From 2b5c37baebc99051ab244286853c340888667d61 Mon Sep 17 00:00:00 2001 From: Takashi Imamichi <31178928+t-imamichi@users.noreply.github.com> Date: Wed, 6 Dec 2023 22:39:21 +0900 Subject: [PATCH] Fix mypy for gurobipy 11.0 (#573) --- qiskit_optimization/translators/gurobipy.py | 71 ++++++++++----------- 1 file changed, 35 insertions(+), 36 deletions(-) diff --git a/qiskit_optimization/translators/gurobipy.py b/qiskit_optimization/translators/gurobipy.py index 540f0582b..f0f3e3bde 100644 --- a/qiskit_optimization/translators/gurobipy.py +++ b/qiskit_optimization/translators/gurobipy.py @@ -18,13 +18,12 @@ from qiskit_optimization.exceptions import QiskitOptimizationError from qiskit_optimization.problems.constraint import Constraint from qiskit_optimization.problems.quadratic_objective import QuadraticObjective -from qiskit_optimization.problems.variable import Variable - from qiskit_optimization.problems.quadratic_program import QuadraticProgram +from qiskit_optimization.problems.variable import Variable if _optionals.HAS_GUROBIPY: # pylint: disable=import-error,no-name-in-module - from gurobipy import Model + from gurobipy import LinExpr, Model, QuadExpr else: class Model: # type: ignore @@ -72,7 +71,7 @@ def to_gurobipy(quadratic_program: QuadraticProgram) -> Model: raise QiskitOptimizationError(f"Unsupported variable type: {x.vartype}") # add objective - objective = quadratic_program.objective.constant + objective = QuadExpr(quadratic_program.objective.constant) for i, v in quadratic_program.objective.linear.to_dict().items(): objective += v * var[cast(int, i)] for (i, j), v in quadratic_program.objective.quadratic.to_dict().items(): @@ -88,7 +87,7 @@ def to_gurobipy(quadratic_program: QuadraticProgram) -> Model: rhs = l_constraint.rhs if rhs == 0 and l_constraint.linear.coefficients.nnz == 0: continue - linear_expr = 0 + linear_expr = LinExpr(0) for j, v in l_constraint.linear.to_dict().items(): linear_expr += v * var[cast(int, j)] sense = l_constraint.sense @@ -112,7 +111,7 @@ def to_gurobipy(quadratic_program: QuadraticProgram) -> Model: and q_constraint.quadratic.coefficients.nnz == 0 ): continue - quadratic_expr = 0 + quadratic_expr = QuadExpr(0) for j, v in q_constraint.linear.to_dict().items(): quadratic_expr += v * var[cast(int, j)] for (j, k), v in q_constraint.quadratic.to_dict().items(): @@ -169,14 +168,14 @@ def from_gurobipy(model: Model) -> QuadraticProgram: # keep track of names separately, since gurobipy allows to have None names. var_names = {} for x in model.getVars(): - if x.vtype == gp.GRB.CONTINUOUS: - x_new = quadratic_program.continuous_var(x.lb, x.ub, x.VarName) - elif x.vtype == gp.GRB.BINARY: + if x.VType == gp.GRB.CONTINUOUS: + x_new = quadratic_program.continuous_var(x.LB, x.UB, x.VarName) + elif x.VType == gp.GRB.BINARY: x_new = quadratic_program.binary_var(x.VarName) - elif x.vtype == gp.GRB.INTEGER: - x_new = quadratic_program.integer_var(x.lb, x.ub, x.VarName) + elif x.VType == gp.GRB.INTEGER: + x_new = quadratic_program.integer_var(x.LB, x.UB, x.VarName) else: - raise QiskitOptimizationError(f"Unsupported variable type: {x.VarName} {x.vtype}") + raise QiskitOptimizationError(f"Unsupported variable type: {x.VarName} {x.VType}") var_names[x] = x_new.name # objective sense @@ -205,10 +204,10 @@ def from_gurobipy(model: Model) -> QuadraticProgram: quadratic = {} if has_quadratic_objective: for i in range(objective.size()): - x = var_names[objective.getVar1(i)] - y = var_names[objective.getVar2(i)] - v = objective.getCoeff(i) - quadratic[x, y] = v + var1 = var_names[cast(QuadExpr, objective).getVar1(i)] + var2 = var_names[cast(QuadExpr, objective).getVar2(i)] + coeff = objective.getCoeff(i) + quadratic[var1, var2] = coeff # set objective if minimize: @@ -221,16 +220,16 @@ def from_gurobipy(model: Model) -> QuadraticProgram: raise QiskitOptimizationError("Unsupported constraint: SOS or General Constraint") # get linear constraints - for constraint in model.getConstrs(): - name = constraint.ConstrName - sense = constraint.Sense + for l_constraint in model.getConstrs(): + name = l_constraint.ConstrName + sense = l_constraint.Sense - left_expr = model.getRow(constraint) - rhs = constraint.RHS + l_left_expr = model.getRow(l_constraint) + rhs = l_constraint.RHS lhs = {} - for i in range(left_expr.size()): - lhs[var_names[left_expr.getVar(i)]] = left_expr.getCoeff(i) + for i in range(l_left_expr.size()): + lhs[var_names[l_left_expr.getVar(i)]] = l_left_expr.getCoeff(i) if sense == gp.GRB.EQUAL: quadratic_program.linear_constraint(lhs, "==", rhs, name) @@ -239,28 +238,28 @@ def from_gurobipy(model: Model) -> QuadraticProgram: elif sense == gp.GRB.LESS_EQUAL: quadratic_program.linear_constraint(lhs, "<=", rhs, name) else: - raise QiskitOptimizationError(f"Unsupported constraint sense: {constraint}") + raise QiskitOptimizationError(f"Unsupported constraint sense: {l_constraint}") # get quadratic constraints - for constraint in model.getQConstrs(): - name = constraint.QCName - sense = constraint.QCSense + for q_constraint in model.getQConstrs(): + name = q_constraint.QCName + sense = q_constraint.QCSense - left_expr = model.getQCRow(constraint) - rhs = constraint.QCRHS + q_left_expr = model.getQCRow(q_constraint) + rhs = q_constraint.QCRHS linear = {} quadratic = {} - linear_part = left_expr.getLinExpr() + linear_part = q_left_expr.getLinExpr() for i in range(linear_part.size()): linear[var_names[linear_part.getVar(i)]] = linear_part.getCoeff(i) - for i in range(left_expr.size()): - x = var_names[left_expr.getVar1(i)] - y = var_names[left_expr.getVar2(i)] - v = left_expr.getCoeff(i) - quadratic[x, y] = v + for i in range(q_left_expr.size()): + var1 = var_names[q_left_expr.getVar1(i)] + var2 = var_names[q_left_expr.getVar2(i)] + coeff = q_left_expr.getCoeff(i) + quadratic[var1, var2] = coeff if sense == gp.GRB.EQUAL: quadratic_program.quadratic_constraint(linear, quadratic, "==", rhs, name) @@ -269,6 +268,6 @@ def from_gurobipy(model: Model) -> QuadraticProgram: elif sense == gp.GRB.LESS_EQUAL: quadratic_program.quadratic_constraint(linear, quadratic, "<=", rhs, name) else: - raise QiskitOptimizationError(f"Unsupported constraint sense: {constraint}") + raise QiskitOptimizationError(f"Unsupported constraint sense: {q_constraint}") return quadratic_program