We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
From a recent build on Travis-CI:
=================================== FAILURES =================================== ___________________ test_cf_timedelta[timedeltas7-days-nan] ____________________ timedeltas = numpy.datetime64('NaT'), units = 'days', numbers = array(nan) @pytest.mark.parametrize( ['timedeltas', 'units', 'numbers'], [('1D', 'days', np.int64(1)), (['1D', '2D', '3D'], 'days', np.array([1, 2, 3], 'int64')), ('1h', 'hours', np.int64(1)), ('1ms', 'milliseconds', np.int64(1)), ('1us', 'microseconds', np.int64(1)), (['NaT', '0s', '1s'], None, [np.nan, 0, 1]), (['30m', '60m'], 'hours', [0.5, 1.0]), (np.timedelta64('NaT', 'ns'), 'days', np.nan), (['NaT', 'NaT'], 'days', [np.nan, np.nan])]) def test_cf_timedelta(timedeltas, units, numbers): timedeltas = pd.to_timedelta(timedeltas, box=False) numbers = np.array(numbers) expected = numbers > actual, _ = coding.times.encode_cf_timedelta(timedeltas, units) xarray/tests/test_coding_times.py:550: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ timedeltas = numpy.datetime64('NaT'), units = 'days' def encode_cf_timedelta(timedeltas, units=None): if units is None: units = infer_timedelta_units(timedeltas) np_unit = _netcdf_to_numpy_timeunit(units) > num = 1.0 * timedeltas / np.timedelta64(1, np_unit) E TypeError: ufunc multiply cannot use operands with types dtype('float64') and dtype('<M8[ns]') xarray/coding/times.py:379: TypeError _____________________ TestDataArray.test_struct_array_dims _____________________ self = <xarray.tests.test_dataarray.TestDataArray object at 0x7fb508944a90> def test_struct_array_dims(self): """ This test checks subraction of two DataArrays for the case when dimension is a structured array. """ # GH837, GH861 # checking array subraction when dims are the same p_data = np.array([('John', 180), ('Stacy', 150), ('Dick', 200)], dtype=[('name', '|S256'), ('height', object)]) p_data_1 = np.array([('John', 180), ('Stacy', 150), ('Dick', 200)], dtype=[('name', '|S256'), ('height', object)]) p_data_2 = np.array([('John', 180), ('Dick', 200)], dtype=[('name', '|S256'), ('height', object)]) weights_0 = DataArray([80, 56, 120], dims=['participant'], coords={'participant': p_data}) weights_1 = DataArray([81, 52, 115], dims=['participant'], coords={'participant': p_data_1}) actual = weights_1 - weights_0 expected = DataArray([1, -4, -5], dims=['participant'], coords={'participant': p_data}) assert_identical(actual, expected) # checking array subraction when dims are not the same p_data_1 = np.array([('John', 180), ('Stacy', 151), ('Dick', 200)], dtype=[('name', '|S256'), ('height', object)]) weights_1 = DataArray([81, 52, 115], dims=['participant'], coords={'participant': p_data_1}) actual = weights_1 - weights_0 expected = DataArray([1, -5], dims=['participant'], coords={'participant': p_data_2}) > assert_identical(actual, expected) E AssertionError: Left and right DataArray objects are not identical E E Differing values: E L E array([-5, 1]) E R E array([ 1, -5]) E Differing coordinates: E L * participant (participant) object (b'Dick', 200) (b'John', 180) E R * participant (participant) [('name', 'S256'), ('height', 'O')] (b'John', 180) (b'Dick', 200)
The text was updated successfully, but these errors were encountered:
No branches or pull requests
From a recent build on Travis-CI:
The text was updated successfully, but these errors were encountered: