diff --git a/docs/source/notebooks/model_averaging.ipynb b/docs/source/notebooks/model_averaging.ipynb
index c7bb6347c35..142565a59af 100644
--- a/docs/source/notebooks/model_averaging.ipynb
+++ b/docs/source/notebooks/model_averaging.ipynb
@@ -3,7 +3,22 @@
{
"cell_type": "code",
"execution_count": 2,
- "metadata": {},
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2020-11-29T12:13:02.933411Z",
+ "iopub.status.busy": "2020-11-29T12:13:02.932601Z",
+ "iopub.status.idle": "2020-11-29T12:13:07.788407Z",
+ "shell.execute_reply": "2020-11-29T12:13:07.787551Z"
+ },
+ "papermill": {
+ "duration": 4.910288,
+ "end_time": "2020-11-29T12:13:07.788552",
+ "exception": false,
+ "start_time": "2020-11-29T12:13:02.878264",
+ "status": "completed"
+ },
+ "tags": []
+ },
"outputs": [],
"source": [
"import arviz as az\n",
@@ -16,16 +31,41 @@
{
"cell_type": "code",
"execution_count": 3,
- "metadata": {},
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2020-11-29T12:13:07.892230Z",
+ "iopub.status.busy": "2020-11-29T12:13:07.891323Z",
+ "iopub.status.idle": "2020-11-29T12:13:07.894867Z",
+ "shell.execute_reply": "2020-11-29T12:13:07.894173Z"
+ },
+ "papermill": {
+ "duration": 0.058811,
+ "end_time": "2020-11-29T12:13:07.895012",
+ "exception": false,
+ "start_time": "2020-11-29T12:13:07.836201",
+ "status": "completed"
+ },
+ "tags": []
+ },
"outputs": [],
"source": [
- "%load_ext watermark\n",
+ "RANDOM_SEED = 8927\n",
+ "np.random.seed(RANDOM_SEED)\n",
"az.style.use(\"arviz-darkgrid\")"
]
},
{
"cell_type": "markdown",
- "metadata": {},
+ "metadata": {
+ "papermill": {
+ "duration": 0.068882,
+ "end_time": "2020-11-29T12:13:08.020372",
+ "exception": false,
+ "start_time": "2020-11-29T12:13:07.951490",
+ "status": "completed"
+ },
+ "tags": []
+ },
"source": [
"# Model averaging\n",
"\n",
@@ -53,7 +93,7 @@
"\n",
"The third approach implemented in PyMC3 is know as _stacking of predictive distributions_ and it has been recently [proposed](https://arxiv.org/abs/1704.02030). We want to combine several models in a metamodel in order to minimize the diverge between the meta-model and the _true_ generating model, when using a logarithmic scoring rule this is equivalently to:\n",
"\n",
- "$$\\max_{n} \\frac{1}{n} \\sum_{i=1}^{n}log\\sum_{k=1}^{K} w_k p(y_i|y_{-i}, M_k)$$\n",
+ "$$\\max_{w} \\frac{1}{n} \\sum_{i=1}^{n}log\\sum_{k=1}^{K} w_k p(y_i|y_{-i}, M_k)$$\n",
"\n",
"Where $n$ is the number of data points and $K$ the number of models. To enforce a solution we constrain $w$ to be $w_k \\ge 0$ and $\\sum_{k=1}^{K} w_k = 1$. \n",
"\n",
@@ -77,7 +117,22 @@
{
"cell_type": "code",
"execution_count": 4,
- "metadata": {},
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2020-11-29T12:13:08.144584Z",
+ "iopub.status.busy": "2020-11-29T12:13:08.143734Z",
+ "iopub.status.idle": "2020-11-29T12:13:09.195932Z",
+ "shell.execute_reply": "2020-11-29T12:13:09.195153Z"
+ },
+ "papermill": {
+ "duration": 1.114901,
+ "end_time": "2020-11-29T12:13:09.196103",
+ "exception": false,
+ "start_time": "2020-11-29T12:13:08.081202",
+ "status": "completed"
+ },
+ "tags": []
+ },
"outputs": [
{
"data": {
@@ -109,32 +164,32 @@
"
\n",
" 0 | \n",
" 0.49 | \n",
- " -0.123706 | \n",
- " -0.831353 | \n",
+ " -12.415882 | \n",
+ " -0.831486 | \n",
"
\n",
" \n",
- " 1 | \n",
+ " 5 | \n",
" 0.47 | \n",
- " -0.030706 | \n",
- " 0.158647 | \n",
+ " -3.035882 | \n",
+ " 0.158913 | \n",
"
\n",
" \n",
- " 2 | \n",
+ " 6 | \n",
" 0.56 | \n",
- " -0.030706 | \n",
- " 0.181647 | \n",
+ " -3.035882 | \n",
+ " 0.181513 | \n",
"
\n",
" \n",
- " 3 | \n",
+ " 7 | \n",
" 0.89 | \n",
- " 0.000294 | \n",
- " -0.579353 | \n",
+ " 0.064118 | \n",
+ " -0.579032 | \n",
"
\n",
" \n",
- " 4 | \n",
+ " 9 | \n",
" 0.92 | \n",
- " 0.012294 | \n",
- " -1.885353 | \n",
+ " 1.274118 | \n",
+ " -1.884978 | \n",
"
\n",
" \n",
"\n",
@@ -142,11 +197,11 @@
],
"text/plain": [
" kcal.per.g neocortex log_mass\n",
- "0 0.49 -0.123706 -0.831353\n",
- "1 0.47 -0.030706 0.158647\n",
- "2 0.56 -0.030706 0.181647\n",
- "3 0.89 0.000294 -0.579353\n",
- "4 0.92 0.012294 -1.885353"
+ "0 0.49 -12.415882 -0.831486\n",
+ "5 0.47 -3.035882 0.158913\n",
+ "6 0.56 -3.035882 0.181513\n",
+ "7 0.89 0.064118 -0.579032\n",
+ "9 0.92 1.274118 -1.884978"
]
},
"execution_count": 4,
@@ -155,14 +210,29 @@
}
],
"source": [
- "d = pd.read_csv(\"../data/milk.csv\")\n",
+ "d = pd.read_csv(\n",
+ " \"https://raw.githubusercontent.com/pymc-devs/resources/master/Rethinking_2/Data/milk.csv\",\n",
+ " sep=\";\",\n",
+ ")\n",
+ "d = d[[\"kcal.per.g\", \"neocortex.perc\", \"mass\"]].rename({\"neocortex.perc\": \"neocortex\"}, axis=1)\n",
+ "d[\"log_mass\"] = np.log(d[\"mass\"])\n",
+ "d = d[~d.isna().any(axis=1)].drop(\"mass\", axis=1)\n",
"d.iloc[:, 1:] = d.iloc[:, 1:] - d.iloc[:, 1:].mean()\n",
"d.head()"
]
},
{
"cell_type": "markdown",
- "metadata": {},
+ "metadata": {
+ "papermill": {
+ "duration": 0.048113,
+ "end_time": "2020-11-29T12:13:09.292526",
+ "exception": false,
+ "start_time": "2020-11-29T12:13:09.244413",
+ "status": "completed"
+ },
+ "tags": []
+ },
"source": [
"Now that we have the data we are going to build our first model using only the `neocortex`."
]
@@ -170,18 +240,23 @@
{
"cell_type": "code",
"execution_count": 5,
- "metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "Auto-assigning NUTS sampler...\n",
- "Initializing NUTS using jitter+adapt_diag...\n",
- "Multiprocess sampling (2 chains in 2 jobs)\n",
- "NUTS: [sigma, beta, alpha]\n"
- ]
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2020-11-29T12:13:09.398746Z",
+ "iopub.status.busy": "2020-11-29T12:13:09.397992Z",
+ "iopub.status.idle": "2020-11-29T12:14:25.302878Z",
+ "shell.execute_reply": "2020-11-29T12:14:25.302236Z"
},
+ "papermill": {
+ "duration": 75.962348,
+ "end_time": "2020-11-29T12:14:25.303027",
+ "exception": false,
+ "start_time": "2020-11-29T12:13:09.340679",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
{
"data": {
"text/html": [
@@ -199,7 +274,7 @@
" background: #F44336;\n",
" }\n",
" \n",
- " \n",
+ " \n",
" 100.00% [6000/6000 00:03<00:00 Sampling 2 chains, 0 divergences]\n",
" \n",
" "
@@ -210,13 +285,6 @@
},
"metadata": {},
"output_type": "display_data"
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "Sampling 2 chains for 1_000 tune and 2_000 draw iterations (2_000 + 4_000 draws total) took 4 seconds.\n"
- ]
}
],
"source": [
@@ -233,7 +301,16 @@
},
{
"cell_type": "markdown",
- "metadata": {},
+ "metadata": {
+ "papermill": {
+ "duration": 0.049578,
+ "end_time": "2020-11-29T12:14:25.401979",
+ "exception": false,
+ "start_time": "2020-11-29T12:14:25.352401",
+ "status": "completed"
+ },
+ "tags": []
+ },
"source": [
"The second model is exactly the same as the first one, except we now use the logarithm of the mass"
]
@@ -241,18 +318,23 @@
{
"cell_type": "code",
"execution_count": 6,
- "metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "Auto-assigning NUTS sampler...\n",
- "Initializing NUTS using jitter+adapt_diag...\n",
- "Multiprocess sampling (2 chains in 2 jobs)\n",
- "NUTS: [sigma, beta, alpha]\n"
- ]
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2020-11-29T12:14:25.555260Z",
+ "iopub.status.busy": "2020-11-29T12:14:25.539644Z",
+ "iopub.status.idle": "2020-11-29T12:14:34.447027Z",
+ "shell.execute_reply": "2020-11-29T12:14:34.446251Z"
},
+ "papermill": {
+ "duration": 8.996265,
+ "end_time": "2020-11-29T12:14:34.447153",
+ "exception": false,
+ "start_time": "2020-11-29T12:14:25.450888",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
{
"data": {
"text/html": [
@@ -270,8 +352,8 @@
" background: #F44336;\n",
" }\n",
" \n",
- " \n",
- " 100.00% [6000/6000 00:03<00:00 Sampling 2 chains, 0 divergences]\n",
+ " \n",
+ " 100.00% [6000/6000 00:04<00:00 Sampling 2 chains, 0 divergences]\n",
" \n",
" "
],
@@ -281,13 +363,6 @@
},
"metadata": {},
"output_type": "display_data"
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "Sampling 2 chains for 1_000 tune and 2_000 draw iterations (2_000 + 4_000 draws total) took 3 seconds.\n"
- ]
}
],
"source": [
@@ -305,7 +380,16 @@
},
{
"cell_type": "markdown",
- "metadata": {},
+ "metadata": {
+ "papermill": {
+ "duration": 0.049839,
+ "end_time": "2020-11-29T12:14:34.547268",
+ "exception": false,
+ "start_time": "2020-11-29T12:14:34.497429",
+ "status": "completed"
+ },
+ "tags": []
+ },
"source": [
"And finally the third model using the `neocortex` and `log_mass` variables"
]
@@ -313,18 +397,23 @@
{
"cell_type": "code",
"execution_count": 7,
- "metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "Auto-assigning NUTS sampler...\n",
- "Initializing NUTS using jitter+adapt_diag...\n",
- "Multiprocess sampling (2 chains in 2 jobs)\n",
- "NUTS: [sigma, beta, alpha]\n"
- ]
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2020-11-29T12:14:34.697854Z",
+ "iopub.status.busy": "2020-11-29T12:14:34.661734Z",
+ "iopub.status.idle": "2020-11-29T12:14:53.970926Z",
+ "shell.execute_reply": "2020-11-29T12:14:53.970230Z"
},
+ "papermill": {
+ "duration": 19.373847,
+ "end_time": "2020-11-29T12:14:53.971081",
+ "exception": false,
+ "start_time": "2020-11-29T12:14:34.597234",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
{
"data": {
"text/html": [
@@ -342,8 +431,8 @@
" background: #F44336;\n",
" }\n",
" \n",
- " \n",
- " 100.00% [6000/6000 00:03<00:00 Sampling 2 chains, 0 divergences]\n",
+ " \n",
+ " 100.00% [6000/6000 00:05<00:00 Sampling 2 chains, 0 divergences]\n",
" \n",
" "
],
@@ -353,13 +442,6 @@
},
"metadata": {},
"output_type": "display_data"
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "Sampling 2 chains for 1_000 tune and 2_000 draw iterations (2_000 + 4_000 draws total) took 4 seconds.\n"
- ]
}
],
"source": [
@@ -377,7 +459,16 @@
},
{
"cell_type": "markdown",
- "metadata": {},
+ "metadata": {
+ "papermill": {
+ "duration": 0.050236,
+ "end_time": "2020-11-29T12:14:54.072799",
+ "exception": false,
+ "start_time": "2020-11-29T12:14:54.022563",
+ "status": "completed"
+ },
+ "tags": []
+ },
"source": [
"Now that we have sampled the posterior for the 3 models, we are going to compare them visually. One option is to use the `forestplot` function that supports plotting more than one trace."
]
@@ -385,11 +476,26 @@
{
"cell_type": "code",
"execution_count": 8,
- "metadata": {},
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2020-11-29T12:14:54.180944Z",
+ "iopub.status.busy": "2020-11-29T12:14:54.180156Z",
+ "iopub.status.idle": "2020-11-29T12:14:55.089754Z",
+ "shell.execute_reply": "2020-11-29T12:14:55.090580Z"
+ },
+ "papermill": {
+ "duration": 0.967337,
+ "end_time": "2020-11-29T12:14:55.090748",
+ "exception": false,
+ "start_time": "2020-11-29T12:14:54.123411",
+ "status": "completed"
+ },
+ "tags": []
+ },
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/MAAAH/CAYAAAAboY3xAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAA9hAAAPYQGoP6dpAACjwklEQVR4nOzdeVyVZf4//hcCsotwZAk0NxRXFsXcEBHTGhUPSzrpDOKWyieXREdzzGrUxtARSsxSUcMlwoQjP8QdMwNRxMIMBcySTQVjk6NH1vP7gy9HTweQ1Zsjr+fjwYPhvq/7ut/XfY3Q+1zLrSGXy+UgIiIiIiIiIrXRQegAiIiIiIiIiKhxmMwTERERERERqRkm80RERERERERqhsk8ERERERERkZphMk9ERERERESkZpjMExEREREREakZJvNEREREREREaobJPBEREREREZGaYTJPREREREREpGaYzBMRERERERGpGSbzRERE1GgPHjzAf//7X0ycOBGDBw/G8OHDMW/ePPz444+Nque7776Dra0tbG1tsXbt2ibHc/v2baxYsQLOzs4YPHgwXn/9dQQEBODhw4e1lq+srMTnn3+OsWPHYtCgQXB3d8fp06frrD81NRUDBgxAQEBAk+K7fPmyop31yc7OVpTLzs5WOvf+++8rztV82dvbw9nZGdOnT8f69euRkJAAuVxeZ/3BwcGwtbWFj49Pk9pBRERtB5N5IiIiapS0tDR4eHggNDQU9+7dQ58+fWBsbIy4uDjMnz8fu3btalA9BQUF+N///tfseC5dugQvLy8cO3YMlZWV6NOnD/7880/s3bsXXl5e+PPPP1WuCQwMxI4dO1BSUoKePXvi999/x9KlSxEbG1vrPdavXw9TU1O8++67zY63uUQiEYYMGYIhQ4bA1tYWhoaGuHHjBg4dOoTZs2fDw8MDaWlpQodJREStjMk8ERERNVhFRQWWLl2KP//8E6+99hp++OEHREZG4vTp0/j6669hYGCAwMBAXLly5bl1/fe//8XDhw/h6ura5HikUimWL1+OJ0+ewMfHBxcuXEBkZCS+//57DBkyBFlZWSoj/gUFBThw4ACsra1x+vRpREdH4+uvv4aGhga2bdumco+jR4/i6tWr+Ne//gVDQ8Mmx9pSXFxcEBYWhrCwMBw+fBgnT55EUlISgoOD0bdvX6SmpuLvf/87bty4IXSoRETUipjMExERUYOdP38ed+7cQceOHfHpp5/C1NRUcW7kyJFYtGgR5HI5tm/fXm89Fy9eRHR0NP7+979j0KBBTY7n22+/RUFBAXr37o01a9ZAW1sbAGBiYoKtW7dCS0sL58+fR0pKiuKa9PR0lJaWwsvLC126dAEADBs2DEOHDkVqaiqkUqmirFQqxf/+9z8MHToUYrG4yXG2Nl1dXUycOBHfffcdRo4cCZlMhvfeew+VlZVCh0ZERK2EyTwRERE12E8//QQAGDx4MKytrVXOv/HGGwCAxMRE5Ofn11pHaWkpPv74Y4hEIvj7+zcrnjNnzgAAPD09oampqXTOysoKI0eOBACcOnVKcbygoABA9XT1Z5mZmQEAHj16pDi2fft2FBQUYN26dc2K80XR1dXFli1b0LFjR2RkZODkyZNCh0RERK2EyTwRERE1WM2GchYWFrWerzleVVWF69ev11pmx44dyMjIwKpVq9CpU6cmx1JRUaEYcR8yZEitZWqOX7t2TXHslVdeAQDcuXNHqewff/wBLS0tdO7cGUD1pnoHDx7E3//+d/Tv37/Jcb5oZmZmeP311wFUz6QgIqKXE5N5IiIiajAjIyMAQG5ubq3nnz3+xx9/qJy/ffs29uzZAycnJ3h4eDQrlpycHJSXlwMAunXrVmuZmuMZGRmKY/369YNIJMKRI0dw8eJFSKVShIaG4ubNm3BycoKOjg4AYMOGDTA0NMR7773XrDiFMHToUACo8wMVIiJSf1pCB0BERETqY/DgwQCAX3/9Fffu3VOMctd49vVuxcXFSufkcjk+/PBDyOVyfPTRR82O5dn6jY2Nay1TM/L/bFk9PT34+/tj7dq1mDNnjuK4vr4+3n//fQDAiRMnkJCQgA0bNijqLi8vR2FhITp37oyOHTs2Oe7nvZ6uJVhaWgJ4uqSAiIhePkzmiYiIqMHGjx8Pc3Nz5OXlYcWKFfjss89gbm4OoHpK91dffaUoW1paqnTtkSNHkJSUhLlz56Jv377NjqWsrEzxv2s2vvurmqT7r7G89dZbMDc3R2RkJAoKCtCjRw/Mnj0bvXr1gkwmw+bNmzFo0CC89dZbkMvl+Oyzz7B//348fvwY+vr68PHxwfLly6GhodHouOtaElDTpl9//bXRdf6Vvr4+AOX1/0RE9HJhMk9EREQNpqOjg6CgICxYsABXr17FuHHj0LNnTxQXFyMvLw9WVlbo378/rly5okgogafvlLe0tMTixYtbJJZnR8fLy8sV0+OfVZPw13bOxcUFLi4uKse/+uor3Lt3D5999hk6dOiAHTt24KuvvsK4cePwxhtv4PTp09i5cyf09PTg5+fX6LjDwsLqPJednY3x48c3us6/evz4MQC0iVfpERFR6+CaeSIiImoUJycnSCQSeHt7o0uXLoqN5N5++21EREQoXodW89o3ANiyZQuKioqwZs0aGBgYtEgcz06t/+uU/ho1G/bVNQ3/rzIzM7F37154enrC3t4e5eXl2LdvH7p3744dO3bA09MTX3zxBbp37459+/ahoqKi+Q1pBXfv3gUApVcHEhHRy4Uj80RERNRo3bt3x3//+1+V4xUVFUhNTQUADBw4UHH8xo0bAKo3lduwYYPSNTWjyMeOHVPsvh4fH//cGKytraGtrY3y8nJkZWUppvs/KysrSxFvQ3zyySfQ0dHBypUrAQC///47Hj58iClTpqBDh+oxkA4dOmD06NH45ptv8Mcff6BPnz4NqvtFunr1KgDAzs5O4EiIiKi1MJknIiKiFhMXF4fHjx/D3NxcKZmv8eeff9Z57ZMnT/DkyZMG30tLSwsDBgzAtWvX8NNPPyl2cH/WTz/9BACwt7d/bn3ff/89zp8/j7Vr1yreQV/zQcNfZxPU/Fwz8t+W5OXl4dy5cwCAsWPHChwNERG1Fk6zJyIiohZRVlaGbdu2AQBmzJgBTU1NxbmoqCikpaXV+lWzhv6tt95SHGuoCRMmAAAkEolien+Nu3fvIiEhAQAwceLE58b+3//+F3379sXMmTMVx2t268/MzFQqX/OziYlJg2N9EZ48eYJVq1ahrKwMPXr0wBtvvCF0SERE1EqYzBMREVGj/PDDD7h27ZrSsXv37uHdd99FSkoKbGxsMH/+/Ba738mTJ+Hm5oYZM2aonJsxYwZMTExw+/ZtbNq0SfHe+cLCQqxYsQIVFRVwcXHBoEGD6r3H7t27kZmZiXXr1kFL6+nERQsLC7zyyiv4/vvvFcsH0tLS8P3338PMzAw9evRosXY2x5MnT3DmzBlMmzYNCQkJ0NfXx+eff670gQoREb1cOM2eiIiIGiUuLg779++HsbExrK2tUVpait9//x1yuRw2NjbYu3dvs97D/lePHz9GTk5OrecMDQ0RFBSEhQsX4sCBA4iJicErr7yC33//HTKZDNbW1rWu7X/W3bt3sXv3bkyePBmvvfaa0jkNDQ0sXrwYa9euxVtvvYWePXvizp07KCsrw7vvvqtYR/8iXbhwQfHBRlVVFYqLi5Gdna34IKN///7YvHlzi7z+j4iI2i4m80RERNQor7/+Oh48eIBffvkFt2/fRseOHTF48GBMmjQJ//jHP1o0kW+IkSNHIiIiAl9++SUuXbqE9PR0WFhYYMKECfDz83vuTvaffvopNDQ0sHr16lrPv/XWWygtLUVoaCj++OMPWFlZYc6cObXOFHgR8vPzkZ+fD6D6lXtGRkYYMGAABg0ahAkTJmDkyJGCxEVERC+WhlwulwsdBBERERERERE1HNfMExEREREREakZJvNEREREREREaobJPBEREREREZGaYTJPREREREREpGaYzBMRERERERGpGSbzRERERERERGqGyTwRERERERGRmtESOgCiuhQWFgodQoMYGxujuLhY6DDaNfaBsPj8hcc+EB77QFh8/sJjHwiLz194Ld0HJiYmzy3DkXmiZurQgf+MhMY+EBafv/DYB8JjHwiLz1947ANh8fkLT4g+YK8TERERERERqRkm80RERERERERqhsk8ERERERERkZphMk9ERERERESkZpjMExEREREREakZJvNEREREREREaobJPBEREREREZGaYTJPREREREREpGaYzBMRERERERGpGSbzRERERERERGqGyTwRERERERGRmmEyT0RERERERKRmmMwTERERERERqRkm80RERERERERqhsk8ERERERERkZphMk9ERERERESkZpjMExEREREREakZJvNEREREREREaobJPBEREREREZGa0RI6ACIiIlJPf9yRIycHsLYGevbQEDocIiKidoXJPBERET1XYZFc8b+LH8rxv61A8rWn5x3s5Vi5AjDuVJ3Um3Rmck9ERNSaXupp9pGRkbC1tUVkZGSz6rG1tYWPj08LRfXiBQcHw9bWFpcvX25WPT4+PrC1tW2hqIiISEgymbxRX+4eT79mzQZu/w6s/1gDUREaWP+xBm7/DsyaDUWZxtRNREREjdeiI/PZ2dkYP348AMDc3Bznz5+HpqamSrm0tDRMnToVANCzZ0+cPHmyJcNoE6KjoxEaGorffvsN2tracHBwwNKlSzF48GChQyMiIsKEvzU9ia6qAv61QgNurtWj726ugFwOfPSfp3U2pv648xzFJyIiaqxWGZnX0tJCXl4e4uLiaj1/5MgRaGm9vDP8v/rqK6xcuRL5+fl4++238be//Q0//fQTZsyY0ezRcSIiorbA/i+fTTvYCRMHERFRe9UqGbWjoyNSU1MRERGBsWPHKp0rKytDdHQ0XFxccO7cuda4vaDu3LmD4OBg9OjRA0eOHIGRkRGA6inq06ZNwwcffIATJ0681B9mEBFR23fmRONGw/860n7tevWIfI3kX5pXPxERETVOq2SUOjo6mDRpEiIjI1FQUABTU1PFuXPnzqGwsBDe3t51JvMymQwhISGIiYlBTk4O9PT04ODggEWLFmHIkCEq5YuKihAYGIizZ8/i0aNHsLGxwaJFi+qNMTU1FTt37sSVK1dQVFQEMzMzuLm5YfHixTAxMWly2yMjI1FRUQE/Pz9FIg8Affr0gVgsxrfffotLly7B2dm5yffIzc1FeHg44uLikJWVhZKSEpibm8PFxQVLliyBSCR6bh01SyI8PT0xd+5cbN68GT///DPkcjlee+01rFy5EjY2NrVeW1FRgZ07dyIiIgJ5eXmwtrbGrFmz8I9//KPF4yQiotahp9e4ZDv66NP/ve4jOQI/k0Murx6RT/4FCPpcDgd7YMN/NJpUPxERETVOq22A5+3tjfLyckRHRysdj4iIgEgkgqura63XlZWVYfbs2di+fTv09fXh6+uL8ePHIzExET4+Pjh9+rRSeZlMBh8fH4SHh+PVV1/FrFmz0LNnTyxfvhynTp2q9R6xsbGYNm0avv/+e7z22muYNWsW+vbti4MHD+Ltt99GcXFxk9udmJgIABg9erTKuTFjxgAArly5onT8/fffb9RGfUlJSdi3bx9EIhEmT54MHx8fdOvWDWFhYfj73/+OkpKSBseblZWFGTNmoLKyEjNnzoSzszN++OEHzJgxA7dv3671Gn9/f3z33XdwdnbGW2+9haKiIqxfvx6HDx9utTiJiEhYJp01FF8b/6OBPjbVa+TF3nJ89B85+tgAG//ztAwRERG1rlab621vb48+ffogIiICvr6+AKpHauPj4+Hr61vnNPPdu3cjOTkZ7u7u2LJlCzQ0qv+DwNfXVzFNfdSoUTA0NAQAhISEID09HdOnT8eGDRsU9Xh4eGDevHkq9RcWFmLVqlUwNTVFWFgYrKysFOeOHTuGFStWYNu2bVi3bl2T2n3nzh3o6+vDzMxM5Vz37t0VZZpjxIgRiIuLg4GBgdLxo0ePYvXq1Th48CD8/PwaVFdSUhL8/Pzw3nvvqdSzfv16hIaGqlxz//59HDt2TNEHs2bNgru7O/bu3Yvp06e3SpxERNR2dO6sgaD/afA980RERAJq1VfTeXl5IS0tDb/++iuA6inolZWV8Pb2rvMaiUQCbW1trFy5UpHIA0C/fv3g6emJ4uJixMbGKo4fPXoU2traWLp0qVI9zs7OGDlypEr9UVFRkEql8Pf3V0rkAWDKlCkYOHAgYmJimtReAJBKpUrT659Vk/xKpVKl4/7+/jh+/DgmTJjQoHuIRCKVBBkAxGIxDA0NcfHixQbHa2xsjAULFqjU07dvX1y6dAn37t1Tucbf31/RFgDo1asXhgwZgj/++EOpbS0ZJxERERERET3VqruwicViBAYGIiIiAoMGDYJEIoG9vX2da7GlUimysrLQu3dvWFpaqpwfPnw4wsPDkZqaCrFYDKlUiuzsbNjY2NQ6Eu7k5ISEhASlY8nJyQCAa9euITMzU+Wa0tJSFBYWqqz1b03m5uYwNzdv1DWnT59GeHg4UlJS8PDhQ1RWVirO5eXlNbie/v37Q19fX+mYhoYGhgwZgvT0dKSmpuKVV15ROj9w4ECVeiwsLAAAJSUlSol+S8VJRETCKix6ugFe8UM5/rcVSL729LyDvRwrVwDGnao/iOdUeyIiotbVqsm8SCSCi4sLYmJi4ObmhoyMDMydO7fO8jWjunVtjNalSxcAUKy1rilfV9JdWz016+EPHTpUb+wymaze83UxNDSscy14TbzPJrtNsXfvXgQEBMDU1BSjR4+GpaUldHV1AQChoaEoLy9vcF0NfdbPqm3mQc2yiWeT9ZaMk4iIWp5M1vB3wbt7PC3boQNgYACs/1gD9oOrd7bfslWOWbOBqqrqcmdONC4WbphHRETUOK3+fjRvb2/ExsZi7dq10NXVxZQpU+osW5Pk5ufn13q+5nhNuZrvBQUF9Zav7R7R0dHo27dvA1vRcD169MDPP/+MBw8eqMwWyMjIUJRpqoqKCuzYsQPm5uaIiopS+iBDLpcjJCSkUfXV9az//PNPALUn7kLESURELe+vr5trqKoq4F8rNODmWp2Au7kCcnn1hnhNrTvuPJN5IiKixmjVNfMAMHbsWJiZmSE3NxcTJ06sd1Ta0NAQ3bp1Q2ZmJnJzc1XO1+wU369fP0X5rl27IiMjAw8ePFApn5SUpHLMzs4OwNPp9i1t2LBhAID4+HiVcz/++KNSmaYoLCxESUkJHBwcVGYkXL9+HU+ePGlUfTdv3sTjx49Vjv/0008Anj5roeMkIqK2xX6w8s8OdsLEQURE1F61+si8lpYWduzYgby8PAwYMOC55T08PBAcHIytW7ciICBAsQleeno6IiMjYWRkhNdff11RXiwW44svvsC2bduUdrOPi4tTWS8PVM8U+PLLLxEUFARHR0f06dNH6bxMJkNaWhocHBya1F4vLy/s3bsXX375JcaPH68Y2b516xaioqLw6quvYsSIEUrX5OXlKd7B/ryRcJFIBF1dXaSkpEAmk0FPTw9A9fKBjRs3Njre4uJi7Nq1S2U3+/T0dIwYMUJlvXxDtXScRETU8s6caPho+F9H2q9drx6Rr5H8S9PrJiIiosZr9WQeeDoa3hDvvPMOfvjhB0RFReH27dsYOXIkCgoKcOLECVRUVCAgIEBpdH/+/Pk4c+YMDh8+jFu3bmHYsGG4d+8eTp48CVdXV5w/f16pflNTUwQGBmLZsmUQi8UYM2YMevXqhdLSUty9exeJiYlwdHTEnj17mtTWnj17YvHixfjss88wdepUvPHGG3j8+DFiYmJQUVGBDRs2qLyWLzAwEBKJBJs2bYKXl1e99Xfo0AEzZ87E3r17IRaLMW7cOEilUly4cAHW1taN3kjPyckJBw4cwLVr1zB48GDcuXMHZ86cgZGRET788MNGt7+14iQiopbXmHXq0Uef/u91H8kR+Jkccnn1iHzyL0DQ53I42AMb/qPR6LqJiIio8V5IMt8YOjo6CA0Nxe7du3H8+HF8/fXX0NPTg5OTExYuXAgnJyel8vr6+jhw4AACAwNx5swZ3LhxAzY2NggKCkJJSYlKMg8Arq6ukEgk2LNnDxISEhAfHw99fX1YWFjAy8sLU6dObVYb/Pz8YG1tjdDQUISFhUFbWxuOjo5YunRpoz7YqIu/vz+MjY0hkUjwzTffoEuXLpg8eTKWLFkCd3f3RtXVrVs3fPjhh9iyZQsOHjwIuVwOFxcXrFy5Er17924zcRIRkbCe3Z1+43+A/2yUK62RH+YEfPSBBjpzF3siIqIXQkMulzdt9xtSa9nZ2Rg/fjw8PT3x6aefCh1OrQoLC4UOoUFMTEzUJtaXFftAWHz+whOqD/64I0dODmBtDfTs0b6TeP47EBafv/DYB8Li8xdeS/eBiYnJc8u0uZF5IiIiUg89e2igZw+hoyAiImqfWn03eyIiIiIiIiJqWUzmiYiIiIiIiNQMp9m3U127dkVaWprQYRAREREREVETcGSeiIiIiIiISM0wmSciIiIiIiJSM0zmiYiIiIiIiNQMk3kiIiIiIiIiNcNknoiIiIiIiEjNMJknIiIiIiIiUjNM5omIiIiIiIjUDJN5IiIiIiIiIjWjJXQAREREpH408n9Dh6JMVHV+FXKRjdDhEBERtTtM5omIiOj5HhdUf5cVQffsR9DKSVKcqrB2wpPX/wPoda4+oG/64uMjIiJqZ17qafaRkZGwtbVFZGRks+qxtbWFj49PC0X14gUHB8PW1haXL19uVj0+Pj6wtbVtoaiIiEhQ5Y8b9WX41WgYfjUaBvvdofnnLcimBOHRwguQTQmC5p/pMNjvrijTqLqJiIioSVp0ZD47Oxvjx48HAJibm+P8+fPQ1NRUKZeWloapU6cCAHr27ImTJ0+2ZBiCkslkCAsLQ0pKClJSUnDnzh3I5XLExsaia9euQodHREQEADAMHtqk6zTkVZBN+BiVfd8EAFT2fROlcjl0Y/ybVLfU/2aT4iAiImrvWmVkXktLC3l5eYiLi6v1/JEjR6Cl9XLO8M/Pz0dAQACOHTuGsrIyGBsbCx0SERFRi6qyVk7WK7s6CRQJERFR+9UqGbWjoyNSU1MRERGBsWPHKp0rKytDdHQ0XFxccO7cuda4vaBMTEywd+9eDBw4EJ07d8a8efPq/FCDiIhIKNIlVxtV/tnR9g45VxUj8wCgmZ2kVLaxdRMREVHjtUoyr6Ojg0mTJiEyMhIFBQUwNX26Ec65c+dQWFgIb2/vOpN5mUyGkJAQxMTEICcnB3p6enBwcMCiRYswZMgQlfJFRUUIDAzE2bNn8ejRI9jY2GDRokX1xpiamoqdO3fiypUrKCoqgpmZGdzc3LB48WKYmJg0ue0GBgYYPXp0k69viNzcXISHhyMuLg5ZWVkoKSmBubk5XFxcsGTJEohEoufWUbMkwtPTE3PnzsXmzZvx888/Qy6X47XXXsPKlSthY1P77sQVFRXYuXMnIiIikJeXB2tra8yaNQv/+Mc/WjxOIiJqJdr6jSouXRQPANCNXgad2A0ok8tR2dUJmtlJ6HhuIyq6DsOTKZ81qW4iIiJqvFbbAM/b2xvl5eWIjo5WOh4REQGRSARXV9darysrK8Ps2bOxfft26Ovrw9fXF+PHj0diYiJ8fHxw+vRppfIymQw+Pj4IDw/Hq6++ilmzZqFnz55Yvnw5Tp06Ves9YmNjMW3aNHz//fd47bXXMGvWLPTt2xcHDx7E22+/jeLi4hZ5Bg31/vvvN2qjvqSkJOzbtw8ikQiTJ0+Gj48PunXrhrCwMPz9739HSUlJg++dlZWFGTNmoLKyEjNnzoSzszN++OEHzJgxA7dv3671Gn9/f3z33XdwdnbGW2+9haKiIqxfvx6HDx9utTiJiEhg+qaAvimeTN2GKvN+0I3xh8FOF+jG+KPKvB+euH+uKENEREStr9UWrtvb26NPnz6IiIiAr68vgOqR2vj4ePj6+ta5Zn737t1ITk6Gu7s7tmzZAg0NDQCAr68vpk2bhg8++ACjRo2CoaEhACAkJATp6emYPn06NmzYoKjHw8MD8+bNU6m/sLAQq1atgqmpKcLCwmBlZaU4d+zYMaxYsQLbtm3DunXrWuxZtLQRI0YgLi4OBgYGSsePHj2K1atX4+DBg/Dz82tQXUlJSfDz88N7772nUs/69esRGhqqcs39+/dx7NgxRR/MmjUL7u7u2Lt3L6ZPn94qcRIRURuhZ4In3nv4nnkiIiKBteqr6by8vJCWloZff/0VQPWr4iorK+Ht7V3nNRKJBNra2li5cqUikQeAfv36wdPTE8XFxYiNjVUcP3r0KLS1tbF06VKlepydnTFy5EiV+qOioiCVSuHv76+UyAPAlClTMHDgQMTExDSpvU3l7++P48ePY8KECQ0qLxKJVBJkABCLxTA0NMTFixcbfG9jY2MsWLBApZ6+ffvi0qVLuHfvXq3x1iTyANCrVy8MGTIEf/zxB6RSaavESURERERERE+16pbyYrEYgYGBiIiIwKBBgyCRSGBvb1/nWmypVIqsrCz07t0blpaWKueHDx+O8PBwpKamQiwWQyqVIjs7GzY2NjAzM1Mp7+TkhISEBKVjycnJAIBr164hMzNT5ZrS0lIUFhaqrPVvTebm5jA3N2/UNadPn0Z4eDhSUlLw8OFDVFZWKs7l5eU1uJ7+/ftDX195baOGhgaGDBmC9PR0pKam4pVXXlE6P3DgQJV6LCwsAAAlJSVKiX5LxUlERAJ7XFD9XVYE3bMfQSvn6aZ3FdZOePL6fwC9ztUHONWeiIio1bVqMi8SieDi4oKYmBi4ubkhIyMDc+fOrbN8zahuXRujdenSBQAUa61ryteVdNdWT816+EOHDtUbu0wmq/e8kPbu3YuAgACYmppi9OjRsLS0hK6uLgAgNDQU5eXlDa6roc/6WUZGRirHapZNPJust2ScRETUwsofN6q44VfVm7vKNToAHY0gmxKEKuuh6JBzFbpnPoLBfndoyKsANHA3e26SR0RE1Cyt/rJ3b29vxMbGYu3atdDV1cWUKVPqLFszopufn1/r+ZrjNeVqvhcUFNRbvrZ7REdHo2/fvg1sRdtRUVGBHTt2wNzcHFFRUUofZMjlcoSEhDSqvrqe9Z9//gmg9sRdiDiJiKhlPfuqucbQkFdBNuFjxavpKvu+iVK5HLox/o2qW+p/s0n3JyIiomqtumYeAMaOHQszMzPk5uZi4sSJSlOw/8rQ0BDdunVDZmYmcnNzVc4nJiYCqF4/X1O+a9euyMjIwIMHD1TKJyUlqRyzs7MD8HS6vbopLCxESUkJHBwcVGYkXL9+HU+ePGlUfTdv3sTjx6qjMz/99BOAp89a6DiJiKjtqLJWTtYruzoJFAkREVH71eoj81paWtixYwfy8vIwYMCA55b38PBAcHAwtm7dioCAAMUmeOnp6YiMjISRkRFef/11RXmxWIwvvvgC27ZtU9rNPi4uTmW9PFA9U+DLL79EUFAQHB0d0adPH6XzMpkMaWlpcHBwaGKLGy8vL0/xDvbnjYSLRCLo6uoiJSUFMpkMenp6AKqXD2zcuLHR9y4uLsauXbtUdrNPT0/HiBEjVNbLN1RLx0lERC2rQVPhn/HsaHuHnKuKkXkA0MxW/vC8sXUTERFR47V6Mg88HQ1viHfeeQc//PADoqKicPv2bYwcORIFBQU4ceIEKioqEBAQoDS6P3/+fJw5cwaHDx/GrVu3MGzYMNy7dw8nT56Eq6srzp8/r1S/qakpAgMDsWzZMojFYowZMwa9evVCaWkp7t69i8TERDg6OmLPnj1Nbm9AQAAKCwsBVH8IAQCbN29WbDT3zjvvoHfv3orygYGBkEgk2LRpE7y8vOqtu0OHDpg5cyb27t0LsViMcePGQSqV4sKFC7C2tm70RnpOTk44cOAArl27hsGDB+POnTs4c+YMjIyM8OGHHzaqrtaMk4iIWlgj16xLF8UDAHSjl0EndgPK5HJUdnWCZnYSOp7biIquw/BkymdNqpuIiIga74Uk842ho6OD0NBQ7N69G8ePH8fXX38NPT09ODk5YeHChXByUp7Kp6+vjwMHDiAwMBBnzpzBjRs3YGNjg6CgIJSUlKgk8wDg6uoKiUSCPXv2ICEhAfHx8dDX14eFhQW8vLwwderUZrXh1KlTyMnJUTlWw9PTUymZbyx/f38YGxtDIpHgm2++QZcuXTB58mQsWbIE7u7ujaqrW7du+PDDD7FlyxYcPHgQcrkcLi4uWLlyZbNibOk4iYhIYP9vh/onU7dB9/hKpTXyFd1H4cmk/wF6JkJFR0RE1O5oyOVyudBB0IuXnZ2N8ePHw9PTE59++qnQ4dSqZnZDW2diYqI2sb6s2AfC4vMXnhB9oJH/GzoUZaKq86uQi2p/5Wx7wn8HwuLzFx77QFh8/sJr6T4wMXn+B+RtbmSeiIiI2j65yAaVTOKJiIgE0+q72RMRERERERFRy2IyT0RERERERKRmOM2+neratSvS0tKEDoOIiIiIiIiagCPzRERERERERGqGyTwRERERERGRmmEyT0RERERERKRmmMwTERERERERqRkm80RERERERERqhsk8ERERERERkZphMk9ERERERESkZpjMExEREREREakZLaEDICIiIvWTUZiGnJI7sDbqge4mtkKHQ0RE1O4wmSciIqIGKZL9iYelhfgs/l/4JfeS4ridxQi8N3oLOumYoLNeFwEjJCIiaj9e6mn2kZGRsLW1RWRkZLPqsbW1hY+PTwtF9eIFBwfD1tYWly9fblY9Pj4+sLXl6AsR0ctEVv6owV9vhQ3CfMlY/FGYinXjduHw279g3bhd+KMwFfMlY/FW2KDn1kFEREQto0VH5rOzszF+/HgAgLm5Oc6fPw9NTU2VcmlpaZg6dSoAoGfPnjh58mRLhiGomzdv4tSpU7h48SKysrJQUlICCwsLjBkzBn5+frCwsBA6RCIiIgX3A70bVb5KXoX3Rm/G2J7Vf8fH9pwKuVyOjecXNqi+s3PvNy1QIiIiUtIqI/NaWlrIy8tDXFxcreePHDkCLa2Xc4b/Rx99hK+++gpyuRyTJ0+Gj48PLC0tERYWBrFYjNu3bwsdIhERUbMMthih9LOd5UiBIiEiImq/WiWjdnR0RGpqKiIiIjB27Filc2VlZYiOjoaLiwvOnTvXGrcX1NSpU/G///0Pr776qtLxXbt2YevWrQgICMCuXbsEio6IiEhZtE/DP2SuGXW/nntJMTIPAL/cT2hSfURERNR0rZLM6+joYNKkSYiMjERBQQFMTU0V586dO4fCwkJ4e3vXmczLZDKEhIQgJiYGOTk50NPTg4ODAxYtWoQhQ4aolC8qKkJgYCDOnj2LR48ewcbGBosWLao3xtTUVOzcuRNXrlxBUVERzMzM4ObmhsWLF8PExKTJbf/nP/9Z6/F58+Zhx44duHLlSpPrrpGbm4vw8HDExcUppvKbm5vDxcUFS5YsgUgkem4dNUsiPD09MXfuXGzevBk///wz5HI5XnvtNaxcuRI2Nja1XltRUYGdO3ciIiICeXl5sLa2xqxZs/CPf/yjxeMkIqLWpadt0OCyR2b8ivXn5mNbwhrI5XLYWY7EL/cTEHzp37CzHIkPx+1uVH1ERETUdK22AZ63tzfKy8sRHR2tdDwiIgIikQiurq61XldWVobZs2dj+/bt0NfXh6+vL8aPH4/ExET4+Pjg9OnTSuVlMhl8fHwQHh6OV199FbNmzULPnj2xfPlynDp1qtZ7xMbGYtq0afj+++/x2muvYdasWejbty8OHjyIt99+G8XFxS3yDJ6loaGBDh061LqHwPvvv9+ojfqSkpKwb98+iEQixVT+bt26ISwsDH//+99RUlLS4LiysrIwY8YMVFZWYubMmXB2dsYPP/yAGTNm1LkkwN/fH9999x2cnZ3x1ltvoaioCOvXr8fhw4dbLU4iIhJeZ70u+Gj8HtiYDsLG8wsx/Vs7bDy/EDamg/CRWwh3siciInqBWm3hur29Pfr06YOIiAj4+voCqB6pjY+Ph6+vb51r5nfv3o3k5GS4u7tjy5Yt0NDQAAD4+vpi2rRp+OCDDzBq1CgYGhoCAEJCQpCeno7p06djw4YNino8PDwwb948lfoLCwuxatUqmJqaIiwsDFZWVopzx44dw4oVK7Bt2zasW7euxZ4FAJw8eRKPHj3Cm2++2ey6RowYgbi4OBgYKI9+HD16FKtXr8bBgwfh5+fXoLqSkpLg5+eH9957T6We9evXIzQ0VOWa+/fv49ixY4o+mDVrFtzd3bF3715Mnz69VeIkIqK2wVhXhIA3w/meeSIiIoG16qvpvLy8kJaWhl9//RVA9aviKisr4e3tXec1EokE2traWLlypSKRB4B+/frB09MTxcXFiI2NVRw/evQotLW1sXTpUqV6nJ2dMXKk6oY8UVFRkEql8Pf3V0rkAWDKlCkYOHAgYmJimtTeuty7dw+ffPIJdHV1sWzZMpXz/v7+OH78OCZMmNCg+kQikUqCDABisRiGhoa4ePFig2MzNjbGggULVOrp27cvLl26hHv37tUab00iDwC9evXCkCFD8Mcff0AqlbZKnERERERERPRUq24pLxaLERgYiIiICAwaNAgSiQT29vZ1rsWWSqXIyspC7969YWlpqXJ++PDhCA8PR2pqKsRiMaRSKbKzs2FjYwMzMzOV8k5OTkhISFA6lpycDAC4du0aMjMzVa4pLS1FYWGhylr/pioqKsKCBQuQn5+PgIAA9OrVS6WMubk5zM3NG1Xv6dOnER4ejpSUFDx8+BCVlZWKc3l5eQ2up3///tDX11c6pqGhgSFDhiA9PR2pqal45ZVXlM4PHDhQpZ6aV+6VlJQoJfotFScREQmvSPYnHpYW4rP4f+GX3EuK43YWI/De6C3opGPCqfZEREQvSKsm8yKRCC4uLoiJiYGbmxsyMjIwd+7cOsvXjOrWtTFaly7V/4FQs9a6pnxdSXdt9dSshz906FC9sctksnrPN0RxcTHmzJmDW7du4eOPP4ZYLG52nQCwd+9eBAQEwNTUFKNHj4alpSV0dXUBAKGhoSgvL29wXQ191s8yMjJSOVazbOLZZL0l4yQiotYlK3/03DJvhQ1CB40OMNDuhHXjdmGwxQhcz72Ez+JXYb5kLKrkVQ3ezZ4b5RERETVPq7/s3dvbG7GxsVi7di10dXUxZcqUOsvWjOjm5+fXer7meE25mu8FBQX1lq/tHtHR0ejbt28DW9F4RUVFmDNnDm7cuIEPP/wQb7/9dovUW1FRgR07dsDc3BxRUVFKH2TI5XKEhIQ0qr66nvWff/4JoPbEXYg4iYioddW8du55quRVeG/0ZsWr6cb2nAq5XI6N5xc2qp6zc+83LVAiIiIC0Mpr5gFg7NixMDMzQ25uLiZOnKg0BfuvDA0N0a1bN2RmZiI3N1flfGJiIoDq9fM15bt27YqMjAw8ePBApXxSUpLKMTs7OwBPp9u3hmcT+XXr1qm8sq05CgsLUVJSAgcHB5UZCdevX8eTJ08aVd/Nmzfx+PFjleM//fQTgKfPWug4iYio7RhsMULpZztL1T1qiIiIqHW1+si8lpYWduzYgby8PAwYMOC55T08PBAcHIytW7ciICBAsQleeno6IiMjYWRkhNdff11RXiwW44svvsC2bduUdrOPi4tTWS8PVM8U+PLLLxEUFARHR0f06dNH6bxMJkNaWhocHBya1N6ioiLMnj0bN2/exNq1a+t87/yz8vLyFO9gf95IuEgkgq6uLlJSUiCTyaCnpwegekr/xo0bGx1vcXExdu3apbKbfXp6OkaMGKGyXr6hWjpOIiJqXQ2ZHl8z6n4995JiZB4Afrn/9O9tQ6fZExERUfO0ejIPPB0Nb4h33nkHP/zwA6KionD79m2MHDkSBQUFOHHiBCoqKhAQEKA0uj9//nycOXMGhw8fxq1btzBs2DDcu3cPJ0+ehKurK86fP69Uv6mpKQIDA7Fs2TKIxWKMGTMGvXr1QmlpKe7evYvExEQ4Ojpiz549TWrrkiVLcPPmTfTq1QvFxcUIDg5WKePr64tOnTopfg4MDIREIsGmTZvg5eVVb/0dOnTAzJkzsXfvXojFYowbNw5SqRQXLlyAtbV1ozfSc3JywoEDB3Dt2jUMHjwYd+7cwZkzZ2BkZIQPP/ywUXW1ZpxERNS6GrKG/ciMX7H+3HxsS1gDuVwOO8uR+OV+AoIv/Rt2liPx4bjdXAtPRET0gryQZL4xdHR0EBoait27d+P48eP4+uuvoaenBycnJyxcuBBOTk5K5fX19XHgwAEEBgbizJkzuHHjBmxsbBAUFISSkhKVZB4AXF1dIZFIsGfPHiQkJCA+Ph76+vqwsLCAl5cXpk6dqnJNQ+Xk5AAAfv/9d2zfvr3WMp6enkrJfGP5+/vD2NgYEokE33zzDbp06YLJkydjyZIlcHd3b1Rd3bp1w4cffogtW7bg4MGDkMvlcHFxwcqVK9G7d8PWPb6IOImISHid9brgo/F78N/z/6dYIw8AQ63G4t+uO2CsW/umqkRERNTyNORyuVzoIOjFy87Oxvjx4+Hp6YlPP/1U6HBqVVhYKHQIDWJiYqI2sb6s2AfC4vMXnhB9kFGYhpySO7A26oHuJrYv9N5tEf8dCIvPX3jsA2Hx+QuvpfvAxMTkuWXa3Mg8ERERtX3dTWyZxBMREQmo1XezJyIiIiIiIqKWxWSeiIiIiIiISM1wmn071bVrV6SlpQkdBhERERERETUBR+aJiIiIiIiI1AyTeSIiIiIiIiI1w2SeiIiIiIiISM0wmSciIiIiIiJSM0zmiYiIiIiIiNQMk3kiIiIiIiIiNcNknoiIiIiIiEjNMJknIiIiIiIiUjNM5omIiIiIiIjUDJN5IiIiIiIiIjXDZJ6IiIiIiIhIzTCZJyIiIiIiIlIzTOaJiIiIiIiI1AyTeSIiIiIiIiI1w2SeiIiIiIiISM0wmSciIiIiIiJSM1pCB0BUl8rKSlRVVQkdxnOVl5ejvLxc6DDaNfaBsPj8hcc+EB77QFh8/sJjHwiLz194QvQBk3lqs3JyclBWViZ0GM9VVFSE4uJiocNo19gHwuLzFx77QHjsA2Hx+QuPfSAsPn/htXQfmJubP7cMk3lqs8rKyqCpqQlNTU2hQ6mXjo4OOnbsKHQY7Rr7QFh8/sJjHwiPfSAsPn/hsQ+ExecvvJbsg8rKygaVYzJPbZqmpia0tbWFDqNe2trabT7Glx37QFh8/sJjHwiPfSAsPn/hsQ+ExecvPCH6gBvgEREREREREakZJvNEREREREREaobJPBEREREREZGaYTJPREREREREpGaYzBMRERERERGpGSbzRERERERERGqGyTwRERERERGRmmEyT0RERERERKRmmMwTERERERERqRkm80RERERERERqhsk8ERERERERkZphMk9ERERERESkZpjMExEREREREakZJvNEREREREREaobJPBEREREREZGaYTJPREREREREpGaYzBMRERERERGpGSbzRERERERERGpGS+gAiIiIqH5Z2Zq4f18LlpYV6Na1UuhwiIiIqA1gMk9ERACA4ocaglxLdSuRamB3iDFu3OyoODagfxnemV8MI0O5Uln2gfAa2gfGneTPL0RERPQcTOYBREZGYs2aNdi0aRO8vLyaXI+trS1ee+01HDhwoAWja7rg4GBs374d+/fvx/Dhw4UOp9168kToCF5+sid8zi1h/kLzZlzdnGupLh06AAYGwPqPNWA/GLh2HdiytSNW/MsMVVV/Lc0+EF7D+uDAvtxWjqP94d8B4QnRB7q6L/Z+RG2NIMl8dnY2xo8fDwAwNzfH+fPnoampqVIuLS0NU6dOBQD07NkTJ0+efKFxvgjR0dEIDQ3Fb7/9Bm1tbTg4OGDp0qUYPHiw0KE9V00/enp64tNPPxU6nDbLZ46F0CG0E3zO9PKpqgL+tUIDbq7VI75uroBcDnz0H47sqjP+XWgtfK7Ce7F98F0YPxij9k3QDfC0tLSQl5eHuLi4Ws8fOXIEWlov7+SBr776CitXrkR+fj7efvtt/O1vf8NPP/2EGTNm4PLly0KHR0REbYD9Xz7bdbATJg4iIiJqWwTNlB0dHZGamoqIiAiMHTtW6VxZWRmio6Ph4uKCc+fOCRRh67lz5w6Cg4PRo0cPHDlyBEZGRgAAHx8fTJs2DR988AFOnDjxUn+Y0V5wOmXrM+7cGcVFRUKHofY4Wtg2XbtePSJfI/kXwUKhFsK/Cy2PfweExz4gevEEzRR1dHQwadIkREZGoqCgAKampopz586dQ2FhIby9vetM5mUyGUJCQhATE4OcnBzo6enBwcEBixYtwpAhQ1TKFxUVITAwEGfPnsWjR49gY2ODRYsW1Rtjamoqdu7ciStXrqCoqAhmZmZwc3PD4sWLYWJi0uS2R0ZGoqKiAn5+fopEHgD69OkDsViMb7/9FpcuXYKzs3OT7/Gsw4cPIzQ0FJmZmRCJRHB3d8fixYuho6OjUrYhba7ZZwAAJBIJJBKJ4vqaNfq5ubkIDw9HXFwcsrKyUFJSAnNzc7i4uGDJkiUQiUQt0ra2juu5Wp+eLlDK59xsITvzmnSdcSdjFD8sbuFoCAACP+uMwCBtyOUd4GBXncgHfVaFAf3L4f9ekaIc+0B4jekD/l1oefw7IDz2AdGLJ/iwr7e3N8LDwxEdHQ1fX1/F8YiICIhEIri6utZ6XVlZGWbPno3k5GQMHDgQvr6+yM/Px4kTJxAfH4+goCBMnDhRUV4mk8HHxwfp6elwdHTEsGHDcO/ePSxfvhyjR4+u9R6xsbF47733oKmpCTc3N1haWuL27ds4ePAg4uLicPjwYRgbGzep3YmJiQBQ673HjBmDb7/9FleuXFFK5t9//31IJJJGb9S3b98+XL58GZMmTYKrqysuXLiAXbt24caNGwgJCYGGxtPddxva5v79+2PWrFnYv38/+vXrh9dff11Rh7W1NQAgKSkJ+/btw4gRI2BnZwdtbW3cuHEDYWFhiIuLg0QiUfogg4iE1dQdtjt3BgCu4W4NK94rwufbO+Oj/zzdzd5ucDmWLS5Cp2f6i30gPPYBERG9aIIn8/b29ujTpw8iIiIUyXxubi7i4+Ph6+tb5zTz3bt3Izk5Ge7u7tiyZYsiIfX19VVMUx81ahQMDQ0BACEhIUhPT8f06dOxYcMGRT0eHh6YN2+eSv2FhYVYtWoVTE1NERYWBisrK8W5Y8eOYcWKFdi2bRvWrVvXpHbfuXMH+vr6