-
Notifications
You must be signed in to change notification settings - Fork 7k
/
fcos.py
775 lines (645 loc) · 33.4 KB
/
fcos.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
import math
import warnings
from collections import OrderedDict
from functools import partial
from typing import Any, Callable, Dict, List, Optional, Tuple
import torch
from torch import nn, Tensor
from ...ops import boxes as box_ops, generalized_box_iou_loss, misc as misc_nn_ops, sigmoid_focal_loss
from ...ops.feature_pyramid_network import LastLevelP6P7
from ...transforms._presets import ObjectDetection
from ...utils import _log_api_usage_once
from .._api import register_model, Weights, WeightsEnum
from .._meta import _COCO_CATEGORIES
from .._utils import _ovewrite_value_param, handle_legacy_interface
from ..resnet import resnet50, ResNet50_Weights
from . import _utils as det_utils
from .anchor_utils import AnchorGenerator
from .backbone_utils import _resnet_fpn_extractor, _validate_trainable_layers
from .transform import GeneralizedRCNNTransform
__all__ = [
"FCOS",
"FCOS_ResNet50_FPN_Weights",
"fcos_resnet50_fpn",
]
class FCOSHead(nn.Module):
"""
A regression and classification head for use in FCOS.
Args:
in_channels (int): number of channels of the input feature
num_anchors (int): number of anchors to be predicted
num_classes (int): number of classes to be predicted
num_convs (Optional[int]): number of conv layer of head. Default: 4.
"""
__annotations__ = {
"box_coder": det_utils.BoxLinearCoder,
}
def __init__(self, in_channels: int, num_anchors: int, num_classes: int, num_convs: Optional[int] = 4) -> None:
super().__init__()
self.box_coder = det_utils.BoxLinearCoder(normalize_by_size=True)
self.classification_head = FCOSClassificationHead(in_channels, num_anchors, num_classes, num_convs)
self.regression_head = FCOSRegressionHead(in_channels, num_anchors, num_convs)
def compute_loss(
self,
targets: List[Dict[str, Tensor]],
head_outputs: Dict[str, Tensor],
anchors: List[Tensor],
matched_idxs: List[Tensor],
) -> Dict[str, Tensor]:
cls_logits = head_outputs["cls_logits"] # [N, HWA, C]
bbox_regression = head_outputs["bbox_regression"] # [N, HWA, 4]
bbox_ctrness = head_outputs["bbox_ctrness"] # [N, HWA, 1]
all_gt_classes_targets = []
all_gt_boxes_targets = []
for targets_per_image, matched_idxs_per_image in zip(targets, matched_idxs):
if len(targets_per_image["labels"]) == 0:
gt_classes_targets = targets_per_image["labels"].new_zeros((len(matched_idxs_per_image),))
gt_boxes_targets = targets_per_image["boxes"].new_zeros((len(matched_idxs_per_image), 4))
else:
gt_classes_targets = targets_per_image["labels"][matched_idxs_per_image.clip(min=0)]
gt_boxes_targets = targets_per_image["boxes"][matched_idxs_per_image.clip(min=0)]
gt_classes_targets[matched_idxs_per_image < 0] = -1 # background
all_gt_classes_targets.append(gt_classes_targets)
all_gt_boxes_targets.append(gt_boxes_targets)
# List[Tensor] to Tensor conversion of `all_gt_boxes_target`, `all_gt_classes_targets` and `anchors`
all_gt_boxes_targets, all_gt_classes_targets, anchors = (
torch.stack(all_gt_boxes_targets),
torch.stack(all_gt_classes_targets),
torch.stack(anchors),
)
# compute foregroud
foregroud_mask = all_gt_classes_targets >= 0
num_foreground = foregroud_mask.sum().item()
# classification loss
gt_classes_targets = torch.zeros_like(cls_logits)
gt_classes_targets[foregroud_mask, all_gt_classes_targets[foregroud_mask]] = 1.0
