-
-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
zarr.py
706 lines (607 loc) · 25.1 KB
/
zarr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
import numpy as np
from .. import coding, conventions
from ..core import indexing
from ..core.dataset import Dataset
from ..core.pycompat import integer_types
from ..core.utils import FrozenDict, HiddenKeyDict, close_on_error
from ..core.variable import Variable
from .common import AbstractWritableDataStore, BackendArray, _encode_variable_name
from .plugins import BackendEntrypoint
# need some special secret attributes to tell us the dimensions
DIMENSION_KEY = "_ARRAY_DIMENSIONS"
def encode_zarr_attr_value(value):
"""
Encode a attribute value as something that can be serialized as json
Many xarray datasets / variables have numpy arrays and values. This
function handles encoding / decoding of such items.
ndarray -> list
scalar array -> scalar
other -> other (no change)
"""
if isinstance(value, np.ndarray):
encoded = value.tolist()
# this checks if it's a scalar number
elif isinstance(value, np.generic):
encoded = value.item()
else:
encoded = value
return encoded
class ZarrArrayWrapper(BackendArray):
__slots__ = ("datastore", "dtype", "shape", "variable_name")
def __init__(self, variable_name, datastore):
self.datastore = datastore
self.variable_name = variable_name
array = self.get_array()
self.shape = array.shape
dtype = array.dtype
self.dtype = dtype
def get_array(self):
return self.datastore.ds[self.variable_name]
def __getitem__(self, key):
array = self.get_array()
if isinstance(key, indexing.BasicIndexer):
return array[key.tuple]
elif isinstance(key, indexing.VectorizedIndexer):
return array.vindex[
indexing._arrayize_vectorized_indexer(key, self.shape).tuple
]
else:
assert isinstance(key, indexing.OuterIndexer)
return array.oindex[key.tuple]
# if self.ndim == 0:
# could possibly have a work-around for 0d data here
def _determine_zarr_chunks(enc_chunks, var_chunks, ndim, name):
"""
Given encoding chunks (possibly None) and variable chunks (possibly None)
"""
# zarr chunk spec:
# chunks : int or tuple of ints, optional
# Chunk shape. If not provided, will be guessed from shape and dtype.
# if there are no chunks in encoding and the variable data is a numpy
# array, then we let zarr use its own heuristics to pick the chunks
if var_chunks is None and enc_chunks is None:
return None
# if there are no chunks in encoding but there are dask chunks, we try to
# use the same chunks in zarr
# However, zarr chunks needs to be uniform for each array
# http://zarr.readthedocs.io/en/latest/spec/v1.html#chunks
# while dask chunks can be variable sized
# http://dask.pydata.org/en/latest/array-design.html#chunks
if var_chunks and enc_chunks is None:
if any(len(set(chunks[:-1])) > 1 for chunks in var_chunks):
raise ValueError(
"Zarr requires uniform chunk sizes except for final chunk. "
f"Variable named {name!r} has incompatible dask chunks: {var_chunks!r}. "
"Consider rechunking using `chunk()`."
)
if any((chunks[0] < chunks[-1]) for chunks in var_chunks):
raise ValueError(
"Final chunk of Zarr array must be the same size or smaller "
f"than the first. Variable named {name!r} has incompatible Dask chunks {var_chunks!r}."
"Consider either rechunking using `chunk()` or instead deleting "
"or modifying `encoding['chunks']`."
)
# return the first chunk for each dimension
return tuple(chunk[0] for chunk in var_chunks)
# from here on, we are dealing with user-specified chunks in encoding
# zarr allows chunks to be an integer, in which case it uses the same chunk
# size on each dimension.
# Here we re-implement this expansion ourselves. That makes the logic of
# checking chunk compatibility easier
if isinstance(enc_chunks, integer_types):
enc_chunks_tuple = ndim * (enc_chunks,)
else:
enc_chunks_tuple = tuple(enc_chunks)
if len(enc_chunks_tuple) != ndim:
# throw away encoding chunks, start over
return _determine_zarr_chunks(None, var_chunks, ndim, name)
for x in enc_chunks_tuple:
if not isinstance(x, int):
raise TypeError(
"zarr chunk sizes specified in `encoding['chunks']` "
"must be an int or a tuple of ints. "
f"Instead found encoding['chunks']={enc_chunks_tuple!r} "
f"for variable named {name!r}."
