You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
2024-08-31 09:14:02.849 | ERROR | MainProcess | /usr/local/lib/python3.10/dist-packages/torch_tensorrt/logging.py:24 - ITensor::getDimensions: Error Code 4: API Usage Error ([SCATTER]-[aten_ops.scatter.src]-[scatter_1_scatter_layer]: ScatterLayer in elements mode all inputs tensors rank must be same. Input 0 rank is 2, input 1 rank is 2, and input 2 rank is 1.)
2024-08-31 09:14:02.865 | ERROR | MainProcess | /usr/local/lib/python3.10/dist-packages/torch_tensorrt/logging.py:24 - ITensor::getDimensions: Error Code 4: API Usage Error (Output shape can not be computed for node [SCATTER]-[aten_ops.scatter.src]-[scatter_1_scatter_layer].)
2024-08-31 09:14:02.880 | ERROR | MainProcess | /usr/local/lib/python3.10/dist-packages/torch_tensorrt/logging.py:24 - ITensor::getDimensions: Error Code 4: API Usage Error (Output shape can not be computed for node [SCATTER]-[aten_ops.scatter.src]-[scatter_1_scatter_layer].)
2024-08-31 09:14:04.368 | INFO | MainProcess | /usr/local/lib/python3.10/dist-packages/model_navigator/pipelines/pipeline.py:128 - backend='torch_tensorrt' raised:
ValueError: __len__() should return >= 0
While executing %eq : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%scatter_1, -100), kwargs = {_itensor_to_tensor_meta: {<tensorrt.tensorrt.ITensor object at 0x7f44432187b0>: ((1, 1024), torch.int64, False, (1024, 1), torch.contiguous_format, False, {}), <tensorrt.tensorrt.ITensor object at 0x7f44488bb5b0>: ((1, 1024), torch.int64, False, (1024, 1), torch.contiguous_format, False, {}), <tensorrt.tensorrt.ITensor object at 0x7f44432119f0>: ((1, 1023), torch.int64, False, (1024, 1), torch.contiguous_format, False, {}), <tensorrt.tensorrt.ITensor object at 0x7f444329afb0>: ((1, 1023), torch.int64, False, (1023, 1), torch.contiguous_format, False, {}), <tensorrt.tensorrt.ITensor object at 0x7f4443213fb0>: ((1, 1023), torch.int64, False, (1024, 1), torch.contiguous_format, False, {}), <tensorrt.tensorrt.ITensor object at 0x7f4442f4e5f0>: ((1, 1024), torch.int64, False, (1024, 1), torch.contiguous_format, False, {}), <tensorrt.tensorrt.ITensor object at 0x7f4442f80f30>: ((1, 1024), torch.int64, False, (1024, 1), torch.contiguous_format, False, {}), <tensorrt.tensorrt.ITensor object at 0x7f4442f8a9f0>: ((1,), torch.int64, False, (1024,), torch.contiguous_format, False, {}), <tensorrt.tensorrt.ITensor object at 0x7f4442f0a870>: ((1,), torch.int64, False, (1024,), torch.contiguous_format, False, {}), <tensorrt.tensorrt.ITensor object at 0x7f4442f0b7f0>: ((1, 1024), torch.int64, False, (1024, 1), torch.contiguous_format, False, {}), <tensorrt.tensorrt.ITensor object at 0x7f4442f35c30>: ((1, 1), torch.int64, False, (1024, 1), torch.contiguous_format, False, {}), <tensorrt.tensorrt.ITensor object at 0x7f44430e90f0>: ((1, 1024), torch.int64, False, (1024, 1), torch.contiguous_format, False, {})}})
Original traceback:
None
Set TORCH_LOGS="+dynamo" and TORCHDYNAMO_VERBOSE=1 for more information
You can suppress this exception and fall back to eager by setting:
import torch._dynamo
torch._dynamo.config.suppress_errors = True
2024-08-31 09:14:04.371 | WARNING | MainProcess | /usr/local/lib/python3.10/dist-packages/model_navigator/pipelines/pipeline.py:131 - Command finished with ModelNavigatorUserInputError. The error is considered as external error. Usually caused by incompatibilities between the model and the target formats and/or runtimes. Please review the command output.