loss_cls = sigmoid_focal_loss(cls_logits, gt_classes_targets, reduction="sum")
# amp issue: pred_boxes need to convert float
pred_boxes = self.box_coder.decode(bbox_regression, anchors)
# regression loss: GIoU loss
loss_bbox_reg = generalized_box_iou_loss(
pred_boxes[foregroud_mask],
all_gt_boxes_targets[foregroud_mask],
reduction="sum",
)
# ctrness loss
bbox_reg_targets = self.box_coder.encode(anchors, all_gt_boxes_targets)
if len(bbox_reg_targets) == 0:
gt_ctrness_targets = bbox_reg_targets.new_zeros(bbox_reg_targets.size()[:-1])
else:
left_right = bbox_reg_targets[:, :, [0, 2]]
top_bottom = bbox_reg_targets[:, :, [1, 3]]
gt_ctrness_targets = torch.sqrt(
(left_right.min(dim=-1)[0] / left_right.max(dim=-1)[0])
* (top_bottom.min(dim=-1)[0] / top_bottom.max(dim=-1)[0])
)
pred_centerness = bbox_ctrness.squeeze(dim=2)
loss_bbox_ctrness = nn.functional.binary_cross_entropy_with_logits(
pred_centerness[foregroud_mask], gt_ctrness_targets[foregroud_mask], reduction="sum"
)
return {
"classification": loss_cls / max(1, num_foreground),
"bbox_regression": loss_bbox_reg / max(1, num_foreground),
"bbox_ctrness": loss_bbox_ctrness / max(1, num_foreground),
}
def forward(self, x: List[Tensor]) -> Dict[str, Tensor]:
cls_logits = self.classification_head(x)
bbox_regression, bbox_ctrness = self.regression_head(x)
return {
"cls_logits": cls_logits,
"bbox_regression": bbox_regression,
"bbox_ctrness": bbox_ctrness,
}
class FCOSClassificationHead(nn.Module):
"""
A classification head for use in FCOS.
Args:
in_channels (int): number of channels of the input feature.
num_anchors (int): number of anchors to be predicted.
num_classes (int): number of classes to be predicted.
num_convs (Optional[int]): number of conv layer. Default: 4.
prior_probability (Optional[float]): probability of prior. Default: 0.01.
norm_layer: Module specifying the normalization layer to use.
"""
def __init__(
self,
in_channels: int,
num_anchors: int,
num_classes: int,
num_convs: int = 4,
prior_probability: float = 0.01,
norm_layer: Optional[Callable[..., nn.Module]] = None,
) -> None:
super().__init__()
self.num_classes = num_classes
self.num_anchors = num_anchors
if norm_layer is None:
norm_layer = partial(nn.GroupNorm, 32)
conv = []
for _ in range(num_convs):
conv.append(nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1))
conv.append(norm_layer(in_channels))
conv.append(nn.ReLU())
self.conv = nn.Sequential(*conv)
for layer in self.conv.children():
if isinstance(layer, nn.Conv2d):
torch.nn.init.normal_(layer.weight, std=0.01)
torch.nn.init.constant_(layer.bias, 0)
self.cls_logits = nn.Conv2d(in_channels, num_anchors * num_classes, kernel_size=3, stride=1, padding=1)
torch.nn.init.normal_(self.cls_logits.weight, std=0.01)
torch.nn.init.constant_(self.cls_logits.bias, -math.log((1 - prior_probability) / prior_probability))
def forward(self, x: List[Tensor]) -> Tensor:
all_cls_logits = []
for features in x:
cls_logits = self.conv(features)
cls_logits = self.cls_logits(cls_logits)
# Permute classification output from (N, A * K, H, W) to (N, HWA, K).
N, _, H, W = cls_logits.shape
cls_logits = cls_logits.view(N, -1, self.num_classes, H, W)
cls_logits = cls_logits.permute(0, 3, 4, 1, 2)
cls_logits = cls_logits.reshape(N, -1, self.num_classes) # Size=(N, HWA, 4)
all_cls_logits.append(cls_logits)
return torch.cat(all_cls_logits, dim=1)
class FCOSRegressionHead(nn.Module):
"""
A regression head for use in FCOS, which combines regression branch and center-ness branch.