)
# if there are chunks in encoding and the variable data is a numpy array,
# we use the specified chunks
if var_chunks is None:
return enc_chunks_tuple
# the hard case
# DESIGN CHOICE: do not allow multiple dask chunks on a single zarr chunk
# this avoids the need to get involved in zarr synchronization / locking
# From zarr docs:
# "If each worker in a parallel computation is writing to a separate
# region of the array, and if region boundaries are perfectly aligned
# with chunk boundaries, then no synchronization is required."
# TODO: incorporate synchronizer to allow writes from multiple dask
# threads
if var_chunks and enc_chunks_tuple:
for zchunk, dchunks in zip(enc_chunks_tuple, var_chunks):
if len(dchunks) == 1:
continue
for dchunk in dchunks[:-1]:
if dchunk % zchunk:
raise NotImplementedError(
f"Specified zarr chunks encoding['chunks']={enc_chunks_tuple!r} for "
f"variable named {name!r} would overlap multiple dask chunks {var_chunks!r}. "
"This is not implemented in xarray yet. "
"Consider either rechunking using `chunk()` or instead deleting "
"or modifying `encoding['chunks']`."
)
if dchunks[-1] > zchunk:
raise ValueError(
"Final chunk of Zarr array must be the same size or "
"smaller than the first. "
f"Specified Zarr chunk encoding['chunks']={enc_chunks_tuple}, "
f"for variable named {name!r} "
f"but {dchunks} in the variable's Dask chunks {var_chunks} is "
"incompatible with this encoding. "
"Consider either rechunking using `chunk()` or instead deleting "
"or modifying `encoding['chunks']`."
)
return enc_chunks_tuple
raise AssertionError("We should never get here. Function logic must be wrong.")
def _get_zarr_dims_and_attrs(zarr_obj, dimension_key):
# Zarr arrays do not have dimenions. To get around this problem, we add
# an attribute that specifies the dimension. We have to hide this attribute
# when we send the attributes to the user.
# zarr_obj can be either a zarr group or zarr array
try:
dimensions = zarr_obj.attrs[dimension_key]
except KeyError:
raise KeyError(
"Zarr object is missing the attribute `%s`, which is "
"required for xarray to determine variable dimensions." % (dimension_key)
)
attributes = HiddenKeyDict(zarr_obj.attrs, [dimension_key])
return dimensions, attributes
def extract_zarr_variable_encoding(variable, raise_on_invalid=False, name=None):
"""
Extract zarr encoding dictionary from xarray Variable
Parameters
----------
variable : Variable
raise_on_invalid : bool, optional
Returns
-------
encoding : dict
Zarr encoding for `variable`
"""
encoding = variable.encoding.copy()
valid_encodings = {"chunks", "compressor", "filters", "cache_metadata"}
if raise_on_invalid:
invalid = [k for k in encoding if k not in valid_encodings]
if invalid:
raise ValueError(
"unexpected encoding parameters for zarr backend: %r" % invalid
)
else:
for k in list(encoding):
if k not in valid_encodings:
del encoding[k]
chunks = _determine_zarr_chunks(
encoding.get("chunks"), variable.chunks, variable.ndim, name
)
encoding["chunks"] = chunks
return encoding
# Function below is copied from conventions.encode_cf_variable.
# The only change is to raise an error for object dtypes.
def encode_zarr_variable(var, needs_copy=True, name=None):
"""
Converts an Variable into an Variable which follows some
of the CF conventions:
- Nans are masked using _FillValue (or the deprecated missing_value)
- Rescaling via: scale_factor and add_offset
- datetimes are converted to the CF 'units since time' format
- dtype encodings are enforced.
Parameters
----------
var : Variable
A variable holding un-encoded data.
Returns
-------
out : Variable
A variable which has been encoded as described above.