Traceback (most recent call last):
File "/usr/local/lib/python3.10/dist-packages/model_navigator/commands/execution_context.py", line 156, in _execute_function
fire.Fire(func, unwrapped_args)
File "/usr/local/lib/python3.10/dist-packages/fire/core.py", line 141, in Fire
component_trace = _Fire(component, args, parsed_flag_args, context, name)
File "/usr/local/lib/python3.10/dist-packages/fire/core.py", line 466, in _Fire
component, remaining_args = _CallAndUpdateTrace(
File "/usr/local/lib/python3.10/dist-packages/fire/core.py", line 681, in _CallAndUpdateTrace
component = fn(*varargs, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/model_navigator/commands/correctness/correctness_script.py", line 93, in correctness
comp_output = runner.infer(sample)
File "/usr/local/lib/python3.10/dist-packages/model_navigator/runners/base.py", line 325, in infer
output = self.infer_impl(feed_dict, *args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/model_navigator/runners/torch.py", line 94, in infer_impl
outputs = self._infer(feed_dict=feed_dict)
File "/usr/local/lib/python3.10/dist-packages/model_navigator/runners/torch.py", line 135, in _infer_v1
outputs = self._loaded_model(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1714, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1725, in _call_impl
return forward_call(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/eval_frame.py", line 434, in _fn
return fn(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1714, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1725, in _call_impl
return forward_call(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/convert_frame.py", line 1121, in __call__
return self._torchdynamo_orig_callable(
File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/convert_frame.py", line 948, in __call__
result = self._inner_convert(
File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/convert_frame.py", line 472, in __call__
return _compile(
File "/usr/local/lib/python3.10/dist-packages/torch/_utils_internal.py", line 85, in wrapper_function
return StrobelightCompileTimeProfiler.profile_compile_time(
File "/usr/local/lib/python3.10/dist-packages/torch/_strobelight/compile_time_profiler.py", line 129, in profile_compile_time
return func(*args, **kwargs)
File "/usr/lib/python3.10/contextlib.py", line 79, in inner
return func(*args, **kwds)
File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/convert_frame.py", line 817, in _compile
guarded_code = compile_inner(code, one_graph, hooks, transform)
File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/utils.py", line 233, in time_wrapper
r = func(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/convert_frame.py", line 636, in compile_inner
out_code = transform_code_object(code, transform)
File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/bytecode_transformation.py", line 1270, in transform_code_object
transformations(instructions, code_options)
File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/convert_frame.py", line 178, in _fn
return fn(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/convert_frame.py", line 582, in transform
tracer.run()
File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/symbolic_convert.py", line 2476, in run
super().run()
File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/symbolic_convert.py", line 904, in run
while self.step():
File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/symbolic_convert.py", line 816, in step
self.dispatch_table[inst.opcode](self, inst)
File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/symbolic_convert.py", line 2667, in RETURN_VALUE
self._return(inst)
File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/symbolic_convert.py", line 2652, in _return
self.output.compile_subgraph(
File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/output_graph.py", line 1127, in compile_subgraph
