diff --git a/.all-contributorsrc b/.all-contributorsrc new file mode 100644 index 000000000..2be30620d --- /dev/null +++ b/.all-contributorsrc @@ -0,0 +1,59 @@ +{ + "files": [ + "README.md" + ], + "imageSize": 100, + "commit": false, + "commitType": "docs", + "commitConvention": "angular", + "contributors": [ + { + "login": "BradyPlanden", + "name": "Brady Planden", + "avatar_url": "https://avatars.githubusercontent.com/u/55357039?v=4", + "profile": "http://bradyplanden.github.io", + "contributions": [ + "infra", + "test", + "code", + "example" + ] + }, + { + "login": "NicolaCourtier", + "name": "NicolaCourtier", + "avatar_url": "https://avatars.githubusercontent.com/u/45851982?v=4", + "profile": "https://github.com/NicolaCourtier", + "contributions": [ + "code", + "review" + ] + }, + { + "login": "davidhowey", + "name": "David Howey", + "avatar_url": "https://avatars.githubusercontent.com/u/2247552?v=4", + "profile": "http://howey.eng.ox.ac.uk", + "contributions": [ + "ideas", + "mentoring" + ] + }, + { + "login": "martinjrobins", + "name": "Martin Robinson", + "avatar_url": "https://avatars.githubusercontent.com/u/1148404?v=4", + "profile": "http://www.rse.ox.ac.uk", + "contributions": [ + "ideas", + "mentoring" + ] + } + ], + "contributorsPerLine": 7, + "skipCi": true, + "repoType": "github", + "repoHost": "https://github.com", + "projectName": "PyBOP", + "projectOwner": "pybop-team" +} diff --git a/.gitattributes b/.gitattributes new file mode 100644 index 000000000..dfe077042 --- /dev/null +++ b/.gitattributes @@ -0,0 +1,2 @@ +# Auto detect text files and perform LF normalization +* text=auto diff --git a/.github/ISSUE_TEMPLATE/bug_report.yml b/.github/ISSUE_TEMPLATE/bug_report.yml new file mode 100644 index 000000000..0b95cd9a8 --- /dev/null +++ b/.github/ISSUE_TEMPLATE/bug_report.yml @@ -0,0 +1,37 @@ +name: Bug Report +description: Create a bug report +title: "[Bug]: " +labels: ["bug"] +body: + - type: markdown + attributes: + value: | + Thanks for filling out this report to help us improve! + - type: input + id: python-version + attributes: + label: Python Version + description: What python version are you using? + placeholder: python version + validations: + required: true + - type: textarea + id: bug-description + attributes: + label: Describe the bug + description: A clear and concise description of the bug. + validations: + required: true + - type: textarea + id: reproduce + attributes: + label: Steps to reproduce the behaviour + description: Tell us how to reproduce this behaviour. Please try to include a [Minimum Workable Example](https://stackoverflow.com/help/minimal-reproducible-example) + validations: + required: true + - type: textarea + id: logs + attributes: + label: Relevant log output + description: Please copy and paste any relevant log output. This will be automatically formatted into code, so no need for backticks. + render: shell diff --git a/.github/ISSUE_TEMPLATE/feature_request.yml b/.github/ISSUE_TEMPLATE/feature_request.yml new file mode 100644 index 000000000..5821d4f5c --- /dev/null +++ b/.github/ISSUE_TEMPLATE/feature_request.yml @@ -0,0 +1,30 @@ +name: Feature request +description: Suggest a feature +labels: ["enhancement"] +body: + - type: markdown + attributes: + value: | + Thanks for filling out this report to help us improve! + - type: textarea + id: feature + attributes: + label: Feature description + description: Describe the feature you'd like. + validations: + required: true + - type: textarea + id: motivation + attributes: + label: Motivation + description: Please enter the motivation for this feature i.e (problem, performance, etc). + - type: textarea + id: possible-implementation + attributes: + label: Possible implementation + description: Please enter any possible implementation for this feature. + - type: textarea + id: context + attributes: + label: Additional context + description: Add any additional context about the feature request. diff --git a/.github/workflows/release-action.yaml b/.github/workflows/release-action.yaml new file mode 100644 index 000000000..c2cd834b2 --- /dev/null +++ b/.github/workflows/release-action.yaml @@ -0,0 +1,110 @@ +name: Publish Python 🐍 distribution 📦 to PyPI and TestPyPI + +on: push + +jobs: + build: + name: Build distribution 📦 + runs-on: ubuntu-latest + + steps: + - uses: actions/checkout@v4 + - name: Set up Python + uses: actions/setup-python@v4 + with: + python-version: "3.8" + - name: Install pypa/build + run: >- + python3 -m + pip install + build + --user + - name: Build a binary wheel and a source tarball + run: python3 -m build + - name: Store the distribution packages + uses: actions/upload-artifact@v3 + with: + name: python-package-distributions + path: dist/ + + publish-to-pypi: + name: >- + Publish Python 🐍 distribution 📦 to PyPI + if: startsWith(github.ref, 'refs/tags/') # only publish to PyPI on tag pushes + needs: + - build + runs-on: ubuntu-latest + environment: + name: pypi + url: https://pypi.org/p/pybop + permissions: + id-token: write # IMPORTANT: mandatory for trusted publishing + + steps: + - name: Download all the dists + uses: actions/download-artifact@v3 + with: + name: python-package-distributions + path: dist/ + - name: Publish distribution 📦 to PyPI + uses: pypa/gh-action-pypi-publish@release/v1 + + github-release: + name: >- + Sign the Python 🐍 distribution 📦 with Sigstore + and upload them to GitHub Release + needs: + - publish-to-pypi + runs-on: ubuntu-latest + + permissions: + contents: write # IMPORTANT: mandatory for making GitHub Releases + id-token: write # IMPORTANT: mandatory for sigstore + + steps: + - name: Download all the dists + uses: actions/download-artifact@v3 + with: + name: python-package-distributions + path: dist/ + - name: Sign the dists with Sigstore + uses: sigstore/gh-action-sigstore-python@v1.2.3 + with: + inputs: >- + ./dist/*.tar.gz + ./dist/*.whl + - name: Upload artifact signatures to GitHub Release + env: + GITHUB_TOKEN: ${{ github.token }} + # Upload to GitHub Release using the `gh` CLI. + # `dist/` contains the built packages, and the + # sigstore-produced signatures and certificates. + run: >- + gh release upload + '${{ github.ref_name }}' dist/** + --repo '${{ github.repository }}' + + publish-to-testpypi: + name: Publish Python 🐍 distribution 📦 to TestPyPI + if: contains(github.ref, 'rc') # only publish to TestPyPI for rc tags + needs: + - build + runs-on: ubuntu-latest + + environment: + name: testpypi + url: https://test.pypi.org/project/pybop/ + + permissions: + id-token: write # IMPORTANT: mandatory for trusted publishing + + steps: + - name: Download all the dists + uses: actions/download-artifact@v3 + with: + name: python-package-distributions + path: dist/ + - name: Publish distribution 📦 to TestPyPI + uses: pypa/gh-action-pypi-publish@release/v1 + with: + repository-url: https://test.pypi.org/legacy/ diff --git a/.github/workflows/scheduled_tests.yaml b/.github/workflows/scheduled_tests.yaml new file mode 100644 index 000000000..2de1a0f83 --- /dev/null +++ b/.github/workflows/scheduled_tests.yaml @@ -0,0 +1,69 @@ +name: Scheduled + +on: + workflow_dispatch: + pull_request: + branches: + - main + + # runs every day at 09:00 UTC + schedule: + - cron: '0 9 * * *' + +jobs: + build: + runs-on: ubuntu-latest + strategy: + fail-fast: false + matrix: + python-version: ["3.8", "3.9", "3.10", "3.11"] + + steps: + - uses: actions/checkout@v4 + - name: Set up Python ${{ matrix.python-version }} + uses: actions/setup-python@v4 + with: + python-version: ${{ matrix.python-version }} + - name: Install dependencies + run: | + python -m pip install --upgrade pip nox + - name: Unit tests with nox + run: | + python -m nox -s unit + python -m nox -s notebooks + + #M-series Mac Mini + build-apple-mseries: + runs-on: [self-hosted, macOS, ARM64] + env: + GITHUB_PATH: ${PYENV_ROOT/bin:$PATH} + strategy: + fail-fast: false + matrix: + python-version: ["3.10"] + + steps: + - uses: actions/checkout@v4 + - name: Install python & create virtualenv + shell: bash + run: | + eval "$(pyenv init -)" + pyenv install ${{ matrix.python-version }} -s + pyenv virtualenv ${{ matrix.python-version }} pybop-${{ matrix.python-version }} + + - name: Install dependencies & run unit tests + shell: bash + run: | + eval "$(pyenv init -)" + pyenv activate pybop-${{ matrix.python-version }} + python -m pip install --upgrade pip wheel setuptools nox + python -m nox -s unit + python -m nox -s notebooks + + - name: Uninstall pyenv-virtualenv & python + if: always() + shell: bash + run: | + eval "$(pyenv init -)" + pyenv activate pybop-${{ matrix.python-version }} + pyenv uninstall -f $( python --version ) diff --git a/.github/workflows/test_on_push.yaml b/.github/workflows/test_on_push.yaml new file mode 100644 index 000000000..959e4c826 --- /dev/null +++ b/.github/workflows/test_on_push.yaml @@ -0,0 +1,79 @@ +name: test_on_push + +on: + push: + workflow_dispatch: + pull_request: + +concurrency: + # github.workflow: name of the workflow, so that we don't cancel other workflows + # github.event.pull_request.number || github.ref: pull request number or branch name if not a pull request + group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref }} + # Cancel in-progress runs when a new workflow with the same group name is triggered + # This avoids workflow runs on both pushes and PRs + cancel-in-progress: true + +jobs: + style: + runs-on: ubuntu-latest + steps: + - uses: actions/checkout@v4 + - name: Setup Python + uses: actions/setup-python@v4 + with: + python-version: 3.11 + + - name: Check formatting with pre-commit + run: | + python -m pip install pre-commit + pre-commit run ruff + + + build: + runs-on: ubuntu-latest + strategy: + fail-fast: false + matrix: + python-version: ["3.8", "3.9", "3.10", "3.11"] + + steps: + - uses: actions/checkout@v4 + - name: Set up Python ${{ matrix.python-version }} + uses: actions/setup-python@v4 + with: + python-version: ${{ matrix.python-version }} + - name: Install dependencies + run: | + python -m pip install --upgrade pip nox + - name: Unit tests with nox + run: | + nox -s unit + + # Runs only on Ubuntu with Python 3.11 + check_coverage: + runs-on: ubuntu-latest + strategy: + fail-fast: false + name: Coverage tests (ubuntu-latest / Python 3.11) + + steps: + - name: Check out PyBOP repository + uses: actions/checkout@v4 + - name: Set up Python 3.11 + id: setup-python + uses: actions/setup-python@v4 + with: + python-version: 3.11 + cache: 'pip' + cache-dependency-path: setup.py + + - name: Install dependencies + run: | + python -m pip install --upgrade pip nox + - name: Run coverage tests for Ubuntu with Python 3.11 and generate report + run: nox -s coverage + + - name: Upload coverage report + uses: codecov/codecov-action@v3 + env: + CODECOV_TOKEN: ${{ secrets.CODECOV_TOKEN }} diff --git a/.gitignore b/.gitignore index 7978daaa3..838f372b0 100644 --- a/.gitignore +++ b/.gitignore @@ -301,3 +301,6 @@ $RECYCLE.BIN/ *.lnk # End of https://www.toptal.com/developers/gitignore/api/python,macos,windows,linux,c + +# Visual Studio Code settings +.vscode/* diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml new file mode 100644 index 000000000..5270e26ff --- /dev/null +++ b/.pre-commit-config.yaml @@ -0,0 +1,32 @@ +ci: + autoupdate_commit_msg: "chore: update pre-commit hooks" + autofix_commit_msg: "style: pre-commit fixes" + +repos: + - repo: https://github.com/astral-sh/ruff-pre-commit + rev: "v0.1.5" + hooks: + - id: ruff + args: [--fix, --show-fixes] + types_or: [python, pyi, jupyter] + - id: ruff-format + + - repo: https://github.com/pre-commit/pre-commit-hooks + rev: v4.5.0 + hooks: + - id: check-added-large-files + - id: check-case-conflict + - id: check-merge-conflict + - id: check-yaml + - id: debug-statements + - id: end-of-file-fixer + - id: mixed-line-ending + - id: trailing-whitespace + + - repo: https://github.com/pre-commit/pygrep-hooks + rev: v1.10.0 + hooks: + - id: python-check-blanket-type-ignore + - id: rst-backticks + - id: rst-directive-colons + - id: rst-inline-touching-normal diff --git a/CITATION.cff b/CITATION.cff new file mode 100644 index 000000000..e1efab891 --- /dev/null +++ b/CITATION.cff @@ -0,0 +1,14 @@ +cff-version: 1.2.0 +title: 'Python Battery Optimisation and Parameterisation (PyBOP)' +message: >- + If you use this software, please cite it using the + metadata from this file. +type: software +authors: + - given-names: Brady + family-names: Planden + - given-names: Nicola + family-names: Courtier + - given-names: David + family-names: Howey +repository-code: 'https://www.github.com/pybop-team/pybop' diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md new file mode 100644 index 000000000..d1ea9db24 --- /dev/null +++ b/CONTRIBUTING.md @@ -0,0 +1,303 @@ +# Contributing to PyBOP + +If you'd like to contribute to PyBOP, please have a look at the [pre-commit](#pre-commit-checks) and the [workflow](#workflow) guidelines below. + +## Pre-commit checks + +Before you commit any code, please perform the following checks: + +- [All tests pass](#testing): `$ nox -s unit` + +### Installing and using pre-commit + +`PyBOP` uses a set of `pre-commit` hooks and the `pre-commit` bot to format and prettify the codebase. The hooks can be installed locally using - + +```bash +pip install pre-commit +pre-commit install +``` + +This would run the checks every time a commit is created locally. The checks will only run on the files modified by that commit, but the checks can be triggered for all the files using - + +```bash +pre-commit run --all-files +``` + +If you would like to skip the failing checks and push the code for further discussion, use the `--no-verify` option with `git commit`. + +## Workflow + +We use [GIT](https://en.wikipedia.org/wiki/Git) and [GitHub](https://en.wikipedia.org/wiki/GitHub) to coordinate our work. When making any kind of update, we try to follow the procedure below. + +### A. Before you begin + +1. Create an [issue](https://guides.github.com/features/issues/) where new proposals can be discussed before any coding is done. +2. Create a [branch](https://help.github.com/articles/creating-and-deleting-branches-within-your-repository/) of this repo (ideally on your own [fork](https://help.github.com/articles/fork-a-repo/)), where all changes will be made +3. Download the source code onto your local system, by [cloning](https://help.github.com/articles/cloning-a-repository/) the repository (or your fork of the repository). +4. [Install](Developer-Install) PyBOP with the developer options. +5. [Test](#testing) if your installation worked: `$ pytest --unit -v`. + +You now have everything you need to start making changes! + +### B. Writing your code + +6. PyBOP is developed in [Python](https://en.wikipedia.org/wiki/Python_(programming_language)), and makes heavy use of [NumPy](https://en.wikipedia.org/wiki/NumPy) (see also [NumPy for MatLab users](https://numpy.org/doc/stable/user/numpy-for-matlab-users.html) and [Python for R users](http://blog.hackerearth.com/how-can-r-users-learn-python-for-data-science)). +7. Make sure to follow our [coding style guidelines](#coding-style-guidelines). +8. Commit your changes to your branch with [useful, descriptive commit messages](https://chris.beams.io/posts/git-commit/): Remember these are publicly visible and should still make sense a few months ahead in time. While developing, you can keep using the GitHub issue you're working on as a place for discussion. [Refer to your commits](https://stackoverflow.com/questions/8910271/how-can-i-reference-a-commit-in-an-issue-comment-on-github) when discussing specific lines of code. +9. If you want to add a dependency on another library, or re-use code you found somewhere else, have a look at [these guidelines](#dependencies-and-reusing-code). + +### C. Merging your changes with PyBOP + +10. [Test your code!](#testing) +12. If you added a major new feature, perhaps it should be showcased in an [example notebook](#example-notebooks). +13. If you've added new functionality, please add additional tests to ensure ample code coverage in PyBOP. +13. When you feel your code is finished, or at least warrants serious discussion, create a [pull request](https://help.github.com/articles/about-pull-requests/) (PR) on [PyBOP's GitHub page](https://github.com/pybop-team/PyBOP). +14. Once a PR has been created, it will be reviewed by any member of the community. Changes might be suggested which you can make by simply adding new commits to the branch. When everything's finished, someone with the right GitHub permissions will merge your changes into PyBOP main repository. + +Finally, if you really, really, _really_ love developing PyBOP, have a look at the current [project infrastructure](#infrastructure). + +## Coding style guidelines + +PyBOP follows the [PEP8 recommendations](https://www.python.org/dev/peps/pep-0008/) for coding style. These are very common guidelines, and community tools have been developed to check how well projects implement them. + +### Ruff + +We use [ruff](https://github.com/charliermarsh/ruff) to check our PEP8 adherence. To try this on your system, navigate to the PyBOP directory in a console and type + +```bash +python -m pip install pre-commit +pre-commit run ruff +``` + +ruff is configured inside the file `pre-commit-config.yaml`, allowing us to ignore some errors. If you think this should be added or removed, please submit an [issue](#issues) + +When you commit your changes they will be checked against ruff automatically (see [Pre-commit checks](#pre-commit-checks)). + +### Naming + +Naming is hard. In general, we aim for descriptive class, method, and argument names. Avoid abbreviations when possible without making names overly long, so `mean` is better than `mu`, but a class name like `MyClass` is fine. + +Class names are CamelCase, and start with an upper case letter, for example `MyOtherClass`. Method and variable names are lower-case, and use underscores for word separation, for example, `x` or `iteration_count`. + +## Dependencies and reusing code + +While it's a bad idea for developers to "reinvent the wheel", it's important for users to get a _reasonably sized download and an easy install_. In addition, external libraries can sometimes cease to be supported, and when they contain bugs it might take a while before fixes become available as automatic downloads to PyBOP users. +For these reasons, all dependencies in PyBOP should be thought about carefully and discussed on GitHub. + +Direct inclusion of code from other packages is possible, as long as their license permits it and is compatible with ours, but again should be considered carefully and discussed in the group. Snippets from blogs and [stackoverflow](https://stackoverflow.com/) can often