-
-
Notifications
You must be signed in to change notification settings - Fork 30.9k
/
Copy path_functoolsmodule.c
1543 lines (1359 loc) · 45.8 KB
/
_functoolsmodule.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include "Python.h"
#include "pycore_call.h" // _PyObject_CallNoArgs()
#include "pycore_dict.h" // _PyDict_Pop_KnownHash()
#include "pycore_long.h" // _PyLong_GetZero()
#include "pycore_moduleobject.h" // _PyModule_GetState()
#include "pycore_object.h" // _PyObject_GC_TRACK
#include "pycore_pystate.h" // _PyThreadState_GET()
#include "pycore_tuple.h" // _PyTuple_ITEMS()
#include "structmember.h" // PyMemberDef
#include "clinic/_functoolsmodule.c.h"
/*[clinic input]
module _functools
class _functools._lru_cache_wrapper "PyObject *" "&lru_cache_type_spec"
[clinic start generated code]*/
/*[clinic end generated code: output=da39a3ee5e6b4b0d input=bece4053896b09c0]*/
/* _functools module written and maintained
by Hye-Shik Chang <[email protected]>
with adaptations by Raymond Hettinger <[email protected]>
Copyright (c) 2004, 2005, 2006 Python Software Foundation.
All rights reserved.
*/
typedef struct _functools_state {
/* this object is used delimit args and keywords in the cache keys */
PyObject *kwd_mark;
PyTypeObject *partial_type;
PyTypeObject *keyobject_type;
PyTypeObject *lru_list_elem_type;
} _functools_state;
static inline _functools_state *
get_functools_state(PyObject *module)
{
void *state = _PyModule_GetState(module);
assert(state != NULL);
return (_functools_state *)state;
}
/* partial object **********************************************************/
typedef struct {
PyObject_HEAD
PyObject *fn;
PyObject *args;
PyObject *kw;
PyObject *dict; /* __dict__ */
PyObject *weakreflist; /* List of weak references */
vectorcallfunc vectorcall;
} partialobject;
static void partial_setvectorcall(partialobject *pto);
static struct PyModuleDef _functools_module;
static PyObject *
partial_call(partialobject *pto, PyObject *args, PyObject *kwargs);
static inline _functools_state *
get_functools_state_by_type(PyTypeObject *type)
{
PyObject *module = PyType_GetModuleByDef(type, &_functools_module);
if (module == NULL) {
return NULL;
}
return get_functools_state(module);
}
// Not converted to argument clinic, because of `*args, **kwargs` arguments.
static PyObject *
partial_new(PyTypeObject *type, PyObject *args, PyObject *kw)
{
PyObject *func, *pargs, *nargs, *pkw;
partialobject *pto;
if (PyTuple_GET_SIZE(args) < 1) {
PyErr_SetString(PyExc_TypeError,
"type 'partial' takes at least one argument");
return NULL;
}
pargs = pkw = NULL;
func = PyTuple_GET_ITEM(args, 0);
if (Py_TYPE(func)->tp_call == (ternaryfunc)partial_call) {
// The type of "func" might not be exactly the same type object
// as "type", but if it is called using partial_call, it must have the
// same memory layout (fn, args and kw members).
// We can use its underlying function directly and merge the arguments.
