From 0d708cb9c9d5291c1c988ef90a1b77307ed5315c Mon Sep 17 00:00:00 2001 From: Ivan Levkivskyi Date: Fri, 4 Aug 2023 00:17:42 +0100 Subject: [PATCH] New type inference: complete transitive closure (#15754) This is a first follow-up for #15287 (I like how my PR titles sound like research paper titles, LOL) This PR completes the new type inference foundations by switching to a complete and well founded algorithm [1] for transitive closure (that replaces more ad hoc initial algorithm that covered 80% of cases and was good for experimenting with new inference scheme). In particular the algorithm in this PR covers two important edge cases (see tests). Some comments: * I don't intend to switch the default for `--new-type-inference`, I just want to see the effect of the switch on `mypy_primer`, I will switch back to false before merging * This flag is still not ready to be publicly announced, I am going to make another 2-3 PRs from the list in #15287 before making this public. * I am not adding yet the unit tests as discussed in previous PR. This PR is already quite big, and the next one (support for upper bounds and values) should be much smaller. I am going to add unit tests only for `transitive_closure()` which is the core of new logic. * While working on this I fixed couple bugs exposed in `TypeVarTuple` support: one is rare technical corner case, another one is serious, template and actual where swapped during constraint inference, effectively causing outer/return context to be completely ignored for instances. * It is better to review the PR with "ignore whitespace" option turned on (there is big chunk in solve.py that is just change of indentation). * There is one questionable design choice I am making in this PR, I am adding `extra_tvars` as an attribute of `Constraint` class, while it logically should not be attributed to any individual constraint, but rather to the full list of constrains. However, doing this properly would require changing the return type of `infer_constrains()` and all related functions, which would be a really big refactoring. [1] Definition 7.1 in https://inria.hal.science/inria-00073205/document --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> --- mypy/checker.py | 72 ++--- mypy/checkexpr.py | 40 ++- mypy/constraints.py | 63 +++-- mypy/expandtype.py | 5 + mypy/infer.py | 10 +- mypy/solve.py | 387 +++++++++++++------------- mypy/subtypes.py | 3 +- mypy/test/testconstraints.py | 3 - mypy/test/testsolve.py | 50 ++-- mypy/typeops.py | 6 +- mypy_self_check.ini | 1 + test-data/unit/check-generics.test | 20 +- test-data/unit/check-overloading.test | 15 + 13 files changed, 356 insertions(+), 319 deletions(-) diff --git a/mypy/checker.py b/mypy/checker.py index 0c27da8b5ac8..b786155079e5 100644 --- a/mypy/checker.py +++ b/mypy/checker.py @@ -734,8 +734,10 @@ def check_overlapping_overloads(self, defn: OverloadedFuncDef) -> None: # def foo(x: str) -> str: ... # # See Python 2's map function for a concrete example of this kind of overload. + current_class = self.scope.active_class() + type_vars = current_class.defn.type_vars if current_class else [] with state.strict_optional_set(True): - if is_unsafe_overlapping_overload_signatures(sig1, sig2): + if is_unsafe_overlapping_overload_signatures(sig1, sig2, type_vars): self.msg.overloaded_signatures_overlap(i + 1, i + j + 2, item.func) if impl_type is not None: @@ -1702,7 +1704,9 @@ def is_unsafe_overlapping_op( first = forward_tweaked second = reverse_tweaked - return is_unsafe_overlapping_overload_signatures(first, second) + current_class = self.scope.active_class() + type_vars = current_class.defn.type_vars if current_class else [] + return is_unsafe_overlapping_overload_signatures(first, second, type_vars) def check_inplace_operator_method(self, defn: FuncBase) -> None: """Check an inplace operator method such as __iadd__. @@ -3918,11 +3922,12 @@ def is_valid_defaultdict_partial_value_type(self, t: ProperType) -> bool: return True if len(t.args) == 1: arg = get_proper_type(t.args[0]) - # TODO: This is too permissive -- we only allow TypeVarType since - # they leak in cases like defaultdict(list) due to a bug. - # This can result in incorrect types being inferred, but only - # in rare cases. - if isinstance(arg, (TypeVarType, UninhabitedType, NoneType)): + if self.options.new_type_inference: + allowed = isinstance(arg, (UninhabitedType, NoneType)) + else: + # Allow leaked TypeVars for legacy inference logic. + allowed = isinstance(arg, (UninhabitedType, NoneType, TypeVarType)) + if allowed: return True return False @@ -7179,7 +7184,7 @@ def are_argument_counts_overlapping(t: CallableType, s: CallableType) -> bool: def is_unsafe_overlapping_overload_signatures( - signature: CallableType, other: CallableType + signature: CallableType, other: CallableType, class_type_vars: list[TypeVarLikeType] ) -> bool: """Check if two overloaded signatures are unsafely overlapping or partially overlapping. @@ -7198,8 +7203,8 @@ def is_unsafe_overlapping_overload_signatures( # This lets us identify cases where the two signatures use completely # incompatible types -- e.g. see the testOverloadingInferUnionReturnWithMixedTypevars # test case. - signature = detach_callable(signature) - other = detach_callable(other) + signature = detach_callable(signature, class_type_vars) + other = detach_callable(other, class_type_vars) # Note: We repeat this check twice in both directions due to a slight # asymmetry in 'is_callable_compatible'. When checking for partial overlaps, @@ -7230,7 +7235,7 @@ def is_unsafe_overlapping_overload_signatures( ) -def detach_callable(typ: CallableType) -> CallableType: +def detach_callable(typ: CallableType, class_type_vars: list[TypeVarLikeType]) -> CallableType: """Ensures that the callable's type variables are 'detached' and independent of the context. A callable normally keeps track of the type variables it uses within its 'variables' field. @@ -7240,42 +7245,17 @@ def detach_callable(typ: CallableType) -> CallableType: This function will traverse the callable and find all used type vars and add them to the variables field if it isn't already present. - The caller can then unify on all type