be included but must include attribution to the original by commenting with a link in the source code. + +### Separating dependencies + +On the other hand... We _do_ want to compare several tools, to generate documentation, and speed up development. For this reason, the dependency structure is split into 4 parts: + +1. Core PyBOP: A minimal set, including things like NumPy, SciPy, etc. All infrastructure should run against this set of dependencies, as well as any numerical methods we implement ourselves. +2. Extras: Other inference packages and their dependencies. Methods we don't want to implement ourselves, but do want to provide an interface to can have their dependencies added here. +3. Documentation generating code: Everything you need to generate and work on the docs. +4. Development code: Everything you need to do PyBOP development (so all of the above packages, plus ruff and other testing tools). + +Only 'core pybop' is installed by default. The others have to be specified explicitly when running the installation command. + +### Matplotlib + +We use Matplotlib in PyBOP, but with two caveats: + +First, Matplotlib should only be used in plotting methods, and these should _never_ be called by other PyBOP methods. So users who don't like Matplotlib will not be forced to use it in any way. Use in notebooks is OK and encouraged. + +Second, Matplotlib should never be imported at the module level, but always inside methods. For example: + +``` +def plot_great_things(self, x, y, z): + import matplotlib.pyplot as pl + ... +``` + +This allows people to (1) use PyBOP without ever importing Matplotlib and (2) configure Matplotlib's back-end in their scripts, which _must_ be done before e.g. `pyplot` is first imported. + +## Testing + +All code requires testing. We use the [pytest](https://docs.pytest.org/en/) package for our tests. (These tests typically just check that the code runs without error, and so, are more _debugging_ than _testing_ in a strict sense. Nevertheless, they are very useful to have!) + +If you have nox installed, to run unit tests, type + +```bash +nox -s unit +``` + +else, type + +```bash +pytest --unit -v +``` + +To run individual test files, you can use + +```bash +pytest tests/unit/path/to/test --unit -v +``` + +And for individual tests, + +```bash +pytest tests/unit/path/to/test.py::TestClass:test_name --unit -v +``` +where `--unit` is a flag to run only unit tests and `-v` is a flag to display verbose output. + +### Writing tests + +Every new feature should have its own test. To create ones, have a look at the `test` directory and see if there's a test for a similar method. Copy-pasting is a good way to start. + +Next, add some simple (and speedy!) tests of your main features. If these run without exceptions that's a good start! Next, check the output of your methods using any of these [functions](https://docs.pytest.org/en/7.4.x/reference/reference.html#functions). + +### Debugging + +Often, the code you write won't pass the tests straight away, at which stage it will become necessary to debug. +The key to successful debugging is to isolate the problem by finding the smallest possible example that causes the bug. +In practice, there are a few tricks to help you do this, which we give below. +Once you've isolated the issue, it's a good idea to add a unit test that replicates this issue, so that you can easily check whether it's been fixed, and make sure that it's easily picked up if it crops up again. +This also means that, if you can't fix the bug yourself, it will be much easier to ask for help (by opening a [bug-report issue](https://github.com/pybop-team/PyBOP/issues/new?assignees=&labels=bug&projects=&template=bug_report.yml&title=%5BBug%5D%3A+)). + +1. Run individual test scripts instead of the whole test suite: + + ```bash + pytest tests/unit/path/to/test --unit -v + ``` + + You can also run an individual test from a particular script, e.g. + + ```bash + pytest tests/unit/path/to/test.py::TestClass:test_name --unit -v + ``` + where `--unit` is a flag to run only unit tests and `-v` is a flag to display verbose output. + +2. Set break-points, either in your IDE or using the Python debugging module. To use the latter, add the following line where you want to set the break point + + ```python + import ipdb + + ipdb.set_trace() + ``` + + This will start the [Python interactive debugger](https://gist.github.com/mono0926/6326015). If you want to be able to use magic commands from `ipython`, such as `%timeit`, then set + + ```python + from IPython import embed + + embed() + import ipdb + + ipdb.set_trace() + ``` + + at the break point instead. + Figuring out where to start the debugger is the real challenge. Some good ways to set debugging break points are: + + 1. Try-except blocks. Suppose the line `do_something_complicated()` is raising a `ValueError`. Then you can put a try-except block around that line as: + + ```python + try: + do_something_complicated() + except ValueError: + import ipdb + + ipdb.set_trace() + ``` + + This will start the debugger at the point where the `ValueError` was raised, and allow you to investigate further. Sometimes, it is more informative to put the try-except block further up the call stack than exactly where the error is raised. + 2. Warnings. If functions are raising warnings instead of errors, it can be hard to pinpoint where this is coming from. Here, you can use the `warnings` module to convert warnings to errors: + + ```python + import warnings + + warnings.simplefilter("error") + ``` + + Then you can use a try-except block, as in a., but with, for example, `RuntimeWarning` instead of `ValueError`. + +3. To isolate whether a bug is in a model, its Jacobian or its simplified version, you can set the `use_jacobian` and/or `use_simplify` attributes of the model to `False` (they are both `True` by default for most models). +4. If a model isn't giving the answer you expect, you can try comparing it to other models. For example, you can investigate parameter limits in which two models should give the same answer by setting some parameters to be small or zero. The `StandardOutputComparison` class can be used to compare some standard outputs from battery models. +5. To get more information about what is going on under the hood, and hence understand what is causing the bug, you can set the [logging](https://realpython.com/python-logging/) level to `DEBUG` by adding the following line to your test or script: + + ```python3 + pybop.set_logging_level("DEBUG") + ``` + +### Profiling + +Sometimes, a bit of code will take much longer than you expect to run. In this case, you can set + +```python +from IPython import embed + +embed() +import ipdb + +ipdb.set_trace() +``` + +as above, and then use some of the profiling tools. In order of increasing detail: + +1. Simple timer. In ipython, the command + + ``` + %time command_to_time() + ``` + + tells you how long the line `command_to_time()` takes. You can use `%timeit` instead to run the command several times and obtain more accurate timings. +2. Simple profiler. Using `%prun` instead of `%time` will give a brief profiling report 3. Detailed profiler. You can install the detailed profiler `snakeviz` through pip: + + ```bash + pip install snakeviz + ``` + + and then, in ipython, run + + ``` + %load_ext snakeviz + %snakeviz command_to_time() + ``` + + This will open a window in your browser with detailed profiling information. + +## Infrastructure + +### Setuptools + +Installation of PyBOP _and dependencies_ is handled via [setuptools](http://setuptools.readthedocs.io/) + +Configuration files: + +``` +setup.py +``` + +Note that this file must be kept in sync with the version number in [pybop/**init**.py](pybop/__init__.py). + +### Continuous Integration using GitHub actions + +Each change pushed to the PyBOP GitHub repository will trigger the test and benchmark suites to be run, using [GitHub actions](https://github.com/features/actions). + +Tests are run for different operating systems, and for all Python versions officially supported by PyBOP. If you opened a Pull Request, feedback is directly available on the corresponding page. If all tests pass, a green tick will be displayed next to the corresponding test run. If one or more test(s) fail, a red cross will be displayed instead. + +Similarly, the benchmark suite is automatically run for the most recently pushed commit. Benchmark results are compared to the results available for the latest commit on the `develop` branch. Should any significant performance regression be found, a red cross will be displayed next to the benchmark run. + +In all cases, more details can be obtained by clicking on a specific run. + +Configuration files for various GitHub actions workflow can be found in `.github/workflows`. + +### Codecov + +Code coverage (how much of our code is seen by the (Linux) unit tests) is tested using [Codecov](https://docs.codecov.io/), a report is visible on https://codecov.io/gh/pybop-team/PyBOP. + + +### GitHub + +GitHub does some magic with particular filenames. In particular: + +- The first page people see when they go to [our GitHub page](https://github.com/pybop-team/PyBOP) displays the contents of [README.md](README.md), which is written in the [Markdown](https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet) format. Some guidelines can be found [here](https://help.github.com/articles/about-readmes/). +- The license for using PyBOP is stored in [LICENSE](LICENSE.txt), and [automatically](https://help.github.com/articles/adding-a-license-to-a-repository/) linked to by GitHub. +- This file, [CONTRIBUTING.md](CONTRIBUTING.md) is recognised as the contribution guidelines and a link is [automatically](https://github.com/blog/1184-contributing-guidelines) displayed when new issues or pull requests are created. + +## Acknowledgements + +This CONTRIBUTING.md file, along with large sections of the code infrastructure, +was copied from the excellent [Pints repo](https://github.com/pints-team/pints), and [PyBaMM repo](https://github.com/pybamm-team/PyBaMM) diff --git a/LICENSE b/LICENSE index c7c3f30fd..160abed72 100644 --- a/LICENSE +++ b/LICENSE @@ -1,21 +1,28 @@ -MIT License +BSD 3-Clause License -Copyright (c) 2023 PRISM-Organisation +Copyright (c) 2023, pybop-team -Permission is hereby granted, free of charge, to any person obtaining a copy -of this software and associated documentation files (the "Software"), to deal -in the Software without restriction, including without limitation the rights -to use, copy, modify, merge, publish, distribute, sublicense, and/or sell -copies of the Software, and to permit persons to whom the Software is -furnished to do so, subject to the following conditions: +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are met: -The above copyright notice and this permission notice shall be included in all -copies or substantial portions of the Software. +1. Redistributions of source code must retain the above copyright notice, this + list of conditions and the following disclaimer. -THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR -IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, -FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE -AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER -LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, -OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE -SOFTWARE. +2. Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimer in the documentation + and/or other materials provided with the distribution. + +3. Neither the name of the copyright holder nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE +FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. diff --git a/PyBOP/cost_functions/MLE.py b/PyBOP/cost_functions/MLE.py deleted file mode 100644 index 48f8b48da..000000000 --- a/PyBOP/cost_functions/MLE.py +++ /dev/null @@ -1,18 +0,0 @@ -class CostFunction(): - """ - Base class for cost function definition. - """ - - def __init__(): - """" - - Init. - - """ - - def MLE(self, x0, x_hat, theta): - """ - - Function for Maximum Likelihood Estimation - - """ diff --git a/PyBOP/models/base_model.py b/PyBOP/models/base_model.py deleted file mode 100644 index 46e314ce1..000000000 --- a/PyBOP/models/base_model.py +++ /dev/null @@ -1,25 +0,0 @@ -from pybamm.models.base_model import PyBaMMBaseModel -import numpy as np - -class BaseModel(PyBaMMBaseModel): - """ - - This is a wrapper class for the PyBaMM Model class. - - """ - - def __init__(self): - """ - - Insert initialisation code as needed. - - """ - - self.name = "Base Model" - - - def update(self, k): - """ - Updater - """ - print(k) \ No newline at end of file diff --git a/PyBOP/optimisation/base_optimisation.py b/PyBOP/optimisation/base_optimisation.py deleted file mode 100644 index a77348b2f..000000000 --- a/PyBOP/optimisation/base_optimisation.py +++ /dev/null @@ -1,28 +0,0 @@ -import botorch -import scipy -import numpy - -class BaseOptimisation(): - """ - - Base class for the optimisation methods. - - """ - - def __init__(self): - - """ - - Initialise and name class. - - """ - self.name = "Base Optimisation" - - - - def NelderMead(self, fun, x0, options): - """ - PRISM optimiser using Nelder-Mead. - """ - res = scipy.optimize(fun, x0, method='nelder-mead', - options={'xatol': 1e-8, 'disp': True}) \ No newline at end of file diff --git a/PyBOP/simulation/base_simulation.py b/PyBOP/simulation/base_simulation.py deleted file mode 100644 index 0595b6577..000000000 --- a/PyBOP/simulation/base_simulation.py +++ /dev/null @@ -1,26 +0,0 @@ -import pybamm.simulation.Simulation as pybamm_simulation - -class BaseSimulation(pybamm_simulation): - """ - - This class solves the optimisation / estimation problem. - - Parameters: - ================ - pybamm_simulation: argument for PyBaMM simulation that will be updated. - - """ - - def __init__(self): - """ - Initialise and name class - """ - - self.name = "Base Simulation" - - def Simulation(self, simulation, optimise, cost, data): - """ - - - - """ \ No newline at end of file diff --git a/README.md b/README.md index 2f0a61069..11d7e9be8 100644 --- a/README.md +++ b/README.md @@ -1,2 +1,152 @@ -# PyBOP - A *Py*thon toolbox for *B*attery *O*ptimisation and *P*arameterisation +<div align="center"> + <img src="https://raw.githubusercontent.com/pybop-team/PyBOP/develop/assets/Temp_Logo.png" alt="logo" width="400" height="auto" /> + <h1>Python Battery Optimisation and Parameterisation</h1> + +<p> + <a href="https://github.com/pybop-team/PyBOP/actions/workflows/scheduled_tests.yaml"> + <img src="https://github.com/pybop-team/PyBOP/actions/workflows/scheduled_tests.yaml/badge.svg" alt="Scheduled" /> + </a> + <a href="https://github.com/pybop-team/PyBOP/graphs/contributors"> + <img src="https://img.shields.io/github/contributors/pybop-team/PyBOP" alt="contributors" /> + </a> + <a href=""> + <img src="https://img.shields.io/github/last-commit/pybop-team/PyBOP/develop" alt="last update" /> + </a> + <a href="https://github.com/pybop-team/PyBOPe/network/members"> + <img src="https://img.shields.io/github/forks/pybop-team/PyBOP" alt="forks" /> + </a> + <a href="https://github.com/pybop-team/PyBOP/stargazers"> + <img src="https://img.shields.io/github/stars/pybop-team/PyBOP" alt="stars" /> + </a> + <a href="https://codecov.io/gh/pybop-team/PyBOP"> + <img src="https://codecov.io/gh/pybop-team/PyBOP/branch/develop/graph/badge.svg" alt="codecov" /> + </a> + <a href="https://github.com/pybop-team/PyBOP/issues/"> + <img src="https://img.shields.io/github/issues/pybop-team/PyBOP" alt="open issues" /> + </a> + <a href="https://github.com/pybop-team/PyBOP/blob/develop/LICENSE"> + <img src="https://img.shields.io/github/license/pybop-team/PyBOP" alt="license" /> + </a> + <a href="https://colab.research.google.com/github/pybop-team/PyBOP/blob/develop/"> + <img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab" /> +</p> + +</div> + +<!-- Software Specification --> +## PyBOP +PyBOP offers a full range of tools for the parameterisation and optimisation of battery models, utilising both Bayesian and frequentist approaches with example workflows to assist the user. PyBOP can be used to parameterise various battery models, which include electrochemical and equivalent circuit models that are present in [PyBaMM](https://pybamm.org/). PyBOP prioritises clear and informative diagnostics for users, while also allowing for advanced probabilistic methods. + +The diagram below presents PyBOP's conceptual framework. The PyBOP software specification is available at [this link](https://github.com/pybop-team/software-spec). This product is currently undergoing development, and users can expect the API to evolve with future releases. + +<p align="center"> + <img src="https://raw.githubusercontent.com/pybop-team/PyBOP/develop/assets/PyBOP_Architecture.png" alt="Data flows from battery cycling machines to Galv Harvesters, then to the Galv server and REST API. Metadata can be updated and data read using the web client, and data can be downloaded by the Python client." width="600" /> +</p> + +<!-- Getting Started --> +## Getting Started + +<!-- Installation --> +### Prerequisites +To use and/or contribute to PyBOP, first install Python (3.8-3.11). On a Debian-based distribution, this looks like: + +```bash +sudo apt update +sudo apt install python3 python3-virtualenv +``` + +For further information, please refer to the similar [installation instructions for PyBaMM](https://docs.pybamm.org/en/latest/source/user_guide/installation/GNU-linux.html). + +### Installation + +Create a virtual environment called `pybop-env` within your current directory: + +```bash +virtualenv pybop-env +``` + +Activate the environment: + +```bash +source pybop-env/bin/activate +``` + +Later, you can deactivate the environment: + +```bash +deactivate +``` + +Within your virtual environment, install the `develop` branch of PyBOP: + +```bash +pip install git+https://github.com/pybop-team/PyBOP.git@develop +``` + +To alternatively install PyBOP from a local directory, use the following template, substituting in the relevant path: + +```bash +pip install -e "PATH_TO_PYBOP" +``` + +To check whether PyBOP has been installed correctly, run one of the examples in the following section or the full set of unit tests: + +```bash +pytest --unit -v +``` + +### Using PyBOP +PyBOP has two general types of intended use cases: +1. parameter estimation from battery test data +2. design optimisation subject to battery manufacturing/usage constraints + +These general cases encompass a wide variety of optimisation problems that require careful consideration based on the choice of battery model, the available data and/or the choice of design parameters. + +PyBOP comes with a number of [example notebooks and scripts](https://github.com/pybop-team/PyBOP/blob/develop/examples) which can be found in the examples folder. + +The [spm_descent.py](https://github.com/pybop-team/PyBOP/blob/develop/examples/scripts/spm_descent.py) script illustrates a straightforward example that starts by generating artificial data from a single particle model (SPM). The unknown parameter values are identified by implementing a sum-of-square error cost function using the terminal voltage as the observed signal and a gradient descent optimiser. To run this example: + +```bash +python examples/scripts/spm_descent.py +``` + +In addition, [spm_nlopt.ipynb](https://github.com/pybop-team/PyBOP/blob/develop/examples/notebooks/spm_nlopt.ipynb) provides a second example in notebook form. This example estimates the SPM parameters based on an RMSE cost function and a BOBYQA optimiser. + +<!