partialobject *part = (partialobject *)func;
if (part->dict == NULL) {
pargs = part->args;
pkw = part->kw;
func = part->fn;
assert(PyTuple_Check(pargs));
assert(PyDict_Check(pkw));
}
}
if (!PyCallable_Check(func)) {
PyErr_SetString(PyExc_TypeError,
"the first argument must be callable");
return NULL;
}
/* create partialobject structure */
pto = (partialobject *)type->tp_alloc(type, 0);
if (pto == NULL)
return NULL;
pto->fn = Py_NewRef(func);
nargs = PyTuple_GetSlice(args, 1, PY_SSIZE_T_MAX);
if (nargs == NULL) {
Py_DECREF(pto);
return NULL;
}
if (pargs == NULL) {
pto->args = nargs;
}
else {
pto->args = PySequence_Concat(pargs, nargs);
Py_DECREF(nargs);
if (pto->args == NULL) {
Py_DECREF(pto);
return NULL;
}
assert(PyTuple_Check(pto->args));
}
if (pkw == NULL || PyDict_GET_SIZE(pkw) == 0) {
if (kw == NULL) {
pto->kw = PyDict_New();
}
else if (Py_REFCNT(kw) == 1) {
pto->kw = Py_NewRef(kw);
}
else {
pto->kw = PyDict_Copy(kw);
}
}
else {
pto->kw = PyDict_Copy(pkw);
if (kw != NULL && pto->kw != NULL) {
if (PyDict_Merge(pto->kw, kw, 1) != 0) {
Py_DECREF(pto);
return NULL;
}
}
}
if (pto->kw == NULL) {
Py_DECREF(pto);
return NULL;
}
partial_setvectorcall(pto);
return (PyObject *)pto;
}
static int
partial_clear(partialobject *pto)
{
Py_CLEAR(pto->fn);
Py_CLEAR(pto->args);
Py_CLEAR(pto->kw);
Py_CLEAR(pto->dict);
return 0;
}
static int
partial_traverse(partialobject *pto, visitproc visit, void *arg)
{
Py_VISIT(Py_TYPE(pto));
Py_VISIT(pto->fn);
Py_VISIT(pto->args);
Py_VISIT(pto->kw);
Py_VISIT(pto->dict);
return 0;
}
static void
partial_dealloc(partialobject *pto)
{
PyTypeObject *tp = Py_TYPE(pto);
/* bpo-31095: UnTrack is needed before calling any callbacks */
PyObject_GC_UnTrack(pto);
if (pto->weakreflist != NULL) {
PyObject_ClearWeakRefs((PyObject *) pto);
}
(void)partial_clear(pto);
tp->tp_free(pto);
Py_DECREF(tp);
}
/* Merging keyword arguments using the vectorcall convention is messy, so
* if we would need to do that, we stop using vectorcall and fall back
* to using partial_call() instead. */
Py_NO_INLINE static PyObject *
partial_vectorcall_fallback(PyThreadState *tstate, partialobject *pto,
PyObject *const *args, size_t nargsf,
PyObject *kwnames)
{
pto->vectorcall = NULL;
Py_ssize_t nargs = PyVectorcall_NARGS(nargsf);
return _PyObject_MakeTpCall(tstate, (PyObject *)pto,
args, nargs, kwnames);
}
static PyObject *
partial_vectorcall(partialobject *pto, PyObject *const *args,
size_t nargsf, PyObject *kwnames)
{
PyThreadState *tstate = _PyThreadState_GET();
/* pto->kw is mutable, so need to check every time */
if (PyDict_GET_SIZE(pto->kw)) {
return partial_vectorcall_fallback(tstate, pto, args, nargsf, kwnames);
}
Py_ssize_t nargs = PyVectorcall_NARGS(nargsf);
Py_ssize_t nargs_total = nargs;
if (kwnames != NULL) {
nargs_total += PyTuple_GET_SIZE(kwnames);
}
PyObject **pto_args = _PyTuple_ITEMS(pto->args);
Py_ssize_t pto_nargs = PyTuple_GET_SIZE(pto->args);
/* Fast path if we're called without arguments */
if (nargs_total == 0) {
return _PyObject_VectorcallTstate(tstate, pto->fn,
pto_args, pto_nargs, NULL);
}
/* Fast path using PY_VECTORCALL_ARGUMENTS_OFFSET to prepend a single