self.compile_and_call_fx_graph(tx, pass2.graph_output_vars(), root)
File "/usr/lib/python3.10/contextlib.py", line 79, in inner
return func(*args, **kwds)
File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/output_graph.py", line 1324, in compile_and_call_fx_graph
compiled_fn = self.call_user_compiler(gm)
File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/utils.py", line 233, in time_wrapper
r = func(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/output_graph.py", line 1415, in call_user_compiler
raise BackendCompilerFailed(self.compiler_fn, e).with_traceback(
File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/output_graph.py", line 1396, in call_user_compiler
compiled_fn = compiler_fn(gm, self.example_inputs())
File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/repro/after_dynamo.py", line 129, in __call__
compiled_gm = compiler_fn(gm, example_inputs)
File "/usr/local/lib/python3.10/dist-packages/torch/__init__.py", line 2223, in __call__
return self.compiler_fn(model_, inputs_, **self.kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch_tensorrt/dynamo/backend/backends.py", line 44, in torch_tensorrt_backend
return DEFAULT_BACKEND(gm, sample_inputs, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch_tensorrt/dynamo/backend/backends.py", line 52, in aot_torch_tensorrt_aten_backend
return _pretraced_backend(gm, sample_inputs, settings)
File "/usr/local/lib/python3.10/dist-packages/torch_tensorrt/dynamo/backend/backends.py", line 108, in _pretraced_backend
trt_compiled = compile_module(
File "/usr/local/lib/python3.10/dist-packages/torch_tensorrt/dynamo/_compiler.py", line 431, in compile_module
trt_module = convert_module(
File "/usr/local/lib/python3.10/dist-packages/torch_tensorrt/dynamo/conversion/_conversion.py", line 107, in convert_module
interpreter_result = interpret_module_to_result(module, inputs, settings)
File "/usr/local/lib/python3.10/dist-packages/torch_tensorrt/dynamo/conversion/_conversion.py", line 88, in interpret_module_to_result
interpreter_result = interpreter.run()
File "/usr/local/lib/python3.10/dist-packages/torch_tensorrt/dynamo/conversion/_TRTInterpreter.py", line 336, in run
self._construct_trt_network_def()
File "/usr/local/lib/python3.10/dist-packages/torch_tensorrt/dynamo/conversion/_TRTInterpreter.py", line [317](https://gitlab-master.nvidia.com/dl/jet/ci/-/jobs/109186759#L317), in _construct_trt_network_def
super().run()
File "/usr/local/lib/python3.10/dist-packages/torch/fx/interpreter.py", line 146, in run
self.env[node] = self.run_node(node)
File "/usr/local/lib/python3.10/dist-packages/torch_tensorrt/dynamo/conversion/_TRTInterpreter.py", line 378, in run_node
trt_node: torch.fx.Node = super().run_node(n)
File "/usr/local/lib/python3.10/dist-packages/torch/fx/interpreter.py", line 203, in run_node
return getattr(self, n.op)(n.target, args, kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch_tensorrt/dynamo/conversion/_TRTInterpreter.py", line 493, in call_function
return converter(self.ctx, target, args, kwargs, self._cur_node_name)
File "/usr/local/lib/python3.10/dist-packages/torch_tensorrt/dynamo/conversion/converter_utils.py", line 529, in convert_with_type_enforcement
return func(ctx, target, new_args, new_kwargs, name)
File "/usr/local/lib/python3.10/dist-packages/torch_tensorrt/dynamo/conversion/aten_ops_converters.py", line 2[319](https://gitlab-master.nvidia.com/dl/jet/ci/-/jobs/109186759#L319), in aten_ops_eq
return impl.elementwise.eq(
File "/usr/local/lib/python3.10/dist-packages/torch_tensorrt/dynamo/conversion/impl/elementwise/ops.py", line 674, in eq
return convert_binary_elementwise(
File "/usr/local/lib/python3.10/dist-packages/torch_tensorrt/dynamo/conversion/impl/elementwise/base.py", line 158, in convert_binary_elementwise
lhs_val, rhs_val = broadcast_to_same_shape(
File "/usr/local/lib/python3.10/dist-packages/torch_tensorrt/dynamo/conversion/converter_utils.py", line 249, in broadcast_to_same_shape
