-
Notifications
You must be signed in to change notification settings - Fork 205
/
Copy pathfloat8_linear.py
462 lines (403 loc) · 17.2 KB
/
float8_linear.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD 3-Clause license found in the
# LICENSE file in the root directory of this source tree.
"""
A simple module swap UX for a float8 version of `torch.nn.Linear`.
"""
from typing import Optional
import torch
import torch.utils.checkpoint as checkpoint
from torchao.float8.config import Float8LinearConfig, ScalingGranularity, ScalingType
from torchao.float8.distributed_utils import tensor_already_casted_to_fp8
from torchao.float8.float8_scaling_utils import (
NoopFwToFloat8BwDynamic,
get_maybe_axiswise_dim,
hp_tensor_to_float8_dynamic,
)
from torchao.float8.float8_tensor import (
GemmInputRole,
LinearMMConfig,
ScaledMMConfig,
hp_tensor_and_scale_to_float8,
)
from torchao.float8.float8_utils import tensor_to_scale
from torchao.float8.fsdp_utils import WeightWithDynamicFloat8CastTensor
@torch._dynamo.allow_in_graph
class manual_float8_matmul_with_args_in_float8(torch.autograd.Function):
"""
Like torch.matmul, but with the arguments in float8
Note: this function requires all arguments to already be Float8Tensor objects,
which only supports tensorwise scaling granularity. The reason we didn't just make this
function support axiswise scaling granularity is because that would need very
careful testing of delayed scaling, as delayed scaling modifies buffers inplace.
In the future we'll probably have to unify, just postponing that until a future PR.
"""
@staticmethod
def forward(
ctx,
input_fp8,
weight_fp8_t,
):
ctx.save_for_backward(input_fp8, weight_fp8_t)
# the reshapes are needed in order to make the shapes compatible with
# torch.mm
orig_shape = input_fp8.shape
input_fp8_reshaped = input_fp8.reshape(-1, orig_shape[-1])
res_bits = torch.mm(input_fp8_reshaped, weight_fp8_t)
res_bits = res_bits.reshape(*orig_shape[:-1], res_bits.shape[-1])
return res_bits
@staticmethod
def backward(ctx, grad_output_fp8):
input_fp8, weight_fp8_t = ctx.saved_tensors
# the reshapes are needed in order to make the shapes compatible with
# torch.mm
grad_output_fp8_orig_shape = grad_output_fp8.shape
grad_output_fp8_reshaped = grad_output_fp8.reshape(
-1, grad_output_fp8_orig_shape[-1]
)
# calculate grad_input
grad_input = torch.mm(
grad_output_fp8_reshaped,
weight_fp8_t.t(),
)
grad_input = grad_input.reshape(
*grad_output_fp8_orig_shape[:-1], grad_input.shape[-1]
)
input_fp8_orig_shape = input_fp8.shape
input_fp8_reshaped = input_fp8.reshape(-1, input_fp8_orig_shape[-1])
# calculate grad_weight
# Note: the variant below is slightly faster on LLaMa 3 8B pretraining
# compared to than calculating `grad_weight_t = input_fp8_t @ grad_output_fp8_reshaped`
grad_weight = torch.mm(
grad_output_fp8_reshaped.t(),
input_fp8_reshaped,
)
return grad_input, grad_weight.t()
@torch._dynamo.allow_in_graph
class manual_float8_matmul_with_args_in_hp(torch.autograd.Function):
"""
Like torch.matmul, but with the arguments in high precision and the cast to float8
defined inside of this function.
Note: this function currently only supports dynamic scaling type and
axiswise granularity. We will have to unify this with other scaling types
and other granularities in a separate PR.
