-
Notifications
You must be signed in to change notification settings - Fork 29
/
read_data.cc
283 lines (258 loc) · 8.23 KB
/
read_data.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
/*
* Author: Haibao Tang <[email protected]> May 10, 2007
*
* Data input module for mcscan, contains several procedures
* Read blast output file, formatted by -m8, is a bunch of hits
* Read MCL cluster, which is retrieved by clustering the above blast file
* Read GFF file, which includes the chromosome, position information
* Modified by Yupeng Wang, Mar 31, 2011
* Code related to MCL was removed
* Pre-processing BLAST was incorporated
* Gene matches can be filtered for intra-species and inter-species
*/
#include "read_data.h"
// incremental sorting y coord
static bool cmp_y (const Score_t& t1, const Score_t& t2)
{
return t1.y < t2.y ||
(t1.y == t2.y && t1.x < t2.x);
}
// incremental sorting e-value
static bool cmp_ev (const Score_t& t1, const Score_t& t2)
{
return t1.score < t2.score;
}
// filter the blast -m8 output by the following threshold:
// lexically sorted, gene #1 < gene #2
// non-self blast match
// both be present in the mcl output file and in the same group
void read_blast(const char *prefix_fn, bool gff_flag=true)
{
char fn[LABEL_LEN], g1[LABEL_LEN], g2[LABEL_LEN];
sprintf(fn,"%s.blast",prefix_fn);
ifstream in(fn);
int i;
int total_num=0;
string line,word,geneids,gene1,gene2;
double evalue;
map<string, double>blast_map;
map<string, double>::iterator it;
cout<<"Reading BLAST file and pre-processing"<<endl;
while (!in.eof())
{
getline(in,line);
if (line=="")
break;
istringstream test(line);
getline(test,gene1,'\t');
getline(test,gene2,'\t');
getline(test,word,'\t');
getline(test,word,'\t');
getline(test,word,'\t');
getline(test,word,'\t');
getline(test,word,'\t');
getline(test,word,'\t');
getline(test,word,'\t');
getline(test,word,'\t');
getline(test,word,'\t');
istringstream double_iss(word);
double_iss>>evalue;
i=gene1.compare(gene2);
if (i==0)
{
continue;
}
else if (i<0)
{
geneids=gene1+"&"+gene2;
}
else
{
geneids=gene2+"&"+gene1;
}
it = blast_map.find(geneids);
if (it==blast_map.end())
{
blast_map[geneids]=evalue;
}
else
{
if (evalue<it->second)
{
it->second=evalue;
}
}
total_num++;
}
in.close();
double score;
Blast_record br;
int pair_id = 0;
map<string, Gene_feat>::iterator it1, it2;
Gene_feat *gf1, *gf2;
cout<<"Generating BLAST list"<<endl;
for (it=blast_map.begin();it!=blast_map.end();it++)
{
istringstream test(it->first);
getline(test,gene1,'&');
getline(test,gene2,'&');
it1 = gene_map.find(gene1);
it2 = gene_map.find(gene2);
if (it1==gene_map.end() || it2==gene_map.end()) continue;
gf1 = &(it1->second), gf2 = &(it2->second);
if (gf1->mol.empty() || gf2->mol.empty()) continue;
if (IN_SYNTENY==1 && gf1->mol.substr(0,2)!=gf2->mol.substr(0,2)) continue;
/////////////bug here/////////////////////////////////////////////////////////////
i=gf1->mol.compare(gf2->mol);
//////////////////////////////////////////////////////////////////////////////////
if (i<0)
{
br.gene1=gene1;
br.gene2=gene2;
br.mol_pair = gf1->mol+"&"+gf2->mol;
}
else if (i==0)
{
if (gf1->mid<=gf2->mid)
{
br.gene1=gene1;
br.gene2=gene2;
}
else
{
br.gene1=gene2;
br.gene2=gene1;
}
br.mol_pair = gf1->mol+"&"+gf2->mol;
}
else
{
br.gene1=gene2;
br.gene2=gene1;
br.mol_pair = gf2->mol+"&"+gf1->mol;
}
//////////////////////////////////////////////////////////////////////////////////
if(IN_SYNTENY!=2||gf1->mol.substr(0,2)!=gf2->mol.substr(0,2))
mol_pairs[br.mol_pair]++;
br.pair_id = pair_id++;
br.score = it->second;
match_list.push_back(br);
}
int selected_num = match_list.size();
progress("%d matches imported (%d discarded)",
selected_num, total_num - selected_num);
}
void read_gff(const char *prefix_fn)
{
char fn[LABEL_LEN];
string mol,gn,line,word;
Gene_feat gf;
sprintf(fn, "%s.gff", prefix_fn);
ifstream in(fn);
while (!in.eof())
{
getline(in,line);
if (line=="")
break;
istringstream test(line);
getline(test,mol,'\t');
gf.mol = mol;
getline(test,gn,'\t');
gf.name = gn;
getline(test,word,'\t');
gf.mid = atoi(word.c_str());
gene_map[gf.name] = gf;
}
in.close();
}
static void filter_matches_x ()
{
// match_bin is a list of records that are potentially repetitive
vector<Score_t> match_bin, score_cpy;
vector<Score_t>::const_iterator it, prev_rec;
sort(score.begin(), score.end());
prev_rec = it = score.begin();
it++;
match_bin.push_back(*(prev_rec));
for (; it != score.end(); it++)
{
// scan whether it has a linking window with previous one
if ((prev_rec->x != it->x) ||
(it->y - prev_rec->y) > OVERLAP_WINDOW)
{
// record last match_bin, take only least e-value
score_cpy.push_back(*min_element(match_bin.begin(),
match_bin.end(), cmp_ev));
// start a new match_bin
match_bin.clear();
}
match_bin.push_back(*it);
prev_rec = it;
}
// don't forget the last match_bin
score_cpy.push_back(*min_element(match_bin.begin(),
match_bin.end(), cmp_ev));
match_bin.clear();
// copy into score
score.clear();
score = score_cpy;
score_cpy.clear();
}
static void filter_matches_y ()
{
// match_bin is a list of records that are potentially repetitive
vector<Score_t> match_bin, score_cpy;
vector<Score_t>::const_iterator it, prev_rec;
sort(score.begin(), score.end(), cmp_y);
prev_rec = it = score.begin();
it++;
match_bin.push_back(*(prev_rec));
for (; it != score.end(); it++)
{
// scan whether it has a linking window with previous one
if ((prev_rec->y != it->y) ||
(it->x - prev_rec->x) > OVERLAP_WINDOW)
{
// record last match_bin, take only least e-value
score_cpy.push_back(*min_element(match_bin.begin(),
match_bin.end(), cmp_ev));
// start a new match_bin
match_bin.clear();
}
match_bin.push_back(*it);
prev_rec = it;
}
// don't forget the last match_bin
score_cpy.push_back(*min_element(match_bin.begin(),
match_bin.end(), cmp_ev));
match_bin.clear();
// copy into score
score.clear();
score = score_cpy;
score_cpy.clear();
}
// feed into dagchainer
void feed_dag(const string &mol_pair)
{
// two additional filters will be applied here
// best hsp (least e-value)
// non-repetitive in a window of 50kb region
vector<Blast_record>::const_iterator it;
Score_t cur_score;
for (it = match_list.begin(); it < match_list.end(); it++)
{
if (it->mol_pair != mol_pair) continue;
cur_score.pairID = it->pair_id;
cur_score.x = gene_map[it->gene1].gene_id;
cur_score.y = gene_map[it->gene2].gene_id;
cur_score.gene1=it->gene1;
cur_score.gene2=it->gene2;
cur_score.score = MATCH_SCORE;
score.push_back(cur_score);
}
// sort by both axis and remove redundant matches within
// a given window length (default 50kb)
filter_matches_x();
filter_matches_y();
dag_main(score, mol_pair);
}