diff --git a/docs/migration/01_migration_guide_to_v0.5.rst b/docs/migration/01_migration_guide_to_v0.5.rst index 97dd3caca..51f2a754c 100644 --- a/docs/migration/01_migration_guide_to_v0.5.rst +++ b/docs/migration/01_migration_guide_to_v0.5.rst @@ -55,23 +55,14 @@ an extension that allows users to access the eigen states. The following is the corresponding table. -+-------------------------------------+--------------------------------+ -| Former algorithm | New algorithm | -+=====================================+================================+ -| ``qis | ``qiskit. | -| kit.algorithms.MinimumEigenSolver`` | algorithms.minimum_eigensolver | -| | s.SamplingMinimumEigensolver`` | -+-------------------------------------+--------------------------------+ -| ``qiskit.a | ``qis | -| lgorithms.NumPyMinimumEigensolver`` | kit.algorithms.minimum_eigenso | -| | lver.NumPyMinimumEigensolver`` | -+-------------------------------------+--------------------------------+ -| ``qiskit.algorithms.QAOA`` | ``qiskit.algorith | -| | ms.minimum_eigensolvers.QAOA`` | -+-------------------------------------+--------------------------------+ -| ``qiskit.algorithms.VQE`` | ``qiskit.algorithms.mini | -| | mum_eigensolvers.SamplingVQE`` | -+-------------------------------------+--------------------------------+ +.. csv-table:: + :header: Former algorithm, New algorithm + + ``qiskit.algorithms.MinimumEigenSolver``, ``qiskit.algorithms.minimum_eigensolvers.SamplingMinimumEigensolver`` + ``qiskit.algorithms.NumPyMinimumEigensolver``, ``qiskit.algorithms.minimum_eigensolver.NumPyMinimumEigensolver`` + ``qiskit.algorithms.QAOA``, ``qiskit.algorithms.minimum_eigensolvers.QAOA`` + ``qiskit.algorithms.VQE``, ``qiskit.algorithms.minimum_eigensolvers.SamplingVQE`` + Setup of a problem diff --git a/docs/migration/02_migration_guide_to_v0.6.rst b/docs/migration/02_migration_guide_to_v0.6.rst new file mode 100644 index 000000000..15a3a5173 --- /dev/null +++ b/docs/migration/02_migration_guide_to_v0.6.rst @@ -0,0 +1,235 @@ +Qiskit Optimization v0.6 Migration Guide +======================================== + +This tutorial will guide you through the process of migrating your code +from Qiskit Optimization v0.5 to v0.6. + +Overview +-------- + +Qiskit Terra v0.25 deprecated the ``qiskit.algorithms`` module. It has been +superseded by a new standalone library +`Qiskit Algorithms `__. + +Qiskit Optimization v0.6 supports only the new algorithms of Qiskit Algorithms. + +It is not the intention to provide detailed explanations of the +new Qiskit Algorithms in this migration guide. We suggest that you read the +`corresponding +resources `__ +of the Qiskit Algorithms documentation instead. + +We can basically use the existing codes by replacing ``qiskit.algorithms`` +with ``qiskit_algorithms``. + + +``MinimumEigenOptimizer`` +------------------------- + +The former algorithms exist in +``qiskit.algorithms.minimum_eigensolvers``. +On the other hand, the new algorithms exist in +``qiskit_algorithms.minimum_eigensolvers`` and we can access them by +``qiskit_algorithms.*``. + +``MinimumEigenOptimizer`` of Qiskit Optimization can use +``qiskit_algorithms.SamplingMinimumEigensolver`` +interface of the new algorithms. Note that ``MinimumEigenOptimizer`` +cannot basically handle +``qiskit_algorithms.MinimumEigensolver`` of the new +algorithms. But there is an exception. ``MinimumEigenOptimizer`` can +handle ``qiskit_algorithms.NumPyMinimumEigensolver`` +because ``qiskit_algorithms.NumPyMinimumEigensolver`` has +an extension that allows users to access the eigen states. + +The following is the corresponding table. + +.. csv-table:: + :header: Former algorithm, New algorithm + + ``qiskit.algorithms.minimum_eigensolvers.SamplingMinimumEigensolver``, ``qiskit_algorithms.SamplingMinimumEigensolver`` + ``qiskit.algorithms.minimum_eigensolver.NumPyMinimumEigensolver``, ``qiskit_algorithms.NumPyMinimumEigensolver`` + ``qiskit.algorithms.minimum_eigensolvers.QAOA``, ``qiskit_algorithms.QAOA`` + ``qiskit.algorithms.minimum_eigensolvers.SamplingVQE``, ``qiskit_algorithms.SamplingVQE`` + + + +NumPyMinimumEigensolver +~~~~~~~~~~~~~~~~~~~~~~~ + +Previously + +.. code:: python + + from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver + + from qiskit_optimization.algorithms import MinimumEigenOptimizer + + mes = NumPyMinimumEigensolver() + meo = MinimumEigenOptimizer(min_eigen_solver=mes) + result = meo.solve(problem) + print(result) + + +New + +.. code:: python + + from qiskit_algorithms import NumPyMinimumEigensolver + + from qiskit_optimization.algorithms import MinimumEigenOptimizer + + mes = NumPyMinimumEigensolver() + meo = MinimumEigenOptimizer(min_eigen_solver=mes) + result = meo.solve(problem) + print(result) + + + +QAOA +~~~~ + +Previously + +.. code:: python + + from qiskit.algorithms.minimum_eigensolvers import QAOA + from qiskit.algorithms.optimizers import COBYLA + from qiskit.primitives import Sampler + + from qiskit_optimization.algorithms import MinimumEigenOptimizer + + shots = 1000 + mes = QAOA(sampler=Sampler(), optimizer=COBYLA()) + meo = MinimumEigenOptimizer(min_eigen_solver=mes) + result = meo.solve(problem) + print(result) + + +New + +.. code:: python + + from qiskit_algorithms import QAOA + from qiskit_algorithms.optimizers import COBYLA + from qiskit.primitives import Sampler + + from qiskit_optimization.algorithms import MinimumEigenOptimizer + + shots = 1000 + mes = QAOA(sampler=Sampler(), optimizer=COBYLA()) + meo = MinimumEigenOptimizer(min_eigen_solver=mes) + result = meo.solve(problem) + print(result) + + + +SamplingVQE +~~~~~~~~~~~ + +Previously + +.. code:: python + + from qiskit.algorithms.minimum_eigensolvers import SamplingVQE + from qiskit.algorithms.optimizers import COBYLA + from qiskit.circuit.library import RealAmplitudes + from qiskit.primitives import Sampler + + from qiskit_optimization.algorithms import MinimumEigenOptimizer + + mes = SamplingVQE(sampler=Sampler(), ansatz=RealAmplitudes(), optimizer=COBYLA()) + meo = MinimumEigenOptimizer(min_eigen_solver=mes) + result = meo.solve(problem) + print(result) + + +New + +.. code:: python + + from qiskit_algorithms import SamplingVQE + from qiskit_algorithms.optimizers import COBYLA + from qiskit.circuit.library import RealAmplitudes + from qiskit.primitives import Sampler + + from qiskit_optimization.algorithms import MinimumEigenOptimizer + + mes = SamplingVQE(sampler=Sampler(), ansatz=RealAmplitudes(), optimizer=COBYLA()) + meo = MinimumEigenOptimizer(min_eigen_solver=mes) + result = meo.solve(problem) + print(result) + + + +``WarmStartQAOAOptimizer`` +-------------------------- + + +Previously + +.. code:: python + + from qiskit.algorithms.minimum_eigensolvers import QAOA + from qiskit.algorithms.optimizers import COBYLA + from qiskit.primitives import Sampler + + from qiskit_optimization.algorithms import WarmStartQAOAOptimizer, SlsqpOptimizer + + qaoa = QAOA(sampler=Sampler(), optimizer=COBYLA()) + optimizer = WarmStartQAOAOptimizer( + pre_solver=SlsqpOptimizer(), relax_for_pre_solver=True, qaoa=qaoa, epsilon=0.25 + ) + result = optimizer.solve(problem) + print(result) + + +New + +.. code:: python + + from qiskit_algorithms import QAOA + from qiskit_algorithms.optimizers import COBYLA + from qiskit.primitives import Sampler + + from qiskit_optimization.algorithms import WarmStartQAOAOptimizer, SlsqpOptimizer + + qaoa = QAOA(sampler=Sampler(), optimizer=COBYLA()) + optimizer = WarmStartQAOAOptimizer( + pre_solver=SlsqpOptimizer(), relax_for_pre_solver=True, qaoa=qaoa, epsilon=0.25 + ) + result = optimizer.solve(problem) + print(result) + + + +``GroverOptimizer`` +------------------- + + +Previously + +.. code:: python + + from qiskit.algorithms.optimizers import COBYLA + from qiskit.primitives import Sampler + + from qiskit_optimization.algorithms import GroverOptimizer + + optimizer = GroverOptimizer(num_value_qubits=3, num_iterations=3, sampler=Sampler()) + result = optimizer.solve(problem) + print(result) + + +New + +.. code:: python + + from qiskit_algorithms.optimizers import COBYLA + from qiskit.primitives import Sampler + + from qiskit_optimization.algorithms import GroverOptimizer + + optimizer = GroverOptimizer(num_value_qubits=3, num_iterations=3, sampler=Sampler()) + result = optimizer.solve(problem) + print(result)