"""
@staticmethod
def forward(
ctx,
input_hp: torch.Tensor,
weight_hp_t: torch.Tensor,
linear_mm_config: LinearMMConfig,
config: Float8LinearConfig,
):
ctx.save_for_backward(input_hp, weight_hp_t)
ctx.linear_mm_config = linear_mm_config
ctx.config = config
c = config
if c.cast_config_input.scaling_type is ScalingType.DISABLED:
input_maybe_fp8 = input_hp
else:
input_maybe_fp8 = hp_tensor_to_float8_dynamic(
input_hp,
c.cast_config_input.target_dtype,
linear_mm_config,
gemm_input_role=GemmInputRole.INPUT,
scaling_granularity=c.cast_config_input.scaling_granularity,
axiswise_dim=get_maybe_axiswise_dim(
-1, c.cast_config_input.scaling_granularity
),
)
if c.cast_config_weight.scaling_type is ScalingType.DISABLED:
weight_maybe_fp8_t = weight_hp_t
else:
weight_maybe_fp8_t = hp_tensor_to_float8_dynamic(
weight_hp_t,
c.cast_config_weight.target_dtype,
linear_mm_config,
gemm_input_role=GemmInputRole.WEIGHT,
scaling_granularity=c.cast_config_weight.scaling_granularity,
axiswise_dim=get_maybe_axiswise_dim(
0, c.cast_config_weight.scaling_granularity
),
)
# the reshapes are needed in order to make the shapes compatible with
# torch.mm
orig_shape = input_maybe_fp8.shape
input_maybe_fp8_reshaped = input_maybe_fp8.reshape(-1, orig_shape[-1])
res_bits = torch.mm(input_maybe_fp8_reshaped, weight_maybe_fp8_t)
res_bits = res_bits.reshape(*orig_shape[:-1], res_bits.shape[-1])
return res_bits
@staticmethod
def backward(ctx, grad_output):
input_hp, weight_hp_t = ctx.saved_tensors
c = ctx.config
# the reshapes are needed in order to make the shapes compatible with
# torch.mm
grad_output_orig_shape = grad_output.shape
grad_output_reshaped = grad_output.reshape(-1, grad_output_orig_shape[-1])
#
# calculate grad_input
#
if c.cast_config_grad_output.scaling_type is ScalingType.DISABLED:
grad_output_reshaped_maybe_fp8_dim0 = grad_output_reshaped
else:
grad_output_reshaped_maybe_fp8_dim0 = hp_tensor_to_float8_dynamic(
grad_output_reshaped,
c.cast_config_grad_output.target_dtype,
ctx.linear_mm_config,
gemm_input_role=GemmInputRole.GRAD_OUTPUT,
scaling_granularity=c.cast_config_grad_output.scaling_granularity,
axiswise_dim=get_maybe_axiswise_dim(
-1, c.cast_config_grad_output.scaling_granularity
),
)
if c.cast_config_weight_for_grad_input.scaling_type is ScalingType.DISABLED:
weight_t_maybe_fp8_dim0 = weight_hp_t
else:
# Note: we need https://github.com/pytorch/pytorch/issues/136267
# to be solved to have a chance to reuse max(abs(weight, dim=...))
# from the forward to get max(abs(weight)) here without reading
# the entire tensor.
weight_t_maybe_fp8_dim0 = hp_tensor_to_float8_dynamic(
weight_hp_t,
c.cast_config_weight_for_grad_input.target_dtype,
ctx.linear_mm_config,
gemm_input_role=GemmInputRole.WEIGHT,
scaling_granularity=c.cast_config_weight_for_grad_input.scaling_granularity,
axiswise_dim=get_maybe_axiswise_dim(
-1, c.cast_config_weight_for_grad_input.scaling_granularity
),
)
grad_input = torch.mm(
grad_output_reshaped_maybe_fp8_dim0,
weight_t_maybe_fp8_dim0.t(),
)
grad_input = grad_input.reshape(
*grad_output_orig_shape[:-1], grad_input.shape[-1]
)
input_hp_orig_shape = input_hp.shape
input_hp_reshaped = input_hp.reshape(-1, input_hp_orig_shape[-1])
#
# calculate grad_weight
#
if (
c.cast_config_grad_output_for_grad_weight.scaling_type
is ScalingType.DISABLED
):
grad_output_reshaped_maybe_fp8_dim1 = grad_output_reshaped
else:
grad_output_reshaped_maybe_fp8_dim1 = hp_tensor_to_float8_dynamic(
grad_output_reshaped,
c.cast_config_grad_output_for_grad_weight.target_dtype,
ctx.linear_mm_config,
gemm_input_role=GemmInputRole.GRAD_OUTPUT,
scaling_granularity=c.cast_config_grad_output_for_grad_weight.scaling_granularity,
axiswise_dim=get_maybe_axiswise_dim(
0, c.cast_config_grad_output_for_grad_weight.scaling_granularity
),
)
if c.cast_config_input_for_grad_weight.scaling_type is ScalingType.DISABLED:
