFQuzYkJsINN8BOG+RlTFkF7ZR/gb16E0bGjh3L2LFjmTlzJn379mX8+PGMHz+eDh06sHjxYvbs2cPatWtZvWYN3yxbydq1a/l+53bi6jUkMjmNwtqpeL+bQqG3kD/87rHT2j6Rk01+3ea4XHH8dus+RsW2I3vjSXTVBiI8ubgKctCTOXhPHCPrwI+nZr5p6DBq10miXnI96tdLpmlSHcZO/xiio1lz220kJCbS/r33iOnZE1avhri4qt5sxoQdO7drDaeqdOzYkc8//5w5c+bw9NNPs2bNGmJjY4moVZs6aefjrZOKKymNqO6X06heUyTix7NFFl5wFX95/rc0T09n6NBbTj3epUsXIsZPInXTRvrtXs/0Ljfy5YXFd8ckBH76PCfx5WWTn5fNrrzj7MjLpuM386l7NIuL2/dg1cQ3KMzL4aZLupG5eBH8/e/w0EOVuXmMqRas0NcwS5YsYfny5SxdsZJlK1ez+dsNeL0+4ho1R+ukknT1vUQmpxFZrynu2NLPJxORUI+EAb/nl/feT2pq01PdLp06deL499tosWQRCly96Wu+bHX2fndXZAyuyBhIrH/qsWuXTWNpQhLf7lpNRkYGv33oAfr37w+9esHHH1uhN6YMrNDXMCNG3sPKZUtBhJjzLiKh173ENs9A3JHn3GZU/XTi+jxE/4E3sHjhAtJbtOTLLceISKxP+oolCNBr62JQBZFS21NVTu5YhXftTFp9/y0b27Rl6b+ncP755/+4ULt28MEH55zZmJrECn0Ns3zJYnbs2MGCBQuYNfe/zJk3ld0z/kZi01Z4G7QmotH5RDdpU6a9+aJi0zviu+RWul9xFQ1uGQexibSr3ZCIY/4vbcUUFtDy8C62JDcrsQ3fyRxy136Fd91n1EuM49cPjqLBA4tJ6d8PihZ5gKQkOHq03K/fmJrICn0NIyKkp6eTnp7O0KFDATh+/DjffPMN8/47ny9mz2XVzOeJqZNMRMPz0ZTWRDdpQ0RSU6SUvfG4DleSlbWfLW//gZSbn+ZGBPF5AXD5fPTcuqTYQl9w4DsKVs8kd+N8rrrqKn79/mS6d+/uX98Do4K/EYypYazQGxITE7nyyiu58soreQrwer2sWbOG+fPn8+Wc//L1fz7kaE4O8c3a4kluRXSTNkQ1bIUrMvonbdXuPpTCY/s5NP05bjiyh4jA2TRjvB76fTufiRffCIB6PZzY+DW+dZ9CzkHuG3k3Iz/5Bw0bnvF9u7p1i99zP3LEP88YUyor9OYn3G43HTt2pGPHjtx3330A7Nmzh6+//prZc//L7Hnvse3f3zLFHUH/E9kltpN/xn8A5x/8ju3P9it+4ScehzWr4d//Pv3xdu1g3bqfLr9+PbRtW56XZUyNZV+YMmXSpEkTBg8ezPiX/48Nq5dz9MghGvx9PPsaNiLP5S72OdFnfJEq2lvCufLj4qBTJ3jmmZ/Ou+46WLQIip6uYft2WLDAP88YUyor9Oac1KpVi4tvvZWGu3cR/ewz5EVEUViGETVFFYqLvIhofE88AUuXQqtWP13orrsgPR0GDPAPp5w2zX87NRV++cvgvBhjqjkr9KZi3G5y7nuA/ne+zMb653GimH774pyIjObb+un0v/Mlcu4dBa4S3opxcTBrFrRuDcOGwdChcN55/sfC9DS2xlQ166M3FRYXFcHWOo3pP/x5Ri6awv1fZxLj9ZS4/El3JK90/QXjLxkMLhdxUaW8DZs1+2nfvTGmzGyP3lSY2yW0ahCPz+VmU/00PKV8+crjjmRj/XRUXLRuEI/bVb4uH2NM+VihN0ExskcL4qLcXL3pa+IK8s66bFxBnn+5KDcje7SsooTG1FxW6E1Q9O3QiEiX0GvLElxFLh/sE1fgQO2PbzUXSq+ti4l0Cdd0sOvUGFPZrNCboIiOcJPZPZFob8Gpx05ERnOoWRp33fAHvq2fftqB2pjCAjJ/XpvoiOKHZhpjgscKvQma81fMJ0bAGxg2+dfut/LeU39l/nmduG748/yt+1DyIqLxiosYl395Y0zls0Jvguf993EVepALL2D+lC+Y338YuFxEugV1u/lv/+HMn/IFckEHXB4PhMAlDI2pCWx4pQmehg1h3DhcDz7IlS4XVwJz5sxh2Y3diIuK+HF0Tb9l8MILMGeOg2GNqTms0JvgmT692IcTY84Ybul2w8MP+ydjTKWT4i7sXOkrFTkI7Kji1SYDh6p4ncFi2Z1h2Z0TzvkrM3uaqtYvfbHTOVLonSAiS1W1s9M5zoVld4Zld0445w/F7HYw1hhjqjkr9MYYU83VpEL/mtMBKsCyO8OyOyec84dc9hrTR2+MMTVVTdqjN8aYGskKvTHGVHPVttCLSJKIfCEimwM/65awnFdEVgamaVWd84wsfURko4hsEZFHipkfLSLvBeZ/IyLpDsQsVhmy3yYiB4ts6zudyHkmEXlDRA6IyNoS5ouI/F/gda0WkYuqOuPZlCF/DxE5VmS7/7GqMxZHRFJFZLaIrBeRdSLyQDHLhOy2L2P+0Nn2qlotJ+AvwCOB248Az5awXI7TWQM53MBWoDkQBawC2p6xzD3AhMDtIcB7TucuR/bbgJedzlpM9suAi4C1JczvC8wEBOgKfON05nLm7wF84nTOYnI1Ai4K3E4ANhXzngnZbV/G/CGz7avtHj0wAHgzcPtNYKBzUcqkC7BFVbepagGQif81FFX0NU0BeomU84rclaMs2UOSqs4DjpxlkQHAW+q3CKgjIo2qJl3pypA/JKnqXlVdHridDWwAmpyxWMhu+zLmDxnVudCnqOrewO19QEoJy8WIyFIRWSQiA6smWrGaALuK3N/NT984p5ZR1ULgGFCvStKdXVmyA9wY+Bd8ioikVk20Civrawtll4jIKhGZKSLtnA5zpkAXZCfgmzNmhcW2P0t+CJFtH9YnNRORL4HiLlH0u6J3VFVFpKRxpGmqukdEmgOzRGSNqm4NdlbDdOBdVc0XkV/i/8/kCocz1QTL8b/Hc0SkL/AR0MrZSD8SkXjg38CDqnrc6TzlVUr+kNn2Yb1Hr6q9VbV9MdPHwP4f/s0L/DxQQht7Aj+3AXPwfzI7YQ9QdC+3aeCxYpcRkQigNnC4StKdXanZVfWwquYH7r4OZFRRtooqy+8lZKnqcVXNCdyeAUSKSLLDsQAQkUj8RfJtVf2wmEVCetuXlj+Utn1YF/pSTAOGB24PBz4+cwERqSsi0YHbyUA3YH2VJTzdEqCViJwnIlH4D7aeOQqo6GsaBMzSwFEfh5Wa/Yy+1evw92mGg2nA/wRGgHQFjhXpEgx5ItLwh+M4ItIF/9+84zsHgUz/ADao6t9KWCxkt31Z8ofStg/rrptSPAO8LyL/i/+UyL8AEJHOwN2qeifQBvi7iPjw/xKeUVVHCr2qForIfcBn+EexvKGq60TkSWCpqk7D/8b6l4hswX8AbogTWc9UxuyjROQ6oBB/9tscC1yEiLyLf3REsojsBsYAkQCqOgGYgX/0xxbgBHC7M0mLV4b8g4CRIlII5AFDQmTnoBswDFgjIisDjz0GNIOw2PZlyR8y295OgWCMMdVcde66McYYgxV6Y4yp9qzQG2NMNWeF3hhjqjkr9MYYU81ZoTfGmGrOCr0xxlRz/x+DuBq2b0m6CwAAAABJRU5ErkJggg==\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAisAAAGzCAYAAADuc1ebAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABelElEQVR4nO3deVhUdf/G8fcMOwi4sAiK4JIrbrmUmlsqbrlUmmWWmpqVVpZZ1mOp7VrZ02I+tmmbZWZp2WKomZlLrrmk5oIbroiCgrLN+f1BzE9iUFCGM8D9ui4umDPfOeczH4fh9sz5nmMxDMNARERExEVZzS5ARERE5FIUVkRERMSlKayIiIiIS1NYEREREZemsCIiIiIuTWFFREREXJrCioiIiLg0hRURERFxaQorIiIi4tIUVkQKISoqiiFDhpi2/SFDhhAVFeW09Xfo0IEOHTo4bf0iIldCYUUE2Lt3LyNHjqRGjRp4e3sTEBBAmzZteOONNzh//rzZ5ZV5L774IgsWLDBl23PnzmXQoEFcc801WCyWfMPc9u3b6d+/PzVq1MDX15egoCDatWvHd999l2uczWZj9uzZ9O7dm4iICPz8/IiOjub555/nwoULBarp559/ZtiwYURHR+Pm5nbJAPvCCy/Qu3dvQkNDsVgsTJo0qYDPXMR1uJtdgIjZvv/+e/r374+Xlxd333030dHRpKens3LlSsaNG8f27dt59913zS4TgPfeew+bzWZ2GcXuxRdfpF+/fvTt27fYtz1jxgw2bNhAixYtOHXqVL7jDhw4wNmzZxk8eDDh4eGkpqYyf/58evfuzcyZM7n33nsBSE1NZejQoVx//fXcd999hISEsHr1aiZOnMjSpUtZtmwZFovlkjXNmTOHuXPncu211xIeHn7JsRMmTKBy5co0bdqUxYsXF74BIi5AYUXKtLi4OG6//XYiIyNZtmwZYWFh9vtGjRrFnj17+P77702sMDcPDw+zSyhzPvnkE6pUqYLVaiU6OjrfcT169KBHjx65lo0ePZpmzZoxbdo0e1jx9PTk999/p3Xr1vZxI0aMICoqyh5YOnfufMmaXnzxRd577z08PDy46aab2LZtW75j4+LiiIqKIiEhgeDg4II8ZRGXo4+BpEybOnUq586d44MPPsgVVHLUqlWLhx9+ON/HJyYm8thjj9GwYUPKlStHQEAA3bt3588//8wz9q233qJBgwb4+vpSoUIFmjdvzpw5c+z3nz17ljFjxhAVFYWXlxchISF06dKFjRs32sc4OmbFZrPxxhtv0LBhQ7y9vQkODqZbt26sX7/ePmbWrFnceOONhISE4OXlRf369ZkxY0ZhWpXHp59+SsuWLe3Pp127dvz888+5xrzzzjs0aNAALy8vwsPDGTVqFGfOnMk1Zvfu3dx6661UrlwZb29vqlatyu23305SUhIAFouFlJQUPvroIywWCxaLpViPG4qIiMBqvbK3Sjc3NyIiInI9Z09Pz1xBJcfNN98MwI4dOy673vDw8AIHV2ce4yRSXLRnRcq07777jho1ajj841EQ+/btY8GCBfTv35/q1atz/PhxZs6cSfv27fnrr7/su+jfe+89HnroIfr168fDDz/MhQsX2LJlC2vXrmXgwIEA3HfffXz11VeMHj2a+vXrc+rUKVauXMmOHTu49tpr861h2LBhzJ49m+7duzN8+HAyMzP57bffWLNmDc2bNweyP8po0KABvXv3xt3dne+++44HHngAm83GqFGjCv28J0+ezKRJk2jdujXPPvssnp6erF27lmXLlhETEwPApEmTmDx5Mp07d+b+++9n165dzJgxg3Xr1vH777/j4eFBeno6Xbt2JS0tjQcffJDKlSsTHx/PokWLOHPmDIGBgXzyyScMHz6cli1b2vdO1KxZ85L1JSQkFOh5+Pv74+XlVejnfykpKSmcP3+epKQkvv32W3788UcGDBhw2ccdO3YMgKCgoCKtR6RUMETKqKSkJAMw+vTpU+DHREZGGoMHD7bfvnDhgpGVlZVrTFxcnOHl5WU8++yz9mV9+vQxGjRocMl1BwYGGqNGjbrkmMGDBxuRkZH228uWLTMA46GHHsoz1maz2X9OTU3Nc3/Xrl2NGjVq5FrWvn17o3379pesYffu3YbVajVuvvnmPM89Z5snTpwwPD09jZiYmFxj3n77bQMwPvzwQ8MwDGPTpk0GYMybN++S2/Tz88vV98sBCvQ1a9asAq/TMAyjQYMGl+3PyJEj7eu3Wq1Gv379jMTExMuuu3PnzkZAQIBx+vTpQtXUs2fPXK+J/Jw8edIAjIkTJxZq/SKuQHtWpMxKTk4Gsv93faUu/l95VlYWZ86coVy5ctSpUyfXxzfly5fn8OHDrFu3jhYtWjhcV/ny5Vm7di1Hjhy57EGTOebPn4/FYmHixIl57rv4IE0fHx/7z0lJSWRkZNC+fXsWL15MUlISgYGBBdoewIIFC7DZbDzzzDN5Ph7J2eaSJUtIT09nzJgxucaMGDGCp556iu+//56hQ4fat7t48WJ69OiBr69vgeu4lNjY2AKNa9CgQZFs72JjxoyhX79+HDlyhC+//JKsrCzS09Mv+ZgXX3yRJUuW8M4771C+fPkir0mkpFNYkTIrICAAyD5W5ErlHC/yzjvvEBcXR1ZWlv2+SpUq2X9+4oknWLJkCS1btqRWrVrExMQwcOBA2rRpYx8zdepUBg8eTEREBM2aNaNHjx7cfffd1KhRI9/t7927l/DwcCpWrHjJOn///XcmTpzI6tWrSU1NzXVfYcPK3r17sVqt1K9fP98xBw4cAKBOnTq5lnt6elKjRg37/dWrV+fRRx9l2rRpfPbZZ7Rt25bevXszaNCgQtX0b5c7QNWZ6tatS926dQG4++67iYmJoVevXqxdu9bhLJ+5c+cyYcIEhg0bxv3331/c5YqUCDrAVsqsgIAAwsPDLzmT4nJefPFFHn30Udq1a8enn37K4sWLiY2NpUGDBrmmGNerV49du3bxxRdfcMMNNzB//nxuuOGGXHtEbrvtNvbt28dbb71FeHg4r7zyCg0aNODHH3+8que5d+9eOnXqREJCAtOmTeP7778nNjaWRx55BMD0qdCvvfYaW7Zs4amnnuL8+fM89NBDNGjQgMOHD1/xOo8dO1agr+I4h06/fv1Yt24df//9d577YmNjufvuu+nZsyf/+9//nF6LSEmlsCJl2k033cTevXtZvXr1FT3+q6++omPHjnzwwQfcfvvtxMTE0Llz5zwzXgD8/PwYMGAAs2bN4uDBg/Ts2ZMXXngh14nAwsLCeOCBB1iwYAFxcXFUqlSJF154Id/t16xZkyNHjpCYmJjvmO+++460tDS+/fZbRo4cSY8ePejcuXOuj4YKo2bNmthsNv766698x0RGRgKwa9euXMvT09OJi4uz35+jYcOGTJgwgRUrVvDbb78RHx+f64/35c478m9hYWEF+po7d26h1nslcgJRzuymHGvXruXmm2+mefPmfPnll7i7a0e3SH4UVqRMe/zxx/Hz82P48OEcP348z/179+7ljTfeyPfxbm5uGIaRa9m8efOIj4/PtezfJxPz9PSkfv36GIZBRkYGWVlZef6YhYSEEB4eTlpaWr7bv/XWWzEMg8mTJ+e5L6cuNze3XLch+w/nrFmz8l3vpfTt2xer1cqzzz6bZ69MzjY6d+6Mp6cnb775Zq7tfvDBByQlJdGzZ08g+7ihzMzMXOto2LAhVqs11/P28/NzGADzExsbW6Cvrl27Fvbp5+vEiRN5lmVkZPDxxx/j4+OT62OzHTt20LNnT6Kioli0aNElg+POnTs5ePBgkdUpUhIpykuZVrNmTebMmcOAAQOoV69erjPYrlq1innz5l3ynB433XQTzz77LEOHDqV169Zs3bqVzz77LM9xJjExMVSuXJk2bdoQGhrKjh07ePvtt+nZsyf+/v6cOXOGqlWr0q9fPxo3bky5cuVYsmQJ69at47XXXst3+x07duSuu+7izTffZPfu3XTr1g2bzcZvv/1Gx44dGT16NDExMXh6etKrVy9GjhzJuXPneO+99wgJCeHo0aOF7lmtWrX4z3/+w3PPPUfbtm255ZZb8PLyYt26dYSHh/PSSy8RHBzMk08+yeTJk+nWrRu9e/dm165dvPPOO7Ro0YJBgwYBsGzZMkaPHk3//v2pXbs2mZmZfPLJJ7i5uXHrrbfat9msWTOWLFnCtGnTCA8Pp3r16lx33XX51liUx6ysWLGCFStWAHDy5ElSUlJ4/vnnAWjXrh3t2rUDYOTIkSQnJ9OuXTuqVKnCsWPH+Oyzz9i5cyevvfYa5cqVA7KPkeratSunT59m3LhxeU46WLNmTVq1amW/Xa9ePdq3b8/y5cvty7Zs2cK3334LwJ49e0hKSrLX1LhxY3r16mUf+8knn3DgwAH7sUorVqywj73rrrvy7OUScUkmzkQScRl///23MWLECCMqKsrw9PQ0/P39jTZt2hhvvfWWceHCBfs4R1OXx44da4SFhRk+Pj5GmzZtjNWrV+eZAjxz5kyjXbt2RqVKlQwvLy+jZs2axrhx44ykpCTDMAwjLS3NGDdunNG4cWPD39/f8PPzMxo3bmy88847uer899RlwzCMzMxM45VXXjHq1q1reHp6GsHBwUb37t2NDRs22Md8++23RqNGjQxvb28jKirKmDJlivHhhx8agBEXF2cfV5Cpyzk+/PBDo2nTpoaXl5dRoUIFo3379kZsbGyuMW+//bZRt25dw8PDwwgNDTXuv//+XFNz9+3bZ9xzzz1GzZo1DW9vb6NixYpGx44djSVLluRaz86dO4127doZPj4+BlCoacxXa+LEiflOfb54GvDnn39udO7c2QgNDTXc3d2NChUqGJ07dzYWLlyYa31xcXGXnE797+cG5Pk3mTVrVoEf3759+3zH/vLLL0XXKBEnshjGv/Zhi4iIiLgQHbMiIiIiLk1hRURERFyawoqIiIi4NIUVERERcWkKKyIiIuLSFFZERETEpbn0SeFsNhtHjhzB39+/0KfbFhEREXMYhsHZs2cJDw/Pc3X2K+HSYeXIkSNERESYXYaIiIhcgUOHDlG1atWrXo9LhxV/f38g+8kGBASYXM2lZWRk8PPPPxMTE4OHh4fZ5bgM9cUx9SUv9cQx9cUx9cUxV+iLdfduMn74gYXPPENY166waxdkZcFzz8GECVe0TpcOKzkf/QQEBJSIsOLr60tAQIB+cS6ivjimvuSlnjimvjimvjjmEn355BN44w2GAFzi6uyFoQNsRUREpOhER5P24IMMBM6tWwd33XXVq1RYERERkaIzfDhpzz/P54Ctdm0oggNsFVZERETKGJutZF3D2KWPWREREZGrty0+iXnrD/HH/kT2nDhHRpaBh5uFWiHlaBlVkf7NI4iuEmh2mflSWBERESml9iek8Pj8LfwRl4ib1ULWRXtUMrIMdhw9y9/Hz/HR6gO0rF6Rqbc2IirIz8SKHdPHQCIiIqXQws3xxLy+gg0HTgPkCioXy1m+4cBpYl5fwcLN8cVWY0Fpz4qIiEgp88PWo4z5ciuFOTIly2aQhcGYLzYD0KdJFafUdiW0Z0VERKSUmfDNtkIFlYsZwLh5W9ifkFKUJV0VhRUREZFSJuuKo8o/jzcMHp+/pYiquXpODSszZsygUaNG9jPQtmrVih9//NGZmxQRESmz/jqSDOR/fEpBZdkM/ohLZFt8UlGUddWcGlaqVq3Kyy+/zIYNG1i/fj033ngjffr0Yfv27c7crIiISJm0oAgPjnWzWpi3/lCRre9qODWs9OrVix49enDNNddQu3ZtXnjhBcqVK8eaNWucuVkREZEyKWfmT1HIshms219067saxTYbKCsri3nz5pGSkkKrVq0cjklLSyMtLc1+Ozk5e3dWRkYGGRkZxVLnlcqpz9XrLG7qi2PqS17qiWPqi2Pqi2Pxp85CJHhZHX8MZNhsZCQcwjMkskDrO5iQXPgeb9qEzwMPsBrw7dQJ9u/PXj5zJixa9P/jvvkGwsIKtEqLYRhOPefu1q1badWqFRcuXKBcuXLMmTOHHj16OBw7adIkJk+enGf5nDlz8PX1dWaZIiIiUgQqbd3KDU8/ffmBcXEQFVWgdTo9rKSnp3Pw4EGSkpL46quveP/99/n111+pX79+nrGO9qxERESQkJBAQECAM8u8ahkZGcTGxtKlSxddrvwi6otj6kte6olj6otj6otj1z+/mGeuzeLp9VbSbBawZZGy83fOrltARuJh+7jyHe7Bv2m3y67Pw2ph0zMxha4jOTmZoKAgkpKSiuTvt9M/BvL09KRWrVoANGvWjHXr1vHGG28wc+bMPGO9vLzw8vLKs9zDw6PEvBhLUq3FSX1xTH3JSz1xTH1xTH3JrUolf+AMaemZJGxeQvLa+WQmHccjtCYZ588D4B5UjbNH9uLZyHLZ9dUMCbii/hb1v0mxn2fFZrPl2nsiIiIiRaNRSPZ/+I/MGk3izzPwDKtNUO8nyDi+F4Aq98/CK7Qm6SfjLrsuN6uFFlEVnFpvQTl1z8qTTz5J9+7dqVatGmfPnmXOnDksX76cxYsXO3OzIiIiZcrp06d56623ePedGbSY+T+8IxsT0HciVh9/Dr85EIDQgS/jHhCMR3AUqX+vxjBsWCz577PIshn0bx5RXE/hkpwaVk6cOMHdd9/N0aNHCQwMpFGjRixevJguXbo4c7MiIiJlwvHjx5k2bRpvT59OWnomFZtlT2CpGPMAFzJsHHylT/btLvfhHRENgGdwFEbGBTKTTuBRvrLD9bpZLTSLrEB0lcDieSKX4dSw8sEHHzhz9SIiImXSgQMHmDp1Ku9/8CE2ixXfxj2o2KIPvgHlgSwwDHtQ8a3XHv9rb7I/1iOkOgAZJ+LyDysWC1NvbeTsp1FguuqyiIhICbFr1y5eeullPv3sU6yevvi2uBX/Zr1w8y73z4jsCb4n5j8LgNUngODe43Ktw82vAlafANJP7se3dt7znlmAV/o3IirIz5lPpVAUVkRERFzc5s2bef6FF/h6/nw8/CsS0HYw5Zp0w+rp43B82qHsy9pUffDTPPdZLBY8Q6LIOJH7IFs3qwU3i4VX+jeiT5MqRf8kroLCioiIiItatWoVzz3/PD/9+CNeFcKoEPMA5aI7Y3F3PDX4/L710LIpABGPzMv3AFqPoKjssWSHlCybQfPICky51bX2qORQWBEREXEhhmGwZMkSnn3ueVb+tgLv4Egq3TQWv3rtsFjd8n1cxqlDnF44FW7/nLB73iYrn70uAJ4hUZzd8B21K3rQqk44/ZtHuMzBtI4orIiIiLgAm83Gt99+y3PPv8DGDevxCa9N8M3/weea6y45xRjAlpbCkffvx8cnO6C4B4aQlZX/eI/g6oDB8x3K07JldBE+C+co9pPCiYiIyP/LzMzks88+o350Q26++WZ2JqQRcttzBA96Dd/arS4bVAxbFof+OwCAwLZ3FmibHkERWCxWtmzZctX1FwftWRERETFBWloaH330ES+89DIH98fhW7MFoXdOxbtq3mvnXcrBaf0A8KnZgoDmfYBL7FL5h9XDG++gKmzduvVKSi92CisiIiLFbNOmTXTv0ZPjx45i8fKlfIch+ERdi9U3ECMrE4tbwf48n5j/HGRlgNWNkH4TyZm6XBCWipFs2vznFT6D4qWwIiIiUsy8vb3x8vbB168cqSnnOLN8NmeYbb/fw9cfd7/yWHwCwTsAq1953HwDcfMtb/85ddcqzu9ZC0C1sV8XugaPkCi2bPkewzCwWC5/UUMzKayIiIgUs3r16nEgLvvigufPn+fEiRP5fh07fpwjRw9xcvdGEhMTyMrMzL0yq5Xj7w7DzTcQ78BgaDme079+TIa7H27/BBurb3nc/AKx+gRi9ci+2KFncHVOnjnNkSNHqFLFtc6r8m8KKyIiIiby8fEhMjKSyMjIy4612WwsWrSIPn2yT6U/efJkgoKC7MHm9OnTAASd2UH84cOcSTqTZx3u3r54+JXHcPMEYOvWrQorIiIiUjQSEhLsQeWpp57imWeeyXV/RkYGP/zwA39u2oiHhwfp6ekkJCRw/Phxh3ttbDaDtm3bmvFUCkVhRUREpATIzMwkNDQUgLZt2/LCCy9c9jGenp6Eh4cTHh7u7PKcSudZERERKQG8vLKPNQkICGDFihUmV1O8FFZERERcXPXq1bHZbAD241LKEoUVERERF3bHHXewf/9+AFJSUrBay96f7rL3jEVEREqId955hy+++AKAXbt24evra3JF5lBYERERcUHr1q1j1KhRAMydO5fatWubXJF5FFZERERczJkzZ2jZsiUADz74ILfddpvJFZlLYUVERMSF2Gw2KlSoAMC1117Lm2++aXJF5lNYERERcSHe3t727xs2bDC5GtegsCIiIuIiGjRoQEZGBpA980eyKayIiIi4gHvvvZe//voLgKSkpDI5RTk/6oSIiIjJPv74Y9577z0A/vzzTwICAkyuyLUorIiIiJho27ZtDB48GIAPPviARo0amVyR61FYERERMcm5c+do2LAhAEOGDOGee+4xuSLXpLAiIiJiApvNhr+/PwB16tRh1qxZJlfkuhRWRERETJATVNzc3Ni5c6fJ1bg2hRUREZFi1rJlS1JTUwFIT083uRrXp7AiIiJSjB599FHWrVsHwKlTpzRFuQDUIRERkWIyf/58Xn/9dQDWrFlDxYoVTa6oZFBYERERKQZ79+6lX79+ALz55ptcd911JldUciisiIiIONmFCxeoVasWAP369ePBBx80uaKSRWFFRETEiWw2Gz4+PgBEREQwb948kysqeZwaVl566SVatGiBv78/ISEh9O3bl127djlzkyIiIi4lKCgIAIvFwsGDB02upmRyalj59ddfGTVqFGvWrCE2NpaMjAxiYmJ0JUkRESkTbrzxRk6fPg1oivLVcHfmyn/66adct2fPnk1ISAgbNmygXbt2ecanpaWRlpZmv52cnAxARkaG/ZLZriqnPlevs7ipL46pL3mpJ46pL46VhL68+OKLrFmzBh8fH/7++28Mw3B6va7Sl6LevsUwDKNI13gJe/bs4ZprrmHr1q1ER0fnuX/SpElMnjw5z/I5c+bg6+tbHCWKiIjIVUpNTWXgwIEkJSUVyRWkiy2s2Gw2evfuzZkzZ1i5cqXDMY72rERERJCQkODyl8vOyMggNjaWLl264OHhYXY5LkN9cUx9yUs9cUx9ccyV+3LkyBHq1asHwNNPP81jjz1WbNt2lb4kJycTFBRUZGHFqR8DXWzUqFFs27Yt36AC4OXlhZeXV57lHh4eLvdizE9JqrU4qS+OqS95qSeOqS+OuVpf0tPTiYqKAqBr1648+eSTptRhdl+KetvFElZGjx7NokWLWLFiBVWrVi2OTYqIiBS7nP9wBwcH5zluU66cU8OKYRg8+OCDfPPNNyxfvpzq1as7c3MiIiKmCQ8Pt/984sQJEyspfZwaVkaNGsWcOXNYuHAh/v7+HDt2DIDAwED7CXJERERKul69enH06FGAXMdeStFw6nlWZsyYQVJSEh06dCAsLMz+NXfuXGduVkREpNi88sorLFq0CID9+/fj6elpckWlj9M/BhIRESmtfvvtNx5//HEAvvvuOyIjI02uqHTStYFERESuwIkTJ+wnOB0/fjw33XSTyRWVXgorIiIihZSZmUloaCgAbdq04aWXXjK5otJNYUVERKSQcqYoBwQEXPL8YVI0FFZEREQKoWbNmthsNgD7RQrFuRRWRERECmjgwIHs27cPgJSUFKxW/RktDuqyiIhIAcyYMYPPP/8cgJ07d+oCu8VIYUVEROQy1q9fzwMPPADAF198QZ06dUyuqGxRWBEREbmEM2fO0KJFCyD7WncDBgwwuaKyR2FFREQkHzabjQoVKgDQtGlT3nrrLZMrKpsUVkRERPLh7e1t/75x40aTqym7FFZEREQcaNiwIRkZGUD2zB8xj8KKiIjIv4wcOZJt27YBkJSUpCnKJlP3RURELvLpp5/y7rvvArBp0yYCAgJMrkgUVkRERP6xfft27rrrLgDee+89mjRpYm5BAiisiIiIAHDu3Dmio6MBGDx4MMOHDze5IsmhsCIiImWezWbD398fgNq1azN79mxzC5JcFFZERKTMyzkuxc3NjV27dplcjfybwoqIiJRp119/vX1qclpamsnViCMKKyIiUmaNHTuWtWvXAnDy5Enc3NxMrkgcUVgREZEy6ZtvvmHatGkArFq1iqCgIJMrkvworIiISJmzb98+brnlFgBef/11WrVqZXJFcikKKyIiUqZcuHCBmjVrAnDLLbcwZswYcwuSy1JYERGRMsNms+Hj4wNA1apVmT9/vskVSUEorIiISJkRHBxs//nQoUMmViKFobAiIiJlQqdOnUhMTASwX01ZSgaFFRERKfUmTZrEsmXLAIiPj8fd3d3kiqQwFFZERKRU+/nnn5k8eTIAS5YsITw83OSKpLAUVkREpNSKj4+na9euADz33HN06tTJ5IrkSiisiIhIqZSenk7VqlUBiImJYcKECSZXJFdKYUVEREolLy8vAIKCgli8eLHJ1cjVUFgREZFSp0qVKvafT548aWIlUhQUVkREpFTp27cvR44cAeD8+fMmVyNFQWFFRERKjddee42FCxcCEBcXh7e3t8kVSVFwalhZsWIFvXr1Ijw8HIvFwoIFC5y5ORERKcNWrlzJY489BsDChQuJiooytyApMk4NKykpKTRu3Jjp06c7czMiIlLGJSQk0LZtWwAef/xxevfubXJFUpScegq/7t270717d2duQkREyrjMzEz7NX9at27NlClTTK5IippLnW84LS2NtLQ0++3k5GQg+xoOrn4dh5z6XL3O4qa+OKa+5KWeOKa+OHZxX0JCQvDx8aFcuXIsX768TPfKVV4vRb19i2EYRpGuMb8NWSx888039O3bN98xkyZNsp8S+WJz5szB19fXidWJiIhIUUlNTWXgwIEkJSUREBBw1etzqbDiaM9KREQECQkJRfJknSkjI4PY2Fi6dOmCh4eH2eW4DPXFMfUlL/XEMfXFsZy+3HPPPZw/f55jx47h4+Njdlmmc5XXS3JyMkFBQUUWVlzqYyAvLy/7GQcv5uHhUWJ+SUtSrcVJfXFMfclLPXFMfclt1qxZhIaGcv78eTZu3Ojy/6Etbma/Xop62zrPioiIlCgbN25kzJgxAHzwwQfUrVvX3ILE6Zy6Z+XcuXPs2bPHfjsuLo7NmzdTsWJFqlWr5sxNi4hIKXTmzBmaNWtm/8inX79+JlckxcGpYWX9+vV07NjRfvvRRx8FYPDgwcyePduZmxYRkVLGZrNRoUIFABo1amRyNVKcnBpWOnToQDEdvysiIqVczt4ULy8vfvvtN3744QeTK5LiomNWRETE5TVq1Ij09HQge1qslC0KKyIi4tLuv/9+tm7dCkBSUhJWq/50lTX6FxcREZf12Wef8b///Q+ATZs2aYpyGaWwIiIiLmnHjh0MGjQIgJkzZ9KkSRNzCxLTKKyIiIjLSUlJoX79+gDcfffd3HvvvSZXJGZSWBEREZdis9koV64cANdccw0fffSRyRWJ2RRWRETEpQQGBgLg5ubG33//bXI14goUVkRExGW0bt2ac+fOAXDhwgWTqxFXobAiIiIuYdy4caxevRqAkydP4u7uUtfaFRMprIiIiOkWLlzIq6++CsDKlSsJCgoyuSJxJQorIiJiqri4OPr27QvAtGnTaNOmjbkFictRWBEREdNcuHCBGjVqANC3b18eeeQRkysSV6SwIiIipsm5OGGVKlX45ptvTK5GXJXCioiImOLi41IOHz5sYiXi6hRWRESk2HXp0oVTp04BkJaWZnI14uoUVkREpFg9++yzLFmyBID4+Hg8PT1NrkhcncKKiIgUm9jYWCZOnGj/OTw83OSKpCRQWBERkWJx5MgRYmJiAJg8eTKdO3c2uSIpKRRWRETE6dLT06lSpQoAnTt35plnnjG5IilJFFZERMTpvLy8AKhUqRKxsbEmVyMljcKKiIg4VdWqVe0/JyQkmFiJlFQKKyIi4jQ333wz8fHxAJw/f97kaqSkUlgRERGnmDZtGgsWLABg3759eHt7m1uQlFgKKyIiUuR+//13xo4dC8CCBQuoXr26yRVJSaawIiIiRSohIYEbbrgBgHHjxtGnTx+TK5KSTmFFRESKTGZmJsHBwQC0atWKqVOnmlyRlAYKKyIiUmRyjkspV64cq1atMrkaKS0UVkREpEjUrl2brKwsAJKSkkyuRkoThRUREblqd999N7t37wYgJSUFq1V/XqTo6NUkIiJX5d133+WTTz4B4K+//sLX19fkiqS0UVgREZErtnHjRkaOHAnAp59+Sr169UyuSEojhRUREbkiycnJNGvWDID77ruPO++80+SKpLRSWBERkUKz2WwEBgYC0KhRI2bMmGFyRVKaFUtYmT59OlFRUXh7e3Pdddfxxx9/FMdmRUTESXKOS/H09OTPP/80uRop7ZweVubOncujjz7KxIkT2bhxI40bN6Zr166cOHHC2ZsWEREnaNKkCWlpaYAuTijFw+lhZdq0aYwYMYKhQ4dSv359/ve//+Hr68uHH37o7E2LiEgRGzVqlH1PypkzZzRFWYqFuzNXnp6ezoYNG3jyySfty6xWK507d2b16tV5xqelpdnTOmQfvAWQkZFBRkaGM0u9ajn1uXqdxU19cUx9yUs9ccyV+vLVV18xa9YsfHx8WLFiBb6+vqbV5Up9cSWu0pei3r7FMAyjSNd4kSNHjlClShVWrVpFq1at7Msff/xxfv31V9auXZtr/KRJk5g8eXKe9cyZM0fz9kVEREqI1NRUBg4cSFJSEgEBAVe9PqfuWSmsJ598kkcffdR+Ozk5mYiICGJiYorkyTpTRkYGsbGxdOnSBQ8PD7PLcRnqi2PqS17qiWOu0Jfz589TuXJlAAYMGMC7775rSh0Xc4W+uCJX6UvOJyNFxalhJSgoCDc3N44fP55r+fHjx+0v/It5eXnh5eWVZ7mHh0eJeTGWpFqLk/rimPqSl3rimFl9uXiKcs2aNZk1a1ax13Aper04ZnZfinrbTj0yytPTk2bNmrF06VL7MpvNxtKlS3N9LCQiIq4pJ6hYrVb27NljcjVSVjn9Y6BHH32UwYMH07x5c1q2bMl///tfUlJSGDp0qLM3LSIiV6FNmzacO3cOINfkB5Hi5vSwMmDAAE6ePMkzzzzDsWPHaNKkCT/99BOhoaHO3rSIiFyhJ554glWrVgFw8uRJ3N1d6hBHKWOK5dU3evRoRo8eXRybEhGRq/Ttt98ydepUAH777TeCgoJMrkjKOp3NR0RE7Pbv30+fPn0AePXVV7nhhhtMrkhEYUVERP5x4cIFqlevDkCfPn0YO3asyRWJZFNYERERAHx8fAAIDw9nwYIF5hYjchGFFRERITg42P5zfHy8iZWI5KWwIiJSxsXExJCQkABoirK4JoUVEZEy7Pnnnyc2NhaAQ4cO4enpaXJFInkprIiIlFFLly7l6aefBuCnn36iatWqJlck4pjCiohIGXTkyBE6d+4MwMSJE+natavJFYnkT2FFRKSMyczMpEqVKgB06tSJSZMmmVuQyGUorIiIlDE5V8StWLEiS5YsMbkakctTWBERKUMiIiLsP588edLESkQKTmFFRKSMuPXWWzl8+DAA58+fx2rVnwApGfRKFREpA9544w2+/vprAPbu3Yu3t7fJFYkUnMKKiEgpt3r1asaMGQPA119/TY0aNcwtSKSQFFZEREqxhIQEWrduDcDYsWO5+eabTa5IpPAUVkRESqnMzEz7NX+uu+46Xn31VZMrErkyCisiIqVUznEpfn5+rFmzxuRqRK6cwoqISClUu3ZtsrKyAEhOTja5GpGro7AiIlLKDB48mN27dwNw9uxZTVGWEk+vYBGRUuSDDz7g448/BmDbtm2UK1fO5IpErp7CiohIKbF582aGDx8OwCeffEKDBg1MrkikaCisiIiUAsnJyTRt2hSAe++9l0GDBplckUjRUVgRESnhbDYbgYGBADRs2JCZM2eaXJFI0VJYEREp4fz8/ADw8PRky5YtJlcjUvQUVkRESrCmTZty4cIFAC6cP29yNSLOobAiIlJCPfjgg2zevBmA06dPa4qylFp6ZYuIlEBz587l7bffBmDdunWUL1/e3IJEnEhhRUSkhNm1axe33347ADNmzKB58+YmVyTiXAorIiIlSGpqKnXr1gVg4MCB3HfffSZXJOJ8CisiIiWEzWazz/ypUaMGn332mckViRQPhRURkRIi57gUq9XK3r17zS1GpBgprIiIlADdunXj7NmzAKSlpZlcjUjxUlgRESkBVq9eDcDx48dxd3c3uRqR4qWwIiLiwn766Sf7z7/99hshISEmViNiDqeFlRdeeIHWrVvj6+ur+f8iIlfgwIEDDBgwAIDnn3+eG264weSKRMzhtLCSnp5O//79uf/++521CRGRUuvChQtERUXZbz/44IPmFSNiMqd98Dl58mQAZs+e7axNiIiUWj4+PgBUrlzZ5EpEzOdSR2mlpaXlOso9OTkZgIyMDDIyMswqq0By6nP1Ooub+uKY+pKXevL/atasaQ8r27ZtIzY2Vn35F71eHHOVvhT19i2GYRhFusZ/mT17NmPGjOHMmTOXHTtp0iT7HpmLzZkzB19fXydUJyIiIkUtNTWVgQMHkpSUREBAwFWvr1B7VsaPH8+UKVMuOWbHjh32U0EX1pNPPsmjjz5qv52cnExERAQxMTFF8mSdKSMjg9jYWLp06YKHh4fZ5bgM9cUx9SUv9QReffVVnnvuOSD7vTQ8PFx9yYf64pir9CXnk5GiUqiwMnbsWIYMGXLJMTVq1LjiYry8vPDy8sqz3MPDo8S8GEtSrcVJfXFMfcmrrPZk2bJlPPXUUwD8+OOPREZG5rq/rPblctQXx8zuS1Fvu1BhJTg4mODg4CItQESkrDt27BidOnUC4JlnnqFbt24mVyTiWpx2gO3BgwdJTEzk4MGDZGVlsXnzZgBq1apFuXLlnLVZEZESJTMzk7CwMAA6duzo8Lg9kbLOaWHlmWee4aOPPrLfbtq0KQC//PILHTp0cNZmRURKFE9PTwAqVKjAsmXLTK5GxDU57aRws2fPxjCMPF8KKiIi2apVq0bOhMyEhASTqxFxXbo2kIiICfr168ehQ4cAOH/+PFar3o5F8qPfDhGRYvbWW28xf/58APbs2YO3t7fJFYm4NoUVEZFitHr1ah566CEAvvrqK2rWrGlyRSKuT2FFRKSYJCYm0rp1awAeeeQRbr31VpMrEikZFFZERIqBzWajUqVKALRo0YJp06aZXJFIyaGwIiJSDDz/OTu3r68vf/zxh8nViJQsCisiIk5Wt25dsjIzATh79qzJ1YiUPAorIiJONHToUHbt2gVkBxVNURYpPP3WiIg4yQcffMDs2bMB2Lp1qy41InKFFFZERJxgy5YtDB8+HICPPvqI6OhokysSKbkUVkREilhycjKNGzcGYMSIEdx9990mVyRSsimsiIgUIZvNRmBgIAANGjTg3XffNbkikZJPYUVEpAj5+fkB4OHhwbZt20yuRqR0UFgRESkizZo148KFCwD27yJy9RRWRESKwEMPPcTGjRsBOH36tKYoixQh/TaJiFyluXPn8tZbbwGwbt06ypcvb25BIqWMwoqIyFXYvXs3t99+OwDTp0+nefPmJlckUvoorIiIXKHU1FRq164NwO23384DDzxgckUipZPCiojIFbDZbPaZP9WrV+fzzz83uSKR0kthRUTkClSoUAEAi8XCvn37TK5GpHRTWBERKaR27dqRnJwMQHp6usnViJR+CisiIoXw1FNP8dtvvwFw/Phx3N3dTa5IpPRTWBERKaBFixbx0ksvAfDrr78SEhJickUiZYPCiohIARw4cIBevXoBMGXKFNq1a2dyRSJlh8KKiMhlpKenExUVBUDPnj15/PHHzS1IpIxRWBERuQwvLy8AKleuzKJFi0yuRqTsUVgREbmE0NBQ+89Hjx41sRKRskthRUQkH927d+fEiRMApKWlmVyNSNmlsCIi4sBLL73ETz/9BMDBgwfx9PQ0uSKRskthRUTkX5YvX85TTz0FwA8//EBERITJFYmUbQorIiIXOXbsGB07dgRgwoQJdO/e3eSKRERhRUTkH5mZmYSFhQHQvn17nnvuOZMrEhFQWBERscs5LqV8+fIsX77c3GJExM5pYWX//v0MGzaM6tWr4+PjQ82aNZk4caIu+iUiLikqKgrDMAA4deqUydWIyMWcdgWunTt3YrPZmDlzJrVq1WLbtm2MGDGClJQUXn31VWdtVkSk0G677TYOHDgAwPnz57FatdNZxJU4Lax069aNbt262W/XqFGDXbt2MWPGDIUVEXEZb7/9NvPmzQNg9+7deHt7m1yRiPxbsV7bPCkpiYoVK+Z7f1paWq4TLyUnJwOQkZFBRkaG0+u7Gjn1uXqdxU19cUx9ycuMnqxfv57HH38cHx8fPv74YyIjI13u30SvFcfUF8dcpS9FvX2LkfMhrZPt2bOHZs2a8eqrrzJixAiHYyZNmsTkyZPzLJ8zZw6+vr7OLlFERESKQGpqKgMHDiQpKYmAgICrXl+hw8r48eOZMmXKJcfs2LGDunXr2m/Hx8fTvn17OnTowPvvv5/v4xztWYmIiCAhIaFInqwzZWRkEBsbS5cuXfDw8DC7HJehvjimvuRVnD2x2WxUqFABgKZNm7r0zB+9VhxTXxxzlb4kJycTFBRUZGGl0B8DjR07liFDhlxyTI0aNew/HzlyhI4dO9K6dWvefffdSz7Oy8vLfnXTi3l4eJSYF2NJqrU4qS+OqS95FUdPPDw8yMzMxMfHh99//92p2yoqeq04pr44ZnZfinrbhQ4rwcHBBAcHF2hsfHw8HTt2pFmzZsyaNUtH2IuI6erVq0dmZiYA586dM7kaESkIpx1gGx8fT4cOHYiMjOTVV1/l5MmT9vsqV67srM2KiOTrnnvuYefOnQCcPXtW/4ESKSGcFlZiY2PZs2cPe/bsoWrVqrnuK6ZjekVE7GbNmsWsWbMA2Lp1K+XKlTO5IhEpKKf9t2LIkCEYhuHwS0SkOG3ZsoV77rkHgNmzZxMdHW1yRSJSGNoHKiKl2rlz52jcuDEAw4YNY/DgwSZXJCKFpbAiIqWWzWbD398fgPr161/y1Aki4roUVkSk1Mo5LsXd3Z3t27ebXI2IXCmFFREplZo3b8758+cBcp1sUkRKHoUVESl1Hn74YTZs2ABAYmKipiiLlHD6DRaRUuXLL7/kzTffBOCPP/6wn1ZfREouhRURKTV2797NgAEDAHjrrbdo0aKFyRWJSFFQWBGRUiE1NZXatWsDcNtttzF69GiTKxKRoqKwIiIlns1mw8/PD4DIyEjmzp1rckUiUpQUVkSkxKtYsSIAFouF/fv3m1uMiBQ5hRVnyMiApUth3Dho0QLKlwcPD6hcGXr3hu+/N7tCkVKjffv2JCUlAZCenm5yNSLiDE67kGGZ9uuv0KVL9s+VK8MNN4CfH/z1F3z3XfbXvffC//4HFou5tYqUYP/5z39YsWIFAEePHsXdXW9pIqWR9qw4g9UKt94KK1bA0aOwaBHMnQtbt8IXX4CbG7z7LnzyidmVipRYP/zwAy+++CIAv/zyC5UrVza5IhFxFoUVZ7jxRvjqK2jbNu99AwbAkCHZP3/8cbGWJVJaHDx4kJ49ewLw8ssv06FDB3MLEhGnKtNhxWYzzNlw06bZ3w8dMmf7IiVYeno6kZGRAPTo0YMnnnjC5IpExNnK1Ae82+KTmLf+EH/sT2TPiXNkZBl4uFmoFVKOllEV6d88gugqgc4vZPfu7O9hYc7flkgp4+XlBUBoaCjf62B1kTKhTISV/QkpPD5/C3/EJeJmtZB10R6VjCyDHUfP8vfxc3y0+gAtq1dk6q2NiAryc04xx47B7NnZP996q3O2IVJKXXxcyrFjx0ysRESKU6n/GGjh5nhiXl/BhgOnAXIFlYvlLN9w4DQxr69g4eb4oi8mMxMGDYKkJGjYEEaOLPptiJRSPXv25Pjx44CuoixS1pTqPSsLN8cz5ovNFObIlCybQRYGY77YDECfJlWKrqD77ss+/0qlStkH4Hp6Ft26RUqxl19+mR9++AGAAwcO4KnfHZEypdTuWYlLSGHcvC2FCioXM4Bx87awPyGlaAp6+GH44AOoUAFiY+Gfa5iIyKWtWLGCJ598EoDvv/+eatWqmVyRiBS3UhtWnpi/hSzj6mb7ZBkGj8/fcvXFjB0Lb76ZfSbbn3/+/9lAInJJx48fp3379gA89dRT9OjRw+SKRMQMpTKsbD2cxB9xifken1JQWTaDP+IS2RafdOUrefxxmDYNAgOzg0rz5ldVk0hZkZmZaT+gtl27drzwwgsmVyQiZimVYeWrDYdwtxbNaezdrBbmrb/C86GMHw+vvJIdVGJjs68TJCIFknNcSmBgIL/++qvJ1YiImUplWPljfyKZRXTCtyybwbr9pwv/wAkTYMqU7I9+FFRECqV69eoY/3yMm5iYaHI1ImK2UjkbaM+Jc5cdk5l8Etv5s3iG1rjs2N0nzhaugG+/hZxd1rVqwfTpjscFBcGrrxZu3SKl3NChQ9m/fz8AKSkpWK2l8v9UIlIIpS6s2GwGGVmX36ty6oc3uHBgM1gs+DXsjG+t6/GuFo3VK+/J4DKyDGw2A2tBP1q6+H+C69dnfzkSGamwIvIvX3/9NQB///03vr6+JlcjIq6g1IUVq9WCh5vlsoHFt27b7LBiGKRsiSVlSyxgwTO8Nt6RTfCJaoxXeD0s7h54uFkKHlQg+0KFORcrFJEC2bhxo/3nL7/8kmuuucbEakTElZS6sAJQK6QcO45e+qMb/yZdyTp3iqTf51y01CDjxH4yEo+QvHouFncvvKrWp1p0SzZsCKVJkya4ubk5t3iRMigxMZGOHTvy+eefc99999G/f3+zSxIRF1IqPwxuGVURtwLsCQlsPQDvyCZYfcsT1Dv7yq1GZhrGhbO4BYQQ2Ko/WKzsWfwRzZs3p2KlIG655RZmzJjB33//bT8AUESunM1mo1KlSvbbU6ZMMbEaEXFFpTKs9G8eUaBzrFisbgT1egyL1crZjYuoNm4hIf0nA5CVfIIzv31KVsppwu//kNCBL2OJ7s7i9bsY9eCD1KlTh/CqEQwZMoRPP/3Ufs0SESkcb2/vXN9FRP6tVIaV6CqBtKxesL0rbn7lCer9OGnxOzjz2yf41GhG5BOLCL5lAgAZJ/Zx+M2BnFk+m4DrbiV44FSqPvg5If0mkhLenC8X/8Zdd91F7X9Onz9u3DgWLlzImTNnnPkURUqF+vXrk5GRAcDRo0dNrkZEXFWpPGYFYOqtjYh5fQVZBbg6kHdENOXb382Z5bPxqtoA35ot8L3meiKfWETKjt9I+HYKaUd2cmhaP7wjGxHSbxI+NVvgUzP73ClZKWfg6HYAPp73LW+88QZWq5Um1zaja5fOdO7cmdatW+t/jiIXGT58ODt27AAgOTlZU5RFJF+l9t0hKsiPV/o3oqBzeAJa3oJPrZacWvQamUkn7Mv96rUl8olFVOr5CAAXDmzh4Gu3cOKryRhZ2f8jdPMrj2+d1gAED3mT8JHvUz5mFDtTvHntrRl06tSJwPIV6HhjJ15++WXWrVtHVlZWkT5fkZLko48+4oMPPgBgy5Yt+Pv7m1yRiLiyUhtWAPo0qcJ/b2+Cp5v1sh8JWSxWKvV4BKunLycXvmwPIjnKRXci8olFVOw6GoDze9dx8NWbObngZQxb7uDhUb4y/o27Etz7CSo/8DFhQ9/Cr80g/jiYzIRJz9KyZUsqVKxEn759mT59Ojt37tTBulJmbNu2jSH/TO3/8MMPadiwobkFiYjLc2pY6d27N9WqVcPb25uwsDDuuusujhw54sxN5tGnSRV+fqQdzSIrAOQbWtysFtx8/Gl//4tknYzj9C+zHI7zb9KNyCcWUaHTvQCk7lrJwVf6kPjT2w7HWyxWPEOqE9CiL8H9JlHlwc8JvXMq1oY9WbJpLw89PIZ69epRObwKgwcP5uOPPyY+Pr4InrmI6zl37pw9nAwdOpShQ4eaXJGIlAROPWalY8eOPPXUU4SFhREfH89jjz1Gv379WLVqlTM3m0dUkB9fjmzFtvgk5q0/xLr9p9l94iwZWQYebhauCfGnRVQF+jePILpKIG9XPc+DDz6IV9X6+NW9weE6A5r3xr9ZL5L/mM+Z5bNJ2bECuJ/TS9/Fp/0ILBbHOdDi5o531fp4V60PDMSWfoG0w9u5sH8z837+nY8//hiAmrVq061rFzp16kSHDh2oUKGCk7ojUjxsNpv94566devy4YcfmlyRiJQUTg0rjzzyiP3nyMhIxo8fT9++fcnIyMDDw8OZm3Youkog0VUC7bfzO4X+qFGjWP7rryxc9CaeoTXwqBDucH0Wi4XA6/oR0PJW0tZ/BcC5LUs4ufY7/Jv1pkKn4fmGlhxWT298ajTDp0YzADISDpH0x9fs3f4L06dPZ/r06Yy4dyTvzvzflT5tEZdQrlw5ANzd3e0H1oqIFESxzQZKTEzks88+o3Xr1vkGlbS0NNLS0uy3k5OTAcjIyLBPbyxq+R3n+u7MmWxv244TP/8Xv/7PYfHwvOR6AlvfCtgIbt2Pk6u+IvOvWE7+FYt/i76Ub3MHWPKGIlvKGdJP7CPt+D4yT8SRlRBHWlICAMFBlWjSpAnNrm1Kr169nPb8nS2n7pJav7OUtb506NABAB8fH06fPu3weZe1nhSU+uKY+uKYq/SlqLdvMZx8ZOcTTzzB22+/TWpqKtdffz2LFi3KdbbKi02aNInJkyfnWT5nzhxd0ExERKSESE1NZeDAgSQlJREQEHDV6yt0WBk/fvxlT4e9Y8cO6tatC0BCQgKJiYkcOHCAyZMnExgYyKJFi7A42NPgaM9KREQECQkJRfJkr8Qnn3zC6NGjqdjtQfzqtc13nJfV4LnmNp5ebyE16TTpJ+JIO7aX8zt+JfNsQq6x7du3p1mzZjRp0oQmTZpQrVo1h/0oDTIyMoiNjaVLly6mfPTnqspKXxYuXMjdd98NwNKlS2nevHm+Y8tKTwpLfXFMfXHMVfqSnJxMUFBQkYWVQn8MNHbsWPu0w/zUqFHD/nNQUBBBQUHUrl2bevXqERERwZo1a2jVqlWex3l5eeHl5ZVnuYeHh2lNHzp0KL8sX87nc98kpGIUnkHV7PcZhkHW2QTSj+3BevoANO/HwZn3k3Qye8ZT+YqVuL55M5pdey2ff/45Bw4cAOCnn37Cz8+P559/3pTnZAYz/w1dWWnuy969e+0XJHzzzTcd/s47Upp7cjXUF8fUF8fM7ktRb7vQYSU4OJjg4OAr2pjNZgPItffE1VksFv43Ywbr1m/gwLcv499mEGnH95J5fA+ZJ/aSfu4MAOFVI4B+PHz/cJo2bcq1115LRESEfY/JSy+9RGpqKnXq1OHw4cPMnz8fi8XCXXfdZZ8BJFJaXLhwgVq1agHQv39/HnzwQZMrEpGSzGnnWVm7di1vv/02mzdv5sCBAyxbtow77riDmjVrFvh/WK7Cz8+Pb+Z/hSXlFCcXvIjn3uW0rxvK+EcfYsGCBRw6dIi4vXsAmDBhAn379nX40Y6vry+HDh3i7NmzhISEANkfM1ksFu67775if14izmCz2fDx8QGyZwF++eWXJlckIiWd02YD+fr68vXXXzNx4kRSUlIICwujW7duTJgwweFHPa6uXr16bFi/jsDAQMLD805lLsyRz+XKleP48eOcOXOGGjVqcPr0aWbOnMnMmTMZM2YMr7/+elGWLlKscg6gt1gs7N+/39xiRKRUcNqelYYNG7Js2TJOnTrFhQsXiIuLY8aMGVSpUsVZm3S6evXqOQwqV6p8+fIkJiZy8uRJ+8my/vvf/2KxWPjPf/5TZNsRKS4dO3a0X3E8PT3d3GJEpNQo1dcGKimCgoJITk4mPj7evvv8xRdfxGKx8MILL5hcnUjBPP300yxfvhyAo0eP4u5eai/qLiLFTGHFhYSHh5OamsqBAwfw9Mw+Cd2ECROwWCxMmzbN5OpE8vfjjz/aZ7ctXbqUypUrm1yRiJQmCisuqFq1aqSlpfH333/j5uYGZE8Zt1gszJgxw+TqRHI7dOgQPXr0ALL3CN54440mVyQipY3Cigu75ppryMzMZNu2bfaZRQ888AAWi4WPPvrI5OpEso9LqVYt+9xD3bp148knnzS5IhEpjRRWSoAGDRpgs9nYsGGDfdmQIUOwWCzMnTvXxMqkrMuZ2RccHMyPP/5ocjUiUloprJQg1157LYZhsGrVKvuy22+/HYvFwrfffmtiZVIWhYWF2X8+ceKEiZWISGmnsFICtWrVCsMw+OWXX+zL+vTpg8ViITY21sTKpKzo1asXx44dA0rWGalFpGRSWCnBOnTogGEY/PDDD/ZlMTExWCwWVqxYYWJlUppNnTqVRYsWAbB//377zDUREWdRWCkFunfvjmEYfP311/Zl7du3x2KxsG7dOhMrk9JmxYoVPPHEEwB89913REZGmlyRiJQFCiulyM0334xhGHz66af2ZS1btsRisbB582bzCpNS4cSJE7Rv3x6AJ598kptuusnkikSkrFBYKYXuvPNODMPg/fffty9r2rQpbm5u7Nixw8TKpKTKzMwkNDQUgLZt2/Liiy+aXJGIlCUKK6XYsGHDMAyDt956C8i+Gm79+vXx8PBg3759JlcnJUnOFOWAgAAdDyUixU5hpQwYPXo0hmEwdepUIPt/yTVr1sTLy4vDhw+bXJ24uho1amCz2QA4ffq0ydWISFmksFKGjBs3DsMwmDRpEpB99tGIiAj8/Pzs01BFLnbHHXcQFxcHQEpKClar3jJEpPjpnacMmjhxIoZh8PjjjwOQmppKWFgYgYGBJCYmmlyduIoZM2bwxRdfALBr1y58fX1NrkhEyiqFlTJsypQpGIbBgw8+CEBycjKVKlWiUqVKJCcnm1ydmGn9+vU88MADAHzxxRfUrl3b5IpEpCxTWBHefPNNDMNg+PDhACQmJhIYGEhYWBipqakmVyfF7cyZM7Ro0QLIPt5pwIABJlckImWdworYvffeexiGwcCBAwE4duwYfn5+VKtWjQsXLphcnRQHm81GhQoVgOzp7jkzyUREzKSwInl89tlnGIbBzTffDMChQ4fw8fHhmmuuIT093eTqxJm8vb3t3zdu3GhyNSIi2RRWJF9ff/01WVlZdO3aFYA9e/bg5eVFdHQ0mZmZJlcnRS06OpqMjAwge+aPiIirUFiRS7Jarfz0009kZWXZT7W+fft2PDw8aN68uf38G1Ky3XvvvWzfvh2ApKQkTVEWEZeidyQpEKvVyvLly8nKyqJly5YAbNiwATc3N9q0aaPQUoJ9/PHHvPfeewBs3ryZgIAAkysSEclNYUUKxWq1snbtWjIyMmjUqBEAq1atws3Njc6dOyu0lDDbt29n8ODBALz//vs0btzY5IpERPJSWJEr4u7uzp9//klaWhp16tQBYOnSpbi5udGrVy+FlhLg3LlzREdHAzBkyBCGDRtmckUiIo4prMhV8fT0ZOfOnVy4cIGoqCgAFi1ahJubG7fddpu5xUm+bDYb/v7+ANSpU4dZs2aZXJGISP4UVqRIeHl5ERcXR0pKCuHh4QDMmzePwMBAkysTR3KCipubGzt37jS5GhGRS1NYkSLl6+tLfHw8Z8+eJTg42L48MDDQfvp2Mdd1111nPzOxzpsjIiWBwoo4Rbly5Thx4gQHDx60L5sxYwYWi4WxY8eaWFnZNnbsWP744w8ATp06pSnKIlIi6J1KnCrnY6A9e/bg5+cHwLRp07BYLDz99NNmllbmzJ8/n2nTpgGwZs0aKlasaHJFIiIFo7AixSI4OJhz584RHx9vP6X7888/j8Vi4aWXXjK5utJv79699OvXD4A33niD6667zuSKREQKTmFFilV4eDjnz59n//79eHh4APDUU09hsVj473//a25xpdSFCxeoVasWAP369eOhhx4yuSIRkcJRWBFTREZGkp6ezs6dO3FzcwPgkUcewWKx8O6775pcXelhs9nw8fEBICIignnz5plckYhI4SmsiKnq1KlDZmYmW7duxWKxADBy5EgsFgsff/yxydWVfEFBQQBYLJZcBzuLiJQkxRJW0tLSaNKkCRaLhc2bNxfHJqWEiY6OxmazsW7dOvuywYMHY7FYtDfgCnXq1InTp08DmqIsIiVbsYSVxx9/3H6iMJFLad68OYZhsHLlSvuy2267DYvFwqJFi0ysrGSZOHEiy5YtA+Do0aO4u7ubXJGIyJVzelj58ccf+fnnn3n11VedvSkpRdq0aYNhGCxdutS+rFevXlgsllzLJK/Fixfz7LPPAtnXa6pcubLJFYmIXB2n/nfr+PHjjBgxggULFuDr63vZ8WlpaaSlpdlvJycnA5CRkUFGRobT6iwKOfW5ep3F7Wr70rZtW9LT0/n555/p378/kB1aAH766SdatWpVNIUWM2e9Xo4cOcLNN9+Mj48PTz/9NG3bti0xr0n9DjmmvjimvjjmKn0p6u1bDMMwinSN/zAMgx49etCmTRsmTJjA/v37qV69Ops2baJJkyYOHzNp0iQmT56cZ/mcOXMKFHZERETEfKmpqQwcOJCkpCQCAgKuen2FDivjx49nypQplxyzY8cOfv75Z7788kt+/fVX3NzcChRWHO1ZiYiIICEhoUierDNlZGQQGxtLly5d7OcPEef1Ze7cudx777322xaLhd9//50GDRoU2TacyRl9yTlbcFBQEHv37i2SdRYn/Q45pr44pr445ip9SU5OJigoqMjCSqE/Bho7dixDhgy55JgaNWqwbNkyVq9ejZeXV677mjdvzp133slHH32U53FeXl55xgN4eHiUmBdjSaq1OBV1XwYNGsSgQYN4//33GTFiBABNmzbFarXy119/UadOnSLbljMVVV9yTrYHlPgpyvodckx9cUx9cczsvhT1tgsdVoKDg3NdTTc/b775Js8//7z99pEjR+jatStz587Vqb6lyAwfPpzhw4fzxhtvMGbMGGw2G3Xr1sXd3Z09e/YQGRlpdolO16dPH44ePQpkn61WRKS0cdpsoGrVqhEdHW3/ql27NgA1a9akatWqztqslFEPP/wwhmHYrzOUmZlJVFQU3t7eHD582OTqnOe1117j22+/BWD//v0O90yKiJR0OoOtlCrjx4/HMAz7FZ3T0tKIiIigXLlynDhxwuTqitbKlSt57LHHAPj222/LxF4kESmbii2sREVFYRhGvgfXihSlZ599FsMw7H/MU1JSCA0NpXz58iQmJppc3dU7ceIEbdu2BbIDWs50bhGR0kh7VqRUe+WVVzAMgwceeACApKQkKlWqRFBQkP08PlcrNTWV1atXs23btsuO/fzzL+gSE2OfyfTGG28we/ZsfvjhB9avX8/Bgwcve9xJZmYmoaGhQPbJ83I++hIRKa10Dm4pE6ZPn8706dO55557mDVrFqdOnSIwMJCwsDD27NlT4PP4pKSksHnzZjZu3MiGDRtY88d6du/agc1mIzgklC1/br7kGWPfmTGDVes3UyHiGvr27ctzL08l+dTJPON8y5UjKCiY0NBQwkJDCQ0NITQ0lJCQEB566CEA3N3d+frrr8nKyrJfuVpEpDRSWJEy5cMPP+TDDz/kjjvu4IsvvuDo0aP4+fkRGRnJzp078fb2to89d+4cmzdvZsOGDfZgsnf3Lmw2G1Z3D7xDqmMNqUH5Lh3xqFiF04teYcDtd7Bs6ZJ8w0PTJo3ZsDOOSv0mAVlUHvkh5dMzyUpNwpaaRFbKmX9+PsOZ1CROpSSxbXs8lg07sKWcIe3s/3+ElbOHxWq1Ur5iJYKDgwkLDaVy5exQk/OVE3Jyvvz8/OxXuBYRKQkUVqRM+vzzz/nss8+45ZZbWLhwIQcOHMDHx4eoqChat27NH+s3snf3LgzDwOruiXdoFNbgmpSP6YxX5Vp4BFXD4pb7PAIVbhrHb1/8h4kTJ+aatn+xRo0aceHt6RgZ6UB2oLG4eeDuHwT+QZet2zAMbOeTsV04R1ZqMrbU7HCTlXqGI6lJHDp2BvbvgPNryEw5Q3pKEv0Mg1FABcACbLVY+LNhI+5avw50fgoRKQEUVqTMSU5OZtOmTWzYsAE/Pz9q1LqGfXt2A9nTf4+cd8czvDYVusZcFEwu/6viXa0hgW0H8cILL3DDDTfQrVu3PGMaNWqEYdjISDxM4L4s3v/8E15qP5S/QmsUqHaLxYKbbyBuvoF4VKxy2fFPL5nJsA3fkWGxstzLj+QLZ7nRMGi05U+48Ub4+Wfw8SnQtkVEzKKwIqVaUlKS/fiS9es38Mf6DcTtzQ4mbh5eeIZWxz2kNpW698Czci08KlXNs8ekMAKu70d6/A7uGHgnW/7cTERERK77GzRogMViIePkAcJ/P0DtuE1sCa1V4LBSGDF/r2bYhu84a3Wnk4cHm7PSGDJiBNeOGEGFYcNg5Up4+mnQFdFFxMUprEip8+mnn/Ldd4tYu249B+Kyr5Hj5umNV2gN3ELqUqnHTXhWrolHpQgs1qI9MNVisVKx5yOc/GgM/W8bwG8rfs112mk/Pz8iq9cgJeEgYftXA9D179W80n5wkdaRefYUI3+eDsCrVgtt7h/JN489RpUq/+yNeecdaNsW3n47O7D8c10hERFXpLAipc5b09/hjzXZQcDi6Yt/0+74N+2Je2BIsWzfzSeACr0eZ93nTzB+/Hhee+21XPdf26QJcZt243/kCAC1Eg9TNek4hwNDr3rbGWeOkbz2K8pvXUKzrEwAHl6zmorNmuUeeMMNEBEBhw7BDz/AHXdc9bZFRJxF51mRUmfZklh+/PFHHnvsMRrUvYbktfOJ/989nPjwfk79PIPUXavIunDOqTV4ValLYPt7mDZtGgsXLrQv3xafxCmvUG48vhfjnxk5NizcuOePq9pe+skDJCx6jaPvjcTz0Hqm3Tkw+46KFfMGlRzNm2d/37TpqrYtIuJs2rMipY6fnx/dunWjW7duvPIKJCQk8Msvv7BkyRIW/7yEA5u+B4sFn7Br8IhohHdkY7yq1sfqUbTX1fFv3pv0+O0Muvtuvl/6O29vOMsfcYlcSKvAxAupGGTPzjEs0GX3Gj5uVviz0KYd3c3ZNV+S8vdqwqpU5aX/vs6wYcPw/eAD+PhjqFYt/wfnHE8TF3dFz09EpLgorEipFxQURP/+/enfvz8ABw4cYOnSpSxZspSflyzhxNqvsqcnV6mHZ7Xs8OIZds1VH89isVio2P1hjn80hpheNxN21ytg9SAwIJQbbDb7bk03w+D6Q9vwS0slxevyJ6czDIO0Q9s4u3Yeqfs2Ur1mLSZ88AGDBg3C09Mze9DZs9nf/fzyX1G5ctnfi+hMviIizqKwImVOZGQk99xzD/fccw+GYbB9+3aWLl1K7JIl/LL8G8789gnu3n54RkTjVa0x3pGNs6cvX8GJ1KxeflTs/QTHPh1HwpL3qRRzPzeejuff8408bFm03b+Jn+q0yXddhmFwYd96zq2dR+qhv2gQ3ZCnv/iCfv366Qy2IlKqKaxImWaxWIiOjiY6OpqHH36YzMxM1q1bx9KlS/k5dglrVszmdEY6nv4V7R8ZeUc1xj2g4AfrelWuRcXO95K4eDreVevTed8GMiBXYMmwutF5zx8Ow4phyyL179WkrJ3H+WN7adHyOp555zt69uyZf4Dy98/+npKSf2Hn/jluJyCgwM9FRMQMCisiF3F3d6dVq1a0atWKCRMmkJqaysqVK1m6dCmLY5ew5ac3MQwD70pVcM8JL5GNcPMJIPRsAkEpZxyvOLQWZ6o3I+3HN+lktTrcs9Jl9xqij+3ByFloy+L8vg2c27qEzOQTtGjRguGTxtG8Z08sVate+olERWV/P3Qo/zE59+WMFRFxUQorIpfg6+tLTEwMMTExTJkCiYmJ/PLLL9nh5ecl7Fv4Y/bBupVr8tnZ07Q5d+qy67Tls9w/LYVFH43J/4Hr1mV/tWsHv/566Y00bZr9/dSp7ANoq1fPO2b9+uzv1157uZJFREylqcsihVCxYkVuvfVW3nnnHfbu+ZuDBw8y68MPueXG6/ncmsl58g8jOfL7pbvsL6PFAt7eMGzY5QutWhVatMj+ec6cvPevXJm9Z8XLC3r0uPz6RERMpLAichUiIiIYMmQIn376CW+dOU38woUkhYSQVcTbybJYoXZt2LAB7r67YA966qns7y+/DBs3/v/yU6fggQeyfx49WmevFRGXp7AiUkQsFgu1evemwr59fNOoM3D5vSyXk/P4rxt2yg4c9esX/MF9+8JDD2UfSHv99dC9O/TrB7Vqwdat0KYNPPfcVVYoIuJ8CisiRczm48tj3ccwtscjpLt5kGm5sl+zTIuVdDcPHu35COO6P4zN+wqujvzGGzB3LrRqBatWZZ9av2rV7L0ty5bpissiUiLoAFuRIma1WvBwszC/YSf+DLuGd79+gcgzR3AzjMs/+B9ZFisHKoRx780T2BsUgYebBau18Od5AeC227K/RERKKO1ZEXGCWiHZZ4fdE1SNnkPeYHHtVoV6/OLa19NzyBvsDco+Jf41If5FXqOISEmhsCLiBC2jKuL2z56Q857eHC9XiUxLwc4ym2lx43i5Slzw8AbAzWqhRVQFp9UqIuLqFFZEnKB/8wiybNkf+1gMG712rMDdKNgcIXcji147VmAxsg+vzbIZ9G8e4bRaRURcncKKiBNEVwmkZfXsvSvN4ncQlJqUZ0zOESyOZgwFpSZxbfxO3KwWWlavSHQVTS8WkbJLYUXESabe2gg3i4WeO1fm+Qgo02LF5uHBrJZ9HM4YyrS4cdPO33CzWJh6a6PiLFtExOUorIg4SVSQH6/cGp3nI6Asi5WDFcL4ddo0Xu48nJuGvMHB8mFkXXRRwpyPgl65NZqoID8zyhcRcRkKKyJO1Cf1gP0joJyPe76KvpGbh/2XsxHZx6HkzBiaH31jrnFBqUn0OX+wmCsWEXE