-
Notifications
You must be signed in to change notification settings - Fork 7k
/
Copy pathtest_models.py
621 lines (516 loc) · 22.7 KB
/
test_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
import os
import io
import sys
from common_utils import map_nested_tensor_object, freeze_rng_state, set_rng_seed, cpu_and_gpu, needs_cuda, cpu_only
from _utils_internal import get_relative_path
from collections import OrderedDict
import functools
import operator
import torch
import torch.nn as nn
from torchvision import models
import pytest
import warnings
ACCEPT = os.getenv('EXPECTTEST_ACCEPT', '0') == '1'
def get_available_classification_models():
# TODO add a registration mechanism to torchvision.models
return [k for k, v in models.__dict__.items() if callable(v) and k[0].lower() == k[0] and k[0] != "_"]
def get_available_segmentation_models():
# TODO add a registration mechanism to torchvision.models
return [k for k, v in models.segmentation.__dict__.items() if callable(v) and k[0].lower() == k[0] and k[0] != "_"]
def get_available_detection_models():
# TODO add a registration mechanism to torchvision.models
return [k for k, v in models.detection.__dict__.items() if callable(v) and k[0].lower() == k[0] and k[0] != "_"]
def get_available_video_models():
# TODO add a registration mechanism to torchvision.models
return [k for k, v in models.video.__dict__.items() if callable(v) and k[0].lower() == k[0] and k[0] != "_"]
def _get_expected_file(name=None):
# Determine expected file based on environment
expected_file_base = get_relative_path(os.path.realpath(__file__), "expect")
# Note: for legacy reasons, the reference file names all had "ModelTest.test_" in their names
# We hardcode it here to avoid having to re-generate the reference files
expected_file = expected_file = os.path.join(expected_file_base, 'ModelTester.test_' + name)
expected_file += "_expect.pkl"
if not ACCEPT and not os.path.exists(expected_file):
raise RuntimeError(
f"No expect file exists for {os.path.basename(expected_file)} in {expected_file}; "
"to accept the current output, re-run the failing test after setting the EXPECTTEST_ACCEPT "
"env variable. For example: EXPECTTEST_ACCEPT=1 pytest test/test_models.py -k alexnet"
)
return expected_file
def _assert_expected(output, name, prec):
"""Test that a python value matches the recorded contents of a file
based on a "check" name. The value must be
pickable with `torch.save`. This file
is placed in the 'expect' directory in the same directory
as the test script. You can automatically update the recorded test
output using an EXPECTTEST_ACCEPT=1 env variable.
"""
expected_file = _get_expected_file(name)
if ACCEPT:
filename = {os.path.basename(expected_file)}
print("Accepting updated output for {}:\n\n{}".format(filename, output))
torch.save(output, expected_file)
MAX_PICKLE_SIZE = 50 * 1000 # 50 KB
binary_size = os.path.getsize(expected_file)
if binary_size > MAX_PICKLE_SIZE:
raise RuntimeError("The output for {}, is larger than 50kb".format(filename))
else:
expected = torch.load(expected_file)
rtol = atol = prec
torch.testing.assert_close(output, expected, rtol=rtol, atol=atol, check_dtype=False)
def _check_jit_scriptable(nn_module, args, unwrapper=None, skip=False):
"""Check that a nn.Module's results in TorchScript match eager and that it can be exported"""
def assert_export_import_module(m, args):
"""Check that the results of a model are the same after saving and loading"""
def get_export_import_copy(m):
"""Save and load a TorchScript model"""
buffer = io.BytesIO()
torch.jit.save(m, buffer)
buffer.seek(0)
imported = torch.jit.load(buffer)
return imported
m_import = get_export_import_copy(m)
with freeze_rng_state():
results = m(*args)
with freeze_rng_state():
