From b5a4a839a1db7f8dec6fdb3ad3087b2f205f0803 Mon Sep 17 00:00:00 2001 From: liamhuber Date: Mon, 6 May 2024 16:13:29 -0700 Subject: [PATCH 01/10] Bump pyiron ecosystem --- .ci_support/environment-notebooks.yml | 2 +- setup.py | 6 +++--- 2 files changed, 4 insertions(+), 4 deletions(-) diff --git a/.ci_support/environment-notebooks.yml b/.ci_support/environment-notebooks.yml index 2279b89c..a8831917 100644 --- a/.ci_support/environment-notebooks.yml +++ b/.ci_support/environment-notebooks.yml @@ -5,6 +5,6 @@ dependencies: - atomistics =0.1.27 - lammps - phonopy =2.22.1 - - pyiron_atomistics =0.5.3 + - pyiron_atomistics =0.5.4 - pyiron-data =0.0.29 - numpy =1.26.4 \ No newline at end of file diff --git a/setup.py b/setup.py index 77c71770..bf01b4d1 100644 --- a/setup.py +++ b/setup.py @@ -34,9 +34,9 @@ 'h5io==0.2.2', 'h5io_browser==0.0.12', 'matplotlib==3.8.4', - 'pyiron_base==0.8.2', + 'pyiron_base==0.8.3', 'pyiron_contrib==0.1.16', - 'pympipool==0.7.17', + 'pympipool==0.8.1', 'toposort==1.10', 'typeguard==4.2.1', ], @@ -46,7 +46,7 @@ 'atomistics==0.1.27', 'numpy==1.26.4', 'phonopy==2.22.1', - 'pyiron_atomistics==0.5.3', + 'pyiron_atomistics==0.5.4', ], }, cmdclass=versioneer.get_cmdclass(), From 2caebe118b8448fc1b42e2e7aadae39013fe5b8b Mon Sep 17 00:00:00 2001 From: pyiron-runner Date: Mon, 6 May 2024 23:14:03 +0000 Subject: [PATCH 02/10] [dependabot skip] Update env file --- .binder/environment.yml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/.binder/environment.yml b/.binder/environment.yml index 8fd84c5b..ecd7e195 100644 --- a/.binder/environment.yml +++ b/.binder/environment.yml @@ -19,6 +19,6 @@ dependencies: - atomistics =0.1.27 - lammps - phonopy =2.22.1 -- pyiron_atomistics =0.5.3 +- pyiron_atomistics =0.5.4 - pyiron-data =0.0.29 - numpy =1.26.4 From 75afaf7354d75cc7b7bfc08b3688521f229d303d Mon Sep 17 00:00:00 2001 From: liamhuber Date: Mon, 6 May 2024 16:22:02 -0700 Subject: [PATCH 03/10] Bumpy pympipool in conda env --- .ci_support/environment.yml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/.ci_support/environment.yml b/.ci_support/environment.yml index 9ded3aac..40d77b54 100644 --- a/.ci_support/environment.yml +++ b/.ci_support/environment.yml @@ -11,7 +11,7 @@ dependencies: - matplotlib =3.8.4 - pyiron_base =0.8.2 - pyiron_contrib =0.1.16 -- pympipool =0.7.17 +- pympipool =0.8.1 - python-graphviz =0.20.3 - toposort =1.10 - typeguard =4.2.1 From d797821392c698cfa548660a8789d48e95df1afd Mon Sep 17 00:00:00 2001 From: liamhuber Date: Mon, 6 May 2024 16:22:36 -0700 Subject: [PATCH 04/10] Be more gracious in parallel for-loop speed test --- tests/unit/test_for_loop.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/tests/unit/test_for_loop.py b/tests/unit/test_for_loop.py index 61296e06..429578b2 100644 --- a/tests/unit/test_for_loop.py +++ b/tests/unit/test_for_loop.py @@ -307,7 +307,7 @@ def test_body_node_executor(self): for_parallel.body_node_executor = exe for_parallel(t=n_procs*[t_sleep]) dt = perf_counter() - t_start - grace = 1.1 + grace = 1.25 self.assertLess( dt, grace * t_sleep, From 06a55cff9a2e2ab04a5236453258d128ac86abc8 Mon Sep 17 00:00:00 2001 From: pyiron-runner Date: Mon, 6 May 2024 23:22:58 +0000 Subject: [PATCH 05/10] [dependabot skip] Update env file --- .binder/environment.yml | 2 +- docs/environment.yml | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/.binder/environment.yml b/.binder/environment.yml index ecd7e195..278130a7 100644 --- a/.binder/environment.yml +++ b/.binder/environment.yml @@ -11,7 +11,7 @@ dependencies: - matplotlib =3.8.4 - pyiron_base =0.8.2 - pyiron_contrib =0.1.16 -- pympipool =0.7.17 +- pympipool =0.8.1 - python-graphviz =0.20.3 - toposort =1.10 - typeguard =4.2.1 diff --git a/docs/environment.yml b/docs/environment.yml index 53f09627..fc6c41d8 100644 --- a/docs/environment.yml +++ b/docs/environment.yml @@ -16,7 +16,7 @@ dependencies: - matplotlib =3.8.4 - pyiron_base =0.8.2 - pyiron_contrib =0.1.16 -- pympipool =0.7.17 +- pympipool =0.8.1 - python-graphviz =0.20.3 - toposort =1.10 - typeguard =4.2.1 From 22c998802842bedc618d16f491039179141397f8 Mon Sep 17 00:00:00 2001 From: liamhuber Date: Mon, 6 May 2024 16:29:58 -0700 Subject: [PATCH 06/10] Bump base in the conda env --- .ci_support/environment.yml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/.ci_support/environment.yml b/.ci_support/environment.yml index 40d77b54..dd1d609e 100644 --- a/.ci_support/environment.yml +++ b/.ci_support/environment.yml @@ -9,7 +9,7 @@ dependencies: - h5io =0.2.2 - h5io_browser =0.0.12 - matplotlib =3.8.4 -- pyiron_base =0.8.2 +- pyiron_base =0.8.3 - pyiron_contrib =0.1.16 - pympipool =0.8.1 - python-graphviz =0.20.3 From db48ce8df7edbd233b5945e2de7fa721acada5a7 Mon Sep 17 00:00:00 2001 From: pyiron-runner Date: Mon, 6 May 2024 23:30:19 +0000 Subject: [PATCH 07/10] [dependabot skip] Update env file --- .binder/environment.yml | 2 +- docs/environment.yml | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/.binder/environment.yml b/.binder/environment.yml index 278130a7..51202bce 100644 --- a/.binder/environment.yml +++ b/.binder/environment.yml @@ -9,7 +9,7 @@ dependencies: - h5io =0.2.2 - h5io_browser =0.0.12 - matplotlib =3.8.4 -- pyiron_base =0.8.2 +- pyiron_base =0.8.3 - pyiron_contrib =0.1.16 - pympipool =0.8.1 - python-graphviz =0.20.3 diff --git a/docs/environment.yml b/docs/environment.yml index fc6c41d8..48e7e2d1 100644 --- a/docs/environment.yml +++ b/docs/environment.yml @@ -14,7 +14,7 @@ dependencies: - h5io =0.2.2 - h5io_browser =0.0.12 - matplotlib =3.8.4 -- pyiron_base =0.8.2 +- pyiron_base =0.8.3 - pyiron_contrib =0.1.16 - pympipool =0.8.1 - python-graphviz =0.20.3 From 01b67f1c5bc6dabbc091dcee23dbee57850a0ce9 Mon Sep 17 00:00:00 2001 From: liamhuber Date: Mon, 6 May 2024 16:38:03 -0700 Subject: [PATCH 08/10] Downgrade pympipool pylammpsmpi, and thus pyiron_atomistics is still a patch behind, and to my chagrin patches remain hard-pinned in pyiron_atomistics --- .ci_support/environment.yml | 2 +- setup.py | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/.ci_support/environment.yml b/.ci_support/environment.yml index dd1d609e..4bfae0b1 100644 --- a/.ci_support/environment.yml +++ b/.ci_support/environment.yml @@ -11,7 +11,7 @@ dependencies: - matplotlib =3.8.4 - pyiron_base =0.8.3 - pyiron_contrib =0.1.16 -- pympipool =0.8.1 +- pympipool =0.8.0 - python-graphviz =0.20.3 - toposort =1.10 - typeguard =4.2.1 diff --git a/setup.py b/setup.py index bf01b4d1..6e37afaf 100644 --- a/setup.py +++ b/setup.py @@ -36,7 +36,7 @@ 'matplotlib==3.8.4', 'pyiron_base==0.8.3', 'pyiron_contrib==0.1.16', - 'pympipool==0.8.1', + 'pympipool==0.8.0', 'toposort==1.10', 'typeguard==4.2.1', ], From 8922f88eefb5236e8fc709540b585ac71703db9d Mon Sep 17 00:00:00 2001 From: liamhuber Date: Mon, 6 May 2024 16:49:37 -0700 Subject: [PATCH 09/10] Update deepdive notebook to use changed pympipool signature --- notebooks/deepdive.ipynb | 61 ++++++++++++++++++++-------------------- 1 file changed, 30 insertions(+), 31 deletions(-) diff --git a/notebooks/deepdive.ipynb b/notebooks/deepdive.ipynb index 6484ad35..ff371941 100644 --- a/notebooks/deepdive.ipynb +++ b/notebooks/deepdive.ipynb @@ -1026,7 +1026,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAlLElEQVR4nO3df1Bc1R338c8CwqLCWhKBVShiVAzBVoEhIal12hhMtLRppyM1TfzRpCNpbJNmdCaZWJFMZ6jWxtQ2UKNGGxNjOo1OzTRimakaYh5lTEiniBobacFkkUlSF6yF6HKeP/LA4xZIuMuyZ2Hfr5n7xx7O3f1+Z0P4zP1xrssYYwQAAGBJnO0CAABAbCOMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALAqwXYBo9Hf369jx44pJSVFLpfLdjkAAGAUjDHq6enRRRddpLi4kY9/TIgwcuzYMWVnZ9suAwAAhKCjo0NZWVkj/nxChJGUlBRJp5tJTU21XA0AABiN7u5uZWdnD/4dH8mECCMDp2ZSU1MJIwAATDBnu8SCC1gBAIBVhBEAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAVk2IRc8AAIgVgX6jpraT6urpVXqKWyW5aYqPm9zPZSOMAAAQJepbfKre3Sqfv3dwzOtxq6o8X/MLvBYrG1+cpgEAIArUt/i0fNvBoCAiSZ3+Xi3fdlD1LT5LlY0/wggAAJYF+o2qd7fKDPOzgbHq3a0K9A83Y+IjjAAAYFlT28khR0Q+z0jy+XvV1HYyckVFEGEEAADLunpGDiKhzJtoCCMAAFiWnuIO67yJhjACAIBlJblp8nrcGukGXpdO31VTkpsWybIihjACAIBl8XEuVZXnS9KQQDLwuqo8f9KuN0IYAQAgCswv8KpucaEyPcGnYjI9btUtLpzU64yw6BkAAFFifoFX8/IzWYEVAADYEx/nUum0KbbLiChO0wAAAKs4MgIAiCmx+CC6aEcYAQDEjFh9EF204zQNACAmxPKD6KIdYQQAMOnF+oPooh1hBAAw6cX6g+iiHWEEADDpxfqD6KIdYQQAMOnF+oPooh1hBAAw6cX6g+iiHWEEADDpxfqD6KIdYQQAEBNi+UF00Y5FzwAAMSNWH0QX7QgjAICYEosPoot2nKYBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEAAFZxNw3GTaDfcPscAOCsCCMYF/UtPlXvbg16SqbX41ZVeT4LCwEAgnCaBmFX3+LT8m0Hhzyuu9Pfq+XbDqq+xWepMgBANCKMIKwC/UbVu1tlhvnZwFj17lYF+oebAQCIRYQRhFVT28khR0Q+z0jy+XvV1HYyckUBAKIaYQRh1dUzchAJZR4AYPIjjCCs0lPcZ5/kYB4AYPIjjCCsSnLT5PW4NdINvC6dvqumJDctkmUBAKIYYQRhFR/nUlV5viQNCSQDr6vK81lvBAAwiDCCsJtf4FXd4kJleoJPxWR63KpbXMg6IwCAICx6hnExv8CrefmZrMAKADgrwgjGTXycS6XTptguAwAQ5ThNAwAArCKMAAAAq0IKI7W1tcrNzZXb7VZRUZEaGxvPOL+vr0/r1q1TTk6OkpKSNG3aNG3ZsiWkggEAwOTi+JqRnTt3atWqVaqtrdWcOXP06KOPasGCBWptbdUXv/jFYfe5+eab9eGHH+qJJ57QZZddpq6uLn322WdjLh4AAEx8LmOMoyeWzZw5U4WFhaqrqxscmz59uhYuXKiampoh8+vr6/W9731P77//vtLSQlvoqru7Wx6PR36/X6mpqSG9BwAAiKzR/v12dJrm1KlTOnDggMrKyoLGy8rKtH///mH3eeGFF1RcXKwHH3xQF198sa644grdfffd+u9//