9CisizvTllwAYbm5kunvyaM9HeOqmR+wzfXKc9/TmyZseZWyPR8h098Rwc8v1eBGRskxhRcRZbLbss8cCllq18PxzE/fMnMig66pRNzTAPszDzUL9sAAGXVeNoe9OxPPPTVhq1sy+84svstcjIlKG6Qy2Is5y/jzUrAk9e8Lbb4OvL9FkzxTKyMjghx9+YMszMXh5eeZ+XJXA7OsAjR4Nu3Zlr8dPx62ISNmlsCLiLH5+sHIlWPPfgZnvKfT9/GDWrOy9Kpd4vIhIWaB3QRFnutqgoaAiIqKwIiIiIq5NYUVERERcmksfs2IY2SckT05ONrmSy8vIyCA1NZXk5GQ8PDzMLsdlqC+OqS95qSeOqS+OqS+OuUpfcv5u5/wdv1ouHVbOnj0LQESELuImIiJS0pw9e5bAwKu/tpnFKKrY4wQ2m40jR47g7++PxZLPrAkXkZycTEREBIcOHSIgIODyDygj1BfH1Je81BPH1BfH1BfHXKUvhmFw9uxZwsPDsRbBRAGX3rNitVqpWrWq2WUUSkBAgH5xHFBfHFNf8lJPHFNfHFNfHHOFvhTFHpUcOsBWREREXJrCioiIiLg0hZUi4uXlxcSJE/Hy8jK7FJeivjimvuSlnjimvjimvjhWWvvi0gfYioiIiGjPioiIiLg0hRURERFxaQorIiIi4tIUVkRERMSlKayIiIiIS1NYuQqJiYnceeedBAQEUL58eYYNG8a5c+cu+ZgOHTpgsVhyfd13333FVLFzTJ8+naioKLy9vbnuuuv4448/Ljl+3rx51K1bF29vbxo2bMgPP/xQTJUWr8L0Zfbs2XleF97e3sVYrfOtWLGCXr16ER4ejsViYcGCBZd9zPLly7n22mvx8vKiVq1azJ492+l1FrfC9mX58uV5XisWi4Vjx44VT8HF4KWXXqJFixb4+/sTEhJC37592bVr12UfV9rfW66kL6XlvUVh5SrceeedbN++ndjYWBYtWsSKFSu49957L/u4ESNGcPToUfvX1KlTi6Fa55g7dy6PPvooEydOZOPGjTRu3JiuXbty4sQJh+NXrVrFHXfcwbBhw9i0aRN9+/alb9++bNu2rZgrd67C9gWyT4998eviwIEDxVix86WkpNC4cWOmT59eoPFxcXH07NmTjh07snnzZsaMGcPw4cNZvHixkystXoXtS45du3bler2EhIQ4qcLi9+uvvzJq1CjWrFlDbGwsGRkZxMTEkJKSku9jysJ7y5X0BUrJe4shV+Svv/4yAGPdunX2ZT/++KNhsViM+Pj4fB/Xvn174+GHHy6GCotHy5YtjVGjRtlvZ2VlGeHh4cZLL73kcPxtt91m9OzZM9ey6667zhg5cqRT6yxuhe3LrFmzjMDAwGKqznyA8c0331xyzOOPP240aNAg17IBAwYYXbt2dWJl5ipIX3755RcDME6fPl0sNbmCEydOGIDx66+/5jumrLy3XKwgfSkt7y3as3KFVq9eTfny5WnevLl9WefOnbFaraxdu/aSj/3ss88ICgoiOjqaJ598ktTUVGeX6xTp6els2LCBzp0725dZrVY6d+7M6tWrHT5m9erVucYDdO3aNd/xJdGV9AXg3LlzREZGEhERQZ8+fdi+fXtxlOuyysJr5Wo0adKEsLAwunTpwu+//252OU6VlJQEQMWKFfMdUxZfLwXpC5SO9xaFlSt07NixPLtd3d3dqVix4iU/Ox44cCCffvopv/zyC08++SSffPIJgwYNcna5TpGQkEBWVhahoaG5loeGhubbg2PHjhVqfEl0JX2pU6cOH374IQsXLuTTTz/FZrPRunVrDh8+XBwlu6T8XivJycmcP3/epKrMFxYWxv/+9z/mz5/P/PnziYiIoEOHDmzcuNHs0pzCZrMxZswY2rRpQ3R0dL7jysJ7y8UK2pfS8t7ibnYBrmb8+PFMmTLlkmN27Nhxxeu/+JiWhg0bEhYWRqdOndi7dy81a9a84vVKydaqVStatWplv926dWvq1avHzJkzee6550ysTFxNnTp1qFOnjv1269at2bt3L6+//jqffPKJiZU5x6hRo9i2bRsrV640uxSXUtC+lJb3FoWVfxk7dixDhgy55JgaNWpQuXLlPAdLZmZmkpiYSOXKlQu8veuuuw6APXv2lLiwEhQUhJubG8ePH8+1/Pjx4/n2oHLlyoUaXxJdSV/+zcPDg6ZNm7Jnzx5nlFgi5PdaCQgIwMfHx6SqXFPLli1L5R/z0aNH2ycvVK1a9ZJjy8J7S47C9OXfSup7iz4G+pfg4GDq1q17yS9PT09atWrFmTNn2LBhg/2xy5Ytw2az2QNIQWzevBnI3rVb0nh6etKsWTOWLl1qX2az2Vi6dGmuJH+xVq1a5RoPEBsbm+/4kuhK+vJvWVlZbN26tUS+LopKWXitFJXNmzeXqteKYRiMHj2ab775hmXLllG9evXLPqYsvF6upC//VmLfW8w+wrck69atm9G0aVNj7dq1xsqVK41rrrnGuOOOO+z3Hz582KhTp46xdu1awzAMY8+ePcazzz5rrF+/3oiLizMWLlxo1KhRw2jXrp1ZT+GqffHFF4aXl5cxe/Zs46+//jLuvfdeo3z58saxY8cMwzCMu+66yxg/frx9/O+//264u7sbr776qrFjxw5j4sSJhoeHh7F161aznoJTFLYvkydPNhYvXmzs3bvX2LBhg3H77bcb3t7exvbt2816CkXu7NmzxqZNm4xNmzYZgDFt2jRj06ZNxoEDBwzDMIzx48cbd911l338vn37DF9fX2PcuHHGjh07jOnTpxtubm7GTz/9ZNZTcIrC9uX11183FixYYOzevdvYunWr8fDDDxtWq9VYsmSJWU+hyN1///1GYGCgsXz5cuPo0aP2r9TUVPuYsvjeciV9KS3vLQorV+HUqVPGHXfcYZQrV84ICAgwhg4dapw9e9Z+f1xcnAEYv/zyi2EYhnHw4EGjXbt2RsWKFQ0vLy+jVq1axrhx44ykpCSTnkHReOutt4xq1aoZnp6eRsuWLY01a9bY72vfvr0xePDgXOO//PJLo3bt2oanp6fRoEED4/vvvy/miotHYfoyZswY+9jQ0FCjR48exsaNG02o2nlyptz++yunD4MHDzbat2+f5zFNmjQxPD09jRo1ahizZs0q9rqdrbB9mTJlilGzZk3D29vbqFixotGhQwdj2bJl5hTvJI76AeT69y+L7y1X0pfS8t5iMQzDKLbdOCIiIiKFpGNWRERExKUprIiIiIhLU1gRERERl6awIiIiIi5NYUVERERcmsKKiIiIuDSFFREREXFpCisiIiLi0hRWRERExKUprIiIiIhLU1gRERERl/Z/dpYRpxIG8tgAAAAASUVORK5CYII=\n",
"text/plain": [
- "
"
+ "
"
]
},
- "metadata": {
- "needs_background": "light"
- },
+ "metadata": {},
"output_type": "display_data"
}
],
@@ -499,7 +486,7 @@
"\n",
"- `binary_representation` : encodes the problem $(M)$ into a QP terms (that's basically linear algebra);\n",
"- `construct_problem` : constructs a QUBO optimization problem as an instance of `QuadraticProgram`;\n",
- "- `solve_problem`: solves the problem $(M)$ constructed at the previous step via `MinimunEigenOptimizer` by using VQE with default parameters;"
+ "- `solve_problem`: solves the problem $(M)$ constructed at the previous step via `MinimunEigenOptimizer` by using `SamplingVQE` with default parameters;"
]
},
{
@@ -593,13 +580,7 @@
"\n",
" def solve_problem(self, qp):\n",
" algorithm_globals.random_seed = 10598\n",
- " quantum_instance = QuantumInstance(\n",
- " BasicAer.get_backend(\"qasm_simulator\"),\n",
- " seed_simulator=algorithm_globals.random_seed,\n",
- " seed_transpiler=algorithm_globals.random_seed,\n",
- " )\n",
- "\n",
- " vqe = VQE(quantum_instance=quantum_instance)\n",
+ " vqe = SamplingVQE(sampler=Sampler(), optimizer=SPSA(), ansatz=RealAmplitudes())\n",
" optimizer = MinimumEigenOptimizer(min_eigen_solver=vqe)\n",
" result = optimizer.solve(qp)\n",
" # compute cost of the obtained result\n",
@@ -730,30 +711,30 @@
{
"cell_type": "code",
"execution_count": 14,
- "metadata": {},
+ "metadata": {
+ "tags": [
+ "nbsphinx-thumbnail"
+ ]
+ },
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEICAYAAABRSj9aAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAAy80lEQVR4nO3deXhU5fn/8fc9k5UsQAgkCCGRrbIpGIooVEBcgEpxgYpFfqhFKqho9VuqdqEuFS222KpIpbVoXSJSUbHgylZQZN+Rfd+3AAkhmczcvz9mwAgJScgkZya5X9d1rszMOfOczxyGe84855lzRFUxxhhTfbmcDmCMMaZyWaE3xphqzgq9McZUc1bojTGmmrNCb4wx1ZwVemOMqeas0BtjTDVnhd4YY6o5K/Q1lIjcKSKrROSkiOwTkfEiUruK1j1bRIZWxboqg4hMEpGnK6ntV0VkvYj4ROTOs+YNDMw7JiIHROR1EUkMzIsWkX+KyHYROSEiy0Wk93nW01ZEPhWRQyJyzq8mReR+EVksIvkiMinYr9NULSv0NZCIPAI8B/wKqA10BjKAz0Qk0sFoBlYAI4ClxcybD3RR1dpAUyACOP2BEwHsBLrh/zf9LTBZRDJKWI8HmAz8vIT5ewJtv1b+l2BCjqraVIMmIBHIAX561uPxwEFgSOD+JODpIvO7A7uK3H8U2AycANYCNxeZdycwD3geOApsBXoH5v0R8AKnAjlewv8ho0BEkTZmA0OLtDcfGAdkA1uAqwKP7wQOnM5dwmtOAv6Fv3gdBT4oMu8eYBNwBPgIuCjwuATWdwA4DqwC2gLD8BfJgkD+aZX07zQPuPM88+OBN4Dp51lmJXBrKetp7i8DJc5/Gpjk9PvWpopNtkdf81wFxADvF31QVXOA6cD1ZWxnM/Aj/HuPTwBvikjDIvOvANYDycCfgH+KiKjqb4D/Aferaryq3l/G9V2Bv3DVA94GsoAf4i9UdwAviUh8Cc/9N1ALaAM0wF/AEZFrgDHAT4GGwPZAu+DfDlcDLQOv8afAYVV9FXgL+FMgf9/iVigiK0Uku4RpfBlfc3HtdhWRY/g/YG8FXihhuZRA9jUXui5TfVihr3mSgUOqWljMvL1A/bI0oqrvqeoeVfWp6rvARqBTkUW2q+pEVfUCr+MvpCkVyL1VVf8VaO9dIA14UlXzVfUz/HvYzc9+UuDDpzdwr6oeVVWPqs4JzB4EvKaqS1U1H3gMuDLQ3eEBEoBLAFHVdaq6t6xhVfVSVa1TwjTiQjeCqs5Tf9dNY2AssK2Y1xyJ/8PodVX99kLXZaoPK/Q1zyEgWUQiipnXMDC/VCLy/wIH/LJFJBt/t0ZykUX2nb6hqicDN0va4y6L/UVu5wXaPfux4tpPA46o6tFi5l2Efy/+dM4c4DDQSFVn4u9Wehk4EDhImliB/EGlqruBT/juGwgAIuLC/w2mACjrtyVTzVmhr3m+BvKBW4o+GOj26I2/bxwgF393x2mpRZZNBybiLyT1VLUOsBp/v3ZZnD3KIzfwt9j1VdBOIElE6hQzbw+QfvqOiMTh7xraDaCqf1PVTKA1/m6QXwUWLfXc3iKyRkRySpgmVOwlnREBNCuyTgH+if+b062q6gnSekyYs0Jfw6jqMfx96i+KSC8RiQx0VUzGvzf/VmDR5UAfEUkSkVTgoSLNxOEvdgcBROQu/Hv0ZbUf/6iR05kO4i+ud4iIW0TupkgBq4hAd8sMYLyI1A283qsDs98B7hKR9iISDTwDfKOq20TkhyJyRaAbJBf/wWNfcflLWG+bQB9+cdO9JT1PRKJEJAb/h2akiMQE9tIRkUEi0iRwOx3/ge0vizz9FaAV0FdV886XT/xigKjA/ZjANjg9PyIw3w24A/OL+xZowoAV+hpIVf8EPI5/VMwJ/KNiagHXqurpvet/4x/qtw34DH+/+OnnrwX+jP/bwX6gHf5RMWX1V6C/iBwVkb8FHrsH/x7zYfwHTb+6kNdWgsH4+9y/xT+K5iEAVf0C+B3wH/zHJ5oBAwPPScT/reUo/u6dw/j7xMG/19w60G31QRBzgn9b5+E/aP5q4PbpD6bWwFcikot/e6/Hv91OF/5fAO2BfUW+PQwKzG8SuN8k0FZ6oO3TB2vzAu2d9tvAY4/iP9idF3jMhCFRtStM1XSBPfIn8Y/R3uF0HmNMcFmhNwCIyGDAo6pZpS5sjAkrVuiNMaaasz56Y4wJdSKNEXkRka8ROYmIUvLpLc7hyFH05ORkzcjIqNJ15ubmEhcXV6XrDBbL7gzL7pxwzl8Z2TNbtuSZLVtYUlhYcL1/CHRZf8Hu58R5FzIzM7WqzZo1q8rXGSyW3RmW3TnhnL9Ssnu9qqoKLFYYqqAKGWrnujHGGOcVen0cP+XB66vA8VBXxUq1/QDCGGOCLL/Qy/RVe3ll9mY2HsghwiUU+pSWDeK5t3sz+rRrSHSEu8ryWKE3xpggyvN4ueKPX+Lx+sgt8ALg8fr35tfvz+G3U1fzxEdref3uTlyWVqdKMlnXjTHGBMmKndlsOZhLdp7nTJE/W26Bl+w8DwNfXcCKndlVkssKvTHGBEF+oZchry3EV8bfJuV5/MvnFxb/gRBMFS70gZMdLRSRFYEz9j0RjGDGGBNOpq/ai8frK33BIjxeHzNW7St9wQoKxh59PnCNql6G/4RKvUSkcxDaNcaYsPHK7M0ldteUJLfAyyuzN1VSou9UuNAHRnnmBO5GBiY7r4Ixpsbw+pSNB3KKnecrLCB//5YSn7vhQE7Zhl5OmcKdUBfIDDzSG5H+iHQr7alBOdeNiLiBJfgv5fayqv66mGWG4b+wMikpKZlZWVV77qycnBzi4ytygSPnWHZnWHbnhFt+nypr955AVUmJhf15oN5CfHnH8eYcASAq9ZwrXQIgIrRumIBLzn/dnu49epQ0aw6q3c/33KCe1CxwFZ+pwAOqurqk5Tp27KiLFy8O2nrLYvbs2XTv3r1K1xkslt0Zlt054Zbf61Oa/2Y6Pp/yyCU5PPbcS+RtW47m+y/v4K6dQoNbf0dU/YxznisCm/7YB7er9Au0icgSVe1Y3nxBHXWjqtnALKBXMNs1xphQlptzguj1n7H3n/dRePwg0Wlt0Xz/pZIv+vkrxDRqRcHeDcU+t2WD+DIV+YoIxqib+qevxykiscB1+K/kY4wx1dqaNWsYOuxeGjZuwv4Ny0i6/l4ik5uQPed1QGl414tEJqcR1bAF+Xs3nvP8uCg3w7sX36UTTMH4ZWxD4PVAP70LmKyqHwehXWOMCTkej4cPPviA5/7yV75dv4HoNtdRd/BfiUhIBqDgwEbUc4rUIS8Q1eBiAKJSW5K7ZvY5bUW6XfRul1rpmStc6FV1JdAhCFmMMSZk7dmzh/GvTGD8319Faqfiat2Lel1/hbi/K6O7J/wcfvcrUu94nugiB1+jUi7Gc3gHWuhBIiIBiI108/rdnarknDd2rhtjjCmBqjJ37lzGjvsbX37xBXGtfkRM3+IPqu755wgKj+0nMqkR0Y0SvjfPFRlDRJ2GFBzcSlJ6KyLdrio9140VemOMOcuJEyd44403eP6FFzmam4+77Q3Uv2cirujiLyiy941f4jm0gwa3PY1ExRa7THTDltTN3ckfb/4pvdul2tkrjTHGKZ988im39O9PXm4Osc07UatDF1y1EvEc3oUrNgFXbCKu6FqI+Mey7Hv7UQr2bqTBgCeIzWgPFBbbblRqcy6LOcxNHRpV3YsJsEJvjDFFtGnTmuf/9ByHDh1i74FD7Nu/hwOHVnL48GGOHjnCiewj5OflEROfyMnjRwGo3eQSdMvXHN+5Em/TGzmxYinu0x8KsYm4YxOIatCUBd/8w5HXZIXeGGOKSEtLY8SIEeddxuPxkJKaykngjjvu4NZbb+XQoUMcPnyY5FoRXJ98jP0HNnFoh//D4djRo+Qez6ZBw4tQVaSUX8EGmxV6Y4wpp+YtWnD0yBFGjBjByy+//L15s2fP5p1/v37Oc3w+Hx6Pp8qLPNj56I0xplxatmzJju3bueuuu84p8ufjcrmIjo6uxGTnWbcjazXGmDDUrl07Nm7cyMCBA3nttdecjlNmVuiNMaYMOnbsyOrVq7npppt45513nI5TLlbojTGmFF26dGXJkiXccEMvpk6d6nSccrNCb4wx59Gz57V89dV8unXrziefzHA6zgWxQm+MMSX48Y9vZObML+ncuTOzZ89yOs4Fs0JvjDHFGDBgANOn/5f2HTrw9ddfOx2nQqzQG2PMWQYPHsyUKVNo1aoVy5YudTpOhVmhN8aYIoYNG8abb75Js2bNWLt2rdNxgsIKvTHGBIwcOZKJEyfSOC2NTZs2OR0naKzQG2MMMGrUKF588UVSUlLZuWOH03GCKhjXjE0TkVkislZE1ojIg8EIZowxVWX06NGMHTuWunWT2Ldvr9Nxgi4YJzUrBB5R1aUikgAsEZHPVbV6dG4ZY6q1MWPG8OSTT5KQkMiRI4edjlMpKrxHr6p7VXVp4PYJYB1Q9WfWN8aYcnrhhRd4/PHHiYmN5fjxY07HqTSiqsFrTCQDmAu0VdXjZ80bBgwDSElJyczKygraessiJyeH+Pj4Kl1nsFh2Z1h251RF/oMHD7Jjxw5EhMsvvzxo7VZm9h49eixR1Y7lfqKqBmUC4oElwC2lLZuZmalVbdasWVW+zmCx7M6w7M6p7PyvvfaaAup2u4PedmVmBxbrBdTnoIy6EZFI4D/AW6r6fjDaNMaYypCVlcXdd9+NiFBYWPz1XaubYIy6EeCfwDpV/UvFIxljTOWYOnUqt99+O0CNKfIQnHH0XYDBwDUisjww9QlCu8YYEzQzZszglltuAcDr9eJy1ZyfEVV4eKWqzgOq/iKIxhhTRjNnzqRPH//+Z00r8mC/jDXGVHPz58+nZ8+eQM0s8mCF3hhTjS1atIiuXbsC4PF4amSRByv0xphqauXKlXTq1AmA/Px8IiKCcSKA8GSF3hhT7axbt47LLrsMgLy8PKKiohxO5Cwr9MaYamXz5s20bt0agNzcXGJiYhxO5Dwr9MaYamPHjh00b94cgGPHjlGrVi2HE4UGK/TGmGphz549pKenA3D06FESExMdThQ6rNAbY8LegQMHaNTIf9LcgwcPUqdOHWcDhRgr9MaYsHb06FFSUlIA2Lt3L8nJyQ4nCj1W6I0xYev48eMkJSUBsH37dlJTUx1OFJqs0BtjwtLJkyepXbs2AJs2baJJkyYOJwpdVuiNMWHn1KlTxMXFAf4x882aNXM4UWizQm+MCSsFBQXExsYCsGLFCi655BKHE4U+K/TGmLBRWFhIdHQ04D+PzaWXXupwovBghd4YExZ8Ph+RkZEAzJs3j44dy3/p1JrKCr0xJuT5fD7cbjcAX375JV26dHE4UXixQm+MCWlFi/z06dO55pprHE4UfoJ1cfDXROSAiKwORnvGGAPfL/JTp06ld+/eDicKT8Hao58E9ApSW8YYA3DmHPJZWVncdNNNzoYJY0Ep9Ko6FzgSjLaMMQbAHRGBqjJp0iRuu+02p+OENVHV4DQkkgF8rKptS5g/DBgGkJKSkpmVlRWU9ZZVTk4O8fHxVbrOYLHszrDsztm/fz+7du0iPT097M5dU5nbvkePHktUtdzDjars2lqq+irwKkDHjh21e/fuVbVqAGbPnk1VrzNYLLszLLszYmNr8fTTT+F2u+nfv7/TccotFLd9zb2IojEm5CQkJHLqVB6NGjVi4MCBTsepNmx4pTEmJCQl1SMn5wSjR4+2s1AGWbCGV74DfA38QER2icjPg9GuMaZmSElJ4ejRI4waNYo//OEPTsepdoLSdaOqtwejHWNMzdM4LY0DBw4wcuRInnvuOafjVEvWdWOMcUyzZs3ZvWsX99xzD3/961+djlNtWaE3xjiiVevWbNmymcGDB/Pqq686Hadas0JvjKly7Tt04Nt16xgwYABvvPGG03GqPSv0xpgqdUXnzqxYvpwf//hGJk+e7HScGsEKvTGmynTv3p2F33xDz57X8vHH05yOU2NYoTfGVIkbbujFnDlz6NKlK1988bnTcWoUK/TGmEp3000389lnn9KxY0fmzfuf03FqHCv0xphKdfvtt/Phhx/Qrl07Fi1a5HScGskKvTGm0tx1111kZWXRsmVLVq5c6XScGssKvTGmUgwfPpxJkyaRnpHB+vXrnY5To1mhN8YE3cMPP8yECRNoeNFFbNu61ek4NZ4VemNMUD3++OOMGzeO5ORk9uze7XQcgxV6Y0wQPfnkk4wZM4batetw8OBBp+OYACv0xpigGDt2LKNHj6ZWXBzZ2UedjmOKsEJvjKmwl156iVGjRhEdHUNuTo7TccxZrNAbYyrkH//4Bw888AARERGcOpXndBxTDCv0xpgL9uabb3LPPffgcrnweDxOxzElCNalBHuJyHoR2SQijwajTWNMaJsyZQqDBw8GsCIf4ipc6EXEDbwM9AZaA7eLSOuKtmuMCV0fffQRAwYMAMDr9eJyWedAKAvGv04nYJOqblHVAiAL6BeEdo0xIejTTz+lXz//f3Er8uFBVLViDYj0B3qp6tDA/cHAFap6/1nLDQOGAaSkpGRmZWVVaL3llZOTQ3x8fJWuM1gsuzMse/Htnj6dQWZmZtDbL7oe2/bn6tGjxxJV7VjuJ6pqhSagP/CPIvcHAy+d7zmZmZla1WbNmlXl6wwWy+4My/59X331lQIKqMfjCXr7Rdm2Lx6wWC+gTgfjO9duIK3I/caBx4wx1cTSpUu56qqrAP+B14iICIcTmfIIRqFfBLQQkYtFJAoYCHwUhHaNMSFg9erVZ7pp8vPzrciHoQr/i6lqoYjcD3wKuIHXVHVNhZMZYxy3ceNG2rVrB0BeXh5RUVEOJzIXIigfzao6HZgejLaMMaFh69attGzZEoATJ04QExPjcCJzoWxclDHmHLt27aJp06YAHDt2LGxHwBg/K/TGmO/Zt28faWn+8RWHDx8mMTHR4USmoqzQG2POOHLkCA0bNgRg//79JCUlOZzIBIMVemMMANnZ2dSrVw+AnTt30qBBA4cTmWCxQm+MIScnh7p16wKwbds2Gjdu7HAiE0xW6I2p4U6ePElCQgIAGzZsID093eFEJtis0BtTgxUUFBAXFwf4fxjVokULhxOZymCF3pgaqqCggOjoaACWLVtGmzZtHE5kKosVemNqoMLCwjNFfsGCBbRv397ZQKZSWaE3pobx+XxERkYCMGfOHK644gqHE5nKZoXemBrE5/PhdrsB+Oyzz7j66qsdTmSqghV6Y2qIokV+2rRpXHfddQ4nMlXFCr0xNUDRIv/ee+9x4403OpzIVCUr9MbUABGBPvl///vf9O/f3+E0pqpZoTemmouMjER9PiZOnMgdd9zhdBzjACv0xlRj0TExFBYW8uKLLzJ06FCn4xiHWKE3ppqKi4+nID+f559/nvvvv9/pOMZBFSr0IjJARNaIiE9EOgYrlDGmYpYvX87J3FyeeuopHnnkEafjGIdVdI9+NXALMDcIWYwxQZCcXB+v18vjjz/Ob3/7W6fjmBBQoWvGquo6ABEJThpjTIU0vOgiDh8+REpKiu3JmzOsj96YaiI9I4N9e/cyYsQIO5+8+R5R1fMvIPIFkFrMrN+o6oeBZWYD/6eqi8/TzjBgGEBKSkpmVlbWhWa+IDk5OWF7gWPL7oxwyr569Wry8/NJTk4mPT09rLIXJ5zzV2b2Hj16LFHV8h8PVdUKT8BsoGNZl8/MzNSqNmvWrCpfZ7BYdmeES/a2bdsqoLfffvuZx8Ile0nCOX9lZgcW6wXUaOu6MSaMdezYkdWrV3PzzTfz9ttvOx3HhKiKDq+8WUR2AVcC/xWRT4MTyxhTmi5durJkyRJuuKEX77//vtNxTAir6KibqcDUIGUxxpRRz57X8tVX8+nevTuffDLD6TgmxFnXjTFh5sc/vpGZM7+kc+crmTVrltNxTBiwQm9MGBkwYADTp/+X9u3b8/XXXzkdx4QJK/TGhInBgwczZcoUWrVuzbJly5yOY8KIFXpjwsCwYcN48803adqsGWvXrHE6jgkzVuiNCXEjR45k4sSJpKU1YfOmTU7HMWHICr0xIWzUqFG8+OKLpKSksmPHdqfjmDBlhd6YEDV69GjGjh1L3aQk9u3b63QcE8as0BsTgsaMGcOTTz5JfEICRw4fdjqOCXNW6I0JMS+88AKPP/44sbGxnDh+3Ok4phqwQm9MCHnllVf45S9/SWRUFCdPnnQ6jqkmrNAbEyL+9a9/MWLECNxuNwX5+U7HMdWIFXpjQkBWVhZ33303IkJhYaHTcUw1Y4XeGIdNnTqV22+/HcCKvKkUVuiNcdCMGTO45ZZbAPB6vbhc9l/SBJ+9q4xxyMyZM+nTpw9gRd5ULntnGeOA+fPn07NnT8CKvKl89u4ypootWrSIrl27AuDxeKzIm0pn7zBjqtDKlSvp1KkTAPn5+UREVOgib8aUSUWvGTtWRL4VkZUiMlVE6gQplzHVzrp167jssssAyMvLIyoqyuFEpqao6B7950BbVb0U2AA8VvFIxlQ/mzdvpnXr1gDk5uYSExPjcCJTk1So0KvqZ6p6euDvAqBxxSMZU73s2LGD5s2bA3Ds2DFq1arlcCJT04iqBqchkWnAu6r6ZgnzhwHDAFJSUjKzsrKCst6yysnJIT4+vkrXGSyW3RnByO7xeFi5ciUA7du3x+12ByNaqcJ5u0N456/M7D169Fiiqh3L/URVPe8EfAGsLmbqV2SZ3wBTCXxwlDZlZmZqVZs1a1aVrzNYLLszKpp9//79CiigBw8eDE6oMgrn7a4a3vkrMzuwWMtQY8+eSj3kr6rXnm++iNwJ3Aj0DAQxpsbLzs4mJSUFgL1795KcnOxwIlOTVWhsl4j0AkYB3VTVzqlqDHD8+HHq1q0LwPbt20lNTXU4kanpKjrq5iUgAfhcRJaLyIQgZDImbJ08eZLatWsDsGnTJpo0aeJwImMquEevqs2DFcSYcHfq1Cni4uIA+Pbbb2nWrJnDiYzxs1/GGhMEBQUFxMbGArBixQp+8IMfOJzImO9YoTemggoLC4mOjgb857G59NJLHU5kzPfVrEI/ZQrceiukp0NsLPzgB/DYY3DihNPJTJjy+XxERkYCMG/ePDp2LP8QZ2MqW80q9M8/D243PPMMfPIJDB8Or7wC110HPp/T6UyY8fl8Z34A9eWXX9KlSxeHExlTvJp16rxp06B+/e/ud+sGSUkwZAjMng3XXONYNBNeihb56dOnc429d0wIC6s9+kKvj+OnPHh9F/i7rKJF/rQf/tD/d/fuCw9mapSiRX7q1Kn07t3b4UTGnF/I79HnF3qZvmovr8zezMYDOUS4hEKf0rJBPPd2b0afdg2JjqjA+UPmzPH/bdUqOIFNtXf6HPJZWVncdNNNzoYxpgxCutAv35nNna8txOP1kVvgBcDj9e/Nr9+fw2+nruaJj9by+t2duCytTvlXsHs3/P73cO21YAfRTBm4IyJQVSZNmsRtt93mdBxjyiRku25W7Mzm9lcXkJ3nOVPkz5Zb4CU7z8PAVxewYmd2+VaQkwP9+kFEBPzrXxUPbKq9qKgofF4vEyZMYMiQIU7HMabMQrLQ5xd6GfLaQvI8xRf4s+V5/MvnF5ZtefLyoG9f2LIFPv0UGttp9M35xcbWwuPxMG7cOH7xi184HceYcgnJQj991V483vINd/R4fcxYta8MC3qgf39YvBimT4d27S4wpakpEhISOXUqjzFjxvDQQw85HceYcgvJQv/K7M0ldteUJLfAyyuzN51/IZ8PBg2CmTPhgw+gc+cLD2lqhKSkeuTknGD06NE8+uijTscx5oKE3MFYr0/ZeCCn2Hk+TwE7/3ILEfXSqH3VQGKatCMiPunM/A0HcvD6FLdLim/8vvvgvffgN7+BuDhYsOC7eY0bWxeO+Z4VK1Zw9OgRRo0axR/+8Aen4xhzwUKu0OcWFBLhkjOja77H5cIVn0Th4Z0cnjYWxH8/Nq0t0Y1aEdekNcfz8qkbV8KFl2fM8P/94x/9U1GjR4P9ZzYBjdPS+OVDDzFy5Eiee+45p+MYUyEhV+jjoiIoLOEHUS53BI2GTmDf24/ijqvLqa1L8J04RO7a2XhP5XB8yTQuynqM9pd35Loe3fhR1y507tyZhIQEfwPbtlXdCzFhq1mz5uzetYvk5GQeeeQRp+MYU2Eh10fvdgktGpR8YV1XdC0a9B+N5/AOkvv+HykDnwHg1JbFFB7ZRUzmrWyq35WXPl/Lz4b/iuQGqTRv1Y7t23fw9ttvs337duyKh6YkrVq3ZsuWzQwePJj09HSn4xgTFCFX6AGGd29GXFTJv3aNSKhHg/6jOfLlRHC5SP/1xzQa/i/cCclkz32dQ+8/Tf6xA9S66Q+k3v8WuR3v5Gi+8tCzE2h9WSb1UhrSp98tjBs3jkWLFuHxeKrw1ZlQ1b5DB75dt44BAwbwxhtvOB3HmKCp6DVjnwL6AT7gAHCnqu6paKg+7RryxEdrgZJH3kTVzyC57684+MGzpP5sDJH10mg8YhJaWMCh/47j5No57Fg7h4jaKaQM+hPuuNrU6vNrYlUpzN7Hwt3rWPj2F/j+Mp6Th/bQ5rIOXNv9R1z9o65ceeWVJCUllbhuU/1c0bkzK5Yv58c/vpHJkyc7HceYoKroHv1YVb1UVdsDHwO/r3gkiI5w8/rdnYiNPP85bGIz2lO3+50ceO8PeHOPAiARUdTv92uajJpG3Z73UHhsP7vHD6Fg3yZO7VyNiBBZtyHxba8hvucIEge9QINfvMauJtczcd427nx4NA0bp9GkWUvuuPNuJk2aZHv81Vz37t1Z+M03XHvttXz88TSn4xgTdBW9ZuzxInfjgKB1fl+WVoesYZ0Zcta5boqKi3JTp1Nv+jWN4P1pz5Bw61O4Iv0jbkSExI79SOzYj1M7VwOw/23/OOi619xDQsefIOIfhilRsUTUSUUL8/G43CRG1WLP+oW88+83WPD11/Tv3//MxSVM9XLDDb2YM2cOXbt25fPPP3c6jjGVQip6YFJE/gj8P+AY0ENVD5aw3DBgGEBKSkpmVlZWmdpX4Fieh4Mn8jnl8SIiqCoxkW7qJ0RTOzYSAbZs3cqJkwW46qQW205KLOzLKcRzZBd4C0+nwh0Vhc/jwR0RQWxsDLVq1aJWbCyxsbHExMSc+TBwUk5ODvHxJR+gDmWhnH3z5s1kZ2dTKy6OVpdccs78UM5emnDODuGdvzKz9+jRY4mqlv8MjKp63gn4AlhdzNTvrOUeA54orT1VJTMzUy9Eodenx/IKtNDrO2defn6+du7aTet16qfpv/5YGz+YpSk/e1aTrh+h9X54o77w4ssaE5+oiXWT9fLOXTStSRPF/zmiIqILFiy4oExVYdasWU5HuGChmn3gwIEKaLt27UpcJlSzl0U4Z1cN7/yVmR1YrGWosWdPpXbdqOq1ZfzMeAuYDowu30dN2bldQmJM8V0oUVFRzJj2AZd3upL9E4bg8+TTrOUP6ND+Mjr2uZam6Wls37yRBg0anHmOz+dj4MCBvPfee3QOnA7hz3/+Mw8//HBlvQQTAu666y6ysrJo2bIlK1eudDqOMZWuQgdjRaRFkbv9gG8rFqdi6tSpw4olC1mzfDEnc46zetli/v2vf/Lggw+SkJDwvSIP4HK5mDx5MqrKK6+8AsAjjzyCiHDjjTfis+vIVjvDhw9n0qRJpGdksH79eqfjGFMlKjrq5lkRWS0iK4HrgQeDkKlCEhISyMjIKHff+r333ouqsmzZMiIjI/nvf/+L2+3moosu4siRI5WU1lSlhx9+mAkTJtDwoovYtnWr03GMqTIVKvSqequqtlX/EMu+qhr2F15t3749BQUFnDhxgmbNmrF3717q1auH2+1m/vz5TsczF+jxxx9n3LhxJCcns8euD2xqmJD8ZWwoiI+PZ9OmTagqP/vZz/D5fHTt2hUR4dlnn3U6nimHJ598kjFjxlC7dh0OHix2UJgx1ZoV+jJ46623UFUmTpwIwGOPPYaI0KtXL+vHD3Fjx45l9OjRxMXFkZ191Ok4xjjCCn05DB06FFVl1apVREVF8+mnn+J2u0lJTeXQoUNOxzNneemllxg1ahTR0THk5BR/jQNjagIr9Begbdu25OefIjc3l5YtW3Jg/37q16+Py+Vi7ty5TsczwD/+8Q8eeOABIiIiOXUqz+k4xjjKCn0F1KpVi/Xr16OqDBkyBFWlW7duiAhPP/200/FqrDfffJN77rkHl8uFx1PgdBxjHGeFPkgmTZqEqjJp0iQAfve73yEi9OzZ0/rxq9CUKVMYPHgwgJ2MzpgAK/RBdnrPfu3atcTExDBz5kzcbjf169fnwIEDTser1j766CMGDBgAgNfrxeWyt7cxYIW+0rRq1Yq8vDzy8vJo3bo1hw4dIiUlBRHhyy+/dDpetfPpp5/Sr18/wIq8MWez/w2VLCYmhjVr1qCqDB06FIBrr70WEeH3vw/K6ftrvLlz59KrVy/AirwxxbH/EVVo4sSJqCpvvvkmAE899RQiQrdu3awf/wJ9/fXXdOvWDfD3yVuRN+Zc9r/CAYMGDUJV2bBhA7G1ajF37lzcbjdJ9eqxd+9ep+OFjaVLl3LVVVcB/iIfEVGh6+gYU21ZoXdQixYtOJmbS35+Pu3atePokSNcdNFFiAiffPKJ0/FC2urVq8nMzAQgPz/firwx52GFPgRERUWxcuVKVJXhw4cD0Lt3b0SExx57zOF0oWfjxo20a9cOgLy8PKKiohxOZExos0IfYsaPH4+q8u677wLw7LPPsmTJEq666ioKCwtLeXb1t3XrVlq2bAnAiRMniImJcTiRMaHPCn2I+ulPf4qqsnnzZlwuF19//TWRkZHUqVOHXbt2OR3PEbt27aJp06YAHDt2LGyvKWpMVbNCH+KaNm1Khw4dyM/Pp0OHDhw7doy0tDREhI8//tjpeFVm3759pKWlAXD48GESExMdTmRM+LBCHyaioqJYunQpqsrIkSMB6Nu3LyLCr371K4fTVa4jR47QsGFDAPbv309SUpLDiYwJL0Ep9CLyiIioiCQHoz1zfn/9619RVd5//30Ann/+eUSETp06Vbt+/OzsbOrVqwfAzp07z7nurzGmdBUu9CKShv96sTsqHseUx80334yqsm3bNhISEli0aBGRkZEkJiayfft2p+NVWE5ODnXr1gVg27ZtNG7c2OFExoSnYOzRjwNGARqEtswFSE9P5/jx43g8Hjp16sSJEyfOXCB96tSpTse7ICdPniQhIQGADRs2kJ6e7nAiY8KXqF54fRaRfsA1qvqgiGwDOqpqsZdaEpFhwDCAlJSUzKysrAte74XIyckJ21EaF5J9165d7N+//8z9Bg0anDmYWZUuJLuqsnTpUgDatGnj2BDKmvaeCSXhnL8ys/fo0WOJqnYs9xNV9bwT8AWwupipH/ANUDuw3DYgubT2VJXMzEytarNmzarydQZLRbJ/+OGHiv/blgLaoUMHzc/PD164UpQ3e35+/pmsy5Ytq5RMZVVT3zOhIJzzV2Z2YLGWocaePZXadaOq16pq27MnYAtwMbAisDffGFgqIqnl/rQxleYnP/kJqsrOnTupXacOy5YtIzo6mvj4eLZs2eJ0vO8pLCwkOjoagAULFtC+fXtnAxlTTVxwH72qrlLVBqqaoaoZwC7gclXdF7R0JmgaN25M9tGjeDwerrrqKnJzc2nWrBkiwuTJk52Oh8/nIzIyEoA5c+ZwxRVXOJzImOrDxtHXMBEREcyfPx9V5dFHHwXgtttuQ0S47777Sn1+QUEBq1at4p133uHXjz7GmGf/dLqL73vGT/g7KY2asGbtWq7q3pOb+t/GvSMe4IknnuDll18mKyuLL774gmXLlrF9+3bcbjcAn332GVdfffX3G9u5E/r3h9q1ITERbrkFdtggL2PKKmin/Avs1ZswMmbMGMaMGcOMGTPo06cP48ePZ/z48bRr146FCxeye/duVq9ezcpVq/hmyXJWr17Nnh3biKuXSmRyOoW10/BunUKht5Df/ebx77V9MucE+XWb4nLF8evN+xgZ24YT60+hK9YR4cnFVZCDnsrBe/IY2Qe+OzXzbYMGU7tOEvWS61G/XjKNk+owZtqHEB3NqjvvJCExkbbvvktMjx6wciXExVX1ZjMm7Ni5XWs4VaV9+/Z89tlnzJ49m2eeeYZVq1YRGxtLRK3a1Em/BG+dNFxJ6UR17UbDeo2RiO/OFll46fX8adyvaZqRwaBBPzvzeKdOnYgYP4m0Deu5cddapnW6lS8uK747JiHw1+c5hS/vBPl5J9iZd5zteSdo/8086h7N5oq23Vkx8TUK83K47couZC1cAH//Ozz8cGVuHmOqBSv0NcyiRYtYunQpi5ctZ8nylWz8dh1er4+4hk3ROmkk3XAfkcnpRNZrjDu29PPJRCTUI6Hfb/nFfQ+Qltb4TLdLhw4dOL5nC80WLUCBGzZ8xRctzt/v7oqMwRUZA4n1zzz24yUfsTghiW93riQzM5NfP/wgffv2hZ494cMPrdAbUwZW6GuYYcNHsHzJYhAh5uLLSeh5H7FNMxF35AW3GVU/g7heD9P3pltY+PV8Mpo154tNx4hIrE/GskUI0HPzQlAFkVLbU1VObV+Bd/UMWuz5lvWtWrP4P1O45JJLvluoTRt4770LzmxMTWKFvoZZumgh27dvZ/78+cyc8z9mz53Krul/IbFxC7wNWhLR8BKiG7Uq0958UbEZ7fFdeQddr7meBj8bC7GJtKmdSsQx/4+2YgoLaH54J5uSm5TYhu9UDrmrv8S75lPqJcbxfw+NpMGDC0npeyMULfIASUlw9Gi5X78xNZEV+hpGRMjIyCAjI4NBgwYBcPz4cb755hvm/m8en8+aw4oZ44ipk0xE6iVoSkuiG7UiIqkxUsreeFy768jO3s+mt35Hyu3PcCuC+LwAuHw+emxeVGyhLziwlYKVM8hdP4/rr7+e/5v8Jl27dvWv78GRwd8IxtQwVugNiYmJXHfddVx33XU8BXi9XlatWsW8efP4Yvb/+Oq/73M0J4f4Jq3xJLcgulErolJb4IqMPqet2l0HUXhsP4emPc8tR3YTETibZozXw43fzmPiFbcCoF4PJ9d/hW/NJ5BzkPuH38vwj/9JaupZv7erW7f4PfcjR/zzjDGlskJvzuF2u2nfvj3t27fn/vvvB2D37t189dVXzJrzP2bNfZct//mWKe4I+p48UWI7+Wd9A7jk4Fa2PXdj8Qs/8QdYtRL+85/vP96mDaxZc+7ya9dC69bleVnG1Fj2gylTJo0aNWLAgAGMf+lvrFu5lKNHDtHg7+PZl9qQPJe72OdEn/VDqmhvCefKj4uDDh3g2WfPnfeTn8CCBVD0dA3btsH8+f55xphSWaE3F6RWrVpccccdpO7aSfRzz5IXEUVhGUbUFFUoLvIiovE98QQsXgwtWpy70D33QEYG9OvnH0750Uf+22lp8ItfBOfFGFPNWaE3FeN2k3P/g/Qd+hLr61/MyWL67YtzMjKab+tn0Hfoi+TcNxJcJbwV4+Jg5kxo2RIGD4ZBg+Dii/2PhelpbI2patZHbyosLiqCzXUuou+QcQxfMIUHvsoixuspcflT7khe7vxTxl85AFwu4qJKeRs2aXJu370xpsxsj95UmNsltGgQj8/lZkP9dDyl/PjK445kff0MVFy0bBCP21W+Lh9jTPlYoTdBMbx7M+Ki3Nyw4SviCvLOu2xcQZ5/uSg3w7s3r6KExtRcVuhNUPRp15BIl9Bz0yJcRS4f7BNX4EDtd281F0rPzQuJdAm929l1aoypbFboTVBER7jJ6ppItLfgzGMnI6M51CSde275Hd/Wz/jegdqYwgKyflSb6Ijih2YaY4LHCr0JmkuWzSNGwBsYNvnnrnfw7lN/Zt7FHfjJkHH8pesg8iKi8YqLGJd/eWNM5bNCb4Jn8mRchR7kskuZN+Vz5vUdDC4XkW5B3W7+13cI86Z8jlzaDpfHAyFwCUNjagIbXmmCJzUVxo7F9dBDXOdycR0we/ZsltzahbioiO9G19y4BF54AWbPdjCsMTWHFXoTPNOmFftwYsxZwy3dbnjkEf9kjKl0UtyFnSt9pSIHge1VvNpk4FAVrzNYLLszLLtzwjl/ZWZPV9X6pS/2fY4UeieIyGJV7eh0jgth2Z1h2Z0TzvlDMbsdjDXGmGrOCr0xxlRzNanQv+p0gAqw7M6w7M4J5/whl73G9NEbY0xNVZP26I0xpkayQm+MMdVctS30IpIkIp+LyMbA37olLOcVkeWB6aOqznlWll4isl5ENonIo8XMjxaRdwPzvxGRDAdiFqsM2e8UkYNFtvVQJ3KeTUReE5EDIrK6hPkiIn8LvK6VInJ5VWc8nzLk7y4ix4ps999XdcbiiEiaiMwSkbUiskZEHixmmZDd9mXMHzrbXlWr5QT8CXg0cPtR4LkSlstxOmsghxvYDDQFooAVQOuzlhkBTAjcHgi863TucmS/E3jJ6azFZL8auBxYXcL8PsAMQIDOwDdOZy5n/u7Ax07nLCZXQ+DywO0EYEMx75mQ3fZlzB8y277a7tED/YDXA7dfB25yLkqZdAI2qeoWVS0AsvC/hqKKvqYpQE+Rcl6Ru3KUJXtIUtW5wJHzLNIPeEP9FgB1RKRh1aQrXRnyhyRV3auqSwO3TwDrgEZnLRay276M+UNGdS70Kaq6N3B7H5BSwnIxIrJYRBaIyE1VE61YjYCdRe7v4tw3zpllVLUQOAbUq5J051eW7AC3Br6CTxGRtKqJVmFlfW2h7EoRWSEiM0SkjdNhzhboguwAfHPWrLDY9ufJDyGy7cP6pGYi8gVQ3CWKflP0jqqqiJQ0jjRdVXeLSFNgpoisUtXNwc5qmAa8o6r5IvIL/N9MrnE4U02wFP97PEdE+gAfAC2cjfQdEYkH/gM8pKrHnc5TXqXkD5ltH9Z79Kp6raq2LWb6ENh/+mte4O+BEtrYHfi7BZiN/5PZCbuBonu5jQOPFbuMiEQAtYHDVZLu/ErNrqqHVTU/cPcfQGYVZauosvy7hCxVPa6qOYHb04FIEUl2OBYAIhKJv0i+parvF7NISG/70vKH0rYP60Jfio+AIYHbQ4APz15AROqKSHTgdjLQBVhbZQm/bxHQQkQuFpEo/Adbzx4FVPQ19QdmauCoj8NKzX5W3+pP8PdphoOPgP8XGAHSGThWpEsw5IlI6unjOCLSCf//ecd3DgKZ/gmsU9W/lLBYyG77suQPpW0f1l03pXgWmCwiP8d/SuSfAohIR+BeVR0KtAL+LiI+/P8Iz6qqI4VeVQtF5H7gU/yjWF5T1TUi8iSwWFU/wv/G+reIbMJ/AG6gE1nPVsbsI0XkJ0Ah/ux3Oha4CBF5B//oiGQR2QWMBiIBVHUCMB3/6I9NwEngLmeSFq8M+fsDw0WkEMgDBobIzkEXYDCwSkSWBx57HGgCYbHty5I/ZLa9nQLBGGOquercdWOMMQYr9MYYU+1ZoTfGmGrOCr0xxlRzVuiNMaaas0JvjDHVnBV6Y4yp5v4/NpxIcD13dLwAAAAASUVORK5CYII=\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAisAAAGzCAYAAADuc1ebAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABdwklEQVR4nO3deVwV9f7H8dccdhBwYVEUwSVXMs0tNdNyLTPtppVmqWmrWZZl1q3U22KW126LWba4VJaZlWWWoqZmau65pJa74oKoLIKynfn9QZyfxEFBOcwB3s/Hgwcw53tmPufjAd/MzHfGME3TRERERMRN2awuQERERORCFFZERETErSmsiIiIiFtTWBERERG3prAiIiIibk1hRURERNyawoqIiIi4NYUVERERcWsKKyIiIuLWFFZERETErSmsSLm1fft2BgwYQPXq1fHx8SEiIoIBAwbwxx9/WF1aHn/88Qdjx45l//79VpdiuXfffZfp06dbsu1FixYxZMgQYmJi8PDwIDo62um4I0eOMGDAAOrXr09gYCAVK1akVatWzJgxg3/e3eTrr7/mjjvuoHbt2vj7+1O/fn1GjhxJYmJioWpau3YtDz/8MM2bN8fLywvDMAocO2XKFPr27UvNmjUxDINBgwYV8pWLWE9hRcqlr7/+mquvvpolS5YwePBg3n33XYYMGcLSpUu5+uqrmTdvntUlOvzxxx+MGzdOYQVrw8qsWbOYNWsWwcHBREREFDguISGBw4cP06dPHyZOnMhLL71EtWrVGDRoEP/+97/zjL3//vvZsWMHAwYM4K233qJ79+688847tGnThrNnz160pgULFvDhhx9iGAa1a9e+4NgJEyawdOlSGjdujKenZ+FetIi7MEXKmd27d5v+/v5mgwYNzPj4+DyPnThxwmzQoIFZoUIFc+/evRZVmNecOXNMwPz555+tLsVyjRs3Njt06GDJtuPi4syMjAzTNE2zR48eZlRUVJGef/PNN5sBAQFmVlaWY5mzf9MZM2aYgPnBBx9cdJ3Hjh0z09LSTNM0zWHDhpkX+pW+f/9+0263m6ZpmgEBAebAgQOLVL+IlbRnRcqd119/nbS0NKZOnUpoaGiex0JCQnj//fc5c+YMr7/+umP5oEGDnO72Hzt2bL5d79OmTeOGG24gLCwMHx8fGjVqxJQpU/I9Nzo6mptvvpmVK1fSqlUrfH19qV27NjNnznSMmT59On379gXg+uuvxzAMDMNg2bJlABiGwdixY52u+/zd/NOnT8cwDFauXMmjjz5KaGgoFStW5IEHHiAjI4PExETuueceKlWqRKVKlRg1alS+QxYF+fHHH+nQoQOBgYEEBQXRsmVLZs2alWfMnDlzaN68OX5+foSEhDBgwADi4uLyjDl27BiDBw+mRo0a+Pj4UK1aNXr16uXYoxQdHc327dtZvny5ow8dO3YsVI3FISIiAi8vr0t+fnR0NGlpaWRkZDiWOav/1ltvBWDHjh0XXWd4eDh+fn6F2n5UVNQFDxOJuDPtC5Ry5/vvvyc6Opr27ds7ffy6664jOjqa77//nnfffbfI658yZQqNGzfmlltuwdPTk++//56HH34Yu93OsGHD8ozdvXs3ffr0YciQIQwcOJCPP/6YQYMG0bx5cxo3bsx1113Ho48+yltvvcWzzz5Lw4YNARyfi2r48OFUrVqVcePGsWbNGqZOnUrFihVZtWoVNWvW5JVXXmHBggW8/vrrxMTEcM8991xwfdOnT+fee++lcePGPPPMM1SsWJFNmzbx008/0b9/f8eYwYMH07JlS8aPH8/x48d58803+fXXX9m0aRMVK1YE4LbbbmP79u0MHz6c6Oho4uPjiY2N5eDBg0RHR/O///2P4cOHU6FCBcfhlPDw8AvWd/r0abKzsy/aF39/f/z9/QvRwcI7e/YsqampnDlzhuXLlzNt2jTatGlz0XBx7NgxICc4i8jfrN61I1KSEhMTTcDs1avXBcfdcsstJmAmJyebpmmaAwcOdLrbf8yYMfl2vefulj9ft27dzNq1a+dZFhUVZQLmihUrHMvi4+NNHx8fc+TIkY5lFzoMBJhjxozJtzwqKirPbv5p06aZgNmtWzfHoQDTNM02bdqYhmGYDz74oGNZVlaWWaNGjYsebklMTDQDAwPN1q1bm2fPns3zWO42MjIyzLCwMDMmJibPmPnz55uA+cILL5imaZqnT582AfP111+/4DaLehgot8cX+3DWwwspzGGg8ePH59lGp06dzIMHD1503UOGDDE9PDzMP//8s0g1Xeww0Pl0GEhKG+1ZkXIlJSUFgMDAwAuOy308JSXlomP/6fy/nJOSksjMzKRDhw4sXLiQpKQkgoODHY83atQozx6e0NBQ6tevz969e4u0zcIaMmRInkMBrVu3ZvXq1QwZMsSxzMPDgxYtWrBhw4YLris2NpaUlBRGjx6Nr69vnsdyt7F+/Xri4+MZO3ZsnjE9evSgQYMG/PDDD4wbNw4/Pz+8vb1ZtmwZQ4YMoVKlSsXxcvnss88KdaLqxU5OvRT9+vWjRYsWnDhxgvnz53P8+PGL1jJr1iw++ugjRo0axRVXXFHsNYmUVgorUq6cH0IuJCUlBcMwLmlX/K+//sqYMWNYvXo1aWlpeR77Z1ipWbNmvudXqlSJ06dPF3m7hfHP7eXWEhkZmW/5xWrYs2cPADExMQWOOXDgAAD169fP91iDBg1YuXIlAD4+PkyYMIGRI0cSHh7ONddcw80338w999xD1apVL/KqCtauXbtLfu7lioqKIioqCsgJLvfffz+dO3dm165dTg8F/fLLLwwZMoRu3brx8ssvl3S5Im5NJ9hKuZI77XTLli0XHLdlyxZq1KiBt7c3QIEnJv7zfIg9e/bQqVMnEhISmDRpEj/88AOxsbE8/vjjANjt9jzjPTw8nK7XLOTJrQUp6DyNgrbnbPnl1lBUI0aM4M8//2T8+PH4+vry/PPP07BhQzZt2nTJ6zxx4gTHjh276MeZM2eK8ZU416dPHw4dOsSKFSvyPfb7779zyy23EBMTw1dffaWpxSL/oLAi5U7Pnj3Zt2+f46/6f/rll1/Yv3+/YxYO5OztcHahrtw9B7m+//570tPT+e6773jggQe46aab6Ny5c6FnbDhzoRkczurKyMjg6NGjl7y9wqpTpw4A27ZtK3BM7p6FXbt25Xts165djsfPX+fIkSNZtGgR27ZtIyMjg//+97+Ox4s6m6Vly5ZUq1btoh8TJ04s0novRe4hoKSkpDzL9+zZQ/fu3QkLC2PBggVUqFDB5bWIlDaK71LuPPnkk3zyySc88MADrFixgipVqjgeO3XqFA8++CBBQUE88sgjjuV16tQhKSmJLVu20KRJEwCOHj3KN998k2fduXsozt8rkZSUxLRp0y653oCAAACnYalOnTr5/lKfOnVqoWbAXK6uXbsSGBjI+PHj6d69e55zUkzTxDAMWrRoQVhYGO+99x733nsvPj4+QM505x07dvDCCy8AkJaWhs1my7OOOnXqEBgYSHp6umNZQEBAoa/uCtacs3LixIl8U+IBPvroIwzD4Oqrr3YsO3bsGF27dsVms7Fw4UKnz8uVe9gtNySKlCcKK1Lu1K1bl5kzZ9KvXz+uvPJKhgwZQq1atdi/fz8fffQRp0+f5osvvqBWrVqO59x55508/fTT3HrrrTz66KOkpaUxZcoU6tWrx8aNGx3junbtire3Nz179uSBBx7gzJkzfPDBB4SFhV3y3o6mTZvi4eHBhAkTSEpKwsfHx3Edl6FDh/Lggw9y22230aVLF37//XcWLlxYItNeg4KCeOONNxg6dCgtW7akf//+VKpUid9//520tDRmzJiBl5cXEyZMYPDgwXTo0IF+/fo5pi5HR0c7Do/9+eefdOrUidtvv51GjRrh6enJN998w/Hjx7nzzjsd22zevDlTpkzhpZdeom7duoSFhXHDDTcUWGNxnrOyZcsWvvvuOyBnynlSUhIvvfQSAFdddRU9e/YE4OWXX+bXX3+le/fu1KxZk1OnTjF37lzWrVvH8OHDqVu3rmOd3bt3Z+/evYwaNYqVK1fm2dsXHh5Oly5dHN936tQJIM+VjA8cOMAnn3wC5JzMDDhqioqK4u6773aM/f777/n9998ByMzMZMuWLY6xt9xyiyOEi7glaycjiVhn69atZv/+/c2qVauaNpvNBExfX19z+/btTscvWrTIjImJMb29vc369eubn376qdOpy999953ZpEkT09fX14yOjjYnTJhgfvzxxyZg7tu3zzEuKirK7NGjR77tdOjQId/03A8++MCsXbu26eHhkWcac3Z2tvn000+bISEhpr+/v9mtWzdz9+7dBU5dXrduXZ715tZ/4sSJPMsHDhxoBgQEXKSD//9627Zta/r5+ZlBQUFmq1atzM8//zzPmNmzZ5vNmjUzfXx8zMqVK5t33XWXefjwYcfjCQkJ5rBhw8wGDRqYAQEBZnBwsNm6dWvzyy+/zLOeY8eOmT169DADAwNNoESvZpvbQ2cf5/d60aJF5s0332xGRESYXl5eZmBgoNmuXTtz2rRpeaaNm6Z5wenU/3xtUVFR+aZL//zzz4V+/sCBAwscO23atOJrlIgLGKZZwmfRibipmTNnMmjQIAYMGJDnKrIiImItHQYS+ds999zD0aNHGT16NDVq1OCVV16xuiQREQG0Z0VERETcmqYui4iIiFtTWBERERG3prAiIiIibk1hRURERNyaW88GstvtHDlyhMDAwCJfZltERESsYZomKSkpREREYLNd/n4Rtw4rR44cyXc3WBERESkdDh06RI0aNS57PW4dVgIDA4GcFxsUFGRxNReWmZnJokWL6Nq1K15eXlaX4zbUF+fUl/zUE+fUF+fUF+fcoS+2v/4ic8EC5r3wAtW6dYNduyA7G158EZ577pLW6dZhJffQT1BQUKkIK/7+/gQFBekH5zzqi3PqS37qiXPqi3Pqi3Nu0ZdPPoE332QQwB9/FMsqdYKtiIiIFJ+YGNKHD6c/cGbdOjjvhpqXSmFFREREis/QoaS/9BKfA/Z69aAYTrBVWBERESln7PbSdacdtz5nRURERC7ftrgk5qw/xNr9p9gdf4bMbBMvD4O6YRVoFV2Zvi0iiakebHWZBVJYERERKaP2J6Qyau4W1u47hYfNIPu8PSqZ2SY7jqbw5/EzzFh9gFa1KvPabU2IDgmwsGLndBhIRESkDJq3OY6ub6xgw4HTAHmCyvlyl284cJqub6xg3ua4EquxsLRnRUREpIxZsPUoI77cSlHOTMm2m2RjMuKLzQD0alrdJbVdCu1ZERERKWOe+2ZbkYLK+UzgqTlb2J+QWpwlXRaFFRERkTIm+5Kjyt/PN01Gzd1STNVcPpeGlSlTptCkSRPHFWjbtGnDjz/+6MpNioiIlFt/HEkGCj4/pbCy7SZr951iW1xScZR12VwaVmrUqMGrr77Khg0bWL9+PTfccAO9evVi+/btrtysiIhIufRtMZ4c62EzmLP+ULGt73K4NKz07NmTm266iSuuuIJ69erx8ssvU6FCBdasWePKzYqIiJRLuTN/ikO23WTd/uJb3+UosdlA2dnZzJkzh9TUVNq0aeN0THp6Ounp6Y7vk5NzdmdlZmaSmZlZInVeqtz63L3Okqa+OKe+5KeeOKe+OKe+OBd3MgWiwMfm/DCQabeTmXAI77CoQq3vYEJy0Xu8aRN+Dz/MasC/UyfYvz9n+fvvw/z5/z/um2+gWrVCrdIwTdOl19zdunUrbdq04dy5c1SoUIFZs2Zx0003OR07duxYxo0bl2/5rFmz8Pf3d2WZIiIiUgyqbN3Ktc8/f/GB+/ZBdHSh1unysJKRkcHBgwdJSkriq6++4sMPP2T58uU0atQo31hne1YiIyNJSEggKCjIlWVetszMTGJjY+nSpYtuV34e9cU59SU/9cQ59cU59cW5a15ayAtXZ/P8ehvpdgPs2aTu/JWUdd+SeeqwY1zFjvcS2Kz7RdfnZTPY9ELXIteRnJxMSEgISUlJxfL/t8sPA3l7e1O3bl0Amjdvzrp163jzzTd5//3384318fHBx8cn33IvL69S82YsTbWWJPXFOfUlP/XEOfXFOfUlr+pVAoFE0jOySNi8mOTf5pKVdByv8Dpknj0LgGdITVKO7MG7iXHR9dUJC7qk/hb3v0mJX2fFbrfn2XsiIiIixaNJWM4f/EemPcKpRVPwrlaPkFueJvP4HgCqPzQNn/A6ZJzYd9F1edgMWkZXcmm9heXSPSvPPPMMN954IzVr1iQlJYVZs2axbNkyFi5c6MrNioiIlCunT5/m7bffZuq7U2j5/nv4Rl1FUO8x2PwCOfxWfwDC+7+KZ1AoXqHRpP25GtO0YxgF77PItpv0bRFZUi/hglwaVuLj47nnnns4evQowcHBNGnShIULF9KlSxdXblZERKRcOH78OJMmTeKdyZNJz8iicvOcCSyVuz7MuUw7B1/vlfN9lwfxjYwBwDs0GjPzHFlJ8XhVrOp0vR42g+ZRlYipHlwyL+QiXBpWPvroI1euXkREpFw6cOAAr732Gh9+9DF2w4b/VTdRuWUv/IMqAtlgmo6g4t+wA4FX3+x4rldYLQAy4/cVHFYMg9dua+Lql1FouuuyiIhIKbFr1y7Gj3+VTz/7FJu3P/4tbyOweU88fCv8PSJngm/83P8AYPMLIvSWp/KswyOgEja/IDJO7Me/Xv7rnhnA632bEB0S4MqXUiQKKyIiIm5u8+bNvPTyy3w9dy5egZUJaj+QCk27Y/P2czo+/VDObW1qDP8032OGYeAdFk1mfN6TbD1sBh6Gwet9m9CrafXifxGXQWFFRETETa1atYoXX3qJn378EZ9K1ajU9WEqxHTG8HQ+Nfjs3vXQqhkAkY/PKfAEWq+Q6Jyx5ISUbLtJi6hKTLjNvfao5FJYERERcSOmabJ48WL+8+JLrPxlBb6hUVS5eSQBDa/DsHkU+LzMk4c4Pe81uPNzqt37DtkF7HUB8A6LJmXD99Sr7EWb+hH0bRHpNifTOqOwIiIi4gbsdjvfffcdL770Mhs3rMcvoh6ht/4bvytaX3CKMYA9PZUjHz6En19OQPEMDiM7u+DxXqG1AJOXOlakVauYYnwVrlHiF4UTERGR/5eVlcVnn31Go5grufXWW9mZkE7Y7S8SOuC/+Ndrc9GgYtqzOfS/OwAIbn9XobbpFRKJYdjYsmXLZddfErRnRURExALp6enMmDGDl8e/ysH9+/Cv05Lwu17Dt0b+e+ddyMFJfQDwq9OSoBa9gAvsUvmbzcsX35DqbN269VJKL3EKKyIiIiVs06ZN3HhTD44fO4rh40/FjoPwi74am38wZnYWhkfh/nuOn/siZGeCzYOwPmPInbpcGEblKDZt/v0SX0HJUlgREREpYb6+vvj4+uEfUIG01DMkLptOItMdj3v5B+IZUBHDLxh8g7AFVMTDPxgP/4qOr9N2reLs7t8AqDny6yLX4BUWzZYtP2CaJoZx8ZsaWklhRUREpIQ1bNiQA/tybi549uxZ4uPjC/w4dvw4R44e4sRfGzl1KoHsrKy8K7PZOD51CB7+wfgGh0Kr0ZxePpNMzwA8/g42Nv+KeAQEY/MLxuaVc7ND79BanEg8zZEjR6he3b2uq/JPCisiIiIW8vPzIyoqiqioqIuOtdvtzJ8/n169ci6lP27cOEJCQhzB5vTp0wCEJO4g7vBhEpMS863D09cfr4CKmB7eAGzdulVhRURERIpHQkKCI6g8++yzvPDCC3kez8zMZMGCBfy+aSNeXl5kZGSQkJDA8ePHne61sdtN2rdvb8VLKRKFFRERkVIgKyuL8PBwANq3b8/LL7980ed4e3sTERFBRESEq8tzKV1nRUREpBTw8ck51yQoKIgVK1ZYXE3JUlgRERFxc7Vq1cJutwM4zkspTxRWRERE3Fi/fv3Yv38/AKmpqdhs5e+/7vL3ikVEREqJd999ly+++AKAXbt24e/vb3FF1lBYERERcUPr1q1j2LBhAMyePZt69epZXJF1FFZERETcTGJiIq1atQJg+PDh3H777RZXZC2FFRERETdit9upVKkSAFdffTVvvfWWxRVZT2FFRETEjfj6+jo+b9iwweJq3IPCioiIiJto3LgxmZmZQM7MH8mhsCIiIuIG7r//fv744w8AkpKSyuUU5YKoEyIiIhabOXMmH3zwAQC///47QUFBFlfkXhRWRERELLRt2zYGDhwIwEcffUSTJk0srsj9KKyIiIhY5MyZM1x55ZUADBo0iHvvvdfiityTwoqIiIgF7HY7gYGBANSvX59p06ZZXJH7UlgRERGxQG5Q8fDwYOfOnRZX494UVkREREpYq1atSEtLAyAjI8PiatyfwoqIiEgJeuKJJ1i3bh0AJ0+e1BTlQlCHRERESsjcuXN54403AFizZg2VK1e2uKLSQWFFRESkBOzZs4c+ffoA8NZbb9G6dWuLKyo9FFZERERc7Ny5c9StWxeAPn36MHz4cIsrKl0UVkRERFzIbrfj5+cHQGRkJHPmzLG4otLHpWFl/PjxtGzZksDAQMLCwujduze7du1y5SZFRETcSkhICACGYXDw4EGLqymdXBpWli9fzrBhw1izZg2xsbFkZmbStWtX3UlSRETKhRtuuIHTp08DmqJ8OTxdufKffvopz/fTp08nLCyMDRs2cN111+Ubn56eTnp6uuP75ORkADIzMx23zHZXufW5e50lTX1xTn3JTz1xTn1xrjT05ZVXXmHNmjX4+fnx559/Ypqmy+t1l74U9/YN0zTNYl3jBezevZsrrriCrVu3EhMTk+/xsWPHMm7cuHzLZ82ahb+/f0mUKCIiIpcpLS2N/v37k5SUVCx3kC6xsGK327nllltITExk5cqVTsc427MSGRlJQkKC298uOzMzk9jYWLp06YKXl5fV5bgN9cU59SU/9cQ59cU5d+7LkSNHaNiwIQDPP/88Tz75ZIlt2136kpycTEhISLGFFZceBjrfsGHD2LZtW4FBBcDHxwcfH598y728vNzuzViQ0lRrSVJfnFNf8lNPnFNfnHO3vmRkZBAdHQ1At27deOaZZyypw+q+FPe2SySsPPLII8yfP58VK1ZQo0aNktikiIhIicv9gzs0NDTfeZty6VwaVkzTZPjw4XzzzTcsW7aMWrVquXJzIiIilomIiHB8HR8fb2ElZY9Lw8qwYcOYNWsW8+bNIzAwkGPHjgEQHBzsuECOiIhIadezZ0+OHj0KkOfcSykeLr3OypQpU0hKSqJjx45Uq1bN8TF79mxXblZERKTEvP7668yfPx+A/fv34+3tbXFFZY/LDwOJiIiUVb/88gujRo0C4PvvvycqKsriisom3RtIRETkEsTHxzsucDp69GhuvvlmiysquxRWREREiigrK4vw8HAA2rVrx/jx4y2uqGxTWBERESmi3CnKQUFBF7x+mBQPhRUREZEiqFOnDna7HcBxk0JxLYUVERGRQurfvz979+4FIDU1FZtN/42WBHVZRESkEKZMmcLnn38OwM6dO3WD3RKksCIiInIR69ev5+GHHwbgiy++oH79+hZXVL4orIiIiFxAYmIiLVu2BHLudXfHHXdYXFH5o7AiIiJSALvdTqVKlQBo1qwZb7/9tsUVlU8KKyIiIgXw9fV1fN64caPF1ZRfCisiIiJOXHnllWRmZgI5M3/EOgorIiIi//DAAw+wbds2AJKSkjRF2WLqvoiIyHk+/fRTpk6dCsCmTZsICgqyuCJRWBEREfnb9u3bufvuuwH44IMPaNq0qbUFCaCwIiIiAsCZM2eIiYkBYODAgQwdOtTiiiSXwoqIiJR7drudwMBAAOrVq8f06dOtLUjyUFgREZFyL/e8FA8PD3bt2mVxNfJPCisiIlKuXXPNNY6pyenp6RZXI84orIiISLk1cuRIfvvtNwBOnDiBh4eHxRWJMworIiJSLn3zzTdMmjQJgFWrVhESEmJxRVIQhRURESl39u7dy7/+9S8A3njjDdq0aWNxRXIhCisiIlKunDt3jjp16gDwr3/9ixEjRlhbkFyUwoqIiJQbdrsdPz8/AGrUqMHcuXMtrkgKQ2FFRETKjdDQUMfXhw4dsrASKQqFFRERKRc6derEqVOnABx3U5bSQWFFRETKvLFjx7J06VIA4uLi8PT0tLgiKQqFFRERKdMWLVrEuHHjAFi8eDEREREWVyRFpbAiIiJlVlxcHN26dQPgxRdfpFOnThZXJJdCYUVERMqkjIwMatSoAUDXrl157rnnLK5ILpXCioiIlEk+Pj4AhISEsHDhQourkcuhsCIiImVO9erVHV+fOHHCwkqkOCisiIhImdK7d2+OHDkCwNmzZy2uRoqDwoqIiJQZ//3vf5k3bx4A+/