results_from_imported = m_import(*args)
tol = 3e-4
try:
torch.testing.assert_close(results, results_from_imported, atol=tol, rtol=tol)
except pytest.UsageError:
# custom check for the models that return named tuples:
# we compare field by field while ignoring None as assert_close can't handle None
for a, b in zip(results, results_from_imported):
if a is not None:
torch.testing.assert_close(a, b, atol=tol, rtol=tol)
TEST_WITH_SLOW = os.getenv('PYTORCH_TEST_WITH_SLOW', '0') == '1'
if not TEST_WITH_SLOW or skip:
# TorchScript is not enabled, skip these tests
msg = "The check_jit_scriptable test for {} was skipped. " \
"This test checks if the module's results in TorchScript " \
"match eager and that it can be exported. To run these " \
"tests make sure you set the environment variable " \
"PYTORCH_TEST_WITH_SLOW=1 and that the test is not " \
"manually skipped.".format(nn_module.__class__.__name__)
warnings.warn(msg, RuntimeWarning)
return None
sm = torch.jit.script(nn_module)
with freeze_rng_state():
eager_out = nn_module(*args)
with freeze_rng_state():
script_out = sm(*args)
if unwrapper:
script_out = unwrapper(script_out)
torch.testing.assert_close(eager_out, script_out, atol=1e-4, rtol=1e-4)
assert_export_import_module(sm, args)
# If 'unwrapper' is provided it will be called with the script model outputs
# before they are compared to the eager model outputs. This is useful if the
# model outputs are different between TorchScript / Eager mode
script_model_unwrapper = {
'googlenet': lambda x: x.logits,
'inception_v3': lambda x: x.logits,
"fasterrcnn_resnet50_fpn": lambda x: x[1],
"fasterrcnn_mobilenet_v3_large_fpn": lambda x: x[1],
"fasterrcnn_mobilenet_v3_large_320_fpn": lambda x: x[1],
"maskrcnn_resnet50_fpn": lambda x: x[1],
"keypointrcnn_resnet50_fpn": lambda x: x[1],
"retinanet_resnet50_fpn": lambda x: x[1],
"ssd300_vgg16": lambda x: x[1],
"ssdlite320_mobilenet_v3_large": lambda x: x[1],
}
# The following models exhibit flaky numerics under autocast in _test_*_model harnesses.
# This may be caused by the harness environment (e.g. num classes, input initialization
# via torch.rand), and does not prove autocast is unsuitable when training with real data
# (autocast has been used successfully with real data for some of these models).
# TODO: investigate why autocast numerics are flaky in the harnesses.
#
# For the following models, _test_*_model harnesses skip numerical checks on outputs when
# trying autocast. However, they still try an autocasted forward pass, so they still ensure
# autocast coverage suffices to prevent dtype errors in each model.
autocast_flaky_numerics = (
"inception_v3",
"resnet101",
"resnet152",
"wide_resnet101_2",
"deeplabv3_resnet50",
"deeplabv3_resnet101",
"deeplabv3_mobilenet_v3_large",
"fcn_resnet50",
"fcn_resnet101",
"lraspp_mobilenet_v3_large",
"maskrcnn_resnet50_fpn",
)
# The following contains configuration parameters for all models which are used by
# the _test_*_model methods.
_model_params = {
'inception_v3': {
'input_shape': (1, 3, 299, 299)
},
'retinanet_resnet50_fpn': {
'num_classes': 20,
'score_thresh': 0.01,
'min_size': 224,
'max_size': 224,
'input_shape': (3, 224, 224),
},
'keypointrcnn_resnet50_fpn': {
'num_classes': 2,
'min_size': 224,
'max_size': 224,
'box_score_thresh': 0.15,
'input_shape': (3, 224, 224),
},
'fasterrcnn_resnet50_fpn': {
'num_classes': 20,
'min_size': 224,
'max_size': 224,
'input_shape': (3, 224, 224),
},
'maskrcnn_resnet50_fpn': {
'num_classes': 10,
'min_size': 224,
'max_size': 224,
'input_shape': (3, 224, 224),
},
'fasterrcnn_mobilenet_v3_large_fpn': {
'box_score_thresh': 0.02076,
},
'fasterrcnn_mobilenet_v3_large_320_fpn': {
'box_score_thresh': 0.02076,
'rpn_pre_nms_top_n_test': 1000,
