diff --git a/qiskit_experiments/library/randomized_benchmarking/clifford_utils.py b/qiskit_experiments/library/randomized_benchmarking/clifford_utils.py index ea89ceb816..666f8b0cc9 100644 --- a/qiskit_experiments/library/randomized_benchmarking/clifford_utils.py +++ b/qiskit_experiments/library/randomized_benchmarking/clifford_utils.py @@ -741,7 +741,6 @@ def _layer_indices_from_num(num: Integral) -> Tuple[Integral, Integral, Integral return idx0, idx1, idx2 -@lru_cache(maxsize=24 * 24) def _tensor_1q_nums(first: Integral, second: Integral) -> Integral: """Return the 2-qubit Clifford integer that is the tensor product of 1-qubit Cliffords.""" return _CLIFFORD_TENSOR_1Q[first, second] diff --git a/releasenotes/notes/layer-fidelity-1e09dea9e5b69515.yaml b/releasenotes/notes/layer-fidelity-1e09dea9e5b69515.yaml index f360229551..6ca0fe3183 100644 --- a/releasenotes/notes/layer-fidelity-1e09dea9e5b69515.yaml +++ b/releasenotes/notes/layer-fidelity-1e09dea9e5b69515.yaml @@ -2,7 +2,7 @@ features: - | Add a new experiment class :class:`.LayerFidelity` to measure - `layer fidelity and EPLG (error per layered gates)`_, + `layer fidelity and EPLG (error per layered gate) `_, which is a holistic benchmark to characterize the full quality of the devices at scale. It has an experimental feature: its :meth:`circuits`