-
Notifications
You must be signed in to change notification settings - Fork 7k
/
Copy pathtest_onnx.py
582 lines (493 loc) · 21.8 KB
/
test_onnx.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
import io
from collections import OrderedDict
from typing import List, Optional, Tuple
import pytest
import torch
from common_utils import assert_equal, set_rng_seed
from torchvision import models, ops
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor, TwoMLPHead
from torchvision.models.detection.image_list import ImageList
from torchvision.models.detection.roi_heads import RoIHeads
from torchvision.models.detection.rpn import AnchorGenerator, RegionProposalNetwork, RPNHead
from torchvision.models.detection.transform import GeneralizedRCNNTransform
from torchvision.ops import _register_onnx_ops
# In environments without onnxruntime we prefer to
# invoke all tests in the repo and have this one skipped rather than fail.
onnxruntime = pytest.importorskip("onnxruntime")
class TestONNXExporter:
@classmethod
def setup_class(cls):
torch.manual_seed(123)
def run_model(
self,
model,
inputs_list,
do_constant_folding=True,
dynamic_axes=None,
output_names=None,
input_names=None,
opset_version: Optional[int] = None,
):
if opset_version is None:
opset_version = _register_onnx_ops.BASE_ONNX_OPSET_VERSION
model.eval()
onnx_io = io.BytesIO()
if isinstance(inputs_list[0][-1], dict):
torch_onnx_input = inputs_list[0] + ({},)
else:
torch_onnx_input = inputs_list[0]
# export to onnx with the first input
torch.onnx.export(
model,
torch_onnx_input,
onnx_io,
do_constant_folding=do_constant_folding,
opset_version=opset_version,
dynamic_axes=dynamic_axes,
input_names=input_names,
output_names=output_names,
verbose=True,
)
# validate the exported model with onnx runtime
for test_inputs in inputs_list:
with torch.no_grad():
if isinstance(test_inputs, torch.Tensor) or isinstance(test_inputs, list):
test_inputs = (test_inputs,)
test_ouputs = model(*test_inputs)
if isinstance(test_ouputs, torch.Tensor):
test_ouputs = (test_ouputs,)
self.ort_validate(onnx_io, test_inputs, test_ouputs)
def ort_validate(self, onnx_io, inputs, outputs):
inputs, _ = torch.jit._flatten(inputs)
outputs, _ = torch.jit._flatten(outputs)
def to_numpy(tensor):
if tensor.requires_grad:
return tensor.detach().cpu().numpy()
else:
return tensor.cpu().numpy()
inputs = list(map(to_numpy, inputs))
outputs = list(map(to_numpy, outputs))
ort_session = onnxruntime.InferenceSession(onnx_io.getvalue(), providers=onnxruntime.get_available_providers())
# compute onnxruntime output prediction
ort_inputs = {ort_session.get_inputs()[i].name: inpt for i, inpt in enumerate(inputs)}
ort_outs = ort_session.run(None, ort_inputs)
for i in range(0, len(outputs)):
torch.testing.assert_close(outputs[i], ort_outs[i], rtol=1e-03, atol=1e-05)
def test_nms(self):
num_boxes = 100
boxes = torch.rand(num_boxes, 4)
boxes[:, 2:] += boxes[:, :2]
scores = torch.randn(num_boxes)
class Module(torch.nn.Module):
def forward(self, boxes, scores):
return ops.nms(boxes, scores, 0.5)
self.run_model(Module(), [(boxes, scores)])
def test_batched_nms(self):
num_boxes = 100
boxes = torch.rand(num_boxes, 4)
boxes[:, 2:] += boxes[:, :2]
scores = torch.randn(num_boxes)
idxs = torch.randint(0, 5, size=(num_boxes,))
class Module(torch.nn.Module):
def forward(self, boxes, scores, idxs):
return ops.batched_nms(boxes, scores, idxs, 0.5)