btw9fX1+KKpDi4NKysWLGCnj17EhERgWEYfPvtt67cnIiIlGMrV67kySefBGDevHlER0dbW5AUG5eGldTUVK666iomT57sys2IiEg5l5CQQPv27QEYNWoUt9xyi8UVSXFy6SX8brzxRm688UZXbkJERMq5rKwsxz1/2rZty4QJEyyuSIqbW11vOD09nfT0dMf3ycnJQM49HNz9Pg659bl7nSVNfXFOfclPPXFOfXHu/L6EhYXh5+dHhQoVWLZsWbnulbu8X4p7+4ZpmmaxrrGgDRkG33zzDb179y5wzNixYx2XRD7frFmz8Pf3d2F1IiIiUlzS0tLo378/SUlJBAUFXfb63CqsONuzEhkZSUJCQrG8WFfKzMwkNjaWLl264OXlZXU5bkN9cU59yU89cU59cS63L/feey9nz57l2LFj+Pn5WV2W5dzl/ZKcnExISEixhRW3Ogzk4+PjuOLg+by8vErND2lpqrUkqS/OqS/5qSfOqS95TZs2jfDwcM6ePcvGjRvd/g/akmb1+6W4t63rrIiISKmyceNGRowYAcBHH31EgwYNrC1IXM6le1bOnDnD7t27Hd/v27ePzZs3U7lyZWrWrOnKTYuISBmUmJhI8+bNHYd8+vTpY3FFUhJcGlbWr1/P9ddf7/j+iSeeAGDgwIFMnz7dlZsWEZEyxm63U6lSJQCaNGlicTVSklwaVjp27EgJnb8rIiJlXO7eFB8fH3755RcWLFhgcUVSUnTOioiIuL0mTZqQkZEB5EyLlfJFYUVERNzaQw89xNatWwFISkrCZtN/XeWN/sVFRMRtffbZZ7z33nsAbNq0SVOUyymFFRERcUs7duxgwIABALz//vs0bdrU2oLEMgorIiLidlJTU2nUqBEA99xzD/fff7/FFYmVFFZERMSt2O12KlSoAMAVV1zBjBkzLK5IrKawIiIibiU4OBgADw8P/vzzT4urEXegsCIiIm6jbdu2nDlzBoBz585ZXI24C4UVERFxC0899RSrV68G4MSJE3h6utW9dsVCCisiImK5efPmMXHiRABWrlxJSEiIxRWJO1FYERERS+3bt4/evXsDMGnSJNq1a2dtQeJ2FFZERMQy586do3bt2gD07t2bxx9/3OKKxB0prIiIiGVyb05YvXp1vvnmG4urEXelsCIiIpY4/7yUw4cPW1iJuDuFFRERKXFdunTh5MmTAKSnp1tcjbg7hRURESlR//nPf1i8eDEAcXFxeHt7W1yRuDuFFRERKTGxsbGMGTPG8XVERITFFUlpoLAiIiIl4siRI3Tt2hWAcePG0blzZ4srktJCYUVERFwuIyOD6tWrA9C5c2deeOEFiyuS0kRhRUREXM7HxweAKlWqEBsba3E1UtoorIiIiEvVqFHD8XVCQoKFlUhppbAiIiIuc+uttxIXFwfA2bNnLa5GSiuFFRERcYlJkybx7bffArB37158fX2tLUhKLYUVEREpdr/++isjR44E4Ntvv6VWrVoWVySlmcKKiIgUq4SEBK699loAnnrqKXr16mVxRVLaKayIiEixycrKIjQ0FIA2bdrw2muvWVyRlAUKKyIiUmxyz0upUKECq1atsrgaKSsUVkREpFjUq1eP7OxsAJKSkiyuRsoShRUREbls99xzD3/99RcAqamp2Gz670WKj95NIiJyWaZOnconn3wCwB9//IG/v7/FFUlZo7AiIiKXbOPGjTzwwAMAfPrppzRs2NDiiqQsUlgREZFLkpycTPPmzQF48MEHueuuuyyuSMoqhRURESkyu91OcHAwAE2aNGHKlCkWVyRlWYmElcmTJxMdHY2vry+tW7dm7dq1JbFZERFxkdzzUry9vfn9998trkbKOpeHldmzZ/PEE08wZswYNm7cyFVXXUW3bt2Ij4939aZFRMQFmjZtSnp6OqCbE0rJcHlYmTRpEvfddx+DBw+mUaNGvPfee/j7+/Pxxx+7etMiIlLMhg0b5tiTkpiYqCnKUiI8XbnyjIwMNmzYwDPPPONYZrPZ6Ny5M6tXr843Pj093ZHWIefkLYDMzEwyMzNdWeply63P3essaeqLc+pLfuqJc+7Ul6+++opp06bh5+fHihUr8Pf3t6wud+qLO3GXvhT39g3TNM1iXeN5jhw5QvXq1Vm1ahVt2rRxLB81ahTLly/nt99+yzN+7NixjBs3Lt96Zs2apXn7IiIipURaWhr9+/cnKSmJoKCgy16fS/esFNUzzzzDE0884fg+OTmZyMhIunbtWiwv1pUyMzOJjY2lS5cueHl5WV2O21BfnFNf8lNPnHOHvpw9e5aqVasCcMcddzB16lRL6jifO/TFHblLX3KPjBQXl4aVkJAQPDw8OH78eJ7lx48fd7zxz+fj44OPj0++5V5eXqXmzViaai1J6otz6kt+6olzVvXl/CnKderUYdq0aSVew4Xo/eKc1X0p7m279Mwob29vmjdvzpIlSxzL7HY7S5YsyXNYSERE3FNuULHZbOzevdviaqS8cvlhoCeeeIKBAwfSokULWrVqxf/+9z9SU1MZPHiwqzctIiKXoV27dpw5cwYgz+QHkZLm8rByxx13cOLECV544QWOHTtG06ZN+emnnwgPD3f1pkVE5BI9/fTTrFq1CoATJ07g6elWpzhKOVMi775HHnmERx55pCQ2JSIil+m7777jtddeA+CXX34hJCTE4oqkvNPVfERExGH//v306tULgIkTJ3LttddaXJGIwoqIiPzt3Llz1KpVC4BevXoxcuRIiysSyaGwIiIiAPj5+QEQERHBt99+a20xIudRWBEREUJDQx1fx8XFWViJSH4KKyIi5VzXrl1JSEgANEVZ3JPCiohIOfbSSy8RGxsLwKFDh/D29ra4IpH8FFZERMqpJUuW8PzzzwPw008/UaNGDYsrEnFOYUVEpBw6cuQInTt3BmDMmDF069bN4opECqawIiJSzmRlZVG9enUAOnXqxNixY60tSOQiFFZERMqZ3DviVq5cmcWLF1tcjcjFKayIiJQjkZGRjq9PnDhhYSUihaewIiJSTtx2220cPnwYgLNnz2Kz6b8AKR30ThURKQfefPNNvv76awD27NmDr6+vxRWJFJ7CiohIGbd69WpGjBgBwNdff03t2rWtLUikiBRWRETKsISEBNq2bQvAyJEjufXWWy2uSKToFFZERMqorKwsxz1/WrduzcSJEy2uSOTSKKyIiJRRueelBAQEsGbNGourEbl0CisiImVQvXr1yM7OBiA5OdniakQuj8KKiEgZM3DgQP766y8AUlJSNEVZSj29g0VEypCPPvqImTNnArBt2zYqVKhgcUUil09hRUSkjNi8eTNDhw4F4JNPPqFx48YWVyRSPBRWRETKgOTkZJo1awbA/fffz4ABAyyuSKT4KKyIiJRydrud4OBgAK688kref/99iysSKV4KKyIipVxAQAAAXt7ebNmyxeJqRIqfwoqISCnWrFkzzp07B8C5s2ctrkbENRRWRERKqeHDh7N582YATp8+rSnKUmbpnS0iUgrNnj2bd955B4B169ZRsWJFawsScSGFFRGRUmbXrl3ceeedAEyZMoUWLVpYXJGIaymsiIiUImlpaTRo0ACA/v378+CDD1pckYjrKayIiJQSdrvdMfOndu3afPbZZxZXJFIyFFZEREqJ3PNSbDYbe/bssbYYkRKksCIiUgp0796dlJQUANLT0y2uRqRkKayIiJQCq1evBuD48eN4enpaXI1IyVJYERFxYz/99JPj619++YWwsDALqxGxhsvCyssvv0zbtm3x9/fX/H8RkUtw4MAB7rjjDgBeeuklrr32WosrErGGy8JKRkYGffv25aGHHnLVJkREyqxz584RHR3t+H748OHWFSNiMZcd+Bw3bhwA06dPd9UmRETKLD8/PwCqVq1qcSUi1nOrs7TS09PznOWenJwMQGZmJpmZmVaVVSi59bl7nSVNfXFOfclPPfl/derUcYSVbdu2ERsbq778g94vzrlLX4p7+4ZpmmaxrvEfpk+fzogRI0hMTLzo2LFjxzr2yJxv1qxZ+Pv7u6A6ERERKW5paWn079+fpKQkgoKCLnt9RdqzMnr0aCZMmHDBMTt27HBcCrqonnnmGZ544gnH98nJyURGRtK1a9diebGulJmZSWxsLF26dMHLy8vqctyG+uKc+pKfegITJ07kxRdfBHJ+l0ZERKgvBVBfnHOXvuQeGSkuRQorI0eOZNCgQRccU7t27UsuxsfHBx8fn3zLvby8Ss2bsTTVWpLUF+fUl/zKa0+WLl3Ks88+C8CPP/5IVFRUnsfLa18uRn1xzuq+FPe2ixRWQkNDCQ0NLdYCRETKu2PHjtGpUycAXnjhBbp3725xRSLuxWUn2B48eJBTp05x8OBBsrOz2bx5MwB169alQoUKrtqsiEipkpWVRbVq1QC4/vrrnZ63J1LeuSysvPDCC8yYMcPxfbNmzQD4+eef6dixo6s2KyJSqnh7ewNQqVIlli5danE1Iu7JZReFmz59OqZp5vtQUBERyVGzZk1yJ2QmJCRYXI2I+9K9gURELNCnTx8OHToEwNmzZ7HZ9OtYpCD66RARKWFvv/02c+fOBWD37t34+vpaXJGIe1NYEREpQatXr+bRRx8F4KuvvqJOnToWVyTi/hRWRERKyKlTp2jbti0Ajz/+OLfddpvFFYmUDgorIiIlwG63U6VKFQBatmzJpEmTLK5IpPRQWBERKQHef1+d29/fn7Vr11pcjUjporAiIuJiDRo0IDsrC4CUlBSLqxEpfRRWRERcaPDgwezatQvICSqaoixSdPqpERFxkY8++ojp06cDsHXrVt1qROQSKayIiLjAli1bGDp0KAAzZswgJibG4opESi+FFRGRYpacnMxVV10FwH333cc999xjcUUipZvCiohIMbLb7QQHBwPQuHFjpk6danFFIqWfwoqISDEKCAgAwMvLi23btllcjUjZoLAiIlJMmjdvzrlz5wAcn0Xk8imsiIgUg0cffZSNGzcCcPr0aU1RFilG+mkSEblMs2fP5u233wZg3bp1VKxY0dqCRMoYhRURkcvw119/ceeddwIwefJkWrRoYXFFImWPwoqIyCVKS0ujXr16ANx55508/PDDFlckUjYprIiIXAK73e6Y+VOrVi0+//xziysSKbsUVkRELkGlSpUAMAyDvXv3WlyNSNmmsCIiUkTXXXcdycnJAGRkZFhcjUjZp7AiIlIEzz77LL/88gsAx48fx9PT0+KKRMo+hRURkUKaP38+48ePB2D58uWEhYVZXJFI+aCwIiJSCAcOHKBnz54ATJgwgeuuu87iikTKD4UVEZGLyMjIIDo6GoAePXowatQoawsSKWcUVkRELsLHxweAqlWrMn/+fIurESl/FFZERC4gPDzc8fXRo0ctrESk/FJYEREpwI033kh8fDwA6enpFlcjUn4prIiIODF+/Hh++uknAA4ePIi3t7fFFYmUXworIiL/sGzZMp599lkAFixYQGRkpMUViZRvCisiIuc5duwY119/PQDPPfccN954o8UViYjCiojI37KysqhWrRoAHTp04MUXX7S4IhEBhRUREYfc81IqVqzIsmXLrC1GRBxcFlb279/PkCFDqFWrFn5+ftSpU4cxY8bopl8i4paio6MxTROAkydPWlyNiJzPZXfg2rlzJ3a7nffff5+6deuybds27rvvPlJTU5k4caKrNisiUmS33347Bw4cAODs2bPYbNrpLOJOXBZWunfvTvfu3R3f165dm127djFlyhSFFRFxG++88w5z5swB4K+//sLX19fiikTkn0r03uZJSUlUrly5wMfT09PzXHgpOTkZgMzMTDIzM11e3+XIrc/d6yxp6otz6kt+VvRk/fr1jBo1Cj8/P2bOnElUVJTb/ZvoveKc+uKcu/SluLdvmLkHaV1s9+7dNG/enIkTJ3Lfffc5HTN27FjGjRuXb/msWbPw9/d3dYkiIiJSDNLS0ujfvz9JSUkEBQVd9vqKHFZGjx7NhAkTLjhmx44dNGjQwPF9XFwcHTp0oGPHjnz44YcFPs/ZnpXIyEgSEhKK5cW6UmZmJrGxsXTp0gUvLy+ry3Eb6otz6kt+JdkTu91OpUqVAGjWrJlbz/zRe8U59cU5d+lLcnIyISEhxRZWinwYaOTIkQwaNOiCY2rXru34+siRI1x//fW0bduWqVOnXvB5Pj4+jrubns/Ly6vUvBlLU60lSX1xTn3JryR64uXlRVZWFn5+fvz6668u3VZx0XvFOfXFOav7UtzbLnJYCQ0NJTQ0tFBj4+LiuP7662nevDnTpk3TGfYiYrmGDRuSlZUFwJkzZyyuRkQKw2Un2MbFxdGxY0eioqKYOHEiJ06ccDxWtWpVV21WRKRA9957Lzt37gQgJSVFf0CJlBIuCyuxsbHs3r2b3bt3U6NGjTyPldA5vSIiDtOmTWPatGkAbN26lQoVKlhckYgUlsv+rBg0aBCmaTr9EBEpSVu2bOHee+8FYPr06cTExFhckYgUhfaBikiZdubMGa666ioAhgwZwsCBAy2uSESKSmFFRMosu91OYGAgAI0aNbrgpRNExH0prIhImZV7Xoqnpyfbt2+3uBoRuVQKKyJSJrVo0YKzZ88C5LnYpIiUPgorIlLmPPbYY2zYsAGAU6dOaYqySCmnn2ARKVO+/PJL3nrrLQDWrl3ruKy+iJReCisiUmb89ddf3HHHHQC8/fbbtGzZ0uKKRKQ4KKyISJmQlpZGvXr1ALj99tt55JFHLK5IRIqLwoqIlHp2u52AgAAAoqKimD17tsUViUhxUlgRkVKvcuXKABiGwf79+60tRkSKncKKK2RmwpIl8NRT0LIlVKwIXl5QtSrccgv88IPVFYqUGR06dCApKQmAjIwMi6sREVdw2Y0My7Xly6FLl5yvq1aFa6+FgAD44w/4/vucj/vvh/feA8OwtlaRUuzf//43K1asAODo0aN4eupXmkhZpD0rrmCzwW23wYoVcPQozJ8Ps2fD1q3wxRfg4QFTp8Inn1hdqUiptWDBAl555RUAfv75Z6pWrWpxRSLiKgorrnDDDfDVV9C+ff7H7rgDBg3K+XrmzBItS6SsOHjwID169ADg1VdfpWPHjtYWJCIuVa7Dit1uWrPhZs1yPh86ZM32RUqxjIwMoqKiALjpppt4+umnLa5IRFytXB3g3RaXxJz1h1i7/xS748+QmW3i5WFQN6wCraIr07dFJDHVg11fyF9/5XyuVs312xIpY3x8fAAIDw/nB52sLlIulIuwsj8hlVFzt7B23yk8bAbZ5+1Rycw22XE0hT+Pn2HG6gO0qlWZ125rQnRIgGuKOXYMpk/P+fq221yzDZEy6vzzUo4dO2ZhJSJSksr8YaB5m+Po+sYKNhw4DZAnqJwvd/mGA6fp+sYK5m2OK/5isrJgwABISoIrr4QHHij+bYiUUT169OD48eOA7qIsUt6U6T0r8zbHMeKLzRTlzJRsu0k2JiO+2AxAr6bVi6+gBx/Muf5KlSo5J+B6exffukXKsFdffZUFCxYAcODAAbz1syNSrpTZPSv7ElJ5as6WIgWV85nAU3O2sD8htXgKeuwx+OgjqFQJYmPh73uYiMiFrVixgmeeeQaAH374gZo1a1pckYiUtDIbVp6eu4Vs8/Jm+2SbJqPmbrn8YkaOhLfeyrmS7aJF/z8bSEQu6Pjx43To0AGAZ599lptuusniikTECmUyrGw9nMTafacKPD+lsLLtJmv3nWJbXNKlr2TUKJg0CYKDc4JKixaXVZNIeZGVleU4ofa6667j5ZdftrgiEbFKmQwrX204hKeteC5j72EzmLP+Eq+HMno0vP56TlCJjc25T5CIFErueSnBwcEsX77c4mpExEplMqys3X+KrGK64Fu23WTd/tNFf+Jzz8GECTmHfhRURIqkVq1amH8fxj116pTF1YiI1crkbKDd8WcuOiYr+QT2syl4h9e+6Ni/4lOKVsB330HuLuu6dWHyZOfjQkJg4sSirVukjBs8eDD79+8HIDU1FZutTP5NJSJFUObCit1ukpl98b0qJxe8ybkDm8EwCLiyM/51r8G3Zgw2n/wXg8vMNrHbTWyFPbR0/l+C69fnfDgTFaWwIvIPX3/9NQB//vkn/v7+FlcjIu6gzIUVm83Ay8O4aGDxb9A+J6yYJqlbYkndEgsYeEfUwzeqKX7RV+ET0RDD0wsvD6PwQQVyblSYe7NCESmUjRs3Or7+8ssvueKKKyysRkTcSZkLKwB1wyqw4+iFD90ENu1G9pmTJP0667ylJpnx+8k8dYTk1bMxPH3wqdGImjGt2LAhnKZNm+Lh4eHa4kXKoVOnTnH99dfz+eef8+CDD9K3b1+rSxIRN1ImDwa3iq6MRyH2hAS3vQPfqKbY/CsSckvOnVvNrHTMcyl4BIUR3KYvGDZ2L5xBixYtqFwlhH/9619MmTKFP//803ECoIhcOrvdTpUqVRzfT5gwwcJqRMQdlcmw0rdFZKGusWLYPAjp+SSGzUbKxvnUfGoeYX3HAZCdHE/iL5+SnXqaiIc+Jrz/qxgxN7Jw/S6GDR9O/fr1iagRyaBBg/j0008d9ywRkaLx9fXN81lE5J/KZFiJqR5Mq1qF27viEVCRkFtGkR63g8RfPsGvdnOinp5P6L+eAyAzfi+H3+pP4rLpBLW+jdD+r1Fj+OeE9RlDakQLvlz4C3fffTf1/r58/lNPPcW8efNITEx05UsUKRMaNWpEZmYmAEePHrW4GhFxV2XynBWA125rQtc3VpBdiLsD+UbGULHDPSQum45Pjcb412mJ/xXXEPX0fFJ3/ELCdxNIP7KTQ5P64BvVhLA+Y/Gr0xK/OjnXTslOTYSj2wGYOec73nzzTWw2G02vbk63Lp3p3Lkzbdu21V+OIucZOnQoO3bsACA5OVlTlEWkQGX2t0N0SACv921CYefwBLX6F351W3Fy/n/JSop3LA9o2J6op+dTpcfjAJw7sIWD//0X8V+Nw8zO+YvQI6Ai/vXbAhA66C0iHviQil2HsTPVl/++PYVOnToRXLES19/QiVdffZV169aRnZ1drK9XpDSZMWMGH330EQBbtmwhMDDQ4opExJ2V2bAC0Ktpdf53Z1O8PWwXPSRkGDaq3PQ4Nm9/Tsx71RFEclWI6UTU0/Op3O0RAM7uWcfBibdy4ttXMe15g4dXxaoEXtWN0FuepurDM6k2+G0C2g1g7cFknhv7H1q1akWlylXo1bs3kydPZufOnTpZV8qNbdu2Mejvqf0ff/wxV155pbUFiYjbc2lYueWWW6hZsya+vr5Uq1aNu+++myNHjrhyk/n0alqdRY9fR/OoSgAFhhYPm4GHXyAdHnqF7BP7OP3zNKfjApt2J+rp+VTqdD8AabtWcvD1Xpz66R2n4w3DhndYLYJa9ia0z1iqD/+c8Ltew3ZlDxZv2sOjj42gYcOGVI2ozsCBA5k5cyZxcXHF8MpF3M+ZM2cc4WTw4MEMHjzY4opEpDRw6Tkr119/Pc8++yzVqlUjLi6OJ598kj59+rBq1SpXbjaf6JAAvnygDdvikpiz/hDr9p/mr/gUMrNNvDwMrggLpGV0Jfq2iCSmejDv1DjL8OHD8anRiIAG1zpdZ1CLWwhs3pPktXNJXDad1B0rgIc4vWQqfh3uwzCc50DDwxPfGo3wrdEI6I894xzph7dzbv9m5iz6lZkzZwJQp249unfrQqdOnejYsSOVKlVyUXdESobdbncc7mnQoAEff/yxxRWJSGnh0rDy+OOPO76Oiopi9OjR9O7dm8zMTLy8vFy5aadiqgcTUz3Y8X1Bl9AfNmwYy5YvZ978t/AOr41XpQin6zMMg+DWfQhqdRvp678C4MyWxZz47XsCm99CpU5DCwwtuWzevvjVbo5f7eYAZCYcImnt1+zZ/jOTJ09m8uTJ3Hf/A0x9/71LfdkibqFChQoAeHp6Ok6sFREpjBKbDXTq1Ck+++wz2rZtW2BQSU9PJz093fF9cnIyAJmZmY7pjcWtoPNcp77/PtvbX0f8ov8R0PdFDC/vC64nuO1tgJ3Qtn04seorsv6I5cQfsQS27E3Fdv3AyB+K7KmJZMTvJf34XrLi95GdsI/0pAQAQkOq0LRpU5pf3YyePXu67PW7Wm7dpbV+VylvfenYsSMAfn5+nD592unrLm89KSz1xTn1xTl36Utxb98wXXxm59NPP80777xDWloa11xzDfPnz89ztcrzjR07lnHjxuVbPmvWLN3QTEREpJRIS0ujf//+JCUlERQUdNnrK3JYGT169EUvh71jxw4aNGgAQEJCAqdOneLAgQOMGzeO4OBg5s+fj+FkT4OzPSuRkZEkJCQUy4u9FJ988gmPPPIIlbsPJ6Bh+wLH+dhMXmxh5/n1BmlJp8mI30f6sT2c3bGcrJSEPGM7dOhA8+bNadq0KU2bNqVmzZpO+1EWZGZmEhsbS5cuXSw59Oeuyktf5s2bxz333APAkiVLaNGiRYFjy0tPikp9cU59cc5d+pKcnExISEixhZUiHwYaOXKkY9phQWrXru34OiQkhJCQEOrVq0fDhg2JjIxkzZo1tGnTJt/zfHx88PHxybfcy8vLsqYPHjyYn5ct4/PZbxFWORrvkJqOx0zTJDslgYxju7GdPgAt+nDw/YdIOpEz46li5Spc06I5za++ms8//5wDBw4A8NNPPxEQEMBLL71kyWuygpX/hu6sLPdlz549jhsSvvXWW05/5p0pyz25HOqLc+qLc1b3pbi3XeSwEhoaSmho6CVtzG63A+TZe+LuDMPgvSlTWLd+Awe+e5XAdgNIP76HrOO7yYrfQ8aZRAAiakQCfXjsoaE0a9aMq6++msjISMcek/Hjx5OWlkb9+vU5fPgwc+fOxTAM7r77bscMIJGy4ty5c9StWxeAvn37Mnz4cIsrEpHSzGXXWfntt99455132Lx5MwcOHGDp0qX069ePOnXqFPovLHcREBDAN3O/wkg9yYlvX8F7zzI6NAhn9BOP8u2333Lo0CH27dkNwHPPPUfv3r2dHtrx9/fn0KFDpKSkEBYWBuQcZjIMgwcffLDEX5eIK9jtdvz8/ICcWYBffvmlxRWJSGnnstlA/v7+fP3114wZM4bU1FSqVatG9+7dee6555we6nF3DRs2ZMP6dQQHBxMRkX8qc1HOfK5QoQLHjx8nMTGR2rVrc/r0ad5//33ef/99RowYwRtvvFGcpYuUqNwT6A3DYP/+/dYWIyJlgsv2rFx55ZUsXbqUkydPcu7cOfbt28eUKVOoXr26qzbpcg0bNnQaVC5VxYoVOXXqFCdOnHBcLOt///sfhmHw73//u9i2I1JSrr/+escdxzMyMqwtRkTKjDJ9b6DSIiQkhOTkZOLi4hy7z1955RUMw+Dll1+2uDqRwnn++edZtmwZAEePHsXTs8ze1F1ESpjCihuJiIggLS2NAwcO4O2dcxG65557DsMwmDRpksXViRTsxx9/dMxuW7JkCVWrVrW4IhEpSxRW3FDNmjVJT0/nzz//xMPDA8iZMm4YBlOmTLG4OpG8Dh06xE033QTk7BG84YYbLK5IRMoahRU3dsUVV5CVlcW2bdscM4sefvhhDMNgxowZFlcnknNeSs2aOdce6t69O88884zFFYlIWaSwUgo0btwYu93Ohg0bHMsGDRqEYRjMnj3bwsqkvMud2RcaGsqPP/5ocTUiUlYprJQiV199NaZpsmrVKseyO++8E8Mw+O677yysTMqjatWqOb6Oj4+3sBIRKesUVkqhNm3aYJomP//8s2NZr169MAyD2NhYCyuT8qJnz54cO3YMKF1XpBaR0klhpRTr2LEjpmmyYMECx7KuXbtiGAYrVqywsDIpy1577TXmz58PwP79+x0z10REXEVhpQy48cYbMU2Tr7/+2rGsQ4cOGIbBunXrLKxMypoVK1bw9NNPA/D9998TFRVlcUUiUh4orJQht956K6Zp8umnnzqWtWrVCsMw2Lx5s3WFSZkQHx9Phw4dAHjmmWe4+eabLa5IRMoLhZUy6K677sI0TT788EPHsmbNmuHh4cGOHTssrExKq6ysLMLDwwFo3749r7zyisUViUh5orBShg0ZMgTTNHn77beBnLvhNmrUCC8vL/bu3WtxdVKa5E5RDgoK0vlQIlLiFFbKgUceeQTTNHnttdeAnL+S69Spg4+PD4cPH7a4OnF3tWvXxm63A3D69GmLqxGR8khhpRx56qmnME2TsWPHAjlXH42MjCQgIMAxDVXkfP369WPfvn0ApKamYrPpV4aIlDz95imHxowZg2majBo1CoC0tDSqVatGcHAwp06dsrg6cRdTpkzhiy++AGDXrl34+/tbXJGIlFcKK+XYhAkTME2T4cOHA5CcnEyVKlWoUqUKycnJFlcnVlq/fj0PP/wwAF988QX16tWzuCIRKc8UVoS33noL0zQZOnQoAKdOnSI4OJhq1aqRlpZmcXVS0hITE2nZsiWQc77THXfcYXFFIlLeKayIwwcffIBpmvTv3x+AY8eOERAQQM2aNTl37pzF1UlJsNvtVKpUCciZ7p47k0xExEoKK5LPZ599hmma3HrrrQAcOnQIPz8/rrjiCjIyMiyuTlzJ19fX8Xnjxo0WVyMikkNhRQr09ddfk52dTbdu3QDYvXs3Pj4+xMTEkJWVZXF1UtxiYmLIzMwEcmb+iIi4C4UVuSCbzcZPP/1Edna241Lr27dvx8vLixYtWjiuvyGl2/3338/27dsBSEpK0hRlEXEr+o0khWKz2Vi2bBnZ2dm0atUKgA0bNuDh4UG7du0UWkqxmTNn8sEHHwCwefNmgoKCLK5IRCQvhRUpEpvNxm+//UZmZiZNmjQBYNWqVXh4eNC5c2eFllJm+/btDBw4EIAPP/yQq666yuKKRETyU1iRS+Lp6cnvv/9Oeno69evXB2DJkiV4eHjQs2dPhZZS4MyZM8TExAAwaNAghgwZYnFFIiLOKazIZfH29mbnzp2cO3eO6OhoAObPn4+Hhwe33367tcVJgex2O4GBgQDUr1+fadOmWVyRiEjBFFakWPj4+LBv3z5SU1OJiIgAYM6cOQQHB1tcmTiTG1Q8PDzYuXOnxdWIiFyYwooUK39/f+Li4khJSSE0NNSxPDg42HH5drFW69atHVcm1nVzRKQ0UFgRl6hQoQLx8fEcPHjQsWzKlCkYhsHIkSMtrKx8GzlyJGvXrgXg5MmTmqIsIqWCflOJS+UeBtq9ezcBAQEATJo0CcMweP75560srdyZO3cukyZNAmDNmjVUrlzZ4opERApHYUVKRGhoKGfOnCEuLs5xSfeXXnoJwzAYP368xdWVfXv27KFPnz4AvPnmm7Ru3driikRECk9hRUpUREQEZ8+eZf/+/Xh5eQHw7LPPYhgG//vf/6wtrow6d+4cdevWBaBPnz48+uijFlckIlI0CitiiaioKDIyMti5cyceHh4APP744xiGwdSpUy2uruyw2+34+fkBEBkZyZw5cyyuSESk6BRWxFL169cnKyuLrVu3YhgGAA888ACGYTBz5kyLqyv9QkJCADAMI8/JziIipUmJhJX09HSaNm2KYRhs3ry5JDYppUxMTAx2u51169Y5lg0cOBDDMLQ34BJ16tSJ06dPA5qiLCKlW4mElVGjRjkuFCZyIS1atMA0TVauXOlYdvvtt2MYBvPnz7ewstJlzJgxLF26FICjR4/i6elpcUUiIpfO5WHlxx9/ZNGiRUycONHVm5IypF27dpimyZIlSxzLevbsiWEYeZZJfgsXLuQ///kPkHO/pqpVq1pckYjI5XHpn1vHjx/nvvvu49tvv8Xf3/+i49PT00lPT3d8n5ycDEBmZiaZmZkuq7M45Nbn7nWWtMvtS/v27cnIyGDRokX07dsXyAktAD/99BNt2rQpnkJLmKveL0eOHOHWW2/Fz8+P559/nvbt25ea96R+hpxTX5xTX5xzl74U9/YN0zTNYl3j30zT5KabbqJdu3Y899xz7N+/n1q1arFp0yaaNm3q9Dljx45l3Lhx+ZbPmjWrUGFHRERErJeWlkb//v1JSkoiKCjostdX5LAyevRoJkyYcMExO3bsYNGiRXz55ZcsX74cDw+PQoUVZ3tWIiMjSUhIKJYX60qZmZnExsbSpUsXx/VDxHV9mT17Nvfff7/je8Mw+PXXX2ncuHGxbcOVXNGX3KsFh4SEsGfPnmJZZ0nSz5Bz6otz6otz7tKX5ORkQkJCii2sFPkw0MiRIxk0aNAFx9SuXZulS5eyevVqfHx88jzWokUL7rrrLmbMmJHveT4+PvnGA3h5eZWaN2NpqrUkFXdfBgwYwIABA/jwww+57777AGjWrBk2m40//viD+vXrF9u2XKm4+pJ7sT2g1E9R1s+Qc+qLc+qLc1b3pbi3XeSwEhoamuduugV56623eOmllxzfHzlyhG7dujF79mxd6luKzdChQxk6dChvvvkmI0aMwG6306BBAzw9Pdm9ezdRUVFWl+hyvXr14ujRo0DO1WpFRMoal80GqlmzJjExMY6PevXqAVCnTh1q1Kjhqs1KOfXYY49hmqbjPkNZWVlER0fj6+vL4cOHLa7Odf773//y3XffAbB//36neyZFREo7XcFWypTRo0djmqbjjs7p6elERkZSoUIF4uPjLa6ueK1cuZInn3wSgO+++65c7EUSkfKpxMJKdHQ0pmkWeHKtSHH6z3/+g2majv/MU1NTCQ8Pp2LFipw6dcri6i5ffHw87du3B3ICWu50bhGRskh7VqRMe/311zFNk4cffhiApKQkqlSpQkhIiOM6PpcrLS2N1atXs23btouO/fzzL+jStatjJtObb77J9OnTWbBgAevXr+fgwYMXPe8kKyuL8PBwIOfiebmHvkREyipdg1vKhcmTJzN58mTuvfdepk2bxsmTJwkODqZatWrs3r270NfxSU1NZfPmzWzcuJENGzawZu16/tq1A7vdTmhYOFt+33zBK8a+O2UKq9ZvplLkFfTu3ZsXX32N5JMn8o3zr1CBkJBQwsPDqRYeTnh4GOHh4YSFhfHoo48C4Onpyddff012drbjztUiImWRwoqUKx9//DEff/wx/fr144svvuDo0aMEBAQQFRXFzp078fX1dYw9c+YMmzdvZsOGDY5gsuevXdjtdmyeXviG1cIWVpuKXa7Hq3J1Ts9/nTvu7MfSJYsLDA/Nml7Fhp37qNJnLJBN1Qc+pmJGFtlpSdjTkshOTfz760QS05I4mZrEtu1xGBt2YE9NJD3l/w9h5e5hsdlsVKxchdDQUKqFh1O1ak6oyf3IDTm5HwEBAY47XIuIlAYKK1Iuff7553z22Wf861//Yt68eRw4cAA/Pz+io6Np27Yta9dvZM9fuzBNE5unN77h0dhC61Cxa2d8qtbFK6Qmhkfe6whUuvkpfvni34wZMybPtP3zNWnShHPvTMbMzAByAo3h4YVnYAgEhly0btM0sZ9Nxn7uDNlpydjTcsJNdloiR9KSOHQsEfbvgLNryEpNJCM1iT6myTCgEmAAWw2D369swt3r14GuTyEipYDCipQ7ycnJbNq0iQ0bNhAQEEDtulewd/dfQM703yNnPfGOqEelbl3PCyYX/1HxrXklwe0H8PLLL3PttdfSvXv3fGOaNGmCadrJPHWY4L3ZfPj5J4zvMJg/wmsXqnbDMPDwD8bDPxivytUvOv75xe8zZMP3ZBo2lvkEkHwuhRtMkyZbfocbboBFi8DPr1DbFhGxisKKlGlJSUmO80vWr9/A2vUb2LcnJ5h4ePngHV4Lz7B6VLnxJryr1sWrSo18e0yKIuiaPmTE7aBf/7vY8vtmIiMj8zzeuHFjDMMg88QBIn49QL19m9gSXrfQYaUouv65miEbvifF5kknLy82Z6cz6L77uPq++6g0ZAisXAnPPw+6I7qIuDmFFSlzPv30U77/fj6/rVvPgX0598jx8PbFJ7w2HmENqHLTzXhXrYNXlUgMW/GemGoYNir3eJwTM0bQ9/Y7+GXF8jyXnQ4ICCCqVm1SEw5Sbf9qALr9uZrXOwws1jqyUk7ywKLJAEy0GbR76AG+efJJqlf/e2/Mu+9C+/bwzjs5geXv+wqJiLgjhRUpc96e/C5r1+QEAcPbn8BmNxLYrAeewWElsn0PvyAq9RzFus+fZvTo0fz3v//N8/jVTZuyb9NfBB45AkDdU4epkXScw8Hhl73tzMRjJP/2FRW3LqZ5dhYAj61ZTeXmzfMOvPZaiIyEQ4dgwQLo1++yty0i4iq6zoqUOUsXx/Ljjz/y5JNP0rjBFST/Npe49+4l/uOHOLloCmm7VpF97oxLa/Cp3oDgDvcyadIk5s2b51i+LS6Jkz7h3HB8D+bfM3LsGNywe+1lbS/jxAES5v+Xox88gPeh9Uy6q3/OA5Ur5w8quVq0yPm8adNlbVtExNW0Z0XKnICAALp370737t15/XVISEjg559/ZvHixSxctJgDm34Aw8Cv2hV4RTbBN+oqfGo0wuZVvPfVCWxxCxlx2xlwzz38sORX3tmQwtp9pziXXokx59IwyZmdYxrQ5a81zGxe9KvQph/9i5Q1X5L652qqVa/B+P+9wZAhQ/D/6COYORNq1iz4ybnn0+zbd0mvT0SkpCisSJkXEhJC37596du3LwAHDhxgyZIlLF68hEWLFxP/21c505OrN8S7Zk548a52xWWfz2IYBpVvfIzjM0bQteetVLv7dbB5ERwUzrV2u2O3podpcs2hbQSkp5Hqc/GL05mmSfqhbaT8Noe0vRupVacuz330EQMGDMDb2ztnUEpKzueAgIJXVKFCzudiupKviIirKKxIuRMVFcW9997Lvffei2mabN++nSVLlhC7eDE/L/uGxF8+wdM3AO/IGHxqXoVv1FU505cv4UJqNp8AKt/yNMc+fYqExR9SpetD3HA6jn/ON/KyZ9N+/yZ+qt+uwHWZpsm5ves589sc0g79QeOYK3n+iy/o06ePrmArImWawoqUa4ZhEBMTQ0xMDI899hhZWVmsW7eOJUuWsCh2MWtWTOd0ZgbegZUdh4x8o6/CM6jwJ+v6VK1L5c73c2rhZHxrNKLz3g1kQp7AkmnzoPPutU7DimnPJu3P1aT+Noezx/bQslVrXnj3e3r06FFwgAoMzPmcmlpwYWf+Pm8nKKjQr0VExAoKKyLn8fT0pE2bNrRp04bnnnuOtLQ0Vq5cyZIlS1gYu5gtP72FaZr4VqmOZ254iWqCh18Q4SkJhKQmOl9xeF0SazUn/ce36GSzOd2z0uWvNcQc242Zu9Cezdm9GzizdTFZyfG0bNmSoWOfokWPHhg1alz4hURH53w+dKjgMbmP5Y4VEXFTCisiF+Dv70/Xrl3p2rUrEybAqVOn+Pnnn3PCy6LF7J33Y87JulXr8FnKadqdOXnRddoLWB6Ynsr8GSMKfuK6dTkf110Hy5dfeCPNmuV8Pnky5wTaWrXyj1m/Pufz1VdfrGQREUtp6rJIEVSuXJnbbruNd999lz27/+TgwYNM+/hj/nXDNXxuy+IsBYeRXAX90F30h9EwwNcXhgy5eKE1akDLljlfz5qV//GVK3P2rPj4wE03XXx9IiIWUlgRuQyRkZEMGjSITz/9hLcTTxM3bx5JYWFkF/N2sg0b1KsHGzbAPfcU7knPPpvz+dVXYePG/19+8iQ8/HDO1488oqvXiojbU1gRKSaGYVD3lluotHcv3zTpDFx8L8vF5D7/6ys75QSORo0K/+TeveHRR3NOpL3mGrjxRujTB+rWha1boV07ePHFy6xQRMT1FFZEipndz58nbxzByJseJ8PDiyzj0n7MsgwbGR5ePNHjcZ668THsvpdwd+Q334TZs6FNG1i1KufS+jVq5OxtWbpUd1wWkVJBJ9iKFDObzcDLw2DulZ34vdoVTP36ZaISj+Bhmhd/8t+yDRsHKlXj/lufY09IJF4eBjZb0a/zAsDtt+d8iIiUUtqzIuICdcNyrg67O6QmPQa9ycJ6bYr0/IX1rqHHoDfZE5JzSfwrwgKLvUYRkdJCYUXEBVpFV8bj7z0hZ719OV6hCllG4a4ym2V4cLxCFc55+QLgYTNoGV3JZbWKiLg7hRURF+jbIpJse85hH8O003PHCjzNws0R8jSz6bljBYaZc3pttt2kb4tIl9UqIuLuFFZEXCCmejCtauXsXWket4OQtKR8Y3LPYHE2YygkLYmr43biYTNoVasyMdU1vVhEyi+FFREXee22JngYBj12rsx3CCjLsGH38mJaq15OZwxlGR7cvPMXPAyD125rUpJli4i4HYUVEReJDgng9dti8h0CyjZsHKxUjeWTJvFq56HcPOhNDlasRvZ5NyXMPRT0+m0xRIcEWFG+iIjbUFgRcaFeaQcch4ByD/d8FXMDtw75HymROeeh5M4YmhtzQ55xIWlJ9Dp7sIQrFhFxPworIq705ZcAmB4eZHl680SPx3n25scdM31ynfX25Zmbn2DkTY+T5emN6eGR5/kiIuWZwoqIq9jtOVePBYy6dfH+fRP3vj+GAa1r0iA8yDHMy8OgUbUgBrSuyeCpY/D+fRNGnTo5D37xRc56RETKMV3BVsRVzp6FOnWgRw945x3w9yeGnJlCmZmZLFiwgC0vdMXHxzvv86oH59wH6JFHYNeunPUE6LwVESm/FFZEXCUgAFauBFvBOzALvIR+QABMm5azV+UCzxcRKQ/0W1DElS43aCioiIgorIiIiIh7U1gRERERt+bW56yYZs4FyZOTky2u5OIyMzNJS0sjOTkZLy8vq8txG+qLc+pLfuqJc+qLc+qLc+7Sl9z/t3P/H79cbh1WUlJSAIiM1E3cRERESpuUlBSCgy//3maGWVyxxwXsdjtHjhwhMDAQwyhg1oSbSE5OJjIykkOHDhEUFHTxJ5QT6otz6kt+6olz6otz6otz7tIX0zRJSUkhIiICWzFMFHDrPSs2m40aNWpYXUaRBAUF6QfHCfXFOfUlP/XEOfXFOfXFOXfoS3HsUcmlE2xFRETErSmsiIiIiFtTWCkmPj4+jBkzBh8fH6tLcSvqi3PqS37qiXPqi3Pqi3NltS9ufYKtiIiIiPasiIiIiFtTWBERERG3prAiIiIibk1hRURERNyawoqIiIi4NYWVy3Dq1CnuuusugoKCqFixIkOGDOHMmTMXfE7Hjh0xDCPPx4MPPlhCFbvG5MmTiY6OxtfXl9atW7N27doLjp8zZw4NGjTA19eXK6+8kgULFpRQpSWrKH2ZPn16vveFr69vCVbreitWrKBnz55ERERgGAbffvvtRZ+zbNkyrr76anx8fKhbty7Tp093eZ0lrah9WbZsWb73imEYHDt2rGQKLgHjx4+nZcuWBAYGEhYWRu/evdm1a9dFn1fWf7dcSl/Kyu8WhZXLcNddd7F9+3ZiY2OZP38+K1as4P7777/o8+677z6OHj3q+HjttddKoFrXmD17Nk888QRjxoxh48aNXHXVVXTr1o34+Hin41etWkW/fv0YMmQImzZtonfv3vTu3Ztt27aVcOWuVdS+QM7lsc9/Xxw4cKAEK3a91NRUrrrqKiZPnlyo8fv27aNHjx5cf/31bN68mREjRjB06FAWLlzo4kpLVlH7kmvXrl153i9hYWEuqrDkLV++nGHDhrFmzRpiY2PJzMyka9eupKamFvic8vC75VL6AmXkd4spl+SPP/4wAXPdunWOZT/++KNpGIYZFxdX4PM6dOhgPvbYYyVQYclo1aqVOWzYMMf32dnZZkREhDl+/Hin42+//XazR48eeZa1bt3afOCBB1xaZ0kral+mTZtmBgcHl1B11gPMb7755oJjRo0aZTZu3DjPsjvuuMPs1q2bCyuzVmH68vPPP5uAefr06RKpyR3Ex8ebgLl8+fICx5SX3y3nK0xfysrvFu1ZuUSrV6+mYsWKtGjRwrGsc+fO2Gw2fvvttws+97PPPiMkJISYmBieeeYZ0tLSXF2uS2RkZLBhwwY6d+7sWGaz2ejcuTOrV692+pzVq1fnGQ/QrVu3AseXRpfSF4AzZ84QFRVFZGQkvXr1Yvv27SVRrtsqD++Vy9G0aVOqVatGly5d+PXXX60ux6WSkpIAqFy5coFjyuP7pTB9gbLxu0Vh5RIdO3Ys325XT09PKleufMFjx/379+fTTz/l559/5plnnuGTTz5hwIABri7XJRISEsjOziY8PDzP8vDw8AJ7cOzYsSKNL40upS/169fn448/Zt68eXz66afY7Xbatm3L4cOHS6Jkt1TQeyU5OZmzZ89aVJX1qlWrxnvvvcfcuXOZO3cukZGRdOzYkY0bN1pdmkvY7XZGjBhBu3btiImJKXBcefjdcr7C9qWs/G7xtLoAdzN69GgmTJhwwTE7duy45PWff07LlVdeSbVq1ejUqRN79uyhTp06l7xeKd3atGlDmzZtHN+3bduWhg0b8v777/Piiy9aWJm4m/r161O/fn3H923btmXPnj288cYbfPLJJxZW5hrDhg1j27ZtrFy50upS3Eph+1JWfrcorPzDyJEjGTRo0AXH1K5dm6pVq+Y7WTIrK4tTp05RtWrVQm+vdevWAOzevbvUhZWQkBA8PDw4fvx4nuXHjx8vsAdVq1Yt0vjS6FL68k9eXl40a9aM3bt3u6LEUqGg90pQUBB+fn4WVeWeWrVqVSb/M3/kkUcckxdq1KhxwbHl4XdLrqL05Z9K6+8WHQb6h9DQUBo0aHDBD29vb9q0aUNiYiIbNmxwPHfp0qXY7XZHACmMzZs3Azm7dksbb29vmjdvzpIlSxzL7HY7S5YsyZPkz9emTZs84wFiY2MLHF8aXUpf/ik7O5utW7eWyvdFcSkP75Xisnnz5jL1XjFNk0ceeYRvvvmGpUuXUqtWrYs+pzy8Xy6lL/9Uan+3WH2Gb2nWvXt3s1mzZuZvv/1mrly50rziiivMfv36OR4/fPiwWb9+ffO3334zTdM0d+/ebf7nP/8x169fb+7bt8+cN2+eWbt2bfO6666z6iVcti+++ML08fExp0+fbv7xxx/m/fffb1asWNE8duyYaZqmeffdd5ujR492jP/1119NT09Pc+LEieaOHTvMMWPGmF5eXubWrVutegkuUdS+jBs3zly4cKG5Z88ec8OGDeadd95p+vr6mtu3b7fqJRS7lJQUc9OmTeamTZtMwJw0aZK5adMm88CBA6Zpmubo0aPNu+++2zF+7969pr+/v/nUU0+ZO3bsMCdPnmx6eHiYP/30k1UvwSWK2pc33njD/Pbbb82//vrL3Lp1q/nYY4+ZNpvNXLx4sVUvodg99NBDZnBwsLls2TLz6NGjjo+0tDTHmPL4u+VS+lJWfrcorFyGkydPmv369TMrVKhgBgUFmYMHDzZTUlIcj+/bt88EzJ9//tk0TdM8ePCged1115mVK1c2fXx8zLp165pPPfWUmZSUZNErKB5vv/22WbNmTdPb29ts1aqVuWbNGsdjHTp0MAcOHJhn/JdffmnWq1fP9Pb2Nhs3bmz+8MMPJVxxyShKX0aMGOEYGx4ebt50003mxo0bLajadXKn3P7zI7cPAwcONDt06JDvOU2bNjW9vb3N2rVrm9OmTSvxul2tqH2ZMGGCWadOHdPX19esXLmy2bFjR3Pp0qXWFO8izvoB5Pn3L4+/Wy6lL2Xld4thmqZZYrtxRERERIpI56yIiIiIW1NYEREREbemsCIiIiJuTWFFRERE3JrCioiIiLg1hRURERFxaworIiIi4tYUVkRERMStKayIiIiIW1NYEREREbemsCIiIiJu7f8AvEzQfU2VZEoAAAAASUVORK5CYII=\n",
"text/plain": [
- "