* positional argument */
if (pto_nargs == 1 && (nargsf & PY_VECTORCALL_ARGUMENTS_OFFSET)) {
PyObject **newargs = (PyObject **)args - 1;
PyObject *tmp = newargs[0];
newargs[0] = pto_args[0];
PyObject *ret = _PyObject_VectorcallTstate(tstate, pto->fn,
newargs, nargs + 1, kwnames);
newargs[0] = tmp;
return ret;
}
Py_ssize_t newnargs_total = pto_nargs + nargs_total;
PyObject *small_stack[_PY_FASTCALL_SMALL_STACK];
PyObject *ret;
PyObject **stack;
if (newnargs_total <= (Py_ssize_t)Py_ARRAY_LENGTH(small_stack)) {
stack = small_stack;
}
else {
stack = PyMem_Malloc(newnargs_total * sizeof(PyObject *));
if (stack == NULL) {
PyErr_NoMemory();
return NULL;
}
}
/* Copy to new stack, using borrowed references */
memcpy(stack, pto_args, pto_nargs * sizeof(PyObject*));
memcpy(stack + pto_nargs, args, nargs_total * sizeof(PyObject*));
ret = _PyObject_VectorcallTstate(tstate, pto->fn,
stack, pto_nargs + nargs, kwnames);
if (stack != small_stack) {
PyMem_Free(stack);
}
return ret;
}
/* Set pto->vectorcall depending on the parameters of the partial object */
static void
partial_setvectorcall(partialobject *pto)
{
if (_PyVectorcall_Function(pto->fn) == NULL) {
/* Don't use vectorcall if the underlying function doesn't support it */
pto->vectorcall = NULL;
}
/* We could have a special case if there are no arguments,
* but that is unlikely (why use partial without arguments?),
* so we don't optimize that */
else {
pto->vectorcall = (vectorcallfunc)partial_vectorcall;
}
}
// Not converted to argument clinic, because of `*args, **kwargs` arguments.
static PyObject *
partial_call(partialobject *pto, PyObject *args, PyObject *kwargs)
{
assert(PyCallable_Check(pto->fn));
assert(PyTuple_Check(pto->args));
assert(PyDict_Check(pto->kw));
/* Merge keywords */
PyObject *kwargs2;
if (PyDict_GET_SIZE(pto->kw) == 0) {
/* kwargs can be NULL */
kwargs2 = Py_XNewRef(kwargs);
}
else {
/* bpo-27840, bpo-29318: dictionary of keyword parameters must be
copied, because a function using "**kwargs" can modify the
dictionary. */
kwargs2 = PyDict_Copy(pto->kw);
if (kwargs2 == NULL) {
return NULL;
}
if (kwargs != NULL) {
if (PyDict_Merge(kwargs2, kwargs, 1) != 0) {
Py_DECREF(kwargs2);
return NULL;
}
}
}
/* Merge positional arguments */
/* Note: tupleconcat() is optimized for empty tuples */
PyObject *args2 = PySequence_Concat(pto->args, args);
if (args2 == NULL) {
Py_XDECREF(kwargs2);
return NULL;
}
PyObject *res = PyObject_Call(pto->fn, args2, kwargs2);
Py_DECREF(args2);
Py_XDECREF(kwargs2);
return res;
}
PyDoc_STRVAR(partial_doc,
"partial(func, *args, **keywords) - new function with partial application\n\
of the given arguments and keywords.\n");
#define OFF(x) offsetof(partialobject, x)
static PyMemberDef partial_memberlist[] = {
{"func", T_OBJECT, OFF(fn), READONLY,
"function object to use in future partial calls"},
{"args", T_OBJECT, OFF(args), READONLY,
"tuple of arguments to future partial calls"},
{"keywords", T_OBJECT, OFF(kw), READONLY,
"dictionary of keyword arguments to future partial calls"},
{"__weaklistoffset__", T_PYSSIZET,
offsetof(partialobject, weakreflist), READONLY},
{"__dictoffset__", T_PYSSIZET,