self.run_model(Module(), [(boxes, scores, idxs)])
def test_clip_boxes_to_image(self):
boxes = torch.randn(5, 4) * 500
boxes[:, 2:] += boxes[:, :2]
size = torch.randn(200, 300)
size_2 = torch.randn(300, 400)
class Module(torch.nn.Module):
def forward(self, boxes, size):
return ops.boxes.clip_boxes_to_image(boxes, size.shape)
self.run_model(
Module(), [(boxes, size), (boxes, size_2)], input_names=["boxes", "size"], dynamic_axes={"size": [0, 1]}
)
def test_roi_align(self):
x = torch.rand(1, 1, 10, 10, dtype=torch.float32)
single_roi = torch.tensor([[0, 0, 0, 4, 4]], dtype=torch.float32)
model = ops.RoIAlign((5, 5), 1, 2)
self.run_model(model, [(x, single_roi)])
x = torch.rand(1, 1, 10, 10, dtype=torch.float32)
single_roi = torch.tensor([[0, 0, 0, 4, 4]], dtype=torch.float32)
model = ops.RoIAlign((5, 5), 1, -1)
self.run_model(model, [(x, single_roi)])
def test_roi_align_aligned(self):
supported_onnx_version = _register_onnx_ops._ONNX_OPSET_VERSION_16
x = torch.rand(1, 1, 10, 10, dtype=torch.float32)
single_roi = torch.tensor([[0, 1.5, 1.5, 3, 3]], dtype=torch.float32)
model = ops.RoIAlign((5, 5), 1, 2, aligned=True)
self.run_model(model, [(x, single_roi)], opset_version=supported_onnx_version)
x = torch.rand(1, 1, 10, 10, dtype=torch.float32)
single_roi = torch.tensor([[0, 0.2, 0.3, 4.5, 3.5]], dtype=torch.float32)
model = ops.RoIAlign((5, 5), 0.5, 3, aligned=True)
self.run_model(model, [(x, single_roi)], opset_version=supported_onnx_version)
x = torch.rand(1, 1, 10, 10, dtype=torch.float32)
single_roi = torch.tensor([[0, 0.2, 0.3, 4.5, 3.5]], dtype=torch.float32)
model = ops.RoIAlign((5, 5), 1.8, 2, aligned=True)
self.run_model(model, [(x, single_roi)], opset_version=supported_onnx_version)
x = torch.rand(1, 1, 10, 10, dtype=torch.float32)
single_roi = torch.tensor([[0, 0.2, 0.3, 4.5, 3.5]], dtype=torch.float32)
model = ops.RoIAlign((2, 2), 2.5, 0, aligned=True)
self.run_model(model, [(x, single_roi)], opset_version=supported_onnx_version)
x = torch.rand(1, 1, 10, 10, dtype=torch.float32)
single_roi = torch.tensor([[0, 0.2, 0.3, 4.5, 3.5]], dtype=torch.float32)
model = ops.RoIAlign((2, 2), 2.5, -1, aligned=True)
self.run_model(model, [(x, single_roi)], opset_version=supported_onnx_version)
def test_roi_align_malformed_boxes(self):
supported_onnx_version = _register_onnx_ops._ONNX_OPSET_VERSION_16
x = torch.randn(1, 1, 10, 10, dtype=torch.float32)
single_roi = torch.tensor([[0, 2, 0.3, 1.5, 1.5]], dtype=torch.float32)
model = ops.RoIAlign((5, 5), 1, 1, aligned=True)
self.run_model(model, [(x, single_roi)], opset_version=supported_onnx_version)
def test_roi_pool(self):
x = torch.rand(1, 1, 10, 10, dtype=torch.float32)
rois = torch.tensor([[0, 0, 0, 4, 4]], dtype=torch.float32)
pool_h = 5
pool_w = 5
model = ops.RoIPool((pool_h, pool_w), 2)
self.run_model(model, [(x, rois)])
def test_resize_images(self):
class TransformModule(torch.nn.Module):
def __init__(self_module):
super().__init__()
self_module.transform = self._init_test_generalized_rcnn_transform()
def forward(self_module, images):
return self_module.transform.resize(images, None)[0]
input = torch.rand(3, 10, 20)
input_test = torch.rand(3, 100, 150)
self.run_model(
TransformModule(), [(input,), (input_test,)], input_names=["input1"], dynamic_axes={"input1": [0, 1, 2]}
)
def test_transform_images(self):
class TransformModule(torch.nn.Module):
def __init__(self_module):