This can obtain better performance.
Reference: `FCOS: A simple and strong anchor-free object detector <https://arxiv.org/abs/2006.09214>`_.
Args:
in_channels (int): number of channels of the input feature
num_anchors (int): number of anchors to be predicted
num_convs (Optional[int]): number of conv layer. Default: 4.
norm_layer: Module specifying the normalization layer to use.
"""
def __init__(
self,
in_channels: int,
num_anchors: int,
num_convs: int = 4,
norm_layer: Optional[Callable[..., nn.Module]] = None,
):
super().__init__()
if norm_layer is None:
norm_layer = partial(nn.GroupNorm, 32)
conv = []
for _ in range(num_convs):
conv.append(nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1))
conv.append(norm_layer(in_channels))
conv.append(nn.ReLU())
self.conv = nn.Sequential(*conv)
self.bbox_reg = nn.Conv2d(in_channels, num_anchors * 4, kernel_size=3, stride=1, padding=1)
self.bbox_ctrness = nn.Conv2d(in_channels, num_anchors * 1, kernel_size=3, stride=1, padding=1)
for layer in [self.bbox_reg, self.bbox_ctrness]:
torch.nn.init.normal_(layer.weight, std=0.01)
torch.nn.init.zeros_(layer.bias)
for layer in self.conv.children():
if isinstance(layer, nn.Conv2d):
torch.nn.init.normal_(layer.weight, std=0.01)
torch.nn.init.zeros_(layer.bias)
def forward(self, x: List[Tensor]) -> Tuple[Tensor, Tensor]:
all_bbox_regression = []
all_bbox_ctrness = []
for features in x:
bbox_feature = self.conv(features)
bbox_regression = nn.functional.relu(self.bbox_reg(bbox_feature))
bbox_ctrness = self.bbox_ctrness(bbox_feature)
# permute bbox regression output from (N, 4 * A, H, W) to (N, HWA, 4).
N, _, H, W = bbox_regression.shape
bbox_regression = bbox_regression.view(N, -1, 4, H, W)
bbox_regression = bbox_regression.permute(0, 3, 4, 1, 2)
bbox_regression = bbox_regression.reshape(N, -1, 4) # Size=(N, HWA, 4)
all_bbox_regression.append(bbox_regression)
# permute bbox ctrness output from (N, 1 * A, H, W) to (N, HWA, 1).
bbox_ctrness = bbox_ctrness.view(N, -1, 1, H, W)
bbox_ctrness = bbox_ctrness.permute(0, 3, 4, 1, 2)
bbox_ctrness = bbox_ctrness.reshape(N, -1, 1)
all_bbox_ctrness.append(bbox_ctrness)
return torch.cat(all_bbox_regression, dim=1), torch.cat(all_bbox_ctrness, dim=1)
class FCOS(nn.Module):
"""
Implements FCOS.
The input to the model is expected to be a list of tensors, each of shape [C, H, W], one for each
image, and should be in 0-1 range. Different images can have different sizes.
The behavior of the model changes depending on if it is in training or evaluation mode.
During training, the model expects both the input tensors and targets (list of dictionary),
containing:
- boxes (``FloatTensor[N, 4]``): the ground-truth boxes in ``[x1, y1, x2, y2]`` format, with
``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
- labels (Int64Tensor[N]): the class label for each ground-truth box
The model returns a Dict[Tensor] during training, containing the classification, regression
and centerness losses.
During inference, the model requires only the input tensors, and returns the post-processed
predictions as a List[Dict[Tensor]], one for each input image. The fields of the Dict are as
follows:
- boxes (``FloatTensor[N, 4]``): the predicted boxes in ``[x1, y1, x2, y2]`` format, with
``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
- labels (Int64Tensor[N]): the predicted labels for each image
- scores (Tensor[N]): the scores for each prediction
Args:
backbone (nn.Module): the network used to compute the features for the model.
It should contain an out_channels attribute, which indicates the number of output
channels that each feature map has (and it should be the same for all feature maps).
The backbone should return a single Tensor or an OrderedDict[Tensor].
num_classes (int): number of output classes of the model (including the background).
min_size (int): Images are rescaled before feeding them to the backbone:
we attempt to preserve the aspect ratio and scale the shorter edge
to ``min_size``. If the resulting longer edge exceeds ``max_size``,
then downscale so that the longer edge does not exceed ``max_size``.
This may result in the shorter edge beeing lower than ``min_size``.
max_size (int): See ``min_size``.
image_mean (Tuple[float, float, float]): mean values used for input normalization.
They are generally the mean values of the dataset on which the backbone has been trained
on
image_std (Tuple[float, float, float]): std values used for input normalization.
They are generally the std values of the dataset on which the backbone has been trained on
anchor_generator (AnchorGenerator): module that generates the anchors for a set of feature
maps. For FCOS, only set one anchor for per position of each level, the width and height equal to
the stride of feature map, and set aspect ratio = 1.0, so the center of anchor is equivalent to the point
in FCOS paper.
head (nn.Module): Module run on top of the feature pyramid.
Defaults to a module containing a classification and regression module.
center_sampling_radius (int): radius of the "center" of a groundtruth box,
within which all anchor points are labeled positive.
score_thresh (float): Score threshold used for postprocessing the detections.
nms_thresh (float): NMS threshold used for postprocessing the detections.
detections_per_img (int): Number of best detections to keep after NMS.
topk_candidates (int): Number of best detections to keep before NMS.
Example:
>>> import torch
>>> import torchvision
>>> from torchvision.models.detection import FCOS
>>> from torchvision.models.detection.anchor_utils import AnchorGenerator
>>> # load a pre-trained model for classification and return
>>> # only the features
>>> backbone = torchvision.models.mobilenet_v2(weights=MobileNet_V2_Weights.DEFAULT).features
>>> # FCOS needs to know the number of
>>> # output channels in a backbone. For mobilenet_v2, it's 1280,
>>> # so we need to add it here
>>> backbone.out_channels = 1280
>>>
>>> # let's make the network generate 5 x 3 anchors per spatial
>>> # location, with 5 different sizes and 3 different aspect
>>> # ratios. We have a Tuple[Tuple[int]] because each feature
>>> # map could potentially have different sizes and
>>> # aspect ratios
>>> anchor_generator = AnchorGenerator(
>>> sizes=((8,), (16,), (32,), (64,), (128,)),
>>> aspect_ratios=((1.0,),)
>>> )
>>>
>>> # put the pieces together inside a FCOS model
>>> model = FCOS(
>>> backbone,
>>> num_classes=80,
>>> anchor_generator=anchor_generator,
>>> )
>>> model.eval()
>>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)]