zvi5/T19am7uztoAwAAk5Oj0zTHjx9XIBBQRkZG0HhGRoY6OzuH3ef999/Xvn375Ha79fzzz+v48eP60Y9+pJMnT4543UhNTY2qq6udlAYAACaokC5gdbmCF64yxgwZG9Df3y+Xy6Xt27erpKREN954ozZs2KCnnnpqxKMja9euld/vH9w6OjpCKRMAAEwAjo6MTJ06VfHx8UOOgnR1dQ05WjLA6/Xq4osvlsfjGRybPn26jDH64IMPdPnllw/ZJykpSUlJSU5KAwAAE5SjIyOJiYkqKipSQ0ND0HhDQ4Nmz5497D5z5szRsWPH9PHHHw+OHT58WHFxccrKygqhZAAAMJk4Pk2zevVqPf7449qyZYvefvtt/fSnP1V7e7sqKyslnT7Fcuuttw7OX7RokaZMmaI77rhDra2t2rt3r+655x794Ac/UHJycvg6AQAAE5LjdUYqKip04sQJrV+/Xj6fTwUFBdqzZ49ycnIkST6fT+3t7YPzzz//fDU0NOjHP/6xiouLNWXKFN188836+c9/Hr4uAADAhOV4nREbWGcEAICJZ1zWGQEAAAg3wggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALAqpDBSW1ur3Nxcud1uFRUVqbGxccS5r7zyilwu15DtnXfeCbloAAAweTgOIzt37tSqVau0bt06NTc369prr9WCBQvU3t5+xv3effdd+Xy+we3yyy8PuWgAADB5OA4jGzZs0NKlS7Vs2TJNnz5dGzduVHZ2turq6s64X3p6ujIzMwe3+Pj4kIsGAACTh6MwcurUKR04cEBlZWVB42VlZdq/f/8Z973mmmvk9Xo1d+5cvfzyy2ec29fXp+7u7qANAABMTo7CyPHjxxUIBJSRkRE0npGRoc7OzmH38Xq92rx5s3bt2qXnnntOeXl5mjt3rvbu3Tvi59TU1Mjj8Qxu2dnZTsoEAAATSEIoO7lcrqDXxpghYwPy8vKUl5c3+Lq0tFQdHR166KGH9NWvfnXYfdauXavVq1cPvu7u7iaQAAAwSTk6MjJ16lTFx8cPOQrS1dU15GjJmcyaNUvvvffeiD9PSkpSampq0AYAACYnR2EkMTFRRUVFamhoCBpvaGjQ7NmzR/0+zc3N8nq9Tj4aAABMUo5P06xevVpLlixRcXGxSktLtXnzZrW3t6uyslLS6VMsR48e1datWyVJGzdu1CWXXKIZM2bo1KlT2rZtm3bt2qVdu3aFtxMAADAhOQ4jFRUVOnHihNavXy+fz6eCggLt2bNHOTk5kiSfzxe05sipU6d099136+jRo0pOTtaMGTP05z//WTfeeGP4ugAAABOWyxhjbBdxNt3d3fJ4PPL7/Vw/AgDABDHav988mwYAAFhFGAEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAVhFGAACAVYQRAABgFWEEAABY5Xg5eAAAEBmBfqOmtpPq6ulVeopbJblpio9z2S4r7AgjAABEofoWn6p3t8rn7x0c83rcqirP1/yCyfXke07TAAAQZepbfFq+7WBQEJGkTn+vlm87qPoWn6XKxgdhBACAKBLoN6re3arhnmI7MFa9u1WB/qh/zu2oEUYAAIgiTW0nhxwR+TwjyefvVVPbycgVNc4IIwAARJGunpGDSCjzJgLCCAAAUSQ9xR3WeRMBYQQAgChSkpsmr8etkW7gden0XTUluWmRLGtcEUYAAIgi8XEuVZXnS9KQQDLwuqo8f1KtN0IYAQAgyswv8KpucaEyPcGnYjI9btUtLpx064yw6BkAAFFofoFX8/IzWYEVAADYEx/nUum0KbbLGHecpgEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAVhFGAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAVhFGAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAVhFGAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAViXYLgAAANgR6Ddqajuprp5epae4VZKbpvg4V8TrCOnISG1trXJzc+V2u1VUVKTGxsZR7ffaa68pISFBV199dSgfCwAAwqS+xaevPPBX3fLY61r57CHd8tjr+soDf1V9iy/itTgOIzt37tSqVau0bt06NTc369prr9WCBQvU3t5+xv38fr9uvfVWzZ07N+RiAQDA2NW3+LR820H5/L1B453+Xi3fdjDigcRxGNmwYYOWLl2qZcuWafr06dq4caOys7NVV1d3xv3uvPNOLVq0SKWlpSEXCwAAxibQb1S9u1VmmJ8NjFXvblWgf7gZ48NRGDl16pQOHDigsrKyoPGysjLt379/xP2efPJJHTlyRFVVVaP6nL6+PnV3dwdtAABg7JraTg45IvJ5RpLP36umtpMRq8lRGDl+/LgCgYAyMjKCxjMyMtTZ2TnsPu+9957WrFmj7du3KyFhdNfL1tTUyOPxDG7Z2dlOygQAACPo6hk5iIQyLxxCuoDV5Qq+0tYYM2RMkgKBgBYtWqTq6mpdccUVo37/tWvXyu/3D24dHR2hlAkAAP5Heoo7rPPCwdGtvVOnTlV8fPyQoyBdXV1DjpZIUk9Pj9588001NzfrrrvukiT19/fLGKOEhAT95S9/0de//vUh+yUlJSkpKclJaQAAYBRKctPk9bjV6e8d9roRl6RMz+nbfCPF0ZGRxMREFRUVqaGhIWi8oaFBs2fPHjI/NTVVf//733Xo0KHBrbKyUnl5eTp06JBmzpw5tuoBAIAj8XEuVZXnSzodPD5v4HVVeX5E1xtxvOjZ6tWrtWTJEhUXF6u0tFSbN29We3u7KisrJZ0+xXL06FFt3bpVcXFxKigoCNo/PT1dbrd7yDgAAIiM+QVe1S0uVPXu1qCLWTM9blWV52t+gTei9TgOIxUVFTpx4oTWr18vn8+ngoIC7dmzRzk5OZIkn8931jVHEL2iZTU+AMD4ml/g1bz8zKj4P99ljIncjcQh6u7ulsfjkd/vV2pqqu1yJq36Ft+QlOy1lJIBABPfaP9+86A8SIq+1fgAALGDMIKoXI0PABA7CCOIytX4AACxgzCCqFyNDwAQOwgjiMrV+AAAsYMwgsHV+Ea6mcul03fVRHI1PgBA7CCMICpX4wMAxA7CCCT9/9X4Mj3Bp2IyPW7VLS5knREAwLhxvAIrJq9oWo0PABA7CCMIEh/nUum0KbbLAADEEE7TAAAAqwgjAADAKsIIAACwijACAACs4gJWAEDMCfQb7hyMIoQRAEBMqW/xqXp3a9ADQr0et6rK81lTyRJO0wAAYkZ9i0/Ltx0c8qTyTn+vlm87qPoWn6XKYhthBAAQEwL9RtW7W2WG+dnAWPXuVgX6h5uB8UQYAQDEhKa2k0OOiHyekeTz96qp7WTkioIkwggAIEZ09YwcREKZh/AhjAAAYkJ6ivvskxzMQ/gQRgAAMaEkN01ej1sj3cDr0um7akpy0yJZFkQYAQDEiPg4l6rK8yVpSCAZeF1Vns96IxYQRgAAMWN+gVd1iwuV6Qk+FZPpcatucSHrjFjComcAgJgyv8CrefmZrMAaRQgjAICYEx/nUum0KbbLwP/DaRoAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAVhFGAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAVhFGAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEAAFYRRgAAgFUJtguwJdBv1NR2Ul09vUpPcaskN03xcS7bZQEAEHNiMozUt/hUvbtVPn/v4JjX41ZVeb7mF3gtVgYAQOyJudM09S0+Ld92MCiISFKnv1fLtx1UfYvPUmUAAMSmmAojgX6j6t2tMsP8bGCsenerAv3DzQAAAOMhpsJIU9vJIUdEPs9I8vl71dR2MnJFAQAQ42IqjHT1jBxEQpkHAADGLqbCSHqKO6zzAADA2MVUGCnJTZPX49ZIN/C6dPqumpLctEiWBQBATAspjNTW1io3N1dut1tFRUVqbGwcce6+ffs0Z84cTZkyRcnJybryyiv18MMPh1zwWMTHuVRVni9JQwLJwOuq8nzWGwEAIIIch5GdO3dq1apVWrdunZqbm3XttddqwYIFam9vH3b+eeedp7vuukt79+7V22+/rXvvvVf33nuvNm/ePObiQzG/wKu6xYXK9ASfisn0uFW3uJB1RgAAiDCXMcbRfawzZ85UYWGh6urqBsemT5+uhQsXqqamZlTv8Z3vfEfnnXeenn766VHN7+7ulsfjkd/vV2pqqpNyR8QKrAAAjK/R/v12tALrqVOndODAAa1ZsyZovKysTPv37x/VezQ3N2v//v36+c9/PuKcvr4+9fX1Db7u7u52