'rpn_post_nms_top_n_test': 1000,
}
}
def _make_sliced_model(model, stop_layer):
layers = OrderedDict()
for name, layer in model.named_children():
layers[name] = layer
if name == stop_layer:
break
new_model = torch.nn.Sequential(layers)
return new_model
@cpu_only
@pytest.mark.parametrize('model_name', ['densenet121', 'densenet169', 'densenet201', 'densenet161'])
def test_memory_efficient_densenet(model_name):
input_shape = (1, 3, 300, 300)
x = torch.rand(input_shape)
model1 = models.__dict__[model_name](num_classes=50, memory_efficient=True)
params = model1.state_dict()
num_params = sum([x.numel() for x in model1.parameters()])
model1.eval()
out1 = model1(x)
out1.sum().backward()
num_grad = sum([x.grad.numel() for x in model1.parameters() if x.grad is not None])
model2 = models.__dict__[model_name](num_classes=50, memory_efficient=False)
model2.load_state_dict(params)
model2.eval()
out2 = model2(x)
assert num_params == num_grad
torch.testing.assert_close(out1, out2, rtol=0.0, atol=1e-5)
@cpu_only
@pytest.mark.parametrize('dilate_layer_2', (True, False))
@pytest.mark.parametrize('dilate_layer_3', (True, False))
@pytest.mark.parametrize('dilate_layer_4', (True, False))
def test_resnet_dilation(dilate_layer_2, dilate_layer_3, dilate_layer_4):
# TODO improve tests to also check that each layer has the right dimensionality
model = models.__dict__["resnet50"](replace_stride_with_dilation=(dilate_layer_2, dilate_layer_3, dilate_layer_4))
model = _make_sliced_model(model, stop_layer="layer4")
model.eval()
x = torch.rand(1, 3, 224, 224)
out = model(x)
f = 2 ** sum((dilate_layer_2, dilate_layer_3, dilate_layer_4))
assert out.shape == (1, 2048, 7 * f, 7 * f)
@cpu_only
def test_mobilenet_v2_residual_setting():
model = models.__dict__["mobilenet_v2"](inverted_residual_setting=[[1, 16, 1, 1], [6, 24, 2, 2]])
model.eval()
x = torch.rand(1, 3, 224, 224)
out = model(x)
assert out.shape[-1] == 1000
@cpu_only
@pytest.mark.parametrize('model_name', ["mobilenet_v2", "mobilenet_v3_large", "mobilenet_v3_small"])
def test_mobilenet_norm_layer(model_name):
model = models.__dict__[model_name]()
assert any(isinstance(x, nn.BatchNorm2d) for x in model.modules())
def get_gn(num_channels):
return nn.GroupNorm(32, num_channels)
model = models.__dict__[model_name](norm_layer=get_gn)
assert not(any(isinstance(x, nn.BatchNorm2d) for x in model.modules()))
assert any(isinstance(x, nn.GroupNorm) for x in model.modules())
@cpu_only
def test_inception_v3_eval():
# replacement for models.inception_v3(pretrained=True) that does not download weights
kwargs = {}
kwargs['transform_input'] = True
kwargs['aux_logits'] = True
kwargs['init_weights'] = False
name = "inception_v3"
model = models.Inception3(**kwargs)
model.aux_logits = False
model.AuxLogits = None
model = model.eval()
x = torch.rand(1, 3, 299, 299)
_check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(name, None))
@cpu_only
def test_fasterrcnn_double():
model = models.detection.fasterrcnn_resnet50_fpn(num_classes=50, pretrained_backbone=False)
model.double()
model.eval()
input_shape = (3, 300, 300)
x = torch.rand(input_shape, dtype=torch.float64)
model_input = [x]
out = model(model_input)
assert model_input[0] is x
assert len(out) == 1
assert "boxes" in out[0]
assert "scores" in out[0]
assert "labels" in out[0]
@cpu_only
def test_googlenet_eval():
# replacement for models.googlenet(pretrained=True) that does not download weights
kwargs = {}
kwargs['transform_input'] = True
kwargs['aux_logits'] = True
kwargs['init_weights'] = False
name = "googlenet"
model = models.GoogLeNet(**kwargs)
model.aux_logits = False
model.aux1 = None
model.aux2 = None
model = model.eval()
x = torch.rand(1, 3, 224, 224)
_check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(name, None))