input_reshaped_maybe_fp8_dim1 = input_hp_reshaped
else:
input_reshaped_maybe_fp8_dim1 = hp_tensor_to_float8_dynamic(
input_hp_reshaped,
c.cast_config_input_for_grad_weight.target_dtype,
ctx.linear_mm_config,
gemm_input_role=GemmInputRole.INPUT,
scaling_granularity=c.cast_config_input_for_grad_weight.scaling_granularity,
axiswise_dim=get_maybe_axiswise_dim(
0, c.cast_config_input_for_grad_weight.scaling_granularity
),
)
grad_weight = torch.mm(
grad_output_reshaped_maybe_fp8_dim1.t(),
input_reshaped_maybe_fp8_dim1,
)
empty_grads = None, None
return grad_input, grad_weight.t(), *empty_grads
class Float8Linear(torch.nn.Linear):
"""
Note: this is **not** a public API and is only intended to be used
inside of this repository. Please file an issue if you would benefit
from this being a public API.
A wrapper around a `torch.nn.Linear` module which does fp8 compute, and tracks
scales in way friendly to delayed scaling.
"""
def __init__(self, *args, **kwargs):
"""
Additional arguments on top of `torch.nn.Linear`'s arguments:
* `config`: Float8LinearConfig
"""
config = kwargs.pop("config")
super().__init__(*args, **kwargs)
# Defines the scaling behavior of input, weight, grad_output
self.scaling_type_input = config.cast_config_input.scaling_type
self.scaling_type_weight = config.cast_config_weight.scaling_type
self.scaling_type_grad_output = config.cast_config_grad_output.scaling_type
self.config = config
self.linear_mm_config = LinearMMConfig(
# output
ScaledMMConfig(
config.emulate,
self.config.gemm_config_output.use_fast_accum,
False,
self.config.pad_inner_dim,
),
# grad_input
ScaledMMConfig(
config.emulate,
self.config.gemm_config_grad_input.use_fast_accum,
False,
self.config.pad_inner_dim,
),
# grad_weight
ScaledMMConfig(
config.emulate,
self.config.gemm_config_grad_weight.use_fast_accum,
False,
self.config.pad_inner_dim,
),
)
def cast_input_to_float8(self, input: torch.Tensor) -> torch.Tensor:
# Duplicate the autocast logic for F.linear, so that the output
# of our module has the right original precision
if torch.is_autocast_enabled():
# For now, hardcode to GPU's autocast dtype
# if we need CPU support in the future, we can add it
autocast_dtype = torch.get_autocast_gpu_dtype()
input = input.to(autocast_dtype)
assert self.scaling_type_input is ScalingType.DYNAMIC
input_fp8 = hp_tensor_to_float8_dynamic(
input,
self.config.cast_config_input.target_dtype,
self.linear_mm_config,
gemm_input_role=GemmInputRole.INPUT,
)
return input_fp8
def get_weight_scale(self, weight: torch.Tensor) -> Optional[torch.Tensor]:
if tensor_already_casted_to_fp8(weight):
return None
assert self.scaling_type_weight is ScalingType.DYNAMIC
return tensor_to_scale(weight, self.config.cast_config_weight.target_dtype)
def cast_weight_to_float8_t(
self,
weight: torch.Tensor,
weight_scale: Optional[torch.Tensor] = None,
) -> torch.Tensor:
if tensor_already_casted_to_fp8(weight):
return weight.t()
weight_fp8 = hp_tensor_and_scale_to_float8(
weight,
weight_scale,
self.config.cast_config_weight.target_dtype,
self.linear_mm_config,
gemm_input_role=GemmInputRole.WEIGHT,
)
return weight_fp8.t()
def cast_output_to_float8_in_bw(self, output: torch.Tensor) -> torch.Tensor:
assert self.scaling_type_grad_output is ScalingType.DYNAMIC
output = NoopFwToFloat8BwDynamic.apply(
output,
self.linear_mm_config,
self.config.cast_config_grad_output.target_dtype,
)
return output
def forward(self, input: torch.Tensor) -> torch.Tensor:
has_any_axiswise_scaling = any(
cc.scaling_granularity is ScalingGranularity.AXISWISE
for cc in [
self.config.cast_config_input,
self.config.cast_config_weight,
self.config.cast_config_grad_output,
self.config.cast_config_input_for_grad_weight,
self.config.cast_config_weight_for_grad_input,
self.config.cast_config_grad_output_for_grad_weight,
]
)
if not has_any_axiswise_scaling:
input_fp8 = self.cast_input_to_float8(input)