"""
var = conventions.encode_cf_variable(var, name=name)
# zarr allows unicode, but not variable-length strings, so it's both
# simpler and more compact to always encode as UTF-8 explicitly.
# TODO: allow toggling this explicitly via dtype in encoding.
coder = coding.strings.EncodedStringCoder(allows_unicode=True)
var = coder.encode(var, name=name)
var = coding.strings.ensure_fixed_length_bytes(var)
return var
class ZarrStore(AbstractWritableDataStore):
"""Store for reading and writing data via zarr"""
__slots__ = (
"ds",
"_append_dim",
"_consolidate_on_close",
"_group",
"_read_only",
"_synchronizer",
"_write_region",
)
@classmethod
def open_group(
cls,
store,
mode="r",
synchronizer=None,
group=None,
consolidated=False,
consolidate_on_close=False,
chunk_store=None,
append_dim=None,
write_region=None,
):
import zarr
open_kwargs = dict(mode=mode, synchronizer=synchronizer, path=group)
if chunk_store:
open_kwargs["chunk_store"] = chunk_store
if consolidated:
# TODO: an option to pass the metadata_key keyword
zarr_group = zarr.open_consolidated(store, **open_kwargs)
else:
zarr_group = zarr.open_group(store, **open_kwargs)
return cls(zarr_group, consolidate_on_close, append_dim, write_region)
def __init__(
self, zarr_group, consolidate_on_close=False, append_dim=None, write_region=None
):
self.ds = zarr_group
self._read_only = self.ds.read_only
self._synchronizer = self.ds.synchronizer
self._group = self.ds.path
self._consolidate_on_close = consolidate_on_close
self._append_dim = append_dim
self._write_region = write_region
def open_store_variable(self, name, zarr_array):
data = indexing.LazilyOuterIndexedArray(ZarrArrayWrapper(name, self))
dimensions, attributes = _get_zarr_dims_and_attrs(zarr_array, DIMENSION_KEY)
attributes = dict(attributes)
encoding = {
"chunks": zarr_array.chunks,
"compressor": zarr_array.compressor,
"filters": zarr_array.filters,
}
# _FillValue needs to be in attributes, not encoding, so it will get
# picked up by decode_cf
if getattr(zarr_array, "fill_value") is not None:
attributes["_FillValue"] = zarr_array.fill_value
return Variable(dimensions, data, attributes, encoding)
def get_variables(self):
return FrozenDict(
(k, self.open_store_variable(k, v)) for k, v in self.ds.arrays()
)
def get_attrs(self):
attributes = dict(self.ds.attrs.asdict())
return attributes
def get_dimensions(self):
dimensions = {}
for k, v in self.ds.arrays():
try:
for d, s in zip(v.attrs[DIMENSION_KEY], v.shape):
if d in dimensions and dimensions[d] != s:
raise ValueError(
"found conflicting lengths for dimension %s "
"(%d != %d)" % (d, s, dimensions[d])
)
dimensions[d] = s
except KeyError:
raise KeyError(
"Zarr object is missing the attribute `%s`, "
"which is required for xarray to determine "
"variable dimensions." % (DIMENSION_KEY)
)
return dimensions
def set_dimensions(self, variables, unlimited_dims=None):
if unlimited_dims is not None:
raise NotImplementedError(
"Zarr backend doesn't know how to handle unlimited dimensions"
)
def set_attributes(self, attributes):
self.ds.attrs.put(attributes)
def encode_variable(self, variable):
variable = encode_zarr_variable(variable)
return variable
def encode_attribute(self, a):
return encode_zarr_attr_value(a)
def store(
self,
variables,
attributes,
check_encoding_set=frozenset(),
writer=None,
unlimited_dims=None,
):
"""
Top level method for putting data on this store, this method:
- encodes variables/attributes
- sets dimensions
- sets variables
Parameters
----------
variables : dict-like
Dictionary of key/value (variable name / xr.Variable) pairs
attributes : dict-like
Dictionary of key/value (attribute name / attribute) pairs
check_encoding_set : list-like
List of variables that should be checked for invalid encoding
values
writer : ArrayWriter
unlimited_dims : list-like
List of dimension names that should be treated as unlimited
dimensions.
dimension on which the zarray will be appended
only needed in append mode
"""
import zarr
existing_variables = {
vn for vn in variables if _encode_variable_name(vn) in self.ds
}
new_variables = set(variables) - existing_variables
variables_without_encoding = {vn: variables[vn] for vn in new_variables}
variables_encoded, attributes = self.encode(
variables_without_encoding, attributes
)
if len(existing_variables) > 0:
# there are variables to append
# their encoding must be the same as in the store
ds = open_zarr(self.ds.store, group=self.ds.path, chunks=None)
variables_with_encoding = {}
for vn in existing_variables:
variables_with_encoding[vn] = variables[vn].copy(deep=False)
variables_with_encoding[vn].encoding = ds[vn].encoding
variables_with_encoding, _ = self.encode(variables_with_encoding, {})
variables_encoded.update(variables_with_encoding)
if self._write_region is None:
self.set_attributes(attributes)
self.set_dimensions(variables_encoded, unlimited_dims=unlimited_dims)
self.set_variables(
variables_encoded, check_encoding_set, writer, unlimited_dims=unlimited_dims
)
if self._consolidate_on_close:
zarr.consolidate_metadata(self.ds.store)
def sync(self):
pass
def set_variables(self, variables, check_encoding_set, writer, unlimited_dims=None):
"""
This provides a centralized method to set the variables on the data
store.
