diff --git a/.all-contributorsrc b/.all-contributorsrc
index 2be30620d..304a73ce6 100644
--- a/.all-contributorsrc
+++ b/.all-contributorsrc
@@ -16,7 +16,8 @@
"infra",
"test",
"code",
- "example"
+ "example",
+ "review"
]
},
{
@@ -26,7 +27,9 @@
"profile": "https://github.com/NicolaCourtier",
"contributions": [
"code",
- "review"
+ "review",
+ "example",
+ "test"
]
},
{
@@ -46,7 +49,35 @@
"profile": "http://www.rse.ox.ac.uk",
"contributions": [
"ideas",
- "mentoring"
+ "mentoring",
+ "review"
+ ]
+ },
+ {
+ "login": "brosaplanella",
+ "name": "Ferran Brosa Planella",
+ "avatar_url": "https://avatars.githubusercontent.com/u/28443643?v=4",
+ "profile": "https://www.brosaplanella.xyz",
+ "contributions": [
+ "review"
+ ]
+ },
+ {
+ "login": "FaradayInstitution",
+ "name": "Faraday Institution",
+ "avatar_url": "/assets/UKRI.svg",
+ "profile": "https://faraday.ac.uk",
+ "contributions": [
+ "financial"
+ ]
+ },
+ {
+ "login": "UKRI",
+ "name": "UK Research and Innovation",
+ "avatar_url": "/assets/UKRI.svg",
+ "profile": "https://www.ukri.org/",
+ "contributions": [
+ "financial"
]
}
],
diff --git a/.github/workflows/release-action.yaml b/.github/workflows/release-action.yaml
index c2cd834b2..8cbaa5f4f 100644
--- a/.github/workflows/release-action.yaml
+++ b/.github/workflows/release-action.yaml
@@ -1,6 +1,9 @@
name: Publish Python 🐍 distribution 📦 to PyPI and TestPyPI
-on: push
+on:
+ workflow_dispatch:
+ release:
+ types: [published, prereleased]
jobs:
build:
@@ -30,7 +33,9 @@ jobs:
publish-to-pypi:
name: >-
Publish Python 🐍 distribution 📦 to PyPI
- if: startsWith(github.ref, 'refs/tags/') # only publish to PyPI on tag pushes
+ if: >
+ startsWith(github.ref, 'refs/tags/') &&
+ !contains(github.ref, 'rc')
needs:
- build
runs-on: ubuntu-latest
diff --git a/.github/workflows/scheduled_tests.yaml b/.github/workflows/scheduled_tests.yaml
index 2de1a0f83..83a0d986b 100644
--- a/.github/workflows/scheduled_tests.yaml
+++ b/.github/workflows/scheduled_tests.yaml
@@ -12,10 +12,11 @@ on:
jobs:
build:
- runs-on: ubuntu-latest
+ runs-on: ${{ matrix.os }}
strategy:
fail-fast: false
matrix:
+ os: [ubuntu-latest, windows-latest, macos-latest]
python-version: ["3.8", "3.9", "3.10", "3.11"]
steps:
@@ -32,7 +33,7 @@ jobs:
python -m nox -s unit
python -m nox -s notebooks
- #M-series Mac Mini
+ #M-series Mac Mini
build-apple-mseries:
runs-on: [self-hosted, macOS, ARM64]
env:
diff --git a/.github/workflows/test_on_push.yaml b/.github/workflows/test_on_push.yaml
index 959e4c826..5df3c8155 100644
--- a/.github/workflows/test_on_push.yaml
+++ b/.github/workflows/test_on_push.yaml
@@ -1,7 +1,6 @@
name: test_on_push
on:
- push:
workflow_dispatch:
pull_request:
@@ -30,10 +29,11 @@ jobs:
build:
- runs-on: ubuntu-latest
+ runs-on: ${{ matrix.os }}
strategy:
fail-fast: false
matrix:
+ os: [ubuntu-latest, windows-latest, macos-latest]
python-version: ["3.8", "3.9", "3.10", "3.11"]
steps:
diff --git a/.gitignore b/.gitignore
index 838f372b0..bc3caa2c5 100644
--- a/.gitignore
+++ b/.gitignore
@@ -175,6 +175,9 @@ instance/
# Sphinx documentation
docs/_build/
+docs/examples/generated/
+docs/api/
+warnings.txt
# PyBuilder
.pybuilder/
@@ -304,3 +307,6 @@ $RECYCLE.BIN/
# Visual Studio Code settings
.vscode/*
+
+# Output JSON files
+**/fit_ecm_parameters.json
diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml
index 5270e26ff..732d6cc31 100644
--- a/.pre-commit-config.yaml
+++ b/.pre-commit-config.yaml
@@ -4,7 +4,7 @@ ci:
repos:
- repo: https://github.com/astral-sh/ruff-pre-commit
- rev: "v0.1.5"
+ rev: "v0.1.7"
hooks:
- id: ruff
args: [--fix, --show-fixes]
diff --git a/.readthedocs.yaml b/.readthedocs.yaml
new file mode 100644
index 000000000..aaeb9cfcf
--- /dev/null
+++ b/.readthedocs.yaml
@@ -0,0 +1,20 @@
+version: 2
+
+build:
+ os: ubuntu-20.04
+ tools:
+ python: "3.11"
+
+# Build documentation in the "docs/" directory with Sphinx
+sphinx:
+ configuration: docs/conf.py
+
+formats:
+ - htmlzip
+ - pdf
+ - epub
+
+python:
+ install:
+ - method: pip
+ path: .[docs]
diff --git a/CHANGELOG.md b/CHANGELOG.md
new file mode 100644
index 000000000..3269d5696
--- /dev/null
+++ b/CHANGELOG.md
@@ -0,0 +1,28 @@
+# [Unreleased](https://github.com/pybop-team/PyBOP)
+
+## Features
+
+## Bug Fixes
+
+# [v23.12](https://github.com/pybop-team/PyBOP/tree/v23.12) - 2023-12-19
+## Features
+
+- [#141](https://github.com/pybop-team/PyBOP/pull/141) - Adds documentation with Sphinx and PyData Sphinx Theme. Updates docstrings across package, relocates `costs` and `dataset` to top-level of package. Adds noxfile session and deployment workflow for docs.
+- [#131](https://github.com/pybop-team/PyBOP/issues/131) - Adds `SciPyDifferentialEvolution` optimiser, adds functionality for user-selectable maximum iteration limit to `SciPyMinimize`, `NLoptOptimize`, and `BaseOptimiser` classes.
+- [#107](https://github.com/pybop-team/PyBOP/issues/107) - Adds Equivalent Circuit Model (ECM) with examples, Import/Export parameter methods `ParameterSet.import_parameter` and `ParameterSet.export_parameters`, updates default FittingProblem.signal definition to `"Voltage [V]"`, and testing infrastructure
+- [#127](https://github.com/pybop-team/PyBOP/issues/127) - Adds Windows and macOS runners to the `test_on_push` action
+- [#114](https://github.com/pybop-team/PyBOP/issues/114) - Adds standard plotting class `pybop.StandardPlot()` via plotly backend
+- [#114](https://github.com/pybop-team/PyBOP/issues/114) - Adds `quick_plot()`, `plot_convergence()`, and `plot_cost2d()` methods
+- [#114](https://github.com/pybop-team/PyBOP/issues/114) - Adds a SciPy minimize example and logging for non-Pints optimisers
+- [#116](https://github.com/pybop-team/PyBOP/issues/116) - Adds PSO, SNES, XNES, ADAM, and IPropMin optimisers to PintsOptimisers() class
+- [#38](https://github.com/pybop-team/PyBOP/issues/38) - Restructures the Problem classes ahead of adding a design optimisation example
+- [#120](https://github.com/pybop-team/PyBOP/issues/120) - Updates the parameterisation test settings including the number of iterations
+- [#145](https://github.com/pybop-team/PyBOP/issues/145) - Reformats Dataset to contain a dictionary and signal into a list of strings
+
+## Bug Fixes
+
+# [v23.11](https://github.com/pybop-team/PyBOP/releases/tag/v23.11)
+- Initial release
+- Adds Pints, NLOpt, and SciPy optimisers
+- Adds SumofSquareError and RootMeanSquareError cost functions
+- Adds Parameter and Dataset classes
diff --git a/CITATION.cff b/CITATION.cff
index e1efab891..11ce822fd 100644
--- a/CITATION.cff
+++ b/CITATION.cff
@@ -11,4 +11,5 @@ authors:
family-names: Courtier
- given-names: David
family-names: Howey
+version: "23.12" # Update this when you release a new version
repository-code: 'https://www.github.com/pybop-team/pybop'
diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md
index d1ea9db24..9fecf0c01 100644
--- a/CONTRIBUTING.md
+++ b/CONTRIBUTING.md
@@ -1,10 +1,23 @@
-# Contributing to PyBOP
+# Contributing
-If you'd like to contribute to PyBOP, please have a look at the [pre-commit](#pre-commit-checks) and the [workflow](#workflow) guidelines below.
+If you'd like to contribute to PyBOP, please have a look at the guidelines below.
+## Developer-Installation
+
+To install PyBOP for development purposes, which includes the testing and plotting dependencies, use the `[all]` flag as demonstrated below:
+
+For `zsh`:
+
+```sh
+pip install -e '.[all]'
+```
+For `bash`:
+```sh
+pip install -e .[all]
+```
## Pre-commit checks
-Before you commit any code, please perform the following checks:
+Before you commit any code, please perform the following checks using [Nox](https://nox.thea.codes/en/stable/index.html):
- [All tests pass](#testing): `$ nox -s unit`
@@ -17,7 +30,7 @@ pip install pre-commit
pre-commit install
```
-This would run the checks every time a commit is created locally. The checks will only run on the files modified by that commit, but the checks can be triggered for all the files using -
+This would run the checks every time a commit is created locally. The checks will only run on the files modified by that commit, but the checks can be triggered for all the files using,
```bash
pre-commit run --all-files
@@ -34,7 +47,7 @@ We use [GIT](https://en.wikipedia.org/wiki/Git) and [GitHub](https://en.wikipedi
1. Create an [issue](https://guides.github.com/features/issues/) where new proposals can be discussed before any coding is done.
2. Create a [branch](https://help.github.com/articles/creating-and-deleting-branches-within-your-repository/) of this repo (ideally on your own [fork](https://help.github.com/articles/fork-a-repo/)), where all changes will be made
3. Download the source code onto your local system, by [cloning](https://help.github.com/articles/cloning-a-repository/) the repository (or your fork of the repository).
-4. [Install](Developer-Install) PyBOP with the developer options.
+4. [Install](#developer-installation) PyBOP with the developer options.
5. [Test](#testing) if your installation worked: `$ pytest --unit -v`.
You now have everything you need to start making changes!
@@ -69,7 +82,7 @@ python -m pip install pre-commit
pre-commit run ruff
```
-ruff is configured inside the file `pre-commit-config.yaml`, allowing us to ignore some errors. If you think this should be added or removed, please submit an [issue](#issues)
+ruff is configured inside the file `pre-commit-config.yaml`, allowing us to ignore some errors. If you think this should be added or removed, please submit an [issue](https://guides.github.com/features/issues/).
When you commit your changes they will be checked against ruff automatically (see [Pre-commit checks](#pre-commit-checks)).
@@ -113,6 +126,16 @@ def plot_great_things(self, x, y, z):
This allows people to (1) use PyBOP without ever importing Matplotlib and (2) configure Matplotlib's back-end in their scripts, which _must_ be done before e.g. `pyplot` is first imported.
+### Building documentation
+
+We use [Sphinx](http://www.sphinx-doc.org/en/stable/) to build our documentation. A [Nox](https://nox.thea.codes/en/stable/index.html) session has been created to reduce the overhead when building the documentation locally. To run this session, type
+
+```bash
+nox -s docs
+```
+
+This will build the docs using sphinx-autobuild and render them in your browser.
+
## Testing
All code requires testing. We use the [pytest](https://docs.pytest.org/en/) package for our tests. (These tests typically just check that the code runs without error, and so, are more _debugging_ than _testing_ in a strict sense. Nevertheless, they are very useful to have!)
@@ -123,7 +146,7 @@ If you have nox installed, to run unit tests, type
nox -s unit
```
-else, type
+Alternatively, to run tests standalone with pytest, run,
```bash
pytest --unit -v
@@ -270,7 +293,7 @@ Configuration files:
setup.py
```
-Note that this file must be kept in sync with the version number in [pybop/**init**.py](pybop/__init__.py).
+Note that this file must be kept in sync with the version number in [pybop/**init**.py](https://github.com/pybop-team/PyBOP/blob/develop/pybop/__init__.py).
### Continuous Integration using GitHub actions
@@ -293,11 +316,10 @@ Code coverage (how much of our code is seen by the (Linux) unit tests) is tested
GitHub does some magic with particular filenames. In particular:
-- The first page people see when they go to [our GitHub page](https://github.com/pybop-team/PyBOP) displays the contents of [README.md](README.md), which is written in the [Markdown](https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet) format. Some guidelines can be found [here](https://help.github.com/articles/about-readmes/).
-- The license for using PyBOP is stored in [LICENSE](LICENSE.txt), and [automatically](https://help.github.com/articles/adding-a-license-to-a-repository/) linked to by GitHub.
-- This file, [CONTRIBUTING.md](CONTRIBUTING.md) is recognised as the contribution guidelines and a link is [automatically](https://github.com/blog/1184-contributing-guidelines) displayed when new issues or pull requests are created.
+- The first page people see when they go to [our GitHub page](https://github.com/pybop-team/PyBOP) displays the contents of [README.md](https://github.com/pybop-team/PyBOP/blob/develop/README.md), which is written in the [Markdown](https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet) format. Some guidelines can be found [here](https://help.github.com/articles/about-readmes/).
+- The license for using PyBOP is stored in [LICENSE](https://github.com/pybop-team/PyBOP/blob/develop/LICENSE), and [automatically](https://help.github.com/articles/adding-a-license-to-a-repository/) linked to by GitHub.
+- This file, [CONTRIBUTING.md](https://github.com/pybop-team/PyBOP/blob/develop/CONTRIBUTING.md) is recognised as the contribution guidelines and a link is [automatically](https://github.com/blog/1184-contributing-guidelines) displayed when new issues or pull requests are created.
## Acknowledgements
-This CONTRIBUTING.md file, along with large sections of the code infrastructure,
-was copied from the excellent [Pints repo](https://github.com/pints-team/pints), and [PyBaMM repo](https://github.com/pybamm-team/PyBaMM)
+This CONTRIBUTING.md file, along with large sections of the code infrastructure, was copied from the excellent [Pints repo](https://github.com/pints-team/pints), and [PyBaMM repo](https://github.com/pybamm-team/PyBaMM)
diff --git a/README.md b/README.md
index 11d7e9be8..bf5f66c6e 100644
--- a/README.md
+++ b/README.md
@@ -3,7 +3,7 @@
+
+
+
+
+
@@ -48,52 +51,55 @@ The diagram below presents PyBOP's conceptual framework. The PyBOP software spec
## Getting Started
-### Prerequisites
-To use and/or contribute to PyBOP, first install Python (3.8-3.11). On a Debian-based distribution, this looks like:
+### Installation
+
+Within your virtual environment, install PyBOP:
```bash
-sudo apt update
-sudo apt install python3 python3-virtualenv
+pip install pybop
```
-For further information, please refer to the similar [installation instructions for PyBaMM](https://docs.pybamm.org/en/latest/source/user_guide/installation/GNU-linux.html).
-
-### Installation
-
-Create a virtual environment called `pybop-env` within your current directory:
+To install the most recent state of PyBOP, install from the `develop` branch,
```bash
-virtualenv pybop-env
+pip install git+https://github.com/pybop-team/PyBOP.git@develop
```
-Activate the environment:
+To alternatively install PyBOP from a local directory, use the following template, substituting in the relevant path:
```bash
-source pybop-env/bin/activate
+pip install -e "path/to/pybop"
```
-Later, you can deactivate the environment:
+To check whether PyBOP has been installed correctly, run one of the examples in the following section. For a development installation, please refer to the [contributing guide](https://github.com/pybop-team/PyBOP/blob/develop/CONTRIBUTING.md#Installation).
+
+### Prerequisites
+To use and/or contribute to PyBOP, first install Python (3.8-3.11). On a Debian-based distribution, this looks like:
```bash
-deactivate
+sudo apt update
+sudo apt install python3 python3-virtualenv
```
-Within your virtual environment, install the `develop` branch of PyBOP:
+For further information, please refer to the similar [installation instructions for PyBaMM](https://docs.pybamm.org/en/latest/source/user_guide/installation/GNU-linux.html).
+
+### Virtual Environments
+To create a virtual environment called `pybop-env` within your current directory:
```bash
-pip install git+https://github.com/pybop-team/PyBOP.git@develop
+virtualenv pybop-env
```
-To alternatively install PyBOP from a local directory, use the following template, substituting in the relevant path:
+Activate the environment:
```bash
-pip install -e "PATH_TO_PYBOP"
+source pybop-env/bin/activate
```
-To check whether PyBOP has been installed correctly, run one of the examples in the following section or the full set of unit tests:
+Later, you can deactivate the environment:
```bash
-pytest --unit -v
+deactivate
```
### Using PyBOP
@@ -136,10 +142,13 @@ Thanks goes to these wonderful people ([emoji key](https://allcontributors.org/d
diff --git a/assets/UKRI.png b/assets/UKRI.png
new file mode 100644
index 000000000..a3a0ba3e6
Binary files /dev/null and b/assets/UKRI.png differ
diff --git a/assets/UKRI.svg b/assets/UKRI.svg
new file mode 100644
index 000000000..a16a21cf7
--- /dev/null
+++ b/assets/UKRI.svg
@@ -0,0 +1 @@
+
diff --git a/conftest.py b/conftest.py
index b37cbd0f5..c632f3e50 100644
--- a/conftest.py
+++ b/conftest.py
@@ -1,6 +1,8 @@
import pytest
import matplotlib
+import plotly
+plotly.io.renderers.default = None
matplotlib.use("Template")
@@ -8,17 +10,43 @@ def pytest_addoption(parser):
parser.addoption(
"--unit", action="store_true", default=False, help="run unit tests"
)
+ parser.addoption(
+ "--examples", action="store_true", default=False, help="run examples tests"
+ )
+
+
+def pytest_terminal_summary(terminalreporter, exitstatus, config):
+ """Add additional section to terminal summary reporting."""
+ total_time = sum([x.duration for x in terminalreporter.stats.get("passed", [])])
+ num_tests = len(terminalreporter.stats.get("passed", []))
+ print(f"\nTotal number of tests completed: {num_tests}")
+ print(f"Total time taken: {total_time:.2f} seconds")
def pytest_configure(config):
config.addinivalue_line("markers", "unit: mark test as a unit test")
+ config.addinivalue_line("markers", "examples: mark test as an example")
def pytest_collection_modifyitems(config, items):
- if config.getoption("--unit"):
- # --unit given in cli: do not skip unit tests
- return
- skip_unit = pytest.mark.skip(reason="need --unit option to run")
- for item in items:
- if "unit" in item.keywords:
- item.add_marker(skip_unit)
+ unit_option = config.getoption("--unit")
+ examples_option = config.getoption("--examples")
+
+ if not unit_option and not examples_option:
+ skip_all = pytest.mark.skip(reason="need --unit or --examples option to run")
+ for item in items:
+ item.add_marker(skip_all)
+
+ elif unit_option and not examples_option:
+ skip_examples = pytest.mark.skip(
+ reason="need --examples option to run examples tests"
+ )
+ for item in items:
+ if "examples" in item.keywords:
+ item.add_marker(skip_examples)
+
+ if examples_option and not unit_option:
+ skip_unit = pytest.mark.skip(reason="need --unit option to run unit tests")
+ for item in items:
+ if "unit" in item.keywords:
+ item.add_marker(skip_unit)
diff --git a/docs/Contributing.md b/docs/Contributing.md
new file mode 100644
index 000000000..ab90a2bb6
--- /dev/null
+++ b/docs/Contributing.md
@@ -0,0 +1,8 @@
+---
+myst:
+ html_meta:
+ "description lang=en": |
+ Contributing docs..
+---
+
+```{include} ../CONTRIBUTING.md
diff --git a/docs/Makefile b/docs/Makefile
new file mode 100644
index 000000000..d4bb2cbb9
--- /dev/null
+++ b/docs/Makefile
@@ -0,0 +1,20 @@
+# Minimal makefile for Sphinx documentation
+#
+
+# You can set these variables from the command line, and also
+# from the environment for the first two.
+SPHINXOPTS ?=
+SPHINXBUILD ?= sphinx-build
+SOURCEDIR = .
+BUILDDIR = _build
+
+# Put it first so that "make" without argument is like "make help".
+help:
+ @$(SPHINXBUILD) -M help "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)
+
+.PHONY: help Makefile
+
+# Catch-all target: route all unknown targets to Sphinx using the new
+# "make mode" option. $(O) is meant as a shortcut for $(SPHINXOPTS).
+%: Makefile
+ @$(SPHINXBUILD) -M $@ "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)
diff --git a/docs/_extension/gallery_directive.py b/docs/_extension/gallery_directive.py
new file mode 100644
index 000000000..4dcc2c63a
--- /dev/null
+++ b/docs/_extension/gallery_directive.py
@@ -0,0 +1,145 @@
+"""A directive to generate a gallery of images from structured data.
+
+Generating a gallery of images that are all the same size is a common
+pattern in documentation, and this can be cumbersome if the gallery is
+generated programmatically. This directive wraps this particular use-case
+in a helper-directive to generate it with a single YAML configuration file.
+
+It currently exists for maintainers of the pydata-sphinx-theme,
+but might be abstracted into a standalone package if it proves useful.
+
+Credit: PyData Sphinx Theme
+"""
+from pathlib import Path
+from typing import Any, Dict, List
+
+from docutils import nodes
+from docutils.parsers.rst import directives
+from sphinx.application import Sphinx
+from sphinx.util import logging
+from sphinx.util.docutils import SphinxDirective
+from yaml import safe_load
+
+logger = logging.getLogger(__name__)
+
+
+TEMPLATE_GRID = """
+`````{{grid}} {columns}
+{options}
+
+{content}
+
+`````
+"""
+
+GRID_CARD = """
+````{{grid-item-card}} {title}
+{options}
+
+{content}
+````
+"""
+
+
+class GalleryGridDirective(SphinxDirective):
+ """A directive to show a gallery of images and links in a Bootstrap grid.
+
+ The grid can be generated from a YAML file that contains a list of items, or
+ from the content of the directive (also formatted in YAML). Use the parameter
+ "class-card" to add an additional CSS class to all cards. When specifying the grid
+ items, you can use all parameters from "grid-item-card" directive to customize
+ individual cards + ["image", "header", "content", "title"].
+
+ Danger:
+ This directive can only be used in the context of a Myst documentation page as
+ the templates use Markdown flavored formatting.
+ """
+
+ name = "gallery-grid"
+ has_content = True
+ required_arguments = 0
+ optional_arguments = 1
+ final_argument_whitespace = True
+ option_spec = {
+ # A class to be added to the resulting container
+ "grid-columns": directives.unchanged,
+ "class-container": directives.unchanged,
+ "class-card": directives.unchanged,
+ }
+
+ def run(self) -> List[nodes.Node]:
+ """Create the gallery grid."""
+ if self.arguments:
+ # If an argument is given, assume it's a path to a YAML file
+ # Parse it and load it into the directive content
+ path_data_rel = Path(self.arguments[0])
+ path_doc, _ = self.get_source_info()
+ path_doc = Path(path_doc).parent
+ path_data = (path_doc / path_data_rel).resolve()
+ if not path_data.exists():
+ logger.info(f"Could not find grid data at {path_data}.")
+ nodes.text("No grid data found at {path_data}.")
+ return
+ yaml_string = path_data.read_text()
+ else:
+ yaml_string = "\n".join(self.content)
+
+ # Use all the element with an img-bottom key as sites to show
+ # and generate a card item for each of them
+ grid_items = []
+ for item in safe_load(yaml_string):
+ # remove parameters that are not needed for the card options
+ title = item.pop("title", "")
+
+ # build the content of the card using some extra parameters
+ header = f"{item.pop('header')} \n^^^ \n" if "header" in item else ""
+ image = f"![image]({item.pop('image')}) \n" if "image" in item else ""
+ content = f"{item.pop('content')} \n" if "content" in item else ""
+
+ # optional parameter that influence all cards
+ if "class-card" in self.options:
+ item["class-card"] = self.options["class-card"]
+
+ loc_options_str = "\n".join(f":{k}: {v}" for k, v in item.items()) + " \n"
+
+ card = GRID_CARD.format(
+ options=loc_options_str, content=header + image + content, title=title
+ )
+ grid_items.append(card)
+
+ # Parse the template with Sphinx Design to create an output container
+ # Prep the options for the template grid
+ class_ = "gallery-directive" + f' {self.options.get("class-container", "")}'
+ options = {"gutter": 2, "class-container": class_}
+ options_str = "\n".join(f":{k}: {v}" for k, v in options.items())
+
+ # Create the directive string for the grid
+ grid_directive = TEMPLATE_GRID.format(
+ columns=self.options.get("grid-columns", "1 2 3 4"),
+ options=options_str,
+ content="\n".join(grid_items),
+ )
+
+ # Parse content as a directive so Sphinx Design processes it
+ container = nodes.container()
+ self.state.nested_parse([grid_directive], 0, container)
+
+ # Sphinx Design outputs a container too, so just use that
+ return [container.children[0]]
+
+
+def setup(app: Sphinx) -> Dict[str, Any]:
+ """Add custom configuration to sphinx app.
+
+ Args:
+ app: the Sphinx application
+
+ Returns:
+ the 2 parallel parameters set to ``True``.
+ """
+ app.add_directive("gallery-grid", GalleryGridDirective)
+
+ return {
+ "parallel_read_safe": True,
+ "parallel_write_safe": True,
+ }
diff --git a/docs/_static/custom-icon.js b/docs/_static/custom-icon.js
new file mode 100644
index 000000000..ac9c6c91e
--- /dev/null
+++ b/docs/_static/custom-icon.js
@@ -0,0 +1,17 @@
+/*******************************************************************************
+ * Set a custom icon for pypi as it's not available in the fa built-in brands
+ * Taken from: https://github.com/pydata/pydata-sphinx-theme/blob/main/docs/_static/custom-icon.js
+ */
+FontAwesome.library.add(
+ (faListOldStyle = {
+ prefix: "fa-custom",
+ iconName: "pypi",
+ icon: [
+ 17.313, // viewBox width
+ 19.807, // viewBox height
+ [], // ligature
+ "e001", // unicode codepoint - private use area
+ "m10.383 0.2-3.239 1.1769 3.1883 1.1614 3.239-1.1798zm-3.4152 1.2411-3.2362 1.1769 3.1855 1.1614 3.2369-1.1769zm6.7177 0.00281-3.2947 1.2009v3.8254l3.2947-1.1988zm-3.4145 1.2439-3.2926 1.1981v3.8254l0.17548-0.064132 3.1171-1.1347zm-6.6564 0.018325v3.8247l3.244 1.1805v-3.8254zm10.191 0.20931v2.3137l3.1777-1.1558zm3.2947 1.2425-3.2947 1.1988v3.8254l3.2947-1.1988zm-8.7058 0.45739c0.00929-1.931e-4 0.018327-2.977e-4 0.027485 0 0.25633 0.00851 0.4263 0.20713 0.42638 0.49826 1.953e-4 0.38532-0.29327 0.80469-0.65542 0.93662-0.36226 0.13215-0.65608-0.073306-0.65613-0.4588-6.28e-5 -0.38556 0.2938-0.80504 0.65613-0.93662 0.068422-0.024919 0.13655-0.038114 0.20156-0.039466zm5.2913 0.78369-3.2947 1.1988v3.8247l3.2947-1.1981zm-10.132 1.239-3.2362 1.1769 3.1883 1.1614 3.2362-1.1769zm6.7177 0.00213-3.2926 1.2016v3.8247l3.2926-1.2009zm-3.4124 1.2439-3.2947 1.1988v3.8254l3.2947-1.1988zm-6.6585 0.016195v3.8275l3.244 1.1805v-3.8254zm16.9 0.21143-3.2947 1.1988v3.8247l3.2947-1.1981zm-3.4145 1.2411-3.2926 1.2016v3.8247l3.2926-1.2009zm-3.4145 1.2411-3.2926 1.2016v3.8247l3.2926-1.2009zm-3.4124 1.2432-3.2947 1.1988v3.8254l3.2947-1.1988zm-6.6585 0.019027v3.8247l3.244 1.1805v-3.8254zm13.485 1.4497-3.2947 1.1988v3.8247l3.2947-1.1981zm-3.4145 1.2411-3.2926 1.2016v3.8247l3.2926-1.2009zm2.4018 0.38127c0.0093-1.83e-4 0.01833-3.16e-4 0.02749 0 0.25633 0.0085 0.4263 0.20713 0.42638 0.49826 1.97e-4 0.38532-0.29327 0.80469-0.65542 0.93662-0.36188 0.1316-0.65525-0.07375-0.65542-0.4588-1.95e-4 -0.38532 0.29328-0.80469 0.65542-0.93662 0.06842-0.02494 0.13655-0.03819 0.20156-0.03947zm-5.8142 0.86403-3.244 1.1805v1.4201l3.244 1.1805z", // svg path (https://simpleicons.org/icons/pypi.svg)
+ ],
+ })
+);
diff --git a/docs/_static/switcher.json b/docs/_static/switcher.json
new file mode 100644
index 000000000..682d19994
--- /dev/null
+++ b/docs/_static/switcher.json
@@ -0,0 +1,12 @@
+[
+ {
+ "version": "latest",
+ "url": "https://pybop-docs.readthedocs.io/en/latest/",
+ "preferred": true
+ },
+ {
+ "name": "v23.11 (stable)",
+ "version": "v23.11",
+ "url": "https://pybop-docs.readthedocs.io/en/latest/"
+ }
+ ]
diff --git a/docs/_templates/autoapi/index.rst b/docs/_templates/autoapi/index.rst
new file mode 100644
index 000000000..d60759952
--- /dev/null
+++ b/docs/_templates/autoapi/index.rst
@@ -0,0 +1,18 @@
+.. _api-reference:
+
+API Reference
+=============
+
+This page contains auto-generated API reference documentation [#f1]_.
+
+.. toctree::
+ :titlesonly:
+ :maxdepth: 2
+
+ {% for page in pages %}
+ {% if page.top_level_object and page.display %}
+ {{ page.include_path }}
+ {% endif %}
+ {% endfor %}
+
+.. [#f1] Created with `sphinx-autoapi `_
diff --git a/docs/conf.py b/docs/conf.py
new file mode 100644
index 000000000..2b8b9278e
--- /dev/null
+++ b/docs/conf.py
@@ -0,0 +1,106 @@
+# Configuration file for the Sphinx documentation builder.
+
+
+# -- Path setup --------------------------------------------------------------
+import os
+import sys
+
+root_path = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
+sys.path.insert(0, root_path)
+
+from pybop.version import __version__ # noqa: E402
+
+# -- Project information -----------------------------------------------------
+project = "PyBOP"
+copyright = "2023, The PyBOP Team"
+author = "The PyBOP Team"
+release = f"v{__version__}"
+
+# -- General configuration ---------------------------------------------------
+extensions = [
+ "sphinx.ext.napoleon",
+ "sphinx.ext.autodoc",
+ "sphinx.ext.autosummary",
+ "sphinx.ext.todo",
+ "sphinx.ext.viewcode",
+ "sphinx_design",
+ "sphinx_copybutton",
+ "autoapi.extension",
+ # custom extentions
+ "_extension.gallery_directive",
+ # For extension examples and demos
+ "myst_parser",
+ "sphinx_favicon",
+]
+
+templates_path = ["_templates"]
+autoapi_template_dir = "_templates/autoapi"
+exclude_patterns = ["_build", "Thumbs.db", ".DS_Store"]
+
+# -- Options for autoapi -------------------------------------------------------
+autoapi_type = "python"
+autoapi_dirs = ["../pybop"]
+autoapi_keep_files = True
+autoapi_root = "api"
+autoapi_member_order = "groupwise"
+
+# -- Options for HTML output -------------------------------------------------
+# Define the json_url for our version switcher.
+json_url = "https://pybop-docs.readthedocs.io/en/latest/_static/switcher.json"
+version_match = os.environ.get("READTHEDOCS_VERSION")
+release = f"v{__version__}"
+
+# If READTHEDOCS_VERSION doesn't exist, we're not on RTD
+# If it is an integer, we're in a PR build and the version isn't correct.
+# If it's "latest" → change to "dev" (that's what we want the switcher to call it)
+# Credit: PyData Theme: https://github.com/pydata/pydata-sphinx-theme/blob/main/docs/conf.py
+if not version_match or version_match.isdigit() or version_match == "latest":
+ # For local development, infer the version to match from the package.
+ if "latest" in release or "rc" in release:
+ version_match = "latest"
+ # We want to keep the relative reference if we are in dev mode
+ # but we want the whole url if we are effectively in a released version
+ json_url = "_static/switcher.json"
+ else:
+ version_match = release
+elif version_match == "stable":
+ version_match = release
+
+html_theme = "pydata_sphinx_theme"
+html_show_sourcelink = False
+html_title = "PyBOP Documentation"
+
+# html_theme options
+html_theme_options = {
+ "header_links_before_dropdown": 4,
+ "icon_links": [
+ {
+ "name": "PyPI",
+ "url": "https://pypi.org/project/pybop/",
+ "icon": "fa-custom fa-pypi",
+ },
+ {
+ "name": "GitHub",
+ "url": "https://github.com/pybop-team/pybop",
+ "icon": "fab fa-github-square",
+ },
+ ],
+ "search_bar_text": "Search the docs...",
+ "show_prev_next": False,
+ "navbar_align": "content",
+ "navbar_center": ["navbar-nav", "version-switcher"],
+ # "show_version_warning_banner": True, # Commented until we have a stable release with docs
+ "footer_start": ["copyright"],
+ "footer_center": ["sphinx-version"],
+ "switcher": {
+ "json_url": json_url,
+ "version_match": version_match,
+ },
+}
+
+html_static_path = ["_static"]
+html_js_files = ["custom-icon.js"]
+
+# -- Language ----------------------------------------------------------------
+
+language = "en"
diff --git a/docs/index.md b/docs/index.md
new file mode 100644
index 000000000..d45182ae1
--- /dev/null
+++ b/docs/index.md
@@ -0,0 +1,37 @@
+---
+myst:
+ html_meta:
+ "description lang=en": |
+ High-level documentation for PyBOP, and corresponding links to the site.
+html_theme.sidebar_secondary.remove: true
+---
+
+# PyBOP: Optimise and Parameterise Battery Models
+
+Welcome to PyBOP, a Python package dedicated to the optimization and parameterization of battery models. PyBOP is designed to streamline your workflow, whether you are conducting academic research, working in industry, or simply interested in battery technology and modelling.
+
+```{gallery-grid}
+:grid-columns: 1 2 2 2
+
+- header: "{fas}`bolt;pst-color-primary` Installation"
+ content: "Setting up PyBOP is straightforward. Follow our step-by-step guide to install PyBOP on your system."
+ link: "installation.html"
+- header: "{fas}`circle-half-stroke;pst-color-primary` Quick Start"
+ content: "Discover how to use PyBOP effectively. From basic tasks to advanced features, learn how to solve real-world problems with PyBOP."
+ link: "quick_start.html"
+- header: "{fab}`python;pst-color-primary` Contributing"
+ content: "Contribute to the PyBOP project and become a part of our growing community."
+ link: "Contributing.html"
+- header: "{fab}`bootstrap;pst-color-primary` API Reference"
+ content: "Get detailed information on functions, classes, and modules that allow you to fully leverage the power of PyBOP in your own projects."
+ link: "api/index.html"
+```
+
+```{toctree}
+:maxdepth: 2
+:hidden:
+
+installation
+quick_start
+Contributing
+```
diff --git a/docs/installation.rst b/docs/installation.rst
new file mode 100644
index 000000000..3c0080c1d
--- /dev/null
+++ b/docs/installation.rst
@@ -0,0 +1,71 @@
+.. _installation:
+
+Installation
+*****************************
+
+PyBOP is a versatile Python package designed for optimization and parameterization of battery models. Follow the instructions below to install PyBOP and set up your environment to begin utilizing its capabilities.
+
+Installing PyBOP with pip
+-------------------------
+
+The simplest method to install PyBOP is using pip. Run the following command in your terminal:
+
+.. code-block:: console
+
+ pip install pybop
+
+This command will download and install the latest stable version of PyBOP. If you want to install a specific version, you can specify the version number using the following command:
+
+.. code-block:: console
+
+ pip install pybop==23.11
+
+Installing the Development Version
+----------------------------------
+
+If you're interested in the cutting-edge features and want to try out the latest enhancements, you can install the development version directly from the ``develop`` branch on GitHub:
+
+.. code-block:: console
+
+ pip install git+https://github.com/pybop-team/PyBOP.git@develop
+
+Please note that the development version may be less stable than the official releases.
+
+Local Installation from Source
+------------------------------
+
+For those who prefer to install PyBOP from a local clone of the repository or wish to modify the source code, you can use pip to install the package in "editable" mode. Replace "path/to/pybop" with the actual path to your local PyBOP directory:
+
+.. code-block:: console
+
+ pip install -e "path/to/pybop"
+
+In editable mode, changes you make to the source code will immediately affect the PyBOP installation without the need for reinstallation.
+
+Verifying Installation
+----------------------
+
+To verify that PyBOP has been installed successfully, try running one of the provided example scripts included in the documentation or repository. If the example executes without any errors, PyBOP is ready to use. Alternatively, you can run the following command in your terminal to check the version of PyBOP that is installed:
+
+.. code-block:: console
+
+ python -c "import pybop; print(pybop.__version__)"
+
+
+For Developers
+--------------
+
+If you are installing PyBOP for development purposes, such as contributing to the project, please ensure that you follow the guidelines outlined in the `Contributing Guide <../Contributing.html>`_. It includes additional steps that might be necessary for setting up a development environment, including the installation of dependencies and setup of pre-commit hooks.
+
+Further Assistance
+------------------
+
+If you encounter any issues during the installation process or have any questions regarding the use of PyBOP, feel free to reach out to the community via the `PyBOP GitHub Discussions `_.
+
+Next Steps
+----------
+
+After installing PyBOP, you might want to:
+
+* Explore the `Quick Start Guide `_ to begin using PyBOP.
+* Check out the `API Reference <../api/index.html>`_ for detailed information on PyBOP's programming interface.
diff --git a/docs/make.bat b/docs/make.bat
new file mode 100644
index 000000000..32bb24529
--- /dev/null
+++ b/docs/make.bat
@@ -0,0 +1,35 @@
+@ECHO OFF
+
+pushd %~dp0
+
+REM Command file for Sphinx documentation
+
+if "%SPHINXBUILD%" == "" (
+ set SPHINXBUILD=sphinx-build
+)
+set SOURCEDIR=.
+set BUILDDIR=_build
+
+%SPHINXBUILD% >NUL 2>NUL
+if errorlevel 9009 (
+ echo.
+ echo.The 'sphinx-build' command was not found. Make sure you have Sphinx
+ echo.installed, then set the SPHINXBUILD environment variable to point
+ echo.to the full path of the 'sphinx-build' executable. Alternatively you
+ echo.may add the Sphinx directory to PATH.
+ echo.
+ echo.If you don't have Sphinx installed, grab it from
+ echo.https://www.sphinx-doc.org/
+ exit /b 1
+)
+
+if "%1" == "" goto help
+
+%SPHINXBUILD% -M %1 %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% %O%
+goto end
+
+:help
+%SPHINXBUILD% -M help %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% %O%
+
+:end
+popd
diff --git a/docs/quick_start.rst b/docs/quick_start.rst
new file mode 100644
index 000000000..683c82b40
--- /dev/null
+++ b/docs/quick_start.rst
@@ -0,0 +1,58 @@
+Quick Start
+****************************
+
+Welcome to the Quick Start Guide for PyBOP. This guide will help you get up and running with PyBOP. If you're new to PyBOP, we recommend you start here to learn the basics and get a feel for the package.
+
+Getting Started with PyBOP
+--------------------------
+
+PyBOP is equipped with a series of robust tools that can help you optimize various parameters within your battery models to better match empirical data or to explore the effects of different parameters on battery behavior.
+
+To begin using PyBOP:
+
+1. Install the package using pip:
+
+ .. code-block:: console
+
+ pip install pybop
+
+ For detailed installation instructions, including how to install specific versions or from source, see the :ref:`installation` section.
+
+2. Once PyBOP is installed, you can import it in your Python scripts or Jupyter notebooks:
+
+ .. code-block:: python
+
+ import pybop
+
+ Now you're ready to utilize PyBOP's functionality in your projects!
+
+Exploring Examples
+------------------
+
+To help you get acquainted with PyBOP's capabilities, we provide a collection of examples that demonstrate common use cases and features of the package:
+
+- **Jupyter Notebooks**: Interactive notebooks that include detailed explanations alongside the live code, visualizations, and results. These are an excellent resource for learning and can be easily modified and executed to suit your needs.
+
+- **Python Scripts**: For those who prefer working in a text editor, IDE, or for integrating into larger projects, we provide equivalent examples in plain Python script format.
+
+You can find these resources in the ``examples`` folder of the PyBOP repository. To access the examples, navigate to the following path after cloning or downloading the repository:
+
+.. code-block:: console
+
+ path/to/pybop/examples
+
+These examples are also available on our `GitHub repository `_.
+
+Next Steps
+----------
+
+Once you're comfortable with the basics demonstrated in the examples, you can dive deeper into the functionality of PyBOP by delving into the :ref:`api-reference` for detailed API documentation.
+
+Support and Contributions
+-------------------------
+
+If you encounter any issues or have questions as you start using PyBOP, don't hesitate to reach out to our community:
+
+- **GitHub Issues**: Report bugs or request new features by opening an `Issue `_
+- **GitHub Discussions**: Post your questions or feedback on our `GitHub Discussions `_
+- **Contributions**: Interested in contributing to PyBOP? Check out our `Contributing Guide <../Contributing.html>`_ for guidelines.
diff --git a/examples/costs/standalone.py b/examples/costs/standalone.py
new file mode 100644
index 000000000..9836a7e7d
--- /dev/null
+++ b/examples/costs/standalone.py
@@ -0,0 +1,72 @@
+import pybop
+import numpy as np
+
+
+class StandaloneCost(pybop.BaseCost):
+ """
+ A standalone cost function example that inherits from pybop.BaseCost.
+
+ This class represents a simple cost function without a problem object, used for demonstration purposes.
+ It is a quadratic function of one variable with a constant term, defined by
+ the formula: cost(x) = x^2 + 42.
+
+ Parameters
+ ----------
+ problem : object, optional
+ A dummy problem instance used to initialize the superclass. This is not
+ used in the current class but is accepted for compatibility with the
+ BaseCost interface.
+ x0 : array-like
+ The initial guess for the optimization problem, set to [4.2].
+ n_parameters : int
+ The number of parameters in the model, which is 1 in this case.
+ bounds : dict
+ A dictionary containing the lower and upper bounds for the parameter,
+ set to [-1] and [10], respectively.
+
+ Methods
+ -------
+ __call__(x, grad=None)
+ Calculate the cost for a given parameter value.
+ """
+
+ def __init__(self, problem=None):
+ """
+ Initialize the StandaloneCost class with optional problem instance.
+
+ The problem parameter is not utilized in this subclass. The initial guess,
+ number of parameters, and bounds are predefined for the standalone cost function.
+ """
+ super().__init__(problem)
+
+ self.x0 = np.array([4.2])
+ self.n_parameters = len(self.x0)
+
+ self.bounds = dict(
+ lower=[-1],
+ upper=[10],
+ )
+
+ def __call__(self, x, grad=None):
+ """
+ Calculate the cost for a given parameter value.
+
+ The cost function is defined as cost(x) = x^2 + 42, where x is the
+ parameter value.
+
+ Parameters
+ ----------
+ x : array-like
+ A one-element array containing the parameter value for which to
+ evaluate the cost.
+ grad : array-like, optional
+ Unused parameter, present for compatibility with gradient-based
+ optimizers.
+
+ Returns
+ -------
+ float
+ The calculated cost value for the given parameter.
+ """
+
+ return x[0] ** 2 + 42
diff --git a/examples/notebooks/spm_nlopt.ipynb b/examples/notebooks/spm_nlopt.ipynb
index 811575160..baf89804c 100644
--- a/examples/notebooks/spm_nlopt.ipynb
+++ b/examples/notebooks/spm_nlopt.ipynb
@@ -23,8 +23,8 @@
},
"outputs": [
{
- "output_type": "stream",
"name": "stdout",
+ "output_type": "stream",
"text": [
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.1/2.1 MB\u001b[0m \u001b[31m19.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m139.4/139.4 kB\u001b[0m \u001b[31m14.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
@@ -191,38 +191,38 @@
},
"outputs": [
{
- "output_type": "display_data",
"data": {
- "text/plain": [
- "interactive(children=(FloatSlider(value=0.0, description='t', max=1.1333333333333333, step=0.01133333333333333…"
- ],
"application/vnd.jupyter.widget-view+json": {
+ "model_id": "8d003c14da5f4fa68284b28c15cee6e6",
"version_major": 2,
- "version_minor": 0,
- "model_id": "8d003c14da5f4fa68284b28c15cee6e6"
- }
+ "version_minor": 0
+ },
+ "text/plain": [
+ "interactive(children=(FloatSlider(value=0.0, description='t', max=1.1333333333333333, step=0.01133333333333333…"
+ ]
},
- "metadata": {}
+ "metadata": {},
+ "output_type": "display_data"
},
{
- "output_type": "execute_result",
"data": {
"text/plain": [
""
]
},
+ "execution_count": 25,
"metadata": {},
- "execution_count": 25
+ "output_type": "execute_result"
},
{
- "output_type": "display_data",
"data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABdEAAAKxCAYAAAC8BuXeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeVxU1f8/8NeADKsDorIlAqYhmIDiRxzLHRnQj2n5KRdS3D8aaEhp8ckItcJc0ST5mAtW8nGpNFMDCUNccENHccMN0xIwU0BQAeH8/vDH/ToybIoMwuv5eNxH3Xve9973PTNzOZ65c45MCCFARERERERERERERETl6Ok6ASIiIiIiIiIiIiKi+oqd6EREREREREREREREFWAnOhERERERERERERFRBdiJTkRERERERERERERUAXaiExERERERERERERFVgJ3oREREREREREREREQVYCc6EREREREREREREVEF2IlORERERERERERERFQBdqITEREREREREREREVWAnehPyNHREZGRkbpOo1ZduXIFMpkMarW6WvFjxozBkCFDnmlOT2r//v3o2LEjDAwM6m2OpEkmk2Hr1q3P9Bzh4eGQyWSQyWR18vmti2uqrrq+9sasPr3ujwsPD4eHh4eu06Aq1EUbIyYmRronBAcHP9NzAfWr3VTX1061JykpCTKZDDk5OZXG1af3W21hO510ie30Z4vtdKL6o+zvrUwme6J/N5Xta2FhUeu5ke7Vu070MWPGQCaTYd68eRrbt27dCplMVuf5xMTEaH3zHzlyBJMmTarzfGqLtoa1vb09MjMz8fLLL+smqVoUEhICDw8PZGRkICYmRtfpPNcq+gw8qYo68TIzM+Hn51dr56lIhw4dkJmZ+Vx/fh+Xnp6OPn36wNraGkZGRmjTpg1mzZqF4uJiKeb9999HZmYmWrVqpcNMn39lf6MeX3x9fZ/ZOXX5j7za/vw/76rbgVddum5jKBQKZGZmYu7cuc/8XHXl77//hq+vL+zs7GBoaAh7e3sEBQUhLy9Pihk2bBgyMzOhVCp1mGnD9eh9Ui6Xo23btpgzZw4ePHjw1Mfu3r07MjMzYW5uDkD3n6Fnhe10qi620+s/ttOpIcrKysLUqVPRpk0bqb01aNAgJCYm6jq1StXk31W//vqr1uv5448/IJfLK/x7nJmZyS/DGrAmuk5AGyMjI3zxxRf497//jWbNmuk6Ha1atmyp6xSeSElJSYVfRujr68PGxqaOM6pdxcXFMDAwwKVLlzB58mQ2ROpQUVER5HL5E+9fV++9Jk2aPPfv88cZGBhg9OjR6Ny5MywsLHDixAlMnDgRpaWl+PzzzwEAZmZmMDMzg76+vo6zff75+vpi7dq1GtsMDQ11lM1DT/v5o9r1tK9HXbUxZDJZg7sf6unpYfDgwfj000/RsmVLXLx4EYGBgbh16xZiY2MBAMbGxjA2NuZn5hkqu08WFhZi586dCAwMhIGBAUJDQ5/quHK5vFrvWbbT6ye203WH7XTdYTudGporV67glVdegYWFBRYsWICOHTuiuLgY8fHxCAwMxLlz557ouEIIlJSUoEkTzW5KXf07p3nz5mjevHm57TExMXjrrbeQnJyMQ4cOwcvLS6PcxsZG+rKfGp569yQ6AHh7e8PGxgYRERGVxu3btw89evSAsbEx7O3tMW3aNBQUFEjlmZmZGDhwIIyNjeHk5ITY2NhyP+9cvHgxOnbsCFNTU9jb2+Odd95Bfn4+gIdPnI0dOxa5ubnSEzXh4eEANH8mOnLkSAwbNkwjt+LiYrRo0QLffPMNAKC0tBQRERFwcnKCsbEx3N3d8f3331d6fY6Ojpg7dy5GjBgBU1NTvPDCC4iKitKIqSx/4P+eTti2bRtcXV1haGiIcePGYd26dfjpp5+k60pKStL6M9HTp0/jn//8JxQKBZo2bYoePXrg0qVLWvN9kmv86quv0K5dOxgZGcHa2hr/+te/NK7/8W/wPDw8pNcAeNgBsGLFCrz22mswNTXFxIkTIZPJ8Pfff2PcuHGQyWSIiYlBSUkJxo8fL+Xm7OyMpUuXlstnzZo16NChAwwNDWFra4ugoCCpLCcnBxMmTEDLli2hUCjQt29fnDhxotLr++OPPzBixAhYWlrC1NQUXbp0waFDh6TyFStW4MUXX4RcLoezszO+/fZbjf1lMhlWrVqF119/HSYmJmjXrh22bdumEVPVa7Rq1Sq4uLjAyMgI7du3x1dffSWVlb3mP/74I/r06QMTExO4u7sjJSUFQNWfgblz52L06NFQKBTSEyMffPABXnrpJZiYmKBNmzb4+OOPpSctYmJiMHv2bJw4cUI6XtkTSI9/K5yWloa+ffvC2NgYzZs3x6RJkzTe22VPaS1cuBC2trZo3rw5AgMDNZ7qqC6ZTIb//ve/+Oc//wkTExO4uLggJSUFFy9eRO/evWFqaoru3buXe+9X9fpVpXfv3pg6dSqCg4PRrFkzWFtb4+uvv0ZBQQHGjh2Lpk2bom3btvjll18qPU6bNm0wduxYuLu7w8HBAa+99hr8/f2xd+/eGtcFVc3Q0BA2NjYaS2Vf+F67dg1vvfUWLCwsYGlpicGDB+PKlSsaMRXdexwdHQEAr7/+OmQymbRe9qTYqlWr4OTkBCMjIwDA1atXMXjwYJiZmUGhUOCtt95Cdna21rySk5NhYGCArKwsje3BwcHo0aNHpZ//wsJCvP/++3jhhRdgamoKLy8vJCUlVVpvOTk5+Pe//y09ifXyyy9j+/btUvkPP/wg1YGjoyMWLVqksb+joyM+//xzjBs3Dk2bNkXr1q2xcuVKjZiq7rk//fQTOnfuLD0JNnv2bI2nYyu75165cgV9+vQBADRr1gwymQxjxowB8PCzHBQUhODgYLRo0QIqlQpA7bQxgKpf17L3w7fffgtHR0eYm5tj+PDhuHPnTqWviTaOjo749NNPMXr0aJiZmcHBwQHbtm3DX3/9JeXg5uaGo0ePauxX1etXlbJ7+ueffw5ra2tYWFhITy/PmDEDlpaWaNWqVbkvsB7XrFkzTJkyBV26dIGDgwP69euHd955h/fDOlZ2n3RwcMCUKVPg7e0tfZZu376N0aNHo1mzZjAxMYGfnx8uXLgg7fv7779j0KBBaNasGUxNTdGhQwfs3LkTgOavQdhOZzud7XS209lOJ6p777zzDmQyGQ4fPoyhQ4fipZdeQocOHRASEoKDBw8C0D4EWU5OjvQ3Dfi/v+m//PILPD09YWhoiH379lXYrj516hT8/PxgZmYGa2trjBo1Cjdv3pSO37t3b0ybNg0zZ86EpaUlbGxsNP4mVfTvqpoQQmDt2rUYNWoURo4cidWrV9f4GPScE/VMQECAGDx4sPjxxx+FkZGRuHbtmhBCiC1btohH07148aIwNTUVS5YsEefPnxf79+8XnTp1EmPGjJFivL29hYeHhzh48KBITU0VvXr1EsbGxmLJkiVSzJIlS8Tu3btFRkaGSExMFM7OzmLKlClCCCEKCwtFZGSkUCgUIjMzU2RmZoo7d+4IIYRwcHCQjrN9+3ZhbGwslQkhxM8//yyMjY1FXl6eEEKITz/9VLRv317ExcWJS5cuibVr1wpDQ0ORlJRUYV04ODiIpk2bioiICJGeni6WLVsm9PX1xa5du6qVvxBCrF27VhgYGIju3buL/fv3i3Pnzonc3Fzx1ltvCV9fX+m6CgsLRUZGhgAgjh8/LoQQ4o8//hCWlpbijTfeEEeOHBHp6elizZo14ty5cxqvVZmaXuORI0eEvr6+iI2NFVeuXBHHjh0TS5cu1bj+R18rIYRwd3cXn3zyibQOQFhZWYk1a9aIS5cuiStXrojMzEyhUChEZGSkyMzMFHfv3hVFRUUiLCxMHDlyRFy+fFl89913wsTERGzcuFE61ldffSWMjIxEZGSkSE9PF4cPH9Y4v7e3txg0aJA4cuSIOH/+vHjvvfdE8+bNxd9//631+u7cuSPatGkjevToIfbu3SsuXLggNm7cKA4cOCCEEOLHH38UBgYGIioqSqSnp4tFixYJfX19sXv3bo3ra9WqlYiNjRUXLlwQ06ZNE2ZmZtI5q3qNvvvuO2Frayt++OEHcfnyZfHDDz8IS0tLERMTI4QQ0mvevn17sX37dpGeni7+9a9/CQcHB1FcXFzlZ0ChUIiFCxeKixcviosXLwohhJg7d67Yv3+/yMjIENu2bRPW1tbiiy++EEIIcffuXfHee++JDh06SMe7e/eudK1btmwRQgiRn58vbG1txRtvvCHS0tJEYmKicHJyEgEBAVLdBAQECIVCISZPnizOnj0rfv75Z2FiYiJWrlyp9fUQQohPPvlEuLu7l9sOQLzwwgti48aNIj09XQwZMkQ4OjqKvn37iri4OHHmzBnRrVs34evrK+1T3dev7Jq06dWrl2jatKmYO3euOH/+vJg7d67Q19cXfn5+YuXKleL8+fNiypQponnz5qKgoKDC4zzuwoULwsXFRXz00UflyrR9rqj6Hr/vafPo615UVCRcXFzEuHHjxMmTJ8WZM2fEyJEjhbOzsygsLBRCVH7vuXHjhgAg1q5dKzIzM8WNGzeEEA/fy6ampsLX11ccO3ZMnDhxQpSUlAgPDw/x6quviqNHj4qDBw8KT09P0atXLym3xz8DL730kpg/f760XlRUJFq0aCHWrFlT6ed/woQJonv37iI5OVlcvHhRLFiwQBgaGorz589rrZOSkhLRrVs30aFDB7Fr1y5x6dIl8fPPP4udO3cKIYQ4evSo0NPTE3PmzBHp6eli7dq1wtjYWKxdu1Y6hoODg7C0tBRRUVHiwoULIiIiQujp6Un3u6ruucnJyUKhUIiYmBhx6dIlsWvXLuHo6CjCw8M1XruK7rkPHjwQP/zwgwAg0tPTRWZmpsjJyRFCPPwsm5mZiRkzZohz585JOdVGG6O6r6uZmZl0z0xOThY2NjbiP//5TwXv0oftA3Nz83Lby+o5OjpaugcpFArh6+srNm3aJN0jXVxcRGlpaY1ev8ruPQEBAaJp06YiMDBQnDt3TqxevVoAECqVSnz22WfSPdLAwEBqG1bHn3/+KXr16iX8/f3LlfXq1Uu8++671T4WVY+2++Rrr70mOnfuLP2/i4uLSE5OFmq1WqhUKtG2bVtRVFQkhBBi4MCBon///uLkyZPSvWLPnj1CCCF+++03AUDcvn2b7XS209lOZzud7XSiOvb3338LmUwmPv/880rjHv+bJYQQt2/fFgDEb7/9JoT4v7/pbm5uYteuXeLixYvi77//1tquvn37tmjZsqUIDQ0VZ8+eFceOHRP9+/cXffr0kY7fq1cvoVAoRHh4uDh//rxYt26dkMlk0t/liv5dVZ3cyyQmJgobGxvx4MEDkZaWJpo2bSry8/PLxVXUzqbnX73tRBdCiG7duolx48YJIcp3oo8fP15MmjRJY9+9e/cKPT09ce/ePXH27FkBQBw5ckQqv3DhggBQ6R+mzZs3i+bNm0vrlf0js+w4xcXFokWLFuKbb76RykeMGCGGDRsmhBDi/v37wsTERGqUPXoNI0aMqDAXBwcHjcaAEEIMGzZM+Pn51Sh/AEKtVmvEafsHzuM3i9DQUOHk5CT9o+Zxjx7jSa7xhx9+EAqFQvoHzOOq2zgPDg4ut6+5ubnGP961CQwMFEOHDpXW7ezstDZmhHj43lIoFOL+/fsa21988UXx3//+V+s+//3vf0XTpk0rbLx3795dTJw4UWPbm2++KQYMGCCtAxCzZs2S1vPz8wUA8csvvwghqn6NXnzxRREbG6uxbe7cuUKpVAoh/u81X7VqlVR++vRpAUCcPXtWCFH5Z2DIkCFaz/uoBQsWCE9PT2m9sgZyWUN25cqVolmzZhp/kHbs2CH09PREVlaWEOLh+8/BwUE8ePBAinnzzTelz502lZ370XpOSUkRAMTq1aulbf/73/+EkZGRtF7d16+qxvmrr74qrT948ECYmpqKUaNGSdsyMzMFAJGSklLhccoolUphaGgoAIhJkyaJkpKScjFsnD+dgIAAoa+vL0xNTTWWzz77TIp59HX/9ttvhbOzs9TZKMTDzlNjY2MRHx8vhKj83vP48cp88sknwsDAQKPxt2vXLqGvry+uXr0qbSv7PB8+fFja79HPwBdffCFcXFyk9R9++EGYmZlJnz1tn//ff/9d6Ovriz///FNje79+/URoaKjWa4iPjxd6enoiPT1da/nIkSNF//79NbbNmDFDuLq6SusODg7i7bffltZLS0uFlZWVWLFihRCi6ntuv379yjX4v/32W2FrayutV3XPfbQD71G9evUSnTp10nreRz1JG6O6r6uJiYnG39MZM2YILy+vCnOp7NyP1nPZPejjjz+WtpXdIzMzM4UQ1X/9qupEd3Bw0LhvOTs7ix49ekjrZffI//3vfxUep8zw4cOFsbGxACAGDRok7t27Vy6GnejPxqPtw9LSUpGQkCAMDQ3F+++/L86fPy8AiP3790vxN2/eFMbGxmLTpk1CCCE6duyo8eXWox7/DLKdzna6EGyns53OdjpRXTl06JAAIH788cdK42rSib5161aNfbW1q+fOnSt8fHw0tl27dk16uKVsv0c/s0II8Y9//EN88MEH0npVn/uKci8zcuRIjb9r7u7uWv+esRO94aqXw7mU+eKLL7Bu3TqcPXu2XNmJEycQExMjjR9mZmYGlUqF0tJSZGRkID09HU2aNEHnzp2lfdq2bVvuJ/e//vor+vXrhxdeeAFNmzbFqFGj8Pfff+Pu3bvVzrNJkyZ46623sH79egBAQUEBfvrpJ/j7+wMALl68iLt376J///4a+X7zzTcV/uSyzOOTXimVSo36qE7+crkcbm5u1b6eMmq1Gj169ICBgUGVsU9yjf3794eDgwPatGmDUaNGYf369TWq9zJdunSpVlxUVBQ8PT3RsmVLmJmZYeXKlbh69SoA4MaNG7h+/Tr69eundd8TJ04gPz8fzZs317i+jIyMCq9PrVajU6dOsLS01Fp+9uxZvPLKKxrbXnnllXLv90dfO1NTUygUCty4cUM6R0WvUUFBAS5duoTx48dr5Pzpp5+Wy/nRc9ja2kp1UhVtdb9x40a88sorsLGxgZmZGWbNmiXVc3WdPXsW7u7uMDU1lba98sorKC0tRXp6urStQ4cOGmMH2traVitvbR6tA2trawBAx44dNbbdv39fmpyuuq9fTc6rr6+P5s2blzsv8H+vR4cOHaTX8vEJnjZu3Ihjx44hNjYWO3bswMKFC2uUC1VPnz59oFarNZbJkydrjT1x4gQuXryIpk2bSq+bpaUl7t+/j0uXLlV576mMg4ODxri/Z8+ehb29Pezt7aVtrq6usLCwqPB9OWbMGFy8eFH66WXZGH+PfvYel5aWhpKSErz00ksa95Y9e/ZUej9s1aoVXnrpJa3lFX2eLly4gJKSEmnbo5+XsvG8H70fVnbPPXHiBObMmaOR88SJE5GZmanxt6eye25lPD09y22rjTZGdV9XR0dHNG3aVFp/1vdD4P/uS9V9/arSoUMH6On9X9PU2tpa47xl98iy85b9pNfMzAwdOnTQONaSJUtw7Ngx/PTTT7h06RJCQkKqnQc9ve3bt8PMzAxGRkbw8/PDsGHDEB4ejrNnz6JJkyYa44c2b94czs7O0vt52rRp+PTTT/HKK6/gk08+wcmTJ58qF7bT2U7Xhu10ttNrel6204keDmdS27Tdqx5vV584cQK//fabxv2yffv2AKBxz3z87+nT3Hcel5OTgx9//BFvv/22tO3tt9/mkC6NTL2cWLRMz549oVKpEBoaKo07WiY/Px///ve/MW3atHL7tW7dGufPn6/y+FeuXME///lPTJkyBZ999hksLS2xb98+jB8/HkVFRTAxMal2rv7+/ujVqxdu3LiBhIQEGBsbw9fXV8oVAHbs2IEXXnhBY7+nmYyuuvkbGxtXOElRZYyNjasd+yTX2LRpUxw7dgxJSUnYtWsXwsLCEB4ejiNHjsDCwgJ6enrlbtLaxtGrrLOnzIYNG/D+++9j0aJFUCqVaNq0KRYsWCCNe1jVtebn58PW1lbrmL8WFhZa96lJ/VXm8Ya3TCZDaWlplecoe02+/vrrcpNdPD5pzaPnKHuvlJ2jMo/XfUpKCvz9/TF79myoVCqYm5tjw4YNNR4bt7oqq5unOVZZHTxpvTzpecvOU9l5d+7cKX0OHn/9yzrZXF1dUVJSgkmTJuG9997jJEW1zNTUFG3btq1WbH5+Pjw9PaXOm0e1bNlSo8PwSfJ4WlZWVhg0aBDWrl0LJycn/PLLL1WObZ6fnw99fX2kpqaWe2+ZmZlp3UfX90PgYd6zZ8/GG2+8Ua6sbEz5qs5Rmcdfj9psY1RHY7gflm0rO++qVatw7949rfuWzVfQvn17WFpaokePHvj444+lDih6tvr06YMVK1ZALpfDzs6u3CRhlZkwYQJUKhV27NiBXbt2ISIiAosWLcLUqVOfOB+209lOf5yu/y6xnf7kx6pPf5fYTqfGpl27dpDJZFVOHlr2b5xH/05UNCeCtr8Tj2/Lz8/HoEGD8MUXX5SLfbRtV5v3ncfFxsbi/v37GvdsIQRKS0tx/vz5Ch8WooalXneiA8C8efPg4eEBZ2dnje2dO3fGmTNnKuzIcHZ2xoMHD3D8+HHpW6yLFy/i9u3bUkxqaipKS0uxaNEi6UO+adMmjePI5fJqPUXVvXt32NvbY+PGjfjll1/w5ptvSh/gsomCrl69il69elX/4gHp6cBH111cXKqdf0Wqc11ubm5Yt24diouLq3zK5UmvsUmTJvD29oa3tzc++eQTWFhYYPfu3XjjjTfQsmVLZGZmSrF5eXnIyMio9rEftX//fnTv3h3vvPOOtO3RbyybNm0KR0dHJCYmShPHPapz587IyspCkyZNqj0BhZubG1atWoVbt25pfcrFxcUF+/fvR0BAgEaerq6u1b6uyl4ja2tr2NnZ4fLly9LTVk+iup8BADhw4AAcHBzw0UcfSdt+//33Gh/PxcUFMTExKCgokP6A7t+/H3p6euXuBbpSG6/fk3BwcKhWXGlpKYqLi1FaWsrGuQ517twZGzduhJWVFRQKhdaYyu49wMPGYHU+gy4uLrh27RquXbsm/UPtzJkzyMnJqfR9OWHCBIwYMQKtWrXCiy++qPHklrbPa6dOnVBSUoIbN26gR48eVeYFPLxX/fHHHxU2MMs+T4/av38/XnrppWq/f6u653bu3Bnp6enV/gJEG7lcDgDVej1qq43xpK9rXaqN1+9JPN4ZWJGyfzwVFhY+s1xIU0VfNrq4uODBgwc4dOgQunfvDgD4+++/kZ6ervF+tre3x+TJkzF58mSEhobi66+/1tqJznY62+kA2+lsp5fHdjrRs2FpaQmVSoWoqChMmzatXGd3Tk4OLCwspF/LZmZmolOnTgCgMcloTXXu3Bk//PADHB0da/TF/OOq++8qbVavXo333nuv3AO+77zzDtasWYN58+Y9cV70/KjXw7kAD3+m5e/vj2XLlmls/+CDD3DgwAEEBQVBrVbjwoUL+Omnn6RZ2tu3bw9vb29MmjQJhw8fxvHjxzFp0iSNpz3atm2L4uJifPnll7h8+TK+/fZbREdHa5zH0dER+fn5SExMxM2bNyv9GePIkSMRHR2NhIQEjcZQ06ZN8f7772P69OlYt24dLl26hGPHjuHLL7/EunXrKr3+/fv3Y/78+Th//jyioqKwefNmvPvuu9XOvyKOjo44efIk0tPTcfPmTa3fCgYFBSEvLw/Dhw/H0aNHceHCBXz77bcaP9N7mmvcvn07li1bBrVajd9//x3ffPMNSktLpcZX37598e2332Lv3r1IS0tDQEDAEzcy2rVrh6NHjyI+Ph7nz5/Hxx9/jCNHjmjEhIeHY9GiRVi2bBkuXLgg5Q8A3t7eUCqVGDJkCHbt2oUrV67gwIED+Oijj3D06FGt5xwxYgRsbGwwZMgQ7N+/H5cvX8YPP/yAlJQUAMCMGTMQExODFStW4MKFC1i8eDF+/PFHvP/++9W+rqpeo9mzZyMiIgLLli3D+fPnkZaWhrVr12Lx4sXVPkdNPgPt2rXD1atXsWHDBly6dAnLli3Dli1byh0vIyMDarUaN2/e1Nqp4e/vDyMjIwQEBODUqVP47bffMHXqVIwaNUr62aSuPcnr169fPyxfvrzWc1m/fj02bdqEs2fP4vLly9i0aRNCQ0MxbNiwav3Mm2qmsLAQWVlZGsujM8M/yt/fHy1atMDgwYOxd+9eZGRkICkpCdOmTcMff/wBoPJ7D/B/nexZWVkaXwQ/ztvbW/qbeezYMRw+fBijR49Gr169Kv05vUqlgkKhwKeffoqxY8dqlGn7/L/00kvw9/fH6NGj8eOPPyIjIwOHDx9GREQEduzYofUcvXr1Qs+ePTF06FAkJCQgIyMDv/zyC+Li4gAA7733HhITEzF37lycP38e69atw/Lly2t0P6zqnhsWFoZvvvkGs2fPxunTp3H27Fls2LABs2bNqvY5HBwcIJPJsH37dvz111/Sk4Ta1FYb40lf17r0JK/f6NGjERoaWuu57Ny5E2vXrsWpU6dw5coV7NixA5MnT8Yrr7xS7c41enbatWuHwYMHY+LEidi3bx9OnDiBt99+Gy+88AIGDx4MAAgODkZ8fDwyMjJw7Ngx/Pbbb1LH9OPYTmc7HWA7ne308thOJ3p2oqKiUFJSgq5du+KHH37AhQsXcPbsWSxbtkwa5szY2BjdunXDvHnzcPbsWezZs6dGbe7HBQYG4tatWxgxYgSOHDmCS5cuIT4+HmPHjq1Rp3h1/131OLVajWPHjmHChAl4+eWXNZYRI0Zg3bp1ePDgwZNcGj1vdDoiuxYVTaQjl8vF4+kePnxY9O/fX5iZmQlTU1Ph5uamMbnb9evXhZ+fnzA0NBQODg4iNjZWWFlZiejoaClm8eLFwtbWVhgbGwuVSiW++eabcpOGTZ48WTRv3lwAkCbL0Tbpx5kzZwQA4eDgoDGJnBAPJ1aKjIwUzs7OwsDAQLRs2VKoVCqxZ8+eCuvCwcFBzJ49W7z55pvCxMRE2NjYiKVLl2rEVJV/RRMa3LhxQ6o7/P/JHbRNoHDixAnh4+MjTExMRNOmTUWPHj3EpUuXhBDlX6uaXuPevXtFr169RLNmzYSxsbFwc3MTGzdulMpzc3PFsGHDhEKhEPb29iImJkbrhEXaJoZ4fMKi+/fvizFjxghzc3NhYWEhpkyZIj788MNyk9dER0dL+dva2oqpU6dKZXl5eWLq1KnCzs5OGBgYCHt7e+Hv768x2dvjrly5IoYOHSoUCoUwMTERXbp0EYcOHZLKv/rqK9GmTRthYGAgXnrpJY1Jryq6vsevrbLXSAgh1q9fLzw8PIRcLhfNmjUTPXv2lCYCqc6EH0JU/zMgxMPJ5Jo3by7MzMzEsGHDxJIlSzTeg/fv3xdDhw4VFhYW0uzY2q715MmTok+fPsLIyEhYWlqKiRMnijt37kjl2u4V7777rujVq1e5nMpUZ7KkiupF24SCNX39HBwcNN6/2ia101avFb3Py2zYsEF07txZuhe6urqKzz//XOtEepyw6OkEBAQIAOUWZ2dnKebx1yszM1OMHj1atGjRQhgaGoo2bdqIiRMnitzcXCmmsnvPtm3bRNu2bUWTJk2Eg4ODEKLi9/Lvv/8uXnvtNWFqaiqaNm0q3nzzTWmSr8r2+/jjj4W+vr64fv16uTJtn/+ioiIRFhYmHB0dpZxff/11cfLkyQrr7u+//xZjx44VzZs3F0ZGRuLll18W27dvl8q///574erqKgwMDETr1q3FggULNPavziR2Vd1z4+LiRPfu3YWxsbFQKBSia9euYuXKlVJ5de65c+bMETY2NkImk4mAgAAhRMUTVNZWG+NJXtclS5ZI7xdtqjMhY5nq3CNr+vr16tVLqj8htN/Tq3uPfNTu3buFUqkU5ubmwsjISLRr10588MEH5SaDrej49PS0vZaPunXrlhg1apQwNzeXPhvnz5+XyoOCgsSLL74oDA0NRcuWLcWoUaPEzZs3hRDa/xaznc52uhBsp7OdznY6UV26fv26CAwMFA4ODkIul4sXXnhBvPbaaxr3pjNnzgilUimMjY2Fh4eH2LVrl9aJRR9vo1XUPjt//rx4/fXXhYWFhTA2Nhbt27cXwcHB0t90bfsNHjxYo72p7d9Vj9N2jwkKChKurq5a4zMzM4Wenp746aefpG2cWLThkgnxDGYGqKf++OMP2NvbS5P81HeOjo4IDg5GcHCwrlMhahDCw8OxdevWp/op2fOO9xXSZvz48fjrr7+wbds2XadCdSQmJgbBwcHIycnRdSo607t3b3h4eCAyMlLXqdBziH9PiWoX2+m8rxDVB1euXIGTkxOOHz8ODw+PJzoG29kNV70fzuVp7N69G9u2bUNGRgYOHDiA4cOHw9HRET179tR1akSkI2lpaTAzM8NXX32l61Tq1Oeffw4zMzNcvXpV16lQPZKbm4t9+/YhNjb2qSbto+dTbm4uzMzM8MEHH+g6lTq1fv16mJmZYe/evbpOhYiIHsF2OtvpRPVF9+7dpflbasLMzAyTJ09+BhlRfdCgn0SPj4/He++9h8uXL6Np06bo3r07IiMjqz3hh67xm2ii2nXr1i3cunULANCyZUuYm5vrOKO605ivnSrWu3dvHD58GP/+97+xZMkSXadDdejOnTvIzs4GAFhYWKBFixY6zqjuNOZrp9rDdjpR7WrMbdXGfO1E9c2DBw9w5coVAIChoSHs7e1rtP/FixcBAPr6+nBycqrt9EjHGnQnOhERERERERERERHR02jQw7kQETVGycnJGDRoEOzs7CCTybB161aNciEEwsLCYGtrC2NjY3h7e+PChQsaMbdu3YK/vz8UCgUsLCwwfvx45OfnS+X379/HmDFj0LFjRzRp0gRDhgypVm5VHRcATp48iR49esDIyAj29vaYP3/+E9UDEREREREREVFtYCc6EVEDU1BQAHd3d0RFRWktnz9/PpYtW4bo6GgcOnQIpqamUKlUuH//vhTj7++P06dPIyEhAdu3b0dycjImTZoklZeUlMDY2BjTpk2Dt7d3tXOr6rh5eXnw8fGBg4MDUlNTsWDBAoSHh2PlypVPUBNERERERERERE+vUQ/nUlpaiuvXr6Np06aQyWS6ToeIGiEhBO7cuQM7Ozvo6dX+95oymQxbtmyRnhQXQsDOzg7vvfce3n//fQAPJxe0trZGTEwMhg8fjrNnz8LV1RVHjhxBly5dAABxcXEYMGAA/vjjD9jZ2WmcY8yYMcjJySn3xPvjqnPcFStW4KOPPkJWVhbkcjkA4MMPP8TWrVtx7tw5rcctLCxEYWGhtF5aWopbt26hefPmvLcTkc486/t7Y8N2OxHVB7y31y7e24moPqjuvb1JHeZU71y/fr3GkwQQET0L165dQ6tWrZ75eTIyMpCVlaXx9Li5uTm8vLyQkpKC4cOHIyUlBRYWFlJHNwB4e3tDT08Phw4dwuuvv/5E567OcVNSUtCzZ0+pAx0AVCoVvvjiC9y+fRvNmjUrd9yIiAjMnj37iXIiInrW6ur+3tCx3U5E9Qnv7bWD93Yiqk+qurfXqBM9IiICP/74I86dOwdjY2N0794dX3zxBZydnaWYlStXIjY2FseOHcOdO3dw+/ZtWFhYaBzn1q1bmDp1Kn7++Wfo6elh6NChWLp0KczMzKSYkydPIjAwEEeOHEHLli0xdepUzJw5U+M4mzdvxscff4wrV66gXbt2+OKLLzBgwIBqX0/Tpk0BPKwkhUJRk6ogIqoVeXl5sLe3l+5Hz1pWVhYAwNraWmO7tbW1VJaVlQUrKyuN8iZNmsDS0lKKedJzV3XcrKyscrOYl+WalZWltRM9NDQUISEh0npubi5at27Ne3sjlpWVhbVr12Ls2LGwsbFpdOen+qGu7+8NHdvtRFQf8N5eu8rqMT09nW0mItKZ6t7ba9SJvmfPHgQGBuIf//gHHjx4gP/85z/w8fHBmTNnYGpqCgC4e/cufH194evri9DQUK3H8ff3R2ZmJhISElBcXIyxY8di0qRJiI2NlZL38fGBt7c3oqOjkZaWhnHjxsHCwkIaO/fAgQMYMWIEIiIi8M9//hOxsbEYMmQIjh07hpdffrla11P2cyGFQsHGOBHpFH+++OQMDQ1haGhYbjvv7Y1XQUEBjIyM0LRpU528B3R9fqpfeH+vHWy3E1F9wnt77SirR7aZiKg+qOreXqNO9Li4OI31mJgYWFlZITU1FT179gQABAcHAwCSkpK0HuPs2bOIi4vTGBP3yy+/xIABA7Bw4ULY2dlh/fr1KCoqwpo1ayCXy9GhQweo1WosXrxY6kRfunQpfH19MWPGDADA3LlzkZCQgOXLlyM6OlrruR8fNzcvL68ml09E9Nwre8IjOzsbtra20vbs7Gx4eHhIMTdu3NDY78GDB7h169ZTPSFSnePa2NggOztbI6ZsnU+nEBEREREREZEuPNVMGLm5uQAAS0vLau9T1Zi4ZTHaxsRNT0/H7du3pZhHx/Qti0lJSanw3BERETA3N5cWjr1FRI2Nk5MTbGxskJiYKG3Ly8vDoUOHoFQqAQBKpRI5OTlITU2VYnbv3o3S0lJ4eXk98bmrc1ylUonk5GQUFxdLMQkJCXB2dtY6lAsRERERERER0bP2xJ3opaWlCA4OxiuvvFLt4VOA6o+Jq2283rKyymIqG683NDQUubm50nLt2rVq501E9LzIz8+HWq2GWq0G8HAyUbVajatXr0ImkyE4OBiffvoptm3bhrS0NIwePRp2dnYYMmQIAMDFxQW+vr6YOHEiDh8+jP379yMoKAjDhw+HnZ2ddJ4zZ85ArVbj1q1byM3N1TgnABw+fBjt27fHn3/+We3jjhw5EnK5HOPHj8fp06exceNGLF26VGPMcyIiIiIiIiKiulSj4VweFRgYiFOnTmHfvn21mc8zVdG4uUREDcnRo0fRp08fab2sAzogIAAxMTGYOXMmCgoKMGnSJOTk5ODVV19FXFwcjIyMpH3Wr1+PoKAg9OvXT5oAetmyZRrnGTBgAH7//XdpvVOnTgAAIQSAh3NkpKenazxVXtVxzc3NsWvXLgQGBsLT0xMtWrRAWFiYNJQXEREREREREVFde6JO9KCgIGzfvh3Jyclo1apVjfatrTFxK4rhmLlE1Nj17t1b6sjWRiaTYc6cOZgzZ06FMZaWltJkzxW5cuVKjfOoznHd3Nywd+/eSmOIiIiIiKhhMDEx0XUKRERVqtFwLkIIBAUFYcuWLdi9ezecnJxqfMLaGhNXqVRqjOlbFlM2pi8REREREREREdVvMplM1ykQEVWpRp3ogYGB+O677xAbG4umTZsiKysLWVlZuHfvnhSTlZUFtVqNixcvAgDS0tKkMXOB2hsT991330VcXBwWLVqEc+fOITw8HEePHkVQUNBTVwoREREREREREREREVDDTvQVK1YgNzcXvXv3hq2trbRs3LhRiomOjkanTp0wceJEAEDPnj3RqVMnbNu2TYpZv3492rdvj379+mHAgAF49dVXsXLlSqm8bEzcjIwMeHp64r333is3Jm737t0RGxuLlStXwt3dHd9//z22bt1ao0lOiYiIiIiIiIhIdwoLC3WdAhFRlWo0JnplY+yWCQ8PR3h4eKUxtTUm7ptvvok333yzypyIiIiIiBqbFStWYMWKFdIcFh06dEBYWBj8/Pw04oQQGDBgAOLi4rBlyxYMGTJEKtP2E/v//e9/GD58uLSelJSEkJAQnD59Gvb29pg1axbGjBmjsU9UVBQWLFiArKwsuLu748svv0TXrl1r7VqJiOj59cDLC2jyRFP2Pf9MTIBly4CePXWdyfPp/n3gjTeA/z8aRqMkkwHvvAO8+66uM2nwGuldioiIiIioYWvVqhXmzZuHdu3aQQiBdevWYfDgwTh+/Dg6dOggxUVGRlY6Hu3atWvh6+srrVtYWEj/n5GRgYEDB2Ly5MlYv349EhMTMWHCBNja2kKlUgEANm7ciJCQEERHR8PLywuRkZFQqVRIT0+HlZVV7V84ERE9XzIydJ2BbsXGshP9SaWmAr/8oussdG/5cnai1wF2ohMRERERNUCDBg3SWP/ss8+wYsUKHDx4UOpEV6vVWLRoEY4ePQpbW1utx7GwsICNjY3WsujoaDg5OWHRokUAHs5/tG/fPixZskTqRF+8eDEmTpyIsWPHSvvs2LEDa9aswYcfflgr10pERM+xLVuAFi10nUXdW7cOWLUKKC3VdSbPr7K6s7d/+GVEY3P6NDB5Mt9DdYSd6EREREREDVxJSQk2b96MgoICKJVKAMDdu3cxcuRIREVFVdhJDgCBgYGYMGEC2rRpg8mTJ2Ps2LHSk+spKSnw9vbWiFepVAgODgYAFBUVITU1FaGhoVK5np4evL29kZKSUuE5CwsLNcbIzcvLq/E1ExHRc8LLC6jgi9wGbc8eXWfQcJiYAK++quss6l5jHQZJR1jbREREREQNVFpaGpRKJe7fvw8zMzNs2bIFrq6uAIDp06eje/fuGDx4cIX7z5kzB3379oWJiQl27dqFd955B/n5+Zg2bRoAICsrC9bW1hr7WFtbIy8vD/fu3cPt27dRUlKiNebcuXMVnjciIgKzZ89+0ssmIiIiIqpV7EQnIiIiImqgnJ2doVarkZubi++//x4BAQHYs2cPLl68iN27d+P48eOV7v/xxx9L/9+pUycUFBRgwYIFUif6sxIaGoqQkBBpPS8vD/b29s/0nEREREREFWEnOhERERFRAyWXy9G2bVsAgKenJ44cOYKlS5fC2NgYly5d0pgkFACGDh2KHj16ICkpSevxvLy8MHfuXBQWFsLQ0BA2NjbIzs7WiMnOzoZCoYCxsTH09fWhr6+vNaayIWQMDQ1haGhY8wsmIiIiInoG9HSdABERERER1Y3S0lIUFhbiww8/xMmTJ6FWq6UFAJYsWYK1a9dWuL9arUazZs2kDm6lUonExESNmISEBGncdblcDk9PT42Y0tJSJCYmSjFERNS4mZiY6DoF3RJC1xk8v1h3D7Ee6gSfRCciIiIiaoBCQ0Ph5+eH1q1b486dO4iNjUVSUhLi4+NhY2Oj9Unw1q1bw8nJCQDw888/Izs7G926dYORkRESEhLw+eef4/3335fiJ0+ejOXLl2PmzJkYN24cdu/ejU2bNmHHjh1STEhICAICAtClSxd07doVkZGRKCgowNixY599JRARUb1XNlk1EVF9xk50IiIiIqIG6MaNGxg9ejQyMzNhbm4ONzc3xMfHo3///tXa38DAAFFRUZg+fTqEEGjbti0WL16MiRMnSjFOTk7YsWMHpk+fjqVLl6JVq1ZYtWoVVCqVFDNs2DD89ddfCAsLQ1ZWFjw8PBAXF1duslEiIqJGhV8e1J7GWpeN9bp1hJ3oREREREQN0OrVq2sULx77KbCvry98fX2r3K93795VTlAaFBSEoKCgGuVDRESNQ2Fhoa5TICKqEsdEJyIiIiIiIiIinXjw4IGuUyAiqhI70YmIiIiIiIiICFFRUXB0dISRkRG8vLxw+PDhSuNzcnIQGBgIW1tbGBoa4qWXXsLOnTvrKFsiorrD4VyIiIiIiIiIiBq5jRs3IiQkBNHR0fDy8kJkZCRUKhXS09NhZWVVLr6oqAj9+/eHlZUVvv/+e7zwwgv4/fffYWFhUffJExE9Y+xEJyIiIiIiIiJq5Momjx47diwAIDo6Gjt27MCaNWvw4Ycflotfs2YNbt26hQMHDsDAwAAA4OjoWOHxCwsLNcY/z8vLq90LeF49NicJ1QDr7iHWQ53gcC5ERERERERERI1YUVERUlNT4e3tLW3T09ODt7c3UlJStO6zbds2KJVKBAYGwtraGi+//DI+//xzlJSUaI2PiIiAubm5tNjb2z+TayEiehbYiU5ERERERERE1IjdvHkTJSUlsLa21thubW2NrKwsrftcvnwZ33//PUpKSrBz5058/PHHWLRoET799FOt8aGhocjNzZWWa9eu1fp1PFdkMl1n0HA01rpsrNetIxzOhYiIiIiIiIiIaqS0tBRWVlZYuXIl9PX14enpiT///BMLFizAJ598Ui7e0NAQhoaGOsiUiOjp8Ul0IqIGJjk5GYMGDYKdnR1kMhm2bt2qUS6EQFhYGGxtbWFsbAxvb29cuHBBI+bWrVvw9/eHQqGAhYUFxo8fj/z8fI2YkydPokePHjAyMoK9vT3mz59faV4xMTGQyWRalxs3bgAAkpKStJZX9PQLERERERE9vRYtWkBfXx/Z2dka27Ozs2FjY6N1H1tbW7z00kvQ19eXtrm4uCArKwtFRUXVPrexsfGTJU1EVIfYiU5E1MAUFBTA3d0dUVFRWsvnz5+PZcuWITo6GocOHYKpqSlUKhXu378vxfj7++P06dNISEjA9u3bkZycjEmTJknleXl58PHxgYODA1JTU7FgwQKEh4dj5cqVFeY1bNgwZGZmaiwqlQq9evWClZWVRmx6erpG3OPlRERERERUe+RyOTw9PZGYmChtKy0tRWJiIpRKpdZ9XnnlFVy8eBGlpaXStvPnz8PW1hZyubza59bTY9cUEdV/HM6FiKiB8fPzg5+fn9YyIQQiIyMxa9YsDB48GADwzTffwNraGlu3bsXw4cNx9uxZxMXF4ciRI+jSpQsA4Msvv8SAAQOwcOFC2NnZYf369SgqKsKaNWsgl8vRoUMHqNVqLF68WKOz/VHGxsYaT5n89ddf2L17N1avXl0u1srKChYWFk9ZE0REREREVF0hISEICAhAly5d0LVrV0RGRqKgoABjx44FAIwePRovvPACIiIiAABTpkzB8uXL8e6772Lq1Km4cOECPv/8c0ybNk2Xl/H8EULXGTy/WHcPsR7qBL/uIyJqRDIyMpCVlQVvb29pm7m5Oby8vJCSkgIASElJgYWFhdSBDgDe3t7Q09PDoUOHpJiePXtqPGGiUqmQnp6O27dvVyuXb775BiYmJvjXv/5VrszDwwO2trbo378/9u/fX+lxCgsLkZeXp7EQEREREVHNDBs2DAsXLkRYWBg8PDygVqsRFxcnTTZ69epVZGZmSvH29vaIj4/HkSNH4ObmhmnTpuHdd9/Fhx9+WKPz1mToFyIiXeGT6EREjUjZ2OJlDeEy1tbWUllWVla54VOaNGkCS0tLjRgnJ6dyxygra9asWZW5rF69GiNHjtR4Ot3W1hbR0dHo0qULCgsLsWrVKvTu3RuHDh1C586dtR4nIiICs2fPrvJ8RERERERUuaCgIAQFBWktS0pKKrdNqVTi4MGDT3XO4uLip9r/uSWT6TqDhqOx1mVjvW4dYSc6ERHVuZSUFJw9exbffvutxnZnZ2c4OztL6927d8elS5ewZMmScrFlQkNDERISIq3n5eXB3t7+2SRORERERERERI0Oh3MhImpEbGxsAADZ2dka27Ozs6UyGxsb3LhxQ6P8wYMHuHXrlkaMtmM8eo7KrFq1Ch4eHvD09KwytmvXrrh48WKF5YaGhlAoFBoLEREREREREVFtYSc6EVEj4uTkBBsbGyQmJkrb8vLycOjQISiVSgAPf5KZk5OD1NRUKWb37t0oLS2Fl5eXFJOcnKzx08uEhAQ4OztXOZRLfn4+Nm3ahPHjx1crZ7VaDVtb22pfIxERERERERFRbWInOhFRA5Ofnw+1Wg21Wg3g4WSiarUaV69ehUwmQ3BwMD799FNs27YNaWlpGD16NOzs7DBkyBAAgIuLC3x9fTFx4kQcPnwY+/fvR1BQEIYPHw47OzsAwMiRIyGXyzF+/HicPn0aGzduxNKlSzWGVdmyZQvat29fLr+NGzfiwYMHePvtt8uVRUZG4qeffsLFixdx6tQpBAcHY/fu3QgMDKz9iiIiIiIiIiIiqgaOiU5E1MAcPXoUffr0kdbLOrYDAgIQExODmTNnoqCgAJMmTUJOTg5effVVxMXFwcjISNpn/fr1CAoKQr9+/aCnp4ehQ4di2bJlUrm5uTl27dqFwMBAeHp6okWLFggLC8OkSZOkmNzcXKSnp5fLb/Xq1XjjjTdgYWFRrqyoqAjvvfce/vzzT5iYmMDNzQ2//vqrxvUQERERERE1GELoOoPnF+vuIdZDnWAnOhFRA9O7d2+ISv6IymQyzJkzB3PmzKkwxtLSErGxsZWex83NDXv37q2wfMyYMRgzZky57QcOHKhwn5kzZ2LmzJmVnpeIiIiIiIiIqC5xOBciIiIiogZoxYoVcHNzkyZdViqV+OWXX8rFCSHg5+cHmUyGrVu3apRdvXoVAwcOhImJCaysrDBjxgw8ePBAIyYpKQmdO3eGoaEh2rZti5iYmHLniIqKgqOjI4yMjODl5YXDhw/X5qUSEdFzzNjYWNcp6IZMpusMGo7GWpeN9bp1pEad6BEREfjHP/6Bpk2bwsrKCkOGDCn3U/379+8jMDAQzZs3h5mZGYYOHYrs7GyNGDbGiYiIiIierVatWmHevHlITU3F0aNH0bdvXwwePBinT5/WiIuMjIRMyz/CSkpKMHDgQBQVFeHAgQNYt24dYmJiEBYWJsVkZGRg4MCB6NOnD9RqNYKDgzFhwgTEx8dLMRs3bkRISAg++eQTHDt2DO7u7lCpVLhx48azu3giInpu6Onx+U4iqv9qdKfas2cPAgMDcfDgQSQkJKC4uBg+Pj4oKCiQYqZPn46ff/4Zmzdvxp49e3D9+nW88cYbUjkb40REREREz96gQYMwYMAAtGvXDi+99BI+++wzmJmZ4eDBg1KMWq3GokWLsGbNmnL779q1C2fOnMF3330HDw8P+Pn5Ye7cuYiKikJRUREAIDo6Gk5OTli0aBFcXFwQFBSEf/3rX1iyZIl0nMWLF2PixIkYO3YsXF1dER0dDRMTE63nJCIiIiKqj2o0JnpcXJzGekxMDKysrJCamoqePXsiNzcXq1evRmxsLPr27QsAWLt2LVxcXHDw4EF069ZNaoz/+uuvsLa2hoeHB+bOnYsPPvgA4eHhkMvlGo1xAHBxccG+ffuwZMkSqFQqAJqNceBhA37Hjh1Ys2YNPvzwQ635FxYWorCwUFrPy8uDCQAUFAD6+jWpCiKi2vHIl5BERETPSklJCTZv3oyCggIolUoAwN27dzFy5EhERUXBxsam3D4pKSno2LEjrK2tpW0qlQpTpkzB6dOn0alTJ6SkpMDb21tjP5VKheDgYAAPJ4xOTU1FaGioVK6npwdvb2+kpKRUmK+2djsRETVMZV/MEhHVZ081sWhubi6AhxPQAUBqaiqKi4s1GtLt27dH69atkZKSgm7duum0MR4REYHZs2drbBMAYGf3JJdPRPTUFLpOgIiIGrS0tDQolUrcv38fZmZm2LJlC1xdXQE8/AVp9+7dMXjwYK37ZmVlabTZAUjrWVlZlcbk5eXh3r17uH37NkpKSrTGnDt3rsK8tbXbiYioYSouLtZ1CrolhK4zeH6x7h5iPdSJJx54qrS0FMHBwXjllVfw8ssvA3jYiJbL5bCwsNCItba2rrKhXVZWWUxZY/zmzZsVNsbLjqFNaGgocnNzpeXatWs1v3AiIiIioueEs7Mz1Go1Dh06hClTpiAgIABnzpzBtm3bsHv3bkRGRuo6Ra3YbiciIiKi+uSJn0QPDAzEqVOnsG/fvtrM55kyNDSEoaGhxjZTAJnXr0Oh4POgRFT38vLy+GsYIiJ6ZuRyOdq2bQsA8PT0xJEjR7B06VIYGxvj0qVL5R5+GTp0KHr06IGkpCTY2Njg8OHDGuXZ2dkAIA3/YmNjI217NEahUMDY2Bj6+vrQ19fXGqNtCJky2trtREREDYqWSb3pCTXWumys160jT9SJHhQUhO3btyM5ORmtWrWSttvY2KCoqAg5OTkaDfJHG8m6bIxrcxcATE0fLkREda2kRNcZEBFRI1JaWorCwkLMnj0bEyZM0Cjr2LEjlixZgkGDBgEAlEolPvvsM9y4cQNWVlYAgISEBCgUCmlIGKVSiZ07d2ocJyEhQRp3XS6Xw9PTE4mJiRgyZIiUQ2JiIoKCgp7lpRIRERER1ZoaDecihEBQUBC2bNmC3bt3w8nJSaPc09MTBgYGSExMlLalp6fj6tWrUkNaqVQiLS0NN27ckGK0NcYfPUZZjLbGeJmyxnhZDBERERFRYxYaGork5GRcuXIFaWlpCA0NRVJSEvz9/WFjY4OXX35ZYwGA1q1bS218Hx8fuLq6YtSoUThx4gTi4+Mxa9YsBAYGSk+JT548GZcvX8bMmTNx7tw5fPXVV9i0aROmT58u5RESEoKvv/4a69atw9mzZzFlyhQUFBRg7NixdV8pRERERERPoEZPogcGBiI2NhY//fQTmjZtKo0/bm5uDmNjY5ibm2P8+PEICQmBpaUlFAoFpk6dCqVSiW7dugHQbIzPnz8fWVlZWhvjy5cvx8yZMzFu3Djs3r0bmzZtwo4dO6RcQkJCEBAQgC5duqBr166IjIxkY5yIiIiI6P+7ceMGRo8ejczMTJibm8PNzQ3x8fHo379/tfbX19fH9u3bMWXKFCiVSpiamiIgIABz5syRYpycnLBjxw5Mnz4dS5cuRatWrbBq1SqoVCopZtiwYfjrr78QFhaGrKwseHh4IC4urtz8RkRERERE9VWNOtFXrFgBAOjdu7fG9rVr12LMmDEAgCVLlkBPTw9Dhw5FYWEhVCoVvvrqKymWjXEiIiIiomdv9erVNYoXQpTb5uDgUG64lsf17t0bx48frzQmKCiIw7cQERER0XOrRp3o2hrWjzMyMkJUVBSioqIqjGFjnIiIiIiIiIiIjIyMdJ2CblWjr40qwLp7iPVQJ2o0JjoREREREREREVFt0dfX13UKRERVYic6ERERERERERFRXZLJdJ1Bw9FY67KxXreOsBOdiIiIiIiIiIh0oqioSNcpEBFViZ3oRERERERERESkE8XFxbpOgYioSuxEJyIiIiIiIiIiIiKqADvRiYiIiIiIiIiIdEEIXWfw/GLdPcR6qBPsRCciIiIiIiIiIkRFRcHR0RFGRkbw8vLC4cOHq7Xfhg0bIJPJMGTIkGebIBGRjrATnYiIiIiIiIiokdu4cSNCQkLwySef4NixY3B3d4dKpcKNGzcq3e/KlSt4//330aNHjzrKtIGQyXSdQcPRWOuysV63jrATnYiIiIiIiIiokVu8eDEmTpyIsWPHwtXVFdHR0TAxMcGaNWsq3KekpAT+/v6YPXs22rRpU+nxCwsLkZeXp7EQET0v2IlORERERERERNSIFRUVITU1Fd7e3tI2PT09eHt7IyUlpcL95syZAysrK4wfP77Kc0RERMDc3Fxa7O3tayV3IqK6wE50IqIGJjk5GYMGDYKdnR1kMhm2bt2qUS6EQFhYGGxtbWFsbAxvb29cuHBBI+bWrVvw9/eHQqGAhYUFxo8fj/z8fI2YkydPokePHjAyMoK9vT3mz59fZW4ymazcsmHDBo2YpKQkdO7cGYaGhmjbti1iYmKeqB6IiIiIiKh6bt68iZKSElhbW2tst7a2RlZWltZ99u3bh9WrV+Prr7+u1jlCQ0ORm5srLdeuXQMAGBkZPV3yRER1gJ3oREQNTEFBAdzd3REVFaW1fP78+Vi2bBmio6Nx6NAhmJqaQqVS4f79+1KMv78/Tp8+jYSEBGzfvh3JycmYNGmSVJ6XlwcfHx84ODggNTUVCxYsQHh4OFauXFllfmvXrkVmZqa0PDr5UEZGBgYOHIg+ffpArVYjODgYEyZMQHx8/JNXCBERERER1ao7d+5g1KhR+Prrr9GiRYtq7WNoaAiFQqGxAIC+vv6zTJWIqFY00XUCRERUu/z8/ODn56e1TAiByMhIzJo1C4MHDwYAfPPNN7C2tsbWrVsxfPhwnD17FnFxcThy5Ai6dOkCAPjyyy8xYMAALFy4EHZ2dli/fj2KioqwZs0ayOVydOjQAWq1GosXL9bobNfGwsICNjY2Wsuio6Ph5OSERYsWAQBcXFywb98+LFmyBCqV6kmrhIiIiIiIKtGiRQvo6+sjOztbY3t2drbWtvulS5dw5coVDBo0SNpWWloKAGjSpAnS09Px4osvPtukGwohdJ3B84t19xDroU7wSXQiokYkIyMDWVlZGmMdmpubw8vLSxrrMCUlBRYWFlIHOgB4e3tDT08Phw4dkmJ69uwJuVwuxahUKqSnp+P27duV5hAYGIgWLVqga9euWLNmDcQjf/BTUlI0cis7bmXjMHKCIiIiIiKipyOXy+Hp6YnExERpW2lpKRITE6FUKsvFt2/fHmlpaVCr1dLy2muvSb8orcl458XFxbVyDUREzxKfRCciakTKxjOsbKzDrKwsWFlZaZQ3adIElpaWGjFOTk7ljlFW1qxZM63nnzNnDvr27QsTExPs2rUL77zzDvLz8zFt2jRpX2255eXl4d69ezA2Ni53zIiICMyePbta109ERERERNqFhIQgICAAXbp0QdeuXREZGYmCggKMHTsWADB69Gi88MILiIiIgJGREV5++WWN/S0sLACg3PaqFBUV1Ur+zx2ZTNcZNByNtS4b63XrCDvRiYioznz88cfS/3fq1AkFBQVYsGCB1In+JEJDQxESEiKt5+Xl1ejJFyIiIiIiAoYNG4a//voLYWFhyMrKgoeHB+Li4qSHXK5evQo9PQ5oQESNEzvRiYgakbLxDLOzs2Frayttz87OhoeHhxRz48YNjf0ePHiAW7duSfvb2NhoHS/x0XNUh5eXF+bOnYvCwkIYGhpWeFyFQqH1KXTg4QRFhoaG1T4nERERERFpFxQUhKCgIK1lSUlJle4bExNT+wkREdUT/AqRiKgRcXJygo2NjcZYh3l5eTh06JA01qFSqUROTg5SU1OlmN27d6O0tBReXl5STHJyssb4hQkJCXB2dq5wKBdt1Go1mjVrJnWCK5VKjdzKjqttHEYiIiIiIiIiorrATnQiogYmPz9fmtwHeDiZqFqtxtWrVyGTyRAcHIxPP/0U27ZtQ1paGkaPHg07OzsMGTIEAODi4gJfX19MnDgRhw8fxv79+xEUFIThw4fDzs4OADBy5EjI5XKMHz8ep0+fxsaNG7F06VKNYVW2bNmC9u3bS+s///wzVq1ahVOnTuHixYtYsWIFPv/8c0ydOlWKmTx5Mi5fvoyZM2fi3Llz+Oqrr7Bp0yZMnz792VccEVEDs2LFCri5uUGhUEChUECpVOKXX36Ryv/973/jxRdfhLGxMVq2bInBgwfj3LlzGseQyWTllg0bNmjEJCUloXPnzjA0NETbtm21PokYFRUFR0dHGBkZwcvLC4cPH34m10xERPTcEULXGTy/WHcPsR7qBDvRiYgamKNHj6JTp07o1KkTgIcTBHXq1AlhYWEAgJkzZ2Lq1KmYNGkS/vGPfyA/Px9xcXEwMjKSjrF+/Xq0b98e/fr1w4ABA/Dqq69i5cqVUrm5uTl27dqFjIwMeHp64r333kNYWBgmTZokxeTm5iI9PV1aNzAwQFRUFJRKJTw8PPDf//4XixcvxieffCLFODk5YceOHUhISIC7uzsWLVqEVatWQaVSPbP6IiJqqFq1aoV58+YhNTUVR48eRd++fTF48GCcPn0aAODp6Ym1a9fi7NmziI+PhxACPj4+KCkp0TjO2rVrkZmZKS1lX7oCD7+oHThwIPr06QO1Wo3g4GBMmDAB8fHxUszGjRsREhKCTz75BMeOHYO7uztUKlW5ocOIiIiIiOormRCN9+uKvLw8mJubIzc3FwqFQtfpEFEjxPtQ7WOdUmZmJlauXIlJkyZpjP3fWM5P9UN9vRdZWlpiwYIFGD9+fLmykydPwt3dHRcvXsSLL74I4OGT6Fu2bNHoOH/UBx98gB07duDUqVPStuHDhyMnJwdxcXEAHs5/8Y9//APLly8HAJSWlsLe3h5Tp07Fhx9+qPW4hYWFKCwslNbLJo2ub/VJRI1Lfb23P6/K6vP69euNs820aBHw/vvA228D336r62yeT7t2ASoV4O4O/P9fYjcqajXQqRNgawtcv67rbJ5b1b2380l0IiIiIqIGrqSkBBs2bEBBQYHWeSYKCgqwdu1aODk5wd7eXqMsMDAQLVq0QNeuXbFmzRo8+gxOSkoKvL29NeJVKhVSUlIAAEVFRUhNTdWI0dPTg7e3txSjTUREBMzNzaXl8ZyIiKjhKJsfqdGRyXSdQcPRWOuysV63jrATnYiIiIiogUpLS4OZmRkMDQ0xefJkbNmyBa6urlL5V199BTMzM5iZmeGXX35BQkIC5HK5VD5nzhxs2rQJCQkJGDp0KN555x18+eWXUnlWVhasra01zmltbY28vDzcu3cPN2/eRElJidaYrKysCvMODQ1Fbm6utFy7du1pq4KIiOqpJk2a6DoFIqIq8U5FRERERNRAOTs7Q61WIzc3F99//z0CAgKwZ88eqSPd398f/fv3R2ZmJhYuXIi33noL+/fvl+bJ+Pjjj6VjderUCQUFBViwYAGmTZv2TPM2NDRsvE8mEhEREVG9wyfRiYiIiIgaKLlcjrZt28LT0xMRERFwd3fH0qVLpXJzc3O0a9cOPXv2xPfff49z585hy5YtFR7Py8sLf/zxhzReuY2NDbKzszVisrOzoVAoYGxsjBYtWkBfX19rjI2NTS1eKRERPa+Ki4t1nQIRUZXYiU5ERERE1EiUlpZqTNj5KCEEhBAVlgOAWq1Gs2bNpKfElUolEhMTNWISEhKkcdflcjk8PT01YkpLS5GYmKh1bHYiImp8ioqKdJ2Cbj0y1wjVEOvuIdZDneBwLkREREREDVBoaCj8/PzQunVr3LlzB7GxsUhKSkJ8fDwuX76MjRs3wsfHBy1btsQff/yBefPmwdjYGAMGDAAA/Pzzz8jOzka3bt1gZGSEhIQEfP7553j//felc0yePBnLly/HzJkzMW7cOOzevRubNm3Cjh07pJiQkBAEBASgS5cu6Nq1KyIjI1FQUICxY8fWeZ0QERERET0JdqITERERETVAN27cwOjRo5GZmQlzc3O4ubkhPj4e/fv3x/Xr17F3715ERkbi9u3bsLa2Rs+ePXHgwAFYWVkBAAwMDBAVFYXp06dDCIG2bdti8eLFmDhxonQOJycn7NixA9OnT8fSpUvRqlUrrFq1CiqVSooZNmwY/vrrL4SFhSErKwseHh6Ii4srN9koERFRoyKT6TqDhqOx1mVjvW4dYSc6EREREVEDtHr16grL7OzssHPnzkr39/X1ha+vb5Xn6d27N44fP15pTFBQEIKCgqo8FhERERFRfVTjMdGTk5MxaNAg2NnZQSaTYevWrRrl2dnZGDNmDOzs7GBiYgJfX19cuHBBI+b+/fsIDAxE8+bNYWZmhqFDh5abbOjq1asYOHAgTExMYGVlhRkzZuDBgwcaMUlJSejcuTMMDQ3Rtm1bxMTE1PRyiIiIiIiIiIiIiIgqVONO9IKCAri7uyMqKqpcmRACQ4YMweXLl/HTTz/h+PHjcHBwgLe3NwoKCqS46dOn4+eff8bmzZuxZ88eXL9+HW+88YZUXlJSgoEDB6KoqAgHDhzAunXrEBMTg7CwMCkmIyMDAwcORJ8+faBWqxEcHIwJEyYgPj6+ppdERERERERERERERKRVjYdz8fPzg5+fn9ayCxcu4ODBgzh16hQ6dOgAAFixYgVsbGzwv//9DxMmTEBubi5Wr16N2NhY9O3bFwCwdu1auLi44ODBg+jWrRt27dqFM2fO4Ndff4W1tTU8PDwwd+5cfPDBBwgPD4dcLkd0dDScnJywaNEiAICLiwv27duHJUuWaIzB+KjCwkIUFhZK63l5eTW9fCIiIiIiIiIiIiJqRGr8JHplyjqojYyM/u8EenowNDTEvn37AACpqakoLi6Gt7e3FNO+fXu0bt0aKSkpAICUlBR07NhRY7IhlUqFvLw8nD59Wop59BhlMWXH0CYiIgLm5ubSYm9v/5RXTERERERERERET8rQ0FDXKeiWELrO4PnFunuI9VAnarUTvawzPDQ0FLdv30ZRURG++OIL/PHHH8jMzAQAZGVlQS6Xw8LCQmNfa2trZGVlSTGPdqCXlZeVVRaTl5eHe/fuac0vNDQUubm50nLt2rWnvmYiIiIiIiIiInoyTZrUeJAEIqI6V6ud6AYGBvjxxx9x/vx5WFpawsTEBL/99hv8/Pygp1erp3oihoaGUCgUGgsREREREREREVGdksl0nUHD0VjrsrFet47Ues+2p6cn1Go1cnJykJmZibi4OPz9999o06YNAMDGxgZFRUXIycnR2C87Oxs2NjZSTHZ2drnysrLKYhQKBYyNjWv7soiIiIiIiIiIqJY9ePBA1ykQEVXpmT0ebm5ujpYtW+LChQs4evQoBg8eDOBhJ7uBgQESExOl2PT0dFy9ehVKpRIAoFQqkZaWhhs3bkgxCQkJUCgUcHV1lWIePUZZTNkxiIiIiIiIiIiofiubX4+IqD6r8cBT+fn5uHjxorSekZEBtVoNS0tLtG7dGps3b0bLli3RunVrpKWl4d1338WQIUPg4+MD4GHn+vjx4xESEgJLS0soFApMnToVSqUS3bp1AwD4+PjA1dUVo0aNwvz585GVlYVZs2YhMDBQmnBi8uTJWL58OWbOnIlx48Zh9+7d2LRpE3bs2FEb9UJEREREREREREREVPNO9KNHj6JPnz7SekhICAAgICAAMTExyMzMREhICLKzs2Fra4vRo0fj448/1jjGkiVLoKenh6FDh6KwsBAqlQpfffWVVK6vr4/t27djypQpUCqVMDU1RUBAAObMmSPFODk5YceOHZg+fTqWLl2KVq1aYdWqVVCpVDWuBCIiIiIiIiIiojonhK4zeH6x7h5iPdSJGnei9+7dG6KSF2fatGmYNm1apccwMjJCVFQUoqKiKoxxcHDAzp07q8zl+PHjlSdMRERERERERERERPSEntmY6ERERERERERE9PyIioqCo6MjjIyM4OXlhcOHD1cY+/XXX6NHjx5o1qwZmjVrBm9v70rj6TEyma4zaDgaa1021uvWEXaiExERERERERE1chs3bkRISAg++eQTHDt2DO7u7lCpVLhx44bW+KSkJIwYMQK//fYbUlJSYG9vDx8fH/z55591nDkR0bPHTnQiIiIiIiIiokZu8eLFmDhxIsaOHQtXV1dER0fDxMQEa9as0Rq/fv16vPPOO/Dw8ED79u2xatUqlJaWIjExsY4zJyJ69tiJTkTUwCQnJ2PQoEGws7ODTCbD1q1bNcqFEAgLC4OtrS2MjY3h7e2NCxcuaMTcunUL/v7+UCgUsLCwwPjx45Gfn68Rc/LkSfTo0QNGRkawt7fH/PnzK83rxIkTGDFiBOzt7WFsbAwXFxcsXbpUIyYpKQkymazckpWV9eQVQkRERERElSoqKkJqaiq8vb2lbXp6evD29kZKSkq1jnH37l0UFxfD0tJSa3lhYSHy8vI0FgCQy+VPfwFERM8YO9GJiBqYgoICuLu7Vzh58/z587Fs2TJER0fj0KFDMDU1hUqlwv3796UYf39/nD59GgkJCdi+fTuSk5MxadIkqTwvLw8+Pj5wcHBAamoqFixYgPDwcKxcubLCvFJTU2FlZYXvvvsOp0+fxkcffYTQ0FAsX768XGx6ejoyMzOlxcrK6ilqhIiIiIiIKnPz5k2UlJTA2tpaY7u1tXW1H2j54IMPYGdnp9ER/6iIiAiYm5tLi729PQDAwMDg6ZInIqoDTXSdABER1S4/Pz/4+flpLRNCIDIyErNmzcLgwYMBAN988w2sra2xdetWDB8+HGfPnkVcXByOHDmCLl26AAC+/PJLDBgwAAsXLoSdnR3Wr1+PoqIirFmzBnK5HB06dIBarcbixYs1OtsfNW7cOI31Nm3aICUlBT/++COCgoI0yqysrGBhYVGt6y0sLERhYaG0XvZECxERERER1Y158+Zhw4YNSEpKgpGRkdaY0NBQhISESOt5eXlSR3qjJoSuM3h+se4eYj3UCT6JTkTUiGRkZCArK0vj6RBzc3N4eXlJP9NMSUmBhYWF1IEOAN7e3tDT08OhQ4ekmJ49e2r89FKlUiE9PR23b9+udj65ublaf+7p4eEBW1tb9O/fH/v376/0GBU90UJERERERNXTokUL6OvrIzs7W2N7dnY2bGxsKt134cKFmDdvHnbt2gU3N7cK4wwNDaFQKDQWAHjw4MHTXwAR0TPGTnQiokak7KeYlf1MMysrq9zwKU2aNIGlpaVGjLZjPHqOqhw4cAAbN27UeHLd1tYW0dHR+OGHH/DDDz/A3t4evXv3xrFjxyo8TmhoKHJzc6Xl2rVr1To/EVFDt2LFCri5uUkdFUqlEr/88otU/u9//xsvvvgijI2N0bJlSwwePBjnzp3TOMbVq1cxcOBAmJiYwMrKCjNmzCjX2ZGUlITOnTvD0NAQbdu2RUxMTLlcoqKi4OjoCCMjI3h5eeHw4cPP5JqJiOjJyOVyeHp6akwKWjZJqFKprHC/+fPnY+7cuYiLi9N4CKcmHv1VaaMik+k6g4ajsdZlY71uHeFwLkREVOdOnTqFwYMH45NPPoGPj4+03dnZGc7OztJ69+7dcenSJSxZsgTffvut1mMZGhrC0NDwmedMRPS8adWqFebNm4d27dpBCIF169Zh8ODBOH78ODp06ABPT0/4+/ujdevWuHXrFsLDw+Hj44OMjAzo6+ujpKQEAwcOhI2NDQ4cOIDMzEyMHj0aBgYG+PzzzwE8/IXTwIEDMXnyZKxfvx6JiYmYMGECbG1toVKpAAAbN25ESEgIoqOj4eXlhcjISOnXS5zzgoio/ggJCUFAQAC6dOmCrl27IjIyEgUFBRg7diwAYPTo0XjhhRcQEREBAPjiiy8QFhaG2NhYODo6Sg/TmJmZwczMTGfXQUT0LPBJdCKiRqTsp5iV/UzTxsYGN27c0Ch/8OABbt26pRGj7RiPnqMiZ86cQb9+/TBp0iTMmjWrypy7du2KixcvVhlHRESaBg0ahAEDBqBdu3Z46aWX8Nlnn8HMzAwHDx4EAEyaNAk9e/aEo6MjOnfujE8//RTXrl3DlStXAAC7du3CmTNn8N1338HDwwN+fn6YO3cuoqKiUFRUBACIjo6Gk5MTFi1aBBcXFwQFBeFf//oXlixZIuWxePFiTJw4EWPHjoWrqyuio6NhYmKCNWvWVJh7YWEh8vLyNBYiInq2hg0bhoULFyIsLAweHh5Qq9WIi4uTfnF69epVZGZmSvErVqxAUVER/vWvf8HW1lZaFi5cqKtLICJ6ZtiJTkTUiDg5OcHGxkbjZ5p5eXk4dOiQ9DNNpVKJnJwcpKamSjG7d+9GaWkpvLy8pJjk5GQUFxdLMQkJCXB2dkazZs0qPP/p06fRp08fBAQE4LPPPqtWzmq1Gra2tjW6TiIi0lRSUoINGzagoKBA68/yCwoKsHbtWjg5OUlzS6SkpKBjx44aw3epVCrk5eXh9OnTUsyj82yUxZTNs1FUVITU1FSNGD09PXh7e0sx2nC+CyIi3QgKCsLvv/+OwsJCHDp0SGr/Aw+H73p0yK4rV65ACFFuCQ8Pr/vEiYieMXaiExE1MPn5+VCr1VCr1QAe/tRerVbj6tWrkMlkCA4Oxqeffopt27YhLS0No0ePhp2dHYYMGQIAcHFxga+vLyZOnIjDhw9j//79CAoKwvDhw2FnZwcAGDlyJORyOcaPH4/Tp09j48aNWLp0KUJCQqQ8tmzZgvbt20vrp06dQp8+feDj44OQkBBkZWUhKysLf/31lxQTGRmJn376CRcvXsSpU6cQHByM3bt3IzAw8NlXHBFRA5SWlgYzMzMYGhpi8uTJ2LJlC1xdXaXyr776SvrZ/S+//IKEhARp0ujqzH9RUUxeXh7u3buHmzdvoqSkpNK5OLThfBdERNRoCKHrDJ5frLuHWA91gmOiExE1MEePHkWfPn2k9bKO7YCAAMTExGDmzJkoKCjApEmTkJOTg1dffRVxcXEwMjKS9lm/fj2CgoLQr18/6OnpYejQoVi2bJlUbm5ujl27diEwMBCenp5o0aIFwsLCNCYJzc3NRXp6urT+/fff46+//sJ3332H7777Ttru4OAgDR1QVFSE9957D3/++SdMTEzg5uaGX3/9VeN6iIio+pydnaFWq5Gbm4vvv/8eAQEB2LNnj9SR7u/vj/79+yMzMxMLFy7EW2+9hf3792v8TdAFzndBRERERPUJO9GJiBqY3r17Q1TyTbRMJsOcOXMwZ86cCmMsLS0RGxtb6Xnc3Nywd+/eCsvHjBmDMWPGSOvh4eFV/rRz5syZmDlzZqUxRERUfXK5HG3btgUAeHp64siRI1i6dCn++9//AoA0XEq7du3QrVs3NGvWDFu2bMGIESNgY2ODw4cPaxzv8fkvKpojQ6FQwNjYGPr6+tDX1690Lg4iIqJGSSbTdQYNR2Oty8Z63TrC4VyIiIiIiBqJ0tJSFBYWai0rG8u2rFypVCItLU1jsumEhAQoFArpSXalUqkxz0ZZTNm463K5HJ6enhoxpaWlSExM1Do2OxERNT5lw4gREdVnfBKdiIiIiKgBCg0NhZ+fH1q3bo07d+4gNjYWSUlJiI+Px+XLl7Fx40b4+PigZcuW+OOPPzBv3jwYGxtjwIABAAAfHx+4urpi1KhRmD9/PrKysjBr1iwEBgZKQ61MnjwZy5cvx8yZMzFu3Djs3r0bmzZtwo4dO6Q8QkJCEBAQgC5duqBr166IjIxEQUEBxo4dq5N6ISKi+sXAwEDXKRARVYmd6EREREREDdCNGzcwevRoZGZmwtzcHG5uboiPj0f//v1x/fp17N27F5GRkbh9+zasra3Rs2dPHDhwAFZWVgAAfX19bN++HVOmTIFSqYSpqSkCAgI0hgNzcnLCjh07MH36dCxduhStWrXCqlWroFKppJhhw4bhr7/+QlhYGLKysuDh4YG4uLhyk40SEREREdVX7EQnIiIiImqAVq9eXWGZnZ0ddu7cWeUxHBwcqozr3bs3jh8/XmlMUFAQgoKCqjwfERE1PiUlJbpOgYioShwTnYiIiIiIiIiIdOL+/fu6TkG3hNB1Bs8v1t1DrIc6wU50IiIiIiIiIiIiIqIKsBOdiIiIiIiIiIioLslkus6g4WisddlYr1tH2IlORERERERERERERFQBdqITEREREREREREREVWAnehERERERERERERERBVgJzoREREREREREZEuCKHrDJ5frLuHWA91gp3oRERERERERESkEwYGBrpOgYioSuxEJyIiIiIiIiIinZDL5bpOQTdkMl1n0HA01rpsrNetI+xEJyIiIiIiIiIiIiKqADvRiYiIiIiIiIhIJ0pKSnSdAhFRlWrciZ6cnIxBgwbBzs4OMpkMW7du1SjPz89HUFAQWrVqBWNjY7i6uiI6Oloj5v79+wgMDETz5s1hZmaGoUOHIjs7WyPm6tWrGDhwIExMTGBlZYUZM2bgwYMHGjFJSUno3LkzDA0N0bZtW8TExNT0coiIiIiIiIiISEfu37+v6xSIiKpU4070goICuLu7IyoqSmt5SEgI4uLi8N133+Hs2bMIDg5GUFAQtm3bJsVMnz4dP//8MzZv3ow9e/bg+vXreOONN6TykpISDBw4EEVFRThw4ADWrVuHmJgYhIWFSTEZGRkYOHAg+vTpA7VajeDgYEyYMAHx8fE1vSQiIiIiIiIiIiIiIq2a1HQHPz8/+Pn5VVh+4MABBAQEoHfv3gCASZMm4b///S8OHz6M1157Dbm5uVi9ejViY2PRt29fAMDatWvh4uKCgwcPolu3bti1axfOnDmDX3/9FdbW1vDw8MDcuXPxwQcfIDw8HHK5HNHR0XBycsKiRYsAAC4uLti3bx+WLFkClUqlNbfCwkIUFhZK63l5eTW9fCIiIiIiIiIiotohhK4zeH6x7h5iPdSJWh8TvXv37ti2bRv+/PNPCCHw22+/4fz58/Dx8QEApKamori4GN7e3tI+7du3R+vWrZGSkgIASElJQceOHWFtbS3FqFQq5OXl4fTp01LMo8coiyk7hjYREREwNzeXFnt7+1q7biIiIiIiIiIiIiJqeGq9E/3LL7+Eq6srWrVqBblcDl9fX0RFRaFnz54AgKysLMjlclhYWGjsZ21tjaysLCnm0Q70svKysspi8vLycO/ePa25hYaGIjc3V1quXbv21NdLRERERERERERUIzKZrjNoOBprXTbW69aRGg/nUpUvv/wSBw8exLZt2+Dg4IDk5GQEBgbCzs6u3JPjdc3Q0BCGhoY6zYGIiIiIiIiIiIiInh+1+iT6vXv38J///AeLFy/GoEGD4ObmhqCgIAwbNgwLFy4EANjY2KCoqAg5OTka+2ZnZ8PGxkaKyc7OLldeVlZZjEKhgLGxcW1eFhHRcyU5ORmDBg2CnZ0dZDIZtm7dqlEuhEBYWBhsbW1hbGwMb29vXLhwQSPm1q1b8Pf3h0KhgIWFBcaPH4/8/HyNmJMnT6JHjx4wMjKCvb095s+fX2VuV69excCBA2FiYgIrKyvMmDEDDx480IhJSkpC586dYWhoiLZt2yImJuaJ6oGIiIiIiGomKioKjo6OMDIygpeXFw4fPlxp/ObNm9G+fXsYGRmhY8eO2LlzZx1lSkRUt2q1E724uBjFxcXQ09M8rL6+PkpLSwEAnp6eMDAwQGJiolSenp6Oq1evQqlUAgCUSiXS0tJw48YNKSYhIQEKhQKurq5SzKPHKIspOwYRUWNVUFAAd3d3REVFaS2fP38+li1bhujoaBw6dAimpqZQqVS4f/++FOPv74/Tp08jISEB27dvR3JyMiZNmiSV5+XlwcfHBw4ODkhNTcWCBQsQHh6OlStXVphXSUkJBg4ciKKiIhw4cADr1q1DTEwMwsLCpJiMjAwMHDgQffr0gVqtRnBwMCZMmID4+PhaqBkiosZlxYoVcHNzg0KhgEKhgFKpxC+//ALg4ZelU6dOhbOzM4yNjdG6dWtMmzYNubm5GseQyWTllg0bNmjEVOfLz5p2yhARUd3buHEjQkJC8Mknn+DYsWNwd3eHSqXS6Jt51IEDBzBixAiMHz8ex48fx5AhQzBkyBCcOnWqRuc1MDCojfSJiJ6pGg/nkp+fj4sXL0rrGRkZUKvVsLS0ROvWrdGrVy/MmDEDxsbGcHBwwJ49e/DNN99g8eLFAABzc3OMHz8eISEhsLS0hEKhwNSpU6FUKtGtWzcAgI+PD1xdXTFq1CjMnz8fWVlZmDVrFgIDA6XhWCZPnozly5dj5syZGDduHHbv3o1NmzZhx44dtVEvRETPLT8/P/j5+WktE0IgMjISs2bNwuDBgwEA33zzDaytrbF161YMHz4cZ8+eRVxcHI4cOYIuXboAeDhU14ABA7Bw4ULY2dlh/fr1KCoqwpo1ayCXy9GhQweo1WosXrxYo7P9Ubt27cKZM2fw66+/wtraGh4eHpg7dy4++OADhIeHQy6XIzo6Gk5OTli0aBEAwMXFBfv27cOSJUugUqmqXQcmAFBQAOjrV7/iqMGQ3b0Lg6IiyO7effg+aGTnp3qiHrz2rVq1wrx589CuXTsIIbBu3ToMHjwYx48fhxAC169fx8KFC+Hq6orff/8dkydPxvXr1/H9999rHGft2rXw9fWV1h+d26jsy8/Jkydj/fr1SExMxIQJE2Brayvdt8s6ZaKjo+Hl5YXIyEioVCqkp6fDysqqTuqCiIiqtnjxYkycOBFjx44FAERHR2PHjh1Ys2YNPvzww3LxS5cuha+vL2bMmAEAmDt3LhISErB8+XJER0dX+7xyubx2LuB5lZ0N/PprxeXOzoC9fd3lU5/cvw+kpAAlJdrL1eo6TafeKiqq/D3UsiXg5tY4x1AXAjhyBMjLqzimuu12UUO//fabAFBuCQgIEEIIkZmZKcaMGSPs7OyEkZGRcHZ2FosWLRKlpaXSMe7duyfeeecd0axZM2FiYiJef/11kZmZqXGeK1euCD8/P2FsbCxatGgh3nvvPVFcXFwuFw8PDyGXy0WbNm3E2rVra3Qtubm5AoDIzc2taTUQEdWKZ30fAiC2bNkirV+6dEkAEMePH9eI69mzp5g2bZoQQojVq1cLCwsLjfLi4mKhr68vfvzxRyGEEKNGjRKDBw/WiNm9e7cAIG7duqU1l48//li4u7trbLt8+bIAII4dOyaEEKJHjx7i3Xff1YhZs2aNUCgUFV7j/fv3RW5urrRcu3ZNiId/Krlw4cJFp0t9bGc2a9ZMrFq1SmvZpk2bhFwu12hzP/535HEzZ84UHTp00Ng2bNgwoVKppPWuXbuKwMBAab2kpETY2dmJiIiICo+r7d5eH+uTiBqXhtyHUFhYKPT19cvd80ePHi1ee+01rfvY29uLJUuWaGwLCwsTbm5uWuN5b39MdHT12hTGxkLk5Og6W90YPrx6ddS9u64z1Y0LF6rfNt25U9fZ6sbXX1dZN7nVbLfX+En03r17QwhRYbmNjQ3Wrl1b6TGMjIwQFRVV4VADAODg4FDlWFq9e/fG8ePHK0+YiIgkWVlZAABra2uN7dbW1lJZVlZWuScDmzRpAktLS40YJyencscoK2vWrJnWc2s776N5VRSTl5eHe/fuaZ3zIiIiArNnz9bYVvFfKSKixqmkpASbN29GQUFBhcMf5ubmQqFQoEkTzX8iBAYGYsKECWjTpg0mT56MsWPHQvb/n2RKSUmBt7e3RrxKpUJwcDAAoKioCKmpqQgNDZXK9fT04O3tjZSUlArz1XZvJyKiZ+fmzZsoKSnR2hY/d+6c1n0qaruXte0fV9G9vWz430ZnwACgb1/gr78qjjl1Crh3D7hxAzA3r7vc6ouMjIf/dXAAFArtMfr6wNSpdZdTfdKmDTBqVOVP5P/++8OnsK9cqaus6pey91Dz5oCdnfaYkhLgzJkqD1XjTnQiIqL6JDQ0FCEhIdJ6Xl4eTO3tkXn9OhQVNbSoQcvKysKaNWswbtw4aULyxnR+qh/y8vIqbqjXobS0NCiVSty/fx9mZmbYsmWLNMfQo27evIm5c+eWG5Jrzpw56Nu3L0xMTLBr1y688847yM/Px7Rp0wBU/eXn7du3a9wpA2i/t9s31p+yExE1EBXd2+/du6cxVFijYW8PPDbXXzkWFsBj85U0Sl9+CQwapOss6h89PeCbbyqP+de/gB9+qJt86rO33wYiI7WX5eVV60sqdqITETUiZR162dnZsLW1lbZnZ2fDw8NDinl88qAHDx7g1q1b0v42NjbIzs7WiClbr6jT0MbGptxEco/vU9FxFQqF1qfQAcDQ0FCaL6PMXQAwNX24UKMjTExQLJdDmJjo5D2g6/NTPVHR2J11zNnZGWq1Grm5ufj+++8REBCAPXv2aHSk5+XlYeDAgXB1dUV4eLjG/h9//LH0/506dUJBQQEWLFggdaI/K9ru7URE9Oy0aNEC+vr6WtvilbXvaxLPezsRPc/0dJ0AERHVHScnJ9jY2CDxkSce8vLycOjQIenn/UqlEjk5OUhNTZVidu/ejdLSUnh5eUkxycnJKC4ulmISEhLg7OysdSiXsn3S0tI0OugTEhKgUCikzhylUqmRW1lMRUMPEBFR5eRyOdq2bQtPT09ERETA3d0dS5culcrv3LkDX19fNG3aFFu2bIGBgUGlx/Py8sIff/yBwsJCAFV/+fkknTJERFT35HI5PD09NdripaWlSExMrLAtzrY7ETUm7EQnImpg8vPzoVarof7/46JlZGRArVbj6tWrkMlkCA4Oxqeffopt27YhLS0No0ePhp2dHYYMGQIAcHFxga+vLyZOnIjDhw9j//79CAoKwvDhw2H3/4cmGDlyJORyOcaPH4/Tp09j48aNWLp0qcbPM7ds2YL27dtL6z4+PnB1dcWoUaNw4sQJxMfHY9asWQgMDJSeSJk8eTIuX76MmTNn4ty5c/jqq6+wadMmTJ8+vW4qj4iogSstLZU6wPPy8uDj4wO5XI5t27bByMioyv3VajWaNWsm3ber6kB5kk4ZIiLSjZCQEHz99ddYt24dzp49iylTpqCgoABjx44FAIwePVpjjot3330XcXFxWLRoEc6dO4fw8HAcPXoUQUFBuroEIqJnhsO5EBE1MEePHkWfPn2k9bKO7YCAAMTExGDmzJkoKCjApEmTkJOTg1dffRVxcXEanSfr169HUFAQ+vXrBz09PQwdOhTLli2Tys3NzbFr1y4EBgbC09MTLVq0QFhYmMZYurm5uUhPT5fW9fX1sX37dkyZMgVKpRKmpqYICAjAnDlzpBgnJyfs2LED06dPx9KlS9GqVSusWrUKKpXqmdQVEVFDFhoaCj8/P7Ru3Rp37txBbGwskpKSEB8fL3Wg3717F9999x3y8vIejuMOoGXLltDX18fPP/+M7OxsdOvWDUZGRkhISMDnn3+O999/XzrH5MmTsXz5csycORPjxo3D7t27sWnTJuzYsUOKCQkJQUBAALp06YKuXbsiMjJSo1OGiIjqh2HDhuGvv/5CWFgYsrKy4OHhgbi4OGlei6tXr0JP7/+exezevTtiY2Mxa9Ys/Oc//0G7du2wdetWvPzyy7q6BGpohNB1BkQSdqITETUwvXv3hqiksSGTyTBnzhyNzuvHWVpaIjY2ttLzuLm5Ye/evRWWjxkzBmPGjNHY5uDggJ07d1Z63N69e+P48eOVxhARUdVu3LiB0aNHIzMzE+bm5nBzc0N8fDz69++PpKQkHDp0CADQtm1bjf0yMjLg6OgIAwMDREVFYfr06RBCoG3btli8eDEmTpwoxVbny8+qOmWIiKj+CAoKqvBJ8qSkpHLb3nzzTbz55pvPOCtiZzI9tcb6HqrF62YnOhERERFRA7R69eoKy6r6whUAfH194evrW+V5qvPlZ2WdMkRERERE9R3HRCciIiIiIiIiIp2oalLrRk0m03UG9QPr4cmx7h6qhXpgJzoREREREREREemEXC7XdQpERFViJzoRERERERERERERUQXYiU5ERERERERERDpRWlqq6xSIiKrETnQiIiIiIiIiItKJe/fu6TqF+q+KycAbrMZ63c9CY63LWrxudqITEREREREREREREVWAnehERERERERERET1jUym6wzqB9bDk2PdPVQL9cBOdCIiIiIiIiIiIiKiCrATnYiIiIiIiIiIiIioAuxEJyIiIiIiIiIiIiKqADvRiYiIiIiIiIiIqH4RQtcZEEnYiU5ERERERERERDrRpEkTXadQ/7EzmZ5WY30P1eJ1sxOdiIiIiIiIiIh0wtDQUNcpEBFViZ3oRERERERERERE9Y1MpusM6gfWw5Nj3T1UC/XATnQiIiIiIiIiItIJ0ViHmSCi5wo70YmIiIiIiIiISCfu3r2r6xSIiKrETnQiIiIiIiIiIiKqX/grBapH2IlORERERERERERUX7EzmZ5WY30P1eJ1sxOdiIiIiKgBWrFiBdzc3KBQKKBQKKBUKvHLL78AAG7duoWpU6fC2dkZxsbGaN26NaZNm4bc3FyNY1y9ehUDBw6EiYkJrKysMGPGDDx48EAjJikpCZ07d4ahoSHatm2LmJiYcrlERUXB0dERRkZG8PLywuHDh5/ZdRMRERER1TZ2ohMRERERNUCtWrXCvHnzkJqaiqNHj6Jv374YPHgwTp8+jevXr+P69etYuHAhTp06hZiYGMTFxWH8+PHS/iUlJRg4cCCKiopw4MABrFu3DjExMQgLC5NiMjIyMHDgQPTp0wdqtRrBwcGYMGEC4uPjpZiNGzciJCQEn3zyCY4dOwZ3d3eoVCrcuHGjTuuDiIjouSOT6TqD+oH18ORYdw/VQj00qYU0iIiIiIionhk0aJDG+meffYYVK1bg4MGDGD9+PH744Qep7MUXX8Rnn32Gt99+Gw8ePECTJk2wa9cunDlzBr/++iusra3h4eGBuXPn4oMPPkB4eDjkcjmio6Ph5OSERYsWAQBcXFywb98+LFmyBCqVCgCwePFiTJw4EWPHjgUAREdHY8eOHVizZg0+/PBDrbkXFhaisLBQWs/Ly6vVuiEiIiIiqgk+iU5E1AjduXMHwcHBcHBwgLGxMbp3744jR45I5dnZ2RgzZgzs7OxgYmICX19fXLhwQeMYly5dwuuvv46WLVtCoVDgrbfeQnZ2dqXndXR0hEwmK7cEBgZKMb179y5XPnny5NqtACKiRqakpAQbNmxAQUEBlEql1pjc3FwoFAo0afLwOZuUlBR07NgR1tbWUoxKpUJeXh5Onz4txXh7e2scR6VSISUlBQBQVFSE1NRUjRg9PT14e3tLMdpERETA3NxcWuzt7Z/swomIiIiIakGNO9GTk5MxaNAg2NnZQSaTYevWrRrl2jpHZDIZFixYIMXcunUL/v7+UCgUsLCwwPjx45Gfn69xnJMnT6JHjx4wMjKCvb095s+fXy6XzZs3o3379jAyMkLHjh2xc+fOml4OEVGjNGHCBCQkJODbb79FWloafHx84O3tjT///BNCCAwZMgSXL1/GTz/9hOPHj8PBwQHe3t4oKCgAABQUFMDHxwcymQy7d+/G/v37UVRUhEGDBqG0tLTC8x45cgSZmZnSkpCQAAB48803NeImTpyoEaftbwAREVUtLS0NZmZmMDQ0xOTJk7Flyxa4urqWi7t58ybmzp2LSZMmSduysrI0OtABSOtZWVmVxuTl5eHevXu4efMmSkpKtMaUHUOb0NBQ5ObmSsu1a9dqduFERPTcKPvylqicxjoZJtVLNe5ELygogLu7O6KiorSWP9rpkZmZiTVr1kAmk2Ho0KFSjL+/P06fPo2EhARs374dycnJGg32vLw8+Pj4wMHBAampqViwYAHCw8OxcuVKKebAgQMYMWIExo8fj+PHj2PIkCEYMmQITp06VdNLIiJqVO7du4cffvgB8+fPR8+ePdG2bVuEh4ejbdu2WLFiBS5cuICDBw9ixYoV+Mc//gFnZ2esWLEC9+7dw//+9z8AwP79+3HlyhXExMSgY8eO6NixI9atW4ejR49i9+7dFZ67ZcuWsLGxkZbt27fjxRdfRK9evTTiTExMNOIUCkWFxywsLEReXp7GQkREDzk7O0OtVuPQoUOYMmUKAgICcObMGY2YvLw8DBw4EK6urggPD9dNoo8xNDSUJkQtW4iI6NmpzsOOj8dXZ4Lq6jA0NHya1ImI6kSNO9H9/Pzw6aef4vXXX9da/minh42NDX766Sf06dMHbdq0AQCcPXsWcXFxWLVqFby8vPDqq6/iyy+/xIYNG3D9+nUAwPr161FUVIQ1a9agQ4cOGD58OKZNm4bFixdL51m6dCl8fX0xY8YMuLi4YO7cuejcuTOWL19eYe7saCEiAh48eICSkhIYGRlpbDc2Nsa+ffukMWgfLdfT04OhoSH27dsH4OH9VCaTaTR4jYyMoKenJ8VUpaioCN999x3GjRsH2WOTfKxfvx4tWrTAyy+/jNDQUNy9e7fC4/An/0REFZPL5Wjbti08PT0REREBd3d3LF26VCq/c+cOfH190bRpU2zZsgUGBgZSmY2NTblhusrWbWxsKo1RKBQwNjZGixYtoK+vrzWm7BhERKR7VT3s+LjqTFBNtYhPZNPTaqzvoVq87mc6Jnp2djZ27NihcRNNSUmBhYUFunTpIm3z9vaGnp4eDh06JMX07NkTcrlcilGpVEhPT8ft27elmMrGX9SGHS1EREDTpk2hVCoxd+5cXL9+HSUlJfjuu++QkpKCzMxMtG/fHq1bt0ZoaChu376NoqIifPHFF/jjjz+QmZkJAOjWrRtMTU3xwQcf4O7duygoKMD777+PkpISKaYqW7duRU5ODsaMGaOxfeTIkfjuu+/w22+/ITQ0FN9++y3efvvtCo/Dn/wTEVVfaWmp9GVp2a8/5XI5tm3bVu7LVaVSibS0NNy4cUPalpCQAIVCIQ0Jo1QqkZiYqLFfQkKCNO66XC6Hp6enRkxpaSkSExMrHJudiIjqVnUednzcyy+/jB9++AGDBg3Ciy++iL59++Kzzz7Dzz//jAcPHtTo/KKxdu4R0XPlmXair1u3Dk2bNsUbb7whbcvKyoKVlZVGXJMmTWBpaVnl2IplZZXFcGxFIqKqffvttxBC4IUXXoChoSGWLVuGESNGQE9PDwYGBvjxxx9x/vx5WFpawsTEBL/99hv8/Pygp/fwz0bLli2xefNm/PzzzzAzM4O5uTlycnLQuXNnKaYqq1evhp+fH+zs7DS2T5o0CSqVCh07doS/vz+++eYbbNmyBZcuXdJ6HP7kn4hIu9DQUCQnJ+PKlStIS0tDaGgokpKS4O/vL3WgFxQUYPXq1cjLy0NWVhaysrJQUlICAPDx8YGrqytGjRqFEydOID4+HrNmzUJgYKD0S6TJkyfj8uXLmDlzJs6dO4evvvoKmzZtwvTp06U8QkJC8PXXX2PdunU4e/YspkyZgoKCAowdO1Yn9UJERJqq87BjdTw+QfXjKhodoLJfnTZ6j/1it9FiPTw51t1DtVAPz3T2hjVr1sDf37/cUy26YmhoyLG2iIgAvPjii9izZw8KCgqQl5cHW1tbDBs2TBp6y9PTE2q1Grm5uSgqKkLLli3h5eWl0bD28fHBpUuXcPPmTTRp0gQWFhawsbGRjlGZ33//Hb/++it+/PHHKmO9vLwAABcvXsSLL774hFdMRNT43LhxA6NHj0ZmZibMzc3h5uaG+Ph49O/fH0lJSVLHSNu2bTX2y8jIgKOjI/T19bF9+3ZMmTIFSqUSpqamCAgIwJw5c6RYJycn7NixA9OnT8fSpUvRqlUrrFq1CiqVSooZNmwY/vrrL4SFhSErKwseHh6Ii4sr90AMERHpRnUedqyKtgmqHxcREYHZs2c/Va5ERLryzDrR9+7di/T0dGzcuFFju42NjcZPQoGH4/PeunWryrEVy8oqi+HYikRE1WdqagpTU1Pcvn0b8fHxmD9/vka5ubk5AODChQs4evQo5s6dW+4YLVq0AADs3r0bN27cwGuvvVbledeuXQsrKysMHDiwyli1Wg0AsLW1rTKWiIj+z+rVqyss6927d7V+Pu/g4ICdO3dWGtO7d28cP3680pigoCAEBQVVeT4iIqo9H374Ib744otKY86ePfvU56nuBNWhoaEICQnR2I/D7FKlONQP1SPPrBN99erV8PT0hLu7u8Z2pVKJnJwcpKamwtPTE8DDjpfS0lLpaUOlUomPPvoIxcXF0uRGCQkJcHZ2RrNmzaSYxMREBAcHS8d+dPxFIiKqWHx8PIQQcHZ2xsWLFzFjxgy0b99e+mn95s2b0bJlS7Ru3RppaWl49913MWTIEPj4+EjHWLt2LVxcXNCyZUukpKTg3XffxfTp0+Hs7CzF9OvXD6+//rpGx0lpaSnWrl2LgICAcj/1vHTpEmJjYzFgwAA0b94cJ0+exPTp09GzZ0+4ubk941ohIiIiImo43nvvvXLzDz2uTZs21XrYsSKVTVD9OI4OQETPsxp3oufn5+PixYvSekZGBtRqNSwtLdG6dWsAD79N3Lx5MxYtWlRufxcXF/j6+mLixImIjo5GcXExgoKCMHz4cGlc3JEjR2L27NkYP348PvjgA5w6dQpLly7FkiVLpOO8++676NWrFxYtWoSBAwdiw4YNOHr0KFauXFnjSiAiamxyc3MRGhqKP/74A5aWlhg6dCg+++wzqdGbmZmJkJAQZGdnw9bWFqNHj8bHH3+scYz09HSEhobi1q1bcHR0xEcffaQxBi4AabiXR/3666+4evUqxo0bVy4vuVyOX3/9FZGRkSgoKIC9vT2GDh2KWbNm1XINEBERERE1bC1btkTLli2rjKvOw47a5OXlQaVSwdDQUOsE1VSL+EQ2Pa3G+h6qxeuucSf60aNH0adPH2m97Kc4AQEBiImJAQBs2LABQgiMGDFC6zHWr1+PoKAg9OvXD3p6ehg6dCiWLVsmlZubm2PXrl0IDAyEp6cnWrRogbCwMI2xtbp3747Y2FjMmjUL//nPf9CuXTts3boVL7/8ck0viYio0Xnrrbfw1ltvVVg+bdo0TJs2rdJjzJs3D/Pmzas05sqVK+W2+fj4VDiEgL29Pfbs2VPpMYmIiIiIqPZU52HHP//8E/369cM333yDrl27ShNU3717F999953GRKEtW7aEvr6+Li+JiKjW1bgTvTrjJ06aNKnSySQsLS0RGxtb6THc3Nywd+/eSmPefPNNvPnmm5XGEBERERERERFRxap62LG4uBjp6em4e/cuAODYsWNVTlBNRNSQPLMx0YmIiIiIiIiIqP6r6mFHR0dHjQcqqztBdXXwqfVKyGS6zqB+YD08OdbdQ7VQD3q1kAYREREREREREVGNcSx1InoesBOdiIiIiIiIiIiI6pfGOhkm1UvsRCciIiIiIiIiIiIiqgA70YmIiIiIiIiISCcKCgp0nUL9xyey6Wk11vdQLV43O9GJiIiIiIiIiIiIiCrATnQiIiIiIiIiIqL6RibTdQb1A+vhybHuHqqFemAnOhERERERERERERFRBdiJTkRERERERERERPVLYx3Hm+oldqITEREREREREREREVWAnehERERERERERERERBVgJzoREREREREREemEvr6+rlOo/zisCT2txvoeqsXrZic6ERERERERERHphJGRka5TICKqEjvRiYiIiIiIiIiI6huZTNcZ1A+shyfHunuoFuqBnehERERERA3QihUr4ObmBoVCAYVCAaVSiV9++UUqX7lyJXr37g2FQgGZTIacnJxyx3B0dIRMJtNY5s2bpxFz8uRJ9OjRA0ZGRrC3t8f8+fPLHWfz5s1o3749jIyM0LFjR+zcubPWr5eIiIgamMY6BAnVS+xEJyIiIiJqgFq1aoV58+YhNTUVR48eRd++fTF48GCcPn0aAHD37l34+vriP//5T6XHmTNnDjIzM6Vl6tSpUlleXh58fHzg4OCA1NRULFiwAOHh4Vi5cqUUc+DAAYwYMQLjx4/H8ePHMWTIEAz5f+zdeVxN+f8H8Ndtu6VVpFsjsk1lCyE1xtoofI3wtTZaJMMIFYbGIOM7wtiX0fgOwmjQmLHOaJqSNVvKNoQwDC1DKoXW8/vj/jpfVzvVbXk9H4/z6N5zPudz3ufc+tzT+577Ps7OuHbtWtXsOBER1SpZWVnKDoGIqExqyg6AiIiIiIgq35AhQxSef/3119i0aRPOnj2Ldu3awcfHBwAQFRVVaj+6urqQyWTFLtu1axdycnKwdetWaGhooF27doiLi8OqVaswadIkAMDatWvh5OSE2bNnAwAWL16M8PBwbNiwAUFBQcX2m52djezsbPF5RkZGeXaZiIiIiKhK8Ep0IiIiIqI6Lj8/H7t370ZWVhbs7OwqtO7SpUvRqFEjdO7cGd988w3y8vLEZdHR0ejVqxc0NDTEeY6OjoiPj8ezZ8/ENg4ODgp9Ojo6Ijo6usRtBgYGQl9fX5zMzMwqFDMREVGdwrIm9K7q6+9QJe43r0QnIiIiIqqjrl69Cjs7O7x69Qo6Ojr45Zdf0LZt23KvP336dHTp0gWGhoY4c+YM/P39kZiYiFWrVgEAkpKS0KJFC4V1jI2NxWUNGzZEUlKSOO/1NklJSSVu19/fH35+fuLzjIwMJtKJiIiISGmYRCciIiIiqqMsLCwQFxeH9PR0/PTTT3Bzc8Px48fLnUh/PZHdsWNHaGho4NNPP0VgYCCkUmlVhQ2pVFql/RMREdUKEomyI6gZeBzeHo+dXCUcB5ZzISKqh54/fw4fHx80b94cWlpasLe3x4ULF8TlycnJcHd3h6mpKRo0aAAnJyfcvn1boY+EhAQMGzYMRkZG0NPTw6hRo5CcnFzqdgMCAiCRSBQmS0tLhTavXr3C1KlT0ahRI+jo6GDEiBFl9ktERMXT0NBA69atYWNjg8DAQFhbW2Pt2rVv3Z+trS3y8vJw//59AIBMJisyRhc+L6yjXlKbkuqsExEREQGovyVIqEZiEp2IqB6aOHEiwsPDsXPnTly9ehUDBgyAg4MDHj16BEEQ4OzsjLt37+LAgQOIjY1F8+bN4eDggKysLABAVlYWBgwYAIlEgsjISJw+fRo5OTkYMmQICgoKSt12u3btkJiYKE6nTp1SWO7r64tDhw4hNDQUx48fx+PHjzF8+PAqOxZERPVJQUGBwg07KyouLg4qKipo0qQJAMDOzg4nTpxAbm6u2CY8PBwWFhZo2LCh2CYiIkKhn/Dw8ArXZiciIiIiUhaWcyEiqmdevnyJffv24cCBA+jVqxcA+RXihw4dwqZNm+Dq6oqzZ8/i2rVraNeuHQBg06ZNkMlk+PHHHzFx4kScPn0a9+/fR2xsLPT09AAA27dvR8OGDREZGVnkBnKvU1NTK/Hqw/T0dGzZsgUhISHo168fAGDbtm2wsrLC2bNn0aNHj8o8FEREdZq/vz8GDhyIZs2a4fnz5wgJCUFUVBTCwsIAyGuWJyUl4c6dOwDk9dN1dXXRrFkzGBoaIjo6GufOnUPfvn2hq6uL6Oho+Pr64pNPPhET5OPGjcOiRYvg6emJOXPm4Nq1a1i7di1Wr14txjFjxgz07t0bK1euxODBg7F7925cvHgRmzdvrv6DQkRENY6KCq/vJKKajyMVEVE9k5eXh/z8fGhqairM19LSwqlTp8QrFF9frqKiAqlUKl41np2dDYlEolCvVlNTEyoqKkWuLH/T7du3YWpqipYtW8LFxQUPHjwQl8XExCA3N1chCW9paYlmzZohOjq62P6ys7ORkZGhMBEREZCSkgJXV1dYWFigf//+uHDhAsLCwvDRRx8BAIKCgtC5c2d4eXkBAHr16oXOnTvj4MGDAOR1yXfv3o3evXujXbt2+Prrr+Hr66uQ/NbX18fvv/+Oe/fuwcbGBjNnzsSCBQswadIksY29vT1CQkKwefNmWFtb46effsL+/fvRvn37ajwaRERUU2lpaSk7BCKiMvFKdCKiekZXVxd2dnZYvHgxrKysYGxsjB9//BHR0dFo3bq1mLT29/fHd999B21tbaxevRp///03EhMTAQA9evSAtrY25syZgyVLlkAQBMydOxf5+flim+LY2toiODgYFhYWSExMxKJFi/Dhhx/i2rVr0NXVRVJSEjQ0NGBgYKCwnrGxMZKSkortMzAwEIsWLaq040NEVFds2bKl1OUBAQEICAgocXmXLl1w9uzZMrfTsWNHnDx5stQ2I0eOxMiRI8vsi4iIiIrB2uD0rurr71Al7jevRCciqod27twJQRDw3nvvQSqVYt26dRg7dixUVFSgrq6On3/+Gbdu3YKhoSEaNGiAY8eOYeDAgeJXLY2MjBAaGopDhw5BR0cH+vr6SEtLQ5cuXUr9OubAgQMxcuRIdOzYEY6Ojvj111+RlpaGvXv3vvW++Pv7Iz09XZwePnz41n0REREREdVHqampcHFxgZ6eHgwMDODp6YnMzMxyrSsIAgYOHAiJRIL9+/dXbaBERErCK9GJiOqhVq1a4fjx48jKykJGRgZMTEwwevRotGzZEgBgY2ODuLg4pKenIycnB0ZGRrC1tUXXrl3FPgYMGICEhAQ8efIEampqMDAwgEwmE/soDwMDA7z//vtiPV6ZTIacnBykpaUpXI2enJxcYh11qVSqUFaGiIiIiIgqxsXFBYmJiQgPD0dubi48PDwwadIkhISElLnumjVrIJFI3nrbWVlZ4n2W6A3vcFzrhMKriOv7cXgXPHZylXAceCU6EVE9pq2tDRMTEzx79gxhYWEYOnSownJ9fX0YGRnh9u3buHjxYpHlANC4cWMYGBggMjISKSkp+Pjjj8u9/czMTCQkJMDExASAPHmvrq6OiIgIsU18fDwePHgAOzu7t9xLIiIiIiIqyY0bN3D06FF8//33sLW1Rc+ePbF+/Xrs3r0bjx8/LnXduLg4rFy5Elu3bi1zO7yXERHVZkyiExHVQ2FhYTh69Cju3buH8PBw9O3bF5aWlvDw8AAAhIaGIioqCnfv3sWBAwfw0UcfwdnZGQMGDBD72LZtG86ePYuEhAT88MMPGDlyJHx9fWFhYSG26d+/PzZs2CA+nzVrFo4fP4779+/jzJkzGDZsGFRVVTF27FgA8qS9p6cn/Pz8cOzYMcTExMDDwwN2dnbo0aNHNR0dIiIiIqL6Izo6GgYGBgrfOnVwcICKigrOnTtX4novXrzAuHHjsHHjxhK/Nfq6wMBA6Ovri5OZmVmlxE9EVB0qnEQ/ceIEhgwZAlNT0xLrXd24cQMff/wx9PX1oa2tjW7duuHBgwfi8levXmHq1Klo1KgRdHR0MGLECCQnJyv08eDBAwwePBgNGjRAkyZNMHv2bOTl5Sm0iYqKQpcuXSCVStG6dWsEBwdXdHeIiOql9PR0TJ06FZaWlnB1dUXPnj0RFhYGdXV1AEBiYiLGjx8PS0tLTJ8+HePHj8ePP/6o0Ed8fDycnZ1hZWWFr776CvPmzcOKFSsU2hSWeyn0999/Y+zYsbCwsMCoUaPQqFEjnD17FkZGRmKb1atX41//+hdGjBiBXr16QSaT4eeff67Co0FEREREVH8lJSWhSZMmCvPU1NRgaGiIpKSkEtfz9fWFvb19sd9WLQ7vZUREtVmFa6JnZWXB2toaEyZMwPDhw4ssT0hIQM+ePeHp6YlFixZBT08P169fh6amptjG19cXR44cQWhoKPT19eHt7Y3hw4fj9OnTAID8/HwMHjwYMpkMZ86cQWJiIlxdXaGuro4lS5YAAO7du4fBgwdj8uTJ2LVrFyIiIjBx4kSYmJjA0dHxbY8HEVG9MGrUKIwaNarE5dOnT8f06dNL7WPp0qVYunRpqW3u37+v8Hz37t1lxqapqYmNGzdi48aNZbYlIiIiIqLizZ07F8uWLSu1zY0bN96q74MHDyIyMhKxsbHlXof3MnoHhbXBid5Wff0dqsT9rnASfeDAgRg4cGCJy+fNm4dBgwZh+fLl4rxWrVqJj9PT07FlyxaEhISgX79+AOQlAaysrHD27Fn06NEDv//+O/7880/88ccfMDY2RqdOnbB48WLMmTMHAQEB0NDQQFBQEFq0aIGVK1cCAKysrHDq1CmsXr26xCR6dnY2srOzxeesv0VEREREREREddHMmTPh7u5eapuWLVtCJpMhJSVFYX5eXh5SU1NLLNMSGRmJhIQEGBgYKMwfMWIEPvzwQ0RFRb1D5ERENU+l1kQvKCjAkSNH8P7778PR0RFNmjSBra2tQsmXmJgY5ObmwsHBQZxnaWmJZs2aITo6GoC8HleHDh1gbGwstnF0dERGRgauX78utnm9j8I2hX0Uh/W3iIiIiIiIiKg+MDIygqWlZamThoYG7OzskJaWhpiYGHHdyMhIFBQUwNbWtti+586diytXriAuLk6cAHlpxm3btlXH7tUPEomyI6gZeBzeHo+dXCUch0pNoqekpCAzMxNLly6Fk5MTfv/9dwwbNgzDhw/H8ePHAchrbWloaBT5tNLY2FistZWUlKSQQC9cXristDYZGRl4+fJlsfGx/hYRERERERER0f9YWVnByckJXl5eOH/+PE6fPg1vb2+MGTMGpqamAIBHjx7B0tIS58+fBwDIZDK0b99eYQKAZs2aoUWLFhXavopKpaamqC6pryVIqEaqcDmX0hQUFAAAhg4dCl9fXwBAp06dcObMGQQFBaF3796VubkKY/0tIiIiIiIiIiJFu3btgre3N/r37w8VFRWMGDEC69atE5fn5uYiPj4eL168qPRta2lpVXqfRESVrVKT6I0bN4aamhratm2rML+wXjkg/7QyJycHaWlpClejJycni7W2ZDKZ+Onm68sLlxX+LJz3ehs9PT0OwERERERERERE5WRoaIiQkJASl5ubm0Mo46rgspYTEdVmlfqdGQ0NDXTr1g3x8fEK82/duoXmzZsDAGxsbKCuro6IiAhxeXx8PB48eAA7OzsAgJ2dHa5evapwY4vw8HDo6emJCXo7OzuFPgrbFPZBRERERERERERERPSuKnwlemZmJu7cuSM+v3fvHuLi4mBoaIhmzZph9uzZGD16NHr16oW+ffvi6NGjOHTokHhnZn19fXh6esLPzw+GhobQ09PDtGnTYGdnhx49egAABgwYgLZt22L8+PFYvnw5kpKS8OWXX2Lq1KliOZbJkydjw4YN+PzzzzFhwgRERkZi7969OHLkSCUcFiIiIiIiIiIiqmovXryAnp6essOo2XiVP72r+vo7VIn7XeEk+sWLF9G3b1/xuZ+fHwDAzc0NwcHBGDZsGIKCghAYGIjp06fDwsIC+/btQ8+ePcV1Vq9eLdbYys7OhqOjI7799ltxuaqqKg4fPowpU6bAzs4O2tracHNzw1dffSW2adGiBY4cOQJfX1+sXbsWTZs2xffffw9HR8e3OhBERERERERERFS9WAaGiGqDCifR+/TpU+YAN2HCBEyYMKHE5Zqamti4cSM2btxYYpvmzZvj119/LTOW2NjY0gMmIiIiIiIiIiKqbSQSZUegXIX5x/p+HN4Fj51cJRyHSq2JTkRERERERERERERUlzCJTkRERERERERERERUAibRiYiIiIiIiIiIiIhKwCQ6EREREVEdtGnTJnTs2BF6enrQ09ODnZ0dfvvtN3H55s2b0adPH+jp6UEikSAtLa1IH6mpqXBxcYGenh4MDAzg6emJzMxMhTZXrlzBhx9+CE1NTZiZmWH58uVF+gkNDYWlpSU0NTXRoUOHMu99RERERK/hzVfpXdXX36FK3G8m0YmIiIiI6qCmTZti6dKliImJwcWLF9GvXz8MHToU169fBwC8ePECTk5O+OKLL0rsw8XFBdevX0d4eDgOHz6MEydOYNKkSeLyjIwMDBgwAM2bN0dMTAy++eYbBAQEYPPmzWKbM2fOYOzYsfD09ERsbCycnZ3h7OyMa9euVd3OExFRrSHhjQ+JqBZQU3YARERERERU+YYMGaLw/Ouvv8amTZtw9uxZtGvXDj4+PgCAqKioYte/ceMGjh49igsXLqBr164AgPXr12PQoEFYsWIFTE1NsWvXLuTk5GDr1q3Q0NBAu3btEBcXh1WrVonJ9rVr18LJyQmzZ88GACxevBjh4eHYsGEDgoKCit12dnY2srOzxecZGRnvciiIiKgGa9CggbJDqLnq+wcMhVcR1/fj8C547OQq4TjwSnQiIiIiojouPz8fu3fvRlZWFuzs7Mq1TnR0NAwMDMQEOgA4ODhARUUF586dE9v06tULGhoaYhtHR0fEx8fj2bNnYhsHBweFvh0dHREdHV3itgMDA6Gvry9OZmZm5d5XIiIiIqLKxiQ6EREREVEddfXqVejo6EAqlWLy5Mn45Zdf0LZt23Ktm5SUhCZNmijMU1NTg6GhIZKSksQ2xsbGCm0Kn5fVpnB5cfz9/ZGeni5ODx8+LFfMRERERERVgeVciIiIiIjqKAsLC8TFxSE9PR0//fQT3NzccPz48XIn0pVFKpVCKpUqOwwiIqoGL168gJ6enrLDICIqFZPoRERERER1lIaGBlq3bg0AsLGxwYULF7B27Vp89913Za4rk8mQkpKiMC8vLw+pqamQyWRim+TkZIU2hc/LalO4nIiI6jehsO41EVENxnIuRERERET1REFBgcINO0tjZ2eHtLQ0xMTEiPMiIyNRUFAAW1tbsc2JEyeQm5srtgkPD4eFhQUaNmwotomIiFDoOzw8vNy12YmIiOo9ftBA76q+/g5V4n4ziU5EREREVAf5+/vjxIkTuH//Pq5evQp/f39ERUXBxcUFgLxWeVxcHO7cuQNAXj89Li4OqampAAArKys4OTnBy8sL58+fx+nTp+Ht7Y0xY8bA1NQUADBu3DhoaGjA09MT169fx549e7B27Vr4+fmJccyYMQNHjx7FypUrcfPmTQQEBODixYvw9vau5iNCREREtUp9TfxSjcQkOhERERFRHZSSkgJXV1dYWFigf//+uHDhAsLCwvDRRx8BAIKCgtC5c2d4eXkBAHr16oXOnTvj4MGDYh+7du2CpaUl+vfvj0GDBqFnz57YvHmzuFxfXx+///477t27BxsbG8ycORMLFizApEmTxDb29vYICQnB5s2bYW1tjZ9++gn79+9H+/btq+lIEBER1VISibIjqBl4HN4ej51cJRwHJtGJiOqh58+fw8fHB82bN4eWlhbs7e1x4cIFcXlycjLc3d1hamqKBg0awMnJCbdv31boIyEhAcOGDYORkRH09PQwatSoIjVv3xQYGIhu3bpBV1cXTZo0gbOzM+Lj4xXa9OnTBxKJRGGaPHly5e08EVE9sWXLFty/fx/Z2dlISUnBH3/8ISbQASAgIACCIBSZ3N3dxTaGhoYICQnB8+fPkZ6ejq1bt0JHR0dhOx07dsTJkyfx6tUr/P3335gzZ06RWEaOHIn4+HhkZ2fj2rVrGDRoUJXtNxERERFRZWMSnYioHpo4cSLCw8Oxc+dOXL16FQMGDICDgwMePXoEQRDg7OyMu3fv4sCBA4iNjUXz5s3h4OCArKwsAEBWVhYGDBgAiUSCyMhInD59Gjk5ORgyZAgKCgpK3O7x48cxdepUnD17FuHh4cjNzcWAAQPEfgt5eXkhMTFRnJYvX16lx4OIiIiIiIiIqCRqyg6AiIiq18uXL7Fv3z4cOHAAvXr1AiC/GvHQoUPYtGkTXF1dcfbsWVy7dg3t2rUDAGzatAkymQw//vgjJk6ciNOnT+P+/fuIjY2Fnp4eAGD79u1o2LAhIiMj4eDgUOy2jx49qvA8ODgYTZo0QUxMjBgLADRo0AAymawqdp+IiIiIiGoQCctNEFEtwCvRiYjqmby8POTn50NTU1NhvpaWFk6dOoXs7GwAUFiuoqICqVSKU6dOAQCys7MhkUgglUrFNpqamlBRURHblEd6ejoAebmA1+3atQuNGzdG+/bt4e/vjxcvXpTYR3Z2NjIyMhQmIiIiIiKqHRo0aKDsEGo+3mCT3lV9/R2qxP1mEp2IqJ7R1dWFnZ0dFi9ejMePHyM/Px8//PADoqOjkZiYCEtLSzRr1gz+/v549uwZcnJysGzZMvz9999ITEwEAPTo0QPa2tqYM2cOXrx4gaysLMyaNQv5+flim7IUFBTAx8cHH3zwgcLN5caNG4cffvgBx44dg7+/P3bu3IlPPvmkxH4CAwOhr68vTmZmZu92gIiIiIiIiEj56mvil2okJtGJiOqhnTt3QhAEvPfee5BKpVi3bh3Gjh0LFRUVqKur4+eff8atW7dgaGiIBg0a4NixYxg4cCBUVORvG0ZGRggNDcWhQ4ego6MDfX19pKWloUuXLmKbskydOhXXrl3D7t27FeZPmjQJjo6O6NChA1xcXLBjxw788ssvSEhIKLYff39/pKeni9PDhw/f7eAQERERERHVBCx1I8fj8PZ47OQq4TiwJjoRUT3UqlUrHD9+HFlZWcjIyICJiQlGjx6Nli1bAgBsbGwQFxeH9PR05OTkwMjICLa2tujatavYx4ABA5CQkIAnT55ATU0NBgYGkMlkYh+l8fb2xuHDh3HixAk0bdq01La2trYAgDt37qBVq1ZFlkulUoWyMkREREREVHu8fPlSvM8SEVFNxSQ6EVE9pq2tDW1tbTx79gxhYWFYvny5wnJ9fX0AwO3bt3Hx4kUsXry4SB+NGzcGAERGRiIlJQUff/xxidsTBAHTpk3DL7/8gqioKLRo0aLMGOPi4gAAJiYm5d0tIiKqgxoAQFYWoKqq7FCIqL7KylJ2BFUmNTUV06ZNw6FDh6CiooIRI0Zg7dq10NHRKXW96OhozJs3D+fOnYOqqio6deqEsLAwaGlplXvbBQUF7xo+EVGVYxKdiKgeCgsLgyAIsLCwwJ07dzB79mxYWlrCw8MDABAaGgojIyM0a9YMV69exYwZM+Ds7IwBAwaIfWzbtg1WVlYwMjJCdHQ0ZsyYAV9fX1hYWIht+vfvj2HDhsHb2xuAvIRLSEgIDhw4AF1dXSQlJQGQJ+u1tLSQkJCAkJAQDBo0CI0aNcKVK1fg6+uLXr16oWPHjtV4hIiIqKbJAgBTU2WHQUT1WF2+VtrFxQWJiYkIDw9Hbm4uPDw8MGnSJISEhJS4TnR0NJycnODv74/169dDTU0Nly9fLnd5RyKi2oRJdCKieig9PR3+/v74+++/YWhoiBEjRuDrr7+Guro6ACAxMRF+fn5ITk6GiYkJXF1dMX/+fIU+4uPj4e/vj9TUVJibm2PevHnw9fVVaFNY7qXQpk2bAAB9+vRRaLdt2za4u7tDQ0MDf/zxB9asWYOsrCyYmZlhxIgR+PLLL6vgKBARERER0Y0bN3D06FFcuHBBLN+4fv16DBo0CCtWrIBpCR9g+vr6Yvr06Zg7d6447/ULat6UnZ2N7Oxs8XlGRkYl7QERUdVjEp2IqB4aNWoURo0aVeLy6dOnY/r06aX2sXTpUixdurTUNvfv31d4LpRxd3UzMzMcP3681DZERFQ/aQNIfPyYdXOJSGkyMjLq5DdioqOjYWBgoHD/IwcHB6ioqODcuXMYNmxYkXVSUlJw7tw5uLi4wN7eHgkJCbC0tMTXX3+Nnj17FrudwMBALFq0qMr2o04r4/+oOqu+7ndVqK/HshL3m0l0IiIiIiKq8V4AgLa2fCIiUob8fGVHUCWSkpLQpEkThXlqamowNDQUyy++6e7duwCAgIAArFixAp06dcKOHTvQv39/XLt2DW3atCmyjr+/P/z8/MTnGRkZMDMzq8Q9ISKqOixURURERERERERUx8ydOxcSiaTU6ebNm2/Vd+HNQD/99FN4eHigc+fOWL16NSwsLLB169Zi15FKpdDT01OYqAwSibIjqBl4HN4ej51cJRwHXolORERERERERFTHzJw5E+7u7qW2admyJWQyGVJSUhTm5+XlITU1FTKZrNj1TExMAABt27ZVmG9lZYUHDx68fdBERDUUk+hERERERERERHWMkZERjIyMymxnZ2eHtLQ0xMTEwMbGBgAQGRmJgoIC2NraFruOubk5TE1NER8frzD/1q1bGDhwYIXi1GaZLiKqBVjOhYiIiIiIiIionrKysoKTkxO8vLxw/vx5nD59Gt7e3hgzZgxM//9Gqo8ePYKlpSXOnz8PAJBIJJg9ezbWrVuHn376CXfu3MH8+fNx8+ZNeHp6KnN3iIiqRIWT6CdOnMCQIUNgamoKiUSC/fv3Kyx3d3cvUmPLyclJoU1qaipcXFygp6cHAwMDeHp6IjMzU6HNlStX8OGHH0JTUxNmZmZYvnx5kVhCQ0NhaWkJTU1NdOjQAb/++mtFd4eIiIiIiIiIqF7btWsXLC0t0b9/fwwaNAg9e/bE5s2bxeW5ubmIj4/HixcvxHk+Pj7w9/eHr68vrK2tERERgfDwcLRq1UoZu1C3CYKyI6Darr7+DlXifle4nEtWVhasra0xYcIEDB8+vNg2Tk5O2LZtm/hcKpUqLHdxcUFiYiLCw8ORm5sLDw8PTJo0CSEhIQDkd2geMGAAHBwcEBQUhKtXr2LChAkwMDDApEmTAABnzpzB2LFjERgYiH/9618ICQmBs7MzLl26hPbt21d0t4iIiIiIiIiI6iVDQ0MxJ1Mcc3NzCMUko+bOnYu5c+e+07ZfvnzJm4xS8epr4pdqpAon0QcOHFhmfSupVFrizSdu3LiBo0eP4sKFC+jatSsAYP369Rg0aBBWrFgBU1NT7Nq1Czk5Odi6dSs0NDTQrl07xMXFYdWqVWISfe3atXBycsLs2bMBAIsXL0Z4eDg2bNiAoKCgYrednZ2N7Oxs8XlGRkZFd5+IiIiIiIiIiCpJQUGBskOouSQSZUdQM/A4vD0eO7lKOA5VUhM9KioKTZo0gYWFBaZMmYKnT5+Ky6Kjo2FgYCAm0AHAwcEBKioqOHfunNimV69e0NDQENs4OjoiPj4ez549E9s4ODgobNfR0RHR0dElxhUYGAh9fX1xMjMzq5T9JSIiIiKqaTZt2oSOHTtCT08Penp6sLOzw2+//SYuf/XqFaZOnYpGjRpBR0cHI0aMQHJyskIfb5ZplEgk2L17t0KbqKgodOnSBVKpFK1bt0ZwcHCRWDZu3Ahzc3NoamrC1tZWrKlLRERERFQbVHoS3cnJCTt27EBERASWLVuG48ePY+DAgcjPzwcAJCUloUmTJgrrqKmpwdDQEElJSWIbY2NjhTaFz8tqU7i8OP7+/khPTxenhw8fvtvOEhERERHVUE2bNsXSpUsRExODixcvol+/fhg6dCiuX78OAPD19cWhQ4cQGhqK48eP4/Hjx8WWa9y2bRsSExPFydnZWVx27949DB48GH379kVcXBx8fHwwceJEhIWFiW327NkDPz8/LFy4EJcuXYK1tTUcHR2RkpJS5ceAiIiIiKgyVLicS1nGjBkjPu7QoQM6duyIVq1aISoqCv3796/szVWIVCotUp+diIiIiKguGjJkiMLzr7/+Gps2bcLZs2fRtGlTbNmyBSEhIejXrx8AebLcysoKZ8+eRY8ePcT1DAwMSizVGBQUhBYtWmDlypUAACsrK5w6dQqrV6+Go6MjAGDVqlXw8vKCh4eHuM6RI0ewdevWd66jS0RERERUHaqknMvrWrZsicaNG+POnTsAAJlMVuSqk7y8PKSmpoon5zKZrMhXSQufl9WmpBN8IiIiIqL6Kj8/H7t370ZWVhbs7OwQExOD3NxchfKIlpaWaNasWZHyiFOnTkXjxo3RvXt3bN26VeHGcmWVWMzJyUFMTIxCGxUVFTg4OJRahjE7OxsZGRkKExERERGRslT6lehv+vvvv/H06VOYmJgAAOzs7JCWloaYmBjY2NgAACIjI1FQUABbW1uxzbx585Cbmwt1dXUAQHh4OCwsLNCwYUOxTUREBHx8fMRthYeHw87Orqp3iYiIiIioVrh69Srs7Ozw6tUr6Ojo4JdffkHbtm0RFxcHDQ0NGBgYKLR/szziV199hX79+qFBgwb4/fff8dlnnyEzMxPTp08HUHKJxYyMDLx8+RLPnj1Dfn5+sW1u3rxZYtyBgYFYtGjRO+49ERFRHfH554ChobKjqH6PHys7grrjhx+AixeVHUX1i42ttK4qnETPzMwUryoH5HUQ4+LiYGhoCENDQyxatAgjRoyATCZDQkICPv/8c7Ru3Vr8OqeVlRWcnJzg5eWFoKAg5ObmwtvbG2PGjIGpqSkAYNy4cVi0aBE8PT0xZ84cXLt2DWvXrsXq1avF7c6YMQO9e/fGypUrMXjwYOzevRsXL17E5s2b3/WYEBERERHVCRYWFoiLi0N6ejp++uknuLm54fjx4+Vef/78+eLjzp07IysrC998842YRK8q/v7+8PPzE59nZGTAzMysSrdJRERU4zRpAty/D1TgvbtOMjJSdgS1V+F9KW/ckE/1VSX8DlU4iX7x4kX07dtXfF54cuvm5oZNmzbhypUr2L59O9LS0mBqaooBAwZg8eLFCrXId+3aBW9vb/Tv3x8qKioYMWIE1q1bJy7X19fH77//jqlTp8LGxgaNGzfGggULMGnSJLGNvb09QkJC8OWXX+KLL75AmzZtsH//frRv3/6tDgQRERERUV2joaGB1q1bAwBsbGxw4cIFrF27FqNHj0ZOTg7S0tIUrkYvqzyira0tFi9ejOzsbEil0hJLLOrp6UFLSwuqqqpQVVWtcBlG3suIiKj+0NbWVnYINdeePUBYGPBaKbV6p1UrwMJC2VHUXnPnyo/fixfKjkR59PWBYcPeuZsKJ9H79OmjUAfxTWFhYWX2YWhoiJCQkFLbdOzYESdPniy1zciRIzFy5Mgyt0dEREREREBBQQGys7NhY2MDdXV1REREYMSIEQCA+Ph4PHjwoNTyiHFxcWjYsKGY4Lazs8Ovv/6q0Ob1EosaGhqwsbFBREQEnJ2dxRgiIiLg7e1dBXtIRERUh5ibA59+quwoqDbT1QVcXZUdRZ1Q5TXRiYiIiIio+vn7+2PgwIFo1qwZnj9/jpCQEERFRSEsLAz6+vrw9PSEn58fDA0Noaenh2nTpsHOzg49evQAABw6dAjJycno0aMHNDU1ER4ejiVLlmDWrFniNiZPnowNGzbg888/x4QJExAZGYm9e/fiyJEjYhs/Pz+4ubmha9eu6N69O9asWYOsrCx4eHhU+zEhIiIiInobTKITEREREdVBKSkpcHV1RWJiIvT19dGxY0eEhYXho48+AgCsXr1aLK2YnZ0NR0dHfPvtt+L66urq2LhxI3x9fSEIAlq3bo1Vq1bBy8tLbNOiRQscOXIEvr6+WLt2LZo2bYrvv/9evB8SAIwePRr//PMPFixYgKSkJHTq1AlHjx4tcrNRIiKqn169egU9PT1lh0FEVCom0YmIiIiI6qAtW7aUulxTUxMbN27Exo0bi13u5OQEJyenMrfTp08fxMbGltrG29ub5VuIiKhY+fn5yg6BiKhMKsoOgIiIiIiIiIiIiIiopmISnYiIiIiIiIiIiIioBEyiExERERERERERERGVgEl0IqJ66Pnz5/Dx8UHz5s2hpaUFe3t7XLhwQVyenJwMd3d3mJqaokGDBnBycsLt27cV+khISMCwYcNgZGQEPT09jBo1CsnJyWVue+PGjTA3N4empiZsbW1x/vx5heWvXr3C1KlT0ahRI+jo6GDEiBHl6peIiIiIiIiIqCowiU5EVA9NnDgR4eHh2LlzJ65evYoBAwbAwcEBjx49giAIcHZ2xt27d3HgwAHExsaiefPmcHBwQFZWFgAgKysLAwYMgEQiQWRkJE6fPo2cnBwMGTIEBQUFJW53z5498PPzw8KFC3Hp0iVYW1vD0dERKSkpYhtfX18cOnQIoaGhOH78OB4/fozhw4dX+TEhIiIiIiIiIiqOmrIDUCZBEAAAGRkZSo6EiOqrwvGncDyqDi9fvsS+fftw4MAB9OrVCwAQEBCAQ4cOYdOmTXB1dcXZs2dx7do1tGvXDgCwadMmyGQy/Pjjj5g4cSJOnz6N+/fvIzY2Fnp6egCA7du3o2HDhoiMjISDg0Ox2161ahW8vLzg4eEBAAgKCsKRI0ewdetWzJ07F+np6diyZQtCQkLQr18/AMC2bdtgZWWFs2fPokePHkX6zM7ORnZ2tvg8PT0dAMf2+uz58+d49eoVnj9/Dm1t7Xq3faoZlDG+12U8byeimoBje+UqPI48ZyIiZSrv2F6vk+hPnz4FAJiZmSk5EiKq754/fw59ff1q2VZeXh7y8/OhqampMF9LSwunTp3C6NGjAUBhuYqKCqRSKU6dOoWJEyciOzsbEokEUqlUbKOpqQkVFRWcOnWq2CR6Tk4OYmJi4O/vr9Cvg4MDoqOjAQAxMTHIzc1VWN/S0hLNmjVDdHR0sUn0wMBALFq0qMh8ju20dOnSer19qhmqc3yvy54/fw6AYzsR1Qwc2ytHYU7GwsJCyZEQEZU9ttfrJLqhoSEA4MGDB3wDrAMyMjJgZmaGhw8filfGUu1VX15PQRDw/PlzmJqaVts2dXV1YWdnh8WLF8PKygrGxsb48ccfER0djdatW4tJa39/f3z33XfQ1tbG6tWr8ffffyMxMREA0KNHD2hra2POnDlYsmQJBEHA3LlzkZ+fL7Z505MnT5Cfnw9jY2OF+cbGxrh58yYAICkpCRoaGjAwMCjSJikpqdh+/f394efnJz5PS0tD8+bNObbXQPXl77q24utTuZQxvtdlpqamePjwIXR1dSGRSJQdDv0/jht1C1/PsnFsr1zMydRcHA9qLr42la+8Y3u9TqKrqMhLwuvr6/MXrw7R09Pj61mH1IfXUxknjDt37sSECRPw3nvvQVVVFV26dMHYsWMRExMDdXV1/Pzzz/D09IShoSFUVVXh4OCAgQMHil9vMjIyQmhoKKZMmYJ169ZBRUUFY8eORZcuXcSxtbpIpVKFK+ILcWyvuerD33Vtxten8jAhUHlUVFTQtGlTZYdBJeC4Ubfw9Swdx/bKw5xMzcfxoObia1O5yjO21+skOhFRfdWqVSscP34cWVlZyMjIgImJCUaPHo2WLVsCAGxsbBAXF4f09HTk5OTAyMgItra26Nq1q9jHgAEDkJCQgCdPnkBNTQ0GBgaQyWRiH29q3LgxVFVVkZycrDA/OTkZMpkMACCTyZCTk4O0tDSFq9Ffb0NEREREREREVJ2q93JBIiKqUbS1tWFiYoJnz54hLCwMQ4cOVViur68PIyMj3L59GxcvXiyyHJAnxw0MDBAZGYmUlBR8/PHHxW5LQ0MDNjY2iIiIEOcVFBQgIiICdnZ2AOTJe3V1dYU28fHxePDggdiGiIiIiIiIiKg61esr0aVSKRYuXFhsGQCqffh61i18PatWWFgYBEGAhYUF7ty5g9mzZ8PS0hIeHh4AgNDQUBgZGaFZs2a4evUqZsyYAWdnZwwYMEDsY9u2bbCysoKRkRGio6MxY8YM+Pr6KtwYqH///hg2bBi8vb0BAH5+fnBzc0PXrl3RvXt3rFmzBllZWeJ29fX14enpCT8/PxgaGkJPTw/Tpk2DnZ1dsTcVLQ5/d2ouvjY1G18fIqoojht1C19Pqm78nau5+NrUXHxtlEciFBa4JSKiemPv3r3w9/fH33//DUNDQ4wYMQJff/21WAds3bp1+Oabb5CcnAwTExO4urpi/vz50NDQEPuYO3cugoODkZqaCnNzc0yePBm+vr4KN3wzNzeHu7s7AgICxHkbNmzAN998g6SkJHTq1Anr1q2Dra2tuPzVq1eYOXMmfvzxR2RnZ8PR0RHffvsty7kQERERERERkVIwiU5EREREREREREREVALWRCciIiIiIiIiIiIiKgGT6EREREREREREREREJWASnYiIiIiIiIiIiIioBEyiExERERERERERERGVoN4m0Tdu3Ahzc3NoamrC1tYW58+fV3ZI9BaWLl0KiUQCHx8fcd6rV68wdepUNGrUCDo6OhgxYgSSk5OVFySVKD8/H/Pnz0eLFi2gpaWFVq1aYfHixXj9fseCIGDBggUwMTGBlpYWHBwccPv2bSVGTTUZx3bl4991zXLixAkMGTIEpqamkEgk2L9/f5E2N27cwMcffwx9fX1oa2ujW7duePDggbic76tE9QvHjbolMDAQ3bp1g66uLpo0aQJnZ2fEx8crtCnP6/XgwQMMHjwYDRo0QJMmTTB79mzk5eVV565QLVXR8/PQ0FBYWlpCU1MTHTp0wK+//lpNkdY/b/u/0+7duyGRSODs7Fy1AdZTFX1d1qxZAwsLC2hpacHMzAy+vr549epVNUVbv9TLJPqePXvg5+eHhQsX4tKlS7C2toajoyNSUlKUHRpVwIULF/Ddd9+hY8eOCvN9fX1x6NAhhIaG4vjx43j8+DGGDx+upCipNMuWLcOmTZuwYcMG3LhxA8uWLcPy5cuxfv16sc3y5cuxbt06BAUF4dy5c9DW1oajoyPfFKgIju01A/+ua5asrCxYW1tj48aNxS5PSEhAz549YWlpiaioKFy5cgXz58+Hpqam2Ibvq0T1C8eNuuX48eOYOnUqzp49i/DwcOTm5mLAgAHIysoS25T1euXn52Pw4MHIycnBmTNnsH37dgQHB2PBggXK2CWqRSp6fn7mzBmMHTsWnp6eiI2NhbOzM5ydnXHt2rVqjrzue9v/ne7fv49Zs2bhww8/rKZI65eKvi4hISGYO3cuFi5ciBs3bmDLli3Ys2cPvvjii2qOvJ4Q6qHu3bsLU6dOFZ/n5+cLpqamQmBgoBKjoop4/vy50KZNGyE8PFzo3bu3MGPGDEEQBCEtLU1QV1cXQkNDxbY3btwQAAjR0dFKipZKMnjwYGHChAkK84YPHy64uLgIgiAIBQUFgkwmE7755htxeVpamiCVSoUff/yxWmOlmo9je83Av+uaC4Dwyy+/KMwbPXq08Mknn5S4Dt9Xieo3jht1T0pKigBAOH78uCAI5Xu9fv31V0FFRUVISkoS22zatEnQ09MTsrOzq3cHqFap6Pn5qFGjhMGDByvMs7W1FT799NMqjbM+epv/nfLy8gR7e3vh+++/F9zc3IShQ4dWQ6T1S0Vfl6lTpwr9+vVTmOfn5yd88MEHVRpnfVXvrkTPyclBTEwMHBwcxHkqKipwcHBAdHS0EiOjipg6dSoGDx6s8DoCQExMDHJzcxXmW1paolmzZnx9ayB7e3tERETg1q1bAIDLly/j1KlTGDhwIADg3r17SEpKUng99fX1YWtry9eTFHBsrzn4d117FBQU4MiRI3j//ffh6OiIJk2awNbWVqF0A99Xieh1HDdqv/T0dACAoaEhgPK9XtHR0ejQoQOMjY3FNo6OjsjIyMD169erMXqqTd7m/Dw6OrrI//iOjo4cOyrZ2/7v9NVXX6FJkybw9PSsjjDrnbd5Xezt7RETEyOWfLl79y5+/fVXDBo0qFpirm/UlB1AdXvy5Any8/MVTgAAwNjYGDdv3lRSVFQRu3fvxqVLl3DhwoUiy5KSkqChoQEDAwOF+cbGxkhKSqqmCKm85s6di4yMDFhaWkJVVRX5+fn4+uuv4eLiAgDia1bc3ytfT3odx/aag3/XtUdKSgoyMzOxdOlS/Oc//8GyZctw9OhRDB8+HMeOHUPv3r35vkpECjhu1G4FBQXw8fHBBx98gPbt2wMo3/9PSUlJxb5vFy4jKs7bnJ+X9LvG37PK9TavzalTp7BlyxbExcVVQ4T109u8LuPGjcOTJ0/Qs2dPCIKAvLw8TJ48meVcqki9S6JT7fbw4UPMmDED4eHhCnUXqXbau3cvdu3ahZCQELRr1w5xcXHw8fGBqakp3NzclB0eEb0F/l3XHgUFBQCAoUOHwtfXFwDQqVMnnDlzBkFBQejdu7cywyOiGojjRu02depUXLt2DadOnVJ2KERUizx//hzjx4/Hf//7XzRu3FjZ4dBroqKisGTJEnz77bewtbXFnTt3MGPGDCxevBjz589Xdnh1Tr1Lojdu3BiqqqpF7jaenJwMmUympKiovGJiYpCSkoIuXbqI8/Lz83HixAls2LABYWFhyMnJQVpamsLVFHx9a6bZs2dj7ty5GDNmDACgQ4cO+OuvvxAYGAg3NzfxNUtOToaJiYm4XnJyMjp16qSMkKmG4thec/DvuvZo3Lgx1NTU0LZtW4X5VlZWYoJFJpPxfZWIRBw3ai9vb28cPnwYJ06cQNOmTcX55Xm9ZDKZWCrg9eWFy4iK8zbn5zKZjOfz1aCir01CQgLu37+PIUOGiPMKP1RVU1NDfHw8WrVqVbVB1wNv8zczf/58jB8/HhMnTgQg/98rKysLkyZNwrx586CiUu+qeFepenc0NTQ0YGNjg4iICHFeQUEBIiIiYGdnp8TIqDz69++Pq1evIi4uTpy6du0KFxcX8bG6urrC6xsfH48HDx7w9a2BXrx4UWRQV1VVFd+QW7RoAZlMpvB6ZmRk4Ny5c3w9SQHH9pqDf9e1h4aGBrp164b4+HiF+bdu3ULz5s0BADY2NnxfJSIRx43aRxAEeHt745dffkFkZCRatGihsLw8r5ednR2uXr2KlJQUsU14eDj09PSKfKBCVOhtzs/t7OwU2gPy3zWOHZWroq+NpaVlkTzMxx9/jL59+yIuLg5mZmbVGX6d9TZ/MyX97wXIx3+qZEq+salS7N69W5BKpUJwcLDw559/CpMmTRIMDAwU7jZOtUfv3r2FGTNmiM8nT54sNGvWTIiMjBQuXrwo2NnZCXZ2dsoLkErk5uYmvPfee8Lhw4eFe/fuCT///LPQuHFj4fPPPxfbLF26VDAwMBAOHDggXLlyRRg6dKjQokUL4eXLl0qMnGoiju01A/+ua5bnz58LsbGxQmxsrABAWLVqlRAbGyv89ddfgiAIws8//yyoq6sLmzdvFm7fvi2sX79eUFVVFU6ePCn2wfdVovqF40bdMmXKFEFfX1+IiooSEhMTxenFixdim7Jer7y8PKF9+/bCgAEDhLi4OOHo0aOCkZGR4O/vr4xdolqkrPPz8ePHC3PnzhXbnz59WlBTUxNWrFgh3LhxQ1i4cKGgrq4uXL16VVm7UGdV9LV5k5ubmzB06NBqirb+qOjrsnDhQkFXV1f48ccfhbt37wq///670KpVK2HUqFHK2oU6rV4m0QVBENavXy80a9ZM0NDQELp37y6cPXtW2SHRW3ozif7y5Uvhs88+Exo2bCg0aNBAGDZsmJCYmKi8AKlEGRkZwowZM4RmzZoJmpqaQsuWLYV58+YJ2dnZYpuCggJh/vz5grGxsSCVSoX+/fsL8fHxSoyaajKO7crHv+ua5dixYwKAIpObm5vYZsuWLULr1q0FTU1NwdraWti/f79CH3xfJapfOG7ULcW9lgCEbdu2iW3K83rdv39fGDhwoKClpSU0btxYmDlzppCbm1vNe0O1UWnn571791YYWwRBEPbu3Su8//77goaGhtCuXTvhyJEj1Rxx/VHR1+Z1TKJXnYq8Lrm5uUJAQIDQqlUrQVNTUzAzMxM+++wz4dmzZ9UfeD0gEQRe309EREREREREREREVJx6VxOdiIiIiIiIiIiIiKi8mEQnIiIiIiIiIiIiIioBk+hERERERERERERERCVgEp2IiIiIiIiIiIiIqARMohMRERERERERERERlYBJdCIiIiIiIiIiIiKiEjCJTkRERERERERERERUAibRiYiIiIiIiIiIiIhKwCQ6ERERERERERERVQt3d3c4OztX+3aDg4MhkUggkUjg4+Mjzjc3N8eaNWtKXbdwPQMDgyqNkWouJtGJStGnTx9xoIyLi6vy7bm7u4vb279/f5Vvj4ioPuLYTkRU93BsJyKqGQrHxpKmgIAArF27FsHBwUqJT09PD4mJiVi8eHGF1ktMTCwz0U51G5PoRGXw8vJCYmIi2rdvX+XbWrt2LRITE6t8O0RE9R3HdiKiuodjOxGR8iUmJorTmjVrxKR14TRr1izo6+sr7YpuiUQCmUwGXV3dCq0nk8mgr69fRVFRbcAkOlEZGjRoAJlMBjU1tSrflr6+PmQyWZVvh4iovuPYTkRU93BsJyJSPplMJk76+vpi0rpw0tHRKVLOpU+fPpg2bRp8fHzQsGFDGBsb47///S+ysrLg4eEBXV1dtG7dGr/99pvCtq5du4aBAwdCR0cHxsbGGD9+PJ48efJWcb948QITJkyArq4umjVrhs2bN7/LYaA6iEl0qjf++ecfyGQyLFmyRJx35swZaGhoICIiokJ9nTp1Curq6nj16pU47/79+5BIJPjrr7/e+g2AiIgqhmM7EVHdw7GdiKj+2b59Oxo3bozz589j2rRpmDJlCkaOHAl7e3tcunQJAwYMwPjx4/HixQsAQFpaGvr164fOnTvj4sWLOHr0KJKTkzFq1Ki32v7KlSvRtWtXxMbG4rPPPsOUKVMQHx9fmbtItRyT6FRvGBkZYevWrQgICMDFixfx/PlzjB8/Ht7e3ujfv3+F+oqLi4OVlRU0NTXFebGxsWjYsCGaN28OoOJvAEREVHEc24mI6h6O7URE9Y+1tTW+/PJLtGnTBv7+/tDU1ETjxo3h5eWFNm3aYMGCBXj69CmuXLkCANiwYQM6d+6MJUuWwNLSEp07d8bWrVtx7Ngx3Lp1q8LbHzRoED777DO0bt0ac+bMQePGjXHs2LHK3k2qxZhEp3pl0KBB8PLygouLCyZPngxtbW0EBgZWuJ/Lly+jc+fOCvPi4uJgbW0tPq/oGwAREb0dju1ERHUPx3YiovqlY8eO4mNVVVU0atQIHTp0EOcZGxsDAFJSUgDIx/djx45BR0dHnCwtLQEACQkJ77T9whI0hdsiAoCqLxZHVMOsWLEC7du3R2hoKGJiYiCVSivcR1xcHMaNG6cwLzY2Fp06dRKfV/QNgIiI3h7HdiKiuodjOxFR/aGurq7wXCKRKMyTSCQAgIKCAgBAZmYmhgwZgmXLlhXpy8TEpFK2X7gtIoBXolM9lJCQgMePH6OgoAD379+v8Pr5+fm4du1akStaLl26pHAyXtE3ACIiensc24mI6h6O7UREVJIuXbrg+vXrMDc3R+vWrRUmbW1tZYdHdRCT6FSv5OTk4JNPPsHo0aOxePFiTJw4scJXlMTHx+PVq1cwNTUV50VHR+PRo0cKJ+NERFQ9OLYTEdU9HNuJiKg0U6dORWpqKsaOHYsLFy4gISEBYWFh8PDwQH5+vrLDozqISXSqV+bNm4f09HSsW7cOc+bMwfvvv48JEyZUqI+4uDgAwPr163H79m389ttvcHV1BSA/2SciourFsZ2IqO7h2E5ERKUxNTXF6dOnkZ+fjwEDBqBDhw7w8fGBgYEBVFSY7qTKx5roVG9ERUVhzZo1OHbsGPT09AAAO3fuhLW1NTZt2oQpU6aUq5+4uDg4Ojri7t276NChA9q2bYtFixZhypQpWLduHXbu3FmVu0FERK/h2E5EVPdwbCciqhvc3d3h7u5eZH5wcLDC86ioqCJtiivjJQiCwvM2bdrg559/focIS95W4QexRIWYRKd6o0+fPsjNzVWYZ25ujvT09Ar1c/nyZXTr1g3/+c9/FOa/fsOit30DICKiiuHYTkRU93BsJyKiqpKeng4dHR1MnTq12JuSlkRHRwd5eXnQ1NSswuioJuP3G4jK8O2330JHRwdXr14FID8Z79ChQ5Vsa/LkydDR0amSvomI6H84thMR1T0c24mIqDQjRozA7du3ERcXh9mzZ1do3bi4OFy7dg2xsbFVFB3VdBKBH6kTlejRo0d4+fIlAKBZs2ZITU2FiYkJrl+/jrZt21b69lJSUpCRkQEAMDEx4R2liYiqAMd2IqK6h2M7ERERVSUm0YmIiIiIiIiIiIiISsByLkREREREREREREREJWASnYiIiIiIiIiIiIioBEyiExERERERERERERGVgEl0IiIiIiIiIiIiIqISMIlORERERERERERERFQCJtGJiIiIiIiIiIiIiErAJDoRERERERERERERUQmYRCciIiIiIiIiIiIiKgGT6EREREREREREREREJWASnYiIiIiIiIiIiIioBEyiExERERERERERERGVgEl0IiIiIiIiIiIiIqISMIlORERERERERERERFQCJtGJiIiIiIiIiIiIiErAJDoRERERERERERERUQmYRCciIiIiIiIiIiIiKgGT6FQh5ubmWLNmjVJjCA4OhoGBgVJjqKiacNyUISAgAJ06darQOhKJBPv37y9xeZ8+fSCRSCCRSBAXF1ehvt3d3cV1S9sGUV1Xk/8G3mbcqM/e5j2xrPekdxkrAwICxHXr4/seUVWIioqCRCJBWlpaqe1qwvkmz9NrD56nE5Gy1ORx9/79++JY9Db/kxSuW9veC6l8mESvIQpPGpYuXaowf//+/ZBIJNUeT0knwBcuXMCkSZOqPZ6qVBtP9t9Wnz594OPjUyV9F3fCO2vWLERERFT6try8vJCYmIj27dsjJiYGEokEZ8+eLbZt//79MXz4cADA2rVrkZiYWOnxENUkr/8T+vrk5ORUZdtU5j+8NW0Md3d3h7Ozc5X0Xdw/HKNHj8atW7cqfVtOTk5ITEzEwIEDkZycDHV1dezevbvYtp6enujSpQsA+bifmJiIpk2bVnpMRDXZ62OvhoYGWrduja+++gp5eXnv3Le9vT0SExOhr68PgOfpdRXP03meTlTTDRkypMT/KU6ePAmJRIIrV65UuN+a+OHZH3/8IY6R06ZNg5WVVbHtHjx4AFVVVRw8eBAAkJiYWGM/IKB3xyR6DaKpqYlly5bh2bNnyg6lREZGRmjQoIGyw1CKnJwcZYdQ6+jo6KBRo0aV3m+DBg0gk8mgpqYGGxsbWFtbY+vWrUXa3b9/H8eOHYOnpycAQF9fHzKZrNLjIappChOgr08//vijUmPiGFo1tLS00KRJk0rvVyqVQiaTQSqVwtjYGIMHDy52nM3KysLevXvFcVZHRwcymQyqqqqVHhNRTVc49t6+fRszZ85EQEAAvvnmm3fuV0NDAzKZrMwLa3ieThXB83QiqihPT0+Eh4fj77//LrJs27Zt6Nq1Kzp27KiEyCpfo0aNxDHS09MTN2/exJkzZ4q0Cw4ORpMmTTBo0CAAgEwmEz/0prqHSfQaxMHBATKZDIGBgaW2O3XqFD788ENoaWnBzMwM06dPR1ZWlrg8MTERgwcPhpaWFlq0aIGQkJAiV6+tWrUKHTp0gLa2NszMzPDZZ58hMzMTgPwrox4eHkhPTxevqAkICACgeBXcuHHjMHr0aIXYcnNz0bhxY+zYsQMAUFBQgMDAQLRo0QJaWlqwtrbGTz/9VOr+ZWdnY9asWXjvvfegra0NW1tbREVFlbrOgQMH0KVLF2hqaqJly5ZYtGiRwpU/aWlp+PTTT2FsbAxNTU20b98ehw8fLnNfFy9eDFdXV+jp6YlX9uzbtw/t2rWDVCqFubk5Vq5cqRBLSkoKhgwZIh7/Xbt2FYk3LS0NEydOhJGREfT09NCvXz9cvny5xP0r/ErR7t27YW9vL+7D8ePHFdodP34c3bt3h1QqhYmJCebOnSseB3d3dxw/fhxr164V9/X+/fsAgGvXrmHgwIHQ0dGBsbExxo8fjydPnoj99unTB9OnT8fnn38OQ0NDyGQy8TgVHisAGDZsGCQSifj8za+JXrhwAR999BEaN24MfX199O7dG5cuXSpxv8vL09MTe/bswYsXLxTmBwcHw8TEpEqvwCWqiQoToK9PDRs2LLH9w4cPMWrUKBgYGMDQ0BBDhw4Vx4dCW7duFcc+ExMTeHt7Ayj77//7779HixYtoKmpCUB+tcbQoUOho6MDPT09jBo1CsnJycXGdeLECairqyMpKUlhvo+PDz788MNSx/C3eS+RSCTYtGkTBg4cCC0tLbRs2bLIe9bVq1fRr18/aGlpoVGjRpg0aZL4/hkQEIDt27fjwIEDYjyF2yzrGBdewb5ixQqYmJigUaNGmDp1KnJzcwHIx+G//voLvr6+Yt9A0as0ExISMHToUBgbG0NHRwfdunXDH3/8Uep+l4enpyciIiLw4MEDhfmhoaHIy8uDi4vLO2+DqLYrHHubN2+OKVOmwMHBQbwy7dmzZ3B1dUXDhg3RoEEDDBw4ELdv3xbX/euvvzBkyBA0bNgQ2traaNeuHX799VcAiuVceJ7+v33lebocz9OJqLr861//gpGREYKDgxXmZ2ZmIjQ0VPxQrKyx+HUljVHlOactT+6romN6cTp16oQuXboU+UBQEAQEBwfDzc0NampqFeqTaicm0WsQVVVVLFmyBOvXry/2kz1APpA4OTlhxIgRuHLlCvbs2YNTp06JyQwAcHV1xePHjxEVFYV9+/Zh8+bNSElJUehHRUUF69atw/Xr17F9+3ZERkbi888/ByD/yuiaNWugp6cnXsE4a9asIrG4uLjg0KFDYvIAAMLCwvDixQsMGzYMABAYGIgdO3YgKCgI169fh6+vLz755JMiJ5Wv8/b2RnR0NHbv3o0rV65g5MiRcHJyUvhH43UnT56Eq6srZsyYgT///BPfffcdgoOD8fXXXwOQ/4MwcOBAnD59Gj/88AP+/PNPLF26FKqqqmXu64oVK2BtbY3Y2FjMnz8fMTExGDVqFMaMGYOrV68iICAA8+fPV3gTcXd3x8OHD3Hs2DH89NNP+Pbbb4sc/5EjRyIlJQW//fYbYmJi0KVLF/Tv3x+pqaklHhcAmD17NmbOnInY2FjY2dlhyJAhePr0KQDg0aNHGDRoELp164bLly9j06ZN2LJlC/7zn/8AkH9F0s7OTvyKZWJiIszMzJCWloZ+/fqhc+fOuHjxIo4ePYrk5GSMGjVKYdvbt2+HtrY2zp07h+XLl+Orr75CeHg4APlJNyD/9DkxMVF8/qbnz5/Dzc0Np06dwtmzZ9GmTRsMGjQIz58/L3W/y+Li4oLs7GyFf/wEQcD27dvh7u7OKyKJSpGbmwtHR0fo6uri5MmTOH36NHR0dODk5CRe2bdp0yZMnToVkyZNwtWrV3Hw4EG0bt0aQOl//3fu3MG+ffvw888/Iy4uDgUFBRg6dChSU1Nx/PhxhIeH4+7du0USPYV69eqFli1bYufOnQrx7tq1CxMmTCh1DK/oe0mh+fPnY8SIEbh8+TJcXFwwZswY3LhxA4D8qmtHR0c0bNgQFy5cQGhoKP744w/xPXjWrFkYNWqUwjcB7O3ty3WMAeDYsWNISEjAsWPHsH37dgQHB4vvLz///DOaNm2Kr776Suy7OJmZmRg0aBAiIiIQGxsLJycnDBkypEjyu6IGDRoEY2PjIv80bdu2DcOHD6835RaIKkJLS0v8G3d3d8fFixdx8OBBREdHQxAEDBo0SPygbOrUqcjOzsaJEydw9epVLFu2DDo6OkX65Hk6z9N5nk5EyqKmpgZXV1cEBwdDEARxfmhoKPLz8zF27NhyjcWvK2mMKs85bXlyX287pr/J09MTe/fuVbiANSoqCvfu3cOECRMq1BfVYgLVCG5ubsLQoUMFQRCEHj16CBMmTBAEQRB++eUX4fWXydPTU5g0aZLCuidPnhRUVFSEly9fCjdu3BAACBcuXBCX3759WwAgrF69usTth4aGCo0aNRKfb9u2TdDX1y/Srnnz5mI/ubm5QuPGjYUdO3aIy8eOHSuMHj1aEARBePXqldCgQQPhzJkzCn14enoKY8eOLTaOv/76S1BVVRUePXqkML9///6Cv79/sbH1799fWLJkiUL7nTt3CiYmJoIgCEJYWJigoqIixMfHF7vN0vbV2dlZYd64ceOEjz76SGHe7NmzhbZt2wqCIAjx8fECAOH8+fPi8sLXpPC4nTx5UtDT0xNevXql0E+rVq2E7777rtgY7927JwAQli5dKs7Lzc0VmjZtKixbtkwQBEH44osvBAsLC6GgoEBss3HjRkFHR0fIz88XBEEQevfuLcyYMUOh78WLFwsDBgxQmPfw4UMBgHjMevfuLfTs2VOhTbdu3YQ5c+aIzwEIv/zyi0KbhQsXCtbW1sXukyAIQn5+vqCrqyscOnSo1H5eV9w+CIIgjBkzRujdu7f4PCIiQgAg3L59u0jbsrZBVJu5ubkJqqqqgra2tsL09ddfi21e/xvYuXNnkbEjOztb0NLSEsLCwgRBEARTU1Nh3rx5JW6zpL9/dXV1ISUlRZz3+++/C6qqqsKDBw/EedevX1cYN98cN5YtWyZYWVmJz/ft2yfo6OgImZmZgiAUP4aX572kpP2YPHmywjxbW1thypQpgiAIwubNm4WGDRuK2xYEQThy5IigoqIiJCUlCYKg+H5eqDzH2M3NTWjevLmQl5cnthk5cqT4nioIiu/BhUp6D3tdu3bthPXr15faz+uK2wdBEIS5c+cKLVq0EPfjzp07gkQiEf74448ibcvaBlFd8/rfTUFBgRAeHi5IpVJh1qxZwq1btwQAwunTp8X2T548EbS0tIS9e/cKgiAIHTp0EAICAort+9ixYwIA4dmzZ4Ig8Dy9cF95ns7zdCKqfoXj5rFjx8R5H374ofDJJ58IglD2WCwIRc8Ty/t3//o5bXlyX+8ypsfGxirMf/bsmaCpqSls27ZNnDd+/Pgi468glO/8nGonXoleAy1btgzbt28Xr3x73eXLlxEcHAwdHR1xcnR0REFBAe7du4f4+HioqamJN/gCgNatWxf5Gv8ff/yB/v3747333oOuri7Gjx+Pp0+fFvmaXWnU1NQwatQo8WuQWVlZOHDggPiV7jt37uDFixf46KOPFOLdsWMHEhISiu3z6tWryM/Px/vvv6+wzvHjx0tc5/Lly/jqq68U2hdexfHixQvExcWhadOmeP/998u9b4W6du2q8PzGjRv44IMPFOZ98MEHuH37NvLz83Hjxg2x/l8hS0tLhSv0Ll++jMzMTDRq1Egh5nv37pW4j4Xs7OzEx2pqaujatav4e3Ljxg3Y2dkp1Mv84IMPkJmZWeI3GwrjOXbsmEIslpaWAKAQz5u1zUxMTIp8yluW5ORkeHl5oU2bNtDX14eenh4yMzPf+QpJAJgwYQJOnDghxrx161b07t1bvFqWqD7p27cv4uLiFKbJkycX2/by5cu4c+cOdHV1xTHA0NAQr169QkJCAlJSUvD48WP079+/wnE0b94cRkZG4vMbN27AzMwMZmZm4ry2bdvCwMCg2Pc8QH7V4J07d8SbkgUHB2PUqFHQ1tYucbtv815S6PVxtvD56+OstbW1wrY/+OADFBQUID4+vsQ+yzrGhdq1a6dwRd7bjLOZmZmYNWsWrKysYGBgAB0dHdy4caPSxtl79+7h2LFjAORXDJmbm6Nfv37v3DdRXXD48GHo6OhAU1MTAwcOxOjRoxEQECCeH9ra2optGzVqBAsLC3F8mT59Ov7zn//ggw8+wMKFC9/qxmyv43m6HM/Ty4/n6URUHpaWlrC3txdLm9y5cwcnT54US7mUNRaXV1nntOXJfb3LmP4mAwMDDB8+XNzvjIwM7Nu3T9xvqh9YtKcG6tWrFxwdHeHv7w93d3eFZZmZmfj0008xffr0Ius1a9YMt27dKrP/+/fv41//+hemTJmCr7/+GoaGhjh16hQ8PT2Rk5NToRsSubi4oHfv3khJSUF4eDi0tLTEunaFXx89cuQI3nvvPYX1pFJpsf1lZmZCVVUVMTExRb7aV9xXWgvXWbRokXhn99dpampCS0ur3PvzptKSNG8rMzMTJiYmxdaPVMbX4TMzMzFkyBAsW7asyDITExPxsbq6usIyiUSCgoKCCm3Lzc0NT58+xdq1a9G8eXNIpVLY2dlVys2g+vfvj2bNmiE4OBizZ8/Gzz//jO++++6d+yWqjbS1tcv9j2lmZiZsbGyKrQtrZGQEFZW3/7y9MsbQJk2aYMiQIdi2bRtatGiB3377rcz6u2/zXlKVyjrGhSpjnJ01axbCw8OxYsUKtG7dGlpaWvj3v/9dKeNsmzZt8OGHH2Lbtm3o06cPduzYAS8vrzJvdkhUX/Tt2xebNm2ChoYGTE1NK1QfdeLEiXB0dMSRI0fw+++/IzAwECtXrsS0adPeOh6ep1ccz9N5nk5EZfP09MS0adOwceNGbNu2Da1atULv3r0rdRuVcU5b2WO6p6cn+vfvjzt37uDYsWNQVVXFyJEjK9wP1V5MotdQS5cuRadOnWBhYaEwv0uXLvjzzz9LTI5YWFggLy8PsbGx4lUWd+7cwbNnz8Q2MTExKCgowMqVK8XkyN69exX60dDQKNenhPb29jAzM8OePXvw22+/YeTIkeJJXNu2bSGVSvHgwYNyD6idO3dGfn4+UlJS8OGHH5ZrnS5duiA+Pr7EY9KxY0f8/fffuHXrVrFXuZR3XwHAysoKp0+fVph3+vRpvP/++1BVVYWlpSXy8vIQExODbt26AZB/QpqWlqYQb1JSEtTU1MSbZpTX2bNn0atXLwAQt1NYi9fKygr79u2DIAhiQuP06dPQ1dVF06ZNS9zXLl26YN++fTA3N3+nm2Goq6uXeRxPnz6Nb7/9Vrxz9cOHDxVujPQuVFRU4OHhgS1btuC9996DhoYG/v3vf1dK30R1WZcuXbBnzx40adIEenp6xbYxNzdHREQE+vbtW+zy8vz9A/Jx6uHDh3j48KF4Nfqff/6JtLQ0tG3btsT1Jk6ciLFjx6Jp06Zo1aqVwtUtxY1rb/NeUujs2bNwdXVVeN65c2cx/uDgYGRlZYnJm9OnT0NFRUV8vy5pnC3rGJdHed6vTp8+DXd3d7HmcWZmZpGbxL4LT09PTJkyBR9//DEePXpU5MN+ovqspA8wrayskJeXh3PnzsHe3h4A8PTpU8THxyuMfWZmZpg8eTImT54Mf39//Pe//y02ic7z9OLxPL1kPE8noso0atQozJgxAyEhIdixYwemTJkijm1ljcXFKW6MKuuctjy5r3cZ04vTt29ftGjRAtu2bcOxY8cwZsyYKvlAl2oulnOpoTp06AAXFxesW7dOYf6cOXNw5swZeHt7Iy4uDrdv38aBAwfEEzRLS0s4ODhg0qRJOH/+PGJjYzFp0iRoaWmJg1rr1q2Rm5uL9evX4+7du9i5cyeCgoIUtmNubo7MzExERETgyZMnpZZ5GTduHIKCghAeHi5+RRQAdHV1MWvWLPj6+mL79u1ISEjApUuXsH79emzfvr3Yvt5//324uLjA1dUVP//8M+7du4fz588jMDAQR44cKXadBQsWYMeOHVi0aBGuX7+OGzduYPfu3fjyyy8BAL1790avXr0wYsQIhIeH4969e/jtt99w9OjRCu/rzJkzERERgcWLF+PWrVvYvn07NmzYIN7kyMLCAk5OTvj0009x7tw5xMTEYOLEiQpX2Tg4OMDOzg7Ozs74/fffcf/+fZw5cwbz5s3DxYsXS9w2AGzcuBG//PILbt68ialTp+LZs2fiTSw+++wzPHz4ENOmTcPNmzdx4MABLFy4EH5+fuKHJebm5jh37hzu37+PJ0+eoKCgAFOnTkVqairGjh2LCxcuICEhAWFhYfDw8KjQ160Kk2xJSUkKb1yva9OmDXbu3IkbN27g3LlzcHFxeacrkN7k4eGBR48e4YsvvsDYsWMrtW+i2iQ7OxtJSUkKU0n/CLu4uKBx48YYOnQoTp48iXv37iEqKgrTp08Xv2IeEBCAlStXYt26dbh9+7Y4lhcqz98/IB//Ct/fLl26hPPnz8PV1RW9e/cu8rX81zk6OkJPTw//+c9/4OHhobCsuDH8bd5LCoWGhmLr1q24desWFi5ciPPnz4vvsS4uLtDU1ISbmxuuXbuGY8eOYdq0aRg/fjyMjY3FeK5cuYL4+Hg8efIEubm55TrG5WFubo4TJ07g0aNHJb6ebdq0EW/kevnyZYwbN67CVyOWpjAJ9+mnn2LAgAEKpXmIqHht2rTB0KFD4eXlhVOnTuHy5cv45JNP8N5772Ho0KEAAB8fH4SFheHevXu4dOkSjh07Bisrq2L743l68XieXjKepxNRZdLR0cHo0aPh7++PxMREhYsqyhqLi1PcGFXWOW15cl/vMqYXRyKRYMKECdi0aROio6NZyqU+UnZRdpIr7iZe9+7dEzQ0NIQ3X6bz588LH330kaCjoyNoa2sLHTt2VLhh3OPHj4WBAwcKUqlUaN68uRASEiI0adJECAoKEtusWrVKMDExEbS0tARHR0dhx44dCjcsEgRBmDx5stCoUSMBgLBw4UJBEIq/Udiff/4pABCaN2+ucLMcQZDfWGnNmjWChYWFoK6uLhgZGQmOjo7C8ePHSzwWOTk5woIFCwRzc3NBXV1dMDExEYYNGyZcuXJFEITib9Jw9OhRwd7eXtDS0hL09PSE7t27C5s3bxaXP336VPDw8BAaNWokaGpqCu3btxcOHz5c4X0VBEH46aefhLZt2wrq6upCs2bNhG+++UZheWJiojB48GBBKpUKzZo1E3bs2FGkr4yMDGHatGmCqampoK6uLpiZmQkuLi4KN9t7XeHNLUJCQoTu3bsLGhoaQtu2bYXIyEiFdlFRUUK3bt0EDQ0NQSaTCXPmzBFyc3PF5fHx8UKPHj0ELS0tAYBw7949QRAE4datW8KwYcMEAwMDQUtLS7C0tBR8fHzE17O4mwQNHTpUcHNzE58fPHhQaN26taCmpiY0b95cEISiNyy6dOmS0LVrV0FTU1No06aNEBoaWuGbipR0w6JCAwYMKHLTqDeVtQ2i2szNzU0AUGSysLAQ27z5N5CYmCi4uroKjRs3FqRSqdCyZUvBy8tLSE9PF9sEBQWJY7mJiYkwbdo0cVl5/v4L/fXXX8LHH38saGtrC7q6usLIkSPFm3KWtt78+fMFVVVV4fHjx0WWFTeGl/VeUhwAwsaNG4WPPvpIkEqlgrm5ubBnzx6FNleuXBH69u0raGpqCoaGhoKXl5fw/PlzcXlKSor4Ho3XbrpU1jEu7jxgxowZCjdii46OFjp27ChIpVLx3ODN98R79+4Jffv2FbS0tAQzMzNhw4YNRcbNt72xaKFJkyYJAMQbIhaHNxal+qasv5vU1FRh/Pjxgr6+vnj+fevWLXG5t7e30KpVK0EqlQpGRkbC+PHjhSdPngiCUPTGooLA83Sep/M8nYiU68yZMwIAYdCgQUWWlTUWvzm2FDdGleectjy5r7cd09+8sWihhw8fCioqKkK7du1KPDa8sWjdJREEQaj6VD0p099//w0zMzPxZqJU+9y/fx8tWrRAbGwsOnXqpOxwlKpPnz7o1KkT1qxZ89Z9SCQS/PLLL3B2dq60uIioanl6euKff/7BwYMHq2wbHBvk3N3dkZaWhv379791H+bm5vDx8YGPj0+lxUVEVBPxPP1/eJ5ORMpUGbmvyhjTg4OD4ePjo1AujOoGlnOpgyIjI3Hw4EHcu3cPZ86cwZgxY2Bubi7W6COq7b799lvo6Ojg6tWrFVpv8uTJSrmpIBG9vfT0dJw6dQohISHvdIM9qpjDhw9DR0cHhw8frtB6S5YsgY6ODh48eFBFkRERUU3G83Qiqi5Vmfuyt7cX72NSETo6Opg8efI7b59qJl6JXgeFhYVh5syZuHv3LnR1dWFvb481a9agefPmyg6N3hKvcPmfR48e4eXLlwCAZs2aQUNDo9zrpqSkICMjAwBgYmLCm4AQ1QJ9+vTB+fPn8emnn2L16tVVui1e/Sb3LmNlamoqUlNTAQBGRkbQ19evkhiJiGoKnqf/D8/Tiag6VUXuKy8vT7yBqVQqrfD9f+7cuQMAUFVVRYsWLd46DqqZmEQnIiIiIiIiIiIiIipBtZRzOXHiBIYMGQJTU1NIJJJy1diMiopCly5dIJVK0bp1awQHBxdps3HjRpibm0NTUxO2trY4f/585QdPRERERERERERERPVWtSTRs7KyYG1tjY0bN5ar/b179zB48GD07dsXcXFx8PHxwcSJExEWFia22bNnD/z8/LBw4UJcunQJ1tbWcHR0REpKSlXtBhERERERERERERHVM9VezqU89UbnzJmDI0eO4Nq1a+K8MWPGIC0tDUePHgUA2Nraolu3btiwYQMAoKCgAGZmZpg2bRrmzp1bpftARERERERERERERPWDmrIDKE50dDQcHBwU5jk6OsLHxwcAkJOTg5iYGPj7+4vLVVRU4ODggOjo6BL7zc7ORnZ2tvi8oKAAqampaNSoESQSSeXuBBFROQiCgOfPn8PU1BQqKtXy5aA6r6CgAI8fP4auri7HdiJSGo7vlYtjOxHVBBzbKxfHdiKqCco7ttfIJHpSUhKMjY0V5hkbGyMjIwMvX77Es2fPkJ+fX2ybmzdvlthvYGAgFi1aVCUxExG9i4cPH6Jp06bKDqNOePz4cYXvok5EVFU4vlcOju1EVJNwbK8cHNuJqCYpa2yvkUn0quLv7w8/Pz/xeXp6Opo1a4aHDx9CT09PiZERUX2VkZEBMzMz6OrqKjuUOqPwWHJsr7+SkpKwbds2eHh4QCaT1bvtU83A8b1ycWwnopqAY3vlKjyO8fHxPGciIqUp79heI5PoMpkMycnJCvOSk5Ohp6cHLS0tqKqqQlVVtdg2pQ28UqkUUqm0yHw9PT2ejBORUvHri5Wn8FhybK+/srKyoKmpCV1dXaX8Dih7+1SzcHyvHBzbiagm4dheOQqPI8+ZiKgmKGtsr5FFvOzs7BAREaEwLzw8HHZ2dgAADQ0N2NjYKLQpKChARESE2IaIiIiIiIiIiIiI6F1VSxI9MzMTcXFxiIuLAwDcu3cPcXFxePDgAQB5mRVXV1ex/eTJk3H37l18/vnnuHnzJr799lvs3bsXvr6+Yhs/Pz/897//xfbt23Hjxg1MmTIFWVlZ8PDwqI5dIiIiIiIiIiIiIqJ6oFrKuVy8eBF9+/YVnxfWJXdzc0NwcDASExPFhDoAtGjRAkeOHIGvry/Wrl2Lpk2b4vvvv4ejo6PYZvTo0fjnn3+wYMECJCUloVOnTjh69GiRm40SEREREREREREREb2takmi9+nTB4IglLg8ODi42HViY2NL7dfb2xve3t7vGh4RERERERERERERUbFqZE10IiIiIiIiIiKq+xo0aKDsEIiIysQkOhERERERERERKYVEIlF2CEREZWISnYiIiIiIiIiIiIioBEyiExERERERERGRUmRnZys7BKqpnjwBLl1SdhRUm+XlASdOALm579wVk+hERERERERERKQUeXl5yg6BaqIXLwBbW6BrV+DuXWVHQ7WVhwfQuzewY8c7d8UkOhEREREREREREdUcgYHy5LkgAI8fKzsaqo2iooAffpA//vvvd+6OSXQiIiIiIiIiIiKqGe7cAZYvV3YUVJvl5gLe3pXaJZPoREREREREREREpHyCAEyfDuTkKDsSqs02bACuX6/ULplEJyIiIiIiIiIiIuU7eBD47TdAXR3Q15fPEwTlxkS1S2IisHCh/LGRkfxnJfwOMYlOREREREREREREyvXyJeDjI388cyZgbKzUcKiWmj0beP4c6N4dGDGi0rplEp2IiIiIiIiIiIiUKzAQuH8faNoU+PJLZUdDtdHx48CuXYBEAmzcCKhUXuqbSXQiIiIiIiIiIlKKBg0aKDsEqgni44Fly+SPV60CtLWVGw/VPjk5wJQp8seTJgFdu1Zq90yiExERERERERGRUkgkEmWHQMomCPLkZ04OMHAg8O9/F11OVJYVK4AbN4AmTeTfangda6ITERERERERERFRrfXDD8CxY4CmJrBhg7wUB/C/n0RlSUgAFi+WP161CmjYUP64En+HmEQnIiIiIiIiIiKlyM7OVnYIpEypqfKbiALAggVAy5bKjYdqH0EApk4FXr0C+vcHxo2rks0wiU5EREREREREREqRl5en7BBImebOBf75B2jb9n/JdKKKCA0FwsIADQ3g22+r7BsMTKITERERERERERFR9TpzBvjvf+WPg4LkSdDXFSZDWROdSpKeDsyYIX/8xRfA++8X34410YmIiIiIiIiIiKhWyc0FPv1U/njCBODDD5UbD9VO8+YBSUny5PncuUWXsyY6ERERERERERER1Upr1gDXrgGNGgHLlys7GqqNLlyQl28BgE2bAKm0SjfHJDoRERERERERERFVj7/+AgIC5I9XrJAn0okqIi9P/k0GQQA++QTo16/KN8kkOhFRPZOamgoXFxfo6enBwMAAnp6eyMzMLHWdzZs3o0+fPtDT04NEIkFaWlqx7Y4cOQJbW1toaWmhYcOGcHZ2FpcFBwdDIpEUO6WkpAAAoqKiil2elJRUWbtPREREREREyiIIgLc38OIF0Ls34OZWclvWRKeSbNwIxMYCBgbyD2LKUgm/Q2rv3AMREdUqLi4uSExMRHh4OHJzc+Hh4YFJkyYhJCSkxHVevHgBJycnODk5wd/fv9g2+/btg5eXF5YsWYJ+/fohLy8P165dE5ePHj0aTk5OCuu4u7vj1atXaNKkicL8+Ph46Onpic/fXE5ERERERES10C+/AIcPA+rq8hIclVizmuqJhw+BL7+UP162DDA2LrltbayJvnHjRpibm0NTUxO2trY4f/58iW379OlT7JWIgwcPFtu4u7sXWf5mcoaIiBTduHEDR48exffffw9bW1v07NkT69evx+7du/H48eMS1/Px8cHcuXPRo0ePYpfn5eVhxowZ+OabbzB58mS8//77aNu2LUaNGiW20dLSgkwmEydVVVVERkbC09OzSH9NmjRRaKuiwi9OERERERHVRVpaWsoOgarLs2fA1Knyx3PmAFZWyo2Hah9BAKZMATIzAXt7YOLEatt0tWQl9uzZAz8/PyxcuBCXLl2CtbU1HB0dxa/vv+nnn39GYmKiOF27dg2qqqoYOXKkQjsnJyeFdj/++GN17A4RUa0VHR0NAwMDdO3aVZzn4OAAFRUVnDt37q37vXTpEh49egQVFRV07twZJiYmGDhwoMKV6G/asWMHGjRogH//+99FlnXq1AkmJib46KOPcPr06VK3nZ2djYyMDIWJiIiIiIhqB14wU4/Mng0kJQEWFsC8ecqOhmqj3buBI0cADQ3gv/8FqnH8qJYtrVq1Cl5eXvDw8EDbtm0RFBSEBg0aYOvWrcW2NzQ0VLgCMTw8HA0aNCiSRJdKpQrtGjZsWGocTLQQUX2XlJRUpDSKmpoaDA0N36nu+N27dwEAAQEB+PLLL3H48GE0bNgQffr0QWpqarHrbNmyBePGjVO48sTExARBQUHYt28f9u3bBzMzM/Tp0weXLl0qcduBgYHQ19cXJzMzs7feDyIiIiIiIqoCkZHAli3yx99/D2hqlr0Oa6LT6548AaZPlz+eNw9o27b861bC71CVJ9FzcnIQExMDBweH/21URQUODg6Ijo4uVx9btmzBmDFjoK2trTA/KioKTZo0gYWFBaZMmYKnT5+W2g8TLURUV82dO7fEm3YWTjdv3qyy7RcUFAAA5s2bhxEjRsDGxgbbtm2DRCJBaGhokfbR0dG4ceNGkVIuFhYW+PTTT2FjYwN7e3ts3boV9vb2WL16dYnb9vf3R3p6ujg9fPiwcneOiIiIiIiqTE5OjrJDoKr24gUwaZL88WefAT17Kjceqp38/OSJ9Pbtgblzy7dOJdZEr/Ibiz558gT5+fkwfqPIu7GxcbkSOufPn8e1a9ewpfDTqv/n5OSE4cOHo0WLFkhISMAXX3yBgQMHIjo6GqqqqsX25e/vDz8/P/F5RkYGE+lEVCfMnDkT7u7upbZp2bIlZDJZkVJaeXl5SE1NhUwme+vtm5iYAADavvZJsFQqRcuWLfHgwYMi7b///nt06tQJNjY2ZfbdvXt3nDp1qsTlUqkUUqn0LaImIiIiIiJly83NVXYIVNUCAoCEBKBpUyAwUNnRUG109Ciwc6c8Kf799/JyLtWsxhee2rJlCzp06IDu3bsrzB8zZgw+/vhjdOjQAc7Ozjh8+DAuXLiAqKioEvuSSqXQ09NTmIiI6gIjIyNYWlqWOmloaMDOzg5paWmIiYkR142MjERBQQFsbW3fevs2NjaQSqWIj48X5+Xm5uL+/fto3ry5QtvMzEzs3bu32BuKFicuLk5M0hMRUdXatGkTOnbsKJ4r29nZ4bfffiuxfW5uLr766iu0atUKmpqasLa2xtGjR4u027hxI8zNzaGpqQlbW1ucP3++KneDiIhew7GdlComBli5Uv540yaAuTiqqMxM4NNP5Y9nzADeIXfxLqo8id64cWOoqqoiOTlZYX5ycnKZVz1mZWVh9+7d5Uq0tGzZEo0bN8adO3feKV4iorrMysoKTk5O8PLywvnz53H69Gl4e3tjzJgxMDU1BQA8evQIlpaWCifBSUlJiIuLE8fYq1evIi4uTqx3rqenh8mTJ2PhwoX4/fffER8fjylTpgBAkftZ7NmzB3l5efjkk0+KxLdmzRocOHAAd+7cwbVr1+Dj44PIyEhMLbyDOxERVammTZti6dKliImJwcWLF9GvXz8MHToU169fL7b9l19+ie+++w7r16/Hn3/+icmTJ2PYsGGIjY0V2+zZswd+fn5YuHAhLl26BGtrazg6Ohb5ZhQREVUNju2kNLm5gKcnUFAAjBkD/OtfFVufNdEJkNc/f/AAaN4cWLz47fqoDTXRNTQ0YGNjg4iICHFeQUEBIiIiYGdnV+q6oaGhyM7OLjbR8qa///4bT58+5dWKRERl2LVrFywtLdG/f38MGjQIPXv2xObNm8Xlubm5iI+Px4sXL8R5QUFB6Ny5M7y8vAAAvXr1QufOnXHw4EGxzTfffIMxY8Zg/Pjx6NatG/766y9ERkYWuenzli1bMHz4cBgYGBSJLScnBzNnzkSHDh3Qu3dvXL58GX/88Qf69+9fyUeBiIiKM2TIEAwaNAht2rTB+++/j6+//ho6Ojo4e/Zsse137tyJL774AoMGDULLli0xZcoUDBo0CCsLrzgDsGrVKnh5ecHDwwNt27ZFUFAQGjRogK1bt1bXbhER1Wsc20lpVq4ELl8GDA2BtWuVHQ3VRmfPAuvXyx9v3gzo6FRs/dpUEx0A/Pz84Obmhq5du6J79+5Ys2YNsrKy4OHhAQBwdXXFe++9h8A36iJt2bIFzs7OaNSokcL8zMxMLFq0CCNGjIBMJkNCQgI+//xztG7dGo6OjtWxS0REtZahoSFCQkJKXG5ubg7hjU9pAwICEBAQUGq/6urqWLFiBVasWFFquzNnzpS47PPPP8fnn39e6vpERFQ98vPzERoaiqysrBIvfsnOzoampqbCPC0tLfFeFjk5OYiJiYG/v7+4XEVFBQ4ODoiOji5x29nZ2cjOzhafZ2RkvMuuEBHR/+PYTtXm1i15LXQAWLMGaNJEmdFQbZSTA0ycKL+K3NUVGDBAqeFUSxJ99OjR+Oeff7BgwQIkJSWhU6dOOHr0qHiz0QcPHkBFRfGi+Pj4eJw6dQq///57kf5UVVVx5coVbN++HWlpaTA1NcWAAQOwePFi3lyOiIiIiOgdXL16FXZ2dnj16hV0dHTwyy+/KNw4+nWOjo5YtWoVevXqhVatWiEiIgI///wz8vPzAQBPnjxBfn6+eN5fyNjYGDdv3iwxhsDAQCxatKjydoqIqJ7j2E7VqqAA8PICsrMBR0egHBUmiIoIDASuXweMjIBVq5QdTfUk0QHA29sb3t7exS4r7magFhYWRa6ELKSlpYWwsLDKDI+IiIiIiCA/D4+Li0N6ejp++uknuLm54fjx48UmW9auXQsvLy9YWlpCIpGgVatW8PDweOev8/v7+8PPz098npGRATMzs3fqk4ioPuPYTtXq22+BEycAbW0gKOjtS2qwJnr9dfky8J//yB+vWwe8UaWkwmpDTXQiIiIiIqo9NDQ00Lp1a9jY2CAwMBDW1tZYW0IdUyMjI+zfvx9ZWVn466+/cPPmTejo6KBly5YAgMaNG0NVVRXJyckK6yUnJ0Mmk5UYg1QqhZ6ensJERERvryaP7VpaWpW0l1QjJCQAc+bIHy9bBpibKzUcqoVycgB3dyAvDxg2DBg9+u37qsSa6EyiExERERFRiQoKChRq2BZHU1MT7733HvLy8rBv3z4MHToUgDxpY2Njg4iICIX+IiIiSqzFS0REVa8mje1vlvelWqygAJgwAXjxAujbF5gyRdkRUW20ZAkQFye/+nzTpkpNhL+LaivnQkRERERENZu/vz8GDhyIZs2a4fnz5wgJCUFUVJRYStHV1RXvvfceAgMDAQDnzp3Do0eP0KlTJzx69AgBAQEoKChQuEm0n58f3Nzc0LVrV3Tv3h1r1qxBVlYWPDw8lLKPRET1Dcd2qjYbNvyvjMuWLcC7fkBSQ5KnVI1iY4Gvv5Y/3rgReOPeC8rEJDoREREREQEAUlJS4OrqisTEROjr66Njx44ICwvDRx99BAB48OCBwhWDr169wpdffom7d+9CR0cHgwYNws6dO2FgYCC2GT16NP755x8sWLAASUlJ6NSpE44ePVrkhnRERFQ1avrYnpOT8877SDXA7dvA3LnyxytWAC1aVF7frIleP+TkAG5u8jIuI0YAo0ZVXt+V8DvEJDoREREREQEAtmzZUuryqKgohee9e/fGn3/+WWa/3t7e8Pb2fpfQiIjoLdX0sT03N/ed+yAly88HPDyAly+B/v2BTz9VdkRUGy1eDFy9CjRuLL85bWV8E4E10YmIiIiIiIiIiEjp1q0DTp8GdHTkZVxYhoUqKiYG+P+SUvj2W6BJE+XGUwwm0YmIiIiIiIiIiKji4uOBL76QP165EmjevPL6ZjK+fsjOlpdxyc+Xl3AZOVLZERWLSXQiIiIiIiIiIiKqmMIyLq9eAR99BHh5Vc12WBO9bvvqK+D6dcDISH5z2qpQCb9DTKITERERERERERFRxXzzDRAdDejqAt9/zyvHqeKio4GlS+WPN22SJ9IrE2uiExERERERERERkVLExgILFsgfr10LNGum3Hio9snMBMaPBwoKABcXYMQIZUdUKibRiYiIiIiIiIiIqHxevpQnPXNzgWHDAHf3qtkOr2yv23x9gYQEwMys6sq4VCIm0YmIiIiIiIiISCk0NTWVHQJV1Jw5wI0bgEwGbN5c9clu1kSvew4e/F8JoB07AAODqt0ea6ITEREREREREVFtpaqqquwQqCJ+/x1Yv17+eNs2oHFj5cZDtU9yMjBxovzxrFlAnz5Vty3WRCciIiIiIiIiIqJq8/Tp/0q3TJ0KODkpNRyqhQQB8PQE/vkHsLYGFi9WdkTlxiQ6EREREREREREpRU5OjrJDoPIQBGDyZCAxEbC0BJYvr/ptsiZ63bN5M3DkCCCVAj/8IP9ZSzCJTkRERERERERESpGbm6vsEKg8du4EfvoJUFOTJz8bNKi+bbMmet1w6xbg5yd/HBgItG9ffdtmTXQiIiIiIiIiIiKqMgkJgLe3/PGiRYCNjXLjodonJwdwcQFevAD69wdmzKie7bImOhEREREREREREVWpnBxgzBjg+XOgZ09gzpzq2zbLudQdX3wBXLwIGBoCwcGASu1LSde+iImIiIiIiIiIiKjqzZsnT342bAiEhACqqsqOiGqb334DVq6UP962DWjaVLnxvCUm0YmIiIiIiIiIiEjRb78BK1bIH2/bBpiZKScO1kSvvR4/Blxd5Y+nTQM+/lg5cbAmOhERVVRqaipcXFygp6cHAwMDeHp6IjMzs9R1Nm/ejD59+kBPTw8SiQRpaWkKy6OioiCRSIqdLly4ILa7cuUKPvzwQ2hqasLMzAzLi7mje2hoKCwtLaGpqYkOHTrg119/rZT9JiIiIiIionJ6M/k5dKhy46HaJz8fGD8eePIE6NQJKOb//yrHmuhERPS2XFxccP36dYSHh+Pw4cM4ceIEJk2aVOo6L168gJOTE7744otil9vb2yMxMVFhmjhxIlq0aIGuXbsCADIyMjBgwAA0b94cMTEx+OabbxAQEIDNmzeL/Zw5cwZjx46Fp6cnYmNj4ezsDGdnZ1y7dq3yDgARERERERGV7PXkp7W1cpKfAGui13ZLlwKRkYC2NrB7N6CpqeyI3km1JdE3btwIc3NzaGpqwtbWFufPny+xbXBwcJErGTXfONCCIGDBggUwMTGBlpYWHBwccPv27areDSKiWu3GjRs4evQovv/+e9ja2qJnz55Yv349du/ejcePH5e4no+PD+bOnYsePXoUu1xDQwMymUycGjVqhAMHDsDDwwOS/z/x2bVrF3JycrB161a0a9cOY8aMwfTp07Fq1Sqxn7Vr18LJyQmzZ8+GlZUVFi9ejC5dumDDhg2VeyCIiIiIiKhGeDPfQzXA68nPPXtqffKTlODUKWDhQvnjjRsBCwvlxlMJqiWJvmfPHvj5+WHhwoW4dOkSrK2t4ejoiJSUlBLX0dPTU7ii8a+//lJYvnz5cqxbtw5BQUE4d+4ctLW14ejoiFevXlX17hAR1VrR0dEwMDAQrw4HAAcHB6ioqODcuXOVtp2DBw/i6dOn8PDwUNh2r169oKGhIc5zdHREfHw8nj17JrZxcHBQ6MvR0RHR0dElbis7OxsZGRkKExERERER1Q6qvFFlzVITk5+siV67pKYC48bJv9HwySf/KwukTLWlJvqqVavg5eUFDw8PtG3bFkFBQWjQoAG2bt1a4joSiUThqkZjY2NxmSAIWLNmDb788ksMHToUHTt2xI4dO/D48WPs37+/xD6ZaCGi+i4pKQlNmjRRmKempgZDQ0MkJSVV2na2bNkCR0dHNH3trttJSUkKYzkA8XnhtktqU1psgYGB0NfXFyczZd3shoiIiIiIqDZLSQFGj5YnP11cakbyk2qXggJ54vzhQ6B1a+Dbb5Vblqc21UTPyclBTEyMwpWFKioqcHBwKPXKwszMTDRv3hxmZmYYOnQorl+/Li67d+8ekpKSFPrU19eHra1tqX0y0UJEddXcuXNLvLFn4XTz5s1qieXvv/9GWFgYPD09q2V7/v7+SE9PF6eHDx9Wy3aJiIiIiOjd5ebmKjsEAoC8PGDMGPkNRa2sgKAg5dckV/b2qeKWLAF++01eAuinnwBdXWVHVGnUqnoDT548QX5+frFXFpaU0LGwsMDWrVvRsWNHpKenY8WKFbC3t8f169fRtGlT8YrEil6t6O/vDz8/P/F5RkYGE+lEVCfMnDkT7u7upbZp2bIlZDJZkVJaeXl5SE1NhUwmq5RYtm3bhkaNGuHjjz9WmC+TyZCcnKwwr/B54bZLalNabFKpFFKptDJCJyIiIiKiapaTk6PsEAgAFiwAjh2T10Hftw/Q0VF2RFTbhIfLf48AYNMm+U1p65AqT6K/DTs7O9jZ2YnP7e3tYWVlhe+++w6LFy9+636ZaCGiusrIyAhGRkZltrOzs0NaWhpiYmJgY2MDAIiMjERBQQFsbW3fOQ5BELBt2za4urpCXV29yLbnzZuH3NxccVl4eDgsLCzQsGFDsU1ERAR8fHzE9cLDwxXeE4iIiIiIiKgSHToEBAbKH2/ZIr8SvSZhTfSa7+FDeR10QQAmTgTKuMiv2tWGmuiNGzeGqqpqha8sfJ26ujo6d+6MO3fuAPjfFYvv0icRUX1kZWUFJycneHl54fz58zh9+jS8vb0xZswYmJqaAgAePXoES0tLnD9/XlwvKSkJcXFx4jh89epVxMXFITU1VaH/yMhI3Lt3DxMnTiyy7XHjxkFDQwOenp64fv069uzZg7Vr1yp8Q2jGjBk4evQoVq5ciZs3byIgIAAXL16Et7d3VRwOIiIiIiKi+u3u3f/VPp82TV4TnagicnKAUaOAJ0+Azp2B9euVHdH/1Kaa6BoaGrCxsUFERIQ4r6CgABEREeW+sjA/Px9Xr16FiYkJAKBFixaQyWQKfWZkZODcuXO8WpGIqAy7du2CpaUl+vfvj0GDBqFnz57YvHmzuDw3Nxfx8fF48eKFOC8oKAidO3eGl5cXAKBXr17o3LkzDh48qND3li1bYG9vD0tLyyLb1dfXx++//4579+7BxsYGM2fOxIIFCzBp0iSxjb29PUJCQrB582ZYW1vjp59+wv79+9G+ffvKPgxERERERET126tXwL//DaSlAT16ACtWKDsiRayJXjvMmgWcPQsYGMjroGtqKjuiKlEt5Vz8/Pzg5uaGrl27onv37lizZg2ysrLg4eEBAHB1dcV7772HwP//6shXX32FHj16oHXr1khLS8M333yDv/76S7yyUSKRwMfHB//5z3/Qpk0btGjRAvPnz4epqSmcnZ2rY5eIiGotQ0NDhISElLjc3NwcwhtfdQoICEBAQECZfZfWLwB07NgRJ0+eLLXNyJEjMXLkyDK3RURERERERG9JEABvbyA2FmjcGAgNBTQ0lB0V1Ta7d//vyvOdO4GWLZUbTxWqliT66NGj8c8//2DBggVISkpCp06dcPToUfHGoA8ePICKyv8uin/27Bm8vLyQlJSEhg0bwsbGBmfOnEHbtm3FNp9//jmysrIwadIkpKWloWfPnjh69Cg06+inHURERERERERERJVi0yZ5/XOJBAgJAZo2VXZEJWNN9JopNhaYMEH+2N8f+Ne/lBtPaSrhd6jabizq7e1dYk3bqKgoheerV6/G6tWrS+1PIpHgq6++wldffVVZIRIREREREREREdVtUVHAjBnyx8uW31U/FAAAYmpJREFUAR99pNRwSsRyLjVXSgowdCjw8iXg5AQsXqzsiIpXm2qiExERERERERERFUcqlSo7hPrl/n15HfS8PGDcOHk9a6KKyMmR/w49fAi8/z7w44+Aqqqyo6pyTKITEREREREREZFSqKlVW5EEysqSXz389CnQpQvw/fe82psqbsYM4ORJQE8POHBAfkPReoBJdCIiIiIiIiIiorpMEAB3d+DKFaBJE2D/fkBLS9lRlQ9rotccQUHyqbCWvqWlsiMqn0r4HWISnYiIiIiIiIiIlCI3N1fZIdQPS5YAP/0EqKsD+/YBZmbKjqhsvEq+Zjl5Epg2Tf54yRJg8GDlxlMerIlORERERERERES1XU5OjrJDqPv27QPmz5c/3rgR6NlTufFQ7XP3LjB8uLyW/ujRwJw5yo6o2jGJTkREREREREREVBedOwd88om8nMXUqYCXl7Ijotrm2TNg0CDgyRN5Lf2tW+vltwSYRCciIiIiIiIiIqpr7t8HPv4YePVKngRds0bZEb0d1kRXnpwc+RXo8fHyEkCHDgENGig7qopjTXQiIiIiIiIiIiJSkJYmr1mdkgJYWwO7dwNqasqOqmLq4dXONYogAJ9+CkRFAbq6wOHDgKmpsqOqGNZEJyIiIiIiIiIioiJyc4GRI4E//5QnPQ8flidBiSpiyRIgOBhQVQX27gU6dlR2RErFJDoREREREREREVFdIAjAlCnAH38A2tryBHrTpsqOimqbH38EvvxS/nj9esDJSbnx1ABMohMREREREREREdUFy5cDW7YAKiryEi6dOys7orenqSn/+fy5cuOob06fBtzd5Y9nzpR/KFNbVeLvEJPoRERERERERESkFFKpVNkh1B179wJz58ofr10L/Otfyo3nXbVpI/9586Zy46hPbt8Ghg6V31B02DD5hzK1WeHv0I0b79wVk+hERERERERERKQUarXtZpc11YkTwPjx8sfTpwPe3sqNpzIUXkUfEaHcOOqLlBR52ZanT4GuXYEffpB/o6E269JF/vPiRfnNdt9BLT8SRERERERERERE9diNG4pXD69apeyIKsfQoYBEApw5A5w/r+xo6rasLGDIEODuXaBFC3kt/QYNlB3Vu3v/faBtW/nNdr/77p26YhKdiIiIiIiIiIiUIi8vT9kh1G6JicDAgfKrbO3sgF27AFVVZUdVOd57D/jkE/njTz6R7ytVvrw8YOxY+QcVhobAb78BxsbKjqryzJkj/7lwofwbG2+JSXQiIiIiIiIiIlKK7OxsZYdQez1/DgweDPz1l7z288GDgJaWsqOqXCtWAM2ayWt129gAO3bIr7inyiEI8vI/hw7Jb8J56BBgYaHsqCrXJ5/Ir7LPzgYcHIAFC4DU1Ap3wyQ6ERERERERERFRbZKbC4waBcTGAkZG8quHGzdWdlSVr0kTeU10Kyv5lehubvIr1N3cgP/+F7hwASgoUHaUtdfy5cCmTfKyObt2Afb2yo6o8qmoAD/+CPz73/K/m8WLARMTeWL9m2+AkyfL100Vh0lERERERLXEpk2b0LFjR+jp6UFPTw92dnb47bffSl1nzZo1sLCwgJaWFszMzODr64tXr16JywMCAiCRSBQmS0vLqt4VIiL6fxzb6yBBACZPBo4elV95fvgw0KqVsqOqOq1bAzExQGAgIJMBT57Ir0ifNAno3l1+LKjiQkKAuXPlj1evBoYPV248VUlbG9i7F9i3D7C2ln+b4fBh4PPPgX/9q1xd8BbIREREREQEAGjatCmWLl2KNm3aQBAEbN++HUOHDkVsbCzatWtXpH1ISAjmzp2LrVu3wt7eHrdu3YK7uzskEglWvXZTs3bt2uGPP/4Qn6up8d8QIqLqwrG9DlqyBNi6VX6F7Z498kRyXaelJU/4zpoFREXJp6+/li+7elWZkdVOJ04A7u7yx35+wIwZSg2nWkgk8g8Khg8HLl8GwsOBU6fkj+/fL3N1jnBERERERAQAGPJ/7d15XFT1/sfx9wACboCGgF41txItF9Lih1l51Ru4W2ZpGGiKV5PKpQXLLb25lJVpKplrpdf0tpl1MVLJyjUUU1NzTUvQlACFRIXz+2OukxObsswCr+fjcR7MnPM953zOnOHL8Dnf+ZwePayev/zyy5o/f762bt2ab6Jl8+bNuvvuu/Xoo49Kkho0aKD+/ftr27ZtVu3c3NwUEBBQdoEDAApE317OfPyxNG6c+fFbb5lLUlQkbm7mutadO5svHvTqZe+InM+xY1KfPubSJg89ZC5pUtG0amWennlGysiQvL2LXIVyLgBQwaSmpio8PFxeXl7y8fHR4MGDdeHChULXWbBggTp06CAvLy+ZTCalpaVZLU9ISMjzdc6r044dOyxtevXqpdq1a6tq1apq3bq1li9fbrWdpUuX5lnf09OzVI8fAHB9cnJytHLlSmVmZiokJCTfNu3atVNiYqK2b98uSTp69Ki++OILde3a1ardoUOHVKdOHTVq1Ejh4eE6ceJEofvOzs5WRkaG1QQAKDn6dieXlGS+SaIkPfmkNHy4XcOBEzp/XurZ01wSp00badky8zcaUCSbvUpz585VgwYN5OnpqeDgYEtnnJ933nlH99xzj2rUqKEaNWqoc+fOedpf/SrRtVNYWFhZHwYAOL3w8HDt27dP8fHxWrt2rTZt2qShQ4cWuk5WVpbCwsL0wgsv5Lu8Xbt2Sk5OtpqGDBmihg0bqm3btpLMI1patmypDz/8UD/88IMGDRqkiIgIrV271mpbXl5eVtv5+eefS+fAAQDXZc+ePapWrZo8PDw0bNgwffzxx2revHm+bR999FFNnjxZ7du3V6VKldS4cWN16NDB6u9FcHCwli5dqri4OM2fP1/Hjh3TPffco/PnzxcYw7Rp0+Tt7W2Z6tWrV+rHCQAVCX17OXDunHnUdVaWeRT2NaV1KjzDsHcEzsEwpIgIae9ec235Tz+VqlSxd1TOw7CBlStXGu7u7sbixYuNffv2GVFRUYaPj49x+vTpfNs/+uijxty5c41du3YZ+/fvNwYOHGh4e3sbv/zyi6VNZGSkERYWZiQnJ1um1NTUG4orPT3dkGSkp6eX6PgAoLhs3Q/9+OOPhiRjx44dlnn//e9/DZPJZPz6669Frr9x40ZDkvH7778X2u7SpUtGrVq1jMmTJxfarmvXrsagQYMsz5csWWJ4e3sXGce1Ll68aKSnp1umkydP0rdXcKdOnTImTZpknDp1qkLuH47BmT9nZmdnG4cOHTK+//57IyYmxvD19TX27duXb9uNGzca/v7+xjvvvGP88MMPxkcffWTUq1ev0P7/999/N7y8vIyFCxcW2Ia+HYAjom8vm7797NmzJT6+ci831zB69jQMyTCaNDGMG8x/lVtr1phfk+Bge0fiHGbPNr9e7u6GsXWrvaNxGNfbt9ukJvrrr7+uqKgoDRo0SJIUGxurzz//XIsXL1bM1bvAXuOvX+9fuHChPvzwQ61fv14RERGW+R4eHtTfAoAbsGXLFvn4+FhGh0tS586d5eLiom3btumBBx4olf2sWbNG586ds/T7BUlPT1ezZs2s5l24cEE333yzcnNzdccdd2jq1Kn51mq8atq0aXrppZdKJW4AgOTu7q4mTZpIktq0aaMdO3bozTff1Ntvv52n7fjx4/XYY49pyJAhkqQWLVooMzNTQ4cO1YsvviiXfL4e7OPjo1tvvVWHDx8uMAYPDw95eHiU0hEBABy5b69UqVJxD6vimDdPWrNGcneXVq2SatSwd0RwNrt3m+t/S9LMmVJwsH3jcUJlXs7l0qVLSkxMVOfOnf/cqYuLOnfurC1btlzXNrKysnT58mXVrFnTan5CQoL8/PzUtGlTDR8+XOfOnSt0O9TfAlDRpaSkyM/Pz2qem5ubatasqZSUlFLbz6JFixQaGqq6desW2GbVqlXasWOHVaK9adOmWrx4sT799FO9//77ys3NVbt27fTLL78UuJ2xY8cqPT3dMp08ebLUjgMAIOXm5io7OzvfZVlZWXmSKa6urpIko4CvVl+4cEFHjhxR7dq1SzdQAMB1o293Ir/8Ij3/vPnxK69IQUH2jQfOJzdXGjpUunRJ6t5dio62d0ROqcxHop89e1Y5OTny9/e3mu/v768DBw5c1zaef/551alTxyoRHxYWpgcffFANGzbUkSNH9MILL6hLly7asmWLpXP/K0YrAiivYmJiNGPGjELb7N+/3yax/PLLL1q3bp1WrVpVYJuNGzdq0KBBeuedd6xGmYeEhFjd4Khdu3Zq1qyZ3n77bU2ZMiXfbTFaEQBKz9ixY9WlSxfVr19f58+f14oVK5SQkKB169ZJkiIiIvS3v/1N06ZNkyT16NFDr7/+uoKCghQcHKzDhw9r/Pjx6tGjh+Uz+TPPPKMePXro5ptv1qlTpzRx4kS5urqqf//+djtOAKhIHL1vv3LlSukdbHn03HNSZqYUEmK+mSjyoiZ64ZYulbZvl6pXlxYskEwme0fklGxSzqUkpk+frpUrVyohIUGenp6W+f369bM8btGihVq2bKnGjRsrISFBnTp1yndbY8eO1ejRoy3PMzIyuJEFgHJhzJgxGjhwYKFtGjVqpICAAJ05c8Zq/pUrV5Samlpq5bGWLFmim266ST179sx3+ddff60ePXrojTfesCrRlZ9KlSopKCio0K+FAgBKz5kzZxQREaHk5GR5e3urZcuWWrdunf7xj39Ikk6cOGE1OnHcuHEymUwaN26cfv31V9WqVUs9evTQyy+/bGnzyy+/qH///jp37pxq1aql9u3ba+vWrapVq5bNjw8AKiJH79sLGhEPSUeOSCtXmh+/9ZaUTymdCo1kcNFyc6Xp082PJ0yQ+LZIsZV5Et3X11eurq46ffq01fzTp08XmbCZOXOmpk+frq+++kotW7YstG2jRo3k6+urw4cPF5hEZ7QigPKqVq1a1/WBNSQkRGlpaUpMTFSbNm0kSRs2bFBubq6CS6EmmmEYWrJkiSIiIvKtbZiQkKDu3btrxowZGjp0aJHby8nJ0Z49e9S1a9cSxwYAKNqiRYsKXZ6QkGD13M3NTRMnTtTEiRMLXGfl1X/+AQB2Qd/uxJYuNY+yDguT7rjD3tHAGW3aJB06JPn4SMOG2Tsap1bml7Dc3d3Vpk0brV+/3jIvNzdX69evt/rK/l+98sormjJliuLi4qxugFeQX375RefOnaP+FgAUolmzZgoLC1NUVJS2b9+u7777TtHR0erXr5/q1KkjSfr1118VGBio7du3W9ZLSUlRUlKSZUT4nj17lJSUpNTUVKvtb9iwQceOHbPchOhaGzduVLdu3fTUU0+pT58+SklJUUpKitU2Jk+erC+//FJHjx7Vzp07NWDAAP3888/5bg8AAAAAyrUNG8w/H37YvnHAeV19D3XrJlWrZt9YnJxNvgcyevRovfPOO1q2bJn279+v4cOHKzMz03IzuYiICI0dO9bSfsaMGRo/frwWL16sBg0aWBItFy5ckGS+YcWzzz6rrVu36vjx41q/fr169eqlJk2aKDQ01BaHBABOa/ny5QoMDFSnTp3UtWtXtW/fXgsWLLAsv3z5sg4ePKisrCzLvNjYWAUFBSkqKkqSdO+99yooKEhr1qyx2vaiRYvUrl07BQYG5tnvsmXLlJWVpWnTpql27dqW6cEHH7S0+f333xUVFaVmzZqpa9euysjI0ObNm9W8efPSfhkAAAAAwLGdOmX+mc//V7gGNdELlpxs/sl7qMRsUhP9kUce0W+//aYJEyYoJSVFrVu3VlxcnOVmo3+tvzV//nxdunRJDz30kNV2Jk6cqEmTJsnV1VU//PCDli1bprS0NNWpU0f333+/pkyZQrkWAChCzZo1tWLFigKXN2jQQMZfPoRMmjRJkyZNKnLbhW136dKlWrp0aaHrv/HGG3rjjTeK3A8AAAAAVBjUQs8fNdGvH++hErPZjUWjo6MVHR2d77K/1t86fvx4oduqXLmy5S7SAAAAAAAAAACUFS5DAAAAAAAAAI6GMiUoKd5DpYYkOgAAAAAAAOzC3d3d3iE4PsqWFI5EMWyAJDoAAAAAAADsolKlSvYOAc6KiwvXj9eqxEiiAwAAAAAAAABQAJLoAAAAAAAAsIucnBx7h+C4KFOCkuI9VGpIogMAAAAAAMAuLl68aO8QHB+lOApHohg2QBIdAAAAAAAAgHPh4sL147UqMZLoAAAAAAAAAAAUgCQ6AAAAAAAA4GgoU4KS4j1UakiiAwAAAAAAAI6KUhyFI1EMGyCJDgAAAAAAAMC5cHHh+vFalRhJdAAAAAAAAAAACkASHQAAAAAAAHZRqVIle4fguChTgpLiPVRqSKIDAAAAAADALtzd3e0dguOjFEfhSBQXjfdQiZFEBwAAAAAAAOBcSAzDhkiiAwAAAAAAwC5ycnLsHQIAFIkkOgAAAAAAAOzi4sWL9g7BcV0tU8KIaxQXpW5KDUl0AAAAAAAAAM6JRHHRuBBTYiTRAQAAAAAAADgXEsOwIZLoAAAAAAAAAAAUgCQ6AAAAAAAA4GioiY6SotRNqSGJDgAVTGpqqsLDw+Xl5SUfHx8NHjxYFy5cKHSdBQsWqEOHDvLy8pLJZFJaWprV8oSEBJlMpnynHTt2SJKOHz+e7/KtW7dabWv16tUKDAyUp6enWrRooS+++KJUjx8AAAAAUI6QKC4aF2JKzGZJ9Llz56pBgwby9PRUcHCwtm/fXmj7opIohmFowoQJql27tipXrqzOnTvr0KFDZXkIAFAuhIeHa9++fYqPj9fatWu1adMmDR06tNB1srKyFBYWphdeeCHf5e3atVNycrLVNGTIEDVs2FBt27a1avvVV19ZtWvTpo1l2ebNm9W/f38NHjxYu3btUu/evdW7d2/t3bu35AcOAAAAACg/SAzDhtxssZMPPvhAo0ePVmxsrIKDgzVr1iyFhobq4MGD8vPzy9P+ahJl2rRp6t69u1asWKHevXtr586duv322yVJr7zyimbPnq1ly5apYcOGGj9+vEJDQ/Xjjz/K09PzumOrIkmZmZKraykdLQDcgMxMm+5u//79iouL044dOyzJ7Tlz5qhr166aOXOm6tSpk+96I0eOlGQecZ4fd3d3BQQEWJ5fvnxZn376qZ588kmZ/vLB5qabbrJqe60333xTYWFhevbZZyVJU6ZMUXx8vN566y3Fxsbmu052drays7MtzzMyMvJtBwAAAMDxVKpUyd4hAECRbJJEf/311xUVFaVBgwZJkmJjY/X5559r8eLFiomJydO+qCSKYRiaNWuWxo0bp169ekmS3n33Xfn7++uTTz5Rv3798o0jv0RLpiQVkDQCgLLmZeP9bdmyRT4+Plajwzt37iwXFxdt27ZNDzzwQKnsZ82aNTp37pyl379Wz549dfHiRd1666167rnn1LNnT6v4Ro8ebdU+NDRUn3zySYH7mjZtml566aVSiRsAAACAbbm7u9s7BMdFTXSUFKVuSk2Zl3O5dOmSEhMT1blz5z936uKizp07a8uWLfmus2XLFqv2kjmJcrX9sWPHlJKSYtXG29tbwcHBBW5TMidavL29LVO9evVKcmgA4HRSUlLyfAPIzc1NNWvWVEpKSqntZ9GiRQoNDVXdunUt86pVq6bXXntNq1ev1ueff6727durd+/eWrNmjVV8/v7+Vtvy9/cvNLaxY8cqPT3dMp08ebLUjgMAAAAA4OBIFBeNCzElVuYj0c+ePaucnJx8kyIHDhzId52ikihXfxYn0XLtCMeMjAxVrVdPyadOycvL1uNBAeB/pUdK4dswMTExmjFjRqFt9u/fX+L9XI9ffvlF69at06pVq6zm+/r6WvXBd955p06dOqVXX33VajT6jfLw8JCHh0ex1wcAAABgP7m5ufYOAc6KxDBsyCblXBxFfomWLEmqWtU8AYCt5eSUymbGjBmjgQMHFtqmUaNGCggI0JkzZ6zmX7lyRampqQXWKb9RS5Ys0U033XRdifHg4GDFx8dbngcEBOj06dNWbU6fPl1qsQEAAABwLH/88Yd8fHzsHQYAFKrMk+i+vr5ydXW9oaRIUUmUqz9Pnz6t2rVrW7Vp3bp1KUYPAM6hVq1aqlWrVpHtQkJClJaWpsTERLVp00aStGHDBuXm5io4OLjEcRiGoSVLligiIuK6bhCUlJRk1Y+HhIRo/fr1lhuZSlJ8fLxCQkJKHBsAAAAAOBVqoqOkKHVTasq8Jrq7u7vatGmj9evXW+bl5uZq/fr1BSZFriZRrnVtEqVhw4YKCAiwapORkaFt27aRaAGAQjRr1kxhYWGKiorS9u3b9d133yk6Olr9+vVTnf+Vlfn1118VGBio7du3W9ZLSUlRUlKSDh8+LEnas2ePkpKSlJqaarX9DRs26NixYxoyZEiefS9btkz//ve/deDAAR04cEBTp07V4sWL9eSTT1raPP3004qLi9Nrr72mAwcOaNKkSfr+++8VHR1dFi8HAAAAAMDZkSguGhdiSswm5VxGjx6tyMhItW3bVnfddZdmzZqlzMxMDRo0SJIUERGhv/3tb5o2bZokcxLlvvvu02uvvaZu3bpp5cqV+v7777VgwQJJkslk0siRI/Wvf/1Lt9xyixo2bKjx48erTp066t27ty0OCQCc1vLlyxUdHa1OnTrJxcVFffr00ezZsy3LL1++rIMHDyorK8syLzY2Vi+99JLl+b333ivJXLrl2jIyixYtUrt27RQYGJjvvqdMmaKff/5Zbm5uCgwM1AcffKCHHnrIsrxdu3ZasWKFxo0bpxdeeEG33HKLPvnkE91+++2ldfgAAAAAgPKAxDBsyCZJ9EceeUS//fabJkyYoJSUFLVu3VpxcXGWG4OeOHFCLi5/Doq/niTKc889p8zMTA0dOlRpaWlq37694uLi5OnpaYtDAgCnVbNmTa1YsaLA5Q0aNJDxlyv5kyZN0qRJk4rcdmHbjYyMVGRkZJHb6Nu3r/r27VtkOwAAAACoEEgWA3ZnsxuLRkdHF/h1/ISEhDzzikqimEwmTZ48WZMnTy6tEAEAAAAAAADHQJkSlBTvoVJT5jXRAQAAAAAAAKBMkCguGt9mKDGS6AAAAAAAALCLSpUq2TsEOCsSw7AhkugAAAAAAACwC3d3d3uH4PhIFgN2RxIdAAAAAAAAcDSUKUFJ8R4qNSTRAQAAAAAAYBe5ubn2DgHOjkRx0fg2Q4mRRAcAAAAAAIBd/PHHH/YOAc6KxDBsiCQ6AAAAAAAA4KhIFgN2RxIdAAAAAAAAcDSUKUFJ8R4qNSTRAQAAAEiS5s+fr5YtW8rLy0teXl4KCQnRf//730LXmTVrlpo2barKlSurXr16GjVqlC5evGjVZu7cuWrQoIE8PT0VHBys7du3l+VhAACuQd+Oco9EcdH4NkOJkUQHAAAAIEmqW7eupk+frsTERH3//ffq2LGjevXqpX379uXbfsWKFYqJidHEiRO1f/9+LVq0SB988IFeeOEFS5sPPvhAo0eP1sSJE7Vz5061atVKoaGhOnPmjK0OCwAqNPp2lFskhmFDJNEBAAAASJJ69Oihrl276pZbbtGtt96ql19+WdWqVdPWrVvzbb9582bdfffdevTRR9WgQQPdf//96t+/v9VoxNdff11RUVEaNGiQmjdvrtjYWFWpUkWLFy+21WEBQIVG314OkCwG7I4kOgAAAIA8cnJytHLlSmVmZiokJCTfNu3atVNiYqIlsXL06FF98cUX6tq1qyTp0qVLSkxMVOfOnS3ruLi4qHPnztqyZUuB+87OzlZGRobVBAAoOfp2J0OZEpQU76FS42bvAAAAAAA4jj179igkJEQXL15UtWrV9PHHH6t58+b5tn300Ud19uxZtW/fXoZh6MqVKxo2bJjlK/9nz55VTk6O/P39rdbz9/fXgQMHCoxh2rRpeumll0rvoACggnPkvt3NjdQUSohEcdH4NkOJMRIdAAAAgEXTpk2VlJSkbdu2afjw4YqMjNSPP/6Yb9uEhARNnTpV8+bN086dO/XRRx/p888/15QpU0oUw9ixY5Wenm6ZTp48WaLtAUBF58h9u4eHR4m2WyGQAM0frwtsiMt9AAAAACzc3d3VpEkTSVKbNm20Y8cOvfnmm3r77bfztB0/frwee+wxDRkyRJLUokULZWZmaujQoXrxxRfl6+srV1dXnT592mq906dPKyAgoMAYPDw8SKoAQCmibweAkmEkOgAAAIAC5ebmKjs7O99lWVlZcnGx/pfC1dVVkmQYhtzd3dWmTRutX7/eanvr168vsBYvAKDsOVLfblCKo2C8Nigp3kOlhpHoAAAAACSZv2rfpUsX1a9fX+fPn9eKFSuUkJCgdevWSZIiIiL0t7/9TdOmTZMk9ejRQ6+//rqCgoIUHBysw4cPa/z48erRo4cl4TJ69GhFRkaqbdu2uuuuuzRr1ixlZmZq0KBBdjtOAKhIHL1vz8rKkre3d+kdMCoeEsVFo/RNiZFEBwAAACBJOnPmjCIiIpScnCxvb2+1bNlS69at0z/+8Q9J0okTJ6xGJ44bN04mk0njxo3Tr7/+qlq1aqlHjx56+eWXLW0eeeQR/fbbb5owYYJSUlLUunVrxcXF5bkhHQCgbNC3lwMkQPPH6wIbIokOAAAAQJK0aNGiQpcnJCRYPXdzc9PEiRM1ceLEQteLjo5WdHR0ScMDABQDfTsAlBw10QEAAAAAAABHQ5kSlBTvoVJDEh0AKpjU1FSFh4fLy8tLPj4+Gjx4sC5cuFDoOgsWLFCHDh3k5eUlk8mktLQ0q+UJCQkymUz5Tjt27JAkTZo0Kd/lVatWtWxn6dKleZZ7enqW+msAAAAAACgnSBQXjdI3JVbmSfQbTdakpqbqySefVNOmTVW5cmXVr19fTz31lNLT063a5ZeIWblyZVkfDgA4vfDwcO3bt0/x8fFau3atNm3apKFDhxa6TlZWlsLCwvTCCy/ku7xdu3ZKTk62moYMGaKGDRuqbdu2kqRnnnkmT5vmzZurb9++Vtvy8vKyavPzzz+XzoEDAAAAgDMiAZo/XhfYUJnXRA8PD1dycrLi4+N1+fJlDRo0SEOHDtWKFSvybX/q1CmdOnVKM2fOVPPmzfXzzz9r2LBhOnXqlP7zn/9YtV2yZInCwsIsz318fMryUADA6e3fv19xcXHasWOHJbk9Z84cde3aVTNnzlSdOnXyXW/kyJGS8tZLvMrd3V0BAQGW55cvX9ann36qJ598Uqb/fbCpVq2aqlWrZmmze/du/fjjj4qNjbXalslkstoWAACSVEWSMjMlV1d7hwKgosrMtHcE5dNvv0m1a9s7CgAoVJkm0YuTrLn99tv14YcfWp43btxYL7/8sgYMGKArV67Ize3PkH18fEi0AMAN2LJli3x8fCx9siR17txZLi4u2rZtmx544IFS2c+aNWt07tw5DRo0qMA2Cxcu1K233qp77rnHav6FCxd08803Kzc3V3fccYemTp2q2267rcDtZGdnKzs72/I8IyOj5AcAAHA4mZJUwMVeALAFL3sHUE65ffCB1LKlvcNwTJQpQUnxHio1ZVrOpahkzfVKT0+Xl5eXVQJdkkaMGCFfX1/dddddWrx4sYwi3hjZ2dnKyMiwmgCgIklJSZGfn5/VPDc3N9WsWVMpKSmltp9FixYpNDRUdevWzXf5xYsXtXz5cg0ePNhqftOmTbV48WJ9+umnev/995Wbm6t27drpl19+KXBf06ZNk7e3t2WqV69eqR0HAAAAgLLlcfq0vUOAs6pSxfzzLyWgkQ9K35RYmY5EL41kzdmzZzVlypQ89XonT56sjh07qkqVKvryyy/1xBNP6MKFC3rqqacK3Na0adP00ksv3fiBAICDi4mJ0YwZMwpts3//fpvE8ssvv2jdunVatWpVgW0+/vhjnT9/XpGRkVbzQ0JCFBISYnnerl07NWvWTG+//bamTJmS77bGjh2r0aNHW55nZGSQSAeAcqiqpORTp+TlxVhQAPaRkZHBN2LKQiEDZvA/JEDz17ix+WdKinT+vFS9un3jQblWrCS6rZI1GRkZ6tatm5o3b65JkyZZLRs/frzlcVBQkDIzM/Xqq68WmkQn0QKgvBozZowGDhxYaJtGjRopICBAZ86csZp/5coVpaamllp5rCVLluimm25Sz549C2yzcOFCde/eXf7+/oVuq1KlSgoKCtLhw4cLbOPh4SEPD49ixwsAcA5ZklS1qnkCAHvIybF3BOWSUchnfaBQPj6Sn5905oz0449ScLC9I0I5Vqwkui2SNefPn1dYWJiqV6+ujz/+WJUqVSq0fXBwsKZMmaLs7OwCkykkWgCUV7Vq1VKtWrWKbBcSEqK0tDQlJiaqTZs2kqQNGzYoNzdXwaXwgcMwDC1ZskQREREF9tvHjh3Txo0btWbNmiK3l5OToz179qhr164ljg0AAACA48k6ckTe585JN91k71AcD/Wsi/Z//yetWSN9/TVJ9PzwHio1xaqJXqtWLQUGBhY6ubu7WyVrrrqeZE1GRobuv/9+ubu7a82aNfL09CwypqSkJNWoUYMkOQAUolmzZgoLC1NUVJS2b9+u7777TtHR0erXr5/lZs+//vqrAgMDtX37dst6KSkpSkpKsowI37Nnj5KSkpSammq1/Q0bNujYsWMaMmRIgTEsXrxYtWvXVpcuXfIsmzx5sr788ksdPXpUO3fu1IABA/Tzzz8Xuj0AAAAATi4hwd4RODbKuRTs7383//zqK/vG4eh4D5VYmd5YtDjJmqsJ9MzMTC1atEgZGRlKSUlRSkqKcv731anPPvtMCxcu1N69e3X48GHNnz9fU6dO1ZNPPlmWhwMA5cLy5csVGBioTp06qWvXrmrfvr0WLFhgWX758mUdPHhQWVlZlnmxsbEKCgpSVFSUJOnee+9VUFBQntHkixYtUrt27RQYGJjvvnNzc7V06VINHDhQrq6ueZb//vvvioqKUrNmzdS1a1dlZGRo8+bNat68eWkcOgAAAABH9J//2DsCOKur31resMFc1gUoI2V6Y1HJnKyJjo5Wp06d5OLioj59+mj27NmW5X9N1uzcuVPbtm2TJDVp0sRqW8eOHVODBg1UqVIlzZ07V6NGjZJhGGrSpIlef/11S3IHAFCwmjVrasWKFQUub9CggYy/fOVr0qRJee5NkZ/CtitJLi4uOnnyZIHL33jjDb3xxhtF7gcAAABAOfLZZ9KFC1K1avaOBM7m1lultm2l77+XVq+WRoywd0Qop8o8iX6jyZoOHTrkSd78VVhYmMLCwkotRgAAAAAAANhBo0bS0aPSe+9Jw4fbOxrHQj3r6xMebk6iL1woPfEEpUuuxXuo1JRpORcAAAAAAACgQIMGmX/OmUPCryAkhQsXESFVriwlJZlvMIq8eA+VGEl0AAAAAAAA2MfDD5vLuOzfL33+ub2jgTOqWVOKjDQ/pjwoyghJdAAAAAAAANiFq4+PuQSHJE2cWLFHo+fmSkeOmC8mLFwopafbOyLnMXKkebT1mjXS7t32jsa+zpyR1q+X3n1X+vBDe0dTbpBEBwAAAAAAgF14enpKzz5rHo2+c6f06af2Dsm2DMN8Y9WHHpJq1JCaNJG6d5eiov5sU7Wq/eJzFk2bSo88Yn48frx9Y7GHH34wX4yqX1/y95c6d/5zdL7ETXtLQZnfWBQAAAAAAAAokK+v9NRT0tSp5gRo9+6SWwVIWZ07J/XtK23c+Oc8Dw8pMFCqW1eqXVu65x6pTh37xehMJk2SVq0yX5TYtk0KDrZ3RGUvN1d67jnptdf+nGcySY0bSw0amN9DgYHSgw/aLcTyogL0SAAAAAAAAHBoY8ZIsbHS3r3SO+9Iw4fbO6KyZRhSv37mBHqVKubjfeQRqXVrqVIle0fnnJo2Nd9kdOlS6fnnza9teb+h5iuv/JlA79vXfKPee+/l2wtlgHIuAAAAAAAAsIvMzEzzg5o1pcmTzY/Hj5d+/91+QdnC999LX31lHnm+ZYs0c6Z0550k0EvqpZckT0/p66+l//zH3tGUrcuXzUl0SZo3zzwKv0sXEuhlhCQ6AAAAAAAA7O+f/5Ruu81c5uSll+wdTdlKTDT/7NhRatnSvrGUJ/Xrm0ehS+ZvN2Rl2TeesnT8uPlik6enNHSovaMp90iiAwAAAAAAwP7c3KRZs8yP33rLfLPE8io31/yTUcOl77nnpHr1pJMn/xypXR5dfQ95ekqurvaNpQIgiQ4AAAAAAADH0Lmz+SaIOTnm0bU5OfaOCM6mSpU/64TPmCEdOWLfeFAukEQHAAAAAACA45g9W/LykrZtk+bPt3c0cEYPPSR16iRdvGguE2QY9o4ITo4kOgAAAAAAABzH3/4mTZ9ufjx2rLksR3lDUrdsmUxSbKy51Mn69dJ779k7otLHe8imSKIDAAAAAADAsfzzn1JIiHThghQdXX4ThiaTvSMov5o0kSZOND8ePVr67Tf7xlNWeA/ZBEl0AAAAAAAA2IVrQTdEdHGRFiww32x0zRpp9WrbBobyYcwYqVUr6dw5adQoe0cDJ0YSHQAAAAAAAHbh6elZ8MLbb5deeMH8+IknpNOnbROULZTXkfWOplIl6Z13zKO1ly+XPv/c3hHBSZFEBwAAAAAAgGN68cU/RxIPG0byGTfuzjv/HIUeFSWlpto3ntJy9XeBci42QRIdAAAAAAAAjsndXVq2zDyi+JNPpBUr7B1R6SIBahv/+pfUtKmUnCw99ZS9o4ETIokOAAAAAAAAu8jMzCy6UatW0oQJ5sfR0dKpU2UbFMqfypXNF2NcXMxlXT76yN4RwcmQRAcAAAAAAIBje/55qU0bKS1NGjrU+cu6OHv8zig4WIqJMT8eNkw6c8a+8cCpkEQHAAAAAACAY6tUyTyS2N3dfHPIpUvtHRGc0YQJUosW0m+/ScOHO/fFDGqi2xRJdAAAAAAAADi+226TJk82P376aenoUfvGUxpIgNqWh4f07ruSm5u5pEt5q7GPMkMSHQAqmNTUVIWHh8vLy0s+Pj4aPHiwLly4UOg6CxYsUIcOHeTl5SWTyaS0tLQ8bX766Sf16tVLvr6+8vLyUvv27bVx40arNidOnFC3bt1UpUoV+fn56dlnn9WVK1es2iQkJOiOO+6Qh4eHmjRpoqWMMAEAAABw1TPPSO3bS+fPSwMGSH/5fwIoUuvW1jX2T5ywazhwDmWeRC9OsqZDhw4ymUxW07Bhw6zaXE8iBgCQV3h4uPbt26f4+HitXbtWmzZt0tChQwtdJysrS2FhYXrhhRcKbNO9e3dduXJFGzZsUGJiolq1aqXu3bsrJSVFkpSTk6Nu3brp0qVL2rx5s5YtW6alS5dqwtUPL5KOHTumbt266e9//7uSkpI0cuRIDRkyROvWrSudgwcAAADg