-
Notifications
You must be signed in to change notification settings - Fork 7k
/
Copy pathssd.py
634 lines (522 loc) · 26.4 KB
/
ssd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
import warnings
from collections import OrderedDict
from typing import Any, Dict, List, Optional, Tuple
import torch
import torch.nn.functional as F
from torch import nn, Tensor
from ..._internally_replaced_utils import load_state_dict_from_url
from ...ops import boxes as box_ops
from .. import vgg
from . import _utils as det_utils
from .anchor_utils import DefaultBoxGenerator
from .backbone_utils import _validate_trainable_layers
from .transform import GeneralizedRCNNTransform
__all__ = ["SSD", "ssd300_vgg16"]
model_urls = {
"ssd300_vgg16_coco": "https://download.pytorch.org/models/ssd300_vgg16_coco-b556d3b4.pth",
}
backbone_urls = {
# We port the features of a VGG16 backbone trained by amdegroot because unlike the one on TorchVision, it uses the
# same input standardization method as the paper. Ref: https://s3.amazonaws.com/amdegroot-models/vgg16_reducedfc.pth
"vgg16_features": "https://download.pytorch.org/models/vgg16_features-amdegroot.pth"
}
def _xavier_init(conv: nn.Module):
for layer in conv.modules():
if isinstance(layer, nn.Conv2d):
torch.nn.init.xavier_uniform_(layer.weight)
if layer.bias is not None:
torch.nn.init.constant_(layer.bias, 0.0)
class SSDHead(nn.Module):
def __init__(self, in_channels: List[int], num_anchors: List[int], num_classes: int):
super().__init__()
self.classification_head = SSDClassificationHead(in_channels, num_anchors, num_classes)
self.regression_head = SSDRegressionHead(in_channels, num_anchors)
def forward(self, x: List[Tensor]) -> Dict[str, Tensor]:
return {
"bbox_regression": self.regression_head(x),
"cls_logits": self.classification_head(x),
}
class SSDScoringHead(nn.Module):
def __init__(self, module_list: nn.ModuleList, num_columns: int):
super().__init__()
self.module_list = module_list
self.num_columns = num_columns
def _get_result_from_module_list(self, x: Tensor, idx: int) -> Tensor:
"""
This is equivalent to self.module_list[idx](x),
but torchscript doesn't support this yet
"""
num_blocks = len(self.module_list)
if idx < 0:
idx += num_blocks
i = 0
out = x
for module in self.module_list:
if i == idx:
out = module(x)
i += 1
return out
def forward(self, x: List[Tensor]) -> Tensor:
all_results = []
for i, features in enumerate(x):
results = self._get_result_from_module_list(features, i)
# Permute output from (N, A * K, H, W) to (N, HWA, K).
N, _, H, W = results.shape
results = results.view(N, -1, self.num_columns, H, W)
results = results.permute(0, 3, 4, 1, 2)
results = results.reshape(N, -1, self.num_columns) # Size=(N, HWA, K)
all_results.append(results)
return torch.cat(all_results, dim=1)
class SSDClassificationHead(SSDScoringHead):
def __init__(self, in_channels: List[int], num_anchors: List[int], num_classes: int):
cls_logits = nn.ModuleList()
for channels, anchors in zip(in_channels, num_anchors):
cls_logits.append(nn.Conv2d(channels, num_classes * anchors, kernel_size=3, padding=1))
_xavier_init(cls_logits)
super().__init__(cls_logits, num_classes)
class SSDRegressionHead(SSDScoringHead):
def __init__(self, in_channels: List[int], num_anchors: List[int]):
bbox_reg = nn.ModuleList()
for channels, anchors in zip(in_channels, num_anchors):
bbox_reg.append(nn.Conv2d(channels, 4 * anchors, kernel_size=3, padding=1))
_xavier_init(bbox_reg)
super().__init__(bbox_reg, 4)
class SSD(nn.Module):
"""
Implements SSD architecture from `"SSD: Single Shot MultiBox Detector" <https://arxiv.org/abs/1512.02325>`_.