Parameters
----------
variables : dict-like
Dictionary of key/value (variable name / xr.Variable) pairs
check_encoding_set : list-like
List of variables that should be checked for invalid encoding
values
writer :
unlimited_dims : list-like
List of dimension names that should be treated as unlimited
dimensions.
"""
for vn, v in variables.items():
name = _encode_variable_name(vn)
check = vn in check_encoding_set
attrs = v.attrs.copy()
dims = v.dims
dtype = v.dtype
shape = v.shape
fill_value = attrs.pop("_FillValue", None)
if v.encoding == {"_FillValue": None} and fill_value is None:
v.encoding = {}
if name in self.ds:
# existing variable
zarr_array = self.ds[name]
else:
# new variable
encoding = extract_zarr_variable_encoding(
v, raise_on_invalid=check, name=vn
)
encoded_attrs = {}
# the magic for storing the hidden dimension data
encoded_attrs[DIMENSION_KEY] = dims
for k2, v2 in attrs.items():
encoded_attrs[k2] = self.encode_attribute(v2)
if coding.strings.check_vlen_dtype(dtype) == str:
dtype = str
zarr_array = self.ds.create(
name, shape=shape, dtype=dtype, fill_value=fill_value, **encoding
)
zarr_array.attrs.put(encoded_attrs)
write_region = self._write_region if self._write_region is not None else {}
write_region = {dim: write_region.get(dim, slice(None)) for dim in dims}
if self._append_dim is not None and self._append_dim in dims:
# resize existing variable
append_axis = dims.index(self._append_dim)
assert write_region[self._append_dim] == slice(None)
write_region[self._append_dim] = slice(
zarr_array.shape[append_axis], None
)
new_shape = list(zarr_array.shape)
new_shape[append_axis] += v.shape[append_axis]
zarr_array.resize(new_shape)
region = tuple(write_region[dim] for dim in dims)
writer.add(v.data, zarr_array, region)
def close(self):
pass
def open_zarr(
store,
group=None,
synchronizer=None,
chunks="auto",
decode_cf=True,
mask_and_scale=True,
decode_times=True,
concat_characters=True,
decode_coords=True,
drop_variables=None,
consolidated=False,
overwrite_encoded_chunks=False,
chunk_store=None,
decode_timedelta=None,
use_cftime=None,
**kwargs,
):
"""Load and decode a dataset from a Zarr store.
.. note:: Experimental
The Zarr backend is new and experimental. Please report any
unexpected behavior via github issues.
The `store` object should be a valid store for a Zarr group. `store`
variables must contain dimension metadata encoded in the
`_ARRAY_DIMENSIONS` attribute.
Parameters
----------
store : MutableMapping or str
A MutableMapping where a Zarr Group has been stored or a path to a
directory in file system where a Zarr DirectoryStore has been stored.
synchronizer : object, optional
Array synchronizer provided to zarr
group : str, optional
Group path. (a.k.a. `path` in zarr terminology.)
chunks : int or dict or tuple or {None, 'auto'}, optional
Chunk sizes along each dimension, e.g., ``5`` or
``{'x': 5, 'y': 5}``. If `chunks='auto'`, dask chunks are created
based on the variable's zarr chunks. If `chunks=None`, zarr array
data will lazily convert to numpy arrays upon access. This accepts
all the chunk specifications as Dask does.
overwrite_encoded_chunks: bool, optional
Whether to drop the zarr chunks encoded for each variable when a
dataset is loaded with specified chunk sizes (default: False)
decode_cf : bool, optional
Whether to decode these variables, assuming they were saved according
to CF conventions.