>>> predictions = model(x)
"""
__annotations__ = {
"box_coder": det_utils.BoxLinearCoder,
}
def __init__(
self,
backbone: nn.Module,
num_classes: int,
# transform parameters
min_size: int = 800,
max_size: int = 1333,
image_mean: Optional[List[float]] = None,
image_std: Optional[List[float]] = None,
# Anchor parameters
anchor_generator: Optional[AnchorGenerator] = None,
head: Optional[nn.Module] = None,
center_sampling_radius: float = 1.5,
score_thresh: float = 0.2,
nms_thresh: float = 0.6,
detections_per_img: int = 100,
topk_candidates: int = 1000,
**kwargs,
):
super().__init__()
_log_api_usage_once(self)
if not hasattr(backbone, "out_channels"):
raise ValueError(
"backbone should contain an attribute out_channels "
"specifying the number of output channels (assumed to be the "
"same for all the levels)"
)
self.backbone = backbone
if not isinstance(anchor_generator, (AnchorGenerator, type(None))):
raise TypeError(
f"anchor_generator should be of type AnchorGenerator or None, instead got {type(anchor_generator)}"
)
if anchor_generator is None:
anchor_sizes = ((8,), (16,), (32,), (64,), (128,)) # equal to strides of multi-level feature map
aspect_ratios = ((1.0,),) * len(anchor_sizes) # set only one anchor
anchor_generator = AnchorGenerator(anchor_sizes, aspect_ratios)
self.anchor_generator = anchor_generator
if self.anchor_generator.num_anchors_per_location()[0] != 1:
raise ValueError(
f"anchor_generator.num_anchors_per_location()[0] should be 1 instead of {anchor_generator.num_anchors_per_location()[0]}"
)
if head is None:
head = FCOSHead(backbone.out_channels, anchor_generator.num_anchors_per_location()[0], num_classes)
self.head = head
self.box_coder = det_utils.BoxLinearCoder(normalize_by_size=True)
if image_mean is None:
image_mean = [0.485, 0.456, 0.406]
if image_std is None:
image_std = [0.229, 0.224, 0.225]
self.transform = GeneralizedRCNNTransform(min_size, max_size, image_mean, image_std, **kwargs)
self.center_sampling_radius = center_sampling_radius
self.score_thresh = score_thresh
self.nms_thresh = nms_thresh
self.detections_per_img = detections_per_img
self.topk_candidates = topk_candidates
# used only on torchscript mode
self._has_warned = False
@torch.jit.unused
def eager_outputs(
self, losses: Dict[str, Tensor], detections: List[Dict[str, Tensor]]
) -> Tuple[Dict[str, Tensor], List[Dict[str, Tensor]]]:
if self.training:
return losses
return detections
def compute_loss(
self,
targets: List[Dict[str, Tensor]],
head_outputs: Dict[str, Tensor],
anchors: List[Tensor],
num_anchors_per_level: List[int],
) -> Dict[str, Tensor]:
matched_idxs = []
for anchors_per_image, targets_per_image in zip(anchors, targets):
if targets_per_image["boxes"].numel() == 0:
matched_idxs.append(
torch.full((anchors_per_image.size(0),), -1, dtype=torch.int64, device=anchors_per_image.device)
)
continue
gt_boxes = targets_per_image["boxes"]
gt_centers = (gt_boxes[:, :2] + gt_boxes[:, 2:]) / 2 # Nx2
anchor_centers = (anchors_per_image[:, :2] + anchors_per_image[:, 2:]) / 2 # N
anchor_sizes = anchors_per_image[:, 2] - anchors_per_image[:, 0]
# center sampling: anchor point must be close enough to gt center.
pairwise_match = (anchor_centers[:, None, :] - gt_centers[None, :, :]).abs_().max(
dim=2
).values < self.center_sampling_radius * anchor_sizes[:, None]
# compute pairwise distance between N points and M boxes
x, y = anchor_centers.unsqueeze(dim=2).unbind(dim=1) # (N, 1)
x0, y0, x1, y1 = gt_boxes.unsqueeze(dim=0).unbind(dim=2) # (1, M)
pairwise_dist = torch.stack([x - x0, y - y0, x1 - x, y1 - y], dim=2) # (N, M)
# anchor point must be inside gt
pairwise_match &= pairwise_dist.min(dim=2).values > 0
# each anchor is only responsible for certain scale range.
lower_bound = anchor_sizes * 4
lower_bound[: num_anchors_per_level[0]] = 0
upper_bound = anchor_sizes * 8
upper_bound[-num_anchors_per_level[-1] :] = float("inf")
pairwise_dist = pairwise_dist.max(dim=2).values
pairwise_match &= (pairwise_dist > lower_bound[:, None]) & (pairwise_dist < upper_bound[:, None])
# match the GT box with minimum area, if there are multiple GT matches
gt_areas = (gt_boxes[:, 2] - gt_boxes[:, 0]) * (gt_boxes[:, 3] - gt_boxes[:, 1]) # N
pairwise_match = pairwise_match.to(torch.float32) * (1e8 - gt_areas[None, :])
min_values, matched_idx = pairwise_match.max(dim=1) # R, per-anchor match
matched_idx[min_values < 1e-5] = -1 # unmatched anchors are assigned -1
matched_idxs.append(matched_idx)
return self.head.compute_loss(targets, head_outputs, anchors, matched_idxs)
def postprocess_detections(
self, head_outputs: Dict[str, List[Tensor]], anchors: List[List[Tensor]], image_shapes: List[Tuple[int, int]]
) -> List[Dict[str, Tensor]]:
class_logits = head_outputs["cls_logits"]
box_regression = head_outputs["bbox_regression"]
box_ctrness = head_outputs["bbox_ctrness"]
num_images = len(image_shapes)
detections: List[Dict[str, Tensor]] = []
for index in range(num_images):
box_regression_per_image = [br[index] for br in box_regression]
logits_per_image = [cl[index] for cl in class_logits]
box_ctrness_per_image = [bc[index] for bc in box_ctrness]
anchors_per_image, image_shape = anchors[index], image_shapes[index]
image_boxes = []
image_scores = []
image_labels = []
for box_regression_per_level, logits_per_level, box_ctrness_per_level, anchors_per_level in zip(
box_regression_per_image, logits_per_image, box_ctrness_per_image, anchors_per_image
):
num_classes = logits_per_level.shape[-1]
# remove low scoring boxes
scores_per_level = torch.sqrt(
torch.sigmoid(logits_per_level) * torch.sigmoid(box_ctrness_per_level)
).flatten()
keep_idxs = scores_per_level > self.score_thresh
scores_per_level = scores_per_level[keep_idxs]
topk_idxs = torch.where(keep_idxs)[0]
# keep only topk scoring predictions
num_topk = det_utils._topk_min(topk_idxs, self.topk_candidates, 0)
scores_per_level, idxs = scores_per_level.topk(num_topk)
topk_idxs = topk_idxs[idxs]
anchor_idxs = torch.div(topk_idxs, num_classes, rounding_mode="floor")
labels_per_level = topk_idxs % num_classes
boxes_per_level = self.box_coder.decode(
box_regression_per_level[anchor_idxs], anchors_per_level[anchor_idxs]
)
boxes_per_level = box_ops.clip_boxes_to_image(boxes_per_level, image_shape)
image_boxes.append(boxes_per_level)
image_scores.append(scores_per_level)
image_labels.append(labels_per_level)
image_boxes = torch.cat(image_boxes, dim=0)
image_scores = torch.cat(image_scores, dim=0)
image_labels = torch.cat(image_labels, dim=0)
# non-maximum suppression
keep = box_ops.batched_nms(image_boxes, image_scores, image_labels, self.nms_thresh)
keep = keep[: self.detections_per_img]
detections.append(
{
"boxes": image_boxes[keep],
"scores": image_scores[keep],
"labels": image_labels[keep],
}
)
return detections
def forward(
self,
images: List[Tensor],
targets: Optional[List[Dict[str, Tensor]]] = None,
) -> Tuple[Dict[str, Tensor], List[Dict[str, Tensor]]]:
"""
Args:
images (list[Tensor]): images to be processed
targets (list[Dict[Tensor]]): ground-truth boxes present in the image (optional)
Returns:
result (list[BoxList] or dict[Tensor]): the output from the model.
During training, it returns a dict[Tensor] which contains the losses.
During testing, it returns list[BoxList] contains additional fields
like `scores`, `labels` and `mask` (for Mask R-CNN models).
"""
if self.training:
if targets is None:
torch._assert(False, "targets should not be none when in training mode")
else:
for target in targets:
boxes = target["boxes"]
torch._assert(isinstance(boxes, torch.Tensor), "Expected target boxes to be of type Tensor.")
torch._assert(
len(boxes.shape) == 2 and boxes.shape[-1] == 4,
f"Expected target boxes to be a tensor of shape [N, 4], got {boxes.shape}.",
)
original_image_sizes: List[Tuple[int, int]] = []
for img in images:
val = img.shape[-2:]
torch._assert(
len(val) == 2,
f"expecting the last two dimensions of the Tensor to be H and W instead got {img.shape[-2:]}",
)
original_image_sizes.append((val[0], val[1]))
# transform the input
images, targets = self.transform(images, targets)
# Check for degenerate boxes
if targets is not None:
for target_idx, target in enumerate(targets):
boxes = target["boxes"]
degenerate_boxes = boxes[:, 2:] <= boxes[:, :2]
if degenerate_boxes.any():
# print the first degenerate box
bb_idx = torch.where(degenerate_boxes.any(dim=1))[0][0]
degen_bb: List[float] = boxes[bb_idx].tolist()
torch._assert(
False,
f"All bounding boxes should have positive height and width. Found invalid box {degen_bb} for target at index {target_idx}.",
)
# get the features from the backbone
features = self.backbone(images.tensors)
if isinstance(features, torch.Tensor):
features = OrderedDict([("0", features)])
features = list(features.values())
# compute the fcos heads outputs using the features
head_outputs = self.head(features)
# create the set of anchors
anchors = self.anchor_generator(images, features)
# recover level sizes
num_anchors_per_level = [x.size(2) * x.size(3) for x in features]
losses = {}
detections: List[Dict[str, Tensor]] = []
if self.training:
if targets is None:
torch._assert(False, "targets should not be none when in training mode")
else:
# compute the losses
losses = self.compute_loss(targets, head_outputs, anchors, num_anchors_per_level)
else:
# split outputs per level
split_head_outputs: Dict[str, List[Tensor]] = {}
for k in head_outputs:
split_head_outputs[k] = list(head_outputs[k].split(num_anchors_per_level, dim=1))
split_anchors = [list(a.split(num_anchors_per_level)) for a in anchors]
# compute the detections
detections = self.postprocess_detections(split_head_outputs, split_anchors, images.image_sizes)
detections = self.transform.postprocess(detections, images.image_sizes, original_image_sizes)
if torch.jit.is_scripting():
if not self._has_warned:
warnings.warn("FCOS always returns a (Losses, Detections) tuple in scripting")
self._has_warned = True
return losses, detections
return self.eager_outputs(losses, detections)
class FCOS_ResNet50_FPN_Weights(WeightsEnum):
COCO_V1 = Weights(
url="https://download.pytorch.org/models/fcos_resnet50_fpn_coco-99b0c9b7.pth",
transforms=ObjectDetection,
meta={
"num_params": 32269600,
"categories": _COCO_CATEGORIES,
"min_size": (1, 1),
"recipe": "https://github.com/pytorch/vision/tree/main/references/detection#fcos-resnet-50-fpn",
"_metrics": {
"COCO-val2017": {
"box_map": 39.2,
}
},
"_ops": 128.207,
"_file_size": 123.608,
"_docs": """These weights were produced by following a similar training recipe as on the paper.""",
},
)
DEFAULT = COCO_V1
@register_model()
@handle_legacy_interface(
weights=("pretrained", FCOS_ResNet50_FPN_Weights.COCO_V1),
weights_backbone=("pretrained_backbone", ResNet50_Weights.IMAGENET1K_V1),
)
def fcos_resnet50_fpn(
*,
weights: Optional[FCOS_ResNet50_FPN_Weights] = None,
progress: bool = True,
num_classes: Optional[int] = None,
weights_backbone: Optional[ResNet50_Weights] = ResNet50_Weights.IMAGENET1K_V1,
trainable_backbone_layers: Optional[int] = None,
**kwargs: Any,
) -> FCOS:
"""
Constructs a FCOS model with a ResNet-50-FPN backbone.