@needs_cuda
def test_fasterrcnn_switch_devices():
def checkOut(out):
assert len(out) == 1
assert "boxes" in out[0]
assert "scores" in out[0]
assert "labels" in out[0]
model = models.detection.fasterrcnn_resnet50_fpn(num_classes=50, pretrained_backbone=False)
model.cuda()
model.eval()
input_shape = (3, 300, 300)
x = torch.rand(input_shape, device='cuda')
model_input = [x]
out = model(model_input)
assert model_input[0] is x
checkOut(out)
with torch.cuda.amp.autocast():
out = model(model_input)
checkOut(out)
# now switch to cpu and make sure it works
model.cpu()
x = x.cpu()
out_cpu = model([x])
checkOut(out_cpu)
@cpu_only
def test_generalizedrcnn_transform_repr():
min_size, max_size = 224, 299
image_mean = [0.485, 0.456, 0.406]
image_std = [0.229, 0.224, 0.225]
t = models.detection.transform.GeneralizedRCNNTransform(min_size=min_size,
max_size=max_size,
image_mean=image_mean,
image_std=image_std)
# Check integrity of object __repr__ attribute
expected_string = 'GeneralizedRCNNTransform('
_indent = '\n '
expected_string += '{0}Normalize(mean={1}, std={2})'.format(_indent, image_mean, image_std)
expected_string += '{0}Resize(min_size=({1},), max_size={2}, '.format(_indent, min_size, max_size)
expected_string += "mode='bilinear')\n)"
assert t.__repr__() == expected_string
@pytest.mark.parametrize('model_name', get_available_classification_models())
@pytest.mark.parametrize('dev', cpu_and_gpu())
def test_classification_model(model_name, dev):
set_rng_seed(0)
defaults = {
'num_classes': 50,
'input_shape': (1, 3, 224, 224),
}
kwargs = {**defaults, **_model_params.get(model_name, {})}
input_shape = kwargs.pop('input_shape')
model = models.__dict__[model_name](**kwargs)
model.eval().to(device=dev)
# RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
x = torch.rand(input_shape).to(device=dev)
out = model(x)
_assert_expected(out.cpu(), model_name, prec=0.1)
assert out.shape[-1] == 50
_check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None))
if dev == torch.device("cuda"):
with torch.cuda.amp.autocast():
out = model(x)
# See autocast_flaky_numerics comment at top of file.
if model_name not in autocast_flaky_numerics:
_assert_expected(out.cpu(), model_name, prec=0.1)
assert out.shape[-1] == 50
@pytest.mark.parametrize('model_name', get_available_segmentation_models())
@pytest.mark.parametrize('dev', cpu_and_gpu())
def test_segmentation_model(model_name, dev):
set_rng_seed(0)
defaults = {
'num_classes': 10,
'pretrained_backbone': False,
'input_shape': (1, 3, 32, 32),
}
kwargs = {**defaults, **_model_params.get(model_name, {})}
input_shape = kwargs.pop('input_shape')
model = models.segmentation.__dict__[model_name](**kwargs)
model.eval().to(device=dev)
# RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
x = torch.rand(input_shape).to(device=dev)
out = model(x)["out"]
def check_out(out):
prec = 0.01
try:
# We first try to assert the entire output if possible. This is not
# only the best way to assert results but also handles the cases
# where we need to create a new expected result.
_assert_expected(out.cpu(), model_name, prec=prec)
except AssertionError:
# Unfortunately some segmentation models are flaky with autocast
# so instead of validating the probability scores, check that the class
# predictions match.
expected_file = _get_expected_file(model_name)
expected = torch.load(expected_file)
torch.testing.assert_close(out.argmax(dim=1), expected.argmax(dim=1), rtol=prec, atol=prec)
return False # Partial validation performed
return True # Full validation performed
full_validation = check_out(out)
_check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None))
if dev == torch.device("cuda"):
with torch.cuda.amp.autocast():
out = model(x)["out"]