mask_and_scale : bool, optional
If True, replace array values equal to `_FillValue` with NA and scale
values according to the formula `original_values * scale_factor +
add_offset`, where `_FillValue`, `scale_factor` and `add_offset` are
taken from variable attributes (if they exist). If the `_FillValue` or
`missing_value` attribute contains multiple values a warning will be
issued and all array values matching one of the multiple values will
be replaced by NA.
decode_times : bool, optional
If True, decode times encoded in the standard NetCDF datetime format
into datetime objects. Otherwise, leave them encoded as numbers.
concat_characters : bool, optional
If True, concatenate along the last dimension of character arrays to
form string arrays. Dimensions will only be concatenated over (and
removed) if they have no corresponding variable and if they are only
used as the last dimension of character arrays.
decode_coords : bool, optional
If True, decode the 'coordinates' attribute to identify coordinates in
the resulting dataset.
drop_variables : str or iterable, optional
A variable or list of variables to exclude from being parsed from the
dataset. This may be useful to drop variables with problems or
inconsistent values.
consolidated : bool, optional
Whether to open the store using zarr's consolidated metadata
capability. Only works for stores that have already been consolidated.
chunk_store : MutableMapping, optional
A separate Zarr store only for chunk data.
decode_timedelta : bool, optional
If True, decode variables and coordinates with time units in
{'days', 'hours', 'minutes', 'seconds', 'milliseconds', 'microseconds'}
into timedelta objects. If False, leave them encoded as numbers.
If None (default), assume the same value of decode_time.
use_cftime: bool, optional
Only relevant if encoded dates come from a standard calendar
(e.g. "gregorian", "proleptic_gregorian", "standard", or not
specified). If None (default), attempt to decode times to
``np.datetime64[ns]`` objects; if this is not possible, decode times to
``cftime.datetime`` objects. If True, always decode times to
``cftime.datetime`` objects, regardless of whether or not they can be
represented using ``np.datetime64[ns]`` objects. If False, always
decode times to ``np.datetime64[ns]`` objects; if this is not possible
raise an error.
Returns
-------
dataset : Dataset
The newly created dataset.
See Also
--------
open_dataset
References
----------
http://zarr.readthedocs.io/
"""
from .api import open_dataset
if chunks == "auto":
try:
import dask.array # noqa
chunks = {}
except ImportError:
chunks = None
if kwargs:
raise TypeError(
"open_zarr() got unexpected keyword arguments " + ",".join(kwargs.keys())
)
backend_kwargs = {
"synchronizer": synchronizer,
"consolidated": consolidated,
"overwrite_encoded_chunks": overwrite_encoded_chunks,
"chunk_store": chunk_store,
}
ds = open_dataset(
filename_or_obj=store,
group=group,
decode_cf=decode_cf,
mask_and_scale=mask_and_scale,
decode_times=decode_times,
concat_characters=concat_characters,
decode_coords=decode_coords,
engine="zarr",
chunks=chunks,
drop_variables=drop_variables,
backend_kwargs=backend_kwargs,
decode_timedelta=decode_timedelta,
use_cftime=use_cftime,
)
return ds
def open_backend_dataset_zarr(
filename_or_obj,
mask_and_scale=True,
decode_times=None,
concat_characters=None,
decode_coords=None,
drop_variables=None,
use_cftime=None,
decode_timedelta=None,
group=None,
mode="r",
synchronizer=None,
consolidated=False,
consolidate_on_close=False,
chunk_store=None,
):
store = ZarrStore.open_group(
filename_or_obj,
group=group,
mode=mode,
synchronizer=synchronizer,
consolidated=consolidated,
consolidate_on_close=consolidate_on_close,
chunk_store=chunk_store,
)
with close_on_error(store):
vars, attrs = store.load()
file_obj = store
encoding = store.get_encoding()
vars, attrs, coord_names = conventions.decode_cf_variables(
vars,
attrs,
mask_and_scale=mask_and_scale,
decode_times=decode_times,
concat_characters=concat_characters,
decode_coords=decode_coords,
drop_variables=drop_variables,
use_cftime=use_cftime,
decode_timedelta=decode_timedelta,
)
ds = Dataset(vars, attrs=attrs)
ds = ds.set_coords(coord_names.intersection(vars))
ds._file_obj = file_obj
ds.encoding = encoding
return ds
zarr_backend = BackendEntrypoint(open_dataset=open_backend_dataset_zarr)