-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
182 lines (141 loc) · 6.69 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
from torch.nn import CTCLoss
from transformers import Wav2Vec2CTCTokenizer, Wav2Vec2ForCTC, Wav2Vec2Processor, Wav2Vec2Config
from transformers import AdamW
from transformers import get_linear_schedule_with_warmup, WEIGHTS_NAME, CONFIG_NAME
from torch.utils.data import Dataset, DataLoader
import soundfile as sf
import torch
from tqdm import tqdm
import numpy as np
from jiwer import wer
import os
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
def map_to_array(batch):
speech, _ = sf.read(batch["file"])
batch["speech"] = speech
return batch
def default_loader(path):
wav, sample_rate = sf.read(path)
return torch.Tensor(wav)
def collate_fn(batch_data, pad=0.):
max_len = max([len(seq) for seq in batch_data])
for i in range(len(batch_data)):
wav = batch_data[i]
wav += [pad]*(max_len-len(wav))
return batch_data
class ASRDataset(Dataset):
def __init__(self, index_file, loader=default_loader):
# 定义好 image 的路径
self.wavs = list()
self.target = list()
self._load_index(index_file)
self.loader = loader
def _load_index(self, file):
wavs, target = [], []
with open(file, 'r', encoding='utf-8') as f:
for line in f:
wav_file, text = line[:-1].split('\t')
wavs.append(wav_file)
target.append(text)
self.wavs = wavs
self.target = target
def loader(self, file):
wav, _ = sf.read(file, samplerate=16000)
return wav.tolist()
def __getitem__(self, index):
wav = self.wavs[index]
target = self.target[index]
return wav, target
def __len__(self):
return len(self.wavs)
def evaluate(model, loss_fn, tokenizer, processor, dev_data, DEVICE):
model.eval()
accuracy = []
total_loss = 0
with torch.no_grad():
for file, real in dev_data:
wav, _ = sf.read(file)
inputs = processor(wav, sampling_rate=16_000, return_tensors="pt")
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
log_probs = torch.log_softmax(logits, dim=-1).transpose(0, 1)
targets, target_lengths = [], []
targets.extend(tokenizer(real).data['input_ids'])
target_lengths.append(len(real))
input_lengths = torch.full(size=(log_probs.shape[1],), fill_value=log_probs.shape[0], dtype=torch.long).to(DEVICE)
targets = torch.Tensor(targets).to(DEVICE)
target_lengths = torch.IntTensor(target_lengths).to(DEVICE)
loss = loss_fn(log_probs=log_probs, targets=targets, input_lengths=input_lengths, target_lengths=target_lengths)
total_loss += loss
predicted_ids = torch.argmax(logits, dim=-1).cpu().detach()
predicted_sentences = processor.batch_decode(predicted_ids)[0]
pred = ' '.join(list(predicted_sentences.replace(' ', '').replace('<unk>', '').replace('<pad>', '').replace('<s>', '').replace('</s>', '')))
real = ' '.join(list(real))
file_wer = wer(truth=real, hypothesis=pred)
accuracy.append(file_wer)
return loss, 1 - np.mean(accuracy)
def save_model(save_dir, model, processor):
model_to_save = model.module if hasattr(model, "module") else model
output_model_file = os.path.join(save_dir, WEIGHTS_NAME)
output_config_file = os.path.join(save_dir, CONFIG_NAME)
torch.save(model_to_save.state_dict(), output_model_file)
model_to_save.config.to_json_file(output_config_file)
processor.save_pretrained(save_dir)
if __name__ == "__main__":
epochs = 30
batch_size = 32
learning_rate = 3e-5
TRAIN_DATA_PATH = "./data/train.txt"
DEV_DATA_PATH = "./data/dev.txt"
MODEL_DIR = "./pretrain/wav2vec2-large-xlsr-53-chinese-zh-cn" # 预训练模型目录路径
SAVE_DIR = "./saved_model" # 模型保存路径
if os.environ["CUDA_VISIBLE_DEVICES"] == '-1':
DEVICE = torch.device('cpu')
else:
DIVICE = torch.device('cuda')
model = Wav2Vec2ForCTC.from_pretrained(MODEL_DIR)
tokenizer = Wav2Vec2CTCTokenizer.from_pretrained(MODEL_DIR)
config = Wav2Vec2Config.from_pretrained(MODEL_DIR)
processor = Wav2Vec2Processor.from_pretrained(MODEL_DIR)
## Load Dataset
train_data = ASRDataset(TRAIN_DATA_PATH)
train_iter = DataLoader(train_data, batch_size=batch_size, shuffle=True)
dev_data = [i.split('\t') for i in open(DEV_DATA_PATH, 'r', encoding='utf-8')]
model = model.to(DEVICE)
model.train()
## TRAINING
optimizer = AdamW(model.parameters(), lr=learning_rate)
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=0.05, num_training_steps=len(train_iter)*epochs)
loss_fn = CTCLoss(blank=0, zero_infinity=False)
total_batch = 0
best_dev_acc = -float('inf')
for epoch in range(epochs):
for batch in tqdm(train_iter, total=len(train_iter)//batch_size, desc=f"epoch-{epoch}"):
files, texts = batch
wavs = [sf.read(path)[0].tolist() for path in files]
inputs = processor(wavs, sampling_rate=16_000, return_tensors="pt", padding=True)
logits = model(inputs.input_values.to(DEVICE), attention_mask=inputs.attention_mask.to(DEVICE)).logits
model.zero_grad()
log_probs = torch.log_softmax(logits, dim=-1).transpose(0, 1)
targets, target_lengths = [], []
for text in texts:
targets.extend(tokenizer(text).data['input_ids'])
target_lengths.append(len(text))
input_lengths = torch.full(size=(log_probs.shape[1],), fill_value=log_probs.shape[0], dtype=torch.long).to(DEVICE)
targets = torch.Tensor(targets).to(DEVICE)
target_lengths = torch.IntTensor(target_lengths).to(DEVICE)
loss = loss_fn(log_probs=log_probs, targets=targets,
input_lengths=input_lengths, target_lengths=target_lengths)
loss.backward()
optimizer.step()
scheduler.step()
if total_batch % 20 == 0:
dev_loss, dev_acc = evaluate(model, loss_fn, tokenizer, processor, dev_data, DEVICE)
if dev_acc > best_dev_acc:
best_dev_acc = dev_acc
save_model(SAVE_DIR, model, processor)
improve = '*'
else:
improve = ' '
print(f"\n{improve} Loss of Dev = {dev_loss}, Accuracy of Dev = {dev_acc}\n")
optimizer.step()
total_batch += 1