MDMzUznXvXt3RZmWcPHiRURERKBPnz4AgOXLl2PBggWIi4tDVFQUPDw8ADSuzf3794evry/279+P/v37Y8mSJSr3HTFiBOLi4mBgYKB0/OjRo1i9ejUOHjwIPz+/FmkjEdHLqFMnOdb9u5DvmSciIiIVgm6AV8PLywtpaWn49ddfAVRP4a6srIS3t3ed10gkEmhra2PlypVKI8v9+vWDp6cniouLERsbqzh+9OhRaGtrY+nSpUr1ODs7Y+TIkSr1R0VFQSqVwt/fXympBYApU6Zg4MCBiImJaVJ7AUAqldY5Kl3zAYRUKlU67u/vj+PHj2PChAmNupdYLFYk8kD1xoPLly8HUP1carR0m0UikUoiXxOPoaEhLl682Kh2EBG9rLKyNXElSQdZ2apvdgGAbl0rMcyplIk8ERERKQg+Mg9UJ3eBgYGIiIjAoEGDIJFIYG9vDxsbm1rLS6VSZGVloXfv3rC0tFQ5P3z4cISHhyM1NRVisRhSqRTZ2dmwsbGpdSTcyckJCQkJSseSk5MBANeuXUNmZqbKNaWlpSgsLFRZ69+azM3NYW7e+PcIDx06VOXY4MGDoauri5s3byqOtUabT58+jfDwcKSkpODhw4eorHz6H6J5eU1bn0tELa/4ocbzC7Xi9e1ViVQDu0OMcePm02n0A/qX4Z35xTAybNyUbfaBcJq6RIWIiKg52kQyLxKJ4OLigpiYGLi5uSEjIwNz586ts3zNiHVdG6h16dIFAFBSUqJUvq4EtLZ6iourN7E5dOhQvbHLZLJ6z9fF0NBQEd9f1cRbM0LfXHU9J5FIhNzcpzvqtnSb9+7di4CAAJiammL06NGwtLSE7v/b9Sc0NBTl5eUNqqetefJE+WfZE9Vj9GKxD5pv/sLGf1CorLnXt08dOgAGBsD6jzVgP7h65/otWztixb/MUFXV2NrYB0I5sC+Xv4cExucvvPr6gJs+ErWONpHMA9Ub4cXGxmLt2rXQ1dXFlClT6ixbk+Tm5+fXer7meE25mu8FBQX1lq/tHtHR0ejbt28DW9FwPXr0wM8//4wHDx6ozBbIyMhQlGkJ9T2nZz8waMk2V1RUYMeOHTA3N0dUVJTSBylyuRwhISHNql9Itb++i6/0Eh77gNRPVRXwrxUacHOtHlV3cwXkcuCj/3CkV508/bvA30PC4vMXXu198F0YX8dI1BraxJp5ABg7dizMzMyQm5uLiRMn1jsqbWhoiG7duiEzM1NpZLlGzU7x/fr1U5Tv2rUrMjIy8ODBA5XySUlJKsfs7OwAPJ163tKGDRsGAIiPj1c59+OPPyqVaa6rV6+qHLt+/TqePHmC/v37K441ts2amtVrO5+dOl+jsLAQJSUlcHBwUJkRUXNvIiIC7Acr/+xgJ0wcREREpF7azMi8lpYWduzYgby8PAwYMOC55T08PBAcHIytW7ciICBAsQleeno6IiMjYWRkpPS6NLFYjC+++ALbtm1T2s0+Li5OZb08UD1T4Msvv0RQUBAcHR2VNpADqqeap6WlwcHBoUnt9fLywt69e/Hll19i/Pjxis3wbt26haioKLz66qsYMWKE0jV5eXmKd7U35pVuUVFRmDVrlqINFRUVCAoKAgDFTvZA49vcqVMnaGho4P79+yr3FIlE0NXVRUpKCmQyGfT09ABUT+XfuHFjg2Nviw7sU/4AybhzZxQXFQkTDAFgH7SE2mec0Itw7Xr1iHyN5F8EC4Wa6MC+XP4eEhifv/DYB0QvXptJ5oGnI8MN8c477+CHH35AVFQUbt++jZEjR6KgoAAnTpxARUUFAgIClEb358+fjzNnzuDw4cO4deuW4j3zJ0+ehKurK86fP69Uv6mpKQIDA7Fs2TKIxWKMGTMGvXr1QmlpKe7evYvExEQ4Ojpiz549TWprz549sXjxYnz22WeYOnUq3njjDTx+/BgxMTGoqKjAhg0bVF7LFxgY2KT3zI8aNQrTp0/H5MmTYWxsjAsXLiA9PR3Ozs4Qi8VNbrOBgQEGDx6MpKQkrFmzBt27d0eHDh0wZcoUWFlZYebMmdi7dy/EYjHGjRsHqVSKCxcuwNraukkb+bUVf133pacLlHItmKDYB80XsrPpG1IadzJG8cPiFoym/Qj8rDMCg7Qhl3eAg111Ih/0WRUG9C+H/3tFDa6HfSAsXV3+HhIan7/w2AdEL16bSuYbQ0dHB6Ghodi9ezeOHz+Or7/+Gnp6enBycsLChQvh5OSkVF5fXx8HDhxAYGAgzpw5gxs3bsDGxgZBQUEoKSlRSeYBwNXVFRKJBHv27EFCQgLi4+Ohr68PCwsLeHl5YerUqc1qg5+fH6ytrREaGoqwsDBoa2vD0dERS5cubdQHG88zZ84cjBs3Dvv370dmZiZMTU2xYMECvPvuu0qv9QMa3+bNmzdj06ZNOHv2LEpKSiCXy2Fvbw8rKyv4+/vD2NgYEokE33zzDbp06YLJkydjyZIlcHd3b7H2EVHzNWc37s6dAYBrvJtixXtF+Hx7Z3z0n6e72dsNLseyxUXo1Ig+YR8QERG1PxpyuZx//alNunLlCjp27AhtbW2hQ6lX586dUcRpZYJiHwiLz7/5srI1cf++FiwtK5r0Lnn2gfDYB8Li8xce+0BYfP7Ca8k+KC8vh729/XPLqe3IPBER0cuiW9fKJiXxRERE1H61md3siYiIiIiIiKhhmMwTERERERERqRkm80RERERERERqhsk8ERERERERkZphMk9ERERERESkZpjMExEREREREakZJvNEREREREREaobJPBEREREREZGaYTJPREREREREpGaYzBMRERERERGpGSbzRERERERERGpGS+gAiIio7etYfAfaJTkoN7JGmXEPocMhIiIiaveYzBMRUZ20izNhkRQEvbxrimMyc3vcdf4YVTrGAkZGRERE1L5xmj2AyMhI2NraIjIysln12NrawsfHp4Wiar7g4GDY2tri8uXLQodCRGpAo0Km8tX9xFzoFt+BbEoQHi28ANmUIOgW/4FX4tcryqD8aXkiIiIiejEEGZnPzs7G+PHjAQDm5uY4f/48NDU1VcqlpaVh6tSpAICePXvi5MmTLzTO1iSTyRAWFoaUlBSkpKTgzp07kMvliI2NRdeuXYUOr0Fq+tHT0xOffvqp0OEQUTPZfDe51uOyCR+jsu+bAIDKvm+iVC6Hfoy/Unmz//f91oxzrR0mEREREUHgkXktLS3k5eUhLi6u1vNHjhyBltbLuRIgPz8fAQEBOHbsGMrKymBszOmqRNQ2VVkPVfq5squTQJEQERERUQ1BM2VHR0ekpqYiIiICY8eOVTpXVlaG6OhouLi44Ny5l2+kx8TEBHv37sXAgQPRuXNnzJs3r84PNYiIXoTfpsUo/az9MBPdT/mhQ85Vxcg8AGhmJwEAMt74EuWdXoWxcWcUFxe9yFCJiIiI2j1Bk3kdHR1MmjQJkZGRKCgogKmpqeLcuXPnUFhYCG9v7zqTeZlMhpCQEMTExCAnJwd6enpwcHDAokWLMGTIEJXyRUVFCAwMxNmzZ/Ho0SPY2Nhg0aJF9caYmpqKnTt34sqVKygqKoKZmRnc3NywePFimJiYNLntBgYGGD16dJOvb6zDhw8jNDQUmZmZEIlEcHd3x+LFi6Gjo6NStiFtjoyMxJo1awAAEokEEolEcf3+/fsxfPhw5ObmIjw8HHFxccjKykJJSQnMzc3h4uKCJUuWQCQSvZjGE1GDyLX0lH4uM7WFzNweOrHrUSaXo7KrEzSzk9Dx3AY8tnRCmaltdUFtPci1SgWImIiIiKj9EnwOu7e3N8LDwxEdHQ1fX1/F8YiICIhEIri6utZ6XVlZGWbPno3k5GQMHDgQvr6+yM/Px4kTJxAfH4+goCBMnDhRUV4mk8HHxwfp6elwdHTEsGHDcO/ePSxfvrzOpDo2NhbvvfceNDU14ebmBktLS9y+fRsHDx5EXFwcDh8+/EKnx7///vuQSCTYtGkTvLy8Gnzdvn37cPnyZUyaNAmurq64cOECdu3ahRs3biAkJAQaGhqKsg1tc//+/TFr1izs378f/fr1w+uvv66ow9raGgCQlJSEffv2YcSIEbCzs4O2tjZu3LiBsLAwxMXFQSKRwMjIqOUeEBG1uLvOH+OVi59AP8ZfceyxpRPujVorYFREREREJHgyb29vjz59+iAiIkKRzOfm5iI+Ph6+vr51rpnfvXs3kpOT4e7uji1btigSUl9fX0ybNg0ffPABRo0aBUNDQwBASEgI0tPTMX36dGzYsEFRj4eHB+bNm6dSf2FhIVatWgVTU1OEhYXByspKce7YsWNYsWIFtm3bhnXr1rXYs2gtFy9eREREBPr06QMAWL58ORYsWIC4uDhERUXBw8MDQOPa3L9/f/j6+mL//v3o378/lixZonLfESNGIC4uDgYGBkrHjx49itWrV+PgwYPw8/NrvYYTUbNV6RgjZ9xmvmeeiIiIqI1pE6+m8/LyQlpaGn799VcA1VO4Kysr4e3tXec1EokE2traWLlypdLIcr9+/eDp6Yni4mLExsYqjh89ehTa2tpYunSpUj3Ozs4YOXKkSv1RUVGQSqXw9/dXSmoBYMqUKRg4cCBiYmJUrmtN/v7+OH78OCZMmNCo68RisSKRB6o3Hly+fDmA6udSo6XbLBKJVBL5mngMDQ1x8eLFRrWDiIiIiIiIqgk+Mg9UJ3eBgYGIiIjAoEGDIJFIYG9vDxsbm1rLS6VSZGVloXfv3rC0tFQ5P3z4cISHhyM1NRVisRhSqRTZ2dmwsbGBmZmZSnknJyckJCQoHUtOTgYAXLt2DZmZmSrXlJaWorCwUGWtf2syNzeHubl5o68bOnSoyrHBgwdDV1cXN2/eVBxrjTafPn0a4eHhSElJwcOHD1FZWak4l5eX18iWENGLpl2cCYukIOjlXVMck5nb467zx6jS4Vs4iIiIiITSJpJ5kUgEFxcXxMTEwM3NDRkZGZg7d26d5aVSqeK62nTp0gUAUFJSolS+rgS0tnqKi4sBAIcOHao3dplMVu/5tqCu5yQSiZCbm6v4uaXbvHfvXgQEBMDU1BSjR4+GpaUldHV1AQChoaEoLy9vUD1E1Po0Kmr/d939xFygoxFkU4JQZT0UHXKuQvfMR3glfj3uumysLlSuo7j+r5voEREREVHraBPJPFC9EV5sbCzWrl0LXV1dTJkypc6yNevg8/Pzaz1fc7ymXM33goKCesvXdo/o6Gj07du3ga1om+p7TjXtBFq2zRUVFdixYwfMzc0RFRWl9EGKXC5HSEhIs+onopZl893kOs/JJnyseDVdZd83USqXQz/GX+mamjlPt2a8fK8SJSIiImqL2sSaeQAYO3YszMzMkJubi4kTJyolmX9laGiIbt26ITMzU2lkuUZiYiKA6vXzNeW7du2KjIwMPHjwQKV8UlKSyjE7OzsAT6eeq7OrV6+qHLt+/TqePHmC/v37K441ts2ampoAoDR1vkZhYSFKSkrg4OCgMiOi5t5EpB6qrJWX6lR2dRIoEiIiIiKq0WaSeS0tLezYsQNffPGFYnO2+nh4eKC8vBxbt26FXC5XHE9PT0dkZCSMjIyUXpcmFotRXl6Obdu2KdUTFxensl4eqJ4pYGBggKCgINy6dUvlvEwme+GJfl5eHm7fvq1YPtBQUVFRSm2oqKhAUFAQACh2sgca3+ZOnTpBQ0MD9+/fVykrEomgq6uLlJQUpWn5xcXF2LhxY6PiJ6LW99u0GJWvjDe+BAB0yFH+QFAzu/oD0Iw3vsRv02LwYH684hoiIiIiejHazDR74OnIcEO88847+OGHHxAVFYXbt29j5MiRKCgowIkTJ1BRUYGAgACl0f358+fjzJkzOHz4MG7duqV4z/zJkyfh6uqK8+fPK9VvamqKwMBALFu2DGKxGGPGjEGvXr1QWlqKu3fvIjExEY6OjtizZ0+T2xsQEIDCwkIA1R9CAMDmzZuhr6+vaGPv3r0V5QMDA5v0nvlRo0Zh+vTpmDx5MoyNjXHhwgWkp6fD2dkZYrG4yW02MDDA4MGDkZSUhDVr1qB79+7o0KEDpkyZAisrK8ycORN79+6FWCzGuHHjIJVKceHCBVhbWzdpIz8iaj21rXUvM7WFzNweOrHrUSaXo7KrEzSzk9Dx3AY8tnRCmaltdUFtPci1Sl9wxERERETtW5tK5htDR0cHoaGh2L17N44fP46vv/4aenp6cHJywsKFC+HkpDwNVF9fHwcOHEBgYCDOnDmDGzduwMbGBkFBQSgpKVFJ5gHA1dUVEokEe/bsQUJCAuLj46Gvrw8LCwt4eXlh6tSpzWrDqVOnkJOTo3Kshqenp1Iy31Rz5szBuHHjsH//fmRmZsLU1BQLFizAu+++q/RaP6Dxbd68eTM2bdqEs2fPoqSkBHK5HPb29rCysoK/vz+MjY0hkUjwzTffoEuXLpg8eTKWLFkCd3f3ZreLiFrfXeeP8crFT6Af46849tjSCfdGrRUwKiIiIiLSkD87R52oDbly5Qo6duwIbW1toUOpV+fOnVFUVCR0GO0a+6D1dSy+A+2SHJQbWaPMuIfSOT5/4bEPhMc+EBafv/DYB8Li8xdeS/ZBeXk57O3tn1tObUfmiYjoxSkz7qGSxBMRERGRcNrMBnhERERERERE1DBM5omIiIiIiIjUDJN5IiIiIiIiIjXDZJ6IiIiIiIhIzTCZJyIiIiIiIlIzTOaJiIiIiIiI1AyTeSIiIiIiIiI1w2SeiIiIiIiISM0wmSciIiIiIiJSM0zmiYiIiIiIiNQMk3kiIiIiIiIiNcNknoiIiIiIiEjNMJknIiIiIiIiUjNM5omIiIiIiIjUDJN5IiIiIiIiIjXDZJ6IiIiIiIhIzTCZJyIiIiIiIlIzTOaJiIiIiIiI1AyTeSIiIiIiIiI1w2SeiIiIiIiISM0wmSciIiIiIiJSM0zmiYiIiIiIiNQMk3kiIiIiIiIiNcNknoiIiIiIiEjNMJknIiIiIiIiUjNM5omIiIiIiIjUDJN5IiIiIiIiIjXDZJ6IiIiIiIhIzTCZJyIiIiIiIlIzTOaJiIiIiIiI1AyTeSIiIiIiIiI1w2SeiIiIiIiISM0wmSciIiIiIiJSM0zmiYiIiIiIiNQMk3kiIiIiIiIiNcNknoiIiIiIiEjNMJknIiIiIiIiUjNaQgdARERERPSi5JTcRu7jLFjod4O1UW+hwyEiajIm80RERESt4GFpgdAhtBsaTyrxsLS43jLSsmLsu/EJUguuKo71Mx2KOQPWwrCjcWuH+NKrrw866Zi+4GiI2ge1TuYjIyOxZs0abNq0CV5eXk2ux9bWFq+99hoOHDjQgtE1XXBwMLZv3479+/dj+PDhQodDRKSWnlTIhA7hhXlS0bFdtbctqq0P3j03XqBoqDYdNDrAQLsT1o3bhcEWI3A99xI+i1+FNfFvoUpeJXR4L7XdEy4KHcJLj38Hmk5XS0/oEJqsUcl8dnY2xo+v/sNkbm6O8+fPQ1NTU6VcWloapk6dCgDo2bMnTp482QKhtg03b97EqVOncPHiRWRlZaGkpAQWFhYYM2YM/Pz8YGFhIXSIz1XTj56envj0009b/X7R0dEIDQ3Fb7/9Bm1tbTg4OGDp0qUYPHhwq9+biNqvd86MEjoEImpDquRVeG/0ZoztWf3fqGN7ToVcLsfG8wsFjuzlx9/H1JYd+NvPQofQZE3aAE9LSwt5eXmIi4ur9fyRI0egpaXWg/51+uijj/DVV19BLpdj8uTJ8PHxgaWlJcLCwiAWi3H79m2hQ2xTvvrqK6xcuRL5+fl4++238be//Q0//fQTZsyYgcuXLwsdHhEREbUjgy1GKP1sZzlSoEiIiJqvSRm3o6MjUlNTERERgbFjxyqdKysrQ3R0NFxcXHDu3LkWCbItmTp1Kv73v//h1VdfVTq+a9cubN26FQEBAdi1a5dA0bUtd+7cQXBwMHr06IEjR47AyMgIAODj44Np06bhgw8+wIkTJ17aD36ISFjtaVpn587GKCqqf70wta7a+oCjkW3P9dxLipF5APjlfoKA0bQf7en3sVD4d6B9alIWpaOjg0mTJiEyMhIFBQUwNX26qcW5c+dQWFgIb2/vOpN5mUyGkJAQxMTEICcnB3p6enBwcMCiRYswZMgQlfJFRUUIDAzE2bNn8ejRI9jY2GDRokX1xpiamoqdO3fiypUrKCoqgpmZGdzc3LB48WKYmJg0pdkAgH/+85+1Hp83bx527NiBK1euNLnu2hw+fBihoaHIzMyESCSCu7s7Fi9eDB0dHZWyDWlzzT4DACCRSCCRSBTX16zRz83NRXh4OOLi4hRLCczNzeHi4oIlS5ZAJBI1KPbIyEhUVFTAz89PkcgDQJ8+fSAWi/Htt9/i0qVLcHZ2bs4jIiKqlTqvgWssXS196GqVCR1Gu1ZbH3zhFitQNO2PsbExiovrT2SCk1dh28U1kMvlsLMciV/uJyA44d/oZ+qEJQ4BLyjSl1d9fdCefh8LhX8H2qcmD4l6e3sjPDwc0dHR8PX1VRyPiIiASCSCq6trrdeVlZVh9uzZSE5OxsCBA+Hr64v8/HycOHEC8fHxCAoKwsSJExXlZTIZfHx8kJ6eDkdHRwwbNgz37t3D8uXLMXr06FrvERsbi/feew+amppwc3ODpaUlbt++jYMHDyIuLg6HDx+GsXHL7lqqoaGBDh06oEMH1ZUL77//PiQSSaM36tu3bx8uX76MSZMmwdXVFRcuXMCuXbtw48YNhISEQENDQ1G2oW3u378/Zs2ahf3796Nfv354/fXXFXVYW1sDAJKSkrBv3z6MGDECdnZ20NbWxo0bNxAWFoa4uDhIJBKl5LwuiYmJAFBrP40ZMwbffvstrly5wmSeiIheStzB+8Ux1u0M+RPVfZyetdRxC3Zc+7fSGvlBXUbg/+z/C6OOTR/ooWoN6QMiallNTubt7e3Rp08fREREKJL53NxcxMfHw9fXt86p07t370ZycjLc3d2xZcsWRULq6+urmHo9atQoGBoaAgBCQkKQnp6O6dOnY8OGDYp6PDw8MG/ePJX6CwsLsWrVKpiamiIsLAxWVlaKc8eOHcOKFSuwbds2rFu3rqlNr9XJkyfx6NEjvPnmmy1W58WLFxEREYE+ffoAAJYvX44FCxYgLi4OUVFR8PDwANC4Nvfv3x++vr7Yv38/+vfvjyVLlqjcd8SIEYiLi4OBgYHS8aNHj2L16tU4ePAg/Pz8nhv/nTt3oK+vDzMzM5Vz3bt3V5QhIiIiam1GHU2wetiXfM88Eb00mrQBXg0vLy+kpaXh119/BVA9rbqyshLe3t51XiORSKCtrY2VK1cqjSz369cPnp6eKC4uRmzs02lpR48ehba2NpYuXapUj7OzM0aOVN20JCoqClKpFP7+/kpJLQBMmTIFAwcORExMTJPaW5d79+7hk08+ga6uLpYtW6Zy3t/fH8ePH8eECRMaVa9YLFYk8kD1xoPLly8HUP1carR0m0UikUoiXxOPoaEhLl5s2LonqVRa5wh+zYc1Uqm0wXERERER1SWn5DZ+yj2PnJL6NyO2NuqNIRauTOSJSO01a+cxsViMwMBAREREYNCgQZBIJLC3t4eNjU2t5aVSKbKystC7d29YWlqqnB8+fDjCw8ORmpoKsVgMqVSK7Oxs2NjY1Dq66+TkhIQE5Y1LkpOTAQDXrl1DZmamyjWlpaUoLCxUWevfVEVFRViwYAHy8/MREBCAXr16qZQxNzeHubl5o+seOnSoyrHBgwdDV1cXN2/eVBxrjTafPn0a4eHhSElJwcOHD1FZWak4l5eX18iWEBERtS8PSwuEDqHdkJYVIyApAL8+ePqWnH6mQzFnwFoYdmzZZZVUt87oLHQIRO1Os5J5kUgEFxcXxMTEwM3NDRkZGZg7d26d5WtGYevaQK1Lly4AgJKSEqXydSWgtdVTs/HGoUOH6o1dJpPVe74hiouLMWfOHNy6dQsff/wxxGJxs+t8Vl3PSSQSITc3VykOoOXavHfvXgQEBMDU1BSjR4+GpaUldHV1AQChoaEoLy9vUD2GhoaKvvyrmr6tGaEnopffk4rm/96l2j2p6MjnK7C/9sG758YLGE370kGjAwy0O2HduF0YbDEC13Mv4bP4VVgT/xaq5FVCh9dufDcthb+HBPQy/h3gxonP1+x3gnl7eyM2NhZr166Frq4upkyZUmfZmsQtPz+/1vM1x2vK1XwvKKj90+3a6qm5Jjo6Gn379m1gKxqvqKgIc+bMwY0bN/Dhhx/i7bffbvF71Pecnk2CW7LNFRUV2LFjB8zNzREVFaX0QYpcLkdISEiD6+rRowd+/vlnPHjwQGVmRUZGhqIMEbUPfE0XEbWGKnkV3hu9WfHKubE9p0IulyttdEetb9p3A4UOgV4yB/72s9AhtHnNWjMPAGPHjoWZmRlyc3MxceLEekdaDQ0N0a1bN2RmZiqNLNeo2f28X79+ivJdu3ZFRkYGHjx4oFI+KSlJ5ZidnR2Ap1PPW8Ozify6devwj3/8o1Xuc/XqVZVj169fx5MnT9C/f3/Fsca2WVOzeqfRZ6fO1ygsLERJSQkcHBxUZkTU3Luhhg0bBgCIj49XOffjjz8qlSEiIiJqqsEWI5R+trNU3VeJiOhl0+yReS0tLezYsQN5eXkYMGDAc8t7eHggODgYW7duRUBAgGITvPT0dERGRsLIyEjpdWlisRhffPEFtm3bprSbfVxcnMp6eaB6psCXX36JoKAgODo6Km0gB1RPNU9LS4ODg0OT2ltUVITZs2fj5s2bWLt2bZ3vnX9WXl6e4l3tDXmlW42oqCjMmjVL0YaKigoEBQUBgGIne6Dxbe7UqRM0NDRw//59lXuKRCLo6uoiJSUFMpkMenrV01uKi4uxcePGBscOVG+QuHfvXnz55ZcYP368ou23bt1CVFQUXn31VYwYMeI5tRDRy2L3hIZtnkmN17mzMYqK6n/HNrWuv/YBZ6K8WNdzLylG5gHgl/uq/41Ireu7aSn8PSQg/h1on5qdzANPR4Yb4p133sEPP/yAqKgo3L59GyNHjkRBQQFOnDiBiooKBAQEKI3uz58/H2fOnMHhw4dx69YtxXvmT548CVdXV5w/f16pflNTUwQGBmLZsmUQi8UYM2YMevXqhdLSUty9exeJiYlwdHTEnj17mtTWJUuW4ObNm+jVqxeKi4sRHBysUsbX1xedOnVS/BwYGNik98yPGjUK06dPx+TJk2FsbIwLFy4gPT0dzs7OSuvzG9tmAwMDDB48GElJSVizZg26d++ODh06YMqUKbCyssLMmTOxd+9eiMVijBs3DlKpFBcuXIC1tXWjNvLr2bMnFi9ejM8++wxTp07FG2+8gcePHyMmJgYVFRXYsGFDna8wJKKXD9e+tR5dLX3oapUJHUa79tc++MIttp7S1JKCk1dhW8IayOVy2FmOxC/3ExCc8G/0M3XCEocAocNrN/h7SFh8/u3TC8+kdHR0EBoait27d+P48eP4+uuvoaenBycnJyxcuBBOTk5K5fX19XHgwAEEBgbizJkzuHHjBmxsbBAUFISSkhKVZB4AXF1dIZFIsGfPHiQkJCA+Ph76+vqwsLCAl5cXpk6dqnJNQ+Xk5AAAfv/9d2zfvr3WMp6enkrJfFPNmTMH48aNw/79+5GZmQlTU1MsWLAA7777rtJr/YDGt3nz5s3YtGkTzp49i5KSEsjlctjb28PKygr+/v4wNjaGRCLBN998gy5dumDy5MlYsmQJ3N3dG9UGPz8/WFtbIzQ0FGFhYdDW1oajoyOWLl3aqA+BiIiI1Eknnea/MYcaZqnjFuxK+VBpjfygLiPwf/b/hVFHEwEjIyJqXRpyuVwudBBEtbly5Qo6duwIbW1toUOpV+fOnVFUVCR0GO0a+0BYfP7CYx8Ij30grM6dOyMl6ypyH2fBQr8b3yEvAP4bEBafv/Basg/Ky8thb2//3HKc40xEREREas/aqDeTeCJqV5q9mz0RERERERERvVhM5omIiIiIiIjUDJN5IiIiIiIiIjXDZJ6IiIiIiIhIzTCZJyIiIiIiIlIzTOaJiIiIiIiI1AyTeSIiIiIiIiI1w2SeiIiIiIiISM0wmSciIiIiIiJSM0zmiYiIiIiIiNQMk3kiIiIiIiIiNcNknoiIiIiIiEjNMJknIiIiIiIiUjNM5omIiIiIiIjUDJN5IiIiIiIiIjXDZJ6IiIiIiIhIzTCZJyIiIiIiIlIzTOaJiIiIiIiI1AyTeSIiIiIiIiI1w2SeiIiIiIiISM0wmSciIiIiIiJSM0zmiYiIiIiIiNQMk3kiIiIiIiIiNcNknoiIiIiIiEjNMJknIiIiIiIiUjNM5omIiIiIiIjUDJN5IiIiIiIiIjXDZJ6IiIiIiIhIzTCZJyIiIiIiIlIzTOaJiIiIiIiI1AyTeSIiIiIiIiI1w2SeiIiIiIiISM0wmSciIiIiIiJSM0zmiYiIiIiIiNQMk3kiIiIiIiIiNcNknoiIiIiIiEjNMJknIiIiIiIiUjNaQgdARERtQ07JbeQ+zoKFfjdYG/UWOhwiIiIiqodaj8xHRkbC1tYWkZGRzarH1tYWPj4+LRRV8wUHB8PW1haXL18WOhQiagfulvyBTy7Px/txbyHop+V4P+4tfHJ5PkrKCoUOjYiIiIjq0KiR+ezsbIwfPx4AYG5ujvPnz0NTU1OlXFpaGqZOnQoA6NmzJ06ePNkCobYNN2/exKlTp3Dx4kVkZWWhpKQEFhYWGDNmDPz8/GBhYSF0iM9V04+enp749NNPW+0+MpkMYWFhSElJQUpKCu7cuQO5XI7Y2Fh07dq11e5LRLV7UiGr9fia+LdgoN0J68btwmCLEbieewmfxa/C9uT3sXzIZ7Veo6ul14qREhEREdHzNGmavZaWFvLy8hAXF4exY8eqnD9y5Ai0tLRQUVHR7ADbmo8++gi//PILBg8ejMmTJ0NbWxu//PILwsLCcPLkSRw6dAi9e3N6KgDk5+cjICAAAGBtbQ1jY2MUFRUJGxRRO/bOmVF1nntv9GaM7Vn9IezYnlMhl8ux8fzCOq858LefWyVGIiIiImqYJk2zd3R0hJGRESIiIlTOlZWVITo6Gi4uLs0Ori2aOnUqTp8+je+++w4ffPABVq9ejUOHDmHFihUoLCxUJK8EmJiYYO/evbh8+TLOnTuHQYMGCR0SEdVhsMUIpZ/tLEcKFAkRERERNUSTRuZ1dHQwadIkREZGoqCgAKampopz586dQ2FhIby9vXHu3Llar5fJZAgJCUFMTAxycnKgp6cHBwcHLFq0CEOGDFEpX1RUhMDAQJw9exaPHj2CjY0NFi1aVG+Mqamp2LlzJ65cuYKioiKYmZnBzc0NixcvhomJSVOaDQD45z//WevxefPmYceOHbhy5UqT667N4cOHERoaiszMTIhEIri7u2Px4sXQ0dFRKduQNkdGRmLNmjUAAIlEAolEorh+//79GD58OHJzcxEeHo64uDjFUgJzc3O4uLhgyZIlEIlEDYrdwMAAo0ePboGnQEQtYfeEiyrH7kr/wEcJ/8D13EuKkXkA+OV+AgDgPyMPwcqw5wuLkYiIiIgapsm72Xt7eyM8PBzR0dHw9fVVHI+IiIBIJIKrq2ut15WVlWH27NlITk7GwIED4evri/z8fJw4cQLx8fEICgrCxIkTFeVlMhl8fHyQnp4OR0dHDBs2DPfu3cPy5cvrTBRjY2Px3nvvQVNTE25ubrC0tMTt27dx8OBBxMXF4fDhwzA2Nm5q02uloaGBDh06oEMH1ckO77//PiQSCTZt2gQvL68G17lv3z5cvnwZkyZNgqurKy5cuIBdu3bhxo0bCAkJgYaGhqJsQ9vcv39/zJo1C/v370e/fv3w+uuvK+qwtrYGACQlJWHfvn0YMWIE7OzsoK2tjRs3biAsLAxxcXGQSCQwMjJqxtMiIiHUts69V+cB6Gc6FNsuroFcLoed5Uj8cj8BwQn/xqAuI9Cr8wABIiUiIiKi52lyMm9vb48+ffogIiJCkczn5uYiPj4evr6+0NKqverdu3cjOTkZ7u7u2LJliyIh9fX1xbRp0/DBBx9g1KhRMDQ0BACEhIQgPT0d06dPx4YNGxT1eHh4YN68eSr1FxYWYtWqVTA1NUVYWBisrKwU544dO4YVK1Zg27ZtWLduXVObXquTJ0/i0aNHePPNN1uszosXLyIiIgJ9+vQBACxfvhwLFixAXFwcoqKi4OHhAaBxbe7fvz98fX2xf/9+9O/fH0uWLFG574gRIxAXFwcDAwOl40ePHsXq1atx8OBB+Pn5tVg7iUhYSx23YMe1f2Pj+YWKY4O6jMD/2f9XwKiIiIiIqD7NejWdl5cX0tLS8OuvvwKonsJdWVkJb2/vOq+RSCTQ1tbGypUrlUaW+/XrB09PTxQXFyM2NlZx/OjRo9DW1sbSpUuV6nF2dsbIkaprOqOioiCVSuHv76+U1ALAlClTMHDgQMTExDSpvXW5d+8ePvnkE+jq6mLZsmUq5/39/XH8+HFMmDChUfWKxWJFIg9Ubzy4fPlyANXPpUZLt1kkEqkk8jXxGBoa4uJF1am6RKS+jDqaYPWwL7F8SBCm9pqH5UOCsHrYlzDq2PQlSURERETUupo8Mg9UJ3eBgYGIiIjAoEGDIJFIYG9vDxsbm1rLS6VSZGVloXfv3rC0tFQ5P3z4cISHhyM1NRVisRhSqRTZ2dmwsbGBmZmZSnknJyckJCQoHUtOTgYAXLt2DZmZmSrXlJaWorCwUGWtf1MVFRVhwYIFip3be/XqpVLG3Nwc5ubmja576NChKscGDx4MXV1d3Lx5U3GsNdp8+vRphIeHIyUlBQ8fPkRlZaXiXF5eXiNbQkRt2d2SP7DvxidILbiqONbPdCjmDFgLKyOulyciIiJqi5qVzItEIri4uCAmJgZubm7IyMjA3Llz6ywvlUoV19WmS5cuAICSkhKl8nUloLXVU1xcDAA4dOhQvbHLZLW/b7kxiouLMWfOHNy6dQsff/wxxGJxs+t8Vl3PSSQSITc3VykOoOXavHfvXgQEBMDU1BSjR4+GpaUldHV1AQChoaEoLy9vUD1E1LY09j3za+Lfws7X42q9hu+ZJyIiIhJWs5J5oHojvNjYWKxduxa6urqYMmVKnWVr1sHn5+fXer7meE25mu8FBQX1lq/tHtHR0ejbt28DW9F4RUVFmDNnDm7cuIEPP/wQb7/9dovfo77nVNNOoGXbXFFRgR07dsDc3BxRUVFKH6TI5XKEhIQ0q34iEg7fM09ERET08mjWmnkAGDt2LMzMzJCbm4uJEycqJZl/ZWhoiG7duiEzM1NpZLlGYmIigOr18zXlu3btioyMDDx48EClfFJSksoxOzs7AE+nnreGZxP5devW4R//+Eer3Ofq1asqx65fv44nT56gf//+imONbbOmpiYAKE2dr1FYWIiSkhI4ODiozIiouTcRvXz4nnkiIiIi9dLsZF5LSws7duzAF198odicrT4eHh4oLy/H1q1bIZfLFcfT09MRGRkJIyMjpdelicVilJeXY9u2bUr1xMXFqayXB6pnChgYGCAoKAi3bt1SOS+TyZqV6BcVFWH27Nm4ceMG1q5dW+d755+Vl5eH27dvK5YPNFRUVJRSGyoqKhAUFAQAip3sgca3uVOnTtDQ0MD9+/dVyopEIujq6iIlJUVpWn5xcTE2btzYqPiJqG3ZPeGiytd/RlYvz7mee0mp7LPvma/tOiIiIiISVrOn2QNPR4Yb4p133sEPP/yAqKgo3L59GyNHjkRBQQFOnDiBiooKBAQEKI3uz58/H2fOnMHhw4dx69YtxXvmT548CVdXV5w/f16pflNTUwQGBmLZsmUQi8UYM2YMevXqhdLSUty9exeJiYlwdHTEnj17mtTWJUuW4ObNm+jVqxeKi4sRHBysUsbX1xedOnVS/BwYGNik98yPGjUK06dPx+TJk2FsbIwLFy4gPT0dzs7OSuvzG9tmAwMDDB48GElJSVizZg26d++ODh06YMqUKbCyssLMmTOxd+9eiMVijBs3DlKpFBcuXIC1tXWjN/ILCAhAYWEhgOoPbABg8+bN0NfXB1D9/4fevXs3qk4iaprGvme+n6kT3zNPRERE1Ea1SDLfGDo6OggNDcXu3btx/PhxfP3119DT04OTkxMWLlwIJycnpfL6+vo4cOAAAgMDcebMGdy4cQM2NjYICgpCSUmJSjIPAK6urpBIJNizZw8SEhIQHx8PfX19WFhYwMvLC1OnTm1y/Dk5OQCA33//Hdu3b6+1jKenp1Iy31Rz5szBuHHjsH//fmRmZsLU1BQLFizAu+++q/RaP6Dxbd68eTM2bdqEs2fPoqSkBHK5HPb29rCysoK/vz+MjY0hkUjwzTffoEuXLpg8eTKWLFkCd3f3RrXh1KlTimf27LEanp6eTOaJBMb3zBMRERGpHw35s3PdidqQK1euoGPHjtDW1hY6lHp17twZRUVFQofRrrEPWkZOyW3kPs6ChX43WBs1/EM2Pn/hsQ+Exz4QFp+/8NgHwuLzF15L9kF5eTns7e2fW+6Fj8wTEVHbZG3Uu1FJPBEREREJp9kb4BERERERERHRi8VknoiIiIiIiEjNMJknIiIiIiIiUjNM5omIiIiIiIjUDJN5IiIiIiIiIjXDZJ6IiIiIiIhIzTCZJyIiIiIiIlIzTOaJiIiIiIiI1AyTeSIiIiIiIiI1w2SeiIiIiIiISM0wmSciIiIiIiJSM0zmiYiIiIiIiNQMk3kiIiIiIiIiNcNknoiIiIiIiEjNMJknIiIiIiIiUjNM5omIiIiIiIjUDJN5IiIiIiIiIjXDZJ6IiIiIiIhIzTCZJyIiIiIiIlIzWkIHQFSfyspKoUN4rvLycpSXlwsdRrvGPhAWn7/w2AfCYx8Ii89feOwDYfH5C68l+6ChORCTeWqzOnbsiLKysjaf0JeWlqKsrEzoMNo19oGw+PyFxz4QHvtAWHz+wmMfCIvPX3hC9AGTeWqzrK2tUVVVJXQYz2ViYoLCwkKhw2jX2AfC4vMXHvtAeOwDYfH5C499ICw+f+EJ0QdM5qnN0tTUhKamptBhPJe2tja0tbWFDqNdYx8Ii89feOwD4bEPhMXnLzz2gbD4/IUnRB9wAzwiIiIiIiIiNcNknoiIiIiIiEjNMJknIiIiIiIiUjNM5omIiIiIiIjUDJN5IiIiIiIiIjXDZJ6IiIiIiIhIzTCZJyIiIiIiIlIzTOaJiIiIiIiI1AyTeSIiIiIiIiI1w2SeiIiIiIiISM0wmSciIiIiIiJSM0zmiYiIiIiIiNQMk3kiIiIiIiIiNcNknoiIiIiIiEjNMJknIiIiIiIiUjNM5omIiIiIiIjUDJN5IiIiIiIiIjXDZJ6IiIiIiIhIzTCZJyIiIiIiIlIzWkIHQERE1JL+uCNHTg5gbQ307KEhdDhEREREreKlGpmPjIyEra0tIiMjm1WPra0tfHx8WiiqF+fy5cuwtbVFcHCw0KEQEb0whUVyFBbJcSezCouXVcFnthzvr5XDZ7Yci5dV4U5mFQqL5EKHSURERNSimjUyn52djfHjxwMAzM3Ncf78eWhqaqqUS0tLw9SpUwEAPXv2xMmTJ5tz2zYpOjoaoaGh+O2336CtrQ0HBwcsXboUgwcPFjo0IiK1J5PVnYy7e1Sf69ABMDAA1n+sAfvBwLXrwJatcsyaDVRVyXHmRMPvp6fHEX0iIiJq21pkmr2Wlhby8vIQFxeHsWPHqpw/cuQItLS0UFFR0RK3a3O++uorBAUFwcrKCm+//TYeP36MmJgYzJgxA3v27MHw4cNfSBx2dnY4fvw4TExMXsj9iIhelAl/e/7IelUV8K8VGnBzrU7E3VwBuRz46D/yBtdRI+48k3kiIiJq21pkmr2joyOMjIwQERGhcq6srAzR0dFwcXFpiVu1OXfu3EFwcDB69OiB/+//+//w/vvvY/369fj222+hpaWFDz744IV9iKGnp4fevXvD1NT0hdyPiKitsf/LZCgHO2HiICIiImptLTIyr6Ojg0mTJiEyMhIFBQVKyeS5c+dQWFgIb29vnDt3rtbrZTIZQkJCEBMTg5ycHOjp6cHBwQGLFi3CkCFDVMoXFRUhMDAQZ8+exaNHj2BjY4NFixbVG2Nqaip27tyJK1euoKioCGZmZnBzc8PixYubNZIdGRmJiooK+Pn5wcjISHG8T58+EIvF+Pbbb3Hp0iU4Ozs3+R6lpaU4dOgQjh49ipycHFRVVUEkEsHOzg4LFy6Era0tgOo187NmzcLixYuxZMkSpToSExPx+eefIyUlBTo6Ohg5ciRWr16NVatWITExEWlpaYqywcHB2L59O/bv34/s7Gx8/fXXyMjIQJcuXTB79mzMmjULcrkc+/fvR1hYGHJycmBlZQU/Pz94eHgo3fePP/7Ad999h4SEBNy9exePHz+GlZUVJkyYAD8/PxgYGDT5uRBR+3HmRN0j5c+OuF+7Xj0iXyP5l4bVQURERKRuWmwDPG9vb5SXlyM6OlrpeEREBEQiEVxdXWu9rqysDLNnz8b27duhr68PX19fjB8/HomJifDx8cHp06eVystkMvj4+CA8PByvvvoqZs2ahZ49e2L58uU4depUrfeIjY3FtGnT8P333+O1117DrFmz0LdvXxw8eBBvv/02iouLm9zuxMREAMDo0aNVzo0ZMwYAcOXKFaXj77//fqM26lu9ejUCAgIAAF5eXpg5cybs7Oxw+fJlpKSkPPf6uLg4zJkzB9evX8ebb76J6dOn4969e5g5cyYePnxY53WhoaHYtGkTBgwYgOnTp6OiogKffPIJvvvuO2zcuBG7du3C0KFD4e3tjcLCQqxevRpJSUlKdZw5cwYRERHo1q0bPDw88Pbbb8PY2Bi7d+/G3LlzUV5e3qBnQETtm56eRp1f0UervxzsgcDP5Ij9Xo78/OrvQZ/L4WAPRB+t+/ravoiIiIjauhZ7NZ29vT369OmDiIgI+Pr6AgByc3MRHx8PX19faGnVfqvdu3cjOTkZ7u7u2LJlCzQ0qv8jytfXF9OmTcMHH3yAUaNGwdDQEAAQEhKC9PR0TJ8+HRs2bFDU4+HhgXnz5qnUX1hYiFWrVsHU1BRhYWGwsrJSnDt27BhWrFiBbdu2Yd26dU1q9507d6Cvrw8zMzOVc927d1eUaaqSkhKcPHkSgwYNwuHDh5U2GKysrMSjR4/qvb6yshIffvghqqqq8M0338De3l5xbs2aNfV+oHD16lVIJBJ069YNADBv3jxMmDABAQEBEIlEiI6OVszC8PLywrRp07Bnzx44OTkp6hCLxZg9ezY6duyoVPf27dsRHByMEydOKDZHJCJqCpPO1X83Nv4H+M9GuWKNPAAMcwI++kADnTszQSciIqKXS4u+ms7LywtpaWn49ddfAVRPQa+srIS3t3ed10gkEmhra2PlypWKRB4A+vXrB09PTxQXFyM2NlZx/OjRo9DW1sbSpUuV6nF2dsbIkSNV6o+KioJUKoW/v79SIg8AU6ZMwcCBAxETE9Ok9gKAVCpVml7/rJoPIKRSqdJxf39/HD9+HBMmTHhu/RoaGpDL5ejYsaPKmwI0NTXRqVOneq+/evUqcnJyMH78eKVEHgCWLVtW69sHavj4+CgSeQB45ZVXMHToUJSUlMDPz09pOYWdnR26deumNF0fACwsLFQSeQD45z//CQBISEioN34ioobq3FkDSxdrYPkyYPky4MDXGgj6Xwcm8kRERPRSarGReaB6FDYwMBAREREYNGgQJBIJ7O3tYWNjU2t5qVSKrKws9O7dG5aWlirnhw8fjvDwcKSmpkIsFkMqlSI7Oxs2Nja1joQ7OTmpJIfJyckAgGvXriEzM1PlmtLSUhQWFqqs9W9N5ubmMDc3b1BZQ0NDjBkzBj/++CM8PT3xxhtvwMnJCXZ2drUmyX+VmpoKoHqTwr+ytLTEK6+8guzs7Fqv7d+/v8qxmufer1+/Ws/98ssvSsfkcjkiIiIgkUhw69YtlJSUoKqqSnE+Ly/vuW0gIqpPYZEcxQ/l+N9WIPna0+MO9nKsXCGHcafqZN6EST0RERG9RFo0mReJRHBxcUFMTAzc3NyQkZGBuXPn1lm+ZsRaJBLVer5Lly4AqqeaP1u+rqS7tnpq1sMfOnSo3thlMlm95+tiaGioiO+vauKtGaFvqm3btmHnzp04duwYgoKCAAAGBgbw9vaGv78/9PT06rz2ec+sS5cudSbztcVds1yirnN/3bl/48aNOHjwIF555RW4ubnBzMxM8SHE9u3bUVZWVmfsRERA/e+YB6rfM/+8d8wDaNB75rlenoiIiNRFiybzQPVGeLGxsVi7di10dXUxZcqUOsvWJIT5+fm1nq85XlOu5ntBQUG95Wu7R3R0NPr27dvAVjRcjx498PPPP+PBgwcqswUyMjIUZZpDX18fy5cvx/Lly5GVlYXLly/j22+/xf79+1FaWor169fXee3zntmff/7ZrNjqk5+fj0OHDsHW1hbh4eFKHzo8ePAA27dvb7V7E9HLoyXeMd/Qevh+eSIiIlIXLbpmHgDGjh0LMzMz5ObmYuLEifWOShsaGqJbt27IzMxEbm6uyvmaneJrpnQbGhqia9euyMjIwIMHD1TK/3UndaB6LTfwdLp9Sxs2bBgAID4+XuXcjz/+qFSmJXTr1g1vvfUWDh48CH19/Tpf91ej5tn9/PPPKufu37+P+/fvt1hsf5WVlQW5XI5Ro0apzB6ora+IiJqD75gnIiKi9qTFk3ktLS3s2LEDX3zxBZYvX/7c8h4eHigvL8fWrVshlz8dNUlPT0dkZCSMjIzw+uuvK46LxWKUl5dj27ZtSvXExcXVupmat7c3DAwMEBQUhFu3bqmcl8lkzUr0vby8oKWlhS+//FJpuv2tW7cQFRWFV199FSNGjFC6Ji8vD7dv365zev6zCgoKVNahA9XLB8rLy6Gjo1Pv9UOHDoWVlRViY2NV6vn8889VpsW3pJoNB3/++WeldfL379/H1q1bW+2+RPRyOXNCo96vGteuK1+X/Evj6uF76ImIiEidtPg0e+DpaHhDvPPOO/jhhx8QFRWF27dvY+TIkSgoKMCJEydQUVGBgIAApdH9+fPn48yZMzh8+DBu3bqFYcOG4d69ezh58iRcXV1x/vx5pfpNTU0RGBiIZcuWQSwWY8yYMejVqxdKS0tx9+5dJCYmwtHREXv27GlSW3v27InFixfjs88+w9SpU/HGG2/g8ePHiImJQUVFBTZs2KDyWr7AwEBIJBJs2rQJXl5e9dafm5uLadOmoU+fPhgwYAAsLCxQVFSE2NhYlJeXY/78+fVer6mpiY8//hj/93//h3/+85+YPHkyunTpgitXriA3Nxf9+vVT2YG+pZibm+ONN97AqVOn4O3tjREjRiA/Px/nz5/HiBEjkJWV1Sr3JaKXy/PWsUcfBdZ9JEfgZ3LI5dUj8sm/QPGO+Q3/0WhQPURERETqpFWS+cbQ0dFBaGgodu/ejePHj+Prr7+Gnp4enJycsHDhQqV3lgPV68cPHDiAwMBAnDlzBjdu3ICNjQ2CgoJQUlKikswDgKurKyQSCfbs2YOEhATEx8dDX18fFhYW8PLyavZ7zv38/GBtbY3Q0FCEhYVBW1sbjo6OWLp0aaM+2KiNtbU1lixZgkuXLuHixYsoKiqCiYkJBgwYgNmzZ8PZ2fm5dYwdOxZ79uzBtm3bcPz4cejq6mLEiBEICgrCggULmr1BX302bdoEa2trnDp1CgcPHoSVlRVmz56Nd955B6dOnWq1+xJR+2HSWYPvmCciIqJ2R0P+7Nx2alekUilGjx6Nvn374rvvvhM6HBWFhYVCh9AgJiYmahPry4p9IKy29Pz/uCNHTg5gbQ307NF+kvi21AftFftAWHz+wmMfCIvPX3gt3QcmJibPLSP4yDy1vsePH6OqqkppBL6yshKbN2/GkydPlPYkICJSZz17aKBnD6GjICIiImp9TObbgYyMDMycORPOzs7o2rUrHj16hKtXr+K3335Dnz594OPjI3SIRERERERE1AhM5tsBCwsLvPnmm0hMTMSPP/6IiooKWFlZYe7cufDz84O+vr7QIRIREREREVEjMJlvB0xNTbFp0yahwyAiIiIiIqIW0uLvmSciIiIiIiKi1sVknoiIiIiIiEjNMJknIiIiIiIiUjNM5omIiIiIiIjUDJN5IiIiIiIiIjXDZJ6IiIiIiIhIzTCZJyIiIiIiIlIzTOaJiIiIiIiI1AyTeSIiIiIiIiI1oyV0AERERC1BI/83dCjKRFXnVyEX2QgdDhEREVGreqlG5iMjI2Fra4vIyMhm1WNrawsfH58WiurFuXz5MmxtbREcHCx0KEREre9xQfVX/u/QDfeBQag79KLehUGoO3TDfYD836vPExEREb2EmjUyn52djfHjxwMAzM3Ncf78eWhqaqqUS0tLw9SpUwEAPXv2xMmTJ5tz2zZFJpMhLCwMKSkpSElJwZ07dyCXyxEbG4uuXbsKHR4Rkforf1zrYcOvRgMA5BodgI5GkE0JQpX1UHTIuQrdMx/BYL87NORVkC65Wn/92votHTERERFRq2uRafZaWlrIy8tDXFwcxo4dq3L+yJEj0NLSQkVFRUvcrk3Jz89HQEAAAMDa2hrGxsYoKioSJBY7OzscP34cJiYmgtyfiKg1GAYPrfe8hrwKsgkfo7LvmwCAyr5volQuh26Mf4Oul/rfbJlAiYiIiF6gFplm7+joCCMjI0RERKicKysrQ3R0NFxcXFriVm2OiYkJ9u7di8uXL+PcuXMYNGiQYLHo6emhd+/eMDU1FSwGIiIhVFkrJ+yVXZ0EioSIiIjoxWiRkXkdHR1MmjQJkZGRKCgoUEomz507h8LCQnh7e+PcuXO1Xi+TyRASEoKYmBjk5ORAT08PDg4OWLRoEYYMGaJSvqioCIGBgTh79iwePXoEGxsbLFq0qN4YU1NTsXPnTly5cgVFRUUwMzODm5sbFi9e3KyRbAMDA4wePbrJ1zdEaWkpDh06hKNHjyInJwdVVVUQiUSws7PDwoULYWtrC6B6zfysWbOwePFiLFmyRKmOxMREfP7550hJSYGOjg5GjhyJ1atXY9WqVUhMTERaWpqibHBwMLZv3479+/cjOzsbX3/9NTIyMtClSxfMnj0bs2bNglwux/79+xEWFoacnBxYWVnBz88PHh4eSvf9448/8N133yEhIQF3797F48ePYWVlhQkTJsDPzw8GBgat+uyISP3VNU3+2RH3DjlXFSPzAKCZnfTc64mIiIjUWYvtZu/t7Y3w8HBER0fD19dXcTwiIgIikQiurq61XldWVobZs2cjOTkZAwcOhK+vL/Lz83HixAnEx8cjKCgIEydOVJSXyWTw8fFBeno6HB0dMWzYMNy7dw/Lly+vM6mOjY3Fe++9B01NTbi5ucHS0hK3b9/GwYMHERcXh8OHD8PY2LilHsVzvf/++5BIJNi0aRO8vLyeW3716tU4ceIEbG1t4eXlhY4dO+LevXu4fPkynJ2dFcl8XeLi4rBw4UJoampi0qRJMDMzQ2JiImbOnIlOnTrVeV1oaCgSExMxfvx4DB8+HKdPn8Ynn3wCPT09pKam4uTJk3B1dcWIESNw/PhxrF69Gl27doWT09MRsTNnziAiIgLDhw/Ha6+9hqqqKly7dg27d+/GlStXcPDgQWhrazf84RFR+1PHmnbpongAgG70MujEbkCZXI7Krk7QzE5Cx3MbUdF1GJ5M+Yxr4omIiOil1GLJvL29Pfr06YOIiAhFMp+bm4v4+Hj4+vpCS6v2W+3evRvJyclwd3fHli1boKGhAQDw9fXFtGnT8MEHH2DUqFEwNDQEAISEhCA9PR3Tp0/Hhg0bFPV4eHhg3rx5KvUXFhZi1apVMDU1RVhYGKysrBTnjh07hhUrVmDbtm1Yt25dSz2KFlVSUoKTJ09i0KBBOHz4sNIGg5WVlXj06FG911dWVuLDDz9EVVUVvvnmG9jb2yvOrVmzpt6d/69evQqJRIJu3boBAObNm4cJEyYgICAAIpEI0dHRilkYXl5emDZtGvbs2aOUzIvFYsyePRsdO3ZUqnv79u0IDg7GiRMnFJsjEhE1in71758nU7dB9/hKxRp5AKjoPgpPJv0P0OMeIkRERPRyatFX03l5eSEtLQ2//vorgOpXxVVWVsLb27vOayQSCbS1tbFy5UpFIg8A/fr1g6enJ4qLixEbG6s4fvToUWhra2Pp0qVK9Tg7O2PkyJEq9UdFRUEqlcLf318pkQeAKVOmYODAgYiJiWlSe5vK398fx48fx4QJE55bVkNDA3K5HB07dlR5U4Cmpma9I+tAdUKek5OD8ePHKyXyALBs2bJa3z5Qw8fHR5HIA8Arr7yCoUOHoqSkBH5+fkrLKezs7NCtWzel6foAYGFhoZLIA8A///lPAEBCQkK98RMRPZeeCUpd1+DJuA/wZNwHeOQbjSfee5jIExER0UutxUbmgepR2MDAQERERGDQoEGQSCSwt7eHjY1NreWlUimysrLQu3dvWFpaqpwfPnw4wsPDkZqaCrFYDKlUiuzsbNjY2MDMzEylvJOTk0pymJycDAC4du0aMjMzVa4pLS1FYWGhylr/1mRubg5zc/MGlTU0NMSYMWPw44//f3v3HhVltf4B/MtNhCAb5SIgXmEwNBQlAUXxeM8bAunqmBdCRGlppnW0c7TLsfoZmqBAlpprecEUFMhUkJTSFBXwylEEzAwBBZQ7igjM+/uDNZPTDPeBceD7+afFfve732f2nu3qmffd7z4LT09PTJ48GU5OTnBwcFCaJP9deno6gLqXFP5dz549YWFhgZycHKXnvvrqqwpl0n4fOHCg0mOpqalyZYIgICoqCjExMbh9+zbKy8shkUhkxwsKChr9DERESj0pAipL0PXUp9DN/WuNfI2VE55O+C9g8Irs7j0RERFRR6PSZL5Hjx4YM2YMjh8/jnHjxiErKwu+vr711q+oqJCdp4yJiQmAukfNn69fX9KtrJ3S0lIAwP79+xuMvbKyssHj6hQSEoLt27fj2LFjCA4OBlD34j1vb2+sWrUKBgYG9Z7bWJ+ZmJjUm8xLlzY8T7pcor5jf99+8IsvvkB4eDgsLCwwbtw4mJqayn6ECAsLw7Nnz+qNnYgIQIP7zLd6j3mAa+qJiIhII6k0mQfqXoSXkJCAtWvXomvXrpg+fXq9daUJYWFhodLj0nJpPel/i4qKGqyv7BpHjx6FWCxu4qd4sRgaGmLlypVYuXIlsrOzkZSUhIMHD2Lv3r2oqqrC+vXr6z23sT579OhRm8QM1I3H/v37YWdnh4iICLkfHR4+fIiwsLA2uzYRdRwN7RPf2j3mAe4zT0RERJpJpWvmAcDd3R2mpqbIz8/HpEmTlN7BlTIyMoK1tTXu3buH/Px8hePJyckA/nqk28jICL169UJWVhYePnyoUP/SpUsKZQ4ODgD+etxe01lbW+PNN99EeHg4DA0N693uT0rad1evXlU4lpeXh7y8vDaJEwCys7MhCAJGjhyp8PSAsrEiImoJ7jFPREREnZHK78zr6upi27ZtKCgogL29faP1Z82ahdDQUGzevBmBgYGyl+BlZmYiOjoaxsbGmDBhgqy+h4cHvvnmG4SEhMi9zf7cuXNKX6bm7e2Nb7/9FsHBwXB0dIStra3c8crKSmRkZGDo0KEt/MTNV1BQgPLycpiZmcHY2LjBukVFRcjJyZH9KCFVWlqK6upq6OvrN3j+8OHDYWlpiYSEBKSmpsq1s3XrVoXH4lVJ+sLBq1evQiKRQFu77rejvLw8bN68uc2uS0QdS2P7zHOPeSIiIuqMVJ7MA1BIPBuyePFinDlzBkeOHMGdO3fg6uqKoqIixMXFoaamBoGBgXJ39/38/HDy5ElERkbi9u3bsn3mpXuenz59Wq797t27IygoCCtWrICHhwdGjx6N/v37o6qqCvfv30dycjIcHR2xa9euFn/ewMBAFBcXA6j7EQIANm7cCENDQ9lnHDBggKx+UFBQk/eZz8/Px+zZs2Frawt7e3uYm5ujpKQECQkJqK6uhp+fX4Pn6+jo4LPPPsO7776LefPmYdq0aTAxMUFKSgry8/MxcOBAhTfQq4qZmRkmT56M+Ph4eHt7w8XFBYWFhTh9+jRcXFyQnZ3dJtclog6mgX3mucc8ERERdVZtksw3h76+Pvbs2YOdO3ciNjYWu3fvhoGBAZycnLBkyRK5PcuBuvXj+/btQ1BQEE6ePIm0tDTY2NggODgY5eXlCsk8AIwdOxYxMTHYtWsXLly4gMTERBgaGsLc3BxeXl6t3uc8Pj4eubm5CmVSnp6ecsl8c1hZWWH58uW4ePEizp8/j5KSEohEItjb28PHxwdubm6NtuHu7o5du3YhJCQEsbGx6Nq1K1xcXBAcHAx/f/8Gl0K01oYNG2BlZYX4+HiEh4fD0tISPj4+WLx4sVwfERE1m2F37jFPREREnZaWIAiCuoMg9aioqMCoUaMgFotx6NAhdYejQPq0w4tOJBJpTKwdFcdAvV6E/tcq/B3aJfcgeaU3hB7Kt0PtyF6EMejsOAbqxf5XP46BerH/1U/VYyASNX5TQu135qntPXnyBBKJRO4OfG1tLTZu3IinT5/KvZOAiEgTCT1sUNsJk3giIiLqvJjMdwJZWVmYO3cu3Nzc0KtXLzx+/BiXL1/G77//DltbW8yfP1/dIRIREREREVEzMJnvBMzNzTFlyhQkJyfj7NmzqKmpgaWlJXx9fREQECB7UR8RERERERFpBibznUD37t2xYcMGdYdBREREREREKqKt7gCIiIiIiIiIqHmYzBMRERERERFpGCbzRERERERERBqGyTwRERERERGRhmEyT0RERERERKRhmMwTERERERERaRgm80REREREREQahsk8ERERERERkYZhMk9ERERERESkYXTVHQAREVFTZRVnILf8T1gZ90UfkZ26wyEiIiJSmw51Zz46Ohp2dnaIjo5uVTt2dnaYP3++iqJqP0lJSbCzs0NoaKi6QyEiUpmSyke4V3Ibq47PwqIYd3xyaiEWxbhj1fFZuFdyW93hEREREalFq+7M5+TkYPz48QAAMzMznD59Gjo6Ogr1MjIyMHPmTABAv379cOLEidZc9oVy69YtxMfH4/z588jOzkZ5eTnMzc0xevRoBAQEwNzcXN0hEhFpjMrqxwplbx4YDG0tbbyk9zI+/scOvGbugv/lX8SWxNXwi3HHkXmNJ/QGei+1RbhEREREaqOSx+x1dXVRUFCAc+fOwd3dXeH44cOHoauri5qaGlVc7oXy6aefIjU1Fa+99hqmTZsGPT09pKam4sCBAzhx4gT279+PAQMGtEssDg4OiI2NhUgkapfrERGp2ox9yv+9lAgSvD9qI9z71f0w7N5vJgRBwBenl9R7zvNO+eapNE4iIiIidVNJMu/o6Ij09HRERUUpJPPPnj3D0aNHMWbMGPzyyy+quNwLZebMmfj666/Ru3dvufIdO3Zg8+bNCAwMxI4dO9olFgMDg3b74YCIqL29Zu4i97dDT1c1RUJERESkfipJ5vX19TF16lRER0ejqKgI3bt3lx375ZdfUFxcDG9v73qT+crKSnz//fc4fvw4cnNzYWBggKFDh2Lp0qUYNmyYQv2SkhIEBQXh1KlTePz4MWxsbLB06dIGY0xPT8f27duRkpKCkpISmJqaYty4cVi2bFmr7mTPmzdPafmiRYuwbds2pKSktLhtqaqqKuzfvx8//vgjcnNzIZFI0KNHDzg4OGDJkiWws6t7CVRSUhIWLFiAZcuWYfny5XJtJCcnY+vWrbh58yb09fXh6uqKNWvWYPXq1UhOTkZGRoasbmhoKMLCwrB3717k5ORg9+7dyMrKgomJCXx8fLBgwQIIgoC9e/fiwIEDyM3NhaWlJQICAjBr1iy56969exeHDh3ChQsXcP/+fTx58gSWlpaYOHEiAgIC8NJLfPSViP5ydP4dhTLpnff/5V+U3ZkHgNS8CwCAb2acQO9XbNsnQCIiIqIXhMreZu/t7Y2IiAgcPXoUCxculJVHRUWhR48eGDt2rNLznj17Bh8fH1y7dg2DBg3CwoULUVhYiLi4OCQmJiI4OBiTJk2S1a+srMT8+fORmZkJR0dHvP7663jw4AFWrlyJUaNGKb1GQkIC3n//fejo6GDcuHHo2bMn7ty5g/DwcJw7dw6RkZHo1q2bqroCAKClpQVtbW1oayu+Y/Cjjz5CTEwMNmzYAC8vr0bbWrNmDeLi4mBnZwcvLy906dIFDx48QFJSEtzc3GTJfH3OnTuHJUuWQEdHB1OnToWpqSmSk5Mxd+5cvPzyy/Wet2fPHiQnJ2P8+PFwdnbGzz//jC+//BIGBgZIT0/HiRMnMHbsWLi4uCA2NhZr1qxBr1694OTkJGvj5MmTiIqKgrOzM0aMGAGJRILr169j586dSElJQXh4OPT09BrtAyLqHJStbT/8zxtY/4sfQi78G4IgwKGnK1LzLiD04n/g0NMVdqZD2z9QIiIiIjVTWTI/ZMgQ2NraIioqSpbM5+fnIzExEQsXLoSurvJL7dy5E9euXcOMGTOwadMmaGlpAQAWLlyI2bNnY926dRg5ciSMjIwAAN9//z0yMzMxZ84cfP7557J2Zs2ahUWLFim0X1xcjNWrV6N79+44cOAALC0tZceOHTuGDz74ACEhIfj4449V1RUAgBMnTuDx48eYMmVKq9opLy/HiRMnMHjwYERGRsq9YLC2thaPHyu+LOp5tbW1+OSTTyCRSPDDDz9gyJAhsmP//ve/G3zz/+XLlxETEwNra2sAdU8bTJw4EYGBgejRoweOHj0qewrDy8sLs2fPxq5du+SSeQ8PD/j4+KBLly5ybYeFhSE0NBRxcXGylyMSESnzioEJPh2/C/93+l18cXqJrHy4pTv+M3abGiMjIiIiUh+Vbk3n5eWFjIwM3LhxA0DdVnG1tbXw9vau95yYmBjo6enhww8/lCXyADBw4EB4enqitLQUCQkJsvIff/wRenp6eO+99+TacXNzg6ur4vrJI0eOoKKiAqtWrZJL5AFg+vTpGDRoEI4fP96iz1ufBw8e4Msvv0TXrl2xYsUKheOrVq1CbGwsJk6c2GhbWlpaEAQBXbp0UdgpQEdHp8E760BdQp6bm4vx48fLJfIAsGLFCqW7D0jNnz9flsgDgIWFBYYPH47y8nIEBATILadwcHCAtbW13OP6AGBubq6QyAN/LU+4cOFCg/ETEQFAt649EDglAp+P34O5Q1bg8/F7EDglAt269lB3aERERERqobI780DdXdigoCBERUVh8ODBiImJwZAhQ2BjY6O0fkVFBbKzszFgwAD07NlT4bizszMiIiKQnp4ODw8PVFRUICcnBzY2NjA1NVWo7+TkpJAcXrt2DQBw/fp13Lt3T+GcqqoqFBcXK6z1b6mSkhL4+/ujsLAQgYGB6N+/v0IdMzMzmJmZNak9IyMjjB49GmfPnoWnpycmT54MJycnODg4KE2S/y49PR1A3UsK/65nz56wsLBATk6O0nNfffVVhTJpvw8cOFDpsdTUVLkyQRAQFRWFmJgY3L59G+Xl5ZBIJLLjBQUFjX4GIurcSiofoayqGFsS/4XU/IuycgdzF7w/ahPXyxMREVGnpNJkvkePHhgzZgyOHz+OcePGISsrC76+vvXWr6iokJ2njImJCYC6R82fr19f0q2sndLSUgDA/v37G4y9srKyweNNUVpainfeeQe3b9/GZ599Bg8Pj1a3CQAhISHYvn07jh07huDgYADASy+9BG9vb6xatQoGBgb1nttYn5mYmNSbzEuXNjxPulyivmN/337wiy++QHh4OCwsLDBu3DiYmprKfoQICwvDs2fP6o2diDqfttpnHuBe80RERNSxqDSZB+pehJeQkIC1a9eia9eumD59er11pQlhYWGh0uPScmk96X+LiooarK/sGkePHoVYLG7ip2i+kpISvPPOO0hLS8Mnn3yCt956S2VtGxoaYuXKlVi5ciWys7ORlJSEgwcPYu/evaiqqsL69evrPbexPnv06JHK4vy7wsJC7N+/H3Z2doiIiJD70eHhw4cICwtrs2sTkWZqq33mAe41T0RERB2LStfMA4C7uztMTU2Rn5+PSZMmKb2DK2VkZARra2vcu3cP+fn5CseTk5MB/PVIt5GREXr16oWsrCw8fPhQof6lS5cUyhwcHAD89bh9W3g+kf/444/x9ttvt9m1rK2t8eabbyI8PByGhob1bvcnJe27q1evKhzLy8tDXl7b/c9tdnY2BEHAyJEjFZ4eUDZWREQN4T7zRERERH9R+Z15XV1dbNu2DQUFBbC3t2+0/qxZsxAaGorNmzcjMDBQ9hK8zMxMREdHw9jYGBMmTJDV9/DwwDfffIOQkBC5t9mfO3dO6cvUvL298e233yI4OBiOjo6wtZVfW1lZWYmMjAwMHTq0RZ+3pKQEPj4+uHXrFtauXVvvvvPPKygoQHl5OczMzGBsbNxg3aKiIuTk5Mh+lJAqLS1FdXU19PX1Gzx/+PDhsLS0REJCAlJTU+Xa2bp1q8Jj8aokfeHg1atXIZFIZNv05eXlYfPmzW12XSLSXNxnnoiIiKhpVJ7MA1BIPBuyePFinDlzBkeOHMGdO3fg6uqKoqIixMXFoaamBoGBgXJ39/38/HDy5ElERkbi9u3bsn3mpXuenz59Wq797t27IygoCCtWrICHhwdGjx6N/v37o6qqCvfv30dycjIcHR2xa9euFn3W5cuX49atW+jfvz9KS0sRGhqqUGfhwoVyb50PCgpq8j7z+fn5mD17NmxtbWFvbw9zc3OUlJQgISEB1dXV8PPza/B8HR0dfPbZZ3j33Xcxb948TJs2DSYmJkhJSUF+fj4GDhyo8AZ6VTEzM8PkyZMRHx8Pb29vuLi4oLCwEKdPn4aLiwuys7Pb5LpEpLm4zzwRERFR07RJMt8c+vr62LNnD3bu3InY2Fjs3r0bBgYGcHJywpIlS+T2LAfq1o/v27cPQUFBOHnyJNLS0mBjY4Pg4GCUl5crJPMAMHbsWMTExGDXrl24cOECEhMTYWhoCHNzc3h5ebVqn/Pc3FwAwB9//FHvGnBPT89Gt5Crj5WVFZYvX46LFy/i/PnzKCkpgUgkgr29PXx8fODm5tZoG+7u7ti1axdCQkIQGxuLrl27wsXFBcHBwfD3929wKURrbdiwAVZWVoiPj0d4eDgsLS3h4+ODxYsXIz4+vs2uS0QdB/eZJyIiIlKkJQiCoO4gSD0qKiowatQoiMViHDp0SN3hKCguLlZ3CE0iEok0JtaOimOgXu3Z/1nFGcgt/xNWxn3RR2TXLtfUBJwD6scxUC/2v/pxDNSL/a9+qh4DkUjUaB2135mntvfkyRNIJBK5O/C1tbXYuHEjnj59KvdOAiKiF1kfkR2TeCIiIiIwme8UsrKyMHfuXLi5uaFXr154/PgxLl++jN9//x22traYP3++ukMkIiIiIiKiZmAy3wmYm5tjypQpSE5OxtmzZ1FTUwNLS0v4+voiICAAhoaG6g6RiIiIiIiImoHJfCfQvXt3bNiwQd1hEBERERERkYpoqzsAIiIiIiIiImoeJvNEREREREREGobJPBEREREREZGGYTJPREREREREpGGYzBMRERERERFpGCbzRERERERERBqGyTwRERERERGRhmEyT0RERERERKRhmMwTERERERERaRgm80REREREREQahsk8ERERERERkYZhMk9ERERERESkYZjMExEREREREWkYJvNEREREREREGobJPBEREREREZGGYTJPREREREREpGGYzBMRERERERFpGC1BEAR1B0FERERERERETcc780REREREREQahsk8ERERERERkYZhMk9ERERERESkYZjMExEREREREWkYJvNEREREREREGobJPBEREREREZGG0VV3AESaICUlBb/88gtu3LiBtLQ0VFRUwNPTE1999VWL2jt79ix27NiBmzdvQhAEDB48GP7+/hg9erSKI+9YHj58iC1btuDMmTMoLS2FpaUlZsyYAX9/f3Tp0qXJ7djZ2dV77IMPPoC/v78qwtVYqampCA0NxbVr11BdXQ0bGxssXLgQM2bMaHIbEokEP/zwAyIiIpCVlQVDQ0M4Oztj5cqV6Nu3b9sF30G0dgySkpKwYMGCeo9HRERg6NChKoq2Yzly5AguX76MGzduIDMzE9XV1diwYQO8vLya1Q7nQMupYgw4B1ouPz8fcXFx+O233/DHH3/g0aNH6NatG4YNGwY/Pz8MGTKkyW1xHjSfqvqfc6DlysrKEBISgv/973/IyclBaWkpRCIR+vXrh7fffhuTJk2ClpZWk9pq6znAZJ6oCaKiohATEwMDAwNYWFigoqKixW399NNP+Ne//gWRSARPT09oaWkhLi4Ofn5+2LRpE2bOnKnCyDuOhw8fYs6cOXjw4AEmTJiAvn374vLly7KEZ8eOHdDWbvrDRlZWVvD09FQoHzZsmCrD1jhJSUlYtGgR9PT0MG3aNBgbG+Pnn3/Ghx9+iNzcXCxdurRJ7Xz66aeIjIyEjY0N5s2bh8LCQsTGxiIxMREHDx6EjY1NG38SzaWqMQCAESNGYMSIEQrlPXv2VGXIHcrWrVuRm5sLkUgEMzMz5ObmtqgdzoGWU9UYAJwDLbFv3z7s3LkTvXv3xsiRI9GjRw9kZWXh1KlTOHXqFDZv3oypU6c2qS3Og+ZTZf8DnAMtUVxcjKioKAwZMgTjx4/HK6+8gsLCQvz666947733MGfOHHz++edNaqvN54BARI1KTU0VMjMzhZqaGuHq1auCWCwW1qxZ0+x2SkpKBCcnJ8HZ2Vm4f/++rDw/P18YNWqU4OTkJJSUlKgy9A5j9erVglgsFvbv3y8rk0gkwpo1awSxWCwcPny4yW2JxWJh3rx5bRGmRquurhYmTJggDB48WLh586asvLy8XJg2bZpgb28v3L17t9F2Lly4IIjFYmHu3LlCVVWVrPz8+fOCnZ2d8Pbbb7dF+B2Cqsbg4sWLglgsFkJCQtow2o4pMTFRyMnJEQRBELZv3y6IxWIhKiqqWW1wDrSOKsaAc6Dl4uPjhZSUFIXylJQUYdCgQcKIESPkvtf14TxoGVX1P+dAy9XU1AjV1dUK5eXl5cLUqVMFsVgsZGZmNtpOe8wBrpknaoLXXnsNtra20NHRaVU7J06cQFlZGebNmwcLCwtZuZmZGRYsWICysjKcOHGiteF2OBUVFYiNjYW1tTX++c9/ysq1tLSwatUqaGtr49ChQ2qMsGO4ePEi7t27h+nTp8Pe3l5WbmRkhHfffRc1NTWIjo5utB3pWLz//vtyyx9cXV3h5uaGlJQU3L17V/UfoANQ1RhQy40cORJWVlataoNzoHVUMQbUcpMmTYKTk5NCuZOTE5ydnVFSUoKMjIxG2+E8aBlV9T+1nI6ODnR1FR9gNzIygpubGwAgKyur0XbaYw4wmSdqR8nJyQAg+4fgedL18tI69Jdr167h2bNnGDlypMIaJTMzM4jFYly/fh1VVVVNbrOsrAyHDh3Cd999h8jISPz5558qjlrzNPT9HDVqlFydhiQlJcHQ0FDpkgVp2ykpKa0JtcNS1RhI/fnnn9i7dy927NiBY8eOoaioSDWBUoM4B14cnAOqJU1wlCU6f8d5oHrN6X8pzgHVqaqqwsWLF6GlpdWkx+PbYw5wzTxRO5ImjH369FE4Ji1ryi99nY20T+p7UUifPn2Qnp6O7OzsJq89Sk9Px7p162R/a2lpYcaMGVi/fj0MDAxaHbMmauj72a1bN4hEoka/n0+ePMHDhw8hFouVPskiHUP+eKKcKsbgeceOHcOxY8dkf3ft2hXLly+Hn59fq2Ml5TgHXiycA6pz//59nD9/HqamphCLxQ3W5TxQveb0//M4B1qurKwMe/bsgUQiQWFhIX777Tc8ePAAy5Yta/Tlde01B5jME7Uj6YvzjI2NFY4ZGhpCR0cH5eXl7R3WC0/aJ8r6Dah77On5eo3x9fXFG2+8gT59+kBLSwtpaWkIDg7GTz/9hNraWgQFBakmcA3T0PcTqOvnvLy8BtuQjoF0TJS18fy1SJ4qxgAAunfvjtWrV2Ps2LGwtLREWVkZkpKS8PXXX2PTpk0wMjLCW2+9pdLYqQ7nwIuBc0C1qqursXr1ajx79gwffvhho8sOOQ9Uq7n9D3AOqEJZWRnCwsJkf+vp6WH16tXw9fVt9Nz2mgNM5qnTkK4zaqq9e/fC2dm57QLqhF6UMVizZo3c3y4uLti9ezc8PDxw/PhxBAQEwNbWVuXXJWovtra2ct9hAwMDzJw5EwMHDoSXlxdCQ0MxZ86cZu0AQaRJOAdURyKR4D//+Q9SUlIwZ84czJo1S90hdSot7X/Ogdbr1asXMjIyUFtbiwcPHiA2NhbBwcG4evUqtmzZ0qzlDm1F/REQtZPp06fj8ePHTa5vYmKi8hiev4MsEonkjj158gS1tbX13pHrCFo6BtI+qe/Oe2N3M5vCwMAA06ZNw7Zt23DlypVOmcw39oRDRUVFo30sPV7fL83S8vp+qe7sVDEGDRGLxRgyZAguXbqErKws9OvXr8VtkXKcAy82zoHmEQQB69atw08//YSZM2fiv//9b5PO4zxQjZb2f0M4B5pPR0cHvXr1gr+/P7S1tbFp0yZERkZi7ty59Z7TXnOAyTx1Gh9//LG6Q0Dfvn1x48YNZGVlKSTz0nWwytbKdhQtHQNpn9S3rigrKwva2tqwtrZuaWgAIBuTysrKVrWjqaTrt7KysjB48GC5Y6WlpSguLoajo2ODbRgaGsLU1BQ5OTmora1VeBRQOoaNrTXrrFQxBo2Rfs+fPn3aqnZIOc6BFx/nQNNIJBKsXbsW0dHRmD59Or766qsm38XlPGi91vR/YzgHWs7NzQ2bNm1CcnJyg8l8e80BPldB1I5ef/11AMC5c+cUjp09exYAMGLEiHaNSRMMHToUXbp0wfnz5yEIgtyxgoICZGZmYsiQIdDX12/Vda5fvw6g7rGqzqih72diYiKApn0/R4wYgSdPnuDKlSsKx6RtS69F8lQ1BvWpqalBWloatLS05LbHJNXiHHhxcQ40zfOJ5NSpU7Fx48Zmb8/LedByquj/+nAOtE5+fj4ANGk82mMOMJknagOVlZW4c+cO7t+/L1f+xhtvwNjYGOHh4Xjw4IGsvKCgAHv37sXLL7+MKVOmtHe4LzwjIyNMnToV2dnZOHDggKxcEAQEBQVBIpFg9uzZcufUNwZpaWlK77zHxcXh+PHjEIlEcHV1bZsP8oJzdXWFtbU1jh07hlu3bsnKKyoqsG3bNujq6sLT01NWXlRUhDt37ihsczNnzhwAwJYtW/Ds2TNZ+YULF3Du3Dm8/vrrfKyvHqoag6tXryr88FVTU4ONGzciNzcXbm5ueOWVV9r0s3QGnAPqxzmges8nklOmTMGmTZsaTFw4D1RLVf3POdByt27dUrrcraSkBMHBwQCAMWPGyMrVOQe0hL+PMhEpuHTpEg4fPgygbsKeOXMGvXv3xvDhwwEA/fv3h7+/v6x+UlISFixYgBEjRmDfvn1ybR05cgSrV6+GSCTCtGnToKWlhbi4ODx69AgbN26Eh4dH+30wDVJQUIA5c+YgLy8PEydORN++fXHp0iVcuXIFbm5u2Llzp9zjZ/WNwUcffYRTp07B1dUVFhYWEAQBaWlpuHTpEvT19REaGgp3d3d1fMQXwsWLF+Hn5wc9PT1Mnz4dRkZG+Pnnn5GTk4P3338fAQEBsrqhoaEICwvDsmXLsHz5crl21q1bh0OHDsHGxgbu7u4oLCxEbGws9PX1cfDgwSZvIdgZqWIMxo0bBwBwdHSEubk5ysvLkZKSgrt378LS0hLh4eGwsrJq98+mCQ4dOoTLly8DADIzM3Hz5k0MGzZMttxnwoQJmDBhAgDOgbaiijHgHGg5aZ8aGhpiwYIFSl/yNWHCBLz66qty9TkPVENV/c850HJffvklDh8+DGdnZ1haWsLAwAD379/H6dOn8eTJE0yePBlbtmyR/X+nOucA18wTNcG9e/cQExOjUHbv3j0AdY/RPJ/MN8TDwwMikQg7duxAdHQ0AGDQoEH46quvMHr0aNUG3oGYmZkhMjISW7ZswZkzZ/Drr7/C0tISy5cvl72QpCnGjx+PsrIy3Lx5E2fPnkVNTQ3Mzc3x5ptvwtfXFwMGDGjjT/Jic3FxwQ8//ICQkBDExcWhuroaNjY2WLFiBWbOnNnkdtavXw87OztERERg3759MDQ0xD/+8Q+sXLmSd2IaoYoxeOutt3D27FkkJyejuLgYurq66N27N5YuXQpfX19069atjT+F5rp8+bLCv/dXrlyRPSZpZWUlSyQbwjnQcqoYA86BlsvNzQVQ92Le7777TmkdKysrWTLZEM6D5lNV/3MOtNzkyZNRUVGBa9euISUlBU+fPkW3bt0wfPhwzJo1S3Yzrinaeg7wzjwRERERERGRhuGaeSIiIiIiIiINw2SeiIiIiIiISMMwmSciIiIiIiLSMEzmiYiIiIiIiDQMk3kiIiIiIiIiDcNknoiIiIiIiEjDMJknIiIiIiIi0jBM5omIiIiIiIg0DJN5IiIiIiIiIg3DZJ6IiIiIiIhIwzCZJyIiIiIiItIwTOaJiIiIiIiINMz/A+jVcrEpbBS8AAAAAElFTkSuQmCC\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/MAAAH/CAYAAAAboY3xAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdeVTVdf7H8RcKCYgiXEVGLDdcSBFMTHFFTWtyAbFsmVE0HctJLZep/JnVZJNhCY6alWuoxegIVw65pGLmoJZLo5ULOJaiZmCyCIULen9/cO7N2wXlAgrXno9zOMb38/l+vu/P9R5P7+9nczKZTCYBAAAAAACHUaOqAwAAAAAAAPYhmQcAAAAAwMGQzAMAAAAA4GBI5gEAAAAAcDAk8wAAAAAAOBiSeQAAAAAAHAzJPAAAAAAADoZkHgAAAAAAB0MyDwAAAACAgyGZBwAAAADAwZDMAwAAu507d05vvvmm+vfvr8DAQHXu3FmjR4/Wf/7zH7va+fe//63WrVurdevWmj59ernjOX78uKZMmaLu3bsrMDBQDzzwgKKjo3XhwoUS61+9elX//Oc/1atXL7Vr106DBg3S5s2bS23/6NGjuvfeexUdHV2u+L788ktLP2/k9OnTlnqnT5+2KnvppZcsZeafoKAgde/eXcOGDdPrr7+u3bt3y2Qyldr+/Pnz1bp1aw0fPrxc/QAAVB8k8wAAwC5paWmKiIhQXFyczp49q5YtW8rT01OpqakaM2aMFi1aVKZ2srOz9c4771Q4ni+++EKRkZH65JNPdPXqVbVs2VI//fSTli1bpsjISP30008298TExGjhwoXKz89Xs2bN9N1332nixIlKSUkp8Rmvv/66vL299eyzz1Y43ooyGAy67777dN9996l169by8PDQ4cOH9dFHH2nkyJGKiIhQWlpaVYcJALjFSOYBAECZFRUVaeLEifrpp590//336/PPP1diYqI2b96sDz/8ULVr11ZMTIz27t1707befPNNXbhwQWFhYeWOp6CgQJMmTdLFixc1fPhw7dixQ4mJifrss89033336dSpUzYj/tnZ2Vq5cqX8/Py0efNmJScn68MPP5STk5PmzZtn84x169Zp//79+tvf/iYPD49yx1pZevbsqfj4eMXHx2vNmjXatGmT9u3bp/nz56tVq1Y6evSoHnvsMR0+fLiqQwUA3EIk8wAAoMy2b9+uEydO6K677tJbb70lb29vS1loaKieeeYZmUwmLViw4Ibt7Nq1S8nJyXrsscfUrl27csfzr3/9S9nZ2WrRooWmTZsmFxcXSZKXl5fmzJkjZ2dnbd++XYcOHbLck56erkuXLikyMlL169eXJHXq1EkdO3bU0aNHVVBQYKlbUFCgd955Rx07dlR4eHi547zVXF1d1b9/f/373/9WaGioCgsL9fzzz+vq1atVHRoA4BYhmQcAAGX21VdfSZICAwPl5+dnU/7ggw9Kkvbs2aPz58+X2MalS5f02muvyWAwaPLkyRWKZ8uWLZKkIUOGqGbNmlZljRo1UmhoqCTp008/tVzPzs6WVDxd/XoNGjSQJP3888+WawsWLFB2drZmzJhRoThvF1dXV7399tu66667dPLkSW3atKmqQwIA3CIk8wAAoMzMG8o1bNiwxHLz9WvXrumbb74psc7ChQt18uRJvfDCC6pbt265YykqKrKMuN93330l1jFfP3jwoOXaH/7wB0nSiRMnrOp+//33cnZ2Vr169SQVb6q3atUqPfbYYwoICCh3nLdbgwYN9MADD0gqnkkBALgzkcwDAIAyq1OnjiQpMzOzxPLrr3///fc25cePH9fSpUsVEhKiiIiICsVy5swZXblyRZJ09913l1jHfP3kyZOWa23atJHBYNDatWu1a9cuFRQUKC4uTkeOHFFISIhq1aolSZo5c6Y8PDz0/PPPVyjOqtCxY0dJKvWFCgDA8TlXdQAAAMBxBAYGSpK+/fZbnT171jLKbXb98W55eXlWZSaTSa+88opMJpNeffXVCsdyffuenp4l1jGP/F9f183NTZMnT9b06dM1atQoy3V3d3e99NJLkqSNGzdq9+7dmjlzpqXtK1euKCcnR/Xq1dNdd91V7rhvdjxdZfD19ZX065ICAMCdh2QeAACUWd++feXj46OsrCxNmTJFc+fOlY+Pj6TiKd3vv/++pe6lS5es7l27dq327dunp556Sq1atapwLJcvX7b8t3nju98yJ92/jeWRRx6Rj4+PEhMTlZ2draZNm2rkyJFq3ry5CgsLNXv2bLVr106PPPKITCaT5s6dqxUrVuiXX36Ru7u7hg8frkmTJsnJycnuuEtbEmDu07fffmt3m7/l7u4uyXr9PwDgzkIyDwAAyqxWrVqKjY3V2LFjtX//fvXu3VvNmjVTXl6esrKy1KhRIwUEBGjv3r2WhFL69Ux5X19fjR8/vlJiuX50/MqVK5bp8dczJ/wllfXs2VM9e/a0uf7+++/r7Nmzmjt3rmrUqKGFCxfq/fffV+/evfXggw9q8+bN+uCDD+Tm5qZx48bZHXd8fHypZadPn1bfvn3tbvO3fvnlF0mqFkfpAQBuDdbMAwAAu4SEhMhoNGro0KGqX7++ZSO5xx9/XAkJCZbj0MzHvknS22+/rdzcXE2bNk21a9eulDiun1r/2yn9ZuYN+0qbhv9bGRkZWrZsmYYMGaKgoCBduXJFy5cvV5MmTbRw4UINGTJE7777rpo0aaLly5erqKio4h25BX744QdJsjo6EABwZ2FkHgAA2K1JkyZ68803ba4XFRXp6NGjkqS2bdtarh8+fFhS8aZyM2fOtLrHPIr8ySefWHZf37lz501j8PPzk4uLi65cuaJTp05Zpvtf79SpU5Z4y+If//iHatWqpalTp0qSvvvuO124cEEDBw5UjRrFYyA1atRQt27d9PHHH+v7779Xy5Yty9T27bR//35JUvv27as4EgDArUIyDwAAKk1qaqp++eUX+fj4WCXzZj/99FOp9168eFEXL14s87OcnZ1177336uDBg/rqq68sO7hf76uvvpIkBQUF3bS9zz77TNu3b9f06dMtZ9CbXzT8djaB+XfzyH91kpWVpW3btkmSevXqVcXRAABuFabZAwCASnH58mXNmzdPkvTEE0+oZs2alrKkpCSlpaWV+GNeQ//II49YrpVVv379JElGo9Eyvd/shx9+0O7duyVJ/fv3v2nsb775plq1aqUnn3zSct28W39GRoZVffPvXl5eZY71drh48aJeeOEFXb58WU2bNtWDDz5Y1SEBAG4RknkAAGCXzz//XAcPHrS6dvbsWT377LM6dOiQ/P39NWbMmEp73qZNm9SnTx898cQTNmVPPPGEvLy8dPz4cc2aNcty7nxOTo6mTJmioqIi9ezZU+3atbvhMxYvXqyMjAzNmDFDzs6/Tlxs2LCh/vCHP+izzz6zLB9IS0vTZ599pgYNGqhp06aV1s+KuHjxorZs2aJHH31Uu3fvlru7u/75z39avVABANxZmGYPAADskpqaqhUrVsjT01N+fn66dOmSvvvuO5lMJvn7+2vZsmUVOof9t3755RedOXOmxDIPDw/Fxsbq6aef1sqVK7V+/Xr94Q9/0HfffafCwkL5+fmVuLb/ej/88IMWL16sAQMG6P7777cqc3Jy0vjx4zV9+nQ98sgjatasmU6cOKHLly/r2Weftayjv5127NhhebFx7do15eXl6fTp05YXGQEBAZo9e3alHP8HAKi+SOYBAIBdHnjgAZ07d05ff/21jh8/rrvuukuBgYF6+OGH9ac//alSE/myCA0NVUJCgt577z198cUXSk9PV8OGDdWvXz+NGzfupjvZv/XWW3JyctKLL75YYvkjjzyiS5cuKS4uTt9//70aNWqkUaNGlThT4HY4f/68zp8/L6n4yL06dero3nvvVbt27dSvXz+FhoZWSVwAgNvLyWQymao6CAAAAAAAUHasmQcAAAAAwMGQzAMAAAAA4GBI5gEAAAAAcDAk8wAAAAAAOBiSeQAAAAAAHAzJPAAAAAAADoZkHgAAAAAAB+Nc1QEApcnJyanqEAAbnp6eysvLq+owgFLxHUV1x3cU1RnfT1QXXl5eN63DyDwA2KFGDf7ZRPXGdxTVHd9RVGd8P+FI+LYCAAAAAOBgSOYBAAAAAHAwJPMAAAAAADgYknkAAAAAABwMyTwAAAAAAA6GZB4AAAAAAAdDMg8AAAAAgIMhmQcAAAAAwMGQzAMAAAAA4GBI5gEAAAAAcDAk8wAAAAAAOBiSeQAAAAAAHAzJPAAAAAAADoZkHgAAAAAAB0MyDwAAAACAgyGZBwAAAADAwZDMAwAAAADgYEjmAQAAAABwMCTzAAAAAAA4GOeqDgAAHNX3J0w6c0by85OaNXWq6nAAAADwO0IyDwBllJNrksl0TSdPXdM7c6QDB38tCw4yaeoUybOuk7zqkdgDAADg1mKavaTExES1bt1aiYmJFWqndevWGj58eCVFVXHz589X69at9eWXX1Z1KIBDKCw03fBnUIRJPXrnaMRI6fh30uuvOSkpwUmvv+ak499JI0ZKgyJu3AYAAABQGapkZP706dPq27evJMnHx0fbt29XzZo1beqlpaVp8ODBkqRmzZpp06ZNtzXO2yE5OVlxcXH63//+JxcXFwUHB2vixIkKDAys6tBuyvz3OGTIEL311ltVHQ5QYf3+WLZk+9o16W9TnNQnrHgEvk+YZDJJr/7ddNN2Urczag8AAICKq9KReWdnZ2VlZSk1NbXE8rVr18rZ+c5dCfD+++9r6tSpOn/+vB5//HH98Y9/1FdffaUnnniC0XSgmgv6zfu24PZVEwcAAAB+n6o0U+7QoYOOHj2qhIQE9erVy6rs8uXLSk5OVs+ePbVt27YqivDWOXHihObPn6+mTZtq7dq1qlOnjiRp+PDhevTRR/Xyyy9r48aNd/TLDKC62bLxxqPm14+4H/ymeETe7MDXZW8HAAAAqKgqHZmvVauWHn74YW3btk3Z2dlWZdu2bVNOTo6GDh1a6v2FhYWaP3++HnroIQUGBur+++/X2LFj9dVXX5VYPzc3V6+88oq6du2qoKAgDR06VFu2bLlhjEePHtWkSZPUvXt3tWvXTr1799bMmTOVk5Njf4evk5iYqKKiIo0bN86SyEtSy5YtFR4eroyMDH3xxRcVesb11qxZowEDBigwMFBhYWGaM2eOLl26VGLdsvQ5MTHRslTCaDSqdevWlh/zrILMzEzNmzdPw4YNU2hoqNq1a6c+ffrotdde0/nz5yutb0BlcXNzuuFP8jon/eczLwUHSTFzTUr5zKTz54v/jP2nScFBUvK6G7cBAAAAVIYq3wBv6NChunLlipKTk62uJyQkyGAwKCwsrMT7Ll++rJEjR2rBggVyd3dXVFSU+vbtqz179mj48OHavHmzVf3CwkINHz5cq1ev1j333KMRI0aoWbNmmjRpkj799NMSn5GSkqJHH31Un332me6//36NGDFCrVq10qpVq/T4448rLy+v3P3es2ePJKlbt242ZT169JAk7d271+r6Sy+9VK6N+pYvX65Zs2YpODhYI0aMUJ06dbRo0SL99a9/lclkvba3rH0OCAjQiBEjJElt2rTR+PHjLT9+fn6SpH379mn58uUyGAwaMGCAhg8frrvvvlvx8fF67LHHlJ+fb1c/gKrmVc9J3t419MbfndTSv3iNfPhQk179u0kt/aU3/s5O9gAAALg9qnwOd1BQkFq2bKmEhARFRUVJKh7R3blzp6KiokqdZr548WIdOHBAgwYN0ttvvy0np+L/gY6KirJMU+/atas8PDwkSUuWLFF6erqGDRummTNnWtqJiIjQ6NGjbdrPycnRCy+8IG9vb8XHx6tRo0aWsk8++URTpkzRvHnzNGPGjHL1+8SJE3J3d1eDBg1sypo0aWKpUxl27dqlhIQEtWzZUpI0adIkjR07VqmpqUpKSlJERIQk+/ocEBCgqKgorVixQgEBAZowYYLNc7t06aLU1FTVrl3b6vq6dev04osvatWqVRo3blyl9BG4nerVc1LsO06cMw8AAIAqU+Uj85IUGRmptLQ0ffvtt5KKp3BfvXr1hlPsjUajXFxcNHXqVEsiLxWPEg8ZMkR5eXlKSUmxXF+3bp1cXFw0ceJEq3a6d++u0NBQm/aTkpJUUFCgyZMnWyW1kjRw4EC1bdtW69evL1d/JamgoMBqev31zC8gCgoKrK5PnjxZGzZsUL9+/ex6Vnh4uCWRl4o3Hpw0aZKk4s/FrLL7bDAYbBJ5czweHh7atWuXXf0AAAAAABSr8pF5qTi5i4mJUUJCgtq1ayej0aigoCD5+/uXWL+goECnTp1SixYt5Ovra1PeuXNnrV69WkePHlV4eLgKCgp0+vRp+fv7lzgSHhISot27d1tdO3DggCTp4MGDysjIsLnn0qVLysnJUXZ2try9vcvTbbv5+PjIx8fH7vs6duxocy0wMFCurq46cuSI5dqt6PPmzZu1evVqHTp0SBcuXNDVq1ctZVlZWfZ2BahSObkmmUzXdPLUNb0zRzpw8Ney4CCTpk6Rmt5TLd6RAgAA4A5XLZJ5g8Ggnj17av369erTp49Onjypp556qtT65hFrg8FQYnn9+vUlybIm21y/tAS0pHbMa8M/+uijG8ZeWFh4w/LSeHh4lLpm3ByveYS+okr7nAwGgzIzMy2/V3afly1bpujoaHl7e6tbt27y9fWVq6urJCkuLk5XrlwpUzvA7VRYWPoZ8YMiTJJyVKOGVLu29PprTgoKLN7Z/u05Jo0YKX26vmxn1bMZHgAAACqiWiTzUvFGeCkpKZo+fbpcXV01cODAUuuak9zSdkQ3XzfXM//52x3zf1u/pGckJyerVatWZexF2TVt2lT//e9/de7cOZvZAidPnrTUqQw3+pyuf2FQmX0uKirSwoUL5ePjo6SkJKsXKSaTSUuWLKlQ+8Ctcv3xc6W5dk362xQn9QkrTsj7hEkmU/GGeGW5X5JSt5PMAwAAoPyqzXzQXr16qUGDBsrMzFT//v1vOCrt4eGhu+++WxkZGVYjy2bmneLbtGljqd+4cWOdPHlS586ds6m/b98+m2vt27eX9OvU88rWqVMnSdLOnTttyv7zn/9Y1amo/fv321z75ptvdPHiRQUEBFiu2dvnmjVrSpLV1HmznJwc5efnKzg42GZGhPnZgCMLCrT+Pbh91cQBAACA36dqk8w7Oztr4cKFevfddy2bs91IRESErly5ojlz5lgdr5aenq7ExETVqVNHDzzwgOV6eHi4rly5onnz5lm1k5qaarNeXiqeKVC7dm3Fxsbq2LFjNuWFhYUVSvQjIyPl7Oys9957z2q6/bFjx5SUlKR77rlHXbp0sbonKytLx48ft/tIt6SkJKs+FBUVKTY2VpIsO9lL9ve5bt26cnJy0o8//mhT12AwyNXVVYcOHbKalp+Xl6c33njDrviB22nLRqdSf6538Bvr+w58Xfznkvdv3EZJbQEAAAD2qjbT7KVfR4bL4i9/+Ys+//xzJSUl6fjx4woNDVV2drY2btyooqIiRUdHW43ujxkzRlu2bNGaNWt07NgxderUSWfPntWmTZsUFham7du3W7Xv7e2tmJgYPffccwoPD1ePHj3UvHlzXbp0ST/88IP27NmjDh06aOnSpeXqa7NmzTR+/HjNnTtXgwcP1oMPPqhffvlF69evV1FRkWbOnGlzLF9MTIyMRqNmzZqlyMjIMj+ra9euGjZsmAYMGCBPT0/t2LFD6enp6t69u8LDw8vd59q1ayswMFD79u3TtGnT1KRJE9WoUUMDBw5Uo0aN9OSTT2rZsmUKDw9X7969VVBQoB07dsjPz69cG/kBt8ON1rInr5PqedbThOdzFDPXJJOpeET+wNdS7D9NCg6S2rSpNu9IAQAAcAerVsm8PWrVqqW4uDgtXrxYGzZs0Icffig3NzeFhITo6aefVkhIiFV9d3d3rVy5UjExMdqyZYsOHz4sf39/xcbGKj8/3yaZl6SwsDAZjUYtXbpUu3fv1s6dO+Xu7q6GDRsqMjJSgwcPrlAfxo0bJz8/P8XFxSk+Pl4uLi7q0KGDJk6caNeLjZsZNWqUevfurRUrVigjI0Pe3t4aO3asnn32Watj/ST7+zx79mzNmjVLW7duVX5+vkwmk4KCgtSoUSNNnjxZnp6eMhqN+vjjj1W/fn0NGDBAEyZM0KBBgyqtf8Dt4lXPSV5eNfTG35309zdMevXvv84K6hQivfoyI+4AAAC4PZxM189RB6qRnJycqg4BsOHl5WX5bn5/wqQzZyQ/P6lZUxJ5VA/Xf0eB6ojvKKozvp+oLry8vG5ax2FH5gGgqjVr6qRmTas6CgAAAPwesbgTAAAAAAAHQzIPAAAAAICDIZkHAAAAAMDBkMwDAAAAAOBgSOYBAAAAAHAwJPMAAAAAADgYknkAAAAAABwMyTwAAAAAAA6GZB4AAAAAAAdDMg8AAAAAgIMhmQcAAAAAwME4V3UAAFBRTuf/pxq5GbpW7x6ZDP5VHQ4AAABwy5HMA6h+fskuW73CXLlufVXOZ/ZZLhX5hejiA3+X3Ord/H5373IGCAAAAFQtknlJiYmJmjZtmmbNmqXIyMhyt9O6dWvdf//9WrlyZSVGV37z58/XggULtGLFCnXu3Lmqw8Gd4Movt+UxHu93K1M9k1MN6a46KhwYq2t+HVXjzH65bnlVtVcMkpPp2k3vL5iw3+7YTJfvKt/n4OJu/z0AAABAKaokmT99+rT69u0rSfLx8dH27dtVs2ZNm3ppaWkaPHiwJKlZs2batGnTbY3zViosLFR8fLwOHTqkQ4cO6cSJEzKZTEpJSVHjxo2rOrwyMf89DhkyRG+99VZVh4PbwGN+x6oOwYqT6ZoK+72mq60ekiRdbfWQLplMcl0/uUz3l6c/RZI87L5LKph8pBx3AQAAACWr0g3wnJ2dlZWVpdTU1BLL165dK2fnO3PywPnz5xUdHa1PPvlEly9flqenZ1WHBDika37WCfnVxiFVFAkAAABw+1RpptyhQwcdPXpUCQkJ6tWrl1XZ5cuXlZycrJ49e2rbtm1VFOGt4+XlpWXLlqlt27aqV6+eRo8eXepLDaC6KM+09PKwZ8S8xpn9lpF5Sap5et8NalsrT3/q1aun3Nxcu+8DAAAAKlOVJvO1atXSww8/rMTERGVnZ8vb+9fNqLZt26acnBwNHTq01GS+sLBQS5Ys0fr163XmzBm5ubkpODhYzzzzjO677z6b+rm5uYqJidHWrVv1888/y9/fX88888wNYzx69Kg++OAD7d27V7m5uWrQoIH69Omj8ePHy8vLq9x9r127trp1K9u64MqwZs0axcXFKSMjQwaDQYMGDdL48eNVq1Ytm7pl6bN5nwFJMhqNMhqNlvvNa/QzMzO1evVqpaam6tSpU8rPz5ePj4969uypCRMmyGAw3J7Oo/LcpnXfBc/sLFM91+TnVCtlpi6bTLraOEQ1T+/TXdveUFHjTro4cO7NGyhHf5zuqi25XLb7PgAAAKAyVfkc9qFDh2r16tVKTk5WVFSU5XpCQoIMBoPCwsJKvO/y5csaOXKkDhw4oLZt2yoqKkrnz5/Xxo0btXPnTsXGxqp///6W+oWFhRo+fLjS09PVoUMHderUSWfPntWkSZNKTapTUlL0/PPPq2bNmurTp498fX11/PhxrVq1SqmpqVqzZs1tnR7/0ksvyWg02r1R3/Lly/Xll1/q4YcfVlhYmHbs2KFFixbp8OHDWrJkiZycnCx1y9rngIAAjRgxQitWrFCbNm30wAMPWNrw8/OTJO3bt0/Lly9Xly5d1L59e7m4uOjw4cOKj49XamqqjEaj6tSpU3kfEO4cZdxl/uLgeXLdMNVqjXxRk666+PA7klv5X7YBAAAA1V2VJ/NBQUFq2bKlEhISLMl8Zmamdu7cqaioqFLXzC9evFgHDhzQoEGD9Pbbb1sS0qioKD366KN6+eWX1bVrV3l4FG9VtWTJEqWnp2vYsGGaOXOmpZ2IiAiNHj3apv2cnBy98MIL8vb2Vnx8vBo1amQp++STTzRlyhTNmzdPM2bMqLTP4lbZtWuXEhIS1LJlS0nSpEmTNHbsWKWmpiopKUkRERGS7OtzQECAoqKitGLFCgUEBGjChAk2z+3SpYtSU1NVu3Ztq+vr1q3Tiy++qFWrVmncuHG3sOe447l56eLQpZwzDwAAgN+dKt0AzywyMlJpaWn69ttvJRVP4b569aqGDh1a6j1Go1EuLi6aOnWq1chymzZtNGTIEOXl5SklJcVyfd26dXJxcdHEiROt2unevbtCQ0Nt2k9KSlJBQYEmT55sldRK0sCBA9W2bVutX7++XP0tr8mTJ2vDhg3q16+fXfeFh4dbEnmpeOPBSZMmSSr+XMwqu88Gg8EmkTfH4+HhoV27dtnVDwAAAABAsSofmZeKk7uYmBglJCSoXbt2MhqNCgoKkr9/ySNsBQUFOnXqlFq0aCFfX1+b8s6dO2v16tU6evSowsPDVVBQoNOnT8vf318NGjSwqR8SEqLdu3dbXTtw4IAk6eDBg8rIyLC559KlS8rJybFZ638r+fj4yMfHx+77Ona03UwsMDBQrq6uOnLk1+OybkWfN2/erNWrV+vQoUO6cOGCrl69ainLysqytyv4Pfglu+x1C3PluvVVOZ/5ddO7Ir8QXXzg75JbvZvfX8bp/AAAAEB1Uy2SeYPBoJ49e2r9+vXq06ePTp48qaeeeqrU+gUFBZb7SlK/fn1JUn5+vlX90hLQktrJy8uTJH300Uc3jL2wsPCG5dVBaZ+TwWBQZmam5ffK7vOyZcsUHR0tb29vdevWTb6+vnJ1dZUkxcXF6cqVK2VqB9XIlV9u+SM83i/7xpAmpxrSXXVUODBW1/w6qsaZ/XLd8qpqrxgkJ9O1m95fnt3sTZfvKv/ncJs2EAQAAMCdr1ok81LxRngpKSmaPn26XF1dNXDgwFLrmtfBnz9/vsRy83VzPfOf2dklj/iV1I75nuTkZLVq1aqMvaiebvQ5mfspVW6fi4qKtHDhQvn4+CgpKcnqRYrJZNKSJUsq1D6qhi+ZuwUAACAASURBVD1Hxt0OTqZrKuz3muVouqutHtIlk8lqQ7wbKU9/iiR53LRWyQomH7l5JQAAAKAMqsWaeUnq1auXGjRooMzMTPXv398qyfwtDw8P3X333crIyLAaWTbbs2ePpOL18+b6jRs31smTJ3Xu3Dmb+vv22Z5L3b59e0m/Tj13ZPv3244+fvPNN7p48aICAgIs1+ztc82aNSXJauq8WU5OjvLz8xUcHGwzI8L8bKAyXPOzTsivNg6pokgAAACA26fajMw7Oztr4cKFysrK0r333nvT+hEREZo/f77mzJmj6OhoyyZ46enpSkxMVJ06dayOSwsPD9e7776refPmWe1mn5qaarNeXiqeKfDee+8pNjZWHTp0sNpATiqeap6Wlqbg4ODydtluWVlZlrPa7TnSLSkpSSNGjLD0oaioSLGxsZJk2clesr/PdevWlZOTk3788UebZxoMBrm6uurQoUMqLCyUm5ubpOKp/G+88YZ9HUe1UZ5p6fayd7S8xpn9lpF5Sap52vblXGnK05969eopNzfX7vsAAACAylRtknnp15HhsvjLX/6izz//XElJSTp+/LhCQ0OVnZ2tjRs3qqioSNHR0Vaj+2PGjNGWLVu0Zs0aHTt2zHLO/KZNmxQWFqbt27dbte/t7a2YmBg999xzCg8PV48ePdS8eXNdunRJP/zwg/bs2aMOHTpo6dKl5e5vdHS0cnJyJBW/hJCk2bNny93d3dLHFi1aWOrHxMSU65z5rl27atiwYRowYIA8PT21Y8cOpaenq3v37goPDy93n2vXrq3AwEDt27dP06ZNU5MmTVSjRg0NHDhQjRo10pNPPqlly5YpPDxcvXv3VkFBgXbs2CE/P79ybeSHauA2rPkueGZnmeu6Jj+nWikzddlk0tXGIap5ep/u2vaGihp30sWBc2/eQDn643RXbcnlst33AQAAAJWpWiXz9qhVq5bi4uK0ePFibdiwQR9++KHc3NwUEhKip59+WiEh1lNt3d3dtXLlSsXExGjLli06fPiw/P39FRsbq/z8fJtkXpLCwsJkNBq1dOlS7d69Wzt37pS7u7saNmyoyMhIDR48uEJ9+PTTT3XmzBmba2ZDhgyxSubLa9SoUerdu7dWrFihjIwMeXt7a+zYsXr22WetjvWT7O/z7NmzNWvWLG3dulX5+fkymUwKCgpSo0aNNHnyZHl6espoNOrjjz9W/fr1NWDAAE2YMEGDBg2qcL9wh7Jjh/mLg+fJdcNUqzXyRU266uLD70huXrciOgAAAKBacDKZTKaqDgIoiXnWAnAzTuf/pxq5GbpW7x6ZDCUfaVlZvLy8+G6iWuM7iuqO7yiqM76fqC68vG4+MOWwI/MAYGYy+OvqLU7iAQAAgOqk2uxmDwAAAAAAyoZkHgAAAAAAB0MyDwAAAACAgyGZBwAAAADAwZDMAwAAAADgYEjmAQAAAABwMCTzAAAAAAA4GJJ5AAAAAAAcDMk8AAAAAAAOhmQeAAAAAAAHQzIPAAAAAICDIZkHAAAAAMDBkMwDAAAAAOBgSOYBAAAAAHAwJPMAAAAAADgYknkAAAAAABwMyTwAAAAAAA6GZB4AAAAAAAdDMg8AAAAAgIMhmQcAAAAAwMGQzAMAAAAA4GBI5gEAAAAAcDAk8wAAAAAAOBiSeQAAAAAAHAzJPAAAAAAADoZkHgAAAAAAB0MyDwAAAACAgyGZBwAAAADAwZDMAwAAAADgYEjmAQAAAABwMCTzAAAAAAA4GJJ5AAAAAAAcDMk8AAAAAAAOhmQeAAAAAAAHQzIPAAAAAICDIZkHAAAAAMDBkMwDAAAAAOBgnKs6AABAsZM5aTqTf0J+dZqqiVfrqg4HAAAA1RjJPABUkdzCnyRJFy7laO7Ov+nrzC8sZe0bdtHz3d5W3VpequdWv6pCBAAAQDXl0NPsExMT1bp1ayUmJlaondatW2v48OGVFFXFzZ8/X61bt9aXX35Z1aEAKIfCKz+X6eeR+HZ6JL6dxhh76fuco5rRe5HWPP61ZvRepO9zjmqMsZceiW9X5vYAAADw+2HXyPzp06fVt29fSZKPj4+2b9+umjVr2tRLS0vT4MGDJUnNmjXTpk2bKiHU6uHIkSP69NNPtWvXLp06dUr5+flq2LChevTooXHjxqlhw4ZVHeJNmf8ehwwZorfeeuuWPy85OVlxcXH63//+JxcXFwUHB2vixIkKDAy85c8GqsKglS3sqn/NdE3Pd5utXs2K/93s1WywTCaT3tj+tF3tbX3qR/sCBQAAgMMq18i8s7OzsrKylJqaWmL52rVr5ex8Z87gf/XVV/X+++/LZDJpwIABGj58uHx9fRUfH6/w8HAdP368qkOsVt5//31NnTpV58+f1+OPP64//vGP+uqrr/TEE08w8wC4TmDDLla/t/cNraJIAAAA4AjKlXF36NBBR48eVUJCgnr16mVVdvnyZSUnJ6tnz57atm1bpQRZnQwePFjvvPOO7rnnHqvrixYt0pw5cxQdHa1FixZVUXTVy4kTJzR//nw1bdpUa9euVZ06dSRJw4cP16OPPqqXX35ZGzduvGNf/OD3K3l42V7qXT/i/k3mF5aReUn6+sfddrcHAACA349yZVG1atXSww8/rMTERGVnZ8vb29tStm3bNuXk5Gjo0KGlJvOFhYVasmSJ1q9frzNnzsjNzU3BwcF65plndN9999nUz83NVUxMjLZu3aqff/5Z/v7+euaZZ24Y49GjR/XBBx9o7969ys3NVYMGDdSnTx+NHz9eXl5e5em2JOnPf/5ziddHjx6thQsXau/eveVuuyRr1qxRXFycMjIyZDAYNGjQII0fP161atWyqVuWPicmJmratGmSJKPRKKPRaLl/xYoV6ty5szIzM7V69WqlpqZalhL4+PioZ8+emjBhggwGQ5liT0xMVFFRkcaNG2dJ5CWpZcuWCg8P17/+9S998cUX6t69e0U+IqDacXOpXaZ6a5/4VpL0+rYxmrd7mkwmk9r7hurrH3dr/hf/p/a+oXql9+IytwcAAIDfj3JvgDd06FBduXJFycnJVtcTEhJkMBgUFhZW4n2XL1/WyJEjtWDBArm7uysqKkp9+/bVnj17NHz4cG3evNmqfmFhoYYPH67Vq1frnnvu0YgRI9SsWTNNmjRJn376aYnPSElJ0aOPPqrPPvtM999/v0aMGKFWrVpp1apVevzxx5WXl1febpfKyclJNWrUKHEPgZdeeqlcG/UtX75cs2bNUnBwsEaMGKE6depo0aJF+utf/yqTyWRVt6x9DggI0IgRIyRJbdq00fjx4y0/fn5+kqR9+/Zp+fLlMhgMlqUEd999t+Lj4/XYY48pPz+/TPHv2bNHktStWzebsh49ekhSpb/8ABxJPbf6qudWX6/2XSp/73Z6Y/vTGvav9npj+9Py926nV/ssYSd7AAAAlKjc85uDgoLUsmVLJSQkKCoqSpKUmZmpnTt3KioqqtSp04sXL9aBAwc0aNAgvf3223JycpIkRUVFWaZed+3aVR4eHpKkJUuWKD09XcOGDdPMmTMt7URERGj06NE27efk5OiFF16Qt7e34uPj1ahRI0vZJ598oilTpmjevHmaMWNGebteok2bNunnn3/WQw89VGlt7tq1SwkJCWrZsqUkadKkSRo7dqxSU1OVlJSkiIgISfb1OSAgQFFRUVqxYoUCAgI0YcIEm+d26dJFqampql3bejRw3bp1evHFF7Vq1SqNGzfupvGfOHFC7u7uatCggU1ZkyZNLHWA3ztPV4OiH1rNOfMAAAAoswodTRcZGam0tDR9+23xVNHExERdvXpVQ4cOLfUeo9EoFxcXTZ061ZLIS8WjxEOGDFFeXp5SUlIs19etWycXFxdNnDjRqp3u3bsrNNR2g6ikpCQVFBRo8uTJVkmtJA0cOFBt27bV+vXry9Xf0pw9e1b/+Mc/5Orqqueee86mfPLkydqwYYP69etnV7vh4eGWRF4q3nhw0qRJkoo/F7PK7rPBYLBJ5M3xeHh4aNeuXWVqp6CgwGp6/fXML2sKCgrKHBcAAAAAoFiFdh4LDw9XTEyMEhIS1K5dOxmNRgUFBcnf37/E+gUFBTp16pRatGghX19fm/LOnTtr9erVOnr0qMLDw1VQUKDTp0/L39+/xNHdkJAQ7d692+ragQMHJEkHDx5URkaGzT2XLl1STk6OzVr/8srNzdXYsWN1/vx5RUdHq3nz5jZ1fHx85OPjY3fbHTt2tLkWGBgoV1dXHTlyxHLtVvR58+bNWr16tQ4dOqQLFy7o6tWrlrKsrCx7uwKgBLmFP0mSLlzK0dydf9PXmV9Yyto37KLnu72turW8mGoPAAAAGxVK5g0Gg3r27Kn169erT58+OnnypJ566qlS65tHYUvbQK1+/eL/YTWvyTbXLy0BLakd89rwjz766IaxFxYW3rC8LPLy8jRq1CgdO3ZMr732msLDwyvc5vVK+5wMBoMyMzOt4pAqr8/Lli1TdHS0vL291a1bN/n6+srV1VWSFBcXpytXrpSpHQ8Pj1LX15v/bs0j9MCdpvDKzzet80h8O0lSDacaqu1SVzN6L1Jgwy76JvMLzd35gsYYe+ma6VqZd7NnozwAAIDfjwqfCTZ06FClpKRo+vTpcnV11cCBA0uta07czp8/X2K5+bq5nvnP7OzsG9Yv6RnJyclq1apVGXthv9zcXI0aNUqHDx/WK6+8oscff7zSn3Gjz+n6JLgy+1xUVKSFCxfKx8dHSUlJVi9STCaTlixZUua2mjZtqv/+9786d+6czcyKkydPWuoAd6Lrj527mWuma3q+22zL0XS9mg2WyWTSG9uftqutrU/9aH+gAAAAcEgVWjMvSb169VKDBg2UmZmp/v3733Ck1cPDQ3fffbcyMjKsRpbNzLuft2nTxlK/cePGOnnypM6dO2dTf9++fTbX2rdvL+nXqee3wvWJ/IwZM/SnP/3pljxn//79Nte++eYbXbx4UQEBAZZr9vbZvOP+9VPnzXJycpSfn6/g4GCbGRHmZ5dVp06dJEk7d+60KfvPf/5jVQf4vQts2MXq9/a+tnuCAAAAAGYVHpl3dnbWwoULlZWVpXvvvfem9SMiIjR//nzNmTNH0dHRlk3w0tPTlZiYqDp16uiBBx6w1A8PD9e7776refPmWe1mn5qaarNeXiqeKfDee+8pNjZWHTp0sNpATiqeap6Wlqbg4OBy9Tc3N1cjR47UkSNHNH369FLPnb9eVlaW5az20jaEK0lSUpJGjBhh6UNRUZFiY2MlybKTvWR/n+vWrSsnJyf9+KPtKJ7BYJCrq6sOHTqkwsJCubm5SSqeyv/GG2+UOXapeIPEZcuW6b333lPfvn0tfT927JiSkpJ0zz33qEuXLjdpBXBMZZkaf/2I+zeZX1hG5iXp6x9//fetrNPsAQAA8PtR4WRe+nVkuCz+8pe/6PPPP1dSUpKOHz+u0NBQZWdna+PGjSoqKlJ0dLTV6P6YMWO0ZcsWrVmzRseOHVOnTp109uxZbdq0SWFhYdq+fbtV+97e3oqJidFzzz2n8PBw9ejRQ82bN9elS5f0ww8/aM+ePerQoYOWLl1arr5OmDBBR44cUfPmzZWXl6f58+fb1ImKilLdunUtv8fExMhoNGrWrFmKjIws87O6du2qYcOGacCAAfL09NSOHTuUnp6u7t27W63Pt7fPtWvXVmBgoPbt26dp06apSZMmqlGjhgYOHKhGjRrpySef1LJlyxQeHq7evXuroKBAO3bskJ+fn10b+TVr1kzjx4/X3LlzNXjwYD344IP65ZdftH79ehUVFWnmzJmlHmEIOLqyrF9f+0TxSSCvbxujebunyWQyqb1vqL7+cbfmf/F/au8bqld6L2YtPAAAAGzc9kyqVq1aiouL0+LFi7VhwwZ9+OGHcnNzU0hIiJ5++mmFhIRY1Xd3d9fKlSsVExOjLVu26PDhw/L391dsbKzy8/NtknlJCgsLk9Fo1NKlS7V7927t3LlT7u7uatiwoSIjIzV48GCbe8rqzJkzkqTvvvtOCxYsKLHOkCFDrJL58ho1apR69+6tFStWKCMjQ97e3ho7dqyeffZZq2P9JPv7PHv2bM2aNUtbt25Vfn6+TCaTgoKC1KhRI02ePFmenp4yGo36+OOPVb9+fQ0YMEATJkzQoEGD7OrDuHHj5Ofnp7i4OMXHx8vFxUUdOnTQxIkT7XoJBNyJzLvUv9p3qd7c/lfLGnlJ6tiol/4vbKE8XUveCBMAAAC/b04mk8lU1UEAJcnJyanqEAAbXl5et+y7eTInTWfyT8ivTlM18Wp9S56BO9+t/I4ClYHvKKozvp+oLry8vG5ahznOAFBNNPFqTRIPAACAMqnwbvYAAAAAAOD2IpkHAAAAAMDBkMwDAAAAAOBgSOYBAAAAAHAwJPMAAAAAADgYknkAAAAAABwMyTwAAAAAAA6GZB4AAAAAAAdDMg8AAAAAgIMhmQcAAAAAwMGQzAMAAAAA4GBI5gEAAAAAcDAk8wAAAAAAOBiSeQAAAAAAHAzJPAAAAAAADoZkHgAAAAAAB0MyDwAAAACAgyGZBwAAAADAwZDMAwAAAADgYEjmAQAAAABwMCTzAAAAAAA4GJJ5AAAAAAAcDMk8AAAAAAAOhmQeAAAAAAAHQzIPAAAAAICDIZkHAAAAAMDBkMwDAAAAAOBgSOYBAAAAAHAwJPMAAAAAADgYknkAAAAAABwMyTwAAAAAAA6GZB4AAAAAAAdDMg8AAAAAgIMhmQcAAAAAwMGQzAMAAAAA4GBI5gEAAAAAcDAk8wAAAAAAOBjnqg4AwK13MidNZ/JPyK9OUzXxal3V4QAAAACoIIdO5hMTEzVt2jTNmjVLkZGR5W6ndevWuv/++7Vy5cpKjK785s+frwULFmjFihXq3LlzVYeDaiS38Ce76l+4lKO5O/+mrzO/sFxr37CLnu/2turW8rKrrXpu9e2qDwAAAODWsSuZP336tPr27StJ8vHx0fbt21WzZk2bemlpaRo8eLAkqVmzZtq0aVMlhFo9HDlyRJ9++ql27dqlU6dOKT8/Xw0bNlSPHj00btw4NWzYsKpDvCnz3+OQIUP01ltv3bLnFBYWKj4+XocOHdKhQ4d04sQJmUwmpaSkqHHjxrfsubda4ZWfq+zZj8S3s6t+Dacaqu1SVzN6L1Jgwy76JvMLzd35gsYYe+ma6ZpdbSUPP25X/Ypwc6l9254FAAAAOKJyjcw7OzsrKytLqamp6tWrl0352rVr5ezsrKKiogoHWN28+uqr+vrrrxUYGKgBAwbIxcVFX3/9teLj47Vp0yZ99NFHatGiRVWHWS2cP39e0dHRkiQ/Pz95enoqNze3iqOquEErHefv95rpmp7vNlu9mhW/XOvVbLBMJpPe2P603W3dzn5vferH2/YsAAAAwBGVawO8Dh06qE6dOkpISLApu3z5spKTk9WzZ88KB1cdDR48WJs3b9a///1vvfzyy3rxxRf10UcfacqUKcrJybEkr5C8vLy0bNkyffnll9q2bZvatbNvVBmVI7BhF6vf2/uGVlEkAAAAACpLuUbma9WqpYcffliJiYnKzs6Wt7e3pWzbtm3KycnR0KFDtW3bthLvLyws1JIlS7R+/XqdOXNGbm5uCg4O1jPPPKP77rvPpn5ubq5iYmK0detW/fzzz/L399czzzxzwxiPHj2qDz74QHv37lVubq4aNGigPn36aPz48fLysm+t8PX+/Oc/l3h99OjRWrhwofbu3VvutkuyZs0axcXFKSMjQwaDQYMGDdL48eNVq1Ytm7pl6bN5nwFJMhqNMhqNlvvNa/QzMzO1evVqpaamWpYS+Pj4qGfPnpowYYIMBkOZYq9du7a6detWCZ9C9XI7p5v/VnlGx7/J/MIyMi9JX/+4u1zPrsp+AwAAALBW7g3whg4dqtWrVys5OVlRUVGW6wkJCTIYDAoLCyvxvsuXL2vkyJE6cOCA2rZtq6ioKJ0/f14bN27Uzp07FRsbq/79+1vqFxYWavjw4UpPT1eHDh3UqVMnnT17VpMmTSo1UUxJSdHzzz+vmjVrqk+fPvL19dXx48e1atUqpaamas2aNfL09Cxv10vk5OSkGjVqqEYN28kOL730koxGo90b9S1fvlxffvmlHn74YYWFhWnHjh1atGiRDh8+rCVLlsjJyclSt6x9DggI0IgRI7RixQq1adNGDzzwgKUNPz8/SdK+ffu0fPlydenSRe3bt5eLi4sOHz6s+Ph4paamymg0qk6dOhX4tBxbVa7nXvvEt3bVf33bGM3bPU0mk0ntfUP19Y+7Nf+L/1N731C90nuxXW2xjh0AAACoPsqdzAcFBally5ZKSEiwJPOZmZnauXOnoqKi5OxcctOLFy/WgQMHNGjQIL399tuWhDQqKkqPPvqoXn75ZXXt2lUeHh6SpCVLlig9PV3Dhg3TzJkzLe1ERERo9OjRNu3n5OTohRdekLe3t+Lj49WoUSNL2SeffKIpU6Zo3rx5mjFjRnm7XqJNmzbp559/1kMPPVRpbe7atUsJCQlq2bKlJGnSpEkaO3asUlNTlZSUpIiICEn29TkgIEBRUVFasWKFAgICNGHCBJvndunSRampqapd2zp5W7dunV588UWtWrVK48aNq7R+ouzs3VH+1b5L9eb2v1qtke/YqJf+L2yhPF3LNsMCAAAAQPVTrjXzZpGRkUpLS9O33xaPFiYmJurq1asaOnRoqfcYjUa5uLho6tSpViPLbdq00ZAhQ5SXl6eUlBTL9XXr1snFxUUTJ060aqd79+4KDbVd+5uUlKSCggJNnjzZKqmVpIEDB6pt27Zav359ufpbmrNnz+of//iHXF1d9dxzz9mUT548WRs2bFC/fv3sajc8PNySyEvFGw9OmjRJUvHnYlbZfTYYDDaJvDkeDw8P7dq1y65+oOp4uhr0186va3yXNzWhy5taOuRzRT+0mkQeAAAAcHAVOmc+PDxcMTExSkhIULt27WQ0GhUUFCR/f/8S6xcUFOjUqVNq0aKFfH19bco7d+6s1atX6+jRowoPD1dBQYFOnz4tf39/NWjQwKZ+SEiIdu+2Xv974MABSdLBgweVkZFhc8+lS5eUk5Njs9a/vHJzczV27FjLzu3Nmze3qePj4yMfHx+72+7YsaPNtcDAQLm6uurIkSOWa7eiz5s3b9bq1at16NAhXbhwQVevXrWUZWVl2dsVVBJ7zpnnjHkAAADgzlWhZN5gMKhnz55av369+vTpo5MnT+qpp54qtX5BQYHlvpLUr1+cMOTn51vVLy0BLamdvLw8SdJHH310w9gLCwtvWF4WeXl5GjVqlI4dO6bXXntN4eHhFW7zeqV9TgaDQZmZmVZxSJXX52XLlik6Olre3t7q1q2bfH195erqKkmKi4vTlStXytTOnayqzpq355x5Rz1jviSs1wcAAACsVSiZl4o3wktJSdH06dPl6uqqgQMHllrXvA7+/PnzJZabr5vrmf/Mzs6+Yf2SnpGcnKxWrVqVsRf2y83N1ahRo3T48GG98sorevzxxyv9GTf6nMz9lCq3z0VFRVq4cKF8fHyUlJRk9SLFZDJpyZIlFWr/TuEIZ8076hnzJeHceQAAAMBahdbMS1KvXr3UoEEDZWZmqn///lZJ5m95eHjo7rvvVkZGhtXIstmePXskFa+fN9dv3LixTp48qXPnztnU37dvn8219u3bS/p16vmtcH0iP2PGDP3pT3+6Jc/Zv3+/zbVvvvlGFy9eVEBAgOWavX2uWbOmJFlNnTfLyclRfn6+goODbWZEmJ8Nx8EZ8wAAAMCdqcIj887Ozlq4cKGysrJ077333rR+RESE5s+frzlz5ig6OtqyCV56eroSExNVp04dq+PSwsPD9e6772revHlWu9mnpqbarJeXimcKvPfee4qNjVWHDh2sNpCTiqeap6WlKTg4uFz9zc3N1ciRI3XkyBFNnz691HPnr5eVlWU5q92eI92SkpI0YsQISx+KiooUGxsrSZad7CX7+1y3bl05OTnpxx9tRzsNBoNcXV116NAhFRYWys3NTVLxVP433nijzLHf6apq2rm9I+ScMQ8AAADcmSqczEu/jgyXxV/+8hd9/vnnSkpK0vHjxxUaGqrs7Gxt3LhRRUVFio6OthrdHzNmjLZs2aI1a9bo2LFjlnPmN23apLCwMG3fvt2qfW9vb8XExOi5555TeHi4evTooebNm+vSpUv64YcftGfPHnXo0EFLly4tV18nTJigI0eOqHnz5srLy9P8+fNt6kRFRalu3bqW32NiYsp1znzXrl01bNgwDRgwQJ6entqxY4fS09PVvXt3q/X59va5du3aCgwM1L59+zRt2jQ1adJENWrU0MCBA9WoUSM9+eSTWrZsmcLDw9W7d28VFBRox44d8vPzs3sjv+joaOXk5EgqfmEjSbNnz5a7u7uk4u9DixbVf8r6b1XVGm57zpnnjHkAAADgzlUpybw9atWqpbi4OC1evFgbNmzQhx9+KDc3N4WEhOjpp59WSEiIVX13d3etXLlSMTEx2rJliw4fPix/f3/FxsYqPz/fJpmXpLCwMBmNRi1dulS7d+/Wzp075e7uroYNGyoyMlKDBw+2uaeszpw5I0n67rvvtGDBghLrDBkyxCqZL69Ro0apd+/eWrFihTIyMuTt7a2xY8fq2WeftTrWT7K/z7Nnz9asWbO0detW5efny2QyKSgoSI0aNdLkyZPl6ekpo9Goj/+fvTuPiupK98b/RSgmIcqMDElUEKOGQVFREWmImteoCERXx45CO0TJ60i8DjeapDX5eYktRCBJG8UWxSAmRWkjgyG4zBViBL2iHQ1gvBEBFQxQBBSZqt4/+FXFSgEyVFFV8v2s1Sudc/bZ+zmHs27fp/bZ+/nyS1hbW+O1117D2rVrMW/evB7dw5kzZ+TP7MljMsHBwTqZKhC8UgAAIABJREFUzGtKT3aVZ415IiIiIqJnl55UKpVqOgiijshm9KlvSmuLUVF/G47mL+IFCzdNh6PzLCws+G6SVuM7StqO7yhpM76fpC0sLJ5eSrrfZ+aJqH+9YOHGJJ6IiIiI6BnT593siYiIiIiIiKh/MZknIiIiIiIi0jFM5omIiIiIiIh0DJN5IiIiIiIiIh3DZJ6IiIiIiIhIxzCZJyIiIiIiItIxTOaJiIiIiIiIdAyTeSIiIiIiIiIdw2SeiIiIiIiISMcwmSciIiIiIiLSMUzmiYiIiIiIiHQMk3kiIiIiIiIiHcNknoiIiIiIiEjHMJknIiIiIiIi0jFM5omIiIiIiIh0DJN5IiIiIiIiIh3DZJ6IiIiIiIhIxzCZJyIiIiIiItIxTOaJiIiIiIiIdIyBpgMg6kxbWxskEommwyBS0NLSgpaWFk2HQdQpvqOk7fiOkjbj+0m6hMk8aa2Kigo0NzdrOgwiBWKxGHV1dZoOg6hTfEdJ2/EdJW3G95O0ha2t7VPbMJknrdXc3Ax9fX3o6+trOhQiOSMjIxgaGmo6DKJO8R0lbcd3lLQZ30/SBm1tbd1qx2SetJq+vj4EAoGmwyCSEwgEfCdJq/EdJW3Hd5S0Gd9P0iXcAI+IiIiIiIhIxzCZJyIiIiIiItIxTOaJiIiIiIiIdAyTeSIiIiIiIiIdw2SeiIiIiIiISMcwmSciIiIiIiLSMUzmiYiIiIiIiHQMk3kiIiIiIiIiHcNknoiIiIiIiEjHMJknIiIiIiIi0jFM5omIiIiIiIh0DJN5IiIiIiIiIh3DZJ6IiIiIiIhIxzCZJyIiIiIiItIxTOaJiIiIiIiIdAyTeSIiIiIiIiIdw2SeiIiIiIiISMcwmSciIiIiIiLSMUzmiYiIiIiIiHSMgaYDICIioq6Vlevj/n0D2Nu3wtmpTdPhEBERkRZ4ppL51NRUbNu2Dbt370ZISEiv+3Fzc8OkSZNw9OhRFUanfhcvXsTSpUuxZs0arF27VtPhEBERgLrf9Hp9bX2DHg4cHIIbPxnKj415qRkrV9TB3EyqkjGHPNd5P0RERKS9+pTMl5eXIzAwEABga2uLc+fOQV9fX6ldcXEx5s+fDwAYPnw4srKy+jKsVkpLS0NiYiJ+/vlnCAQCeHp6Yt26dXj55Zc1HRoREf3B48f9N9aKVba9vnbQIGDwYGDnB3rweBm4+m9gz15DvPMfNpBIurqy+2Me/Wdlr+PTBsbGmo6AiIhIM1QyM29gYICqqirk5uZixowZSue//vprGBgYoLW1VRXDaZ1//OMfiImJgYODA/785z/j0aNHSE9PxxtvvIGEhARMnjy5X+Jwd3dHRkYGLCws+mU8IiJdteSvdpoOoVskEuA/3tFDgH/