-- Code of Conduct --> +## Code of Conduct + +PyBOP aims to foster a broad consortium of developers and users, building on and learning from the success of the [PyBaMM](https://pybamm.org/) community. Our values are: + +- Inclusivity and fairness (those who wish to contribute may do so, and their input is appropriately recognised) + +- Interoperability (modularity for maximum impact and inclusivity) + +- User-friendliness (putting user requirements first via user-assistance & workflows) + + +<!-- Contributing --> +## Contributors ✨ + +Thanks goes to these wonderful people ([emoji key](https://allcontributors.org/docs/en/emoji-key)): + +<!-- ALL-CONTRIBUTORS-LIST:START - Do not remove or modify this section --> +<!-- prettier-ignore-start --> +<!-- markdownlint-disable --> +<table> + <tbody> + <tr> + <td align="center" valign="top" width="14.28%"><a href="http://bradyplanden.github.io"><img src="https://avatars.githubusercontent.com/u/55357039?v=4?s=100" width="100px;" alt="Brady Planden"/><br /><sub><b>Brady Planden</b></sub></a><br /><a href="#infra-BradyPlanden" title="Infrastructure (Hosting, Build-Tools, etc)">🚇</a> <a href="https://github.com/pybop-team/PyBOP/commits?author=BradyPlanden" title="Tests">⚠️</a> <a href="https://github.com/pybop-team/PyBOP/commits?author=BradyPlanden" title="Code">💻</a> <a href="#example-BradyPlanden" title="Examples">💡</a></td> + <td align="center" valign="top" width="14.28%"><a href="https://github.com/NicolaCourtier"><img src="https://avatars.githubusercontent.com/u/45851982?v=4?s=100" width="100px;" alt="NicolaCourtier"/><br /><sub><b>NicolaCourtier</b></sub></a><br /><a href="https://github.com/pybop-team/PyBOP/commits?author=NicolaCourtier" title="Code">💻</a> <a href="https://github.com/pybop-team/PyBOP/pulls?q=is%3Apr+reviewed-by%3ANicolaCourtier" title="Reviewed Pull Requests">👀</a></td> + <td align="center" valign="top" width="14.28%"><a href="http://howey.eng.ox.ac.uk"><img src="https://avatars.githubusercontent.com/u/2247552?v=4?s=100" width="100px;" alt="David Howey"/><br /><sub><b>David Howey</b></sub></a><br /><a href="#ideas-davidhowey" title="Ideas, Planning, & Feedback">🤔</a> <a href="#mentoring-davidhowey" title="Mentoring">🧑🏫</a></td> + <td align="center" valign="top" width="14.28%"><a href="http://www.rse.ox.ac.uk"><img src="https://avatars.githubusercontent.com/u/1148404?v=4?s=100" width="100px;" alt="Martin Robinson"/><br /><sub><b>Martin Robinson</b></sub></a><br /><a href="#ideas-martinjrobins" title="Ideas, Planning, & Feedback">🤔</a> <a href="#mentoring-martinjrobins" title="Mentoring">🧑🏫</a></td> + </tr> + </tbody> +</table> + +<!-- markdownlint-restore --> +<!-- prettier-ignore-end --> + +<!-- ALL-CONTRIBUTORS-LIST:END --> + +This project follows the [all-contributors](https://github.com/all-contributors/all-contributors) specifications. Contributions of any kind are welcome! See `contributing.md` for ways to get started. diff --git a/assets/BayOpt_Arch.pdf b/assets/BayOpt_Arch.pdf new file mode 100644 index 000000000..5332b82b2 Binary files /dev/null and b/assets/BayOpt_Arch.pdf differ diff --git a/assets/BayesOpt_Arch.svg b/assets/BayesOpt_Arch.svg new file mode 100644 index 000000000..e9340ab6d --- /dev/null +++ b/assets/BayesOpt_Arch.svg @@ -0,0 +1,1731 @@ +<?xml version="1.0" encoding="UTF-8" standalone="no"?> +<svg + width="602pt" + height="291pt" + viewBox="0 0 602 291" + version="1.2" + id="svg1079" + xmlns:xlink="http://www.w3.org/1999/xlink" + xmlns="http://www.w3.org/2000/svg" + xmlns:svg="http://www.w3.org/2000/svg"> + <defs + id="defs536"> + <g + id="g482"> + <symbol + overflow="visible" + id="glyph0-0"> + <path + style="stroke:none" + d="M 1.625,0 V -8.109375 H 8.109375 V 0 Z M 1.828125,-0.203125 H 7.90625 V -7.90625 H 1.828125 Z m 0,0" + id="path362" /> + </symbol> + <symbol + overflow="visible" + id="glyph0-1"> + <path + style="stroke:none" + d="m 1.0625,0 v -9.296875 h 6.265625 v 1.09375 H 2.296875 V -5.3125 H 6.65625 v 1.09375 H 2.296875 V 0 Z m 0,0" + id="path365" /> + </symbol> + <symbol + overflow="visible" + id="glyph0-2"> + <path + style="stroke:none" + d="m 0.4375,-3.359375 c 0,-1.25 0.34375,-2.175781 1.03125,-2.78125 0.582031,-0.5 1.289062,-0.75 2.125,-0.75 0.925781,0 1.679688,0.308594 2.265625,0.921875 0.582031,0.605469 0.875,1.4375 0.875,2.5 0,0.875 -0.132813,1.5625 -0.390625,2.0625 C 6.082031,-0.914062 5.703125,-0.53125 5.203125,-0.25 4.710938,0.0195312 4.175781,0.15625 3.59375,0.15625 2.644531,0.15625 1.878906,-0.144531 1.296875,-0.75 0.722656,-1.351562 0.4375,-2.222656 0.4375,-3.359375 Z m 1.171875,0 c 0,0.855469 0.1875,1.5 0.5625,1.9375 0.375,0.429687 0.847656,0.640625 1.421875,0.640625 0.5625,0 1.03125,-0.210938 1.40625,-0.640625 0.375,-0.4375 0.5625,-1.097656 0.5625,-1.984375 C 5.5625,-4.238281 5.375,-4.867188 5,-5.296875 4.625,-5.722656 4.15625,-5.9375 3.59375,-5.9375 c -0.574219,0 -1.046875,0.214844 -1.421875,0.640625 -0.375,0.429687 -0.5625,1.074219 -0.5625,1.9375 z m 0,0" + id="path368" /> + </symbol> + <symbol + overflow="visible" + id="glyph0-3"> + <path + style="stroke:none" + d="M 0.84375,0 V -6.734375 H 1.875 V -5.71875 C 2.132812,-6.1875 2.375,-6.5 2.59375,-6.65625 2.8125,-6.8125 3.054688,-6.890625 3.328125,-6.890625 c 0.382813,0 0.773437,0.125 1.171875,0.375 l -0.390625,1.0625 c -0.28125,-0.164063 -0.5625,-0.25 -0.84375,-0.25 -0.25,0 -0.476563,0.078125 -0.671875,0.234375 -0.199219,0.148438 -0.339844,0.351562 -0.421875,0.609375 -0.125,0.40625 -0.1875,0.851563 -0.1875,1.328125 V 0 Z m 0,0" + id="path371" /> + </symbol> + <symbol + overflow="visible" + id="glyph0-4"> + <path + style="stroke:none" + d="m 2.09375,0 -2.0625,-6.734375 h 1.1875 l 1.0625,3.890625 0.40625,1.4375 c 0.019531,-0.070312 0.132812,-0.535156 0.34375,-1.390625 l 1.078125,-3.9375 H 5.28125 l 1.015625,3.90625 0.328125,1.28125 0.390625,-1.296875 1.15625,-3.890625 H 9.28125 L 7.171875,0 h -1.1875 L 4.90625,-4.03125 4.65625,-5.1875 3.296875,0 Z m 0,0" + id="path374" /> + </symbol> + <symbol + overflow="visible" + id="glyph0-5"> + <path + style="stroke:none" + d="M 5.25,-0.828125 C 4.820312,-0.472656 4.410156,-0.21875 4.015625,-0.0625 3.628906,0.0820312 3.210938,0.15625 2.765625,0.15625 2.023438,0.15625 1.457031,-0.0234375 1.0625,-0.390625 0.664062,-0.753906 0.46875,-1.21875 0.46875,-1.78125 c 0,-0.320312 0.070312,-0.617188 0.21875,-0.890625 0.15625,-0.28125 0.351562,-0.5 0.59375,-0.65625 0.238281,-0.164063 0.515625,-0.289063 0.828125,-0.375 0.21875,-0.0625 0.554687,-0.117187 1.015625,-0.171875 0.914062,-0.113281 1.59375,-0.242188 2.03125,-0.390625 0,-0.15625 0,-0.257813 0,-0.3125 0,-0.457031 -0.105469,-0.78125 -0.3125,-0.96875 C 4.550781,-5.804688 4.113281,-5.9375 3.53125,-5.9375 c -0.53125,0 -0.929688,0.09375 -1.1875,0.28125 -0.25,0.1875 -0.4375,0.523438 -0.5625,1 L 0.671875,-4.8125 c 0.09375,-0.476562 0.253906,-0.863281 0.484375,-1.15625 0.238281,-0.289062 0.578125,-0.515625 1.015625,-0.671875 0.4375,-0.164063 0.945313,-0.25 1.53125,-0.25 0.570313,0 1.035156,0.070313 1.390625,0.203125 0.363281,0.136719 0.628906,0.308594 0.796875,0.515625 0.175781,0.210937 0.296875,0.46875 0.359375,0.78125 0.039062,0.1875 0.0625,0.539063 0.0625,1.046875 v 1.515625 c 0,1.0625 0.019531,1.734375 0.0625,2.015625 C 6.425781,-0.53125 6.523438,-0.257812 6.671875,0 h -1.1875 C 5.359375,-0.238281 5.28125,-0.515625 5.25,-0.828125 Z M 5.15625,-3.375 c -0.417969,0.167969 -1.039062,0.308594 -1.859375,0.421875 -0.46875,0.074219 -0.804687,0.152344 -1,0.234375 -0.199219,0.085938 -0.351563,0.210938 -0.453125,0.375 -0.105469,0.15625 -0.15625,0.335938 -0.15625,0.53125 0,0.3125 0.113281,0.574219 0.34375,0.78125 0.226562,0.199219 0.566406,0.296875 1.015625,0.296875 0.4375,0 0.828125,-0.09375 1.171875,-0.28125 0.34375,-0.195313 0.59375,-0.460937 0.75,-0.796875 0.125,-0.257812 0.1875,-0.640625 0.1875,-1.140625 z m 0,0" + id="path377" /> + </symbol> + <symbol + overflow="visible" + id="glyph0-6"> + <path + style="stroke:none" + d="m 5.21875,0 v -0.84375 c -0.429688,0.667969 -1.054688,1 -1.875,1 -0.542969,0 -1.039062,-0.1484375 -1.484375,-0.4375 C 1.410156,-0.582031 1.0625,-1 0.8125,-1.53125 c -0.25,-0.53125 -0.375,-1.140625 -0.375,-1.828125 0,-0.675781 0.109375,-1.285156 0.328125,-1.828125 0.226563,-0.550781 0.566406,-0.972656 1.015625,-1.265625 0.445312,-0.289063 0.953125,-0.4375 1.515625,-0.4375 0.40625,0 0.765625,0.089844 1.078125,0.265625 0.3125,0.167969 0.566406,0.390625 0.765625,0.671875 v -3.34375 H 6.28125 V 0 Z M 1.609375,-3.359375 c 0,0.867187 0.179687,1.511719 0.546875,1.9375 0.363281,0.429687 0.796875,0.640625 1.296875,0.640625 0.5,0 0.921875,-0.203125 1.265625,-0.609375 C 5.070312,-1.804688 5.25,-2.429688 5.25,-3.265625 5.25,-4.179688 5.066406,-4.851562 4.703125,-5.28125 4.347656,-5.71875 3.910156,-5.9375 3.390625,-5.9375 c -0.5,0 -0.921875,0.210938 -1.265625,0.625 -0.34375,0.40625 -0.515625,1.058594 -0.515625,1.953125 z m 0,0" + id="path380" /> + </symbol> + <symbol + overflow="visible" + id="glyph0-7"> + <path + style="stroke:none" + d="" + id="path383" /> + </symbol> + <symbol + overflow="visible" + id="glyph0-8"> + <path + style="stroke:none" + d="M 0.96875,0 V -9.296875 H 2.8125 l 2.203125,6.578125 c 0.195313,0.617188 0.34375,1.074219 0.4375,1.375 0.113281,-0.332031 0.28125,-0.828125 0.5,-1.484375 l 2.21875,-6.46875 h 1.65625 V 0 h -1.1875 V -7.78125 L 5.953125,0 H 4.84375 L 2.15625,-7.90625 V 0 Z m 0,0" + id="path386" /> + </symbol> + <symbol + overflow="visible" + id="glyph0-9"> + <path + style="stroke:none" + d="m 5.46875,-2.171875 1.171875,0.15625 c -0.1875,0.6875 -0.53125,1.226563 -1.03125,1.609375 -0.5,0.375 -1.140625,0.5625 -1.921875,0.5625 C 2.695312,0.15625 1.910156,-0.144531 1.328125,-0.75 0.753906,-1.363281 0.46875,-2.21875 0.46875,-3.3125 c 0,-1.132812 0.289062,-2.015625 0.875,-2.640625 0.582031,-0.625 1.34375,-0.9375 2.28125,-0.9375 0.894531,0 1.628906,0.308594 2.203125,0.921875 0.570313,0.617188 0.859375,1.480469 0.859375,2.59375 0,0.0625 -0.00781,0.164062 -0.015625,0.296875 H 1.65625 c 0.039062,0.742187 0.25,1.308594 0.625,1.703125 0.375,0.398438 0.84375,0.59375 1.40625,0.59375 0.414062,0 0.769531,-0.109375 1.0625,-0.328125 0.300781,-0.226563 0.539062,-0.582031 0.71875,-1.0625 z m -3.75,-1.84375 H 5.484375 C 5.429688,-4.578125 5.285156,-5 5.046875,-5.28125 4.679688,-5.726562 4.210938,-5.953125 3.640625,-5.953125 c -0.53125,0 -0.976563,0.179687 -1.328125,0.53125 -0.355469,0.355469 -0.554688,0.824219 -0.59375,1.40625 z m 0,0" + id="path389" /> + </symbol> + <symbol + overflow="visible" + id="glyph0-10"> + <path + style="stroke:none" + d="M 0.828125,0 V -9.296875 H 1.96875 V 0 Z m 0,0" + id="path392" /> + </symbol> + <symbol + overflow="visible" + id="glyph0-11"> + <path + style="stroke:none" + d="M 0.578125,-2.984375 1.75,-3.09375 c 0.050781,0.46875 0.175781,0.855469 0.375,1.15625 0.195312,0.292969 0.507812,0.53125 0.9375,0.71875 0.425781,0.1875 0.898438,0.28125 1.421875,0.28125 0.46875,0 0.878906,-0.066406 1.234375,-0.203125 0.363281,-0.144531 0.632812,-0.335937 0.8125,-0.578125 0.175781,-0.25 0.265625,-0.515625 0.265625,-0.796875 0,-0.289063 -0.085937,-0.546875 -0.25,-0.765625 C 6.378906,-3.5 6.097656,-3.679688 5.703125,-3.828125 5.453125,-3.929688 4.898438,-4.082031 4.046875,-4.28125 3.191406,-4.488281 2.59375,-4.6875 2.25,-4.875 1.8125,-5.101562 1.484375,-5.390625 1.265625,-5.734375 1.046875,-6.078125 0.9375,-6.460938 0.9375,-6.890625 c 0,-0.46875 0.128906,-0.90625 0.390625,-1.3125 C 1.597656,-8.609375 1.988281,-8.914062 2.5,-9.125 c 0.507812,-0.21875 1.078125,-0.328125 1.703125,-0.328125 0.695313,0 1.304687,0.117187 1.828125,0.34375 0.53125,0.21875 0.9375,0.542969 1.21875,0.96875 0.28125,0.429687 0.429688,0.917969 0.453125,1.46875 L 6.53125,-6.59375 C 6.457031,-7.175781 6.238281,-7.617188 5.875,-7.921875 5.507812,-8.222656 4.972656,-8.375 4.265625,-8.375 c -0.75,0 -1.296875,0.140625 -1.640625,0.421875 -0.335938,0.273437 -0.5,0.601563 -0.5,0.984375 0,0.335938 0.117188,0.605469 0.359375,0.8125 0.238281,0.21875 0.859375,0.445312 1.859375,0.671875 1,0.230469 1.679688,0.429687 2.046875,0.59375 0.539063,0.25 0.941406,0.570313 1.203125,0.953125 0.257812,0.375 0.390625,0.8125 0.390625,1.3125 0,0.492188 -0.148437,0.953125 -0.4375,1.390625 -0.28125,0.4375 -0.6875,0.78125 -1.21875,1.03125 -0.523437,0.2382812 -1.117187,0.359375 -1.78125,0.359375 -0.84375,0 -1.554687,-0.1210938 -2.125,-0.359375 C 1.859375,-0.453125 1.414062,-0.820312 1.09375,-1.3125 0.769531,-1.800781 0.597656,-2.359375 0.578125,-2.984375 Z m 0,0" + id="path395" /> + </symbol> + <symbol + overflow="visible" + id="glyph0-12"> + <path + style="stroke:none" + d="M 5.265625,0 V -0.984375 C 4.742188,-0.222656 4.03125,0.15625 3.125,0.15625 2.726562,0.15625 2.359375,0.0820312 2.015625,-0.0625 1.671875,-0.21875 1.414062,-0.410156 1.25,-0.640625 1.082031,-0.878906 0.96875,-1.164062 0.90625,-1.5 0.851562,-1.71875 0.828125,-2.070312 0.828125,-2.5625 V -6.734375 H 1.96875 V -3 c 0,0.59375 0.023438,0.996094 0.078125,1.203125 0.070313,0.304687 0.222656,0.542969 0.453125,0.71875 0.226562,0.167969 0.515625,0.25 0.859375,0.25 0.34375,0 0.664063,-0.085937 0.96875,-0.265625 0.300781,-0.175781 0.507813,-0.414062 0.625,-0.71875 0.125,-0.300781 0.1875,-0.738281 0.1875,-1.3125 v -3.609375 h 1.15625 V 0 Z m 0,0" + id="path398" /> + </symbol> + <symbol + overflow="visible" + id="glyph0-13"> + <path + style="stroke:none" + d="M 0.640625,0.5625 1.75,0.71875 c 0.050781,0.34375 0.179688,0.59375 0.390625,0.75 0.28125,0.207031 0.664063,0.3125 1.15625,0.3125 0.53125,0 0.9375,-0.105469 1.21875,-0.3125 C 4.804688,1.257812 5.003906,0.960938 5.109375,0.578125 5.171875,0.347656 5.195312,-0.132812 5.1875,-0.875 4.6875,-0.289062 4.066406,0 3.328125,0 2.398438,0 1.679688,-0.332031 1.171875,-1 c -0.5,-0.664062 -0.75,-1.46875 -0.75,-2.40625 0,-0.644531 0.113281,-1.238281 0.34375,-1.78125 0.226563,-0.539062 0.5625,-0.957031 1,-1.25 0.445313,-0.300781 0.96875,-0.453125 1.5625,-0.453125 0.800781,0 1.457031,0.324219 1.96875,0.96875 v -0.8125 h 1.0625 V -0.90625 C 6.359375,0.132812 6.25,0.875 6.03125,1.3125 5.820312,1.75 5.484375,2.09375 5.015625,2.34375 4.554688,2.601562 3.988281,2.734375 3.3125,2.734375 2.507812,2.734375 1.859375,2.550781 1.359375,2.1875 0.867188,1.820312 0.628906,1.28125 0.640625,0.5625 Z M 1.59375,-3.484375 c 0,0.886719 0.171875,1.53125 0.515625,1.9375 0.351563,0.40625 0.796875,0.609375 1.328125,0.609375 0.519531,0 0.957031,-0.203125 1.3125,-0.609375 0.351562,-0.40625 0.53125,-1.039063 0.53125,-1.90625 0,-0.820313 -0.183594,-1.441406 -0.546875,-1.859375 -0.367187,-0.414062 -0.804687,-0.625 -1.3125,-0.625 -0.511719,0 -0.945313,0.210938 -1.296875,0.625 -0.355469,0.40625 -0.53125,1.015625 -0.53125,1.828125 z m 0,0" + id="path401" /> + </symbol> + <symbol + overflow="visible" + id="glyph0-14"> + <path + style="stroke:none" + d="m 3.34375,-1.015625 0.171875,1 C 3.191406,0.0546875 2.90625,0.09375 2.65625,0.09375 2.238281,0.09375 1.914062,0.03125 1.6875,-0.09375 1.457031,-0.226562 1.296875,-0.398438 1.203125,-0.609375 1.109375,-0.828125 1.0625,-1.28125 1.0625,-1.96875 v -3.875 H 0.234375 V -6.734375 H 1.0625 V -8.40625 l 1.140625,-0.671875 v 2.34375 H 3.34375 V -5.84375 H 2.203125 v 3.9375 c 0,0.324219 0.019531,0.53125 0.0625,0.625 0.039063,0.09375 0.101563,0.171875 0.1875,0.234375 0.09375,0.054687 0.222656,0.078125 0.390625,0.078125 0.125,0 0.289062,-0.015625 0.5,-0.046875 z m 0,0" + id="path404" /> + </symbol> + <symbol + overflow="visible" + id="glyph0-15"> + <path + style="stroke:none" + d="m -0.015625,0 3.5625,-9.296875 H 4.875 L 8.671875,0 H 7.28125 L 6.1875,-2.8125 H 2.3125 L 1.28125,0 Z M 2.65625,-3.8125 H 5.8125 L 4.84375,-6.390625 C 4.550781,-7.171875 4.332031,-7.8125 4.1875,-8.3125 c -0.125,0.59375 -0.292969,1.183594 -0.5,1.765625 z m 0,0" + id="path407" /> + </symbol> + <symbol + overflow="visible" + id="glyph0-16"> + <path + style="stroke:none" + d="m 5.25,-2.46875 1.125,0.140625 C 6.25,-1.546875 5.929688,-0.9375 5.421875,-0.5 4.921875,-0.0625 4.300781,0.15625 3.5625,0.15625 2.644531,0.15625 1.90625,-0.144531 1.34375,-0.75 0.78125,-1.351562 0.5,-2.21875 0.5,-3.34375 0.5,-4.070312 0.617188,-4.707031 0.859375,-5.25 c 0.25,-0.539062 0.617187,-0.945312 1.109375,-1.21875 0.488281,-0.28125 1.023438,-0.421875 1.609375,-0.421875 0.726563,0 1.320313,0.1875 1.78125,0.5625 0.46875,0.367187 0.769531,0.890625 0.90625,1.578125 L 5.15625,-4.578125 C 5.050781,-5.035156 4.863281,-5.378906 4.59375,-5.609375 4.320312,-5.835938 4,-5.953125 3.625,-5.953125 c -0.574219,0 -1.042969,0.210937 -1.40625,0.625 C 1.863281,-4.910156 1.6875,-4.257812 1.6875,-3.375 c 0,0.90625 0.171875,1.570312 0.515625,1.984375 C 2.546875,-0.984375 3,-0.78125 3.5625,-0.78125 c 0.445312,0 0.816406,-0.132812 1.109375,-0.40625 C 4.972656,-1.46875 5.164062,-1.894531 5.25,-2.46875 Z m 0,0" + id="path410" /> + </symbol> + <symbol + overflow="visible" + id="glyph0-17"> + <path + style="stroke:none" + d="M 5.140625,2.578125 V -0.71875 c -0.179687,0.25 -0.429687,0.460938 -0.75,0.625 -0.3125,0.1640625 -0.648437,0.25 -1,0.25 -0.804687,0 -1.496094,-0.316406 -2.078125,-0.953125 C 0.738281,-1.441406 0.453125,-2.320312 0.453125,-3.4375 c 0,-0.664062 0.113281,-1.269531 0.34375,-1.8125 0.238281,-0.539062 0.582031,-0.945312 1.03125,-1.21875 0.445313,-0.28125 0.9375,-0.421875 1.46875,-0.421875 0.832031,0 1.488281,0.355469 1.96875,1.0625 v -0.90625 h 1.03125 v 9.3125 z M 1.625,-3.390625 c 0,0.875 0.179688,1.53125 0.546875,1.96875 0.363281,0.429687 0.800781,0.640625 1.3125,0.640625 0.476563,0 0.894531,-0.203125 1.25,-0.609375 0.351563,-0.414063 0.53125,-1.046875 0.53125,-1.890625 0,-0.894531 -0.1875,-1.566406 -0.5625,-2.015625 -0.367187,-0.457031 -0.796875,-0.6875 -1.296875,-0.6875 -0.5,0 -0.921875,0.214844 -1.265625,0.640625 C 1.796875,-4.925781 1.625,-4.273438 1.625,-3.390625 Z m 0,0" + id="path413" /> + </symbol> + <symbol + overflow="visible" + id="glyph0-18"> + <path + style="stroke:none" + d="m 0.859375,-7.984375 v -1.3125 H 2 v 1.3125 z M 0.859375,0 V -6.734375 H 2 V 0 Z m 0,0" + id="path416" /> + </symbol> + <symbol + overflow="visible" + id="glyph0-19"> + <path + style="stroke:none" + d="m 0.40625,-2.015625 1.125,-0.171875 c 0.0625,0.449219 0.234375,0.796875 0.515625,1.046875 0.289063,0.242187 0.695313,0.359375 1.21875,0.359375 0.53125,0 0.921875,-0.101562 1.171875,-0.3125 0.25,-0.21875 0.375,-0.472656 0.375,-0.765625 0,-0.257813 -0.109375,-0.460937 -0.328125,-0.609375 C 4.328125,-2.570312 3.9375,-2.703125 3.3125,-2.859375 2.476562,-3.066406 1.898438,-3.25 1.578125,-3.40625 1.253906,-3.5625 1.007812,-3.773438 0.84375,-4.046875 c -0.167969,-0.269531 -0.25,-0.566406 -0.25,-0.890625 0,-0.300781 0.066406,-0.578125 0.203125,-0.828125 0.132813,-0.257813 0.320313,-0.476563 0.5625,-0.65625 0.175781,-0.125 0.414063,-0.234375 0.71875,-0.328125 0.3125,-0.09375 0.640625,-0.140625 0.984375,-0.140625 0.53125,0 0.992188,0.078125 1.390625,0.234375 0.40625,0.15625 0.703125,0.367188 0.890625,0.625 0.1875,0.25 0.316406,0.59375 0.390625,1.03125 L 4.625,-4.84375 C 4.570312,-5.1875 4.421875,-5.457031 4.171875,-5.65625 3.929688,-5.851562 3.59375,-5.953125 3.15625,-5.953125 c -0.53125,0 -0.914062,0.089844 -1.140625,0.265625 -0.21875,0.179688 -0.328125,0.382812 -0.328125,0.609375 0,0.148437 0.046875,0.28125 0.140625,0.40625 0.09375,0.117187 0.238281,0.214844 0.4375,0.296875 0.113281,0.042969 0.453125,0.140625 1.015625,0.296875 0.800781,0.210937 1.363281,0.386719 1.6875,0.53125 0.320312,0.136719 0.570312,0.335937 0.75,0.59375 0.175781,0.261719 0.265625,0.585937 0.265625,0.96875 0,0.386719 -0.109375,0.746094 -0.328125,1.078125 C 5.4375,-0.570312 5.113281,-0.3125 4.6875,-0.125 4.269531,0.0625 3.800781,0.15625 3.28125,0.15625 c -0.875,0 -1.542969,-0.1796875 -2,-0.546875 -0.460938,-0.363281 -0.75,-0.90625 -0.875,-1.625 z m 0,0" + id="path419" /> + </symbol> + <symbol + overflow="visible" + id="glyph0-20"> + <path + style="stroke:none" + d="m 0.859375,0 v -6.734375 h 1.03125 v 0.953125 c 0.488281,-0.738281 1.203125,-1.109375 2.140625,-1.109375 0.40625,0 0.773438,0.074219 1.109375,0.21875 0.34375,0.148437 0.597656,0.339844 0.765625,0.578125 0.164062,0.242188 0.285156,0.523438 0.359375,0.84375 0.039063,0.210938 0.0625,0.578125 0.0625,1.109375 V 0 H 5.1875 V -4.09375 C 5.1875,-4.5625 5.140625,-4.910156 5.046875,-5.140625 4.960938,-5.367188 4.804688,-5.550781 4.578125,-5.6875 4.347656,-5.820312 4.082031,-5.890625 3.78125,-5.890625 c -0.480469,0 -0.898438,0.15625 -1.25,0.46875 C 2.175781,-5.117188 2,-4.535156 2,-3.671875 V 0 Z m 0,0" + id="path422" /> + </symbol> + <symbol + overflow="visible" + id="glyph0-21"> + <path + style="stroke:none" + d="m 0.625,-4.53125 c 0,-1.539062 0.410156,-2.742188 1.234375,-3.609375 0.832031,-0.875 1.90625,-1.3125 3.21875,-1.3125 0.851563,0 1.625,0.203125 2.3125,0.609375 0.695313,0.40625 1.222656,0.980469 1.578125,1.71875 0.363281,0.730469 0.546875,1.558594 0.546875,2.484375 0,0.949219 -0.195313,1.796875 -0.578125,2.546875 -0.375,0.742188 -0.914062,1.304688 -1.609375,1.6875 -0.699219,0.375 -1.449219,0.5625 -2.25,0.5625 -0.875,0 -1.664063,-0.2070312 -2.359375,-0.625 C 2.03125,-0.894531 1.507812,-1.472656 1.15625,-2.203125 0.800781,-2.929688 0.625,-3.707031 0.625,-4.53125 Z M 1.890625,-4.5 c 0,1.117188 0.300781,1.996094 0.90625,2.640625 0.601563,0.648437 1.359375,0.96875 2.265625,0.96875 0.925781,0 1.6875,-0.320313 2.28125,-0.96875 C 7.945312,-2.515625 8.25,-3.441406 8.25,-4.640625 8.25,-5.398438 8.117188,-6.0625 7.859375,-6.625 c -0.25,-0.5625 -0.625,-1 -1.125,-1.3125 -0.492187,-0.3125 -1.042969,-0.46875 -1.65625,-0.46875 -0.867187,0 -1.617187,0.304688 -2.25,0.90625 -0.625,0.59375 -0.9375,1.59375 -0.9375,3 z m 0,0" + id="path425" /> + </symbol> + <symbol + overflow="visible" + id="glyph0-22"> + <path + style="stroke:none" + d="m 0.859375,2.578125 v -9.3125 h 1.03125 v 0.875 c 0.25,-0.34375 0.523437,-0.597656 0.828125,-0.765625 0.3125,-0.175781 0.6875,-0.265625 1.125,-0.265625 0.570312,0 1.078125,0.152344 1.515625,0.453125 0.445313,0.292969 0.78125,0.710938 1,1.25 0.226563,0.542969 0.34375,1.132812 0.34375,1.765625 0,0.6875 -0.125,1.308594 -0.375,1.859375 -0.25,0.554688 -0.609375,0.980469 -1.078125,1.28125 -0.46875,0.2890625 -0.964844,0.4375 -1.484375,0.4375 -0.375,0 -0.71875,-0.078125 -1.03125,-0.234375 C 2.429688,-0.242188 2.1875,-0.453125 2,-0.703125 v 3.28125 z m 1.03125,-5.90625 c 0,0.867187 0.171875,1.507813 0.515625,1.921875 0.351562,0.417969 0.78125,0.625 1.28125,0.625 0.507812,0 0.941406,-0.210938 1.296875,-0.640625 0.363281,-0.4375 0.546875,-1.101563 0.546875,-2 C 5.53125,-4.273438 5.351562,-4.914062 5,-5.34375 4.644531,-5.769531 4.222656,-5.984375 3.734375,-5.984375 c -0.480469,0 -0.90625,0.230469 -1.28125,0.6875 -0.375,0.449219 -0.5625,1.105469 -0.5625,1.96875 z m 0,0" + id="path428" /> + </symbol> + <symbol + overflow="visible" + id="glyph0-23"> + <path + style="stroke:none" + d="M 0.859375,0 V -6.734375 H 1.875 v 0.953125 c 0.207031,-0.332031 0.488281,-0.597656 0.84375,-0.796875 0.351562,-0.207031 0.753906,-0.3125 1.203125,-0.3125 0.5,0 0.90625,0.105469 1.21875,0.3125 0.320313,0.210937 0.546875,0.5 0.671875,0.875 0.539062,-0.789063 1.238281,-1.1875 2.09375,-1.1875 0.664062,0 1.175781,0.1875 1.53125,0.5625 0.363281,0.367187 0.546875,0.933594 0.546875,1.703125 V 0 H 8.84375 v -4.234375 c 0,-0.457031 -0.039062,-0.785156 -0.109375,-0.984375 -0.074219,-0.207031 -0.210937,-0.367188 -0.40625,-0.484375 -0.1875,-0.125 -0.417969,-0.1875 -0.6875,-0.1875 -0.46875,0 -0.859375,0.15625 -1.171875,0.46875 C 6.15625,-5.109375 6,-4.601562 6,-3.90625 V 0 H 4.859375 v -4.375 c 0,-0.507812 -0.09375,-0.890625 -0.28125,-1.140625 -0.1875,-0.25 -0.492187,-0.375 -0.90625,-0.375 -0.324219,0 -0.625,0.085937 -0.90625,0.25 -0.273437,0.167969 -0.46875,0.417969 -0.59375,0.75 C 2.054688,-4.566406 2,-4.101562 2,-3.5 V 0 Z m 0,0" + id="path431" /> + </symbol> + <symbol + overflow="visible" + id="glyph0-24"> + <path + style="stroke:none" + d="m 0,0.15625 2.6875,-9.609375 h 0.921875 l -2.6875,9.609375 z m 0,0" + id="path434" /> + </symbol> + <symbol + overflow="visible" + id="glyph0-25"> + <path + style="stroke:none" + d="M 0.40625,-2.796875 V -3.9375 h 3.515625 v 1.140625 z m 0,0" + id="path437" /> + </symbol> + <symbol + overflow="visible" + id="glyph0-26"> + <path + style="stroke:none" + d="m 1.90625,0 h -1.0625 v -9.296875 h 1.140625 v 3.3125 c 0.488281,-0.601563 1.101563,-0.90625 1.84375,-0.90625 0.414063,0 0.804687,0.085937 1.171875,0.25 0.375,0.167969 0.679688,0.402344 0.921875,0.703125 0.238281,0.304688 0.425781,0.667969 0.5625,1.09375 0.132813,0.429688 0.203125,0.886719 0.203125,1.375 0,1.15625 -0.289062,2.054688 -0.859375,2.6875 -0.5625,0.625 -1.246094,0.9375 -2.046875,0.9375 -0.792969,0 -1.417969,-0.332031 -1.875,-1 z M 1.890625,-3.421875 c 0,0.8125 0.109375,1.398437 0.328125,1.75 0.363281,0.59375 0.851562,0.890625 1.46875,0.890625 0.5,0 0.925781,-0.210938 1.28125,-0.640625 0.363281,-0.4375 0.546875,-1.085937 0.546875,-1.953125 0,-0.875 -0.179687,-1.519531 -0.53125,-1.9375 -0.34375,-0.425781 -0.761719,-0.640625 -1.25,-0.640625 -0.5,0 -0.933594,0.21875 -1.296875,0.65625 -0.367188,0.4375 -0.546875,1.0625 -0.546875,1.875 z m 0,0" + id="path440" /> + </symbol> + <symbol + overflow="visible" + id="glyph0-27"> + <path + style="stroke:none" + d="m 1.171875,0 v -1.296875 h 1.3125 V 0 Z m 0,0" + id="path443" /> + </symbol> + <symbol + overflow="visible" + id="glyph0-28"> + <path + style="stroke:none" + d="M 0.8125,2.59375 0.671875,1.515625 C 0.921875,1.585938 1.140625,1.625 1.328125,1.625 1.585938,1.625 1.789062,1.582031 1.9375,1.5 2.09375,1.414062 2.21875,1.296875 2.3125,1.140625 2.382812,1.023438 2.5,0.742188 2.65625,0.296875 2.675781,0.234375 2.710938,0.140625 2.765625,0.015625 l -2.5625,-6.75 H 1.4375 l 1.40625,3.90625 c 0.175781,0.492187 0.335938,1.007813 0.484375,1.546875 0.132813,-0.519531 0.289063,-1.03125 0.46875,-1.53125 l 1.4375,-3.921875 H 6.375 L 3.8125,0.109375 C 3.539062,0.847656 3.328125,1.359375 3.171875,1.640625 2.972656,2.015625 2.738281,2.289062 2.46875,2.46875 2.207031,2.644531 1.898438,2.734375 1.546875,2.734375 1.328125,2.734375 1.082031,2.6875 0.8125,2.59375 Z m 0,0" + id="path446" /> + </symbol> + <symbol + overflow="visible" + id="glyph0-29"> + <path + style="stroke:none" + d="M 0.859375,0 V -9.296875 H 2 v 3.34375 c 0.53125,-0.625 1.203125,-0.9375 2.015625,-0.9375 0.5,0 0.929687,0.101563 1.296875,0.296875 0.363281,0.199219 0.625,0.476562 0.78125,0.828125 0.164062,0.34375 0.25,0.84375 0.25,1.5 V 0 H 5.203125 v -4.265625 c 0,-0.570313 -0.125,-0.988281 -0.375,-1.25 -0.25,-0.257813 -0.601563,-0.390625 -1.046875,-0.390625 -0.34375,0 -0.667969,0.089844 -0.96875,0.265625 -0.292969,0.179687 -0.5,0.417969 -0.625,0.71875 C 2.0625,-4.617188 2,-4.207031 2,-3.6875 V 0 Z m 0,0" + id="path449" /> + </symbol> + <symbol + overflow="visible" + id="glyph1-0"> + <path + style="stroke:none" + d="M 1.484375,0 V -7.4375 H 7.4375 V 0 Z m 0.1875,-0.1875 H 7.25 V -7.25 H 1.671875 Z m 0,0" + id="path452" /> + </symbol> + <symbol + overflow="visible" + id="glyph1-1"> + <path + style="stroke:none" + d="m 0.921875,0 v -8.515625 h 3.21875 c 0.5625,0 0.992187,0.027344 1.296875,0.078125 0.414062,0.0625 0.765625,0.195312 1.046875,0.390625 0.28125,0.199219 0.503906,0.476563 0.671875,0.828125 0.175781,0.355469 0.265625,0.742188 0.265625,1.15625 0,0.730469 -0.230469,1.34375 -0.6875,1.84375 -0.460937,0.5 -1.292969,0.75 -2.5,0.75 h -2.1875 V 0 Z m 1.125,-4.46875 H 4.25 c 0.726562,0 1.242188,-0.132812 1.546875,-0.40625 0.3125,-0.269531 0.46875,-0.648438 0.46875,-1.140625 