super().__init__()
self_module.transform = self._init_test_generalized_rcnn_transform()
def forward(self_module, images):
return self_module.transform(images)[0].tensors
input = torch.rand(3, 100, 200), torch.rand(3, 200, 200)
input_test = torch.rand(3, 100, 200), torch.rand(3, 200, 200)
self.run_model(TransformModule(), [(input,), (input_test,)])
def _init_test_generalized_rcnn_transform(self):
min_size = 100
max_size = 200
image_mean = [0.485, 0.456, 0.406]
image_std = [0.229, 0.224, 0.225]
transform = GeneralizedRCNNTransform(min_size, max_size, image_mean, image_std)
return transform
def _init_test_rpn(self):
anchor_sizes = ((32,), (64,), (128,), (256,), (512,))
aspect_ratios = ((0.5, 1.0, 2.0),) * len(anchor_sizes)
rpn_anchor_generator = AnchorGenerator(anchor_sizes, aspect_ratios)
out_channels = 256
rpn_head = RPNHead(out_channels, rpn_anchor_generator.num_anchors_per_location()[0])
rpn_fg_iou_thresh = 0.7
rpn_bg_iou_thresh = 0.3
rpn_batch_size_per_image = 256
rpn_positive_fraction = 0.5
rpn_pre_nms_top_n = dict(training=2000, testing=1000)
rpn_post_nms_top_n = dict(training=2000, testing=1000)
rpn_nms_thresh = 0.7
rpn_score_thresh = 0.0
rpn = RegionProposalNetwork(
rpn_anchor_generator,
rpn_head,
rpn_fg_iou_thresh,
rpn_bg_iou_thresh,
rpn_batch_size_per_image,
rpn_positive_fraction,
rpn_pre_nms_top_n,
rpn_post_nms_top_n,
rpn_nms_thresh,
score_thresh=rpn_score_thresh,
)
return rpn
def _init_test_roi_heads_faster_rcnn(self):
out_channels = 256
num_classes = 91
box_fg_iou_thresh = 0.5
box_bg_iou_thresh = 0.5
box_batch_size_per_image = 512
box_positive_fraction = 0.25
bbox_reg_weights = None
box_score_thresh = 0.05
box_nms_thresh = 0.5
box_detections_per_img = 100
box_roi_pool = ops.MultiScaleRoIAlign(featmap_names=["0", "1", "2", "3"], output_size=7, sampling_ratio=2)
resolution = box_roi_pool.output_size[0]
representation_size = 1024
box_head = TwoMLPHead(out_channels * resolution**2, representation_size)
representation_size = 1024
box_predictor = FastRCNNPredictor(representation_size, num_classes)
roi_heads = RoIHeads(
box_roi_pool,
box_head,
box_predictor,
box_fg_iou_thresh,
box_bg_iou_thresh,
box_batch_size_per_image,
box_positive_fraction,
bbox_reg_weights,
box_score_thresh,
box_nms_thresh,
box_detections_per_img,
)
return roi_heads
def get_features(self, images):
s0, s1 = images.shape[-2:]
features = [
("0", torch.rand(2, 256, s0 // 4, s1 // 4)),
("1", torch.rand(2, 256, s0 // 8, s1 // 8)),
("2", torch.rand(2, 256, s0 // 16, s1 // 16)),
("3", torch.rand(2, 256, s0 // 32, s1 // 32)),
("4", torch.rand(2, 256, s0 // 64, s1 // 64)),
]
features = OrderedDict(features)
return features
def test_rpn(self):
set_rng_seed(0)
class RPNModule(torch.nn.Module):
def __init__(self_module):
super().__init__()
self_module.rpn = self._init_test_rpn()
def forward(self_module, images, features):
images = ImageList(images, [i.shape[-2:] for i in images])
return self_module.rpn(images, features)
images = torch.rand(2, 3, 150, 150)
features = self.get_features(images)
images2 = torch.rand(2, 3, 80, 80)
test_features = self.get_features(images2)
model = RPNModule()
model.eval()
model(images, features)
self.run_model(
model,
[(images, features), (images2, test_features)],
input_names=["input1", "input2", "input3", "input4", "input5", "input6"],
dynamic_axes={
"input1": [0, 1, 2, 3],
"input2": [0, 1, 2, 3],
"input3": [0, 1, 2, 3],
"input4": [0, 1, 2, 3],