UuaoxMe5VDptStjfFwAAOOPoNM3x48cVCASUkZERNJ6RkaHOzs4z7puVlaWkpCQVFxdrxYoVWrZs2Yhza2pq5PF4Brfs7GwnZQIAgAkkpAtYXa7g0xnGmCFj/6uxsVFvvvmmfve732njxo3asWPHiHPXrl0rv98/uHV0dIRSJgAAmAAcnaaZOnWq4uPjhxwF6erqGnK05H/l5uZKkq666ip9+OGHuv/++3XLLbcMOzcpKUlJSUlOSgMAABOUoyMjiYmJKioqUkNDQ9B4Q0ODZs+ePer3McYEXRMCAABil6MjI5K0evVqLVmyRMXFxSotLdXmzZvV3t6uyspKSadPsRw9elRbt26VJG3atElf/OIXdeWVV0o6ve7IQw89pB//+MdhbAMAAExUjsNIRUWFTpw4ofXr18vn86mgoEB79uxRTk6OJMnn8wWtOdLf36+1a9eqra1NCQkJmjZtmn7xi1/ozjvvDF8XAABgwnK8zogN47HOCAAAGF+j/fsdU8+mAQAA0YcwAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqxJsFwAAZxPoN2pqO6munl6lp7hVkpum+DiX7bIAhAlhBEBUq2/xqXp3q3z+3sExr8etqvJ8zS/wWqwMQLhwmgZA1Kpv8Wn5toNBQUSSOv29Wr7toOpbfJYqAxBOhBEAUSnQb1S9u1VmmJ8NjFXvblWgf7gZACYSwgiAqNTUdnLIEZHPM5J8/l41tZ2MXFEAxgVhBEBU6uoZOYiEMg9A9CKMAIhK6SnusM4DEL0IIwCiUklumrwet0a6gdel03fVlOSmRbIsAOOAMAIgKsXHuVRVni9JQwLJwOuq8nzWGwEmAcIIgKg1v8CrusWFyvQEn4rJ9LhVt7iQdUaASYJFzwBEtfkFXs3Lz2QFVmASI4wAiHrxcS6VTptiuwwA44TTNAAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCK5eABxJxAv+FZN0AUIYwAiCn1LT5V726Vz987OOb1uFVVns9TgAFLQjpNU1tbq9zcXLndbhUVFamxsXHEuc8995zmzZunCy+8UKmpqSotLdVLL70UcsEAEKr6Fp+WbzsYFEQkqdPfq+XbDqq+xWepMiC2OQ4jO3fu1KpVq7Ru3To1Nzfr2muv1YIFC9Te3j7s/L1792revHnas2ePDhw4oK997WsqLy9Xc3PzmIsHgNEK9BtV726VGeZnA2PVu1sV6B9uBoDx5DLGOPrNmzlzpgoLC1VXVzc4Nn36dC1cuFA1NTWjeo8ZM2aooqJC991336jmd3d3y+PxyO/3KzU11Um5ACBJ+j9HTuiWx14/67wdP5yl0mlTIlARMPmN9u+3oyMjp06d0oEDB1RWVhY0XlZWpv3794/qPfr7+9XT06O0tLQR5/T19am7uztoA4Cx6OrpPfskB/MAhI+jMHL8+HEFAgFlZGQEjWdkZKizs3NU7/GrX/1K//nPf3TzzTePOKempkYej2dwy87OdlImAAyRnuIO6zwA4RPSBawuV/AtcMaYIWPD2bFjh+6//37t3LlT6enpI85bu3at/H7/4NbR0RFKmQAwqCQ3TV6PWyP9T+XS6btqSnJHPmoLYHw4CiNTp05VfHz8kKMgXV1dQ46W/K+dO3dq6dKl+sMf/qDrr7/+jHOTkpKUmpoatAHAWMTHuVRVni9JQwLJwOuq8nzWGwEscBRGEhMTVVRUpIaGhqDxhoYGzZ49e8T9duzYodtvv13PPPOMbrrpptAqBYAxml/gVd3iQmV6gk/FZHrcqltcyDojgCWOFz1bvXq1lixZouLiYpWWlmrz5s1qb29XZWWlpNOnWI4ePaqtW7dKOh1Ebr31Vv3617/WrFmzBo+qJCcny+PxhLEVADi7+QVezcvPZAVWIIo4DiMVFRU6ceKE1q9fL5/Pp4KCAu3Zs0c5OTmSJJ/PF7TmyKOPPqrPPvtMK1as0IoVKwbHb7vtNj311FNj7wAAHIqPc3H7LhBFHK8zYgPrjAAAMPGMyzojAAAA4UYYAQAAVhFGAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGCV4xVYbRhYl627u9tyJQAAYLQG/m6fbX3VCRFGenp6JEnZ2dmWKwEAAE719PSc8Xl0E2I5+P7+fh07dkwpKSlyuaLrYVbd3d3Kzs5WR0fHpFuqnt4mrsnc32TuTZrc/dHbxBVqf8YY9fT06KKLLlJc3MhXhkyIIyNxcXHKysqyXcYZpaamTsp/gBK9TWSTub/J3Js0ufujt4krlP7OdERkABewAgAAqwgjAADAKsLIGCUlJamqqkpJSUm2Swk7epu4JnN/k7k3aXL3R28T13j3NyEuYAUAAJMXR0YAAIBVhBEAAGAVYQQAAFhFGAEAAFYRRs6itrZWubm5crvdKioqUmNj44hzfT6fFi1apLy8PMXFxWnVqlWRKzRETvp77rnnNG/ePF144YVKTU1VaWmpXnrppQhW64yT3vbt26c5c+ZoypQpSk5O1pVXXqmHH344gtU656S/z3vttdeUkJCgq6++enwLHAMnvb3yyityuVxDtnfeeSeCFY+e0++tr69P69atU05OjpKSkjRt2jRt2bIlQtU656S/22+/fdjvbsaMGRGsePScfnfbt2/Xl7/8ZZ177rnyer264447dOLEiQhV65zT/jZt2qTp06crOTlZeXl52rp1a+gfbjCiZ5991pxzzjnmscceM62trWblypXmvPPOM//617+Gnd/W1mZ+8pOfmN///vfm6quvNitXroxswQ457W/lypXmgQceME1NTebw4cNm7dq15pxzzjEHDx6McOVn57S3gwcPmmeeeca0tLSYtrY28/TTT5tzzz3XPProoxGufHSc9jfgo48+MpdeeqkpKyszX/7ylyNTrENOe3v55ZeNJPPuu+8an883uH322WcRrvzsQvnevvnNb5qZM2eahoYG09bWZt544w3z2muvRbDq0XPa30cffRT0nXV0dJi0tDRTVVUV2cJHwWlvjY2NJi4uzvz6178277//vmlsbDQzZswwCxcujHDlo+O0v9raWpOSkmKeffZZc+TIEbNjxw5z/vnnmxdeeCGkzyeMnEFJSYmprKwMGrvyyivNmjVrzrrvddddF/VhZCz9DcjPzzfV1dXhLm3MwtHbt7/9bbN48eJwlxYWofZXUVFh7r33XlNVVRW1YcRpbwNh5N///ncEqhsbp729+OKLxuPxmBMnTkSivDEb6+/d888/b1wul/nnP/85HuWNidPefvnLX5pLL700aOyRRx4xWVlZ41bjWDjtr7S01Nx9991BYytXrjRz5swJ6fM5TTOCU6dO6cCBAyorKwsaLysr0/79+y1VFT7h6K+/v189PT1KS0sbjxJDFo7empubtX//fl133XXjUeKYhNrfk08+qSNHjqiqqmq8SwzZWL67a665Rl6vV3PnztXLL788nmWGJJTeXnjhBRUXF+vBBx/UxRdfrCuuuEJ33323/vvf/0aiZEfC8Xv3xBNP6Prrr1dOTs54lBiyUHqbPXu2PvjgA+3Zs0fGGH344Yf64x//qJtuuikSJTsSSn99fX1yu91BY8nJyWpqatKnn37quAbCyAiOHz+uQCCgjIyMoPGMjAx1dnZaqip8wtHfr371K/3nP//RzTffPB4lhmwsvWVlZSkpKUnFxcVasWKFli1bNp6lhiSU/t577z2tWbNG27dvV0JC9D4fM5TevF6vNm/erF27dum5555TXl6e5s6dq71790ai5FELpbf3339f+/btU0tLi55//nlt3LhRf/zjH7VixYpIlOzIWP9P8fl8evHFFyfN79zs2bO1fft2VVRUKDExUZmZmbrgggv0m9/8JhIlOxJKfzfccIMef/xxHThwQMYYvfnmm9qyZYs+/fRTHT9+3HEN0fu/UpRwuVxBr40xQ8YmslD727Fjh+6//3796U9/Unp6+niVNyah9NbY2KiPP/5Yr7/+utasWaPLLrtMt9xyy3iWGbLR9hcIBLRo0SJVV1friiuuiFR5Y+Lku8vLy1NeXt7g69LSUnV0dOihhx7SV7/61XGtMxROeuvv75fL5dL27dsHn3y6YcMGffe739WmTZuUnJw87vU6Fer/KU899ZQuuOACLVy4cJwqGzsnvbW2tuonP/mJ7rvvPt1www3y+Xy65557VFlZqSeeeCIS5TrmpL+f/exn6uzs1KxZs2SMUUZGhm6//XY9+OCDio+Pd/zZHBkZwdSpUxUfHz8kFXZ1dQ1JjxPRWPrbuXOnli5dqj/84Q+6/vrrx7PMkIylt9zcXF111VX64Q9/qJ/+9Ke6//77x7HS0Djtr6enR2+++abuuusuJSQkKCEhQevXr9ff/vY3JSQk6K9//WukSj+rcP3ezZo1S++99164yxuTUHrzer26+OKLgx7BPn36dBlj9MEHH4xrvU6N5bszxmjLli1asmSJEhMTx7PMkITSW01NjebMmaN77rlHX/rSl3TDDTeotrZWW7Zskc/ni0TZoxZKf8nJydqyZYs++eQT/fOf/1R7e7suueQSpaSkaOrUqY5rIIyMIDExUUVFRWpoaAgab2ho0OzZsy1VFT6h9rdjxw7dfvvteuaZZ6Ly3KcUvu/OGKO+vr5wlzdmTvtLTU3V3//+dx06dGhwq6ysVF5eng4dOqSZM2dGqvSzCtd319zcLK/XG+7yxiSU3ubMmaNjx47p448/Hhw7fPiw4uLilJWVNa71OjWW7+7VV1/VP/7xDy1dunQ8SwxZKL198skniosL/hM7cMTARNkj4cby3Z1zzjnKyspSfHy8nn32WX3jG98Y0veohHTZa4wYuNXpiSeeMK2trWbVqlXmvPPOG7zSe82aNWbJkiVB+zQ3N5vm5mZTVFRkFi1aZJqbm81bb71lo/yzctrfM888YxISEsymTZuCbsf76KOPbLUwIqe9/fa3vzUvvPCCOXz4sDl8+LDZsmWLSU1NNevWrbPVwhmF8m/z86L5bhqnvT388MPm+eefN4cPHzYtLS1mzZo1RpLZtWuXrRZG5LS3np4ek5WVZb773e+at956y7z66qvm8ssvN8uWLbPVwhmF+u9y8eLFZubMmZEu1xGnvT355JMmISHB1NbWmiNHjph9+/aZ4uJiU1JSYquFM3La37vvvmuefvppc/jwYfPGG2+YiooKk5aWZtra2kL6fMLIWWzatMnk5OSYxMREU1hYaF599dXBn912223muuuuC5ovaciWk5MT2aIdcNLfddddN2x/t912W+QLHwUnvT3yyCNmxowZ5txzzzWpqanmmmuuMbW1tSYQCFiofHSc/tv8vGgOI8Y46+2BBx4w06ZNM26323zhC18wX/nKV8yf//xnC1WPjtPv7e233zbXX3+9SU5ONllZWWb16tXmk08+iXDVo+e0v48++sgkJyebzZs3R7hS55z29sgjj5j8/HyTnJxsvF6v+f73v28++OCDCFc9ek76a21tNVdffbVJTk42qamp5lvf+pZ55513Qv5slzFRdrwIAADEFK4ZAQAAVhFGAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYBVhBAAAWPV/AV7pxheBMQ3AAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAjRklEQVR4nO3de3DU1d3H8c8mIVmgZG1AkkXyxIiKxLRqwgQCUqcKEXSwOHWIZQCx4Bir5VZtoXQMoc5kdOqlVhJFQatcyojSwhSRzFQxCJYCsWMMLVZSE2VjmlA28UKQ5Dx/8CSPaxLNb7O7h13er5n9Iyfnl/3ud/byye9y1mWMMQIAALAkznYBAADg3EYYAQAAVhFGAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGBVgu0C+qKjo0PHjh3TkCFD5HK5bJcDAAD6wBij1tZWjRgxQnFxve//iIowcuzYMaWnp9suAwAABKG+vl4jR47s9fdREUaGDBki6cyDSU5OtlwNAADoi5aWFqWnp3d9jvcmKsJI56GZ5ORkwggAAFHmm06x4ARWAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEAAFYRRgAAgFVRsegZ0JP2DqP9tcfV2HpSw4e4lZeZovg4vrsIAKINYQRRaWe1TyXba+Tzn+wa83rcKp6epanZXouVAQCc4jANos7Oap/uWn8oIIhIUoP/pO5af0g7q32WKgMABIMwgqjS3mFUsr1GpoffdY6VbK9Re0dPMwAAZyPCCKLK/trj3faIfJmR5POf1P7a45ErCgDQL4QRRJXG1t6DSDDzAAD2EUYQVYYPcYd0HgDAPsIIokpeZoq8Hrd6u4DXpTNX1eRlpkSyLABAPxBGEFXi41wqnp4lSd0CSefPxdOzWG8EAKIIYQRRZ2q2V+Wzc5TmCTwUk+Zxq3x2DuuMAECUYdEzRKWp2V5NyUpjBVYAiAGEEUSt+DiX8kcNtV0GAKCfOEwDAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAq4IKI2VlZcrMzJTb7VZubq4qKyu/dv6GDRt0xRVXaNCgQfJ6vbr99tvV3NwcVMEAACC2OA4jmzdv1uLFi7VixQpVVVVp0qRJmjZtmurq6nqcv2fPHs2dO1fz58/Xu+++qxdffFF/+9vftGDBgn4XDwAAop/jMPLII49o/vz5WrBggcaMGaPHHntM6enpKi8v73H+W2+9pQsvvFALFy5UZmamrr76at155506cOBAv4sHAADRz1EYOXXqlA4ePKiCgoKA8YKCAu3du7fHbSZMmKAPP/xQO3bskDFGH3/8sbZs2aIbb7yx1/tpa2tTS0tLwA0AAMQmR2GkqalJ7e3tSk1NDRhPTU1VQ0NDj9tMmDBBGzZsUGFhoRITE5WWlqbzzjtPv/vd73q9n9LSUnk8nq5benq6kzIBAEAUCeoEVpfLFfCzMabbWKeamhotXLhQ999/vw4ePKidO3eqtrZWRUVFvf795cuXy+/3d93q6+uDKRMAAESBBCeThw0bpvj4+G57QRobG7vtLelUWlqqiRMn6r777pMkffe739XgwYM1adIkPfDAA/J6vd22SUpKUlJSkpPSAABAlHK0ZyQxMVG5ubmqqKgIGK+oqNCECRN63Oazzz5TXFzg3cTHx0s6s0cFAACc2xztGZGkpUuXas6cORo7dqzy8/O1Zs0a1dXVdR12Wb58uT766CM9//zzkqTp06frjjvuUHl5ua6//nr5fD4tXrxYeXl5GjFiRGgfDQBY1N5htL/2uBpbT2r4ELfyMlMUH9fzIWwA/89xGCksLFRzc7NWrVoln8+n7Oxs7dixQxkZGZIkn88XsObIvHnz1NraqieeeEI/+9nPdN555+naa6/Vgw8+GLpHAQCW7az2qWR7jXz+k11jXo9bxdOzNDW7++FoAP/PZaLgWElLS4s8Ho/8fr+Sk5NtlwMAAXZW+3TX+kP66ptp5z6R8tk5BBKck/r6+c130wBAP7R3GJVsr+kWRCR1jZVsr1F7x1n/fx9gDWEEAPphf+3xgEMzX2Uk+fwntb/2eOSKAqIMYQQA+qGxtfcgEsw84FxEGAGAfhg+xB3SecC5iDACAP2Ql5kir8et3i7gdenMVTV5mSmRLAuIKoQRAOiH+DiXiqdnSVK3QNL5c/H0LNYbAb4GYQQA+mlqtlfls3OU5gk8FJPmcXNZL9AHjhc9AwB0NzXbqylZaazACgSBMAIAIRIf51L+qKG2ywCiDodpAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAVhFGAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAVhFGAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAVhFGAACAVQm2CwAAAMFp7zDaX3tcja0nNXyIW3mZKYqPc9kuyzHCCAAAUWhntU8l22vk85/sGvN63CqenqWp2V6LlTnHYRoAAKLMzmqf7lp/KCCISFKD/6TuWn9IO6t9lioLDmEEAIAo0t5hVLK9RqaH33WOlWyvUXtHTzPOToQRAACiyP7a4932iHyZkeTzn9T+2uORK6qfCCMAAESRxtbeg0gw884GhBEAAKLI8CHukM47GxBGAACIInmZKfJ63OrtAl6XzlxVk5eZEsmy+oUwAgBAFImPc6l4epYkdQsknT8XT8+KqvVGCCMAAESZqdlelc/OUZon8FBMmset8tk5UbfOCIueAQCCFisrgEajqdleTclKi4n+E0YAAEGJpRVAo1V8nEv5o4baLqPfOEwDAHAs1lYAhV2EEQCAI7G4AijsIowAAByJxRVAYRdhBADgSCyuAAq7CCMAAEdicQVQ2EUYAQA4EosrgMIuwggAwJFYXAEUdhFGAACOxdoKoLArqDBSVlamzMxMud1u5ebmqrKy8mvnt7W1acWKFcrIyFBSUpJGjRqldevWBVUwAODsMDXbqz2/uFab7hiv3956pTbdMV57fnEtQQSOOV6BdfPmzVq8eLHKyso0ceJEPfXUU5o2bZpqamr0P//zPz1uM3PmTH388cdau3atLr74YjU2Nur06dP9Lh4AYFesrAAKu1zGGEer0owbN045OTkqLy/vGhszZoxmzJih0tLSbvN37typW2+9VUePHlVKSnAnM7W0tMjj8cjv9ys5OTmov/FVfJ8CEDt4PQNnp75+fjvaM3Lq1CkdPHhQy5YtCxgvKCjQ3r17e9xm27ZtGjt2rB566CG98MILGjx4sG666Sb9+te/1sCBA53cfcjwfQpA7OD1DEQ/R+eMNDU1qb29XampqQHjqampamho6HGbo0ePas+ePaqurtbWrVv12GOPacuWLbr77rt7vZ+2tja1tLQE3EKF71MAYgevZyA2BHUCq8sVuPvTGNNtrFNHR4dcLpc2bNigvLw83XDDDXrkkUf03HPP6fPPP+9xm9LSUnk8nq5benp6MGV2w/cpALGD1zMQOxyFkWHDhik+Pr7bXpDGxsZue0s6eb1eXXDBBfJ4PF1jY8aMkTFGH374YY/bLF++XH6/v+tWX1/vpMxe8X0KQOzg9QzEDkdhJDExUbm5uaqoqAgYr6io0IQJE3rcZuLEiTp27Jg++eSTrrEjR44oLi5OI0eO7HGbpKQkJScnB9xCge9TAGIHr2cgdjg+TLN06VI988wzWrdunQ4fPqwlS5aorq5ORUVFks7s1Zg7d27X/FmzZmno0KG6/fbbVVNTozfeeEP33XeffvzjH0f8BFa+TwGIHbyegdjheJ2RwsJCNTc3a9WqVfL5fMrOztaOHTuUkZEhSfL5fKqrq+ua/61vfUsVFRX66U9/qrFjx2ro0KGaOXOmHnjggdA9ij7q/D6FBv/JHo8zu3Rm9UC+TwE4+/F6BmKH43VGbAjlOiOdZ99LCngD6zz9lmWMgejB6xk4u/X18/uc+24avk8BiB28noHYcM7tGenEio1A7OD1DJydwrICayzh+xSA2MHrGYhu59xhGgAAcHYhjAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsCqoMFJWVqbMzEy53W7l5uaqsrKyT9u9+eabSkhI0JVXXhnM3QIAgBjkOIxs3rxZixcv1ooVK1RVVaVJkyZp2rRpqqur+9rt/H6/5s6dq+uuuy7oYgEAQOxxGWOMkw3GjRunnJwclZeXd42NGTNGM2bMUGlpaa/b3XrrrbrkkksUHx+vP/7xj3r77bf7fJ8tLS3yeDzy+/1KTk52Ui4AALCkr5/fjvaMnDp1SgcPHlRBQUHAeEFBgfbu3dvrds8++6zef/99FRcX9+l+2tra1NLSEnADAACxyVEYaWpqUnt7u1JTUwPGU1NT1dDQ0OM27733npYtW6YNGzYoISGhT/dTWloqj8fTdUtPT3dSJgAAiCJBncDqcrkCfjbGdBuTpPb2ds2aNUslJSW69NJL+/z3ly9fLr/f33Wrr68PpkwAABAF+rar4v8MGzZM8fHx3faCNDY2dttbIkmtra06cOCAqqqqdM8990iSOjo6ZIxRQkKCdu3apWuvvbbbdklJSUpKSnJSGgAAcKi9w2h/7XE1tp7U8CFu5WWmKD6u+86FcHMURhITE5Wbm6uKigrdfPPNXeMVFRX6wQ9+0G1+cnKy3nnnnYCxsrIy/eUvf9GWLVuUmZkZZNkAAKA/dlb7VLK9Rj7/ya4xr8et4ulZmprtjWgtjsKIJC1dulRz5szR2LFjlZ+frzVr1qiurk5FRUWSzhxi+eijj/T8888rLi5O2dnZAdsPHz5cbre72zgAAIiMndU+3bX+kL56OW2D/6TuWn9I5bNzIhpIHIeRwsJCNTc3a9WqVfL5fMrOztaOHTuUkZEhSfL5fN+45ggAALCjvcOoZHtNtyAiSUaSS1LJ9hpNyUqL2CEbx+uM2MA6IwAAhMa+95v1o6ff+sZ5m+4Yr/xRQ/t1X2FZZwQAAES3xtaT3zzJwbxQIIwAAHAOGT7EHdJ5oUAYAQDgHJKXmSKvx63ezgZx6cxVNXmZKRGriTACAMA5JD7OpeLpWZLULZB0/lw8PSui640QRgAAOMdMzfaqfHaO0jyBh2LSPO6IX9YrBXFpLwAAiH5Ts72akpUWfSuwAgCA2BEf5+r35buhwGEaAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAVhFGAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAVhFGAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAVhFGAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAViXYLgAAgP5o7zDaX3tcja0nNXyIW3mZKYqPc9kuCw4QRgAAUWtntU8l22vk85/sGvN63CqenqWp2V6LlcEJDtMAAKLSzmqf7lp/KCCISFKD/6TuWn9IO6t9liqDU4QRAEDUae8wKtleI9PD7zrHSrbXqL2jpxk42xBGAABRZ3/t8W57RL7MSPL5T2p/7fHIFYWgEUYAAFGnsbX3IBLMPNhFGAEARJ3hQ9whnQe7CCMAgKiTl5kir8et3i7gdenMVTV5mSmRLAtBIowgZrV3GO17v1l/evsj7Xu/mRPZgBgSH+dS8fQsSeoWSDp/Lp6exXojUYJ1RhCTWHsAiH1Ts70qn53T7bWexms96riMMWf9v4stLS3yeDzy+/1KTk62XQ7Ocp1rD3z1id35/1H57BzepIAYwgqsZ6++fn6zZwQx5ZvWHnDpzNoDU7LSeLMCYkR8nEv5o4baLgP9ENQ5I2VlZcrMzJTb7VZubq4qKyt7nfvyyy9rypQpOv/885WcnKz8/Hy9+uqrQRcMfB3WHgCA6OM4jGzevFmLFy/WihUrVFVVpUmTJmnatGmqq6vrcf4bb7yhKVOmaMeOHTp48KC+//3va/r06aqqqup38cBXsfYAAEQfx+eMjBs3Tjk5OSovL+8aGzNmjGbMmKHS0tI+/Y3LL79chYWFuv/++/s0n3NG0Ff73m/Wj55+6xvnbbpjPLt1ASDM+vr57WjPyKlTp3Tw4EEVFBQEjBcUFGjv3r19+hsdHR1qbW1VSkrv1363tbWppaUl4Ab0BWsPAED0cRRGmpqa1N7ertTU1IDx1NRUNTQ09OlvPPzww/r00081c+bMXueUlpbK4/F03dLT052UiXMYaw8AQPQJ6gRWlyvwjdwY022sJ5s2bdLKlSu1efNmDR8+vNd5y5cvl9/v77rV19cHUybOUZ1rD6R5ApeBTvO4uawXAM5Cji7tHTZsmOLj47vtBWlsbOy2t+SrNm/erPnz5+vFF1/U5MmTv3ZuUlKSkpKSnJQGBJia7dWUrDTWHgCAKOBoz0hiYqJyc3NVUVERMF5RUaEJEyb0ut2mTZs0b948bdy4UTfeeGNwlQIOda498IMrL1D+qKEEEQA4Szle9Gzp0qWaM2eOxo4dq/z8fK1Zs0Z1dXUqKiqSdOYQy0cffaTnn39e0pkgMnfuXP32t7/V+PHju/aqDBw4UB6PJ4QPBQAARCPHYaSwsFDNzc1atWqVfD6fsrOztWPHDmVkZEiSfD5fwJojTz31lE6fPq27775bd999d9f4bbfdpueee67/jwAAAEQ1vpsGAACERVjWGQEAAAg1wggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsSrBdAICzT3uH0f7a42psPanhQ9zKy0xRfJzLdlkAYhRhBECAndU+lWyvkc9/smvM63GreHqWpmZ7LVYGIFZxmAZAl53VPt21/lBAEJGkBv9J3bX+kHZW+yxVBiCWEUYASDpzaKZke41MD7/rHCvZXqP2jp5mAEDwCCMAJEn7a4932yPyZUaSz39S+2uPR64oAOcEwggASVJja+9BJJh5ANBXhBEAkqThQ9whnQcAfRVUGCkrK1NmZqbcbrdyc3NVWVn5tfN3796t3Nxcud1uXXTRRXryySeDKhZA+ORlpsjrcau3C3hdOnNVTV5mSiTLAnAOcBxGNm/erMWLF2vFihWqqqrSpEmTNG3aNNXV1fU4v7a2VjfccIMmTZqkqqoq/fKXv9TChQv10ksv9bt4AKETH+dS8fQsSeoWSDp/Lp6exXojAELOZYxxdGr8uHHjlJOTo/Ly8q6xMWPGaMaMGSotLe02/xe/+IW2bdumw4cPd40VFRXp73//u/bt29en+2xpaZHH45Hf71dycrKTcgE4xDojAEKlr5/fjhY9O3XqlA4ePKhly5YFjBcUFGjv3r09brNv3z4VFBQEjF1//fVau3atvvjiCw0YMKDbNm1tbWprawt4MAAiY2q2V1Oy0liBFUDEOAojTU1Nam9vV2pqasB4amqqGhoaetymoaGhx/mnT59WU1OTvN7u/2mVlpaqpKTESWkAQig+zqX8UUNtlwHgHBHUCawuV+B/SMaYbmPfNL+n8U7Lly+X3+/vutXX1wdTJgAAiAKO9owMGzZM8fHx3faCNDY2dtv70SktLa3H+QkJCRo6tOf/vJKSkpSUlOSkNAAAEKUc7RlJTExUbm6uKioqAsYrKio0YcKEHrfJz8/vNn/Xrl0aO3Zsj+eLAACAc4vjwzRLly7VM888o3Xr1unw4cNasmSJ6urqVFRUJOnMIZa5c+d2zS8qKtIHH3ygpUuX6vDhw1q3bp3Wrl2re++9N3SPAgAARC1Hh2kkqbCwUM3NzVq1apV8Pp+ys7O1Y8cOZWRkSJJ8Pl/AmiOZmZnasWOHlixZotWrV2vEiBF6