.. betastatus:: detection module
Reference: `FCOS: Fully Convolutional One-Stage Object Detection <https://arxiv.org/abs/1904.01355>`_.
`FCOS: A simple and strong anchor-free object detector <https://arxiv.org/abs/2006.09214>`_.
The input to the model is expected to be a list of tensors, each of shape ``[C, H, W]``, one for each
image, and should be in ``0-1`` range. Different images can have different sizes.
The behavior of the model changes depending on if it is in training or evaluation mode.
During training, the model expects both the input tensors and targets (list of dictionary),
containing:
- boxes (``FloatTensor[N, 4]``): the ground-truth boxes in ``[x1, y1, x2, y2]`` format, with
``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
- labels (``Int64Tensor[N]``): the class label for each ground-truth box
The model returns a ``Dict[Tensor]`` during training, containing the classification and regression
losses.
During inference, the model requires only the input tensors, and returns the post-processed
predictions as a ``List[Dict[Tensor]]``, one for each input image. The fields of the ``Dict`` are as
follows, where ``N`` is the number of detections:
- boxes (``FloatTensor[N, 4]``): the predicted boxes in ``[x1, y1, x2, y2]`` format, with
``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
- labels (``Int64Tensor[N]``): the predicted labels for each detection
- scores (``Tensor[N]``): the scores of each detection
For more details on the output, you may refer to :ref:`instance_seg_output`.
Example:
>>> model = torchvision.models.detection.fcos_resnet50_fpn(weights=FCOS_ResNet50_FPN_Weights.DEFAULT)
>>> model.eval()
>>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)]
>>> predictions = model(x)
Args:
weights (:class:`~torchvision.models.detection.FCOS_ResNet50_FPN_Weights`, optional): The
pretrained weights to use. See
:class:`~torchvision.models.detection.FCOS_ResNet50_FPN_Weights`
below for more details, and possible values. By default, no
pre-trained weights are used.
progress (bool): If True, displays a progress bar of the download to stderr
num_classes (int, optional): number of output classes of the model (including the background)
weights_backbone (:class:`~torchvision.models.ResNet50_Weights`, optional): The pretrained weights for
the backbone.
trainable_backbone_layers (int, optional): number of trainable (not frozen) resnet layers starting
from final block. Valid values are between 0 and 5, with 5 meaning all backbone layers are
trainable. If ``None`` is passed (the default) this value is set to 3. Default: None
**kwargs: parameters passed to the ``torchvision.models.detection.FCOS``
base class. Please refer to the `source code
<https://github.com/pytorch/vision/blob/main/torchvision/models/detection/fcos.py>`_
for more details about this class.
.. autoclass:: torchvision.models.detection.FCOS_ResNet50_FPN_Weights
:members:
"""
weights = FCOS_ResNet50_FPN_Weights.verify(weights)
weights_backbone = ResNet50_Weights.verify(weights_backbone)
if weights is not None:
weights_backbone = None
num_classes = _ovewrite_value_param("num_classes", num_classes, len(weights.meta["categories"]))
elif num_classes is None:
num_classes = 91
is_trained = weights is not None or weights_backbone is not None
trainable_backbone_layers = _validate_trainable_layers(is_trained, trainable_backbone_layers, 5, 3)
norm_layer = misc_nn_ops.FrozenBatchNorm2d if is_trained else nn.BatchNorm2d
backbone = resnet50(weights=weights_backbone, progress=progress, norm_layer=norm_layer)
backbone = _resnet_fpn_extractor(
backbone, trainable_backbone_layers, returned_layers=[2, 3, 4], extra_blocks=LastLevelP6P7(256, 256)
)
model = FCOS(backbone, num_classes, **kwargs)
if weights is not None:
model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True))
return model