7THuAPyCVAu//TXWz6bryLDrzVbJu/xhBRETUWyrZAM/Lywvm5uYQCoVK55qbm5GWlgY/Pz9VDKV1bt++jbi4OLz44ov417/+ha1bt2Lnzp04fvw4DAwMsH379n77EcPExAQjR46EpaVlv4xHRETq5/GHD7w83TUTBxEREWkXlczMGxkZYc6cOUhNTUVNTY1CMnn27FnU1tYiNDQUZ8+e7fD6xsZGHDx4EOnp6aioqICJiQk8PT2xevVqjB8/Xqm9WCxGdHQ0vv32Wzx8+BAuLi5YvXp1lzEWFRVh//79KCgogFgsho2NDQICArBmzZo+zWSnpqaitbUVERERMDc3lx93dXVFUFAQjh8/jh9++AG+vr69HqOpqQnHjh3DyZMnUVFRAYlEAisrK7i7u2PVqlVwc3MD0PWa+fz8fOzbtw/Xr1+HkZERpkyZgi1btmDz5s3Iz89HcXGxvG1cXBzi4+Nx5MgRlJeX4/DhwygtLYW1tTXCw8OxdOlSSKVSHDlyBMnJyaioqICDgwMiIiKwYMEChXF/+eUXfPXVV7hw4QLu3r2LR48ewcHBATNnzkRERAQGDx7c6+dCRNRb/flpeV9nvq/+u31GXqbwWp+6U6Lrn9kTERENVCrbAC80NBQpKSlIS0tDWFiY/LhQKISVlRX8/f07vK65uRnh4eEoLCzE2LFjERYWhurqamRmZiIvLw8xMTGYNWuWvH1jYyOWLFmCkpISeHl5YeLEibh37x42btyIadOmdThGTk4ONmzYAH19fQQEBMDe3h63bt1CUlIScnNzceLECQwZMqRX952fnw8AHY49ffp0HD9+HAUFBQrJ/NatWyESibq9Ud+WLVuQmZkJNzc3hISEwNDQEPfu3cPFixfh6+srT+Y7k5ubi1WrVkFfXx9z5syBjY0N8vPzsXjxYjz33HOdXpeYmIj8/HwEBgZi8uTJ+Oabb/DRRx/BxMQERUVFyMrKgr+/P3x8fJCRkYEtW7bAyckJ3t7e8j6ys7MhFAoxefJkTJo0CRKJBFevXsWBAwdQUFCApKQkCASCpz4DIiJV6s911gf3V/X62uhPhiI6RgCpdBA83dsT+ZhPJBjzUgsiN4g7vGbIc0NQ91tdt8fgmnMiIiLdpLJk3sPDA66urhAKhfJkvrKyEnl5eQgLC4OBQcdDHThwAIWFhZg3bx727NkDPb32dYFhYWFYuHAhtm/fjqlTp8LMzAwAcPDgQZSUlGDRokXYtWuXvJ8FCxZg+fLlSv3X1tZi8+bNsLS0RHJyMhwcHOTnTp8+jXfeeQexsbHYsWNHr+779u3bMDU1hY2NjdK5F154Qd6mt+rr65GVlYVx48bhxIkTChsMtrW14eHDh11e39bWhvfeew8SiQRffvklPDw85Oe2bduG1NTUTq+9fPkyRCIRnJ2dAQDLly/HzJkzERUVBSsrK6Slpcm/wggJCcHChQuRkJCgkMwHBQUhPDwchoaGCn3Hx8cjLi4OmZmZ8s0RiYieRX3ZLf6dDWLsix+K9//2+/8NdX+5BevXiPFcJ/0OHQoA3KGeiIjoWaeSNfMyISEhKC4uxo8//gig/RP0trY2hIaGdnqNSCSCQCDApk2b5Ik8AIwePRrBwcGoq6tDTk6O/PjJkychEAiwbt06hX58fX0xZcoUpf5PnTqFhoYGREZGKiTyADB37lyMHTsW6enpvbpfAGhoaFD4vP5Jsh8gGhoaFI5HRkYiIyMDM2fOfGr/enp6kEqlMDQ0VKoUoK+v3+XMOtCekFdUVCAwMFAhkQeA9evXd1h9QGbJkiXyRB4Ahg0bhgkTJqC+vh4REREKyync3d3h7Oys8Lk+ANjZ2Skl8gDw5ptvAgAuXLjQZfxERAPZc89JEb70NywLb/9P9J5fseM/aztN5ImIiGjgUGmd+aCgIERHR0MoFGLcuHEQiUTw8PCAi4tLh+0bGhpQVlaGkSNHwt7eXun85MmTkZKSgqKiIgQFBaGhoQHl5eVwcXHpcCbc29tbKTksLCwEAFy9ehV37txRuqapqQm1tbVKa/3VydbWFra23SsbZGZmhunTp+P8+fMIDg7G7Nmz4e3tDXd39w6T5D8qKioC0L5J4R/Z29tj2LBhKC8v7/Dal156SemY7LmPHj26w3PXriku5pRKpRAKhRCJRLh58ybq6+sheaKeUlVV7z8/JSLSRn2pK/+k3taY700MrDVPRESke1SazFtZWcHPzw/p6ekICAhAaWkpli1b1ml72Yy1lZVVh+etra0BtH9q/mT7zpLujvqpq2tfN3js2LEuY29sbOzyfGfMzMzk8f2RLF7ZDH1vxcbGYv/+/Th9+jRiYmIAAIMHD0ZoaCgiIyNhYmLS6bVPe2bW1tadJvMdxS1bLtHZuT/u3P/hhx8iKSkJw4YNQ0BAAGxsbOQ/QsTHx6O5ubnT2ImIeqI/a8d3pS915Z/U+xrzQE/qzAO6swke1/cTERH9TqXJPNC+EV5OTg7effddGBsbY+7cuZ22lSWE1dXVHZ6XHZe1k/2zpqamy/YdjZGWloZRo0Z18y6678UXX8SVK1fw4MEDpa8FSktL5W36wtTUFBs3bsTGjRtRVlaGixcv4vjx4zhy5Aiampqwc+fOTq992jP79ddf+xRbV6qrq3Hs2DG4ubkhJSVF4UeHBw8eID4+Xm1jE9HAo+v10v+oP2rMy+jKs2NNeSIiot+pdM08AMyYMQM2NjaorKzErFmzupyVNjMzg7OzM+7cuYPKSuX/gZbtFC/7pNvMzAxOTk4oLS3FgwcPlNpfunRJ6Zi7e3tBXtnn9qo2ceJEAEBeXp7SufPnzyu0UQVnZ2e8/vrrSEpKgqmpaafl/mRkz+7KlStK5+7fv4/79++rLLY/Kisrg1QqxdSpU5W+Hujob0VERIpYY56IiIg6o/KZeQMDA3z22WeoqqrCmDFjntp+wYIFiIuLw969exEVFSXfBK+kpASpqakwNzfHK6+8Im8fFBSETz/9FLGxsQq72efm5na4mVpoaCg+//xzxMTEwMvLC66urgrnGxsbUVxcDE9Pz17db0hICA4dOoTPP/8cgYGB8s3wbt68iVOnTuH555+Hj4+PwjVVVVWor6+Hra1tp5vnydTU1KC8vFz+o4RMXV0dWlpaYGRk1OX1EyZMgIODA3JycnDt2jWFfvbt26f0WbwqyTYcvHLlCiQSCQYNav/t6P79+9i7d6/axiWigUlbPhVX5Sy3umvMy2jLsyMiIqLuU3kyD0Ap8ezKypUr8d133+HUqVO4desWpkyZgpqaGmRmZqK1tRVRUVEKs/srVqxAdnY2Tpw4gZs3b8rrzMtqnp87d06hf0tLS0RHR2P9+vUICgrC9OnTMWLECDQ1NeHu3bvIz8+Hl5cXEhISenWvw4cPx5o1a/DJJ59g/vz5mD17Nh49eoT09HS0trZi165dSmX5oqOju11nvrKyEgsXLoSrqyvGjBkDOzs7iMVi5OTkoKWlBStWrOjyen19fXzwwQd4++238eabb+K1116DtbU1CgoKUFlZidGjRyvtQK8qtra2mD17Ns6cOYPQ0FD4+Piguroa586dg4+PD8rKytQyLhENTNqynrovdeWf1Jsa80DP68wD2vPsiIiIqPvUksz3hJGRERITE3HgwAFkZGTg8OHDMDExgbe3N1atWqVQsxxoXz9+9OhRREdHIzs7Gzdu3ICLiwtiYmJQX1+vlMwDgL+/P0QiERISEnDhwgXk5eXB1NQUdnZ2CAkJ6XOd84iICDg6OiIxMRHJyckQCATw8vLCunXrevTDRkccHR2xdu1a/PDDD/j+++8hFothYWGBMWPGIDw8HL6+vk/tY8aMGUhISEBsbCwyMjJgbGwMHx8fxMTE4K233urzBn1d2b17NxwdHXHmzBkkJSXBwcEB4eHhWLlyJc6cOaO2cYmINEVVO8P3psY8wDrzREREA4WeVCrl/+IPUA0NDZg2bRpGjRqFr776StPhKCkoKIChoSEEAoGmQyGSGzp0KMTizmdFiVStrFwf9+8bwN6+Fc5ObU9tz3eUtB3fUdJmfD9JG7S0tMDDw+Op7TQ+M0/q9+jRI0gkEoUZ+La2Nnz88cd4/Pixwp4ERESkXZyd2rqVxBMREdHAwmR+ACgtLcXixYvh6+sLJycnPHz4EJcvX8bPP/8MV1dXLFmyRNMhEhERERERUQ8wmR8A7Ozs8OqrryI/Px/nz59Ha2srHBwcsGzZMkRERMDU1FTTIRIREREREVEPMJkfACwtLbF7925Nh0FEREREREQqMkjTARARERERERFRzzCZJyIiIiIiItIxTOaJiIiIiIiIdAyTeSIiIiIiIiIdw2SeiIiIiIiISMcwmSciIiIiIiLSMUzmiYiIiIiIiHQMk3kiIiIiIiIiHcNknoiIiIiIiEjHGGg6ACIiooHKsO42BPUVaDF3RPOQFzUdDhEREemQZyqZT01NxbZt27B7926EhIT0uh83NzdMmjQJR48eVWF06nfx4kUsXboUa9aswdq1azUdDhHRM0//sbhX1w1q+g12l2JgUnVVfqzR1gOV3hshMXquTzHpNUqh/7hO/u9txkP71B8RERFppz4l8+Xl5QgMDAQA2Nra4ty5c9DX11dqV1xcjPnz5wMAhg8fjqysrL4Mq1UaGxuRnJyM69ev4/r167h9+zakUilycnLg5OSk6fCIiAYkvdbGfhlnhKh3PxxL9QYBhuZonBsDieMEDKq4DOPs9/FC5jLoSSV9jsv6if/+88L0PvfXH6QGJpoOgYiISKeoZGbewMAAVVVVyM3NxYwZM5TOf/311zAwMEBra6sqhtMq1dXViIqKAgA4OjpiyJAhEIt7N1PTV+7u7sjIyICFhYVGxici0hYuX72m6RC6pCeVoHHmB2gb9SoAoG3Uq2iSSmGcHqnysbT9WcjcfOOspkMgIiLSKSrZAM/Lywvm5uYQCoVK55qbm5GWlgY/Pz9VDKV1LCwscOjQIVy8eBFnz57FuHHjNBaLiYkJRo4cCUtLS43FQERE3SNxnKDw721O3hqKhIiIiHSRSmbmjYyMMGfOHKSmpqKmpkYhmTx79ixqa2sRGhqKs2c7/tW9sbERBw8eRHp6OioqKmBiYgJPT0+sXr0a48ePV2ovFosRHR2Nb7/9Fg8fPoSLiwtWr17dZYxFRUXYv38/CgoKIBaLYWNjg4CAAKxZs6ZPM9mDBw/GtGnTen19dzQ1NeHYsWM4efIkKioqIJFIYGVlBXd3d6xatQpubm4Aul4zn5+fj3379uH69eswMjLClClTsGXLFmzevBn5+fkoLi6Wt42Li0N8fDyOHDmC8vJyHD58GKWlpbC2tkZ4eDiWLl0KqVSKI0eOIDk5GRUVFXBwcEBERAQWLFigMO4vv/yCr776ChcuXMDdu3fx6NEjODg4YObMmYiIiMDgwYPV+uyIaGDqr0/L+zLrPajisnxmHgD0yy+pIiQluvKZPREREfWMyjbACw0NRUpKCtLS0hAWFiY/LhQKYWVlBX9//w6va25uRnh4OAoLCzF27FiEhYWhuroamZmZyMvLQ0xMDGbNmiVv39jYiCVLlqCkpAReXl6YOHEi7t27h40bN3aaVOfk5GDDhg3Q19dHQEAA7O3tcevWLSQlJSE3NxcnTpzAkCFDVPUonmrr1q0QiUTd3qhvy5YtyMzMhJubG0JCQmBoaIh79+7h4sWL8PX1lSfzncnNzcWqVaugr6+POXPmwMbGBvn5+Vi8eDGee67zjZYSExORn5+PwMBATJ48Gd988w0++ugjmJiYoKioCFlZWfD394ePjw8yMjKwZcsWODk5wdv799ml7OxsCIVCTJ48GZMmTYJEIsHVq1dx4MABFBQUICkpCQKBoPsPj4ioG/pr/fX/Bqf26rpheX+DUc5ONEulaHPyhn75JRie3YVGWw/cm/Z+n2J6bsgQ/Fb3+wZ4XItORET0bFJZMu/h4QFXV1cIhUJ5Ml9ZWYm8vDyEhYXBwKDjoQ4cOIDCwkLMmzcPe/bsgZ6eHgAgLCwMCxcuxPbt2zF16lSYmZkBAA4ePIiSkhIsWrQIu3btkvezYMECLF++XKn/2tpabN68GZaWlkhOToaDg4P83OnTp/HOO+8gNjYWO3bsUNWjUKn6+npkZWVh3LhxOHHihMIGg21tbXj48GGX17e1teG9996DRCLBl19+CQ8PD/m5bdu2ITW18/9H9PLlyxCJRHB2dgYALF++HDNnzkRUVBSsrKyQlpYm/wojJCQECxcuREJCgkIyHxQUhPDwcBgaGir0HR8fj7i4OGRmZso3RyQi0jW93Sn+ru8HGPb9RzB9Yo38I3tv3Jv6LiRGfftxWWoyFG1Nen3qg4iIiLSfStbMy4SEhKC4uBg//vgjgPZScW1tbQgNDe30GpFIBIFAgE2bNskTeQAYPXo0goODUVdXh5ycHPnxkydPQiAQYN26dQr9+Pr6YsqUKUr9nzp1Cg0NDYiMjFRI5AFg7ty5GDt2LNLT+/cTxMjISGRkZGDmzJlPbaunpwepVApDQ0OlSgH6+vpdzqwD7Ql5RUUFAgMDFRJ5AFi/fn2H1QdklixZIk/kAWDYsGGYMGEC6uvrERERobCcwt3dHc7Ozgqf6wOAnZ2dUiIPAG+++SYA4MKFC13GT0T0LJIYDUHFnz5G6ZxDqJqwFlXj1+LB+Lf7nMgTERHRwKHSOvNBQUGIjo6GUCjEuHHjIBKJ4OHhARcXlw7bNzQ0oKysDCNHjoS9vb3S+cmTJyMlJQVFRUUICgpCQ0MDysvL4eLiAhsbG6X23t7eSslhYWEhAODq1au4c+eO0jVNTU2ora1VWuuvTra2trC1te1WWzMzM0yfPh3nz59HcHAwZs+eDW9vb7i7u3eYJP9RUVERgPZNCv/I3t4ew4YNQ3l5eYfXvvTSS0rHZM999OjRHZ67du2awjGpVAqhUAiRSISbN2+ivr4eEsnvZZeqqqqeeg9ERNqotzXmZQY1/QbbS/tUXmteVmee9eWJiIiebSpN5q2srODn54f09HQEBASgtLQUy5Yt67R9Q0OD/LqOWFu3V8qtr69XaN9Z0t1RP3X//7rBY8eOdRl7Y2P/1CTujdjYWOzfvx+nT59GTEwMgPaN90JDQxEZGQkTk87XQz7tmVlbW3eazMuWNjxJtlyis3N/LD/44YcfIikpCcOGDUNAQABsbGzkP0LEx8ejubm509iJiHqiv2rLy/S2xryMOmvNW0M3N77j+n4iIqLuU2kyD7RvhJeTk4N3330XxsbGmDt3bqdtZQlhdXV1h+dlx2XtZP+sqanpsn1HY6SlpWHUqFHdvAvtYmpqio0bN2Ljxo0oKyvDxYsXcfz4cRw5cgRNTU3YuXNnp9c+7Zn9+uuvaokZaP97HDt2DG5ubkhJSVH40eHBgweIj49X29hENPDoSj11GXXXmte15wGw1jwREVFPqHTNPADMmDEDNjY2qKysxKxZszqcwZUxMzODs7Mz7ty5g8rKSqXz+fn5AH7/pNvMzAxOTk4oLS3FgwcPlNpfuqRc1sfd3R3A75/b6zpnZ2e8/vrrSEpKgqmpaafl/mRkz+7KlStK5+7fv4/79++rJU4AKCsrg1QqxdSpU5W+Hujob0VENNCw1jwRERH1lspn5g0MDPDZZ5+hqqoKY8aMeWr7BQsWIC4uDnv37kVUVJR8E7ySkhKkpqbC3Nwcr7zyirx9UFAQPv30U8TGxirsZp+bm9vhZmqhoaH4/PPPERMTAy8vL7i6uiqcb2xsRHFxMTw9PXt7yz1WVVWF+vp62NrawtzcvMu2NTU1KC8vl/8oIVNXV4eWlhYYGRl1ef2ECRPg4OCAnJwcXLt2TaGfffv2KX0Wr0qyDQevXLkCiUSCQYPafzu6f/8+9u7dq7ZxiWhg6u/PylUx863OWvO6+Jk9ERERdZ/Kk3kASolnV1auXInvvvsOp06dwq1btzBlyhTU1NQgMzMTra2tiIqKUpjdX7FiBbKzs3HixAncvHlTXmdeVvP83LlzCv1bWloiOjoa69evR1BQEKZPn44RI0agqakJd+/eRX5+Pry8vJCQkNDr+42KikJtbS2A9h8hAODjjz+Gqamp/B5Hjhwpbx8dHd3tOvOVlZVYuHAhXF1dMWbMGNjZ2UEsFiMnJwctLS1YsWJFl9fr6+vjgw8+wNtvv40333wTr732GqytrVFQUIDKykqMHj1aaQd6VbG1tcXs2bNx5swZhIaGwsfHB9XV1Th37hx8fHxQVlamlnGJaGDq7/XWva0xL6OuWvOyOvNcf05ERPRsU0sy3xNGRkZITEzEgQMHkJGRgcOHD8PExATe3t5YtWqVQs1yoH39+NGjRxEdHY3s7GzcuHEDLi4uiImJQX19vVIyDwD+/v4QiURISEjAhQsXkJeXB1NTU9jZ2SEkJKTPdc7PnDmDiooKpWMywcHBCsl8Tzg6OmLt2rX44Ycf8P3330MsFsPCwgJjxoxBeHg4fH19n9rHjBkzkJCQgNjYWGRkZMDY2Bg+Pj6IiYnBW2+91eVSiL7avXs3HB0dcebMGSQlJcHBwQHh4eFYuXKlwjMiItI1fd0tXl215llnnoiIaGDQk0qlUk0HQZrR0NCAadOmYdSoUfjqq680HY6SgoICGBoaQiAQaDoUIrmhQ4dCLO5bSTKiJxnW3YagvgIt5o5oHvJin/vjO0raju8oaTO+n6QNWlpa4OHh8dR2Gp+ZJ/V79OgRJBKJwgx8W1sbPv74Yzx+/FhhTwIiIupfzUNeVEkST0RERAMLk/kBoLS0FIsXL4avry+cnJzw8OFDXL58GT///DNcXV2xZMkSTYdIREREREREPcBkfgCws7PDq6++ivz8fJw/fx6tra1wcHDAsmXLEBERId+oj4iIiIiIiHQDk/kBwNLSErt379Z0GERERERERKQigzQdABERERERERH1DJN5IiIiIiIiIh3DZJ6IiIiIiIhIxzCZJyIiIiIiItIxTOaJiIiIiIiIdAyTeSIiIiIiIiIdw2SeiIiIiIiISMcwmSciIiIiIiLSMUzmiYiIiIiIiHSMgaYDICIi6i8V9bdQ+agMdqbOcDQfqelwiIiIiHrtmUrmU1NTsW3bNuzevRshISG97sfNzQ2TJk3C0aNHVRid+l28eBFLly7FmjVrsHbtWk2HQ0Skdr811XSrXUNzHf554yMU1VyWHxttOQF/HfMuzAyH9Hjc54wse3wNERERkSr1KZkvLy9HYGAgAMDW1hbnzp2Dvr6+Urvi4mLMnz8fADB8+HBkZWX1ZVit8tNPP+HMmTP4/vvvUVZWhvr6etjZ2WH69OmIiIiAnZ2dpkMkItKYx62Nau3//54N7Fa7QXqDMFjwHHb86Qu8bOeDf1f+gE/yNmNb3uuQSCU9HvfAzO97fI0qGBuYaGRcIiIi0j4qmZk3MDBAVVUVcnNzMWPGDKXzX3/9NQwMDNDa2qqK4bTK+++/j2vXruHll1/Ga6+9BoFAgGvXriE5ORlZWVk4duwYRo7sn0853d3dkZGRAQsLi34Zj4joaVZmT9XPcf3kAAAgAElEQVR0CAAAiVSCDdM+xozh7T8szxg+H1KpFB+eW9Wr/jR1X0f/zxWNjEtERETaRyXJvJeXF4qKiiAUCpWS+ebmZqSlpcHPzw9nz55VxXBaZf78+fj73/+O559/XuH4F198gb179yIqKgpffPFFv8RiYmLSbz8cEBHpmpftfBT+3d1+ioYiISIiIuo7lSTzRkZGmDNnDlJTU1FTUwNLy9/XEp49exa1tbUIDQ3tNJlvbGzEwYMHkZ6ejoqKCpiYmMDT0xOrV6/G+PHjldqLxWJER0fj22+/xcOHD+Hi4oLVq1d3GWNRURH279+PgoICiMVi2NjYICAgAGvWrOnTTPabb77Z4fHly5fjs88+Q0FBQa/7lmlqasKxY8dw8uRJVFRUQCKRwMrKCu7u7li1ahXc3NwAdL1mPj8/H/v27cP169dhZGSEKVOmYMuWLdi8eTPy8/NRXFwsbxsXF4f4+HgcOXIE5eXlOHz4MEpLS2FtbY3w8HAsXboUUqkUR44cQXJyMioqKuDg4ICIiAgsWLBAYdxffvkFX331FS5cuIC7d+/i0aNHcHBwwMyZMxEREYHBgwf3+fkQkfZS9+foPZkh/3flD/KZeQC4dv9Cr8fV1Gf2RERERDIq2wAvNDQUKSkpSEtLQ1hYmPy4UCiElZUV/P39O7yuubkZ4eHhKCwsxNixYxEWFobq6mpkZmYiLy8PMTExmDVrlrx9Y2MjlixZgpKSEnh5eWHixIm4d+8eNm7ciGnTpnU4Rk5ODjZs2AB9fX0EBATA3t4et27dQlJSEnJzc3HixAkMGdLzDZC6oqenh0GDBmHQIOXqf1u3boVIJOr2Rn1btmxBZmYm3NzcEBISAkNDQ9y7dw8XL16Er6+vPJnvTG5uLlatWgV9fX3MmTMHNjY2yM/Px+LFi/Hcc891el1iYiLy8/MRGBiIyZMn45tvvsFHH30EExMTFBUVISsrC/7+/vDx8UFGRga2bNkCJycneHt7y/vIzs6GUCjE5MmTMWnSJEgkEly9ehUHDhxAQUEBkpKSIBAInvoMiEg3qXuN96cBOd1qF1e4GbHfb4NUKoW7/RRcu38BcRf+E6MtvbHWM6rH43LtOhEREWmaypJ5Dw8PuLq6QigUypP5yspK5OXlISwsDAYGHQ914MABFBYWYt68edizZw/09PQAAGFhYVi4cCG2b9+OqVOnwszMDABw8OBBlJSUYNGiRdi1a5e8nwULFmD58uVK/dfW1mLz5s2wtLREcnIyHBwc5OdOnz6Nd955B7GxsdixY4eqHgUAICsrCw8fPsSrr77ap37q6+uRlZWFcePG4cSJEwobDLa1teHhw4ddXt/W1ob33nsPEokEX375JTw8POTntm3bhtTU1E6vvXz5MkQiEZydnQG0f20wc+ZMREVFwcrKCmlpafKvMEJCQrBw4UIkJCQoJPNBQUEIDw+HoaGhQt/x8fGIi4tDZmamfHNEIqKe6u6u8uu89uCzq/+psEZ+nLUP3vb4/2BuyH1GiIiISPcoTxv3QUhICIqLi/Hjjz8CaC8V19bWhtDQ0E6vEYlEEAgE2LRpkzyRB4DRo0cjODgYdXV1yMn5febl5MmTEAgEWLdunUI/vr6+mDJFef3jqVOn0NDQgMjISIVEHgDmzp2LsWPHIj09vVf325l79+7ho48+grGxMdavX690PjIyEhkZGZg5c+ZT+9LT04NUKoWhoaFSpQB9ff0uZ9aB9oS8oqICgYGBCok8AKxfv77D6gMyS5YskSfyADBs2DBMmDAB9fX1iIiIUFhO4e7uDmdnZ4XP9QHAzs5OKZEHfl+ecOFC7z9zJSLqLnNDC2yZ+Dk2jo/B/BHLsXF8DLZM/JyJPBEREeksldaZDwoKQnR0NIRCIcaNGweRSAQPDw+4uLh02L6hoQFlZWUYOXIk7O3tlc5PnjwZKSkpKCoqQlBQEBoaGlBeXg4XFxfY2Ngotff29lZKDgsLCwEAV69exZ07d5SuaWpqQm1trdJa/94Si8V46623UF1djaioKIwYMUKpja2tLWxtbbvVn5mZGaZPn47z588jODgYs2fPhre3N9zd3TtMkv+oqKgIQPsmhX9kb2+PYcOGoby8vMNrX3rpJaVjsuc+evToDs9du3ZN4ZhUKoVQKIRIJMLNmzdRX18PieT3MlBVVVVPvQcios5oqs68DOvNExERkaaoNJm3srKCn58f0tPTERAQgNLSUixbtqzT9g0NDfLrOmJtbQ2g/VPzJ9t3lnR31E9dXR0A4NixY13G3tjY91rIdXV1+Otf/4qbN2/igw8+QFBQUJ/7BIDY2Fjs378fp0+fRkxMDABg8ODBCA0NRWRkJExMOl+7+bRnZm1t3WkyL1va8CTZconOzv2x/OCHH36IpKQkDBs2DAEBAbCxsZH/CBEfH4/m5uZOYyeiZ4M6a81rqs68jHZuhDdU0wEQERFRP1BpMg+0b4SXk5ODd999F8bGxpg7d26nbWUJYXV1dYfnZcdl7WT/rKnpeCamo35k16SlpWHUqFHdvIueE4vF+Otf/4obN27gvffew5///GeV9W1qaoqNGzdi48aNKCsrw8WLF3H8+HEcOXIETU1N2LlzZ6fXPu2Z/frrryqL84+qq6tx7NgxuLm5ISUlReFHhwcPHiA+Pl5tYxOR9tCGWvOqrjMvow339kdpb/yi6RCIiIioH6h0zTwAzJgxAzY2NqisrMSsWbM6nMGVMTMzg7OzM+7cuYPKykql8/n5+QB+/6TbzMwMTk5OKC0txYMHD5TaX7p0SemYu7s7gN8/t1eHJxP5HTt24C9/+YvaxnJ2dsbrr7+OpKQkmJqadlruT0b27K5cuaJ07v79+7h//75a4gSAsrIySKVSTJ06VenrgY7+VkRE6sQ680RERPQsUfnMvIGBAT777DNUVVVhzJgxT22/YMECxMXFYe/evYiKipJvgldSUoLU1FSYm5vjlVdekbcPCgrCp59+itjYWIXd7HNzczvcTC00NBSff/45YmJi4OXlBVdXV4XzjY2NKC4uhqenZ6/uVywWIzw8HD/99BPefffdTuvOP6mqqgr19fWwtbWFubl5l21rampQXl4u/1FCpq6uDi0tLTAyMury+gkTJsDBwQE5OTm4du2aQj/79u1T+ixelWQbDl65cgUSiURepu/+/fvYu3ev2sYlIu2izk/RNVVnXkY7P7MnIiKigUDlyTwApcSzKytXrsR3332HU6dO4datW5gyZQpqamqQmZmJ1tZWREVFKczur1ixAtnZ2Thx4gRu3rwprzMvq3l+7tw5hf4tLS0RHR2N9evXIygoCNOnT8eIESPQ1NSEu3fvIj8/H15eXkhISOjVva5duxY//fQTRowYgbq6OsTFxSm1CQsLU9h1Pjo6utt15isrK7Fw4UK4urpizJgxsLOzg1gsRk5ODlpaWrBixYour9fX18cHH3yAt99+G2+++SZee+01WFtbo6CgAJWVlRg9erTSDvSqYmtri9mzZ+PMmTMIDQ2Fj48Pqqurce7cOfj4+KCsrEwt4xKRdlFnTXZN1ZmXYb15IiIi0hS1JPM9YWRkhMTERBw4cAAZGRk4fPgwTExM4O3tjVWrVinULAfa148fPXoU0dHRyM7Oxo0bN+Di4oKYmBjU19crJfMA4O/vD5FIhISEBFy4cAF5eXkwNTWFnZ0dQkJC+lTnvKKiAgDwv//7v52uAQ8ODn5qCbnOODo6Yu3atfjhhx/w/fffQywWw8LCAmPGjEF4eDh8fX2f2seMGTOQkJCA2NhYZGRkwNjYGD4+PoiJicFbb73V5VKIvtq9ezccHR1x5swZJCUlwcHBAeHh4Vi5ciXOnDmjtnGJaGBgnXkiIiIaqPSkUqlU00GQZjQ0NGDatGkYNWoUvvrqK02Ho6SgoACGhoYQCASaDoVIbujQoRCLxZoOg3qpov4WKh+Vwc7UGY7mIzUdjlrwHSVtx3eUtBnfT9IGLS0t8PDweGo7jc/Mk/o9evQIEolEYQa+ra0NH3/8MR4/fqywJwER0bPM0XzkM5vEExER0cDCZH4AKC0txeLFi+Hr6wsnJyc8fPgQly9fxs8//wxXV1csWbJE0yESERERERFRDzCZHwDs7Ozw6quvIj8/H+fPn0drayscHBywbNkyREREwNTUVNMhEhERERERUQ8wmR8ALC0tsXv3bk2HQURERERERCoySNMBEBEREREREVHPMJknIiIiIiIi0jFM5omIiIiIiIh0DJN5IiIiIiIiIh3DZJ6IiIiIiIhIxzCZJyIiIiIiItIxTOaJiIiIiIiIdAyTeSIiIiIiIiIdw2SeiIiIiIiISMcwmSciIiIiIiLSMUzmiYiIiIiIiHQMk3kiIiIiIiIiHcNknoiIiIiIiEjHMJknIiIiIiIi0jFM5omIiIiIiIh0DJN5IiIiIiIiIh1joOkAiLrS1tam6RCIFLS0tKClpUXTYRB1iu8oaTu+o6TN+H6SNuhuDsRknrSWoaEhmpubmdCTVmlqakJzc7OmwyDqFN9R0nZ8R0mb8f0kXcJknrSWo6MjJBKJpsMgUmBhYYHa2lpNh0HUKb6jpO34jpI24/tJuoTJPGktfX196OvrazoMIgUCgQACgUDTYRB1iu8oaTu+o6TN+H6SLuEGeEREREREREQ6hsk8ERERERERkY5hMk9ERERERESkY5jMExEREREREekYJvNEREREREREOobJPBEREREREZGOYTJPREREREREpGOYzBMRERERERHpGCbzRERERERERDqGyTwRERERERGRjmEyT0RERERERKRjmMwTERERERER6Rgm80REREREREQ6hsk8ERERERERkY5hMk9ERERERESkY5jMExEREREREekYJvNEREREREREOobJPBEREREREZGOYTJPREREREREpGMMNB0AERERERERqcYvt6WoqAAcHYHhL+ppOhxSo2c6mU9NTcW2bduwe/duhISE9LofNzc3TJo0CUePHlVhdP0nLi4O8fHxOHLkCCZPntzrfpYsWYL8/HwUFxerMDoiIiIiomdbrViq9jHqfpPi73uBwqu/H/P0kGLTO8CQ59ST1FsM5Y8FmqTSZL68vByBgYEAAFtbW5w7dw76+vpK7YqLizF//nwAwPDhw5GVlaXKMLRCWloaEhMT8fPPP0MgEMDT0xPr1q3Dyy+/rOnQiIiIiIg0prFR/YltbxkZSdUS37wF6r/nQYOAwYOBnR/oweNl4Oq/gT17pVgaDkgk6hk/O1Mt3aqFicmz98ODWmbmDQwMUFVVhdzcXMyYMUPp/Ndffw0DAwO0traqY3iN+8c//oGYmBg4ODjgz3/+Mx49eoT09HS88cYbSEhI6NPsOBERERGRLpv5f7Q3mQdqNB1Ar0kkwH+8o4cA//akNcAfkEqB9/+mvuet3X9LRbnnnr1kXi0b4Hl5ecHc3BxCoVDpXHNzM9LS0uDn56eOoTXu