The input to the model is expected to be a list of tensors, each of shape [C, H, W], one for each
image, and should be in 0-1 range. Different images can have different sizes but they will be resized
to a fixed size before passing it to the backbone.
The behavior of the model changes depending if it is in training or evaluation mode.
During training, the model expects both the input tensors, as well as a targets (list of dictionary),
containing:
- boxes (``FloatTensor[N, 4]``): the ground-truth boxes in ``[x1, y1, x2, y2]`` format, with
``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
- labels (Int64Tensor[N]): the class label for each ground-truth box
The model returns a Dict[Tensor] during training, containing the classification and regression
losses.
During inference, the model requires only the input tensors, and returns the post-processed
predictions as a List[Dict[Tensor]], one for each input image. The fields of the Dict are as
follows, where ``N`` is the number of detections:
- boxes (``FloatTensor[N, 4]``): the predicted boxes in ``[x1, y1, x2, y2]`` format, with
``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
- labels (Int64Tensor[N]): the predicted labels for each detection
- scores (Tensor[N]): the scores for each detection
Args:
backbone (nn.Module): the network used to compute the features for the model.
It should contain an out_channels attribute with the list of the output channels of
each feature map. The backbone should return a single Tensor or an OrderedDict[Tensor].
anchor_generator (DefaultBoxGenerator): module that generates the default boxes for a
set of feature maps.
size (Tuple[int, int]): the width and height to which images will be rescaled before feeding them
to the backbone.
num_classes (int): number of output classes of the model (including the background).
image_mean (Tuple[float, float, float]): mean values used for input normalization.
They are generally the mean values of the dataset on which the backbone has been trained
on
image_std (Tuple[float, float, float]): std values used for input normalization.
They are generally the std values of the dataset on which the backbone has been trained on
head (nn.Module, optional): Module run on top of the backbone features. Defaults to a module containing
a classification and regression module.
score_thresh (float): Score threshold used for postprocessing the detections.
nms_thresh (float): NMS threshold used for postprocessing the detections.
detections_per_img (int): Number of best detections to keep after NMS.
iou_thresh (float): minimum IoU between the anchor and the GT box so that they can be
considered as positive during training.
topk_candidates (int): Number of best detections to keep before NMS.
positive_fraction (float): a number between 0 and 1 which indicates the proportion of positive
proposals used during the training of the classification head. It is used to estimate the negative to
positive ratio.
"""
__annotations__ = {
"box_coder": det_utils.BoxCoder,
"proposal_matcher": det_utils.Matcher,
}
def __init__(
self,
backbone: nn.Module,
anchor_generator: DefaultBoxGenerator,
size: Tuple[int, int],
num_classes: int,
image_mean: Optional[List[float]] = None,
image_std: Optional[List[float]] = None,
head: Optional[nn.Module] = None,
score_thresh: float = 0.01,
nms_thresh: float = 0.45,
detections_per_img: int = 200,
iou_thresh: float = 0.5,
topk_candidates: int = 400,
positive_fraction: float = 0.25,
):
super().__init__()
self.backbone = backbone
self.anchor_generator = anchor_generator
self.box_coder = det_utils.BoxCoder(weights=(10.0, 10.0, 5.0, 5.0))
if head is None:
if hasattr(backbone, "out_channels"):
out_channels = backbone.out_channels
else:
out_channels = det_utils.retrieve_out_channels(backbone, size)
assert len(out_channels) == len(anchor_generator.aspect_ratios)
num_anchors = self.anchor_generator.num_anchors_per_location()
head = SSDHead(out_channels, num_anchors, num_classes)
self.head = head
self.proposal_matcher = det_utils.SSDMatcher(iou_thresh)
if image_mean is None:
image_mean = [0.485, 0.456, 0.406]
if image_std is None:
image_std = [0.229, 0.224, 0.225]
self.transform = GeneralizedRCNNTransform(
min(size), max(size), image_mean, image_std, size_divisible=1, fixed_size=size
)
self.score_thresh = score_thresh
self.nms_thresh = nms_thresh
self.detections_per_img = detections_per_img
self.topk_candidates = topk_candidates
self.neg_to_pos_ratio = (1.0 - positive_fraction) / positive_fraction
# used only on torchscript mode
self._has_warned = False
@torch.jit.unused
def eager_outputs(
self, losses: Dict[str, Tensor], detections: List[Dict[str, Tensor]]
) -> Tuple[Dict[str, Tensor], List[Dict[str, Tensor]]]:
if self.training:
return losses
return detections
def compute_loss(
self,
targets: List[Dict[str, Tensor]],
head_outputs: Dict[str, Tensor],
anchors: List[Tensor],
matched_idxs: List[Tensor],
) -> Dict[str, Tensor]:
bbox_regression = head_outputs["bbox_regression"]
cls_logits = head_outputs["cls_logits"]
# Match original targets with default boxes
num_foreground = 0
bbox_loss = []
cls_targets = []
for (
targets_per_image,
bbox_regression_per_image,
cls_logits_per_image,
anchors_per_image,
matched_idxs_per_image,
) in zip(targets, bbox_regression, cls_logits, anchors, matched_idxs):
# produce the matching between boxes and targets
foreground_idxs_per_image = torch.where(matched_idxs_per_image >= 0)[0]
foreground_matched_idxs_per_image = matched_idxs_per_image[foreground_idxs_per_image]
num_foreground += foreground_matched_idxs_per_image.numel()
# Calculate regression loss
matched_gt_boxes_per_image = targets_per_image["boxes"][foreground_matched_idxs_per_image]
bbox_regression_per_image = bbox_regression_per_image[foreground_idxs_per_image, :]
anchors_per_image = anchors_per_image[foreground_idxs_per_image, :]
target_regression = self.box_coder.encode_single(matched_gt_boxes_per_image, anchors_per_image)
bbox_loss.append(
torch.nn.functional.smooth_l1_loss(bbox_regression_per_image, target_regression, reduction="sum")
)
# Estimate ground truth for class targets
gt_classes_target = torch.zeros(
(cls_logits_per_image.size(0),),
dtype=targets_per_image["labels"].dtype,
device=targets_per_image["labels"].device,
)
gt_classes_target[foreground_idxs_per_image] = targets_per_image["labels"][
foreground_matched_idxs_per_image
]
cls_targets.append(gt_classes_target)
bbox_loss = torch.stack(bbox_loss)
cls_targets = torch.stack(cls_targets)
# Calculate classification loss
num_classes = cls_logits.size(-1)
cls_loss = F.cross_entropy(cls_logits.view(-1, num_classes), cls_targets.view(-1), reduction="none").view(
cls_targets.size()
)
# Hard Negative Sampling
foreground_idxs = cls_targets > 0
num_negative = self.neg_to_pos_ratio * foreground_idxs.sum(1, keepdim=True)
# num_negative[num_negative < self.neg_to_pos_ratio] = self.neg_to_pos_ratio
negative_loss = cls_loss.clone()
negative_loss[foreground_idxs] = -float("inf") # use -inf to detect positive values that creeped in the sample
values, idx = negative_loss.sort(1, descending=True)
# background_idxs = torch.logical_and(idx.sort(1)[1] < num_negative, torch.isfinite(values))
background_idxs = idx.sort(1)[1] < num_negative
N = max(1, num_foreground)
return {
"bbox_regression": bbox_loss.sum() / N,
"classification": (cls_loss[foreground_idxs].sum() + cls_loss[background_idxs].sum()) / N,
}
def forward(
self, images: List[Tensor], targets: Optional[List[Dict[str, Tensor]]] = None
) -> Tuple[Dict[str, Tensor], List[Dict[str, Tensor]]]:
if self.training and targets is None:
raise ValueError("In training mode, targets should be passed")
if self.training:
assert targets is not None
for target in targets:
boxes = target["boxes"]
if isinstance(boxes, torch.Tensor):
if len(boxes.shape) != 2 or boxes.shape[-1] != 4:
raise ValueError(
"Expected target boxes to be a tensor" "of shape [N, 4], got {:}.".format(boxes.shape)
)
else:
raise ValueError("Expected target boxes to be of type " "Tensor, got {:}.".format(type(boxes)))
# get the original image sizes
original_image_sizes: List[Tuple[int, int]] = []
for img in images:
val = img.shape[-2:]
assert len(val) == 2
original_image_sizes.append((val[0], val[1]))
# transform the input
images, targets = self.transform(images, targets)
# Check for degenerate boxes
if targets is not None:
for target_idx, target in enumerate(targets):
boxes = target["boxes"]
degenerate_boxes = boxes[:, 2:] <= boxes[:, :2]
if degenerate_boxes.any():
bb_idx = torch.where(degenerate_boxes.any(dim=1))[0][0]
degen_bb: List[float] = boxes[bb_idx].tolist()
raise ValueError(
"All bounding boxes should have positive height and width."