# If force_recompute_fp8_weight_in_bwd, we only recompute the fp8 weight,
# weight_scale should be saved.
weight_scale = self.get_weight_scale(self.weight)
if self.config.force_recompute_fp8_weight_in_bwd:
weight_fp8_t = checkpoint.checkpoint(
self.cast_weight_to_float8_t,
self.weight,
weight_scale,
)
else:
weight_fp8_t = self.cast_weight_to_float8_t(self.weight, weight_scale)
output = manual_float8_matmul_with_args_in_float8.apply(
input_fp8, weight_fp8_t
)
# Cast grad_output to float8_e5m2 during backward
output = self.cast_output_to_float8_in_bw(output)
else:
# for now, axiswise path is separate
# TODO(future PR): unify to support mix and match
output = manual_float8_matmul_with_args_in_hp.apply(
input,
self.weight.t(),
self.linear_mm_config,
self.config,
)
if self.bias is not None:
output = output + self.bias.to(output.dtype)
return output
def extra_repr(self):
c = self.config
ci = f"i:{c.cast_config_input.short_str()}"
cw = f"w:{c.cast_config_weight.short_str()}"
cgo = f"go:{c.cast_config_grad_output.short_str()}"
parts = [ci, cw, cgo]
if c.cast_config_input_for_grad_weight != c.cast_config_input:
parts.append(f"i_gw:{c.cast_config_input_for_grad_weight.short_str()}")
if c.cast_config_weight_for_grad_input != c.cast_config_weight:
parts.append(f"w_gi:{c.cast_config_weight_for_grad_input.short_str()}")
if c.cast_config_grad_output_for_grad_weight != c.cast_config_grad_output:
parts.append(
f"go_gw:{c.cast_config_grad_output_for_grad_weight.short_str()}"
)
cast_config_str = ",".join(parts)
s = f'{super().extra_repr()}, cast_configs={cast_config_str}"'
return s
@classmethod
def from_float(
cls,
mod,
config: Optional[Float8LinearConfig] = None,
):
"""
Create an nn.Linear with fp8 compute from a regular nn.Linear
Args:
mod (torch.nn.Linear): nn.Linear to convert
config (Optional[Float8LinearConfig]): configuration for conversion to float8
"""
if config is None:
config = Float8LinearConfig()
with torch.device("meta"):
new_mod = cls(
mod.in_features,
mod.out_features,
bias=False,
config=config,
)
new_mod.weight = mod.weight
new_mod.bias = mod.bias
# If FSDP float8 all-gather is on, wrap the weight in a float8-aware
# tensor subclass. This must happen last because:
# 1. weight needs to be on the correct device to create the buffers
# 2. buffers need to be already created for the delayed scaling version
# of the weight wrapper to be initialized
if config.enable_fsdp_float8_all_gather:
assert config.cast_config_weight.scaling_type is ScalingType.DYNAMIC
new_mod.weight = torch.nn.Parameter(
WeightWithDynamicFloat8CastTensor(
new_mod.weight,
new_mod.linear_mm_config,
new_mod.config.cast_config_weight.target_dtype,
)
)
return new_mod