9u3biIuLw4svvoh//etf2Lp1K3bu3Injx4/DwMAA27dvf2Z/xCAiIiIiIs3x+MNHwJ7umomD+odaZuaNjIwwZ84cpKamoqamBpaWlvJzZ8+eRW1tLUJDQ3H27NkOr29sbMTBgweRnp6OiooKmJiYwNPTE6tXr8b48eOV2ovFYkRHR+Pbb7/Fw4cP4eLigtWrV3cZY1FREfbv34+CggKIxWLY2NggICAAa9asgYWFRa/vPTU1Fa2trYiIiIC5ubn8uKurK4KCgnD8+HH88MMP8PX17fUYlZWVSElJQW5uLsrKylBfXw9bW1v4+flh7dq1sLKyemofsiURwcHBWLZsGT7++GNcuXIFUqkUkyZNwqZNm+Di4tLhta2trdi/fz+EQiGqqqrg6OiIpUuX4i9/+YvK4yQiIiKiZ0t2pvbOkA4dagGxuFbl/fbXDPbVf7fPyMsUXlPveNr8txwI1LYBXmhoKFJSUpCWloawsDD5caFQCCsrK/j7+3d4XXNzM8LDw1FYWIixY8ciLCwM1dXVyMzMRF5eHmJiYjBr1ix5+8bGRixZsgQlJSXw8vLCxIkTce/ePWzcuBHTpk3rcIycnBxs2LAB+vr6CAgIgL29PW7duoWkpCTk5ubixIkTGDJkSK/uOz8/HwA6HHv69Ok4fvw4CgoKFJL5rVu3QiQSdXujvkuXLuGf//wnfHx84O7uDoFAgBs3biA5ORm5ubkQiUQKPyR0paysDG+88Qbc3d2xePFilJaWIjs7G5cvX8bx48cxcuRIpWsiIyNx7do1+Pn5YdCgQcjMzMTOnTshEAiwaNEitcRJRERERM8GbV67bGqqh6Ym1ceXdlLlXSrZ8b4U0Z9IIZW2z8gXXgNi9knh6QHs+pt6nrk2/y0HArUl8x4eHnB1dYVQKJQn85WVlcjLy0NYWBgMDDoe+sCBAygsLMS8efOwZ88e6Om1vyBhYWFYuHAhtm/fjqlTp8LMzAwAcPDgQZSUlGDRokXYtWuXvJ8FCxZg+fLlSv3X1tZi8+bNsLS0RHJyMhwcHOTnTp8+jXfeeQexsbHYsWNHr+779u3bMDU1hY2NjdK5F154Qd6mL3x8fJCbm4vBgwcrHD958iS2bNmCpKQkREREdKuvS5cuISIiAhs2bFDqZ+fOnUhMTFS65v79+zh9+rT8b7B06VLMmzcPhw4dUkjmVRknEREREZGu6o9d3z/8G/C3D6UKa+QnegPvb9fDUO46/0xSy5p5mZCQEBQXF+PHH38E0P4JeltbG0JDQzu9RiQSQSAQYNOmTfJEHgBGjx6N4OBg1NXVIScnR3785MmTEAgEWLdunUI/vr6+mDJlilL/p06dQkNDAyIjIxUSeQCYO3cuxo4di/T09F7dLwA0NDR0OtssS34bGhoUjkdGRiIjIwMzZ87s1hhWVlZKCTIABAUFwczMDN9//3234x0yZAjeeustpX5GjRqFH374Affu3VO6JjIyUn4vADBixAiMHz8ev/zyi8K9qTJOIiIiIiLq3NCheoj5+yD810fA0jeB//oIiPn7ICbyzzC11pkPCgpCdHQ0hEIhxo0bB5FIBA8Pj07XYjc0NKCsrAwjR46Evb290vnJkycjJSUFRUVFCAoKQkNDA8rLy+Hi4tLhTLi3tzcuXLigcKywsBAAcPXqVdy5c0fpmqamJtTW1iqt9VcnW1tb2Nra9uiab775BikpKbh+/Tp+++03tLW1yc9VVVV1u5+XXnoJpqamCsf09PQwfvx4lJSUoKioCMOGDVM4P3bsWKV+7OzsAAD19fUKib6q4iQiIiIi0mXqrjXfcZ15iVrrzAOsNa9Jak3mrays4Ofnh/T0dAQEBKC0tBTLli3rtL1sVrezjdGsra0BtCeMT7bvLOnuqJ+6ujoAwLFjx7qMvbGxscvznTEzM5PH90eyeJ9Mdnvj0KFDiIqKgqWlJaZNmwZ7e3sYGxsDABITE9HS0tLtvrr7rJ/U0ZcHsmUTTybrqoyTiIiIiAYWTdSjV1edeUD9teY1UWce0K1a83+k62v+1ZrMA+0b4eXk5ODdd9+FsbEx5s6d22lbWZJbXV3d4XnZcVk72T9rajquB9lRP7Jr0tLSMGrUqG7eRfe9+OKLuHLlCh48eKD0tUBpaam8TW+1trbis88+g62tLU6dOqXwQ4ZUKsXBgwd71F9nz/rXX38F0HHirok4iYiIiGhg0UwNc9aZ7yldqjX/R7pee16ta+YBYMaMGbCxsUFlZSVmzZrV5ay0mZkZnJ2dcefOHVRWViqdl+0UP3r0aHl7JycnlJaW4sGDB0rtL126pHTM3b292KLsc3tVmzhxIgAgLy9P6dz58+cV2vRGbW0t6uvr4enpqfRFwr///W88fvy4R/399NNPePTokdLx//mf/wHw+7PWdJxERERERNQ11pkfWNQ+M29gYIDPPvsMVVVVGDNmzFPbL1iwAHFxcdi7dy+ioqLkm+CVlJQgNTUV5ubmeOWVV+Ttg4KC8OmnnyI2NlZhN/vc3Fyl9fJA+5cCn3/+OWJiYuDl5QVXV1eF842NjSguLoanp2ev7jckJASHDh3C559/jsDAQPnM9s2bN3Hq1Ck8//zz8PHxUbimqqpKXoP9aTPhVlZWMDY2xvXr19HY2AgTExMA7csHPvzwwx7HW1dXhy+++EJpN/uSkhL4+PgorZfvLlXHSUREREQDiyZqmKurzjzQPzPY/V1nHmCteU1SezIP/D4b3h0rV67Ed999h1OnTuHWrVuYMmUKampqkJmZidbWVkRFRSnM7q9YsQLZ2dk4ceIEbt68Ka8zn5WVBX9/f5w7d06hf0tLS0RHR2P9+vUICgrC9OnTMWLECDQ1NeHu3bvIz8+Hl5cXEhISenWvw4cPx5o1a/DJJ59g/vz5mD17Nh49eoT09HS0trZi165dSmX5oqOju11nftCgQVi8eDEOHTqEoKAg/OlPf0JDQwP++7//G46Ojj3eSM/b2xtHjx7F1atX8fLLL+P27dvIzs6Gubk53nvvvR7fv7riJCIiIqKBRRPrmdVVZx5Qf615TdSZB3R/3bku65dkvieMjIyQmJiIAwcOICMjA4cPH4aJiQm8vb2xatUqeHt7K7Q3NTXF0aNHER0djezsbNy4cQMuLi6IiYlBfX29UjIPAP7+/hCJREhISMCFCxeQl5cHU1NT2NnZISQkBPPnz+/TPURERMDR0RGJiYlITk6GQCCAl5cX1q1b16MfNjoTGRmJIUOGQCQS4csvv4S1tTVee+01rF27FvPmzetRX87OznjvvfewZ88eJCUlQSqVws/PD5s2bcLIkSO1Jk4iIiIiIl2m7l3fWWd+4NGTSqW6u2MB9Vp5eTkCAwMRHByM//qv/9J0OB2qrVXPJ05EfWFhYcF3k7Qa31HSdnxHSZs9C+/nL7elqKgAHB2B4S8yiddVFhYWT22jdTPzRERERERE1DvDX9TD8Bc1HQX1B7XvZk9EREREREREqsVknoiIiIiIiEjH8DP7AcrJyQnFxcWaDoOIiIiIiIh6gTPzRERERERERDqGyTwRERERERGRjmEyT0RERERERKRjmMwTERERERER6Rgm80REREREREQ6hsk8ERERERERkY5hMk9ERERERESkY5jMExEREREREekYJvNEREREREREOsZA0wEQERERERFR3+hV/4xB4juQDH0eUisXTYdD/eCZTuZTU1Oxbds27N69GyEhIb3ux83NDZMmTcLRo0dVGF3/iYuLQ3x8PI4cOYLJkyf3up8lS5YgPz8fxcXFKoyOiIiIiGiAeFSj+j4bxTD+9n0YVFySH2p19MbjV/4GmAxV/Ximlqrvk3pFpcl8eXk5AgMDAQC2trY4d+4c9PX1ldoVFxdj/vz5AIDhw4cjKytLlWFoVGNjI5KTk3H9+nVcv34dt2/fhlQqRU5ODpycnDQdHhERERGR7ml51C/DSJsN1TqW2T+mqbxPqd4gwNAcjXNjIHGcgEEVl2Gc/T4GH5kHPalE5eM1rL2s8j7VQmCq6QjUTi0z8wYGBqiqqkJubi5mzJihdP7rr7+GgYEBWltb1TG8RlVXVyMqKgoA4OjoiCFDhkAsFms4KiIiIiIi3WUWN6FfxmkFYNYvI6mOnlSCxpkfoG3UqwCAtlGvokkqhXF6pFrG66+/RV81RP6k6RDUTi0b4Hl5ecHc3BxCoVDpXHNzM9LS0uDn56eOoTXOwsIChw4dwsWLF3H27FmMGzdO0yEREREREdEzTOKomGC3OXlrKBLqT2qZmTcyMsKcOXOQmpqKmpoaWFr+vq7i7NmzqK2tRWhoKM6ePdvh9Y2NjTh48CDS09NRUVEBExMTeHp6YvXq1Rg/frxSe7FYjOjoaHz77bd4+PAhXFxcsHr16i5jLCoqwv79+1FQUACxWAwbGxsEBARgzZo1sLCw6PW9Dx48GNOmqf7zmSdVVlYiJSUFubm5KCsrQ319PWxtbeHn54e1a9fCysrqqX3IlkQEBwdj2bJl+Pjjj3HlyhVIpVJMmjQJmzZtgotLxxtntLa2Yv/+/RAKhaiqqoKjoyOWLl2Kv/zlLyqPk4iIiIiovz7tHjp0qFq/qlXXrPagisvymXkA0C+/1EXrvtGZz+wHALVtgBcaGoqUlBSkpaUhLCxMflwoFMLKygr+/v4dXtfc3Izw8HAUFhZi7NixCAsLQ3V1NTIzM5GXl4eYmBjMmjVL3r6xsRFLlixBSUkJvLy8MHHiRNy7dw8bN27sNKnOycnBhg0boK+vj4CAANjb2+PWrVtISkpCbm4uTpw4gSFDhqj0eXRl69atEIlE3d6o79KlS/jnP/8JHx8fuLu7QyAQ4MaNG0hOTkZubi5EIhHMzc27NXZZWRneeOMNuLu7Y/HixSgtLUV2djYuX76M48ePY+TIkUrXREZG4tq1a/Dz88OgQYOQmZmJnTt3QiAQYNGiRWqJk4iIiIgGsH5a/6xnOBgQNKut/4bVeSrv0zhtPYxydqFZKkWbkzf0yy/B8OyHaHWaiMdzP1H5eANhLbquUFsy7+HhAVdXVwiFQnkyX1lZiby8PISFhcHAoOOhDxw4gMLCQsybNw979uyBnp4eACAsLAwLFy7E9u3bMXXqVJiZta9mOXjwIEpKSrBo0SLs2rVL3s+CBQuwfPlypf5ra2uxefNmWFpaIjk5GQ4ODvJzp0+fxjvvvIPY2Fjs2LFDZc9C1Xx8fJCbm4vBgwcrHD958iS2bNmCpKQkREREdKuvS5cuISIiAhs2bFDqZ+fOnUhMTFS65v79+zh9+rT8b7B06VLMmzcPhw4dUkjmVRknEREREZHOU8NO8I/nx8I4Y5PCGvnWF6bi8Zy/Aya9/+KYtJ9a1szLhISEoLi4GD/++COA9lJxbW1tCA0N7fQakUgEgUCATZs2yRN5ABg9ejSCg4NRV1eHnJwc+fGTJ09CIBBg3bp1Cv34+vpiypQpSvUr0cAAABvbSURBVP2fOnUKDQ0NiIyMVEjkAWDu3LkYO3Ys0tPTe3W/vRUZGYmMjAzMnDmzW+2trKyUEmQACAoKgpnZ/2vv3qOqrvI+jn9AGQFBBlCgUadUgvGGlyHFNLzmuPKCt2kaUykztSbzks9UT2Uup6aoFTjeWuUlzVtYSGYqSra0QTG0BjVFaEoR0KAU6ZCkgOf5w+eQdEC5/A6H43m/1nK5/O199vn+TjsW3/Pbe3+9dODAgRq/t4+Pj6ZNm2Y1TkhIiA4ePKhz585VGa8lkZek9u3bq2fPnjp16pSKi4ttEicAAACAKnj46udxq/RT9DaVRC3TpahlKu3+oFwunbd3ZLAxm9aZj4qKUmxsrBISEtSlSxclJiaqW7du1e7FLi4uVk5Ojjp06KCgoCCr9t69eys+Pl4nT55UVFSUiouLlZubq+DgYLVq1cqqf3h4uFJTUytdS09PlyQdOXJEZ86csXrN5cuXVVhYaLXX35YCAgIUEBBQq9fs3r1b8fHxOn78uH788UeVl5dXtBUUFNR4nI4dO8rTs/JSGRcXF/Xs2VNZWVk6efKkbrvttkrtnTt3thonMDBQkmQymSol+kbFCQAAADg0W9SYv45ZrnI7/E7D1Zu3oO683dg0mff391dkZKS2b9+uQYMGKTs7W1OmTKm2v+WpbnUHo7Vs2VLStYTx+v7VJd1VjVNUVCRJ2rBhww1jLykpuWG7Pa1evVoxMTHy8/NT3759FRQUJHd3d0nS2rVrVVpaWuOxavpZX6+qfe6WbRPXJ+tGxgkAAAAn00C15a9nyzrztqgxf72Grjdv4fAH4jnwGQA2Tealawfh7dmzR88995zc3d01YsSIavtanuieP1/1khDLdUs/y98XLlT9LVdV41hes23bNoWEhNTwLhqPsrIyLV++XAEBAdq6dWulLzLMZrNWrlxZq/Gq+6x/+OEHSVUn7vaIEwAAAM7FHvXMHbHOvEVD15u3cJS689Vx5Hr0Nt0zL0n9+/dXq1atlJ+fr6FDh1Zagv1rXl5eatu2rc6cOaP8/Hyr9rS0NEnX9s9b+rdp00bZ2dn6/vvvrfofPmxdkiEsLEzSL8vtHU1hYaFMJpO6d+9utSLh2LFj+vnnn2s1XkZGhi5dsv728csvv5T0y2dt7zgBAAAA3Bj15p2LzZ/MN23aVMuXL1dBQYE6dep00/6jR4/WkiVL9MYbbygmJqbiELysrCxt2bJF3t7eGjJkSEX/qKgoLVu2TIsXL650mn1KSorVfnnp2kqBN998U3FxcerRo4fuvPPOSu0lJSXKzMxU9+7d63rLtVZQUFBRg/1mT8L9/f3l7u6u48ePq6SkRB4eHpKubR946aWXav3eRUVFevvtt61Os8/KylJERITVfvmaMjpOAAAAOBd7LN+2ZZ35hniC3ZD15i0cfpm9A7N5Mi/98jS8Jh599FHt27dPW7du1TfffKM+ffrowoUL2rlzp8rKyhQTE1Pp6f7UqVOVnJyszZs36+uvv66oM5+UlKQBAwZo7969lcb38/NTbGysZs2apaioKN1zzz1q3769Ll++rLNnzyotLU09evTQqlWr6ny/MTExKiwslHTtSwhJeu211yoOmnv00Ucr1W+PjY2tcZ15V1dXTZgwQatXr1ZUVJQGDhyo4uJiffbZZ2rdunWtD9ILDw/XunXrdOTIEXXt2lWnT59WcnKyvL29NX/+/FqNZcs4AQAA4GTssJfZlnXmbVFj/noNXm/ewoH3nDu6Bknma6NZs2Zau3atVqxYoR07dmjNmjXy8PBQeHi4pk+frvDwyktFPD09tW7dOsXGxio5OVknTpxQcHCw4uLiZDKZrJJ5SRowYIASExO1atUqpaamav/+/fL09FRgYKDGjh2rUaNG1esedu3apby8PKtrFmPGjKmUzNfW3Llz5ePjo8TERG3cuFEtW7bU8OHDNXPmTI0cObJWY7Vt21bz58/X66+/rvXr18tsNisyMlLz5s2rV4xGxwkAAAA4NBuf+k69eefjYjabzfYOAg0vNzdXgwcP1pgxY/Tqq6/aO5wqWVY3AI2Jr68vcxONGnMUjR1zFI3ZrTA/Xc7/V64Xz+jqb38vs3/VJcHR+Pn63vwLmEb3ZB4AAAAAUDdm/2CVk8Q7BZufZg8AAAAAAIxFMg8AAAAAgINhmb2TatOmjTIzM+0dBgAAAACgDngyDwAAAACAgyGZBwAAAADAwZDMAwAAAADgYEjmAQAAAABwMCTzAAAAAAA4GJJ5AAAAAAAcDMk8AAAAAAAOhmQeAAAAAAAHQzIPAAAAAICDaWrvAAAAAAAA9ZNdmKk802m19r5Dt/uG2jscNIBbOpnfsmWLnn32Wb3yyisaO3ZsnccJDQ1Vr169tG7dOgOjazhLlizR0qVL9e6776p37951HmfSpElKS0tTZmamgdEBAAAAzutiyQ/1ev2Plwu1aP//6Gj+wYprYYERmt33dbVo5lvncX/r0bJeccH2DE3mc3NzNXjwYElSQECA9u7dqyZNmlj1y8zM1KhRoyRJ7dq1U1JSkpFh2FVGRoZ27dqlAwcOKCcnRyaTSYGBgbrnnnv02GOPKTAw0N4hAgAAAJBUUvpTpX+7l/7G6pqtjd/UpV6vd3VxVXO3Fnph4NvqGhihY/kHtWj/3zU1sb+umq/Wedxtk76pV1xG83Brbu8QGh2bPJlv2rSpCgoKlJKSov79+1u1f/DBB2ratKnKysps8fZ29eKLL+ro0aPq2rWrhg8fLjc3Nx09elSbNm1SUlKSNmzYoA4dOtg7TAAAAMDpjVzn+L+XXzVf1ey+r6l/u2sPS/u3GyWz2ayX9k6v17iN7bP5ZMp39g6h0bHJAXg9evSQt7e3EhISrNquXLmibdu2KTIy0hZvbXejRo3S7t279f777+v555/X008/rQ0bNuipp55SYWGhYmJi7B0iAAAAgFtI18CISv8OC+pjp0jQkGzyZL5Zs2a67777tGXLFl24cEF+fn4VbZ9++qkKCws1btw4ffrpp1W+vqSkRCtXrtT27duVl5cnDw8Pde/eXTNmzFDPnj2t+l+8eFGxsbH65JNP9NNPPyk4OFgzZsy4YYwnT57UW2+9pUOHDunixYtq1aqVBg0apCeeeEK+vnXfWzJx4sQqrz/yyCNavny5Dh06VOexLfLz8xUfH6+UlJSKpfwBAQGKjIzUzJkz5e/vf9MxLFsixowZoylTpui1117Tf/7zH5nNZvXq1Uvz5s1TcHBwla8tKyvTW2+9pYSEBBUUFKh169aaPHmyHnzwQcPjBAAAAGzl10vJfX19VVhY2KAxGPEE/Fj+wYon85J09LvUeo/Z2JbZw5rNDsAbN26c4uPjtW3bNkVHR1dcT0hIkL+/vwYMGFDl665cuaKHHnpI6enp6ty5s6Kjo3X+/Hnt3LlT+/fvV1xcnIYOHVrRv6SkRJMmTVJWVpZ69Oihu+66S+fOndOcOXPUt2/fKt9jz549mj17tpo0aaJBgwYpKChI33zzjdavX6+UlBRt3rxZPj4+hn4eLi4ucnV1laur9WKIZ555RomJiTU+qO/w4cN65513FBERobCwMLm5uenEiRPatGmTUlJSlJiYKG9v7xrFlZOTo7/+9a8KCwvThAkTlJ2dreTkZH3xxRd67733qtwSMHfuXB09elSRkZFydXXVzp07tXDhQrm5uen++++3SZwAAACA0X69D9vDrbl+drvSoDF88Nev6vX6hZ9O1eLUZ2U2mxUW1EdHv0vVkoP/q7CgPpo/cEWdx2WPeuNns2S+W7duuvPOO5WQkFCRzOfn52v//v2Kjo5W06ZVv/WKFSuUnp6ukSNH6vXXX5eLi4skKTo6Wn/+85/1/PPP6+6775aXl5ckaeXKlcrKytL999+vf/zjHxXjjB49Wo888ojV+IWFhfr73/8uPz8/bdq0Sb/73e8q2j7++GM99dRTWrx4sV544QXDPgtJSkpK0k8//aRhw4bVe6yIiAilpKSoefPK/4N9+OGHevrpp7V+/Xo99thjNRrr8OHDeuyxxzR79myrcRYuXKi1a9davea7777Txx9/XPHfYPLkyRo5cqRWr15dKZk3Mk4AAADgVlTfU+NfHLxK/9z7eKU98n/8XX/974Dl8nFnJeytzCZ75i3Gjh2rzMxMffXVtW+btmzZovLyco0bN67a1yQmJsrNzU3z5s2rSOQl6Q9/+IPGjBmjoqIi7dmzp+L6hx9+KDc3Nz355JOVxunXr5/69LHeK7J161YVFxdr7ty5lRJ5SRoxYoQ6d+6s7du31+l+q3Pu3Dm9/PLLcnd316xZs6za586dqx07dujee++t0Xj+/v5WCbIkRUVFycvLSwcOHKhxbD4+Ppo2bZrVOCEhITp48KDOnTtXZbyWRF6S2rdvr549e+rUqVMqLi62SZwAAAAArPm4+ytmWLxWjdmnhUPWatWYfXq890IdLzis7EJKSt/KbFpnPioqSrGxsUpISFCXLl2UmJiobt26VbsXu7i4WDk5OerQoYOCgoKs2nv37q34+HidPHlSUVFRKi4uVm5uroKDg9WqVSur/uHh4UpNrbxfJD09XZJ05MgRnTlzxuo1ly9fVmFhodVe/7q6ePGipk2bpvPnzysmJkbt27e36hMQEKCAgIBajbt7927Fx8fr+PHj+vHHH1VeXl7RVlBQUONxOnbsKE9Pz0rXXFxc1LNnT2VlZenkyZO67bbbKrV37tzZahxLyT2TyVQp0TcqTgAAAMAZ1LXuvI+7v1xcXA2tOU+t+cbNpsm8v7+/IiMjtX37dg0aNEjZ2dmaMmVKtf0tT3WrOxitZctrk8lkMlXqX13SXdU4RUVFkqQNGzbcMPaSkpIbttdEUVGRHn74YX399ddasGCBoqKi6j2mJK1evVoxMTHy8/NT3759FRQUJHd3d0nS2rVrVVpaWuOxavpZX6+qfe6WbRPXJ+tGxgkAAADUVm1rxtujzvyv1afuvNE15xvTIXjs4bdm02ReunYQ3p49e/Tcc8/J3d1dI0aMqLav5Ynu+fPnq2y3XLf0s/x94cKFG/av6j22bdumkJCQGt5F7V28eFEPP/ywTpw4ofnz5+uBBx4wZNyysjItX75cAQEB2rp1a6UvMsxms1auXFmr8ar7rH/44do3gnU9oM7oOAEAAIDaamy10m3N6Jrzjenzo868NZvumZek/v37q1WrVsrPz9fQoUMrLcH+NS8vL7Vt21ZnzpxRfn6+VXtaWpqka/vnLf3btGmj7Oxsff/991b9Dx8+bHUtLCxM0i/L7W3h+kT+hRdesCrZVh+FhYUymUzq3r271YqEY8eO6eeff67VeBkZGbp06ZLV9S+//FLSL5+1veMEAAAAcHPUnHceNn8y37RpUy1fvlwFBQXq1KnTTfuPHj1aS5Ys0RtvvKGYmJiKQ/CysrK0ZcsWeXt7a8iQIRX9o6KitGzZMi1evLjSafYpKSlW++WlaysF3nzzTcXFxalHjx668847K7WXlJQoMzNT3bt3r9P9Xrx4UQ899JAyMjL03HPPVVt3/noFBQUVNdhv9iTc399f7u7uOn78uEpKSuTh4SHp2pL+l156qdbxFhUV6e2337Y6zT4rK0sRERFW++Vryug4AQAAgNqq7TJxe9SZ/7X6Pg03suZ8Y1pmD2s2T+alX56G18Sjjz6qffv2aevWrfrmm2/Up08fXbhwQTt37lRZWZliYmIqPd2fOnWqkpOTtXnzZn399dcVdeaTkpI0YMAA7d27t9L4fn5+io2N1axZsxQVFaV77rlH7du31+XLl3X27FmlpaWpR48eWrVqVZ3udebMmcrIyFD79u1VVFSkJUuWWPWJjo5WixYtKv4dGxtb4zrzrq6umjBhglavXq2oqCgNHDhQxcXF+uyzz9S6detaH6QXHh6udevW6ciRI+ratatOnz6t5ORkeXt7a/78+bUay5ZxAgAAALVV233W9qgz/2v1qTtvdM159qk3bg2SzNdGs2bNtHbtWq1YsUI7duzQmjVr5OHhofDwcE2fPl3h4eGV+nt6emrdunWKjY1VcnKyTpw4oeDgYMXFxclkMlkl85I0YMAAJSYmatWqVUpNTdX+/fvl6empwMBAjR07VqNGjbJ6TU3l5eVJkr799lstXbq0yj5jxoyplMzX1ty5c+Xj46PExERt3LhRLVu21PDhwzVz5kyNHDmyVmO1bdtW8+fP1+uvv67169fLbDYrMjJS8+bNU4cO9ftW0Mg4AQAAAGdQnxPkqTnvXFzMZrPZ3kGg4eXm5mrw4MEaM2aMXn31VXuHUyV7L3ECqtIYlt8BN8IcRWPHHEVjdqvMz+zCTOWZTqu19x263TfU3uGgDnx9b15KsNE9mQcAAAAA1N3tvqEk8U7A5qfZAwAAAAAAY5HMAwAAAADgYFhm76TatGmjzMxMe4cBAAAAAKgDnswDAAAAAOBgSOYBAAAAAHAwJPMAAAAAADgYknkAAAAAABwMyTwAAAAAAA6GZB4AAAAAAAdDMg8AAAAAgIMhmQcAAAAAwMGQzAMAAAAA4GBI5gEAAAAAcDAk8wAAAAAAOBiSeQAAAAAAHAzJPAAAAAAADoZkHgAAAAAAB0MyDwAAAACAgyGZBwAAAADAwZDMAwAAAADgYFzMZrPZ3kEAAAAAAICa48k8AAAAAAAOhmQeAAAAAAAHQzIPAAAAAICDIZkHAAAAAMDBkMwDAAAAAOBgSOYBAAAAAHAwTe0dAADY09GjR7VkyRKlp6ertLRUwcHBio6O1siRI2s8xtWrV7Vx40bFx8crOztbnp6e6t27t+bMmaM77rjDdsHDKdR3jh4+fFiffPKJ0tLSlJeXp0uXLql169YaPHiwpk+frhYtWtj4DnArM+Jn6PVKS0s1fvx4nTx5Uu3atVNSUpLBEcPZGDVHi4uLtXr1au3evVs5OTlyc3NT27ZtNXjwYD3xxBM2ih64MerMA3Ban3/+uR555BG5ublp+PDh8vb21u7du5Wbm6s5c+ZoxowZNRrnhRde0ObNmxUcHKz+/fvr/Pnz2rFjh5o1a6b33ntPwcHBNr4T3KqMmKN9+/ZVYWGh/vjHP6pjx45ycXFRWlqaTpw4od///vd677335O/v3wB3g1uNUT9Dr/evf/1La9as0aVLl0jmUW9GzdGzZ88qOjpaOTk5uvvuu9WxY0dduXJFZ86c0dmzZ7Vt2zYb3wlQDTMAOKHS0lLzkCFDzF26dDEfP3684rrJZDIPHz7c3KlTJ/OpU6duOk5qaqo5JCTEPGHCBPPly5crrh84cMAcGhpqfvDBB20RPpyAUXP0rbfeMufn51e6dvXqVfOLL75oDgkJMS9YsMDo0OEEjJqf1/vqq6/MnTp1Mr/77rvmkJAQ85/+9CeDo4YzMWqOlpWVmceNG2cOCwszp6amVvk+gL2wZx6AUzp48KDOnDmjESNGqFOnThXXvby89Pjjj6usrExbtmy56Tjvv/++JGn27Nn6zW9+U3G9T58+6tevnw4dOqRTp04ZfwO45Rk1R6dNm6aAgIBK11xcXPT4449Lkg4dOmRs4HAKRs1PiytXruiZZ55Rt27dNHHiRFuEDCdj1BzdtWuXjh07pilTpigiIsKqvWlTdi3Dfph9AJxSWlqaJKlfv35WbX379q3U50Y+//xzeXp6qmfPnlZt/fr107///W8dOnRI7dq1q2fEcDZGzdHqWH4BbdKkSZ3HgPMyen4uXbpU2dnZ2rp1q1xcXIwJEk7NqDm6Y8cOSdKwYcN07tw57d27VyaTSW3btlVkZKSaN29uYNRA7ZDMA3BKp0+fliTdfvvtVm0+Pj7y9fVVdnb2Dce4dOmSvv/+e4WEhFSZEFkOv7O8F1AbRszRG0lISJD0yy+1QG0YOT+PHj2qlStXas6cOXzxCcMYNUe/+uorSdIXX3yhV155RVeuXKlo8/Pz06JFi9S7d29jggZqiWX2AJxScXGxJMnb27vKdi8vL5lMphuOYWn38vKqdozr3wuoDSPmaHUyMjK0bNky+fv7a+rUqXWOEc7LqPl55coVPfvss+rYsaOmTJliaIxwbkbN0fPnz0uSXnrpJUVHR2vfvn1KTU3V888/L5PJpL/97W8qKCgwLnCgFkjmAQBwIjk5OZo+fbrKy8sVGxsrPz8/e4cEJ7Zo0SJlZ2frn//8J1s+0CiZ/7/w14ABAzRv3jwFBQXJz89PkyZN0kMPPSSTyaQPPvjAzlHCWZHMA3BKlqfm1X0rX1xcXO23+RaW9uqevFuuV/fkHrgRI+bor+Xl5Sk6OloXLlzQ4sWLqzzMCagJI+bn8ePHtWbNGs2YMUOhoaGGxwjnZtTPUMs4gwYNsmobOHCgpF+W4gMNjWQegFOy7Gevar9cUVGRCgsLq9xndz1PT0+1atVKubm5Ki8vt2q37NezvBdQG0bM0evl5uZq0qRJKigo0KJFiyp+CQXqwoj5mZmZqfLyci1ZskShoaGV/kjSqVOnFBoaqvDwcMPjx63PqJ+hlnMcWrRoYdVmuXb58uV6RArUHck8AKd01113SZJSUlKs2vbv3y9J6tWr103H6dWrly5duqQvv/zSqs0ytuW9gNowao5K1xL5yZMnq6CgQHFxcRoyZIhxgcIpGTE/77jjDo0fP77KP9K11U/jx4/X6NGjDY4ezsCon6GWFUz//e9/rdos11q3bl3nOIH6cDFbNoIAgBMpKyvTsGHDlJ+fr82bN6tjx46Sri27e+CBB3Tq1Cl9/PHHFd/IX7hwQYWFhfL19a20x/jgwYOKjo5WeHi43nnnnYpa86mpqXr44YcVHh6u9evXN/wNwuEZNUctiXx+fr7i4uI0dOhQu9wPbi1Gzc/qhIaGql27dkpKSrLpfeDWZdQczcnJ0X333Sdvb28lJiYqMDCwYpyJEycqIyNDa9asUZ8+fRr+JuH0mixYsGCBvYMAgIbm6uqqkJAQffTRR/rwww+Vl5enQ4cO6eWXX9bp06f15JNP6t57763ov3LlSs2aNUseHh6VStC0adNG+fn5+uSTT5ScnKy8vDx99NFHio2Nlaenp5YuXcoBY6gTo+bo6NGjlZeXp7CwMDVv3lxpaWlWfyirhNoyan5WZ+nSpfL19dXEiRNteRu4hRk1R318fOTt7a1du3YpMTFR2dnZSklJ0SuvvKJvv/1Wf/nLXzR58mR73CJAnXkAzisiIkIbN27U4sWLtXPnTpWWlio4OFizZs3SqFGjajzOwoULFRoaqvj4eK1bt06enp4aOHAgNZNRb0bM0by8PElSenq60tPTq+wzc+ZMw2KG8zDqZyhgK0bN0UmTJql169ZatWqVtm/frvLycgUHB2vGjBm6//77bXgHwI2xzB4AAAAAAAfDAXgAAAAAADgYknkAAAAAABwMyTwAAAAAAA6GZB4AAAAAAAdDMg8AAAAAgIMhmQcAAAAAwMGQzAMAAAAA4GBI5gEAAAAAcDAk8wAAAAAAOBiSeQAAAAAAHAzJPAAAAAAADoZkHgAAAAAAB/N/3q1BptxhjAIAAAAASUVORK5CYII=\n",
"text/plain": [
"