lhs_val, rhs_val = broadcast(ctx, lhs_val, rhs_val, f"{name}_lhs", f"{name}_rhs")
File "/usr/local/lib/python3.10/dist-packages/torch_tensorrt/dynamo/conversion/converter_utils.py", line 785, in broadcast
a_shape = tuple(a.shape)
torch._dynamo.exc.BackendCompilerFailed: backend='torch_tensorrt' raised:
ValueError: __len__() should return >= 0
While executing %eq : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%scatter_1, -100), kwargs = {_itensor_to_tensor_meta: {<tensorrt.tensorrt.ITensor object at 0x7f444[321](https://gitlab-master.nvidia.com/dl/jet/ci/-/jobs/109186759#L321)87b0>: ((1, 1024), torch.int64, False, (1024, 1), torch.contiguous_format, False, {}), <tensorrt.tensorrt.ITensor object at 0x7f44488bb5b0>: ((1, 1024), torch.int64, False, (1024, 1), torch.contiguous_format, False, {}), <tensorrt.tensorrt.ITensor object at 0x7f44432119f0>: ((1, 1023), torch.int64, False, (1024, 1), torch.contiguous_format, False, {}), <tensorrt.tensorrt.ITensor object at 0x7f444329afb0>: ((1, 1023), torch.int64, False, (1023, 1), torch.contiguous_format, False, {}), <tensorrt.tensorrt.ITensor object at 0x7f4443213fb0>: ((1, 1023), torch.int64, False, (1024, 1), torch.contiguous_format, False, {}), <tensorrt.tensorrt.ITensor object at 0x7f4442f4e5f0>: ((1, 1024), torch.int64, False, (1024, 1), torch.contiguous_format, False, {}), <tensorrt.tensorrt.ITensor object at 0x7f4442f80f30>: ((1, 1024), torch.int64, False, (1024, 1), torch.contiguous_format, False, {}), <tensorrt.tensorrt.ITensor object at 0x7f4442f8a9f0>: ((1,), torch.int64, False, (1024,), torch.contiguous_format, False, {}), <tensorrt.tensorrt.ITensor object at 0x7f4442f0a870>: ((1,), torch.int64, False, (1024,), torch.contiguous_format, False, {}), <tensorrt.tensorrt.ITensor object at 0x7f4442f0b7f0>: ((1, 1024), torch.int64, False, (1024, 1), torch.contiguous_format, False, {}), <tensorrt.tensorrt.ITensor object at 0x7f4442f35c30>: ((1, 1), torch.int64, False, (1024, 1), torch.contiguous_format, False, {}), <tensorrt.tensorrt.ITensor object at 0x7f44430e90f0>: ((1, 1024), torch.int64, False, (1024, 1), torch.contiguous_format, False, {})}})
Original traceback:
None
Set TORCH_LOGS="+dynamo" and TORCHDYNAMO_VERBOSE=1 for more information
You can suppress this exception and fall back to eager by setting:
import torch._dynamo
torch._dynamo.config.suppress_errors = True
The above exception was the direct cause of the following exception:
Traceback (most recent call last):
File "/usr/local/lib/python3.10/dist-packages/model_navigator/pipelines/pipeline.py", line 121, in _execute_unit
command_output = execution_unit.command().run(
File "/usr/local/lib/python3.10/dist-packages/model_navigator/commands/base.py", line 127, in run
output = self._run(*args, **_filter_dict_for_func(kwargs, self._run))
File "/usr/local/lib/python3.10/dist-packages/model_navigator/commands/correctness/correctness.py", line 150, in _run
context.execute_python_script(
File "/usr/local/lib/python3.10/dist-packages/model_navigator/commands/execution_context.py", line 142, in execute_python_script
self._execute_function(func, unwrapped_args, allow_failure, cmd)
File "/usr/local/lib/python3.10/dist-packages/model_navigator/commands/execution_context.py", line 168, in _execute_function
raise ModelNavigatorUserInputError(cmd_to_reproduce_error) from e
model_navigator.exceptions.ModelNavigatorUserInputError: Command to reproduce error: /bin/bash torch/reproduce_correctness-torchtensorrtcompilerunner.sh
transformers.models.bart.modeling_bart.BartForConditionalGeneration: Validating
model torch on TorchTensorRTCompile backend FAIL
2024-08-31 09:14:04.373 | INFO | MainProcess | /usr/local/lib/python3.10/dist-packages/model_navigator/pipelines/pipeline.py:148 - Execution time: 12.18[s]
The text was updated successfully, but these errors were encountered:
The text was updated successfully, but these errors were encountered: