From 5b6aaa20626e01acd04c744efa499f3b5b0c6c8a Mon Sep 17 00:00:00 2001 From: Ricardo Date: Mon, 12 Jul 2021 16:45:45 +0200 Subject: [PATCH] Seed `test_tuning::test_mle_jacobian` test --- pymc3/tests/models.py | 2 +- pymc3/tests/test_tuning.py | 3 +-- 2 files changed, 2 insertions(+), 3 deletions(-) diff --git a/pymc3/tests/models.py b/pymc3/tests/models.py index 78324e72c7c..d9150a27ce3 100644 --- a/pymc3/tests/models.py +++ b/pymc3/tests/models.py @@ -215,7 +215,7 @@ def simple_normal(bounded_prior=False): sd = 1.0 a, b = (9, 12) # bounds for uniform RV, need non-symmetric to reproduce issue - with pm.Model() as model: + with pm.Model(rng_seeder=2482) as model: if bounded_prior: mu_i = pm.Uniform("mu_i", a, b) else: diff --git a/pymc3/tests/test_tuning.py b/pymc3/tests/test_tuning.py index 038f65f5646..efae88f4820 100644 --- a/pymc3/tests/test_tuning.py +++ b/pymc3/tests/test_tuning.py @@ -18,7 +18,6 @@ from pymc3.step_methods.metropolis import tune from pymc3.tests import models -from pymc3.tests.helpers import select_by_precision from pymc3.tuning import find_MAP, scaling @@ -37,7 +36,7 @@ def test_guess_scaling(): def test_mle_jacobian(): """Test MAP / MLE estimation for distributions with flat priors.""" truth = 10.0 # Simple normal model should give mu=10.0 - rtol = select_by_precision(float64=1e-6, float32=1e-4) + rtol = 1e-5 # this rtol should work on both floatX precisions start, model, _ = models.simple_normal(bounded_prior=False) with model: