diff --git a/qiskit_algorithms/eigensolvers/vqd.py b/qiskit_algorithms/eigensolvers/vqd.py index 19024e2c..cafb056a 100644 --- a/qiskit_algorithms/eigensolvers/vqd.py +++ b/qiskit_algorithms/eigensolvers/vqd.py @@ -1,6 +1,6 @@ # This code is part of a Qiskit project. # -# (C) Copyright IBM 2022, 2023. +# (C) Copyright IBM 2022, 2024. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory @@ -94,7 +94,7 @@ class VQD(VariationalAlgorithm, Eigensolver): overlap estimation as indicated in the VQD paper. ansatz (QuantumCircuit): A parameterized circuit used as ansatz for the wave function. optimizer(Optimizer | Sequence[Optimizer]): A classical optimizer or a list of optimizers, - one for every k-th eigenvalue. Can either be a Qiskit optimizer or a callable + one for every k-th eigenvalue. Can either be a Qiskit optimizer or a callable that takes an array as input and returns a Qiskit or SciPy optimization result. k (int): the number of eigenvalues to return. Returns the lowest k eigenvalues. betas (list[float]): Beta parameters in the VQD paper. @@ -102,11 +102,6 @@ class VQD(VariationalAlgorithm, Eigensolver): These hyper-parameters balance the contribution of each overlap term to the cost function and have a default value computed as the mean square sum of the coefficients of the observable. - initial point (Sequence[float] | Sequence[Sequence[float]] | None): An optional initial - point (i.e. initial parameter values) or a list of initial points - (one for every k-th eigenvalue) for the optimizer. - If ``None`` then VQD will look to the ansatz for a - preferred point and if not will simply compute a random one. callback (Callable[[int, np.ndarray, float, dict[str, Any]], None] | None): A callback that can access the intermediate data during the optimization. Four parameter values are passed to the callback as @@ -134,7 +129,7 @@ def __init__( fidelity: The fidelity class using primitives. ansatz: A parameterized circuit used as ansatz for the wave function. optimizer: A classical optimizer or a list of optimizers, one for every k-th eigenvalue. - Can either be a Qiskit optimizer or a callable + Can either be a Qiskit optimizer or a callable that takes an array as input and returns a Qiskit or SciPy optimization result. k: The number of eigenvalues to return. Returns the lowest k eigenvalues. betas: Beta parameters in the VQD paper.