/PHH9cMf/jB0jwIAAEQtx+uM2MA6IwAARJ++fn7z3TQAAMAqwggAALCKMAIAAKxyfAKrDZ2ntbAsPAAA0aPzc/ubTk+NijDS2toqSUpPT7dcCQAAcKq1tVUej6fX30fF1TQdHR06duyYhgwZ8rXLzvempaVF6enpqq+vP2evxqEHZ9CHM+gDPehEH+hBp3D0wRij1tZWjRgxQnFxvZ8ZEhV7RuLi4jRy5Mh+/53k5ORz+okm0YNO9OEM+kAPOtEHetAp1H34uj0inTiBFQAAWEUYAQAAVp0TYSQpKUnFxcXn9DcB04Mz6MMZ9IEedKIP9KCTzT5ExQmsAAAgdp0Te0YAAMDZizACAACsIowAAACrCCMAAMCqmAgjZWVlyszMlNvtVm5uriorK792/u7du5Wbmyu3262LLrpITz75ZIQqDS8nffD5fJo1a5ZGjx6tuLg4LV68OHKFhpmTPrz88suaMmWKzj//fCUnJys/P1+vvvpqBKsNDyc92LNnjyZOnKihQ4dq4MCBuuyyy/Too49GsNrwcfre0OnNN99UQkKCrrzyyvAWGCFO+vD666/L5XJ1u/3jH/+IYMWh5/S50NbWphUrVigjI0NJSUkaNWqU1q1bF6Fqw8dJH+bNm9fjc+Hyyy8PfWEmyv3hD38wAwYMME8//bSpqakxixYtMoMHDzYffPBBj/OPHj1qBg0aZBYtWmRqamrM008/bQYMGGC2bNkS4cpDy2kfamtrzcKFC83vf/97c+WVV5pFixZFtuAwcdqHRYsWmQcffNDs37/fHDlyxCxfvtwMGDDAHDp0KMKVh47THhw6dMhs3LjRVFdXm9raWvPCCy+YQYMGmaeeeirClYeW0z50OnHihLnoootMQUGBueKKKyJTbBg57cNrr71mJJl//vOfxufzdd1Onz4d4cpDJ5jnwk033WTGjRtnKioqTG1trfnrX/9q3nzzzQhWHXpO+3DixImA50B9fb1JSUkxxcXFIa8t6sNIXl6eKSoqChi77LLLzLJly3qc//Of/9xcdtllAWN33nmnGT9+fNhqjASnffiya665JmbCSH/60CkrK8uUlJSEurSICUUPbr75ZjN79uxQlxZRwfahsLDQ/OpXvzLFxcUxEUac9qEzjPz3v/+NQHWR4bQHr7zyivF4PKa5uTkS5UVMf98btm7dalwul/n3v/8d8tqi+jDNqVOndPDgQRUUFASMFxQUaO/evT1us2/fvm7zr7/+eh04cEBffPFF2GoNp2D6EItC0YeOjg61trYqJSUlHCWGXSh6UFVVpb179+qaa64JR4kREWwfnn32Wb3//vsqLi4Od4kR0Z/nw1VXXSWv16vrrrtOr732WjjLDKtgerBt2zaNHTtWDz30kC644AJdeumluvfee/X5559HouSwCMV7w9q1azV58mRlZGSEvL6o+KK83jQ1Nam9vV2pqakB46mpqWpoaOhxm4aGhh7nnz59Wk1NTfJ6vWGrN1yC6UMsCkUfHn74YX366aeaOXNmOEoMu/70YOTIkfrPf/6j06dPa+XKlVqwYEE4Sw2rYPrw3nvvadmyZaqsrFRCQlS/NXYJpg9er1dr1qxRbm6u2tra9MILL+i6667T66+/ru9973uRKDukgunB0aNHtWfPHrndbm3dulVNTU36yU9+ouPHj0fteSP9fX/0+Xx65ZVXtHHjxrDUFxOvOJfLFfCzMabb2DfN72k82jjtQ6wKtg+bNm3SypUr9ac//UnDhw8PV3kREUwPKisr9cknn+itt97SsmXLdPHFF+tHP/pROMsMu772ob29XbNmzVJJSYkuvfTSSJUXMU6eD6NHj9bo0aO7fs7Pz1d9fb1+85vfRGUY6eSkBx0dHXK5XNqwYUPXN84+8sgjuuWWW7R69WoNHDgw7PWGS7Dvj88995zOO+88zZgxIyx1RXUYGTZsmOLj47ulusbGxm7pr1NaWlqP8xMSEjR06NCw1RpOwfQhFvWnD5s3b9b8+fP14osvavLkyeEsM6z604PMzExJ0ne+8x19/PHHWrlyZdSGEad9aG1t1YEDB1RVVaV77rlH0pkPJGOMEhIStGvXLl177bURqT2UQvXeMH78eK1fvz7U5UVEMD3wer264IILuoKIJI0ZM0bGGH344Ye65JJLwlpzOPTnuWCM0bp16zRnzhwlJiaGpb6oPmckMTFRubm5qqioCBivqKjQhAkTetwmPz+/2/xdu3Zp7NixGjBgQNhqDadg+hCLgu3Dpk2bNG/ePG3cuFE33nhjuMsMq1A9F4wxamtrC3V5EeO0D8nJyXrnnXf09ttvd92Kioo0evRovf322xo3blykSg+pUD0fqqqqovIQthRcDyZOnKhjx47pk08+6Ro7cuSI4uLiNHLkyLDWGy79eS7s3r1b//rXvzR//vzwFRjyU2IjrPNSpbVr15qamhqzePFiM3jw4K6zfZctW2bmzJnTNb/z0t4lS5aYmpoas3bt2pi6tLevfTDGmKqqKlNVVWVyc3PNrFmzTFVVlXn33XdtlB8yTvuwceNGk5CQYFavXh1wCduJEydsPYR+c9qDJ554wmzbts0cOXLEHDlyxKxbt84kJyebFStW2HoIIRHMa+LLYuVqGqd9ePTRR83WrVvNkSNHTHV1tVm2bJmRZF566SVbD6HfnPagtbXVjBw50txyyy3m3XffNbt37zaXXHKJWbBgga2HEBLBviZmz55txo0bF9baoj6MGGPM6tWrTUZGhklMTDQ5OTlm9+7dXb+77bbbzDXXXBMw//XXXzdXXXWVSUxMNBdeeKEpLy+PcMXh4bQPkrrdMjIyIlt0GDjpwzXXXNNjH2677bbIFx5CTnrw+OOPm8svv9wMGjTIJCcnm6uuusqUlZWZ9vZ2C5WHltPXxJfFShgxxlkfHnzwQTNq1CjjdrvNt7/9bXP11VebP//5zxaqDi2nz4XDhw+byZMnm4EDB5qRI0eapUuXms8++yzCVYee0z6cOHHCDBw40KxZsyasdbmM+b+zNwEAACyI6nNGAABA9COMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsOp/ATFTFbKwrQQtAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -1701,7 +1701,7 @@ "\n" ], "text/plain": [ - "" + "" ] }, "execution_count": 41, @@ -1738,7 +1738,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a15ca91c407b4d2fadbae54e51621a30", + "model_id": "cd6168e3475b4927b067216c5f728d4f", "version_major": 2, "version_minor": 0 }, @@ -1757,7 +1757,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "bfc8738882d54fc791ee117bb509481f", + "model_id": "90df307a03a84652a9969579b2a05759", "version_major": 2, "version_minor": 0 }, @@ -1771,7 +1771,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 42, @@ -2031,7 +2031,7 @@ "\n" ], "text/plain": [ - "" + "" ] }, "execution_count": 43, @@ -3255,7 +3255,7 @@ "\n" ], "text/plain": [ - "" + "" ] }, "execution_count": 50, @@ -3283,7 +3283,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c2d3d353f02f469cbb9bdf4fd8249962", + "model_id": "96a6cca822b941fcb90fe69ff872c8e1", "version_major": 2, "version_minor": 0 }, @@ -3304,7 +3304,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e3cb6c8a60ba4488976c563b03615dbd", + "model_id": "6abd71c361d048378a883dcd6cc7fbfc", "version_major": 2, "version_minor": 0 }, @@ -3344,7 +3344,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f1f215c871884c07a807522324b5d468", + "model_id": "346248ad2b6d4d59b6074a2fe1c95d3c", "version_major": 2, "version_minor": 0 }, @@ -3365,7 +3365,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "484cb214c9aa42e7bf7e0c15a71dc7bf", + "model_id": "d84076a513ab47ceb3f2509ba49f3f2c", "version_major": 2, "version_minor": 0 }, @@ -3438,7 +3438,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3eda5eaed97d4ef5bd05db0a1aaa6808", + "model_id": "a808a4f83e4d4ae2aaea4e6f2dc2590c", "version_major": 2, "version_minor": 0 }, @@ -3459,7 +3459,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e218374bcdcf4c818ce88b2410368050", + "model_id": "5c1f7a32a7934cd5a3af65403789d94d", "version_major": 2, "version_minor": 0 }, @@ -3500,7 +3500,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "963e16ec783846d1885ed72dfe26c3c5", + "model_id": "e2e4269fb9a44bc8b9d6c6293830973e", "version_major": 2, "version_minor": 0 }, @@ -3521,7 +3521,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d13b542a098544c5a50e869948ccd5f5", + "model_id": "93b31e4a2a0e410db108371bde980633", "version_major": 2, "version_minor": 0 }, @@ -3587,7 +3587,7 @@ "output_type": "stream", "text": [ "None 1\n", - " 5\n" + " 5\n" ] } ], @@ -3673,7 +3673,7 @@ "output_type": "stream", "text": [ "None 1\n", - " 5\n", + " 5\n", "Finally 5\n", "b (Add):\n", "Inputs ['obj', 'other']\n", @@ -3734,7 +3734,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "6.0116940710067865\n" + "6.00604566000402\n" ] } ], @@ -3766,7 +3766,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "2.92550689199561\n" + "2.927992068012827\n" ] } ], @@ -3781,7 +3781,10 @@ "wf.starting_nodes = [wf.a, wf.b, wf.c]\n", "\n", "\n", - "with wf.create.Executor(max_workers=3) as executor:\n", + "# with wf.create.Executor(max_workers=3) as executor:\n", + "# pympipool.Executor does not conform to the concurrent.futures.Executor signature\n", + "# use max_cores instead of max_workers\n", + "with wf.create.Executor(max_cores=3) as executor:\n", " wf.a.executor = executor\n", " wf.b.executor = executor\n", " wf.c.executor = executor\n", @@ -4451,7 +4454,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/Users/huber/work/pyiron/pyiron_workflow/pyiron_workflow/io_preview.py:261: OutputLabelsNotValidated: Could not find the source code to validate AddWhileLessThan_6300416345671079692 output labels against the number of returned values -- proceeding without validation\n", + "/Users/huber/work/pyiron/pyiron_workflow/pyiron_workflow/io_preview.py:261: OutputLabelsNotValidated: Could not find the source code to validate AddWhileLessThan_4075744974569251116 output labels against the number of returned values -- proceeding without validation\n", " warnings.warn(\n" ] } @@ -4528,22 +4531,18 @@ "name": "stdout", "output_type": "stream", "text": [ - "0.717 > 0.2\n", - "0.384 > 0.2\n", - "0.334 > 0.2\n", - "0.223 > 0.2\n", - "0.219 > 0.2\n", - "0.333 > 0.2\n", - "0.834 > 0.2\n", - "0.167 <= 0.2\n", - "Finally 0.167\n" + "0.692 > 0.2\n", + "0.305 > 0.2\n", + "0.890 > 0.2\n", + "0.140 <= 0.2\n", + "Finally 0.140\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "/Users/huber/work/pyiron/pyiron_workflow/pyiron_workflow/io_preview.py:261: OutputLabelsNotValidated: Could not find the source code to validate RandomWhileGreaterThan_715325418919625042 output labels against the number of returned values -- proceeding without validation\n", + "/Users/huber/work/pyiron/pyiron_workflow/pyiron_workflow/io_preview.py:261: OutputLabelsNotValidated: Could not find the source code to validate RandomWhileGreaterThan_1056577651091147451 output labels against the number of returned values -- proceeding without validation\n", " warnings.warn(\n" ] } From ee2f199f0f8ea50f238f750a312aafbe601f133c Mon Sep 17 00:00:00 2001 From: pyiron-runner Date: Mon, 6 May 2024 23:50:16 +0000 Subject: [PATCH 10/10] [dependabot skip] Update env file --- .binder/environment.yml | 2 +- docs/environment.yml | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/.binder/environment.yml b/.binder/environment.yml index 51202bce..a522acac 100644 --- a/.binder/environment.yml +++ b/.binder/environment.yml @@ -11,7 +11,7 @@ dependencies: - matplotlib =3.8.4 - pyiron_base =0.8.3 - pyiron_contrib =0.1.16 -- pympipool =0.8.1 +- pympipool =0.8.0 - python-graphviz =0.20.3 - toposort =1.10 - typeguard =4.2.1 diff --git a/docs/environment.yml b/docs/environment.yml index 48e7e2d1..7356aeb7 100644 --- a/docs/environment.yml +++ b/docs/environment.yml @@ -16,7 +16,7 @@ dependencies: - matplotlib =3.8.4 - pyiron_base =0.8.3 - pyiron_contrib =0.1.16 -- pympipool =0.8.1 +- pympipool =0.8.0 - python-graphviz =0.20.3 - toposort =1.10 - typeguard =4.2.1