3Fxdpffek7y8pC1bpKlT7R1R8ThzGZHyYOxYc430tDTpsceknBx7RwQHV+ZJ9OIkayQpKipKycnJlumVV16xLLueRAwAIK/9+/crLi5OCxcuVHBwsNq3b685c+Zo5cqVOlXIHe5HjhypmJgY/d///V++y8+ePatDhw4pJiZGLVu21C233KLp06crKytLe/fulSR9+eWX+vHHH/X++++rdevW6tKli6ZMmaK5c+fq0qVLkqTY2Fg1bNhQr732mpo1a6bo6Gg99NBDeuONN0r/xQAAAADgnBo0kObNMz+ePFnautWu4cAJublJy5dL1apJmzZJ1+QdnQY10W2qTJPoxU3WSFKVKlUUEBBgmby8vCzLricRAwDIa8uWLfLx8VHbtm0t8zp37iwXFxdt27at2Nu96aab1LRpU7377rvKzMzUlStX9Pbbb8vPz09t2rSx7LtFixby9/e3rBcaGqqMjAzt27fP0qZz585W2w4NDdWWLVsK3Hd2drYyMjKsJgAAAADOwcWlmKmp8HCpf3/zCOIBA8zlXZwRCVD7adxYmjPH/HjCBGnHDvvGA4dWpkn0kiRrli9fLl9fX91+++0aO3assrKyrLZbVCImPyRaAFR0KSkp8vPzs5rn5uammjVrWsquFIfJZNJXX32lXbt2qXr16vL09NTrr7+uuLg41ahRw7Lva/ttSZbnV/ddUJuMjAz98ccf+e572rRp8vb2tkz16tUr9nEAAAAAsK3KlSsXf+V586T69aUjR6SRI0stJlQgkZFS377m2vrh4VIRJahRcZVpEr24yZpHH31U77//vjZu3KixY8fqvffe04ABA6y2W1QiJj8kWgCUVzExMXnuJfHX6cCBA2W2f8MwNGLECPn5+embb77R9u3b1bt3b/Xo0UPJyclltl9JGjt2rNLT0y3TyZMny3R/AAAAAByEj4/07rvm0dyLF0sffmjviK4fNdEdg8kkxcZKdetKhw5Jo0bZOyI4KLfirBQTE6MZM2YU2mb//v3FCkiSVc30Fi1aqHbt2urUqZOOHDmixo0bF3u7Y8eO1ejRoy3PMzIySKQDKBfGjBmjgQMHFtqmUaNGCggI0JkzZ6zmX7lyRampqQoICCj2/jds2KC1a9fq999/t5TfmjdvnuLj47Vs2TLFxMQoICBA27dvt1rv9OnTkmTZd0BAgGXetW28vLwKHKHi4eEhDw+PYscOAAAAwIndd58UEyNNmyZFRUn/93/S3/5m76jgTGrWNN+stmNHaeFCqUsX6cEH7R1V0aiJblPFSqLbOlkTHBwsSTp8+LAaN258XYmY/JBoAVBe1apVS7Vq1SqyXUhIiNLS0pSYmGipVb5hwwbl5uZa+triuFpy66/1DF1cXJSbm2vZ98svv6wzZ85YvqUUHx8vLy8vNW/e3NLmiy++sNpGfHy8QkJCih0bAAAAAMeVmZlpdR+8Ypk0SfrySykx0VySY/16ydW1VOIrcyRAHUOHDtLzz0vTp5svxgQHczEGVopVzqVWrVoKDAwsdHJ3d7dK1lxVnGRNUlKSJKl27dqSzEmWPXv2WCXo/5qIAQDk1axZM4WFhSkqKkrbt2/Xd999p+joaPXr10916tSRJP36668KDAy0uliZkpKipKQkHT58WJK0Z88eJSUlKTU1VZK5X65Ro4YiIyO1e/du/fTTT3r22Wd17NgxdevWTZJ0//33q3nz5nrssce0e/durVu3TuPGjdOIESMsFziHDRumo0eP6rnnntOBAwc0b948rVq1SqP4Sh0AAACAgri7SytWSFWrSl9/LU2ZYu+I4Ixeeklq00ZKTTVfjMnJsXdEcCBlWhO9OMmaI0eOaMqUKUpMTNTx48e1Zs0aRURE6N5771XLli0lXV8iBgCQv+XLlyswMFCdOnVS165d1b59ey1YsMCy/PLlyzp48KDVDZ1jY2MVFBSkqKgoSdK9996roKAgrVmzRpLk6+uruLg4XbhwQR07dlTbtm317bff6tNPP1WrVq0kSa6urlq7dq1cXV0VEhKiAQMGKCIiQpMnT7bsp2HDhvr8888VHx+vVq1a6bXXXtPChQsVGhpqi5cGAAAAgLO69Vbp7bfNjydPljZutG88RaEmuuO5ejGmWjXzxZhr/ld1aHybwSaKVc7lRixfvlzR0dHq1KmTXFxc1KdPH82ePduy/K/JGnd3d3311VeaNWuWMjMzVa9ePfXp00fjxo2zrHM1ETN8+HCFhISoatWqioyMtErEAADyV7NmTa1YsaLA5Q0aNJDxlw90kyZN0qRJkwrdbtu2bbVu3bpC29x88815yrX8VYcOHbRr165C2wAAAABAHuHh0oYN5puMhodLSUnS/0pJAtfl6sWY8HDzNxruvVfq1MneUeWPCzE2VaYj0aU/kzXnz59Xenq6Fi9erGrVqlmWX03WdOjQQZJUr149ff311zp37pwuXryoQ4cO6ZVXXslTH+tqIiYrK0u//fabZs6cKTe3Mr8mAAAAAJRb8+fPV8uWLeXl5SUvLy+FhITov//9b4HtO3ToIJPJlGe6WspLkgYOHJhneVhYmC0OBwCgCti3z54tNW8uJSdLERHS/+7R5LAYRex4Hn1UGjLEnKQOD5f+dx9GVGxknQEAAABIkurWravp06frlltukWEYWrZsmXr16qVdu3bptttuy9P+o48+0qVLlyzPz507p1atWqlv375W7cLCwrRkyRLLc0owAoDtVLi+vWpV6YMPpDvvlNatk1591XzDSOBGvPmmtHWrtHevNGCAFBfnPDerRZkgiQ4AAABAktSjRw+r5y+//LLmz5+vrVu35ptoqVmzptXzlStXqkqVKnkSLR4eHgoICCj9gAEARaqQffvtt0tz5khRUdKLL0r33CO1a2fvqKxRisOxVany58WYr76Spk83v5ccEd9msIkyL+cCAAAAwPnk5ORo5cqVyszMVEhIyHWts2jRIvXr109Vq1a1mp+QkCA/Pz81bdpUw4cP17lz5wrdTnZ2tjIyMqwmAEDJOWLf7uJSRqmpwYOl/v2lnBypXz8pNbVs9oPyq3lzae5c8+MJE6RNm+wbz19xIcamSKIDAAAAsNizZ4+qVasmDw8PDRs2TB9//LGaN29e5Hrbt2/X3r17NWTIEKv5YWFhevfdd7V+/XrNmDFDX3/9tbp06aKcnJwCtzVt2jR5e3tbpnr16pX4uACgInPkvr1y5colO7iCmExSbKzUpIl08qTj1kdnFLFjGzjwz/dO//7Sb7/ZOyLYCUl0AAAAABZNmzZVUlKStm3bpuHDhysyMlI//vhjkestWrRILVq00F133WU1v1+/furZs6datGih3r17a+3atdqxY4cSEhIK3NbYsWOVnp5umU6ePFnSwwKACq3C9u1eXtKqVZKHh/T559LUqWW/T5Q/c+dKgYHSqVPmm44WcrEI5RdJdAAAAAAW7u7uatKkidq0aaNp06apVatWevPNNwtdJzMzUytXrtTgwYOL3H6jRo3k6+urw4cPF9jGw8NDXl5eVhMAoPgqdN8eFCTNm2d+PGGC9OWXttlvUSjF4TyqVZNWrzbXSf/qK/P7yJHwbQabIIkOAAAAoEC5ubnKzs4utM3q1auVnZ2tAQMGFLm9X375RefOnVPt2rVLK0QAwA1ypL49Kyvrhte5YY8/Lg0ZYk5cP/qo9PPPZb9PlC+33y4tXGh+PHWq9Omn9o1H4kKMjZFEBwAAACDJ/FX7TZs26fjx49qzZ4/Gjh2rhIQEhYeHS5IiIiI0duzYPOstWrRIvXv31k033WQ1/8KFC3r22We1detWHT9+XOvXr1evXr3UpEkThYaG2uSYAKCic/S+3bBVInDOHKlNG+ncOalvX6mIiwg2wyhi59G/v/T00+bHERHSoUP2jQc25WbvAAAAKG1VJCkzU3J1tXcosANTVpYqXbokU1aW+X1QwfYPB+Gk5/7MmTOKiIhQcnKyvL291bJlS61bt07/+Mc/JEknTpyQi4v1OJyDBw/q22+/1Zf5fD3e1dVVP/zwg5YtW6a0tDTVqVNH999/v6ZMmSIPDw+bHBMAVHT07f/j6Sn95z/mRPqOHeZkaGys/eJhFLFzevVV6fvvpe++kx58UNq6Vapa1d5RwQZMhs0u+TmejIwMeXt7Kz09nTqLAOyCfqj0ZWRkyMvb295hAIBMEv17KeHvJQBHQF9Uuq6+nqdOnbJtia+4OKlrV3MSe8kSaeBA2+37Wq+9Jj3zjDRggPTee/aJAcWTnCzdcYeUkmIenb58uX2+UbB7t9S6tVS7tvmmpyiW6+3bKecCAAAAAACAiiEsTJo0yfx4+HBp1y67hgMnVLu2tGqV5OYm/fvf5lJB9lBxx0XbBeVcAADlTlVJyadOMUKogkpJSdHixYv1+OOPKyAgoMLtH44hIyNDqlPH3mEAAID8jBsnbdsmffGF1KuXubyLv799YqEmunO65x5p5kxp5EhpzBipVSvpvvvsHRXKEEl0AEC5kyWZ69JRm65CMqpU0WV3dxlVqtjlPWDv/cNB5OTYOwIAAFAQFxdzCY7gYOmnn6Q+faQNGyR3d9vFwChi5/fUU+aLMf/+t/k9tGOH1LCh7ePgQoxNUM4FAAAAAAAAdmGyVwLQx0das0by9jbfJHLECBLbuDEmk7RwoflmtefOmb/VcP68vaNCGSGJDgAAAAAAALuoUqWK/XbetKl5FPHVZOjcufaLBc6pShXpk0/M5YD27JEiIqTcXNvsm4s+NkUSHQAAAAAAABVTly7SK6+YH48caS7rYkuU4nB+deuaE+nu7uafEyfaOyKUAZLoAAAAAAAAqLjGjJEGDDDf06RvX+no0bLfJ6OIy5f/+z9pwQLz43/9S/rgA9vtmwsxNkESHQAAAAAAAHaRlZVl7xDMSch33pHuuktKTZV69pTS0+0dFZxNZKT5gowkDRok7dxp33hQqkiiAwAAAAAAwC4MRxmR7ekpffyxVKeOtG+feUT65cv2jgrOZsYMc4mgP/6QevSQfvnF3hGhlJBEBwAAAAAAAOrUkT77TKpaVYqPl554ouzLrlCKo3xxdTXfrLZZM+nUKalbNykjo2z25SgXoCoIkugAAAAAAACAJN1xh7RypeTiIi1caB5ZXBZIgJZf3t7SF19I/v7SDz9IDz9ctt9q4EKMTZBEB4AKJjU1VeHh4fLy8pKPj48GDx6sCxcuFLrOggUL1KFDB3l5eclkMiktLS1Pm59++km9evWSr6+vvLy81L59e23cuNGyfPfu3erfv7/q1aunypUrq1mzZnrzzTettpGQkCCTyZRnSklJKZVjBwAAAIAide8uXf1fZexY294kEuVDgwbS2rVSlSrSunXSiBFcOHFyZZ5Ev9FkzfHjx/NNoJhMJq1evdrSLr/lK1euLOvDAQCnFx4ern379ik+Pl5r167Vpk2bNHTo0ELXycrKUlhYmF544YUC23Tv3l1XrlzRhg0blJiYqFatWql79+6WBHhiYqL8/Pz0/vvva9++fXrxxRc1duxYvfXWW3m2dfDgQSUnJ1smPz+/kh00AAAAANyI6Ghp5Ejz48hI6bvv7BoOnFDbtubSLldvXPvKK/aOCCXgVtY7CA8PV3JysuLj43X58mUNGjRIQ4cO1YoVK/JtX69ePSUnJ1vNW7BggV599VV16dLFav6SJUsUFhZmee7j41Pq8QNAebJ//37FxcVpx44datu2rSRpzpw56tq1q2bOnKk6derku97I/314TEhIyHf52bNndejQIS1atEgtW7aUJE2fPl3z5s3T3r17FRAQoMcff9xqnUaNGmnLli366KOPFB0dbbXMz8/vuvv07OxsZWdnW55nlFW9OQAAAAAVy8yZ0rFj0qefSr16SVu3Sk2alO4+KMVRvvXsaf5Ww1NPSTEx5hHqjzxSOttmZLtNlelI9KvJmoULFyo4OFjt27fXnDlztHLlSp06dSrfdVxdXRUQEGA1ffzxx3r44YdVrVo1q7Y+Pj5W7Tw9PQuNJzs7WxkZGVYTAFQkW7ZskY+PjyWBLkmdO3eWi4uLtm3bVuzt3nTTTWratKneffddZWZm6sqVK3r77bfl5+enNm3aFLheenq6atasmWd+69atVbt2bf3jH//Qd0WM+Jg2bZq8vb0tU7169Yp9HAAAAABsy+TISWRXV2n5cvOI4nPnpNBQqbRKTZIArTiefPLPbzVEREibNpXu9h35d6gcKdMkemkkaxITE5WUlKTBgwfnWTZixAj5+vrqrrvu0uLFi2UU0QGRaAFQ0aWkpOQpjeLm5qaaNWuWqO64yWTSV199pV27dql69ery9PTU66+/rri4ONWoUSPfdTZv3qwPPvjAqpRM7dq1FRsbqw8//FAffvih6tWrpw4dOmjnzp0F7nvs2LFKT0+3TCdPniz2cQAAAACwrSpVqtg7hMJVrSp99pnUqJF09KgUFialp9s7KjibmTOlBx6QLl2SevSQkpLsHRFuUJkm0UsjWbNo0SI1a9ZM7dq1s5o/efJkrVq1SvHx8erTp4+eeOIJzZkzp9BtkWgBUF7FxMQUeD+Jq9OBAwfKbP+GYWjEiBHy8/PTN998o+3bt6t3797q0aNHnhJdkrR371716tVLEydO1P3332+Z37RpU/3zn/9UmzZt1K5dOy1evFjt2rXTG2+8UeC+PTw85OXlZTUBAAAAQKkJCJC+/FLy95d27zaXdrl4sXS2zSjiiuHqtxruvVfKyDBfjDlyxN5R4QYUqyZ6TEyMZsyYUWib/fv3Fyuga/3xxx9asWKFxo8fn2fZtfOCgoKUmZmpV199VU899VSB2/Pw8JCHh0eJ4wIARzNmzBgNHDiw0DaNGjVSQECAzpw5YzX/ypUrSk1NVUBAQLH3v2HDBq1du1a///67JYk9b948xcfHa9myZYqJibG0/fHHH9WpUycNHTpU48aNK3Lbd911l7799ttixwYAAAAAJda4sfTf/0r33Sd9/bX06KPS6tXm5ChwPSpXltasMb+Hdu+W7r9f+vZbqXbt4m2PkkA2Vawkuq2SNf/5z3+UlZWliIiIItsGBwdrypQpys7OJlEOoMKpVauWatWqVWS7kJAQpaWlKTEx0VKrfMOGDcrNzVVwcHCx95+VlSVJcnGx/oKTi4uLcnNzLc/37dunjh07KjIyUi+//PJ1bTspKUm1i/uhAgAAAIBD++OPP5zn26RBQeYkaGio9PHH0vDh0ttvF280OQnQisnbW4qLk+6+21weqEsXKSFB8vEp/jb5NoNNFCuJbqtkzaJFi9SzZ8/r2ldSUpJq1KhBAh0ACtGsWTOFhYUpKipKsbGxunz5sqKjo9WvXz/VqVNHkvTrr7+qU6dOevfdd3XXXXdJMpfnSklJ0eHDhyVJe/bsUfXq1VW/fn3VrFlTISEhqlGjhiIjIzVhwgRVrlxZ77zzjo4dO6Zu3bpJMpdw6dixo0JDQzV69GhLWS9XV1dLPz9r1iw1bNhQt912my5evKiFCxdqw4YN+vLLL239UgEAAACwgWsH3TiFDh2kf/9b6ttXeucdqVYt6ToHCAGS/iwPdPfd5hHpPXtK69aZR6rDYZVpTfRrkzXbt2/Xd999l2+yJjAwUNu3b7da9/Dhw9q0aZOGDBmSZ7ufffaZFi5cqL179+rw4cOaP3++pk6dqieffLIsDwcAyoXly5crMDBQnTp1UteuXdW+fXstWLDAsvzy5cs6ePCgZXS5JMXGxiooKEhRUVGSpHvvvVdBQUFas2aNJMnX11dxcXG6cOGCOnbsqLZt2+rbb7/Vp59+qlatWkkyf7vot99+0/vvv6/atWtbpjvvvNOyn0uXLmnMmDFq0aKF7rvvPu3evVtfffWVOnXqZIuXBgAAAACK9uCD0vz55sdTp0pFlDwuFKOIK6bGjc0j0r28pG++kR5+2HzTUTisYo1EvxHLly9XdHS0OnXqJBcXF/Xp00ezZ8+2LM8vWSNJixcvVt26da1uOHdVpUqVNHfuXI0aNUqGYahJkyZ6/fXXLckdAEDBatasqRUrVhS4vEGDBjL+8tXCSZMmadKkSYVut23btlq3bl2By69nG88995yee+65QtsAAAAAgN0NHSqlpkpjx0oxMeZRxIXcpy8PyrmgdWvps8/M5YHWrpXCw83fcnC7znTt1fcQF2JsosyT6MVJ1kjS1KlTNXXq1HzXCQsLU1hYWKnFCAAAAAAAANyQmBgpK0uaMkV6+mnJ09OcXAeu1733muvr9+ol/ec/kru79O673LDWAZVpORcAAAAAAACg3HrpJemZZ8yPhw2T3nvPvvHA+YSFSatXm0egr1ghRUVJznavgAqAJDoAAAAAAABQHCaT9MorUnS0ubzGwIHmhOiNrA/07Gku5eLiIi1ZIo0YQckfB0MSHQAAAAAAACguk0l6801p8GDzCOJHH5U++aTwdUiQ4q8eeshcysVkkmJjpVGjCn+fUBPdpkiiAwAAAAAAwC6qVq1q7xBKh4uL9Pbb5ptDXrki9e0rffihvaOCswkPlxYuND9+801pzBguuDgIkugAAAAAAABASbm6SkuXmkeiX7kiPfKI9MEH9o4Kzubxx80j0SXpjTekJ5+kRroDIIkOAAAAAAAAlAY3N3NJjshIKSfHnFB///2C21OKA/n55z/NI9JNJmnuXPNNa0mk2xVJdAAAAAAAANjFH3/8Ye8QSp+rq7R48Z810iMizCPUr0WJDhRl8GDz+8bFRXrnHfPznJw/l1MT3aZIogMAAAAAAMAucsvr6FoXF2nBAvMIYsMwl+i4WusauF4REeZvMlwtFRQRYS4VBJsjiQ4AAAAAAACUNhcXad48c01rw5Ciosw3iwRuRP/+0sqV5lJBK1aYSwRdumTvqCocN3sHAAAAAAAAAJRLJpM5ce7uLr32mjRypJSebk6wX10OFOWhh6RKlaS+faXVq6ULF6Rnn7V3VBUKSXQAAAAAAACgrJhM0quvSt7e0oQJ0sSJUt269o4KzqZXL+mzz6QHHpD++19p717zfC7E2ATlXAAAAAAAAICyZDJJ48f/Wc7ll1/sGw+cU2ioFB9vviBz8qS9o6lQSKIDAAAAAAAAtvDUU9KyZZRzQfHdfbeUkCD5+Zmf8x6yCZLoAAAAAAAAgK1EREgffSQFBUl9+tg7Gjij1q2lb76R2reXBg2ydzQVAjXRAQAAAAAAYBdVq1a1dwj20auXeQKK69ZbzYl02AQj0QEAAAAAAAAAKABJdAAAAAAAAAAACkASHQAAAAAAAHZx8eJFe4cAAEUiiQ4AAAAAAAC7yMnJsXcIAFAkkugAAAAAAAAAABSAJDoAAAAAAAAAAAUo8yT6yy+/rHbt2qlKlSry8fG5rnUMw9CECRNUu3ZtVa5cWZ07d9ahQ4es2qSmpio8PFxeXl7y8fHR4MGDdeHChTI4AgAoX4rTfy5YsEAdOnSQl5eXTCaT0tLS8rT56aef1KtXL/n6+srLy0vt27fXxo0brdqYTKY808qVK63aJCQk6I477pCHh4eaNGmipUuXlvSQAQAAAAAAiq3Mk+iXLl1S3759NXz48Ote55VXXtHs2bMVGxurbdu2qWrVqgoNDbW62UR4eLj27dun+Ph4rV27Vps2bdLQoUPL4hAAoFwpTv+ZlZWlsLAwvfDCCwW26d69u65cuaINGzYoMTFRrVq1Uvfu3ZWSkmLVbsmSJUpOTrZMvXv3tiw7duyYunXrpr///e9KSkrSyJEjNWTIEK1bt65ExwwAAAAAAFBcbmW9g5deekmSrnskoWEYmjVrlsaNG6devXpJkt599135+/vrk08+Ub9+/bR//37FxcVpx44datu2rSRpzpw56tq1q2bOnKk6deqUybEAgLMrbv85cuRISeZR4vk5e/asDh06pEWLFqlly5aSpOnTp2vevHnau3evAgICLG19fHysnl8rNjZWDRs21GuvvSZJatasmb799lu98cYbCg0NzXed7OxsZWdnW55nZGQU/AIAAAAAAADcoDJPot+oY8eOKSUlRZ07d7bM8/b2VnBwsLZs2aJ+/fppy5Yt8vHxsSSAJKlz585ycXHRtm3b9MADD+S77b8mWtLT0yWRcAFgP1f7H8MwbLK/4vafRbnpppvUtGlTvfvuu5ZSLG+//bb8/PzUpk0bq7YjRozQkCFD1KhRIw0bNkyDBg2SyWSyxHdt/y9JoaGhliR+fqZNm2a5YHst+vaK6/z587p48aLOnz+vqlWrVrj9wzHYun8v766+jvTtAOyJvr10XX0d+cwEwJ6ut293uCT61a/9+/v7W8339/e3LEtJSZGfn5/Vcjc3N9WsWTNP2YBrFZRoqVevXknDBoASOX/+vLy9vct8P8XtP4tiMpn01VdfqXfv3qpevbpcXFzk5+enuLg41ahRw9Ju8uTJ6tixo6pUqaIvv/xSTzzxhC5cuKCnnnrKEl9+/X9GRob++OMPVa5cOc++x44dq9GjR1ueHzt2TK1bt6Zvh6ZPn16h9w/HYKv+vbw7f/68JD63A3AM9O2l49y5c5Kkpk2b2jkSACi6by9WEj0mJkYzZswotM3+/fsVGBhYnM2Xmb8mWtLS0nTzzTfrxIkT/AEsBzIyMlSvXj2dPHlSXl5e9g4HJVRRzqdhGDp//nyJy1Bdb79cVgzD0IgRI+Tn56dvvvlGlStX1sKFC9WjRw/t2LFDtWvXliSNHz/esk5QUJAyMzP16quvWpLoxeHh4SEPDw/L85tvvlmS6NsdUEX5vXZWnJ/SVVr9O8zq1KmjkydPqnr16pZvL8H+6DfKF85n0ejbS1fNmjUl8bndEdEfOC7OTem73r69WEn0MWPGaODAgYW2adSoUXE2bamTe/r0aUvS5erz1q1bW9qcOXPGar0rV64oNTW1wDq7Ut5Ey1Xe3t688coRLy8vzmc5UhHOZ2l8YLzefrm4/WdRNmzYoLVr1+r333+3nK958+YpPj5ey5YtU0xMTL7rBQcHa8qUKcrOzpaHh4cCAgJ0+vRpqzanT5+Wl5dXvqPQ8+PiYr5nNn2746oIv9fOjPNTekgIlB4XFxfVrVvX3mGgAPQb5Qvns3D07aWHz+2Oj/7AcXFuStf19O3FSqLXqlVLtWrVKs6qRWrYsKECAgK0fv16S9I8IyND27Zt0/DhwyVJISEhSktLU2JioqXW7oYNG5Sbm6vg4OAyiQsAHNn19stl1X9mZWVJ+vOD8FUuLi7Kzc0tcL2kpCTVqFHDcoEzJCREX3zxhVWb+Ph4hYSEFDs2AAAAAACAknApuknJnDhxQklJSTpx4oRycnKUlJSkpKQkXbhwwdImMDBQH3/8sSRzXd2RI0fqX//6l9asWaM9e/YoIiJCderUUe/evSVJzZo1U1hYmKKiorR9+3Z99913io6OVr9+/fhaFQAU4nr6z19//VWBgYHavn27Zb2UlBQlJSXp8OHDkqQ9e/YoKSlJqampkszJ7xo1aigyMlK7d+/WTz/9pGeffVbHjh1Tt27dJEmfffaZFi5cqL179+rw4cOaP3++pk6dqieffNKyn2HDhuno0aN67rnndODAAc2bN0+rVq3SqFGjbPUSAQAAAAAAWCnzG4tOmDBBy5YtszwPCgqSJG3cuFEdOnSQJB08eFDp6emWNs8995wyMzM1dOhQpaWlqX379oqLi5Onp6elzfLlyxUdHa1OnTrJxcVFffr00ezZs28oNg8PD02cODHfEi9wPpzP8oXzWXaK6j8vX76sgwcPWkaXS1JsbKzVjZnvvfdeSdKSJUs0cOBA+fr6Ki4uTi+++KI6duyoy5cv67bbbtOnn36qVq1aSZIqVaqkuXPnatSoUTIMQ02aNNHrr7+uqKgoy3YbNmyozz//XKNGjdKbb76punXrauHChQoNDb3u4+O947g4N46N8wPgRtFvlC+cT9ga7znHxblxXJwb+zEZhmHYOwgAAAAAAAAAABxRmZdzAQAAAAAAAADAWZFEBwAAAAAAAACgACTRAQAAAAAAAAAoAEl0AAAAAAAAAAAKUGGT6HPnzlWDBg3k6emp4OBgbd++3d4hoRimT58uk8mkkSNHWuZdvHhRI0aM0E033aRq1aqpT58+On36tP2CRIFycnI0fvx4NWzYUJUrV1bjxo01ZcoUXXu/Y8MwNGHCBNWuXVuVK1dW586ddejQITtGDUdG325//F47lk2bNqlHjx6qU6eOTCaTPvnkkzxt9u/fr549e8rb21tVq1bVnXfeqRMnTliW83cVqFjoN8qXadOm6c4771T16tXl5+en3r176+DBg1Ztrud8nThxQt26dVOVKlXk5+enZ599VleuXLHlocBJ3ejn89WrVyswMFCenp5q0aKFvvjiCxtFWvEU93+nlStXymQyqXfv3mUbYAV1o+dl1qxZatq0qSpXrqx69epp1KhRunjxoo2irVgqZBL9gw8+0OjRozVx4kTt3LlTrVq1UmhoqM6cOWPv0HADduzYobffflstW7a0mj9q1Ch99tlnWr16tb7++mudOnVKDz74oJ2iRGFmzJih+fPn66233tL+/fs1Y8YMvfLKK5ozZ46lzSuvvKLZs2crNjZW27ZtU9WqVRUaGsofBeRB3+4Y+L12LJmZmWrVqpXmzp2b7/IjR46offv2CgwMVEJCgn744QeNHz9enp6eljb8XQUqFvqN8uXrr7/WiBEjtHXrVsXHx+vy5cu6//77lZmZaWlT1PnKyclRt27ddOnSJW3evFnLli3T0qVLNWHCBHscEpzIjX4+37x5s/r376/Bgwdr165d6t27t3r37q29e/faOPLyr7j/Ox0/flzPPPOM7rnnHhtFWrHc6HlZsWKFYmJiNHHiRO3fv1+LFi3SBx98oBdeeMHGkVcQRgV01113GSNGjLA8z8nJMerUqWNMmzbNjlHhRpw/f9645ZZbjPj4eOO+++4znn76acMwDCMtLc2oVKmSsXr1akvb/fv3G5KMLVu22ClaFKRbt27G448/bjXvwQcfNMLDww3DMIzc3FwjICDAePXVVy3L09LSDA8PD+Pf//63TWOF46Nvdwz8XjsuScbHH39sNe+RRx4xBgwYUOA6/F0FKjb6jfLnzJkzhiTj66+/Ngzj+s7XF198Ybi4uBgpKSmWNvPnzze8vLyM7Oxs2x4AnMqNfj5/+OGHjW7dulnNCw4ONv75z3+WaZwVUXH+d7py5YrRrl07Y+HChUZkZKTRq1cvG0RasdzoeRkxYoTRsWNHq3mjR4827r777jKNs6KqcCPRL126pMTERHXu3Nkyz8XFRZ07d9aWLVvsGBluxIgRI9StWzer8yhJiYmJunz5stX8wMBA1a9fn/PrgNq1a6f169frp59+kiTt3r1b3377rbp06SJJOnbsmFJSUqzOp7e3t4KDgzmfsELf7jj4vXYeubm5+vzzz3XrrbcqNDRUfn5+Cg4OtirdwN9VANei33B+6enpkqSaNWtKur7ztWXLFrVo0UL+/v6WNqGhocrIyNC+fftsGD2cSXE+n2/ZsiXP//ihoaH0HaWsuP87TZ48WX5+fho8eLAtwqxwinNe2rVrp8TEREvJl6NHj+qLL75Q165dbRJzReNm7wBs7ezZs8rJybH6ACBJ/v7+OnDggJ2iwo1YuXKldu7cqR07duRZlpKSInd3d/n4+FjN9/f3V0pKio0ixPWKiYlRRkaGAgMD5erqqpycHL388ssKDw+XJMs5y+/3lfOJa9G3Ow5+r53HmTNndOHCBU2fPl3/+te/NGPGDMXFxenBBx/Uxo0bdd999/F3FYAV+g3nlpubq5EjR+ruu+/W7bffLun6/n9KSUnJ9+/21WVAforz+byg9xrvs9JVnHPz7bffatGiRUpKSrJBhBVTcc7Lo48+qrNnz6p9+/YyDENXrlzRsGHDKOdSRipcEh3O7eTJk3r66acVHx9vVXcRzmnVqlVavny5VqxYodtuu01JSUkaOXKk6tSpo8jISHuHB6AY+L12Hrm5uZKkXr16adSoUZKk1q1ba/PmzYqNjdV9991nz/AAOCD6Dec2YsQI7d27V99++629QwHgRM6fP6/HHntM77zzjnx9fe0dDq6RkJCgqVOnat68eQoODtbhw4f19NNPa8qUKRo/fry9wyt3KlwS3dfXV66urnnuNn769GkFBATYKSpcr8TERJ05c0Z33HGHZV5OTo42bdqkt956S+vWrdOlS5eUlpZmNZqC8+uYnn32WcXExKhfv36SpBYtWujnn3/WtGnTFBkZaTlnp0+fVu3atS3rnT59Wq1bt7ZHyHBQ9O2Og99r5+Hr6ys3Nzc1b97can6zZs0sCZaAgAD+rgKwoN9wXtHR0Vq7dq02bdqkunXrWuZfz/kKCAiwlAq4dvnVZUB+ivP5PCAggM/zNnCj5+bIkSM6fvy4evToYZl39aKqm5ubDh48qMaNG5dt0BVAcX5nxo8fr8cee0xDhgyRZP7fKzMzU0OHDtWLL74oF5cKV8W7TFW4V9Pd3V1t2rTR+vXrLfNyc3O1fv16hYSE2DEyXI9OnTppz549SkpKskxt27ZVeHi45XGlSpWszu/Bgwd14sQJzq8DysrKytOpu7q6Wv4gN2zYUAEBAVbnMyMjQ9u2beN8wgp9u+Pg99p5uLu7684779TBgwet5v/000+6+eabJUlt2rTh7yoAC/oN52MYhqKjo/Xxxx9rw4YNatiwodXy6zlfISEh2rNnj86cOWNpEx8fLy8vrzwXVICrivP5PCQkxKq9ZH6v0XeUrhs9N4GBgXnyMD179tTf//53JSUlqV69erYMv9wqzu9MQf97Seb+H6XMzjc2tYuVK1caHh4extKlS40ff/zRGDp0qOHj42N1t3E4j/vuu894+umnLc+HDRtm1K9f39iwYYPx/fffGyEhIUZISIj9AkSBIiMjjb/97W/G2rVrjWPHjhkfffSR4evrazz33HOWNtOnTzd8fHyMTz/91Pjhhx+MXr16GQ0bNjT++OMPO0YOR0Tf7hj4vXYs58+fN3bt2mXs2rXLkGS8/vrrxq5du4yff/7ZMAzD+Oijj4xKlSoZCxYsMA4dOmTMmTPHcHV1Nb755hvLNvi7ClQs9Bvly/Dhww1vb28jISHBSE5OtkxZWVmWNkWdrytXrhi33367cf/99xtJSUlGXFycUatWLWPs2LH2OCQ4kaI+nz/22GNGTEyMpf13331nuLm5GTNnzjT2799vTJw40ahUqZKxZ88eex1CuXWj5+avIiMjjV69etko2orjRs/LxIkTjerVqxv//ve/jaNHjxpffvml0bhxY+Phhx+21yGUaxUyiW4YhjFnzhyjfv36hru7u3HXXXcZW7dutXdIKKa/JtH/+OMP44knnjBq1KhhVKlSxXjggQeM5ORk+wWIAmVkZBhPP/20Ub9+fcPT09No1KiR8eKLLxrZ2dmWNrm5ucb48eMNf39/w8PDw+jUqZNx8OBBO0YNR0bfbn/8XjuWjRs3GpLyTJGRkZY2ixYtMpo0aWJ4enoarVq1Mj755BOrbfB3FahY6DfKl/zOpSRjyZIlljbXc76OHz9udOnSxahcubLh6+trjBkzxrh8+bKNjwbOqLDP5/fdd59V32IYhrFq1Srj1ltvNdzd3Y3bbrvN+Pzzz20cccVxo+fmWiTRy86NnJfLly8bkyZNMho3bmx4enoa9erVM5544gnj999/t33gFYDJMBjfDwAAAAAAAABAfipcTXQAAAAAAAAAAK4XSXQAAAAAAAAAAApAEh0AAAAAAAAAgAKQRAcAAAAAAAAAoAAk0QEAAAAAAAAAKABJdAAAAAAAAAAACkASHQAAAAAAAACAApBEBwAAAAAAAACgACTRAQAAAAAAANjEwIED1bt3b5vvd+nSpTKZTDKZTBo5cqRlfoMGDTRr1qxC1726no+PT5nGCMflZu8AAAAAAAAAADg/k8lU6PKJEyfqzTfflGEYNorImpeXlw4ePKiqVave0HrJycn64IMPNHHixDKKDI6OkehAITp06GC52piUlFTm+xs4cKBlf5988kmZ7w8AKiL6dgAof+jbAcAxJCcnW6ZZs2bJy8vLat4zzzwjb29vu43oNplMCggIUPXq1W9ovYCAAHl7e5dRVHAGJNGBIkRFRSk5OVm33357me/rzTffVHJycpnvBwAqOvp2ACh/6NsBwP4CAgIsk7e3tyVpfXWqVq1annIuHTp00JNPPqmRI0eqRo0a8vf31zvvvKPMzEwNGjRI1atXV5MmTfTf//7Xal979+5Vly5dVK1aNfn7++uxxx7T2bNnixV3VlaWHn/8cVWvXl3169fXggULSvIyoBwiiQ4UoUqVKgoICJCbW9lXP/L29lZAQECZ7wcAKjr6dgAof+jbAcB5LVu2TL6+vtq+fbuefPJJDR8+XH379lW7du20c+dO3X///XrssceUlZUlSUpLS1PHjh0VFBSk77//XnFxcTp9+rQefvjhYu3/tddeU9u2bbVr1y498cQTGj58uA4ePFiahwgnRxIdFcZvv/2mgIAATZ061TJv8+bNcnd31/r1629oW99++60qVaqkixcvWuYdP35cJpNJP//8c7GvogIAbgx9OwCUP/TtAFDxtGrVSuPGjdMtt9yisWPHytPTU76+voqKitItt9yiCRMm6Ny5c/rhhx8kSW+99ZaCgoI0depUBQYGKigoSIsXL9bGjRv1008/3fD+u3btqieeeEJNmjTR888/L19fX23cuLG0DxNOjCQ6KoxatWpp8eLFmjRpkr7//nudP39ejz32mKKjo9WpU6cb2lZSUpKaNWsmT09Py7xdu3apRo0auvnmmyXd+FVUAMCNo28HgPKHvh0AKp6WLVtaHru6uuqmm25SixYtLPP8/f0lSWfOnJEk7d69Wxs3blS1atUsU2BgoCTpyJEjJdr/1RI0V/cFSCTRUcF07dpVUVFRCg8P17Bhw1S1alVNmzbthreze/duBQUFWc1LSkpSq1atLM9v9CoqAKB46NsBoPyhbweAiqVSpUpWz00mk9U8k8kkScrNzZUkXbhwQT169FBSUpLVdOjQId17772lsv+r+wIkkuiogGbOnKkrV65o9erVWr58uTw8PG54G0lJSWrdurXVvF27dlnNu9GrqACA4qNvB4Dyh74dAFCQO+64Q/v27VODBg3UpEkTq6lq1ar2Dg/lEEl0VDhHjhzRqVOnlJubq+PHj9/w+jk5Odq7d2+eES07d+60+jB+o1dRAQDFR98OAOUPfTsAoCAjRoxQamqq+vfvrx07dujIkSNat26dBg0apJycHHuHh3Ko7G9bDjiQS5cuacCAAXrkkUfUtGlTDRkyRHv27JGfn991b+PgwYO6ePGi6tSpY5m3ZcsW/frrr3lGuQAAyh59OwCUP/TtAIDC1KlTR999952ef/553X///crOztbNN9+ssLAwubgwZhiljyQ6KpQXX3xR6enpmj17tqpVq6YvvvhCjz/+uNauXXvd20hKSpIkzZkzR0899ZQOHz6sp556SpL5wz4AwLbo2wGg/KFvBwDnN3DgQA0cODDP/KVLl1o9T0hIyNMmv28gGYZh9fyWW27RRx99VIIIC97X1b8hwFVcmkGFkZCQoFmzZum9996Tl5eXXFxc9N577+mbb77R/Pnzr3s7SUlJCg0N1dGjR9WiRQu9+OKLeumll+Tl5aXZs2eX4REAAP6Kvh0Ayh/6dgBAWUlPT1e1atX0/PPP39B61apV07Bhw8ooKjgDRqKjwujQoYMuX75sNa9BgwZKT0+/oe3s3r1bd955p/71r39ZzX/00Uctj4t7FRUAcGPo2wGg/KFvBwCUhT59+qh9+/aSJB8fnxta9+rIdFdX11KOCs6CkehAEebNm6dq1appz549kswfxlu0aFEm+xo2bJiqVatWJtsGAPyJvh0Ayh/6dgBAYapXr64mTZqoSZMm8vX1vaF1r67XsGHDMooOjs5kcEkdKNCvv/6qP/74Q5JUv359paamqnbt2tq3b5+aN29e6vs7c+aMMjIyJEm1a9dW1apVS30fAFDR0bcDQPlD3w4AAMoSSXQAAAAAAAAAAApAORcAAAAAAAAAAApAEh0AAAAAAAAAgAKQRAcAAAAAAAAAoAAk0QEAAAAAAAAAKABJdAAAAAAAAAAACkASHQAAAAAAAACAApBEBwAAAAAAAACgACTRAQAAAAAAAAAoAEl0AAAAAAAAAAAKQBIdAAAAAAAAAIAC/D9pNV++FzK5QwAAAABJRU5ErkJggg==",
"text/plain": [
"