offsetof(partialobject, dict), READONLY},
{"__vectorcalloffset__", T_PYSSIZET,
offsetof(partialobject, vectorcall), READONLY},
{NULL} /* Sentinel */
};
static PyGetSetDef partial_getsetlist[] = {
{"__dict__", PyObject_GenericGetDict, PyObject_GenericSetDict},
{NULL} /* Sentinel */
};
static PyObject *
partial_repr(partialobject *pto)
{
PyObject *result = NULL;
PyObject *arglist;
Py_ssize_t i, n;
PyObject *key, *value;
int status;
status = Py_ReprEnter((PyObject *)pto);
if (status != 0) {
if (status < 0)
return NULL;
return PyUnicode_FromString("...");
}
arglist = PyUnicode_FromString("");
if (arglist == NULL)
goto done;
/* Pack positional arguments */
assert (PyTuple_Check(pto->args));
n = PyTuple_GET_SIZE(pto->args);
for (i = 0; i < n; i++) {
Py_SETREF(arglist, PyUnicode_FromFormat("%U, %R", arglist,
PyTuple_GET_ITEM(pto->args, i)));
if (arglist == NULL)
goto done;
}
/* Pack keyword arguments */
assert (PyDict_Check(pto->kw));
for (i = 0; PyDict_Next(pto->kw, &i, &key, &value);) {
/* Prevent key.__str__ from deleting the value. */
Py_INCREF(value);
Py_SETREF(arglist, PyUnicode_FromFormat("%U, %S=%R", arglist,
key, value));
Py_DECREF(value);
if (arglist == NULL)
goto done;
}
result = PyUnicode_FromFormat("%s(%R%U)", Py_TYPE(pto)->tp_name,
pto->fn, arglist);
Py_DECREF(arglist);
done:
Py_ReprLeave((PyObject *)pto);
return result;
}
/* Pickle strategy:
__reduce__ by itself doesn't support getting kwargs in the unpickle
operation so we define a __setstate__ that replaces all the information
about the partial. If we only replaced part of it someone would use
it as a hook to do strange things.
*/
static PyObject *
partial_reduce(partialobject *pto, PyObject *unused)
{
return Py_BuildValue("O(O)(OOOO)", Py_TYPE(pto), pto->fn, pto->fn,
pto->args, pto->kw,
pto->dict ? pto->dict : Py_None);
}
static PyObject *
partial_setstate(partialobject *pto, PyObject *state)
{
PyObject *fn, *fnargs, *kw, *dict;
if (!PyTuple_Check(state) ||
!PyArg_ParseTuple(state, "OOOO", &fn, &fnargs, &kw, &dict) ||
!PyCallable_Check(fn) ||
!PyTuple_Check(fnargs) ||
(kw != Py_None && !PyDict_Check(kw)))
{
PyErr_SetString(PyExc_TypeError, "invalid partial state");
return NULL;
}
if(!PyTuple_CheckExact(fnargs))
fnargs = PySequence_Tuple(fnargs);
else
Py_INCREF(fnargs);
if (fnargs == NULL)
return NULL;
if (kw == Py_None)
kw = PyDict_New();
else if(!PyDict_CheckExact(kw))
kw = PyDict_Copy(kw);
else
Py_INCREF(kw);
if (kw == NULL) {
Py_DECREF(fnargs);
return NULL;
}
if (dict == Py_None)
dict = NULL;
else
Py_INCREF(dict);
Py_SETREF(pto->fn, Py_NewRef(fn));
Py_SETREF(pto->args, fnargs);
Py_SETREF(pto->kw, kw);
Py_XSETREF(pto->dict, dict);
partial_setvectorcall(pto);
Py_RETURN_NONE;
}
static PyMethodDef partial_methods[] = {
{"__reduce__", (PyCFunction)partial_reduce, METH_NOARGS},
{"__setstate__", (PyCFunction)partial_setstate, METH_O},
{"__class_getitem__", Py_GenericAlias,
METH_O|METH_CLASS, PyDoc_STR("See PEP 585")},
{NULL, NULL} /* sentinel */
};
static PyType_Slot partial_type_slots[] = {
{Py_tp_dealloc, partial_dealloc},
{Py_tp_repr, partial_repr},
{Py_tp_call, partial_call},
{Py_tp_getattro, PyObject_GenericGetAttr},