" Found invalid box {} for target at index {}.".format(degen_bb, target_idx)
)
# get the features from the backbone
features = self.backbone(images.tensors)
if isinstance(features, torch.Tensor):
features = OrderedDict([("0", features)])
features = list(features.values())
# compute the ssd heads outputs using the features
head_outputs = self.head(features)
# create the set of anchors
anchors = self.anchor_generator(images, features)
losses = {}
detections: List[Dict[str, Tensor]] = []
if self.training:
assert targets is not None
matched_idxs = []
for anchors_per_image, targets_per_image in zip(anchors, targets):
if targets_per_image["boxes"].numel() == 0:
matched_idxs.append(
torch.full((anchors_per_image.size(0),), -1, dtype=torch.int64, device=anchors_per_image.device)
)
continue
match_quality_matrix = box_ops.box_iou(targets_per_image["boxes"], anchors_per_image)
matched_idxs.append(self.proposal_matcher(match_quality_matrix))
losses = self.compute_loss(targets, head_outputs, anchors, matched_idxs)
else:
detections = self.postprocess_detections(head_outputs, anchors, images.image_sizes)
detections = self.transform.postprocess(detections, images.image_sizes, original_image_sizes)
if torch.jit.is_scripting():
if not self._has_warned:
warnings.warn("SSD always returns a (Losses, Detections) tuple in scripting")
self._has_warned = True
return losses, detections
return self.eager_outputs(losses, detections)
def postprocess_detections(
self, head_outputs: Dict[str, Tensor], image_anchors: List[Tensor], image_shapes: List[Tuple[int, int]]
) -> List[Dict[str, Tensor]]:
bbox_regression = head_outputs["bbox_regression"]
pred_scores = F.softmax(head_outputs["cls_logits"], dim=-1)
num_classes = pred_scores.size(-1)
device = pred_scores.device
detections: List[Dict[str, Tensor]] = []
for boxes, scores, anchors, image_shape in zip(bbox_regression, pred_scores, image_anchors, image_shapes):
boxes = self.box_coder.decode_single(boxes, anchors)
boxes = box_ops.clip_boxes_to_image(boxes, image_shape)
image_boxes = []
image_scores = []
image_labels = []
for label in range(1, num_classes):
score = scores[:, label]
keep_idxs = score > self.score_thresh
score = score[keep_idxs]
box = boxes[keep_idxs]
# keep only topk scoring predictions
num_topk = min(self.topk_candidates, score.size(0))
score, idxs = score.topk(num_topk)
box = box[idxs]
image_boxes.append(box)
image_scores.append(score)
image_labels.append(torch.full_like(score, fill_value=label, dtype=torch.int64, device=device))
image_boxes = torch.cat(image_boxes, dim=0)
image_scores = torch.cat(image_scores, dim=0)
image_labels = torch.cat(image_labels, dim=0)
# non-maximum suppression
keep = box_ops.batched_nms(image_boxes, image_scores, image_labels, self.nms_thresh)
keep = keep[: self.detections_per_img]
detections.append(
{
"boxes": image_boxes[keep],
"scores": image_scores[keep],
"labels": image_labels[keep],
}
)
return detections
class SSDFeatureExtractorVGG(nn.Module):