# See autocast_flaky_numerics comment at top of file.
if model_name not in autocast_flaky_numerics:
full_validation &= check_out(out)
if not full_validation:
msg = "The output of {} could only be partially validated. " \
"This is likely due to unit-test flakiness, but you may " \
"want to do additional manual checks if you made " \
"significant changes to the codebase.".format(test_segmentation_model.__name__)
warnings.warn(msg, RuntimeWarning)
pytest.skip(msg)
@pytest.mark.parametrize('model_name', get_available_detection_models())
@pytest.mark.parametrize('dev', cpu_and_gpu())
def test_detection_model(model_name, dev):
set_rng_seed(0)
defaults = {
'num_classes': 50,
'pretrained_backbone': False,
'input_shape': (3, 300, 300),
}
kwargs = {**defaults, **_model_params.get(model_name, {})}
input_shape = kwargs.pop('input_shape')
model = models.detection.__dict__[model_name](**kwargs)
model.eval().to(device=dev)
# RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
x = torch.rand(input_shape).to(device=dev)
model_input = [x]
out = model(model_input)
assert model_input[0] is x
def check_out(out):
assert len(out) == 1
def compact(tensor):
size = tensor.size()
elements_per_sample = functools.reduce(operator.mul, size[1:], 1)
if elements_per_sample > 30:
return compute_mean_std(tensor)
else:
return subsample_tensor(tensor)
def subsample_tensor(tensor):
num_elems = tensor.size(0)
num_samples = 20
if num_elems <= num_samples:
return tensor
ith_index = num_elems // num_samples
return tensor[ith_index - 1::ith_index]
def compute_mean_std(tensor):
# can't compute mean of integral tensor
tensor = tensor.to(torch.double)
mean = torch.mean(tensor)
std = torch.std(tensor)
return {"mean": mean, "std": std}
output = map_nested_tensor_object(out, tensor_map_fn=compact)
prec = 0.01
try:
# We first try to assert the entire output if possible. This is not
# only the best way to assert results but also handles the cases
# where we need to create a new expected result.
_assert_expected(output, model_name, prec=prec)
except AssertionError:
# Unfortunately detection models are flaky due to the unstable sort
# in NMS. If matching across all outputs fails, use the same approach
# as in NMSTester.test_nms_cuda to see if this is caused by duplicate
# scores.
expected_file = _get_expected_file(model_name)
expected = torch.load(expected_file)
torch.testing.assert_close(output[0]["scores"], expected[0]["scores"], rtol=prec, atol=prec,
check_device=False, check_dtype=False)
# Note: Fmassa proposed turning off NMS by adapting the threshold
# and then using the Hungarian algorithm as in DETR to find the
# best match between output and expected boxes and eliminate some
# of the flakiness. Worth exploring.
return False # Partial validation performed
return True # Full validation performed
full_validation = check_out(out)
_check_jit_scriptable(model, ([x],), unwrapper=script_model_unwrapper.get(model_name, None))
if dev == torch.device("cuda"):
with torch.cuda.amp.autocast():
out = model(model_input)
# See autocast_flaky_numerics comment at top of file.
if model_name not in autocast_flaky_numerics:
full_validation &= check_out(out)
if not full_validation:
msg = "The output of {} could only be partially validated. " \
"This is likely due to unit-test flakiness, but you may " \
"want to do additional manual checks if you made " \
"significant changes to the codebase.".format(test_detection_model.__name__)
warnings.warn(msg, RuntimeWarning)
pytest.skip(msg)
@cpu_only
@pytest.mark.parametrize('model_name', get_available_detection_models())
def test_detection_model_validation(model_name):
set_rng_seed(0)
model = models.detection.__dict__[model_name](num_classes=50, pretrained_backbone=False)
input_shape = (3, 300, 300)
x = [torch.rand(input_shape)]
# validate that targets are present in training
with pytest.raises(ValueError):
model(x)
# validate type
targets = [{'boxes': 0.}]
with pytest.raises(ValueError):
model(x, targets=targets)
# validate boxes shape
for boxes in (torch.rand((4,)), torch.rand((1, 5))):
targets = [{'boxes': boxes}]
with pytest.raises(ValueError):
model(x, targets=targets)
# validate that no degenerate boxes are present
boxes = torch.tensor([[1, 3, 1, 4], [2, 4, 3, 4]])
targets = [{'boxes': boxes}]
with pytest.raises(ValueError):
model(x, targets=targets)
@pytest.mark.parametrize('model_name', get_available_video_models())
@pytest.mark.parametrize('dev', cpu_and_gpu())
def test_video_model(model_name, dev):
# the default input shape is
# bs * num_channels * clip_len * h *w
input_shape = (1, 3, 4, 112, 112)
# test both basicblock and Bottleneck
model = models.video.__dict__[model_name](num_classes=50)
model.eval().to(device=dev)
# RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
x = torch.rand(input_shape).to(device=dev)
out = model(x)
_check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None))
assert out.shape[-1] == 50
if dev == torch.device("cuda"):
with torch.cuda.amp.autocast():
out = model(x)
assert out.shape[-1] == 50
if __name__ == '__main__':
pytest.main([__file__])