{Py_tp_setattro, PyObject_GenericSetAttr},
{Py_tp_doc, (void *)partial_doc},
{Py_tp_traverse, partial_traverse},
{Py_tp_clear, partial_clear},
{Py_tp_methods, partial_methods},
{Py_tp_members, partial_memberlist},
{Py_tp_getset, partial_getsetlist},
{Py_tp_new, partial_new},
{Py_tp_free, PyObject_GC_Del},
{0, 0}
};
static PyType_Spec partial_type_spec = {
.name = "functools.partial",
.basicsize = sizeof(partialobject),
.flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC |
Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HAVE_VECTORCALL |
Py_TPFLAGS_IMMUTABLETYPE,
.slots = partial_type_slots
};
/* cmp_to_key ***************************************************************/
typedef struct {
PyObject_HEAD
PyObject *cmp;
PyObject *object;
} keyobject;
static int
keyobject_clear(keyobject *ko)
{
Py_CLEAR(ko->cmp);
Py_CLEAR(ko->object);
return 0;
}
static void
keyobject_dealloc(keyobject *ko)
{
PyTypeObject *tp = Py_TYPE(ko);
PyObject_GC_UnTrack(ko);
(void)keyobject_clear(ko);
tp->tp_free(ko);
Py_DECREF(tp);
}
static int
keyobject_traverse(keyobject *ko, visitproc visit, void *arg)
{
Py_VISIT(Py_TYPE(ko));
Py_VISIT(ko->cmp);
Py_VISIT(ko->object);
return 0;
}
static PyMemberDef keyobject_members[] = {
{"obj", T_OBJECT,
offsetof(keyobject, object), 0,
PyDoc_STR("Value wrapped by a key function.")},
{NULL}
};
static PyObject *
keyobject_call(keyobject *ko, PyObject *args, PyObject *kwds);
static PyObject *
keyobject_richcompare(PyObject *ko, PyObject *other, int op);
static PyType_Slot keyobject_type_slots[] = {
{Py_tp_dealloc, keyobject_dealloc},
{Py_tp_call, keyobject_call},
{Py_tp_getattro, PyObject_GenericGetAttr},
{Py_tp_traverse, keyobject_traverse},
{Py_tp_clear, keyobject_clear},
{Py_tp_richcompare, keyobject_richcompare},
{Py_tp_members, keyobject_members},
{0, 0}
};
static PyType_Spec keyobject_type_spec = {
.name = "functools.KeyWrapper",
.basicsize = sizeof(keyobject),
.flags = (Py_TPFLAGS_DEFAULT | Py_TPFLAGS_DISALLOW_INSTANTIATION |
Py_TPFLAGS_HAVE_GC | Py_TPFLAGS_IMMUTABLETYPE),
.slots = keyobject_type_slots
};
static PyObject *
keyobject_call(keyobject *ko, PyObject *args, PyObject *kwds)
{
PyObject *object;
keyobject *result;
static char *kwargs[] = {"obj", NULL};
if (!PyArg_ParseTupleAndKeywords(args, kwds, "O:K", kwargs, &object))
return NULL;
result = PyObject_GC_New(keyobject, Py_TYPE(ko));
if (result == NULL) {
return NULL;
}
result->cmp = Py_NewRef(ko->cmp);
result->object = Py_NewRef(object);
PyObject_GC_Track(result);
return (PyObject *)result;
}
static PyObject *
keyobject_richcompare(PyObject *ko, PyObject *other, int op)
{
PyObject *res;
PyObject *x;
PyObject *y;
PyObject *compare;
PyObject *answer;
PyObject* stack[2];
if (!Py_IS_TYPE(other, Py_TYPE(ko))) {
PyErr_Format(PyExc_TypeError, "other argument must be K instance");
return NULL;
}
compare = ((keyobject *) ko)->cmp;
assert(compare != NULL);
x = ((keyobject *) ko)->object;
y = ((keyobject *) other)->object;
if (!x || !y){
PyErr_Format(PyExc_AttributeError, "object");
return NULL;
}
/* Call the user's comparison function and translate the 3-way
* result into true or false (or error).
*/
stack[0] = x;
stack[1] = y;
res = _PyObject_FastCall(compare, stack, 2);
if (res == NULL) {
return NULL;
}
answer = PyObject_RichCompare(res, _PyLong_GetZero(), op);
Py_DECREF(res);
return answer;
}
/*[clinic input]
_functools.cmp_to_key
mycmp: object
Function that compares two objects.
Convert a cmp= function into a key= function.
[clinic start generated code]*/
static PyObject *
_functools_cmp_to_key_impl(PyObject *module, PyObject *mycmp)
/*[clinic end generated code: output=71eaad0f4fc81f33 input=d1b76f231c0dfeb3]*/
{
keyobject *object;
_functools_state *state;
state = get_functools_state(module);
object = PyObject_GC_New(keyobject, state->keyobject_type);
if (!object)
return NULL;
object->cmp = Py_NewRef(mycmp);
object->object = NULL;
PyObject_GC_Track(object);
return (PyObject *)object;
}
/* reduce (used to be a builtin) ********************************************/
// Not converted to argument clinic, because of `args` in-place modification.
// AC will affect performance.
static PyObject *
functools_reduce(PyObject *self, PyObject *args)
{
PyObject *seq, *func, *result = NULL, *it;
if (!PyArg_UnpackTuple(args, "reduce", 2, 3, &func, &seq, &result))
return NULL;
if (result != NULL)
Py_INCREF(result);
it = PyObject_GetIter(seq);
if (it == NULL) {
if (PyErr_ExceptionMatches(PyExc_TypeError))
PyErr_SetString(PyExc_TypeError,
"reduce() arg 2 must support iteration");
Py_XDECREF(result);
return NULL;
}
if ((args = PyTuple_New(2)) == NULL)
goto Fail;
for (;;) {
PyObject *op2;
if (Py_REFCNT(args) > 1) {
Py_DECREF(args);
if ((args = PyTuple_New(2)) == NULL)
goto Fail;
}
op2 = PyIter_Next(it);
if (op2 == NULL) {
if (PyErr_Occurred())
goto Fail;
break;
}
if (result == NULL)
result = op2;
else {
/* Update the args tuple in-place */
assert(Py_REFCNT(args) == 1);
Py_XSETREF(_PyTuple_ITEMS(args)[0], result);
Py_XSETREF(_PyTuple_ITEMS(args)[1], op2);
if ((result = PyObject_Call(func, args, NULL)) == NULL) {
goto Fail;
}
// bpo-42536: The GC may have untracked this args tuple. Since we're
// recycling it, make sure it's tracked again:
if (!_PyObject_GC_IS_TRACKED(args)) {
_PyObject_GC_TRACK(args);
}
}
}
Py_DECREF(args);
if (result == NULL)
PyErr_SetString(PyExc_TypeError,
"reduce() of empty iterable with no initial value");
Py_DECREF(it);
return result;
Fail:
Py_XDECREF(args);
Py_XDECREF(result);
Py_DECREF(it);
return NULL;
}
PyDoc_STRVAR(functools_reduce_doc,
"reduce(function, iterable[, initial]) -> value\n\
\n\
Apply a function of two arguments cumulatively to the items of a sequence\n\
or iterable, from left to right, so as to reduce the iterable to a single\n\
value. For example, reduce(lambda x, y: x+y, [1, 2, 3, 4, 5]) calculates\n\
((((1+2)+3)+4)+5). If initial is present, it is placed before the items\n\
of the iterable in the calculation, and serves as a default when the\n\
iterable is empty.");
/* lru_cache object **********************************************************/
/* There are four principal algorithmic differences from the pure python version:
1). The C version relies on the GIL instead of having its own reentrant lock.
2). The prev/next link fields use borrowed references.
3). For a full cache, the pure python version rotates the location of the
root entry so that it never has to move individual links and it can
limit updates to just the key and result fields. However, in the C
version, links are temporarily removed while the cache dict updates are
occurring. Afterwards, they are appended or prepended back into the
doubly-linked lists.
4) In the Python version, the _HashSeq class is used to prevent __hash__
from being called more than once. In the C version, the "known hash"
variants of dictionary calls as used to the same effect.
*/
struct lru_list_elem;
struct lru_cache_object;
typedef struct lru_list_elem {
PyObject_HEAD
struct lru_list_elem *prev, *next; /* borrowed links */
Py_hash_t hash;
PyObject *key, *result;
} lru_list_elem;
static void
lru_list_elem_dealloc(lru_list_elem *link)
{
PyTypeObject *tp = Py_TYPE(link);
Py_XDECREF(link->key);
Py_XDECREF(link->result);
tp->tp_free(link);
Py_DECREF(tp);
}
static PyType_Slot lru_list_elem_type_slots[] = {
{Py_tp_dealloc, lru_list_elem_dealloc},
{0, 0}
};
static PyType_Spec lru_list_elem_type_spec = {
.name = "functools._lru_list_elem",
.basicsize = sizeof(lru_list_elem),
.flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_DISALLOW_INSTANTIATION |
Py_TPFLAGS_IMMUTABLETYPE,
.slots = lru_list_elem_type_slots
};
typedef PyObject *(*lru_cache_ternaryfunc)(struct lru_cache_object *, PyObject *, PyObject *);
typedef struct lru_cache_object {
lru_list_elem root; /* includes PyObject_HEAD */
lru_cache_ternaryfunc wrapper;
int typed;
PyObject *cache;
Py_ssize_t hits;
PyObject *func;
Py_ssize_t maxsize;
Py_ssize_t misses;
/* the kwd_mark is used delimit args and keywords in the cache keys */
PyObject *kwd_mark;
PyTypeObject *lru_list_elem_type;
PyObject *cache_info_type;
PyObject *dict;
PyObject *weakreflist;
} lru_cache_object;
static PyObject *
lru_cache_make_key(PyObject *kwd_mark, PyObject *args,
PyObject *kwds, int typed)
{
PyObject *key, *keyword, *value;
Py_ssize_t key_size, pos, key_pos, kwds_size;
kwds_size = kwds ? PyDict_GET_SIZE(kwds) : 0;
/* short path, key will match args anyway, which is a tuple */
if (!typed && !kwds_size) {
if (PyTuple_GET_SIZE(args) == 1) {
key = PyTuple_GET_ITEM(args, 0);
if (PyUnicode_CheckExact(key) || PyLong_CheckExact(key)) {
/* For common scalar keys, save space by
dropping the enclosing args tuple */
return Py_NewRef(key);
}
}
return Py_NewRef(args);
}
key_size = PyTuple_GET_SIZE(args);
if (kwds_size)
key_size += kwds_size * 2 + 1;
if (typed)
key_size += PyTuple_GET_SIZE(args) + kwds_size;
key = PyTuple_New(key_size);
if (key == NULL)
return NULL;
key_pos = 0;
for (pos = 0; pos < PyTuple_GET_SIZE(args); ++pos) {
PyObject *item = PyTuple_GET_ITEM(args, pos);
PyTuple_SET_ITEM(key, key_pos++, Py_NewRef(item));
}
if (kwds_size) {
PyTuple_SET_ITEM(key, key_pos++, Py_NewRef(kwd_mark));
for (pos = 0; PyDict_Next(kwds, &pos, &keyword, &value);) {
PyTuple_SET_ITEM(key, key_pos++, Py_NewRef(keyword));
PyTuple_SET_ITEM(key, key_pos++, Py_NewRef(value));
}
assert(key_pos == PyTuple_GET_SIZE(args) + kwds_size * 2 + 1);
}
if (typed) {
for (pos = 0; pos < PyTuple_GET_SIZE(args); ++pos) {
PyObject *item = (PyObject *)Py_TYPE(PyTuple_GET_ITEM(args, pos));
PyTuple_SET_ITEM(key, key_pos++, Py_NewRef(item));
}
if (kwds_size) {
for (pos = 0; PyDict_Next(kwds, &pos, &keyword, &value);) {
PyObject *item = (PyObject *)Py_TYPE(value);
PyTuple_SET_ITEM(key, key_pos++, Py_NewRef(item));
}
}
}
assert(key_pos == key_size);
return key;
}
static PyObject *
uncached_lru_cache_wrapper(lru_cache_object *self, PyObject *args, PyObject *kwds)
{
PyObject *result;
self->misses++;
result = PyObject_Call(self->func, args, kwds);
if (!result)
return NULL;
return result;
}
static PyObject *
infinite_lru_cache_wrapper(lru_cache_object *self, PyObject *args, PyObject *kwds)
{
PyObject *result;
Py_hash_t hash;
PyObject *key = lru_cache_make_key(self->kwd_mark, args, kwds, self->typed);
if (!key)
return NULL;
hash = PyObject_Hash(key);
if (hash == -1) {
Py_DECREF(key);
return NULL;
}
result = _PyDict_GetItem_KnownHash(self->cache, key, hash);
if (result) {
Py_INCREF(result);
self->hits++;
Py_DECREF(key);
return result;
}
if (PyErr_Occurred()) {
Py_DECREF(key);
return NULL;
}
self->misses++;
result = PyObject_Call(self->func, args, kwds);
if (!result) {
Py_DECREF(key);
return NULL;
}
if (_PyDict_SetItem_KnownHash(self->cache, key, result, hash) < 0) {
Py_DECREF(result);
Py_DECREF(key);
return NULL;
}
Py_DECREF(key);
return result;
}
static void
lru_cache_extract_link(lru_list_elem *link)
{
lru_list_elem *link_prev = link->prev;
lru_list_elem *link_next = link->next;
link_prev->next = link->next;
link_next->prev = link->prev;
}
static void
lru_cache_append_link(lru_cache_object *self, lru_list_elem *link)
{
lru_list_elem *root = &self->root;
lru_list_elem *last = root->prev;
last->next = root->prev = link;
link->prev = last;
link->next = root;
}
static void
lru_cache_prepend_link(lru_cache_object *self, lru_list_elem *link)
{
lru_list_elem *root = &self->root;
lru_list_elem *first = root->next;
first->prev = root->next = link;
link->prev = root;
link->next = first;
}
/* General note on reentrancy:
There are four dictionary calls in the bounded_lru_cache_wrapper():
1) The initial check for a cache match. 2) The post user-function
check for a cache match. 3) The deletion of the oldest entry.
4) The addition of the newest entry.
In all four calls, we have a known hash which lets use avoid a call
to __hash__(). That leaves only __eq__ as a possible source of a
reentrant call.
The __eq__ method call is always made for a cache hit (dict access #1).
Accordingly, we have make sure not modify the cache state prior to
this call.
The __eq__ method call is never made for the deletion (dict access #3)
because it is an identity match.
For the other two accesses (#2 and #4), calls to __eq__ only occur
when some other entry happens to have an exactly matching hash (all
64-bits). Though rare, this can happen, so we have to make sure to
either call it at the top of its code path before any cache
state modifications (dict access #2) or be prepared to restore
invariants at the end of the code path (dict access #4).
Another possible source of reentrancy is a decref which can trigger
arbitrary code execution. To make the code easier to reason about,
the decrefs are deferred to the end of the each possible code path
so that we know the cache is a consistent state.
*/
static PyObject *
bounded_lru_cache_wrapper(lru_cache_object *self, PyObject *args, PyObject *kwds)
{
lru_list_elem *link;
PyObject *key, *result, *testresult;
Py_hash_t hash;
key = lru_cache_make_key(self->kwd_mark, args, kwds, self->typed);
if (!key)
return NULL;
hash = PyObject_Hash(key);