"input5": [0, 1, 2, 3],
"input6": [0, 1, 2, 3],
},
)
def test_multi_scale_roi_align(self):
class TransformModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.model = ops.MultiScaleRoIAlign(["feat1", "feat2"], 3, 2)
self.image_sizes = [(512, 512)]
def forward(self, input, boxes):
return self.model(input, boxes, self.image_sizes)
i = OrderedDict()
i["feat1"] = torch.rand(1, 5, 64, 64)
i["feat2"] = torch.rand(1, 5, 16, 16)
boxes = torch.rand(6, 4) * 256
boxes[:, 2:] += boxes[:, :2]
i1 = OrderedDict()
i1["feat1"] = torch.rand(1, 5, 64, 64)
i1["feat2"] = torch.rand(1, 5, 16, 16)
boxes1 = torch.rand(6, 4) * 256
boxes1[:, 2:] += boxes1[:, :2]
self.run_model(
TransformModule(),
[
(
i,
[boxes],
),
(
i1,
[boxes1],
),
],
)
def test_roi_heads(self):
class RoiHeadsModule(torch.nn.Module):
def __init__(self_module):
super().__init__()
self_module.transform = self._init_test_generalized_rcnn_transform()
self_module.rpn = self._init_test_rpn()
self_module.roi_heads = self._init_test_roi_heads_faster_rcnn()
def forward(self_module, images, features):
original_image_sizes = [img.shape[-2:] for img in images]
images = ImageList(images, [i.shape[-2:] for i in images])
proposals, _ = self_module.rpn(images, features)
detections, _ = self_module.roi_heads(features, proposals, images.image_sizes)
detections = self_module.transform.postprocess(detections, images.image_sizes, original_image_sizes)
return detections
images = torch.rand(2, 3, 100, 100)
features = self.get_features(images)
images2 = torch.rand(2, 3, 150, 150)
test_features = self.get_features(images2)
model = RoiHeadsModule()
model.eval()
model(images, features)
self.run_model(
model,
[(images, features), (images2, test_features)],
input_names=["input1", "input2", "input3", "input4", "input5", "input6"],
dynamic_axes={
"input1": [0, 1, 2, 3],
"input2": [0, 1, 2, 3],
"input3": [0, 1, 2, 3],
"input4": [0, 1, 2, 3],
"input5": [0, 1, 2, 3],
"input6": [0, 1, 2, 3],
},
)
def get_image(self, rel_path: str, size: Tuple[int, int]) -> torch.Tensor:
import os
from PIL import Image
from torchvision.transforms import functional as F
data_dir = os.path.join(os.path.dirname(__file__), "assets")
path = os.path.join(data_dir, *rel_path.split("/"))
image = Image.open(path).convert("RGB").resize(size, Image.BILINEAR)
return F.convert_image_dtype(F.pil_to_tensor(image))
def get_test_images(self) -> Tuple[List[torch.Tensor], List[torch.Tensor]]:
return (
[self.get_image("encode_jpeg/grace_hopper_517x606.jpg", (100, 320))],
[self.get_image("fakedata/logos/rgb_pytorch.png", (250, 380))],
)
def test_faster_rcnn(self):
images, test_images = self.get_test_images()
dummy_image = [torch.ones(3, 100, 100) * 0.3]
model = models.detection.faster_rcnn.fasterrcnn_resnet50_fpn(
weights=models.detection.faster_rcnn.FasterRCNN_ResNet50_FPN_Weights.DEFAULT, min_size=200, max_size=300
)
model.eval()
model(images)
# Test exported model on images of different size, or dummy input
self.run_model(
model,
[(images,), (test_images,), (dummy_image,)],
input_names=["images_tensors"],
output_names=["outputs"],
dynamic_axes={"images_tensors": [0, 1, 2], "outputs": [0, 1, 2]},
)
# Test exported model for an image with no detections on other images
self.run_model(
model,
[(dummy_image,), (images,)],
input_names=["images_tensors"],
output_names=["outputs"],
dynamic_axes={"images_tensors": [0, 1, 2], "outputs": [0, 1, 2]},
)
# Verify that paste_mask_in_image beahves the same in tracing.
# This test also compares both paste_masks_in_image and _onnx_paste_masks_in_image
# (since jit_trace witll call _onnx_paste_masks_in_image).
def test_paste_mask_in_image(self):
masks = torch.rand(10, 1, 26, 26)
boxes = torch.rand(10, 4)
boxes[:, 2:] += torch.rand(10, 2)
boxes *= 50
o_im_s = (100, 100)
from torchvision.models.detection.roi_heads import paste_masks_in_image
out = paste_masks_in_image(masks, boxes, o_im_s)
jit_trace = torch.jit.trace(
paste_masks_in_image, (masks, boxes, [torch.tensor(o_im_s[0]), torch.tensor(o_im_s[1])])
)
out_trace = jit_trace(masks, boxes, [torch.tensor(o_im_s[0]), torch.tensor(o_im_s[1])])
assert torch.all(out.eq(out_trace))
masks2 = torch.rand(20, 1, 26, 26)
boxes2 = torch.rand(20, 4)
boxes2[:, 2:] += torch.rand(20, 2)
boxes2 *= 100
o_im_s2 = (200, 200)
from torchvision.models.detection.roi_heads import paste_masks_in_image
out2 = paste_masks_in_image(masks2, boxes2, o_im_s2)
out_trace2 = jit_trace(masks2, boxes2, [torch.tensor(o_im_s2[0]), torch.tensor(o_im_s2[1])])
assert torch.all(out2.eq(out_trace2))
def test_mask_rcnn(self):
images, test_images = self.get_test_images()
dummy_image = [torch.ones(3, 100, 100) * 0.3]
model = models.detection.mask_rcnn.maskrcnn_resnet50_fpn(
weights=models.detection.mask_rcnn.MaskRCNN_ResNet50_FPN_Weights.DEFAULT, min_size=200, max_size=300
)
model.eval()
model(images)
# Test exported model on images of different size, or dummy input
self.run_model(
model,
[(images,), (test_images,), (dummy_image,)],
input_names=["images_tensors"],
output_names=["boxes", "labels", "scores", "masks"],
dynamic_axes={
"images_tensors": [0, 1, 2],
"boxes": [0, 1],
"labels": [0],
"scores": [0],
"masks": [0, 1, 2],
},
)
# Test exported model for an image with no detections on other images
self.run_model(
model,
[(dummy_image,), (images,)],
input_names=["images_tensors"],
output_names=["boxes", "labels", "scores", "masks"],
dynamic_axes={
"images_tensors": [0, 1, 2],
"boxes": [0, 1],
"labels": [0],
"scores": [0],
"masks": [0, 1, 2],
},
)
# Verify that heatmaps_to_keypoints behaves the same in tracing.
# This test also compares both heatmaps_to_keypoints and _onnx_heatmaps_to_keypoints
# (since jit_trace witll call _heatmaps_to_keypoints).
def test_heatmaps_to_keypoints(self):
maps = torch.rand(10, 1, 26, 26)
rois = torch.rand(10, 4)
from torchvision.models.detection.roi_heads import heatmaps_to_keypoints
out = heatmaps_to_keypoints(maps, rois)
jit_trace = torch.jit.trace(heatmaps_to_keypoints, (maps, rois))
out_trace = jit_trace(maps, rois)
assert_equal(out[0], out_trace[0])
assert_equal(out[1], out_trace[1])
maps2 = torch.rand(20, 2, 21, 21)
rois2 = torch.rand(20, 4)
from torchvision.models.detection.roi_heads import heatmaps_to_keypoints
out2 = heatmaps_to_keypoints(maps2, rois2)
out_trace2 = jit_trace(maps2, rois2)
assert_equal(out2[0], out_trace2[0])
assert_equal(out2[1], out_trace2[1])
def test_keypoint_rcnn(self):
images, test_images = self.get_test_images()
dummy_images = [torch.ones(3, 100, 100) * 0.3]
model = models.detection.keypoint_rcnn.keypointrcnn_resnet50_fpn(
weights=models.detection.keypoint_rcnn.KeypointRCNN_ResNet50_FPN_Weights.DEFAULT, min_size=200, max_size=300
)
model.eval()
model(images)
self.run_model(
model,
[(images,), (test_images,), (dummy_images,)],
input_names=["images_tensors"],
output_names=["outputs1", "outputs2", "outputs3", "outputs4"],
dynamic_axes={"images_tensors": [0, 1, 2]},
)
self.run_model(
model,
[(dummy_images,), (test_images,)],
input_names=["images_tensors"],
output_names=["outputs1", "outputs2", "outputs3", "outputs4"],
dynamic_axes={"images_tensors": [0, 1, 2]},
)
def test_shufflenet_v2_dynamic_axes(self):
model = models.shufflenet_v2_x0_5(weights=models.ShuffleNet_V2_X0_5_Weights.DEFAULT)
dummy_input = torch.randn(1, 3, 224, 224, requires_grad=True)
test_inputs = torch.cat([dummy_input, dummy_input, dummy_input], 0)
self.run_model(
model,
[(dummy_input,), (test_inputs,)],
input_names=["input_images"],
output_names=["output"],
dynamic_axes={"input_images": {0: "batch_size"}, "output": {0: "batch_size"}},
)
if __name__ == "__main__":
pytest.main([__file__])