diff --git a/bioptim/__init__.py b/bioptim/__init__.py index 24da06bec..bc154bfef 100644 --- a/bioptim/__init__.py +++ b/bioptim/__init__.py @@ -165,48 +165,26 @@ """ from .dynamics.configure_problem import ConfigureProblem, DynamicsFcn, DynamicsList, Dynamics -from .dynamics.configure_problem import ConfigureProblem, DynamicsFcn, DynamicsList, Dynamics -from .dynamics.dynamics_evaluation import DynamicsEvaluation from .dynamics.dynamics_evaluation import DynamicsEvaluation from .dynamics.dynamics_functions import DynamicsFunctions -from .dynamics.dynamics_functions import DynamicsFunctions from .dynamics.fatigue.effort_perception import EffortPerception, TauEffortPerception -from .dynamics.fatigue.effort_perception import EffortPerception, TauEffortPerception -from .dynamics.fatigue.fatigue_dynamics import FatigueList from .dynamics.fatigue.fatigue_dynamics import FatigueList from .dynamics.fatigue.michaud_fatigue import MichaudFatigue, MichaudTauFatigue -from .dynamics.fatigue.michaud_fatigue import MichaudFatigue, MichaudTauFatigue from .dynamics.fatigue.xia_fatigue import XiaFatigue, XiaTauFatigue, XiaFatigueStabilized -from .dynamics.fatigue.xia_fatigue import XiaFatigue, XiaTauFatigue, XiaFatigueStabilized -from .dynamics.ode_solver import OdeSolver, OdeSolverBase from .dynamics.ode_solver import OdeSolver, OdeSolverBase from .gui.online_callback_server import PlottingServer -from .gui.online_callback_server import PlottingServer from .gui.plot import CustomPlot -from .gui.plot import CustomPlot -from .interfaces import Solver -from .interfaces import Solver -from .limits.constraints import ConstraintFcn, ConstraintList, Constraint, ParameterConstraintList +from .interfaces import Solver, CasadiFunctionInterface from .limits.constraints import ConstraintFcn, ConstraintList, Constraint, ParameterConstraintList from .limits.fatigue_path_conditions import FatigueBounds, FatigueInitialGuess -from .limits.fatigue_path_conditions import FatigueBounds, FatigueInitialGuess -from .limits.multinode_constraint import MultinodeConstraintFcn, MultinodeConstraintList, MultinodeConstraint from .limits.multinode_constraint import MultinodeConstraintFcn, MultinodeConstraintList, MultinodeConstraint from .limits.multinode_objective import MultinodeObjectiveFcn, MultinodeObjectiveList, MultinodeObjective -from .limits.multinode_objective import MultinodeObjectiveFcn, MultinodeObjectiveList, MultinodeObjective from .limits.objective_functions import ObjectiveFcn, ObjectiveList, Objective, ParameterObjectiveList -from .limits.objective_functions import ObjectiveFcn, ObjectiveList, Objective, ParameterObjectiveList -from .limits.path_conditions import BoundsList, InitialGuessList, Bounds, InitialGuess from .limits.path_conditions import BoundsList, InitialGuessList, Bounds, InitialGuess from .limits.penalty_controller import PenaltyController -from .limits.penalty_controller import PenaltyController from .limits.penalty_helpers import PenaltyHelpers -from .limits.penalty_helpers import PenaltyHelpers -from .limits.phase_transition import PhaseTransitionFcn, PhaseTransitionList, PhaseTransition from .limits.phase_transition import PhaseTransitionFcn, PhaseTransitionList, PhaseTransition from .misc.__version__ import __version__ -from .misc.__version__ import __version__ -from .misc.casadi_expand import lt, le, gt, ge, if_else, if_else_zero from .misc.casadi_expand import lt, le, gt, ge, if_else, if_else_zero from .misc.enums import ( Axis, @@ -227,7 +205,6 @@ OnlineOptim, ) from .misc.mapping import BiMappingList, BiMapping, Mapping, NodeMapping, NodeMappingList, SelectionMapping, Dependency -from .misc.mapping import BiMappingList, BiMapping, Mapping, NodeMapping, NodeMappingList, SelectionMapping, Dependency from .models.biorbd.biorbd_model import BiorbdModel from .models.biorbd.external_forces import ExternalForceSetTimeSeries from .models.biorbd.holonomic_biorbd_model import HolonomicBiorbdModel diff --git a/bioptim/interfaces/__init__.py b/bioptim/interfaces/__init__.py index 76b97f29b..bf1912c85 100644 --- a/bioptim/interfaces/__init__.py +++ b/bioptim/interfaces/__init__.py @@ -1,6 +1,7 @@ from .ipopt_options import IPOPT from .acados_options