From bc23bd2b7955cf5aaeb0059d25e8a13a28cd4e45 Mon Sep 17 00:00:00 2001 From: vasiliy Date: Thu, 25 Jul 2024 09:40:32 -0700 Subject: [PATCH] bring back torch.autograd.Function for float8 matmul Summary: This is a redo of https://github.com/pytorch-labs/float8_experimental/pull/316 With upcoming support of scaling granularities other than tensorwise, we need a good way to control which gemm kernel to call and how to scale the input tensors in fwd and bwd. A `torch.autograd.Function` override is the cleanest way to do that, and in 2024 this now works with `torch.compile`. Test Plan: ``` ./test/test_everything.sh ``` Reviewers: Subscribers: Tasks: Tags: ghstack-source-id: 6cb1588bf59be73b5782f6af94e7a360eba7f40e Pull Request resolved: https://github.com/pytorch-labs/float8_experimental/pull/336 --- float8_experimental/float8_linear.py | 58 +++++++++++++++++++++++++++- 1 file changed, 57 insertions(+), 1 deletion(-) diff --git a/float8_experimental/float8_linear.py b/float8_experimental/float8_linear.py index 42eeb86..8b1820a 100644 --- a/float8_experimental/float8_linear.py +++ b/float8_experimental/float8_linear.py @@ -71,6 +71,62 @@ def _maybe_initialize_amaxes_scales_for_float8_cast( scale.copy_(new_scale) +# this code was resurrected from https://github.com/pytorch-labs/float8_experimental/pull/128/files +@torch._dynamo.allow_in_graph +class manual_float8_matmul(torch.autograd.Function): + """ + Like torch.matmul, but with the arguments in float8 + """ + + @staticmethod + def forward( + ctx, + input_fp8, + weight_fp8_t, + ): + ctx.save_for_backward(input_fp8, weight_fp8_t) + # the reshapes are needed in order to make the shapes compatible with + # torch.mm + orig_shape = input_fp8.shape + input_fp8_reshaped = input_fp8.reshape(-1, orig_shape[-1]) + res_bits = torch.mm(input_fp8_reshaped, weight_fp8_t) + res_bits = res_bits.reshape(*orig_shape[:-1], res_bits.shape[-1]) + return res_bits + + @staticmethod + def backward(ctx, grad_output_fp8): + input_fp8, weight_fp8_t = ctx.saved_tensors + + # the reshapes are needed in order to make the shapes compatible with + # torch.mm + grad_output_fp8_orig_shape = grad_output_fp8.shape + grad_output_fp8_reshaped = grad_output_fp8.reshape( + -1, grad_output_fp8_orig_shape[-1] + ) + + # calculate grad_input + grad_input = torch.mm( + grad_output_fp8_reshaped, + weight_fp8_t.t(), + ) + grad_input = grad_input.reshape( + *grad_output_fp8_orig_shape[:-1], grad_input.shape[-1] + ) + + input_fp8_orig_shape = input_fp8.shape + input_fp8_reshaped = input_fp8.reshape(-1, input_fp8_orig_shape[-1]) + + # calculate grad_weight + # Note: the variant below is slightly faster on LLaMa 3 8B pretraining + # compared to than calculating `grad_weight_t = input_fp8_t @ grad_output_fp8_reshaped` + grad_weight = torch.mm( + grad_output_fp8_reshaped.t(), + input_fp8_reshaped, + ) + + return grad_input, grad_weight.t() + + @torch._dynamo.allow_in_graph class NoopFwToFloat8E5M2Bw(torch.autograd.Function): """ @@ -393,7 +449,7 @@ def forward(self, input: torch.Tensor) -> torch.Tensor: input_fp8 = self.cast_input_to_float8(input, self.is_amax_initialized) weight_fp8 = self.cast_weight_to_float8(self.weight, self.is_amax_initialized) - output = torch.matmul(input_fp8, weight_fp8.t()) + output = manual_float8_matmul.apply(input_fp8, weight_fp8.t()) # Cast grad_output to float8_e5m2 during backward output = self.cast_output_to_float8_in_bw(output)