variables whether or not the callable is originally - from a class or not.""" - type_list = typ.arg_types + [typ.ret_type] - - appear_map: dict[str, list[int]] = {} - for i, inner_type in enumerate(type_list): - typevars_available = get_type_vars(inner_type) - for var in typevars_available: - if var.fullname not in appear_map: - appear_map[var.fullname] = [] - appear_map[var.fullname].append(i) - - used_type_var_names = set() - for var_name, appearances in appear_map.items(): - used_type_var_names.add(var_name) - - all_type_vars = get_type_vars(typ) - new_variables = [] - for var in set(all_type_vars): - if var.fullname not in used_type_var_names: - continue - new_variables.append( - TypeVarType( - name=var.name, - fullname=var.fullname, - id=var.id, - values=var.values, - upper_bound=var.upper_bound, - default=var.default, - variance=var.variance, - ) - ) - out = typ.copy_modified( - variables=new_variables, arg_types=type_list[:-1], ret_type=type_list[-1] + The caller can then unify on all type variables whether the callable is originally from + the class or not.""" + if not class_type_vars: + # Fast path, nothing to update. + return typ + seen_type_vars = set() + for t in typ.arg_types + [typ.ret_type]: + seen_type_vars |= set(get_type_vars(t)) + return typ.copy_modified( + variables=list(typ.variables) + [tv for tv in class_type_vars if tv in seen_type_vars] ) - return out def overload_can_never_match(signature: CallableType, other: CallableType) -> bool: diff --git a/mypy/checkexpr.py b/mypy/checkexpr.py index 114cde8327e0..9e46d9ee39cb 100644 --- a/mypy/checkexpr.py +++ b/mypy/checkexpr.py @@ -1857,7 +1857,7 @@ def infer_function_type_arguments_using_context( # expects_literal(identity(3)) # Should type-check if not is_generic_instance(ctx) and not is_literal_type_like(ctx): return callable.copy_modified() - args = infer_type_arguments(callable.type_var_ids(), ret_type, erased_ctx) + args = infer_type_arguments(callable.variables, ret_type, erased_ctx) # Only substitute non-Uninhabited and non-erased types. new_args: list[Type | None] = [] for arg in args: @@ -1906,7 +1906,7 @@ def infer_function_type_arguments( else: pass1_args.append(arg) - inferred_args = infer_function_type_arguments( + inferred_args, _ = infer_function_type_arguments( callee_type, pass1_args, arg_kinds, @@ -1948,7 +1948,7 @@ def infer_function_type_arguments( # variables while allowing for polymorphic solutions, i.e. for solutions # potentially involving free variables. # TODO: support the similar inference for return type context. - poly_inferred_args = infer_function_type_arguments( + poly_inferred_args, free_vars = infer_function_type_arguments( callee_type, arg_types, arg_kinds, @@ -1957,30 +1957,28 @@ def infer_function_type_arguments( strict=self.chk.in_checked_function(), allow_polymorphic=True, ) - for i, pa in enumerate(get_proper_types(poly_inferred_args)): - if isinstance(pa, (NoneType, UninhabitedType)) or has_erased_component(pa): - # Indicate that free variables should not be applied in the call below. - poly_inferred_args[i] = None poly_callee_type = self.apply_generic_arguments( callee_type, poly_inferred_args, context ) - yes_vars = poly_callee_type.variables - no_vars = {v for v in callee_type.variables if v not in poly_callee_type.variables} - if not set(get_type_vars(poly_callee_type)) & no_vars: - # Try applying inferred polymorphic type if possible, e.g. Callable[[T], T] can - # be interpreted as def [T] (T) -> T, but dict[T, T] cannot be expressed. - applied = apply_poly(poly_callee_type, yes_vars) - if applied is not None and poly_inferred_args != [UninhabitedType()] * len( - poly_inferred_args - ): - freeze_all_type_vars(applied) - return applied + # Try applying inferred polymorphic type if possible, e.g. Callable[[T], T] can + # be interpreted as def [T] (T) -> T, but dict[T, T] cannot be expressed. + applied = apply_poly(poly_callee_type, free_vars) + if applied is not None and all( + a is not None and not isinstance(get_proper_type(a), UninhabitedType) + for a in poly_inferred_args + ): + freeze_all_type_vars(applied) + return applied # If it didn't work, erase free variables as , to avoid confusing errors. + unknown = UninhabitedType() + unknown.ambiguous = True inferred_args = [ - expand_type(a, {v.id: UninhabitedType() for v in callee_type.variables}) + expand_type( + a, {v.id: unknown for v in list(callee_type.variables) + free_vars} + ) if a is not None else None - for a in inferred_args + for a in poly_inferred_args ] else: # In dynamically typed functions use implicit 'Any' types for @@ -2019,7 +2017,7 @@ def infer_function_type_arguments_pass2( arg_types = self.infer_arg_types_in_context(callee_type, args, arg_kinds, formal_to_actual) - inferred_args = infer_function_type_arguments( + inferred_args, _ = infer_function_type_arguments( callee_type, arg_types, arg_kinds, diff --git a/mypy/constraints.py b/mypy/constraints.py index f9124630a706..299c6292a259 100644 --- a/mypy/constraints.py +++ b/mypy/constraints.py @@ -73,6 +73,10 @@ def __init__(self, type_var: TypeVarLikeType, op: int, target: Type) -> None: self.op = op self.target = target self.origin_type_var = type_var + # These are additional type variables that should be solved for together with type_var. + # TODO: A cleaner solution may be to modify the return type of infer_constraints() + # to include these instead, but this is a rather big refactoring. + self.extra_tvars: list[TypeVarLikeType] = [] def __repr__(self) -> str: op_str = "<:" @@ -168,7 +172,9 @@ def infer_constraints_for_callable( return constraints -def infer_constraints(template: Type, actual: Type, direction: int) -> list[Constraint]: +def infer_constraints( + template: Type, actual: Type, direction: int, skip_neg_op: bool = False +) -> list[Constraint]: """Infer type constraints. Match a template type, which may contain type variable references, @@ -187,7 +193,9 @@ def infer_constraints(template: Type, actual: Type, direction: int) -> list[Cons ((T, S), (X, Y)) --> T :> X and S :> Y (X[T], Any) --> T <: Any and T :> Any - The constraints are represented as Constraint objects. + The constraints are represented as Constraint objects. If skip_neg_op == True, + then skip adding reverse (polymorphic) constraints (since this is already a call + to infer such constraints). """ if any( get_proper_type(template) == get_proper_type(t) @@ -202,13 +210,15 @@ def infer_constraints(template: Type, actual: Type, direction: int) -> list[Cons # Return early on an empty branch. return [] type_state.inferring.append((template, actual)) - res = _infer_constraints(template, actual, direction) + res = _infer_constraints(template, actual, direction, skip_neg_op) type_state.inferring.pop() return res - return _infer_constraints(template, actual, direction) + return _infer_constraints(template, actual, direction, skip_neg_op) -def _infer_constraints(template: Type, actual: Type, direction: int) -> list[Constraint]: +def _infer_constraints( + template: Type, actual: Type, direction: int, skip_neg_op: bool +) -> list[Constraint]: orig_template = template template = get_proper_type(template) actual = get_proper_type(actual) @@ -284,7 +294,7 @@ def _infer_constraints(template: Type, actual: Type, direction: int) -> list[Con return [] # Remaining cases are handled by ConstraintBuilderVisitor. - return template.accept(ConstraintBuilderVisitor(actual, direction)) + return template.accept(ConstraintBuilderVisitor(actual, direction, skip_neg_op)) def infer_constraints_if_possible( @@ -510,10 +520,14 @@ class ConstraintBuilderVisitor(TypeVisitor[List[Constraint]]): # TODO: The value may be None. Is that actually correct? actual: ProperType - def __init__(self, actual: ProperType, direction: int) -> None: + def __init__(self, actual: ProperType, direction: int, skip_neg_op: bool) -> None: # Direction must be SUBTYPE_OF or SUPERTYPE_OF. self.actual = actual self.direction = direction + # Whether to skip polymorphic inference (involves inference in opposite direction) + # this is used to prevent infinite recursion when both template and actual are + # generic callables. + self.skip_neg_op = skip_neg_op # Trivial leaf types @@ -648,13 +662,13 @@ def visit_instance(self, template: Instance) -> list[Constraint]: assert mapped.type.type_var_tuple_prefix is not None assert mapped.type.type_var_tuple_suffix is not None - unpack_constraints, mapped_args, instance_args = build_constraints_for_unpack( - mapped.args, - mapped.type.type_var_tuple_prefix, - mapped.type.type_var_tuple_suffix, + unpack_constraints, instance_args, mapped_args = build_constraints_for_unpack( instance.args, instance.type.type_var_tuple_prefix, instance.type.type_var_tuple_suffix, + mapped.args, + mapped.type.type_var_tuple_prefix, + mapped.type.type_var_tuple_suffix, self.direction, ) res.extend(unpack_constraints) @@ -879,6 +893,7 @@ def visit_callable_type(self, template: CallableType) -> list[Constraint]: # Note that non-normalized callables can be created in annotations # using e.g. callback protocols. template = template.with_unpacked_kwargs() + extra_tvars = False if isinstance(self.actual, CallableType): res: list[Constraint] = [] cactual = self.actual.with_unpacked_kwargs() @@ -890,6 +905,7 @@ def visit_callable_type(self, template: CallableType) -> list[Constraint]: type_state.infer_polymorphic and cactual.variables and cactual.param_spec() is None + and not self.skip_neg_op # Technically, the correct inferred type for application of e.g. # Callable[..., T] -> Callable[..., T] (with literal ellipsis), to a generic # like U -> U, should be Callable[..., Any], but if U is a self-type, we can @@ -897,18 +913,15 @@ def visit_callable_type(self, template: CallableType) -> list[Constraint]: # depends on this old behaviour. and not any(tv.id.raw_id == 0 for tv in cactual.variables) ): - # If actual is generic, unify it with template. Note: this is - # not an ideal solution (which would be adding the generic variables - # to the constraint inference set), but it's a good first approximation, - # and this will prevent leaking these variables in the solutions. - # Note: this may infer constraints like T <: S or T <: List[S] - # that contain variables in the target. - unified = mypy.subtypes.unify_generic_callable( - cactual, template, ignore_return=True + # If the actual callable is generic, infer constraints in the opposite + # direction, and indicate to the solver there are extra type variables + # to solve for (see more details in mypy/solve.py). + res.extend( + infer_constraints( + cactual, template, neg_op(self.direction), skip_neg_op=True + ) ) - if unified is not None: - cactual = unified - res.extend(infer_constraints(cactual, template, neg_op(self.direction))) + extra_tvars = True # We can't infer constraints from arguments if the template is Callable[..., T] # (with literal '...'). @@ -978,6 +991,9 @@ def visit_callable_type(self, template: CallableType) -> list[Constraint]: cactual_ret_type = cactual.type_guard res.extend(infer_constraints(template_ret_type, cactual_ret_type, self.direction)) + if extra_tvars: + for c in res: + c.extra_tvars = list(cactual.variables) return res elif isinstance(self.actual, AnyType): param_spec = template.param_spec() @@ -1205,6 +1221,9 @@ def find_and_build_constraints_for_unpack( def build_constraints_for_unpack( + # TODO: this naming is misleading, these should be "actual", not "mapped" + # both template and actual can be mapped before, depending on direction. + # Also the convention is to put template related args first. mapped: tuple[Type, ...], mapped_prefix_len: int | None, mapped_suffix_len: int | None, diff --git a/mypy/expandtype.py b/mypy/expandtype.py index 83d9bf4c8725..b599b49e4c12 100644 --- a/mypy/expandtype.py +++ b/mypy/expandtype.py @@ -272,6 +272,11 @@ def visit_param_spec(self, t: ParamSpecType) -> Type: return repl def visit_type_var_tuple(self, t: TypeVarTupleType) -> Type: + # Sometimes solver may need to expand a type variable with (a copy of) itself + # (usually together with other TypeVars, but it is hard to filter out TypeVarTuples). + repl = self.variables[t.id] + if isinstance(repl, TypeVarTupleType): + return repl raise NotImplementedError def visit_unpack_type(self, t: UnpackType) -> Type: diff --git a/mypy/infer.py b/mypy/infer.py index 66ca4169e2ff..f34087910e4b 100644 --- a/mypy/infer.py +++ b/mypy/infer.py @@ -12,7 +12,7 @@ ) from mypy.nodes import ArgKind from mypy.solve import solve_constraints -from mypy.types import CallableType, Instance, Type, TypeVarId +from mypy.types import CallableType, Instance, Type, TypeVarLikeType class ArgumentInferContext(NamedTuple): @@ -37,7 +37,7 @@ def infer_function_type_arguments( context: ArgumentInferContext, strict: bool = True, allow_polymorphic: bool = False, -) -> list[Type | None]: +) -> tuple[list[Type | None], list[TypeVarLikeType]]: """Infer the type arguments of a generic function. Return an array of lower bound types for the type variables -1 (at @@ -57,14 +57,14 @@ def infer_function_type_arguments( ) # Solve constraints. - type_vars = callee_type.type_var_ids() + type_vars = callee_type.variables return solve_constraints(type_vars, constraints, strict, allow_polymorphic) def infer_type_arguments( - type_var_ids: list[TypeVarId], template: Type, actual: Type, is_supertype: bool = False + type_vars: Sequence[TypeVarLikeType], template: Type, actual: Type, is_supertype: bool = False ) -> list[Type | None]: # Like infer_function_type_arguments, but only match a single type # against a generic type. constraints = infer_constraints(template, actual, SUPERTYPE_OF if is_supertype else SUBTYPE_OF) - return solve_constraints(type_var_ids, constraints) + return solve_constraints(type_vars, constraints)[0] diff --git a/mypy/solve.py b/mypy/solve.py index 6693d66f3479..02df90aff1e1 100644 --- a/mypy/solve.py +++ b/mypy/solve.py @@ -2,9 +2,11 @@ from __future__ import annotations -from typing import Iterable +from collections import defaultdict +from typing import Iterable, Sequence +from typing_extensions import TypeAlias as _TypeAlias -from mypy.constraints import SUBTYPE_OF, SUPERTYPE_OF, Constraint, neg_op +from mypy.constraints import SUBTYPE_OF, SUPERTYPE_OF, Constraint, infer_constraints, neg_op from mypy.expandtype import expand_type from mypy.graph_utils import prepare_sccs, strongly_connected_components, topsort from mypy.join import join_types @@ -17,6 +19,7 @@ Type, TypeOfAny, TypeVarId, + TypeVarLikeType, TypeVarType, UninhabitedType, UnionType, @@ -25,45 +28,72 @@ ) from mypy.typestate import type_state +Bounds: _TypeAlias = "dict[TypeVarId, set[Type]]" +Graph: _TypeAlias = "set[tuple[TypeVarId, TypeVarId]]" +Solutions: _TypeAlias = "dict[TypeVarId, Type | None]" + def solve_constraints( - vars: list[TypeVarId], + original_vars: Sequence[TypeVarLikeType], constraints: list[Constraint], strict: bool = True, allow_polymorphic: bool = False, -) -> list[Type | None]: +) -> tuple[list[Type | None], list[TypeVarLikeType]]: """Solve type constraints. - Return the best type(s) for type variables; each type can be None if the value of the variable - could not be solved. + Return the best type(s) for type variables; each type can be None if the value of + the variable could not be solved. If a variable has no constraints, if strict=True then arbitrarily - pick NoneType as the value of the type variable. If strict=False, - pick AnyType. + pick UninhabitedType as the value of the type variable. If strict=False, pick AnyType. + If allow_polymorphic=True, then use the full algorithm that can potentially return + free type variables in solutions (these require special care when applying). Otherwise, + use a simplified algorithm that just solves each type variable individually if possible. """ + vars = [tv.id for tv in original_vars] if not vars: - return [] + return [], [] + + originals = {tv.id: tv for tv in original_vars} + extra_vars: list[TypeVarId] = [] + # Get additional type variables from generic actuals. + for c in constraints: + extra_vars.extend([v.id for v in c.extra_tvars if v.id not in vars + extra_vars]) + originals.update({v.id: v for v in c.extra_tvars if v.id not in originals}) if allow_polymorphic: # Constraints like T :> S and S <: T are semantically the same, but they are # represented differently. Normalize the constraint list w.r.t this equivalence. - constraints = normalize_constraints(constraints, vars) + constraints = normalize_constraints(constraints, vars + extra_vars) # Collect a list of constraints for each type variable. - cmap: dict[TypeVarId, list[Constraint]] = {tv: [] for tv in vars} + cmap: dict[TypeVarId, list[Constraint]] = {tv: [] for tv in vars + extra_vars} for con in constraints: - if con.type_var in vars: + if con.type_var in vars + extra_vars: cmap[con.type_var].append(con) if allow_polymorphic: - solutions = solve_non_linear(vars, constraints, cmap) + if constraints: + solutions, free_vars = solve_with_dependent( + vars + extra_vars, constraints, vars, originals + ) + else: + solutions = {} + free_vars = [] else: solutions = {} + free_vars = [] for tv, cs in cmap.items(): if not cs: continue lowers = [c.target for c in cs if c.op == SUPERTYPE_OF] uppers = [c.target for c in cs if c.op == SUBTYPE_OF] - solutions[tv] = solve_one(lowers, uppers, []) + solution = solve_one(lowers, uppers) + + # Do not leak type variables in non-polymorphic solutions. + if solution is None or not get_vars( + solution, [tv for tv in extra_vars if tv not in vars] + ): + solutions[tv] = solution res: list[Type | None] = [] for v in vars: @@ -78,129 +108,128 @@ def solve_constraints( else: candidate = AnyType(TypeOfAny.special_form) res.append(candidate) - return res + return res, [originals[tv] for tv in free_vars] -def solve_non_linear( - vars: list[TypeVarId], constraints: list[Constraint], cmap: dict[TypeVarId, list[Constraint]] -) -> dict[TypeVarId, Type | None]: - """Solve set of constraints that may include non-linear ones, like T <: List[S]. +def solve_with_dependent( + vars: list[TypeVarId], + constraints: list[Constraint], + original_vars: list[TypeVarId], + originals: dict[TypeVarId, TypeVarLikeType], +) -> tuple[Solutions, list[TypeVarId]]: + """Solve set of constraints that may depend on each other, like T <: List[S]. The whole algorithm consists of five steps: - * Propagate via linear constraints to get all possible constraints for each variable + * Propagate via linear constraints and use secondary constraints to get transitive closure * Find dependencies between type