def __init__(self, backbone: nn.Module, highres: bool):
super().__init__()
_, _, maxpool3_pos, maxpool4_pos, _ = (i for i, layer in enumerate(backbone) if isinstance(layer, nn.MaxPool2d))
# Patch ceil_mode for maxpool3 to get the same WxH output sizes as the paper
backbone[maxpool3_pos].ceil_mode = True
# parameters used for L2 regularization + rescaling
self.scale_weight = nn.Parameter(torch.ones(512) * 20)
# Multiple Feature maps - page 4, Fig 2 of SSD paper
self.features = nn.Sequential(*backbone[:maxpool4_pos]) # until conv4_3
# SSD300 case - page 4, Fig 2 of SSD paper
extra = nn.ModuleList(
[
nn.Sequential(
nn.Conv2d(1024, 256, kernel_size=1),
nn.ReLU(inplace=True),
nn.Conv2d(256, 512, kernel_size=3, padding=1, stride=2), # conv8_2
nn.ReLU(inplace=True),
),
nn.Sequential(
nn.Conv2d(512, 128, kernel_size=1),
nn.ReLU(inplace=True),
nn.Conv2d(128, 256, kernel_size=3, padding=1, stride=2), # conv9_2
nn.ReLU(inplace=True),
),
nn.Sequential(
nn.Conv2d(256, 128, kernel_size=1),
nn.ReLU(inplace=True),
nn.Conv2d(128, 256, kernel_size=3), # conv10_2
nn.ReLU(inplace=True),
),
nn.Sequential(
nn.Conv2d(256, 128, kernel_size=1),
nn.ReLU(inplace=True),
nn.Conv2d(128, 256, kernel_size=3), # conv11_2
nn.ReLU(inplace=True),
),
]
)
if highres:
# Additional layers for the SSD512 case. See page 11, footernote 5.
extra.append(
nn.Sequential(
nn.Conv2d(256, 128, kernel_size=1),
nn.ReLU(inplace=True),
nn.Conv2d(128, 256, kernel_size=4), # conv12_2
nn.ReLU(inplace=True),
)
)
_xavier_init(extra)
fc = nn.Sequential(
nn.MaxPool2d(kernel_size=3, stride=1, padding=1, ceil_mode=False), # add modified maxpool5
nn.Conv2d(in_channels=512, out_channels=1024, kernel_size=3, padding=6, dilation=6), # FC6 with atrous
nn.ReLU(inplace=True),
nn.Conv2d(in_channels=1024, out_channels=1024, kernel_size=1), # FC7
nn.ReLU(inplace=True),
)
_xavier_init(fc)
extra.insert(
0,
nn.Sequential(
*backbone[maxpool4_pos:-1], # until conv5_3, skip maxpool5
fc,
),
)
self.extra = extra
def forward(self, x: Tensor) -> Dict[str, Tensor]:
# L2 regularization + Rescaling of 1st block's feature map
x = self.features(x)
rescaled = self.scale_weight.view(1, -1, 1, 1) * F.normalize(x)
output = [rescaled]
# Calculating Feature maps for the rest blocks
for block in self.extra:
x = block(x)
output.append(x)
return OrderedDict([(str(i), v) for i, v in enumerate(output)])
def _vgg_extractor(backbone_name: str, highres: bool, progress: bool, pretrained: bool, trainable_layers: int):
if backbone_name in backbone_urls:
# Use custom backbones more appropriate for SSD
arch = backbone_name.split("_")[0]
backbone = vgg.__dict__[arch](pretrained=False, progress=progress).features
if pretrained:
state_dict = load_state_dict_from_url(backbone_urls[backbone_name], progress=progress)
backbone.load_state_dict(state_dict)
else:
# Use standard backbones from TorchVision
backbone = vgg.__dict__[backbone_name](pretrained=pretrained, progress=progress).features
# Gather the indices of maxpools. These are the locations of output blocks.
stage_indices = [i for i, b in enumerate(backbone) if isinstance(b, nn.MaxPool2d)]
num_stages = len(stage_indices)
# find the index of the layer from which we wont freeze
assert 0 <= trainable_layers <= num_stages
freeze_before = len(backbone) if trainable_layers == 0 else stage_indices[num_stages - trainable_layers]
for b in backbone[:freeze_before]:
for parameter in b.parameters():
parameter.requires_grad_(False)
return SSDFeatureExtractorVGG(backbone, highres)
def ssd300_vgg16(
pretrained: bool = False,
progress: bool = True,
num_classes: int = 91,
pretrained_backbone: bool = True,
trainable_backbone_layers: Optional[int] = None,
**kwargs: Any,
):
"""Constructs an SSD model with input size 300x300 and a VGG16 backbone.
Reference: `"SSD: Single Shot MultiBox Detector" <https://arxiv.org/abs/1512.02325>`_.
The input to the model is expected to be a list of tensors, each of shape [C, H, W], one for each
image, and should be in 0-1 range. Different images can have different sizes but they will be resized
to a fixed size before passing it to the backbone.
The behavior of the model changes depending if it is in training or evaluation mode.
During training, the model expects both the input tensors, as well as a targets (list of dictionary),
containing:
- boxes (``FloatTensor[N, 4]``): the ground-truth boxes in ``[x1, y1, x2, y2]`` format, with
``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
- labels (Int64Tensor[N]): the class label for each ground-truth box
The model returns a Dict[Tensor] during training, containing the classification and regression
losses.
During inference, the model requires only the input tensors, and returns the post-processed
predictions as a List[Dict[Tensor]], one for each input image. The fields of the Dict are as
follows, where ``N`` is the number of detections:
- boxes (``FloatTensor[N, 4]``): the predicted boxes in ``[x1, y1, x2, y2]`` format, with
``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
- labels (Int64Tensor[N]): the predicted labels for each detection
- scores (Tensor[N]): the scores for each detection
Example:
>>> model = torchvision.models.detection.ssd300_vgg16(pretrained=True)
>>> model.eval()
>>> x = [torch.rand(3, 300, 300), torch.rand(3, 500, 400)]
>>> predictions = model(x)
Args:
pretrained (bool): If True, returns a model pre-trained on COCO train2017
progress (bool): If True, displays a progress bar of the download to stderr
num_classes (int): number of output classes of the model (including the background)
pretrained_backbone (bool): If True, returns a model with backbone pre-trained on Imagenet
trainable_backbone_layers (int): number of trainable (not frozen) resnet layers starting from final block.
Valid values are between 0 and 5, with 5 meaning all backbone layers are trainable.
"""
if "size" in kwargs:
warnings.warn("The size of the model is already fixed; ignoring the argument.")
trainable_backbone_layers = _validate_trainable_layers(
pretrained or pretrained_backbone, trainable_backbone_layers, 5, 5
)
if pretrained:
# no need to download the backbone if pretrained is set
pretrained_backbone = False
backbone = _vgg_extractor("vgg16_features", False, progress, pretrained_backbone, trainable_backbone_layers)
anchor_generator = DefaultBoxGenerator(
[[2], [2, 3], [2, 3], [2, 3], [2], [2]],
scales=[0.07, 0.15, 0.33, 0.51, 0.69, 0.87, 1.05],
steps=[8, 16, 32, 64, 100, 300],
)
defaults = {
# Rescale the input in a way compatible to the backbone
"image_mean": [0.48235, 0.45882, 0.40784],
"image_std": [1.0 / 255.0, 1.0 / 255.0, 1.0 / 255.0], # undo the 0-1 scaling of toTensor
}
kwargs = {**defaults, **kwargs}
model = SSD(backbone, anchor_generator, (300, 300), num_classes, **kwargs)
if pretrained:
weights_name = "ssd300_vgg16_coco"
if model_urls.get(weights_name, None) is None:
raise ValueError("No checkpoint is available for model {}".format(weights_name))
state_dict = load_state_dict_from_url(model_urls[weights_name], progress=progress)
model.load_state_dict(state_dict)
return model