From 093f148f0dbcaa182a489d8304eafcfc7891e3dd Mon Sep 17 00:00:00 2001 From: Bas Nijholt Date: Tue, 14 Apr 2020 17:53:01 +0200 Subject: [PATCH] no not treat the SequenceLearner specially --- adaptive/tests/test_learners.py | 31 +++++-------------------------- 1 file changed, 5 insertions(+), 26 deletions(-) diff --git a/adaptive/tests/test_learners.py b/adaptive/tests/test_learners.py index 6edee2b30..dc7f11eb2 100644 --- a/adaptive/tests/test_learners.py +++ b/adaptive/tests/test_learners.py @@ -281,19 +281,9 @@ def test_adding_existing_data_is_idempotent(learner_type, f, learner_kwargs): M = random.randint(10, 30) pls = zip(*learner.ask(M)) cpls = zip(*control.ask(M)) - if learner_type is SequenceLearner: - # The SequenceLearner's points might not be hasable - points, values = zip(*pls) - indices, points = zip(*points) - cpoints, cvalues = zip(*cpls) - cindices, cpoints = zip(*cpoints) - assert (np.array(points) == np.array(cpoints)).all() - assert values == cvalues - assert indices == cindices - else: - # Point ordering is not defined, so compare as sets - assert set(pls) == set(cpls) + # Point ordering is not defined, so compare as sets + assert set(pls) == set(cpls) # XXX: This *should* pass (https://github.com/python-adaptive/adaptive/issues/55) @@ -324,20 +314,9 @@ def test_adding_non_chosen_data(learner_type, f, learner_kwargs): pls = zip(*learner.ask(M)) cpls = zip(*control.ask(M)) - if learner_type is SequenceLearner: - # The SequenceLearner's points might not be hasable - points, values = zip(*pls) - indices, points = zip(*points) - - cpoints, cvalues = zip(*cpls) - cindices, cpoints = zip(*cpoints) - assert (np.array(points) == np.array(cpoints)).all() - assert values == cvalues - assert indices == cindices - else: - # Point ordering within a single call to 'ask' - # is not guaranteed to be the same by the API. - assert set(pls) == set(cpls) + # Point ordering within a single call to 'ask' + # is not guaranteed to be the same by the API. + assert set(pls) == set(cpls) @run_with(Learner1D, xfail(Learner2D), xfail(LearnerND), AverageLearner)