variables, group them in SCCs, and sort topologically - * Check all SCC are intrinsically linear, we can't solve (express) T <: List[T] + * Check that all SCC are intrinsically linear, we can't solve (express) T <: List[T] * Variables in leaf SCCs that don't have constant bounds are free (choose one per SCC) - * Solve constraints iteratively starting from leafs, updating targets after each step. + * Solve constraints iteratively starting from leafs, updating bounds after each step. """ - extra_constraints = [] - for tvar in vars: - extra_constraints.extend(propagate_constraints_for(tvar, SUBTYPE_OF, cmap)) - extra_constraints.extend(propagate_constraints_for(tvar, SUPERTYPE_OF, cmap)) - constraints += remove_dups(extra_constraints) - - # Recompute constraint map after propagating. - cmap = {tv: [] for tv in vars} - for con in constraints: - if con.type_var in vars: - cmap[con.type_var].append(con) + graph, lowers, uppers = transitive_closure(vars, constraints) - dmap = compute_dependencies(cmap) + dmap = compute_dependencies(vars, graph, lowers, uppers) sccs = list(strongly_connected_components(set(vars), dmap)) - if all(check_linear(scc, cmap) for scc in sccs): - raw_batches = list(topsort(prepare_sccs(sccs, dmap))) - leafs = raw_batches[0] - free_vars = [] - for scc in leafs: - # If all constrain targets in this SCC are type variables within the - # same SCC then the only meaningful solution we can express, is that - # each variable is equal to a new free variable. For example if we - # have T <: S, S <: U, we deduce: T = S = U = . - if all( - isinstance(c.target, TypeVarType) and c.target.id in vars - for tv in scc - for c in cmap[tv] - ): - # For convenience with current type application machinery, we randomly - # choose one of the existing type variables in SCC and designate it as free - # instead of defining a new type variable as a common solution. - # TODO: be careful about upper bounds (or values) when introducing free vars. - free_vars.append(sorted(scc, key=lambda x: x.raw_id)[0]) - - # Flatten the SCCs that are independent, we can solve them together, - # since we don't need to update any targets in between. - batches = [] - for batch in raw_batches: - next_bc = [] - for scc in batch: - next_bc.extend(list(scc)) - batches.append(next_bc) - - solutions: dict[TypeVarId, Type | None] = {} - for flat_batch in batches: - solutions.update(solve_iteratively(flat_batch, cmap, free_vars)) - # We remove the solutions like T = T for free variables. This will indicate - # to the apply function, that they should not be touched. - # TODO: return list of free type variables explicitly, this logic is fragile - # (but if we do, we need to be careful everything works in incremental modes). - for tv in free_vars: - if tv in solutions: - del solutions[tv] - return solutions - return {} + if not all(check_linear(scc, lowers, uppers) for scc in sccs): + return {}, [] + raw_batches = list(topsort(prepare_sccs(sccs, dmap))) + + free_vars = [] + for scc in raw_batches[0]: + # If there are no bounds on this SCC, then the only meaningful solution we can + # express, is that each variable is equal to a new free variable. For example, + # if we have T <: S, S <: U, we deduce: T = S = U = . + if all(not lowers[tv] and not uppers[tv] for tv in scc): + # For convenience with current type application machinery, we use a stable + # choice that prefers the original type variables (not polymorphic ones) in SCC. + # TODO: be careful about upper bounds (or values) when introducing free vars. + free_vars.append(sorted(scc, key=lambda x: (x not in original_vars, x.raw_id))[0]) + + # Update lowers/uppers with free vars, so these can now be used + # as valid solutions. + for l, u in graph.copy(): + if l in free_vars: + lowers[u].add(originals[l]) + if u in free_vars: + uppers[l].add(originals[u]) + + # Flatten the SCCs that are independent, we can solve them together, + # since we don't need to update any targets in between. + batches = [] + for batch in raw_batches: + next_bc = [] + for scc in batch: + next_bc.extend(list(scc)) + batches.append(next_bc) + + solutions: dict[TypeVarId, Type | None] = {} + for flat_batch in batches: + res = solve_iteratively(flat_batch, graph, lowers, uppers) + solutions.update(res) + return solutions, free_vars def solve_iteratively( - batch: list[TypeVarId], cmap: dict[TypeVarId, list[Constraint]], free_vars: list[TypeVarId] -) -> dict[TypeVarId, Type | None]: - """Solve constraints sequentially, updating constraint targets after each step. - - We solve for type variables that appear in `batch`. If a constraint target is not constant - (i.e. constraint looks like T :> F[S, ...]), we substitute solutions found so far in - the target F[S, ...]. This way we can gradually solve for all variables in the batch taking - one solvable variable at a time (i.e. such a variable that has at least one constant bound). - - Importantly, variables in free_vars are considered constants, so for example if we have just - one initial constraint T <: List[S], we will have two SCCs {T} and {S}, then we first - designate S as free, and therefore T = List[S] is a valid solution for T. + batch: list[TypeVarId], graph: Graph, lowers: Bounds, uppers: Bounds +) -> Solutions: + """Solve transitive closure sequentially, updating upper/lower bounds after each step. + + Transitive closure is represented as a linear graph plus lower/upper bounds for each + type variable, see transitive_closure() docstring for details. + + We solve for type variables that appear in `batch`. If a bound is not constant (i.e. it + looks like T :> F[S, ...]), we substitute solutions found so far in the target F[S, ...] + after solving the batch. + + Importantly, after solving each variable in a batch, we move it from linear graph to + upper/lower bounds, this way we can guarantee consistency of solutions (see comment below + for an example when this is important). """ solutions = {} - relevant_constraints = [] - for tv in batch: - relevant_constraints.extend(cmap.get(tv, [])) - lowers, uppers = transitive_closure(batch, relevant_constraints) s_batch = set(batch) - not_allowed_vars = [v for v in batch if v not in free_vars] while