import ACADOS from .sqp_options import SQP_METHOD +from .casadi_function_interface import CasadiFunctionInterface class Solver: diff --git a/bioptim/interfaces/casadi_function_interface.py b/bioptim/interfaces/casadi_function_interface.py new file mode 100644 index 000000000..feb986c2f --- /dev/null +++ b/bioptim/interfaces/casadi_function_interface.py @@ -0,0 +1,153 @@ +from abc import ABC, abstractmethod + +from casadi import Callback, Function, Sparsity, DM, MX, SX +import numpy as np + + +class CasadiFunctionInterface(Callback, ABC): + def __init__(self, name: str, opts={}): + self.reverse_function = None + + super(CasadiFunctionInterface, self).__init__() + self.construct(name, opts) # Defines the self.mx_in() + self._cached_mx_in = super().mx_in() + + @abstractmethod + def inputs_len(self) -> list[int]: + """ + The len of the inputs of the function. This will help create the MX/SX vectors such that each element of the list + is the length of the input vector (i.e. the sparsity of the input vector). + + Example: + def inputs_len(self) -> list[int]: + return [3, 4] # Assuming two inputs x and y of length 3 and 4 respectively + """ + pass + + @abstractmethod + def outputs_len(self) -> list[int]: + """ + The len of the outputs of the function. This will help create the MX/SX vectors such that each element of the list + is the length of the output vector (i.e. the sparsity of the output vector). + + Example: + def outputs_len(self) -> list[int]: + return [5] # Assuming the output is a 5x1 vector + """ + pass + + @abstractmethod + def function(self, *args) -> np.ndarray | DM: + """ + The actual function to interface with casadi. The callable that returns should be callable by function(*mx_in). + If your function needs more parameters, they should be encapsulated in a partial. + + Example: + def function(self, x, y): + x = np.array(x)[:, 0] + y = np.array(y)[:, 0] + return np.array( + [ + x[0] * y[1] + x[0] * y[0] * y[0], + x[1] * x[1] + 2 * y[1], + x[0] * x[1] * x[2], + x[2] * x[1] * y[2] + 2 * y[3] * y[2], + y[0] * y[1] * y[2] * y[3], + ] + ) + """ + pass + + @abstractmethod + def jacobians(self, *args) -> list[np.ndarray | DM]: + """ + All the jacobians evaluated at *args. Each of the jacobian should be of the shape (n_out, n_in), where n_out is + the length of the output vector (the same for all) and n_in is the length of the input element (specific to each + input element). + + Example: + def jacobians(self, x, y): + x = np.array(x)[:, 0] + y = np.array(y)[:, 0] + jacobian_x = np.array( + [ + [y[1] + y[0] * y[0], 0, 0], + [0, 2 * x[1], 0], + [x[1] * x[2], x[0] * x[2], x[0] * x[1]], + [0, x[2] * y[2], x[1] * y[2]], + [0, 0, 0], + ] + ) + jacobian_y = np.array( + [ + [x[0] * 2 * y[0], x[0], 0, 0], + [0, 2, 0, 0], + [0, 0, 0, 0], + [0, 0, x[1] * x[2] + 2 * y[3], 2 * y[2]], + [y[1] * y[2] * y[3], y[0] * y[2] * y[3], y[0] * y[1] * y[3], y[0] * y[1] * y[2]], + ] + ) + return [jacobian_x, jacobian_y] # There are as many jacobians as there are inputs + """ + pass + + def mx_in(self) -> MX: + """ + Get the MX in, but it is ensured that the MX are the same at each call + """ + return self._cached_mx_in + + def get_n_in(self): + return len(self.inputs_len()) + + def get_n_out(self): + return len(self.outputs_len()) + + def get_sparsity_in(self, i): + return Sparsity.dense(self.inputs_len()[i], 1) + + def get_sparsity_out(self, i): + return Sparsity.dense(self.outputs_len()[i], 1) + + def eval(self, *args): + return [self.function(*args[0])] + + def has_reverse(self, nadj): + return nadj == 1 + + def get_reverse(self, nadj, name, inames, onames, opts): + class Reverse(Callback): + def __init__(self, parent, jacobian_functions, opts={}): + self._sparsity_in = parent.mx_in() + parent.mx_out() + self._sparsity_out = parent.mx_in() + + self.jacobian_functions = jacobian_functions + Callback.