diff --git a/RELEASE-NOTES.md b/RELEASE-NOTES.md index 231d8e3c743..904c20c853c 100644 --- a/RELEASE-NOTES.md +++ b/RELEASE-NOTES.md @@ -18,6 +18,7 @@ - SMC: stabilize covariance matrix [3573](https://github.com/pymc-devs/pymc3/pull/3573) - SMC is no longer a step method of `pm.sample` now it should be called using `pm.sample_smc` [3579](https://github.com/pymc-devs/pymc3/pull/3579) - SMC: improve computation of the proposal scaling factor [3594](https://github.com/pymc-devs/pymc3/pull/3594) +- SMC: reduce number of logp evaluations [3600](https://github.com/pymc-devs/pymc3/pull/3600) - Now uses `multiprocessong` rather than `psutil` to count CPUs, which results in reliable core counts on Chromebooks. - `sample_posterior_predictive` now preallocates the memory required for its output to improve memory usage. Addresses problems raised in this [discourse thread](https://discourse.pymc.io/t/memory-error-with-posterior-predictive-sample/2891/4). - Fixed a bug in `Categorical.logp`. In the case of multidimensional `p`'s, the indexing was done wrong leading to incorrectly shaped tensors that consumed `O(n**2)` memory instead of `O(n)`. This fixes issue [#3535](https://github.com/pymc-devs/pymc3/issues/3535) diff --git a/pymc3/smc/smc.py b/pymc3/smc/smc.py index f2869655e5c..95e7c6e9f9c 100644 --- a/pymc3/smc/smc.py +++ b/pymc3/smc/smc.py @@ -191,13 +191,12 @@ def sample_smc( if parallel and cores > 1: pool = mp.Pool(processes=cores) + results = pool.starmap(likelihood_logp, [(sample,) for sample in posterior]) + else: + results = [likelihood_logp(sample) for sample in posterior] + likelihoods = np.array(results).squeeze() while beta < 1: - if parallel and cores > 1: - results = pool.starmap(likelihood_logp, [(sample,) for sample in posterior]) - else: - results = [likelihood_logp(sample) for sample in posterior] - likelihoods = np.array(results).squeeze() beta, old_beta, weights, sj = calc_beta(beta, likelihoods, threshold) model.marginal_likelihood *= sj @@ -238,16 +237,20 @@ def sample_smc( if parallel and cores > 1: results = pool.starmap( metrop_kernel, - [(posterior[draw], tempered_logp[draw], *parameters) for draw in range(draws)], + [ + (posterior[draw], tempered_logp[draw], likelihoods[draw], *parameters) + for draw in range(draws) + ], ) else: results = [ - metrop_kernel(posterior[draw], tempered_logp[draw], *parameters) + metrop_kernel(posterior[draw], tempered_logp[draw], likelihoods[draw], *parameters) for draw in tqdm(range(draws), disable=not progressbar) ] - posterior, acc_list = zip(*results) + posterior, acc_list, likelihoods = zip(*results) posterior = np.array(posterior) + likelihoods = np.array(likelihoods) acc_rate = sum(acc_list) / proposed stage += 1 diff --git a/pymc3/smc/smc_utils.py b/pymc3/smc/smc_utils.py index b45ad52b918..2a4f704da81 100644 --- a/pymc3/smc/smc_utils.py +++ b/pymc3/smc/smc_utils.py @@ -110,6 +110,7 @@ def _posterior_to_trace(posterior, variables, model, var_info): def metrop_kernel( q_old, old_tempered_logp, + old_likelihood, proposal, scaling, accepted, @@ -147,9 +148,10 @@ def metrop_kernel( q_old, accept = metrop_select(new_tempered_logp - old_tempered_logp, q_new, q_old) if accept: accepted += 1 + old_likelihood = ll old_tempered_logp = new_tempered_logp - return q_old, accepted + return q_old, accepted, old_likelihood def calc_beta(beta, likelihoods, threshold=0.5, psis=True):