s_batch: - for tv in s_batch: - if any(not get_vars(l, not_allowed_vars) for l in lowers[tv]) or any( - not get_vars(u, not_allowed_vars) for u in uppers[tv] - ): + for tv in sorted(s_batch, key=lambda x: x.raw_id): + if lowers[tv] or uppers[tv]: solvable_tv = tv break else: break # Solve each solvable type variable separately. s_batch.remove(solvable_tv) - result = solve_one(lowers[solvable_tv], uppers[solvable_tv], not_allowed_vars) + result = solve_one(lowers[solvable_tv], uppers[solvable_tv]) solutions[solvable_tv] = result if result is None: - # TODO: support backtracking lower/upper bound choices + # TODO: support backtracking lower/upper bound choices and order within SCCs. # (will require switching this function from iterative to recursive). continue - # Update the (transitive) constraints if there is a solution. - subs = {solvable_tv: result} - lowers = {tv: {expand_type(l, subs) for l in lowers[tv]} for tv in lowers} - uppers = {tv: {expand_type(u, subs) for u in uppers[tv]} for tv in uppers} - for v in cmap: - for c in cmap[v]: - c.target = expand_type(c.target, subs) + + # Update the (transitive) bounds from graph if there is a solution. + # This is needed to guarantee solutions will never contradict the initial + # constraints. For example, consider {T <: S, T <: A, S :> B} with A :> B. + # If we would not update the uppers/lowers from graph, we would infer T = A, S = B + # which is not correct. + for l, u in graph.copy(): + if l == u: + continue + if l == solvable_tv: + lowers[u].add(result) + graph.remove((l, u)) + if u == solvable_tv: + uppers[l].add(result) + graph.remove((l, u)) + + # We can update uppers/lowers only once after solving the whole SCC, + # since uppers/lowers can't depend on type variables in the SCC + # (and we would reject such SCC as non-linear and therefore not solvable). + subs = {tv: s for (tv, s) in solutions.items() if s is not None} + for tv in lowers: + lowers[tv] = {expand_type(lt, subs) for lt in lowers[tv]} + for tv in uppers: + uppers[tv] = {expand_type(ut, subs) for ut in uppers[tv]} return solutions -def solve_one( - lowers: Iterable[Type], uppers: Iterable[Type], not_allowed_vars: list[TypeVarId] -) -> Type | None: +def solve_one(lowers: Iterable[Type], uppers: Iterable[Type]) -> Type | None: """Solve constraints by finding by using meets of upper bounds, and joins of lower bounds.""" bottom: Type | None = None top: Type | None = None @@ -210,10 +239,6 @@ def solve_one( # bounds based on constraints. Note that we assume that the constraint # targets do not have constraint references. for target in lowers: - # There may be multiple steps needed to solve all vars within a - # (linear) SCC. We ignore targets pointing to not yet solved vars. - if get_vars(target, not_allowed_vars): - continue if bottom is None: bottom = target else: @@ -225,9 +250,6 @@ def solve_one( bottom = join_types(bottom, target) for target in uppers: - # Same as above. - if get_vars(target, not_allowed_vars): - continue if top is None: top = target else: @@ -262,6 +284,7 @@ def normalize_constraints( This includes two things currently: * Complement T :> S by S <: T * Remove strict duplicates + * Remove constrains for unrelated variables """ res = constraints.copy() for c in constraints: @@ -270,96 +293,81 @@ def normalize_constraints( return [c for c in remove_dups(constraints) if c.type_var in vars] -def propagate_constraints_for( - var: TypeVarId, direction: int, cmap: dict[TypeVarId, list[Constraint]] -) -> list[Constraint]: - """Propagate via linear constraints to get additional constraints for `var`. - - For example if we have constraints: - [T <: int, S <: T, S :> str] - we can add two more - [S <: int, T :> str] - """ - extra_constraints = [] - seen = set() - front = [var] - if cmap[var]: - var_def = cmap[var][0].origin_type_var - else: - return [] - while front: - tv = front.pop(0) - for c in cmap[tv]: - if ( - isinstance(c.target, TypeVarType) - and c.target.id not in seen - and c.target.id in cmap - and c.op == direction - ): - front.append(c.target.id) - seen.add(c.target.id) - elif c.op == direction: - new_c = Constraint(var_def, direction, c.target) - if new_c not in cmap[var]: - extra_constraints.append(new_c) - return extra_constraints - - def transitive_closure( tvars: list[TypeVarId], constraints: list[Constraint] -) -> tuple[dict[TypeVarId, set[Type]], dict[TypeVarId, set[Type]]]: +) -> tuple[Graph, Bounds, Bounds]: """Find transitive closure for given constraints on type variables. Transitive closure gives maximal set of lower/upper bounds for each type variable, such that we cannot deduce any further bounds by chaining other existing bounds. + The transitive closure is represented by: + * A set of lower and upper bounds for each type variable, where only constant and + non-linear terms are included in the bounds. + * A graph of linear constraints between type variables (represented as a set of pairs) + Such separation simplifies reasoning, and allows an efficient and simple incremental + transitive closure algorithm that we use here. + For example if we have initial constraints [T <: S, S <: U, U <: int], the transitive closure is given by: - * {} <: T <: {S, U, int} - * {T} <: S <: {U, int} - * {T, S} <: U <: {int} + * {} <: T <: {int} + * {} <: S <: {int} + * {} <: U <: {int} + * {T <: S, S <: U, T <: U} """ - # TODO: merge propagate_constraints_for() into this function. - # TODO: add secondary constraints here to make the algorithm complete. - uppers: dict[TypeVarId, set[Type]] = {tv: set() for tv in tvars} - lowers: dict[TypeVarId, set[Type]] = {tv: set() for tv in tvars} - graph: set[tuple[TypeVarId, TypeVarId]] = set() + uppers: Bounds = defaultdict(set) + lowers: Bounds = defaultdict(set) + graph: Graph = {(tv, tv) for tv in tvars} - # Prime the closure with the initial trivial values. - for c in constraints: - if isinstance(c.target, TypeVarType) and c.target.id in tvars: - if c.op == SUBTYPE_OF: - graph.add((c.type_var, c.target.id)) - else: - graph.add((c.target.id, c.type_var)) - if c.op == SUBTYPE_OF: - uppers[c.type_var].add(c.target) - else: - lowers[c.type_var].add(c.target) - - # At this stage we know that constant bounds have been propagated already, so we - # only need to propagate linear constraints. - for c in constraints: + remaining = set(constraints) + while remaining: + c = remaining.pop() if isinstance(c.target, TypeVarType) and c.target.id in tvars: if c.op == SUBTYPE_OF: lower, upper = c.type_var, c.target.id else: lower, upper = c.target.id, c.type_var - extras = { + if (lower, upper) in graph: + continue + graph |= { (l, u) for l in tvars for u in tvars if (l, lower) in graph and (upper, u) in graph } - graph |= extras for u in tvars: if (upper, u) in graph: lowers[u] |= lowers[lower] for l in tvars: if (l, lower) in graph: uppers[l] |= uppers[upper] - return lowers, uppers + for lt in lowers[lower]: + for ut in uppers[upper]: + # TODO: what if secondary constraints result in inference + # against polymorphic actual (also in below branches)? + remaining |= set(infer_constraints(lt, ut, SUBTYPE_OF)) + remaining |= set(infer_constraints(ut, lt, SUPERTYPE_OF)) + elif c.op == SUBTYPE_OF: + if c.target in uppers[c.type_var]: + continue + for l in tvars: + if (l, c.type_var) in graph: + uppers[l].add(c.target) + for lt in lowers[c.type_var]: + remaining |= set(infer_constraints(lt, c.target, SUBTYPE_OF)) + remaining |= set(infer_constraints(c.target, lt, SUPERTYPE_OF)) + else: + assert c.op == SUPERTYPE_OF + if c.target in lowers[c.type_var]: + continue + for u in tvars: + if (c.type_var, u) in graph: + lowers[u].add(c.target) + for ut in uppers[c.type_var]: + remaining |= set(infer_constraints(ut, c.target, SUPERTYPE_OF)) + remaining |= set(infer_constraints(c.target, ut, SUBTYPE_OF)) + return graph, lowers, uppers def compute_dependencies( - cmap: dict[TypeVarId, list[Constraint]] + tvars: list[TypeVarId], graph: Graph, lowers: Bounds, uppers: Bounds ) -> dict[TypeVarId, list[TypeVarId]]: """Compute dependencies between type variables induced by constraints. @@ -367,25 +375,30 @@ def compute_dependencies( we will need to solve for S first before we can solve for T. """ res = {} - vars = list(cmap.keys()) - for tv in cmap: + for tv in tvars: deps = set() - for c in cmap[tv]: - deps |= get_vars(c.target, vars) + for lt in lowers[tv]: + deps |= get_vars(lt, tvars) + for ut in uppers[tv]: + deps |= get_vars(ut, tvars) + for other in tvars: + if other == tv: + continue + if (tv, other) in graph or (other, tv) in graph: + deps.add(other) res[tv] = list(deps) return res -def check_linear(scc: set[TypeVarId], cmap: dict[TypeVarId, list[Constraint]]) -> bool: +def check_linear(scc: set[TypeVarId], lowers: Bounds, uppers: Bounds) -> bool: """Check there are only linear constraints between type variables in SCC. Linear are constraints like T <: S (while T <: F[S] are non-linear). """ for tv in scc: - if any( - get_vars(c.target, list(scc)) and not isinstance(c.target, TypeVarType) - for c in cmap[tv] - ): + if any(get_vars(lt, list(scc)) for lt in lowers[tv]): + return False + if any(get_vars(ut, list(scc)) for ut in uppers[tv]): return False return True diff --git a/mypy/subtypes.py b/mypy/subtypes.py index a6dc071f92b0..5712d7375e50 100644 --- a/mypy/subtypes.py +++ b/mypy/subtypes.py @@ -1708,8 +1708,7 @@ def unify_generic_callable( type.ret_type, target.ret_type, return_constraint_direction ) constraints.extend(c) - type_var_ids = [tvar.id for tvar in type.variables] - inferred_vars = mypy.solve.solve_constraints(type_var_ids, constraints) + inferred_vars, _ = mypy.solve.solve_constraints(type.variables, constraints) if None in inferred_vars: return None non_none_inferred_vars = cast(List[Type], inferred_vars) diff --git a/mypy/test/testconstraints.py b/mypy/test/testconstraints.py index b46f31327150..f40996145cba 100644 --- a/mypy/test/testconstraints.py +++ b/mypy/test/testconstraints.py @@ -1,7 +1,5 @@ from __future__ import annotations -import pytest - from mypy.constraints import SUBTYPE_OF, SUPERTYPE_OF, Constraint, infer_constraints from mypy.test.helpers import Suite from mypy.test.typefixture import TypeFixture @@ -22,7 +20,6 @@ def test_basic_type_variable(self) -> None: Constraint(type_var=fx.t, op=direction, target=fx.a) ] - @pytest.mark.xfail def test_basic_type_var_tuple_subtype(self) -> None: fx = self.fx assert infer_constraints( diff --git a/mypy/test/testsolve.py b/mypy/test/testsolve.py index d6c585ef4aaa..5d67203dbbf5 100644 --- a/mypy/test/testsolve.py +++ b/mypy/test/testsolve.py @@ -6,7 +6,7 @@ from mypy.solve import solve_constraints from mypy.test.helpers import Suite, assert_equal from mypy.test.typefixture import TypeFixture -from mypy.types import Type, TypeVarId, TypeVarType +from mypy.types import Type, TypeVarLikeType, TypeVarType class SolveSuite(Suite): @@ -17,26 +17,24 @@ def test_empty_input(self) -> None: self.assert_solve([], [], []) def test_simple_supertype_constraints(self) -> None: + self.assert_solve([self.fx.t], [self.supc(self.fx.t, self.fx.a)], [(self.fx.a, self.fx.o)]) self.assert_solve( - [self.fx.t.id], [self.supc(self.fx.t, self.fx.a)], [(self.fx.a, self.fx.o)] - ) - self.assert_solve( - [self.fx.t.id], + [self.fx.t], [self.supc(self.fx.t, self.fx.a), self.supc(self.fx.t, self.fx.b)], [(self.fx.a, self.fx.o)], ) def test_simple_subtype_constraints(self) -> None: - self.assert_solve([self.fx.t.id], [self.subc(self.fx.t, self.fx.a)], [self.fx.a]) + self.assert_solve([self.fx.t], [self.subc(self.fx.t, self.fx.a)], [self.fx.a]) self.assert_solve( - [self.fx.t.id], + [self.fx.t], [self.subc(self.fx.t, self.fx.a), self.subc(self.fx.t, self.fx.b)], [self.fx.b], ) def test_both_kinds_of_constraints(self) -> None: self.assert_solve( - [self.fx.t.id], + [self.fx.t], [self.supc(self.fx.t, self.fx.b), self.subc(self.fx.t, self.fx.a)], [(self.fx.b, self.fx.a)], ) @@ -44,21 +42,19 @@ def test_both_kinds_of_constraints(self) -> None: def test_unsatisfiable_constraints(self) -> None: # The constraints are impossible to satisfy. self.assert_solve( - [self.fx.t.id], - [self.supc(self.fx.t, self.fx.a), self.subc(self.fx.t, self.fx.b)], - [None], + [self.fx.t], [self.supc(self.fx.t, self.fx.a), self.subc(self.fx.t, self.fx.b)], [None] ) def test_exactly_specified_result(self) -> None: self.assert_solve( - [self.fx.t.id], + [self.fx.t], [self.supc(self.fx.t, self.fx.b), self.subc(self.fx.t, self.fx.b)], [(self.fx.b, self.fx.b)], ) def test_multiple_variables(self) -> None: self.assert_solve( - [self.fx.t.id, self.fx.s.id], + [self.fx.t, self.fx.s], [ self.supc(self.fx.t, self.fx.b), self.supc(self.fx.s, self.fx.c), @@ -68,40 +64,38 @@ def test_multiple_variables(self) -> None: ) def test_no_constraints_for_var(self) -> None: - self.assert_solve([self.fx.t.id], [], [self.fx.uninhabited]) - self.assert_solve( - [self.fx.t.id, self.fx.s.id], [], [self.fx.uninhabited, self.fx.uninhabited] - ) + self.assert_solve([self.fx.t], [], [self.fx.uninhabited]) + self.assert_solve([self.fx.t, self.fx.s], [], [self.fx.uninhabited, self.fx.uninhabited]) self.assert_solve( - [self.fx.t.id, self.fx.s.id], + [self.fx.t, self.fx.s], [self.supc(self.fx.s, self.fx.a)], [self.fx.uninhabited, (self.fx.a, self.fx.o)], ) def test_simple_constraints_with_dynamic_type(self) -> None: self.assert_solve( - [self.fx.t.id], [self.supc(self.fx.t, self.fx.anyt)], [(self.fx.anyt, self.fx.anyt)] + [self.fx.t], [self.supc(self.fx.t, self.fx.anyt)], [(self.fx.anyt, self.fx.anyt)] ) self.assert_solve( - [self.fx.t.id], + [self.fx.t], [self.supc(self.fx.t, self.fx.anyt), self.supc(self.fx.t, self.fx.anyt)], [(self.fx.anyt, self.fx.anyt)], ) self.assert_solve( - [self.fx.t.id], + [self.fx.t], [self.supc(self.fx.t, self.fx.anyt), self.supc(self.fx.t, self.fx.a)], [(self.fx.anyt, self.fx.anyt)], ) self.assert_solve( - [self.fx.t.id], [self.subc(self.fx.t, self.fx.anyt)], [(self.fx.anyt, self.fx.anyt)] + [self.fx.t], [self.subc(self.fx.t, self.fx.anyt)], [(self.fx.anyt, self.fx.anyt)] ) self.assert_solve( - [self.fx.t.id], + [self.fx.t], [self.subc(self.fx.t, self.fx.anyt), self.subc(self.fx.t, self.fx.anyt)], [(self.fx.anyt, self.fx.anyt)], ) - # self.assert_solve([self.fx.t.id], + # self.assert_solve([self.fx.t], # [self.subc(self.fx.t, self.fx.anyt), # self.subc(self.fx.t, self.fx.a)], # [(self.fx.anyt, self.fx.anyt)]) @@ -111,20 +105,20 @@ def test_both_normal_and_any_types_in_results(self) -> None: # If one of the bounds is any, we promote the other bound to # any as well, since otherwise the type range does not make sense. self.assert_solve( - [self.fx.t.id], + [self.fx.t], [self.supc(self.fx.t, self.fx.a), self.subc(self.fx.t, self.fx.anyt)], [(self.fx.anyt, self.fx.anyt)], ) self.assert_solve( - [self.fx.t.id], + [self.fx.t], [self.supc(self.fx.t, self.fx.anyt), self.subc(self.fx.t, self.fx.a)], [(self.fx.anyt, self.fx.anyt)], ) def assert_solve( self, - vars: list[TypeVarId], + vars: list[TypeVarLikeType], constraints: list[Constraint], results: list[None | Type | tuple[Type, Type]], ) -> None: @@ -134,7 +128,7 @@ def assert_solve( res.append(r[0]) else: res.append(r) - actual = solve_constraints(vars, constraints) + actual, _ = solve_constraints(vars, constraints) assert_equal(str(actual), str(res)) def supc(self, type_var: TypeVarType, bound: Type) -> Constraint: diff --git a/mypy/typeops.py b/mypy/typeops.py index 519d3de995f5..65ab4340403c 100644 --- a/mypy/typeops.py +++ b/mypy/typeops.py @@ -313,7 +313,9 @@ class B(A): pass original_type = get_proper_type(original_type) all_ids = func.type_var_ids() - typeargs = infer_type_arguments(all_ids, self_param_type, original_type, is_supertype=True) + typeargs = infer_type_arguments( + func.variables, self_param_type, original_type, is_supertype=True + ) if ( is_classmethod # TODO: why do we need the extra guards here? @@ -322,7 +324,7 @@ class B(A): pass ): # In case we call a classmethod through an instance x, fallback to type(x) typeargs = infer_type_arguments( - all_ids, self_param_type, TypeType(original_type), is_supertype=True + func.variables, self_param_type, TypeType(original_type), is_supertype=True ) ids = [tid for tid in all_ids if any(tid == t.id for t in get_type_vars(self_param_type))] diff --git a/mypy_self_check.ini b/mypy_self_check.ini index 7413e6407d4f..fcdbe641d6d6 100644 --- a/mypy_self_check.ini +++ b/mypy_self_check.ini @@ -8,6 +8,7 @@ always_false = MYPYC plugins = misc/proper_plugin.py python_version = 3.8 exclude = mypy/typeshed/|mypyc/test-data/|mypyc/lib-rt/ +new_type_inference = True enable_error_code = ignore-without-code,redundant-expr show_error_code_links = True diff --git a/test-data/unit/check-generics.test b/test-data/unit/check-generics.test index 34588bfceb3d..5c510a11b970 100644 --- a/test-data/unit/check-generics.test +++ b/test-data/unit/check-generics.test @@ -2911,9 +2911,23 @@ def test1(x: V) -> V: ... def test2(x: V, y: V) -> V: ... reveal_type(dec1(test1)) # N: Revealed type is "def () -> def [T] (T`1) -> T`1" -# TODO: support this situation -reveal_type(dec2(test2)) # N: Revealed type is "def (builtins.object) -> def (builtins.object) -> builtins.object" -[builtins fixtures/paramspec.pyi] +reveal_type(dec2(test2)) # N: Revealed type is "def [T] (T`3) -> def (T`3) -> T`3" +[builtins fixtures/list.pyi] + +[case testInferenceAgainstGenericCallableNewVariable] +# flags: --new-type-inference +from typing import TypeVar, Callable, List + +S = TypeVar('S') +T = TypeVar('T') +U = TypeVar('U') + +def dec(f: Callable[[S], T]) -> Callable[[S], T]: + ... +def test(x: List[U]) -> List[U]: + ... +reveal_type(dec(test)) # N: Revealed type is "def [U] (builtins.list[U`-1]) -> builtins.list[U`-1]" +[builtins fixtures/list.pyi] [case testInferenceAgainstGenericCallableGenericAlias] # flags: --new-type-inference diff --git a/test-data/unit/check-overloading.test b/test-data/unit/check-overloading.test index 89e5aea210b4..50acd7d77c8c 100644 --- a/test-data/unit/check-overloading.test +++ b/test-data/unit/check-overloading.test @@ -6554,3 +6554,18 @@ class Snafu(object): reveal_type(Snafu().snafu('123')) # N: Revealed type is "builtins.str" reveal_type(Snafu.snafu('123')) # N: Revealed type is "builtins.str" [builtins fixtures/staticmethod.pyi] + +[case testOverloadedWithInternalTypeVars] +# flags: --new-type-inference +import m + +[file m.pyi] +from typing import Callable, TypeVar, overload + +T = TypeVar("T") +S = TypeVar("S", bound=str) + +@overload +def foo(x: int = ...) -> Callable[[T], T]: ... +@overload +def foo(x: S = ...) -> Callable[[T], T]: ...