__init__(self) + self.construct("Reverse", opts) + + def get_n_in(self): + return len(self._sparsity_in) + + def get_n_out(self): + return len(self._sparsity_out) + + def get_sparsity_in(self, i): + return Sparsity.dense(self._sparsity_in[i].shape) + + def get_sparsity_out(self, i): + return Sparsity.dense(self._sparsity_out[i].shape) + + def eval(self, arg): + # Find the index to evaluate from the last parameter which is a DM vector of 0s with one value being 1 + index = arg[-1].toarray()[:, 0].tolist().index(1.0) + inputs = arg[:-1] + return [jaco[index, :].T for jaco in self.jacobian_functions(*inputs)] + + # Package it in the [nominal_in + nominal_out + adj_seed] form that CasADi expects + if self.reverse_function is None: + self.reverse_function = Reverse(self, self.jacobians) + + cx_in = self.mx_in() + nominal_out = self.mx_out() + adj_seed = self.mx_out() + return Function(name, cx_in + nominal_out + adj_seed, self.reverse_function(*cx_in, adj_seed[0])) diff --git a/tests/shard5/test_casadi_function_interface.py b/tests/shard5/test_casadi_function_interface.py new file mode 100644 index 000000000..e3e4be44e --- /dev/null +++ b/tests/shard5/test_casadi_function_interface.py @@ -0,0 +1,110 @@ +from casadi import MX, vertcat, Function, jacobian +import numpy as np +import numpy.testing as npt +from bioptim import CasadiFunctionInterface + + +class CasadiFunctionInterfaceTest(CasadiFunctionInterface): + """ + This example implements a somewhat simple 5x1 function, with x and y inputs (x => 3x1; y => 4x1) of the form + f(x, y) = np.array( + [ + x[0] * y[1] + y[0] * y[0], + x[1] * x[1] + 2 * y[1], + x[0] * x[1] * x[2], + x[2] * x[1] + 2 * y[3] * y[2], + y[0] * y[1] * y[2] * y[3], + ] + ) + + It implements the equation (5x1) and the jacobians for the inputs x (5x3) and y (5x4). + """ + + def __init__(self, opts={}): + super(CasadiFunctionInterfaceTest, self).__init__("CasadiFunctionInterfaceTest", opts) + + def inputs_len(self) -> list[int]: + return [3, 4] + + def outputs_len(self) -> list[int]: + return [5] + + def function(self, *args): + x, y = args + x = np.array(x)[:, 0] + y = np.array(y)[:, 0] + return np.array( + [ + x[0] * y[1] + x[0] * y[0] * y[0], + x[1] * x[1] + 2 * y[1], + x[0] * x[1] * x[2], + x[2] * x[1] * y[2] + 2 * y[3] * y[2], + y[0] * y[1] * y[2] * y[3], + ] + ) + + def jacobians(self, *args): + x, y = args + x = np.array(x)[:, 0] + y = np.array(y)[:, 0] + jacobian_x = np.array( + [ + [y[1] + y[0] * y[0], 0, 0], + [0, 2 * x[1], 0], + [x[1] * x[2], x[0] * x[2], x[0] * x[1]], + [0, x[2] * y[2], x[1] * y[2]], + [0, 0, 0], + ] + ) + jacobian_y = np.array( + [ + [x[0] * 2 * y[0], x[0], 0, 0], + [0, 2, 0, 0], + [0, 0, 0, 0], + [0, 0, x[1] * x[2] + 2 * y[3], 2 * y[2]], + [y[1] * y[2] * y[3], y[0] * y[2] * y[3], y[0] * y[1] * y[3], y[0] * y[1] * y[2]], + ] + ) + return [jacobian_x, jacobian_y] + + +def test_penalty_minimize_time(): + """ + These tests seem to test the interface, but actually all the internal methods are also called, which is what should + be tested. + """ + + # Computing the example + interface_test = CasadiFunctionInterfaceTest() + + # Testing the interface + npt.assert_equal(interface_test.inputs_len(), [3, 4]) + npt.assert_equal(interface_test.outputs_len(), [5]) + assert id(interface_test.mx_in()) == id(interface_test.mx_in()) # Calling twice returns the same object + + # Test the class can be called with DM + x_num = np.array([1.1, 2.3, 3.5]) + y_num = np.array([4.2, 5.4, 6.6, 7.7]) + npt.assert_almost_equal(interface_test(x_num, y_num), np.array([[25.344, 16.09, 8.855, 154.77, 1152.5976]]).T) + + # Test the jacobian is correct + x = MX.sym("x", interface_test.inputs_len()[0], 1) + y = MX.sym("y", interface_test.inputs_len()[1], 1) + jaco_x = Function("jaco_x", [x, y], [jacobian(interface_test(x, y), x)]) + jaco_y = Function("jaco_y", [x, y], [jacobian(interface_test(x, y), y)]) + + # Computing the same equations (and derivative) by casadi + real = vertcat( + x[0] * y[1] + x[0] * y[0] * y[0], + x[1] * x[1] + 2 * y[1], + x[0] * x[1] * x[2], + x[2] * x[1] * y[2] + 2 * y[3] * y[2], + y[0] * y[1] * y[2] * y[3], + ) + real_function = Function("real", [x, y], [real]) + jaco_x_real = Function("jaco_x_real", [x, y], [jacobian(real, x)]) + jaco_y_real = Function("jaco_y_real", [x, y], [jacobian(real, y)]) + + npt.assert_almost_equal(np.array(interface_test(x_num, y_num)), real_function(x_num, y_num)) + npt.assert_almost_equal(np.array(jaco_x(x_num, y_num)), jaco_x_real(x_num, y_num)) + npt.assert_almost_equal(np.array(jaco_y(x_num, y_num)), jaco_y_real(x_num, y_num))