0,-0.363281 -0.09375,-0.671875 -0.28125,-0.921875 -0.179687,-0.25 -0.414063,-0.414062 -0.703125,-0.5 -0.1875,-0.050781 -0.542969,-0.078125 -1.0625,-0.078125 H 2.046875 Z m 0,0" + id="path455" /> + </symbol> + <symbol + overflow="visible" + id="glyph1-2"> + <path + style="stroke:none" + d="M 0.765625,0 V -6.171875 H 1.71875 v 0.9375 C 1.957031,-5.671875 2.175781,-5.957031 2.375,-6.09375 2.582031,-6.238281 2.804688,-6.3125 3.046875,-6.3125 c 0.351563,0 0.710937,0.117188 1.078125,0.34375 L 3.765625,-5 C 3.515625,-5.15625 3.257812,-5.234375 3,-5.234375 c -0.230469,0 -0.4375,0.074219 -0.625,0.21875 -0.179688,0.136719 -0.304688,0.324219 -0.375,0.5625 -0.125,0.375 -0.1875,0.78125 -0.1875,1.21875 V 0 Z m 0,0" + id="path458" /> + </symbol> + <symbol + overflow="visible" + id="glyph1-3"> + <path + style="stroke:none" + d="M 0.796875,-7.3125 V -8.515625 H 1.84375 V -7.3125 Z m 0,7.3125 V -6.171875 H 1.84375 V 0 Z m 0,0" + id="path461" /> + </symbol> + <symbol + overflow="visible" + id="glyph1-4"> + <path + style="stroke:none" + d="m 0.390625,-3.09375 c 0,-1.132812 0.316406,-1.976562 0.953125,-2.53125 0.53125,-0.457031 1.179688,-0.6875 1.953125,-0.6875 0.84375,0 1.535156,0.28125 2.078125,0.84375 0.539062,0.554688 0.8125,1.320312 0.8125,2.296875 0,0.792969 -0.121094,1.417969 -0.359375,1.875 -0.242187,0.460937 -0.589844,0.8125 -1.046875,1.0625 -0.460938,0.25 -0.953125,0.375 -1.484375,0.375 C 2.429688,0.140625 1.726562,-0.132812 1.1875,-0.6875 0.65625,-1.238281 0.390625,-2.039062 0.390625,-3.09375 Z m 1.078125,0 c 0,0.792969 0.171875,1.386719 0.515625,1.78125 0.34375,0.398438 0.78125,0.59375 1.3125,0.59375 0.507813,0 0.9375,-0.195312 1.28125,-0.59375 0.351563,-0.394531 0.53125,-1 0.53125,-1.8125 0,-0.757812 -0.179687,-1.335938 -0.53125,-1.734375 -0.34375,-0.394531 -0.773437,-0.59375 -1.28125,-0.59375 -0.53125,0 -0.96875,0.199219 -1.3125,0.59375 C 1.640625,-4.460938 1.46875,-3.875 1.46875,-3.09375 Z m 0,0" + id="path464" /> + </symbol> + <symbol + overflow="visible" + id="glyph1-5"> + <path + style="stroke:none" + d="M 0.359375,-1.84375 1.40625,-2 c 0.050781,0.40625 0.207031,0.726562 0.46875,0.953125 0.269531,0.21875 0.644531,0.328125 1.125,0.328125 0.476562,0 0.832031,-0.097656 1.0625,-0.296875 0.238281,-0.195313 0.359375,-0.425781 0.359375,-0.6875 0,-0.238281 -0.105469,-0.425781 -0.3125,-0.5625 -0.148437,-0.09375 -0.5,-0.207031 -1.0625,-0.34375 -0.773437,-0.195313 -1.308594,-0.363281 -1.609375,-0.5 -0.292969,-0.144531 -0.515625,-0.34375 -0.671875,-0.59375 -0.148437,-0.25 -0.21875,-0.523437 -0.21875,-0.828125 0,-0.28125 0.0625,-0.535156 0.1875,-0.765625 0.125,-0.238281 0.296875,-0.4375 0.515625,-0.59375 0.15625,-0.113281 0.375,-0.210937 0.65625,-0.296875 0.28125,-0.082031 0.582031,-0.125 0.90625,-0.125 0.488281,0 0.914062,0.074219 1.28125,0.21875 0.363281,0.136719 0.628906,0.324219 0.796875,0.5625 0.175781,0.230469 0.300781,0.546875 0.375,0.953125 L 4.234375,-4.4375 c -0.042969,-0.320312 -0.179687,-0.570312 -0.40625,-0.75 -0.21875,-0.175781 -0.53125,-0.265625 -0.9375,-0.265625 -0.480469,0 -0.824219,0.085937 -1.03125,0.25 -0.210937,0.15625 -0.3125,0.339844 -0.3125,0.546875 0,0.136719 0.046875,0.257812 0.140625,0.359375 0.082031,0.117187 0.210938,0.210937 0.390625,0.28125 C 2.179688,-3.972656 2.488281,-3.882812 3,-3.75 c 0.738281,0.199219 1.253906,0.367188 1.546875,0.5 0.300781,0.125 0.535156,0.308594 0.703125,0.546875 0.164062,0.242187 0.25,0.539063 0.25,0.890625 0,0.34375 -0.105469,0.671875 -0.3125,0.984375 -0.199219,0.3125 -0.492188,0.554687 -0.875,0.71875 -0.386719,0.1640625 -0.824219,0.25 -1.3125,0.25 -0.804688,0 -1.414062,-0.1640625 -1.828125,-0.5 -0.417969,-0.332031 -0.6875,-0.828125 -0.8125,-1.484375 z m 0,0" + id="path467" /> + </symbol> + <symbol + overflow="visible" + id="glyph1-6"> + <path + style="stroke:none" + d="m 0.953125,0 v -8.515625 h 1.125 v 3.5 h 4.4375 v -3.5 h 1.125 V 0 h -1.125 v -4.015625 h -4.4375 V 0 Z m 0,0" + id="path470" /> + </symbol> + <symbol + overflow="visible" + id="glyph1-7"> + <path + style="stroke:none" + d="M 0.734375,2.375 0.625,1.390625 c 0.226562,0.0625 0.425781,0.09375 0.59375,0.09375 0.226562,0 0.410156,-0.042969 0.546875,-0.125 C 1.910156,1.285156 2.03125,1.179688 2.125,1.046875 2.1875,0.941406 2.289062,0.679688 2.4375,0.265625 2.457031,0.210938 2.488281,0.128906 2.53125,0.015625 l -2.34375,-6.1875 h 1.125 l 1.296875,3.578125 c 0.164063,0.449219 0.3125,0.921875 0.4375,1.421875 0.125,-0.476563 0.269531,-0.945313 0.4375,-1.40625 l 1.3125,-3.59375 H 5.84375 L 3.5,0.109375 C 3.25,0.785156 3.050781,1.25 2.90625,1.5 2.726562,1.84375 2.515625,2.09375 2.265625,2.25 2.023438,2.414062 1.738281,2.5 1.40625,2.5 1.207031,2.5 0.984375,2.457031 0.734375,2.375 Z m 0,0" + id="path473" /> + </symbol> + <symbol + overflow="visible" + id="glyph1-8"> + <path + style="stroke:none" + d="m 0.78125,2.359375 v -8.53125 H 1.734375 V -5.375 C 1.960938,-5.6875 2.21875,-5.921875 2.5,-6.078125 2.78125,-6.234375 3.125,-6.3125 3.53125,-6.3125 c 0.519531,0 0.984375,0.136719 1.390625,0.40625 0.40625,0.273438 0.707031,0.65625 0.90625,1.15625 0.207031,0.492188 0.3125,1.027344 0.3125,1.609375 0,0.636719 -0.117187,1.210937 -0.34375,1.71875 -0.21875,0.5 -0.546875,0.886719 -0.984375,1.15625 -0.429688,0.26953125 -0.882812,0.40625 -1.359375,0.40625 -0.34375,0 -0.65625,-0.0742188 -0.9375,-0.21875 -0.28125,-0.144531 -0.511719,-0.332031 -0.6875,-0.5625 v 3 z m 0.953125,-5.40625 c 0,0.792969 0.160156,1.382813 0.484375,1.765625 0.320312,0.375 0.710938,0.5625 1.171875,0.5625 0.457031,0 0.851563,-0.195312 1.1875,-0.59375 0.332031,-0.394531 0.5,-1.003906 0.5,-1.828125 0,-0.78125 -0.164063,-1.367187 -0.484375,-1.765625 C 4.269531,-5.300781 3.882812,-5.5 3.4375,-5.5 2.988281,-5.5 2.59375,-5.289062 2.25,-4.875 1.90625,-4.457031 1.734375,-3.847656 1.734375,-3.046875 Z m 0,0" + id="path476" /> + </symbol> + <symbol + overflow="visible" + id="glyph1-9"> + <path + style="stroke:none" + d="m 5.015625,-1.984375 1.078125,0.125 C 5.925781,-1.222656 5.609375,-0.726562 5.140625,-0.375 4.679688,-0.03125 4.09375,0.140625 3.375,0.140625 2.46875,0.140625 1.75,-0.132812 1.21875,-0.6875 0.695312,-1.25 0.4375,-2.03125 0.4375,-3.03125 c 0,-1.039062 0.265625,-1.847656 0.796875,-2.421875 C 1.773438,-6.023438 2.46875,-6.3125 3.3125,-6.3125 c 0.832031,0 1.507812,0.28125 2.03125,0.84375 0.519531,0.5625 0.78125,1.355469 0.78125,2.375 0,0.0625 0,0.15625 0,0.28125 H 1.515625 C 1.554688,-2.132812 1.75,-1.613281 2.09375,-1.25 c 0.34375,0.355469 0.773438,0.53125 1.296875,0.53125 0.375,0 0.695313,-0.097656 0.96875,-0.296875 0.269531,-0.207031 0.488281,-0.53125 0.65625,-0.96875 z M 1.578125,-3.6875 h 3.4375 C 4.972656,-4.195312 4.84375,-4.582031 4.625,-4.84375 4.289062,-5.25 3.859375,-5.453125 3.328125,-5.453125 c -0.480469,0 -0.886719,0.164063 -1.21875,0.484375 -0.324219,0.324219 -0.5,0.75 -0.53125,1.28125 z m 0,0" + id="path479" /> + </symbol> + </g> + <clipPath + id="clip1"> + <path + d="M 0,0 H 601.94141 V 290.05078 H 0 Z m 0,0" + id="path484" /> + </clipPath> + <clipPath + id="clip2"> + <path + d="m 258,257 h 59 v 31.96875 h -59 z m 0,0" + id="path487" /> + </clipPath> + <clipPath + id="clip3"> + <path + d="m 314,257 h 59 v 31.96875 h -59 z m 0,0" + id="path490" /> + </clipPath> + <clipPath + id="clip4"> + <path + d="m 529,162 h 72.94141 v 43 H 529 Z m 0,0" + id="path493" /> + </clipPath> + <clipPath + id="clip5"> + <path + d="m 529,202 h 72.94141 v 43 H 529 Z m 0,0" + id="path496" /> + </clipPath> + <image + id="image69049" + width="60" + height="56" + xlink:href="" /> + <mask + id="mask0"> + <use + xlink:href="#image69049" + id="use500" /> + </mask> + <image + id="image69048" + width="60" + height="56" + xlink:href="" /> + <image + id="image69055" + width="434" + height="84" + xlink:href="" /> + <mask + id="mask1"> + <use + xlink:href="#image69055" + id="use505" /> + </mask> + <image + id="image69054" + width="434" + height="84" + xlink:href="" /> + <image + id="image69061" + width="262" + height="74" + xlink:href="" /> + <mask + id="mask2"> + <use + xlink:href="#image69061" + id="use510" /> + </mask> + <image + id="image69060" + width="262" + height="74" + xlink:href="" /> + <image + id="image69067" + width="34" + height="48" + xlink:href="" /> + <mask + id="mask3"> + <use + xlink:href="#image69067" + id="use515" /> + </mask> + <image + id="image69066" + width="34" + height="48" + xlink:href="" /> + <clipPath + id="clip6"> + <path + d="m 372.42187,208.87891 h 23.82032 v 23.8125 h -23.82032 z m 0,0" + id="path519" /> + </clipPath> + <image + id="image69073" + width="752" + height="752" + xlink:href="" /> + <mask + id="mask4"> + <use + xlink:href="#image69073" + id="use523" /> + </mask> + <image + id="image69072" + width="752" + height="752" + xlink:href="" /> + <clipPath + id="clip7"> + <path + d="m 55.214844,208.87891 h 28.148437 v 27.77343 H 55.214844 Z m 0,0" + id="path527" /> + </clipPath> + <image + id="image69079" + width="752" + height="752" + xlink:href="" /> + <mask + id="mask5"> + <use + xlink:href="#image69079" + id="use531" /> + </mask> + <image + id="image69078" + width="752" + height="752" + xlink:href="" /> + <image + id="image69083" + width="267" + height="189" + xlink:href="" /> + </defs> + <g + id="surface69043"> + <rect + x="0" + y="0" + width="602" + height="291" + style="fill:#ffffff;fill-opacity:1;stroke:none" + id="rect538" /> + <g + clip-path="url(#clip1)" + clip-rule="nonzero" + id="g542"> + <path + style="fill:#ffffff;fill-opacity:1;fill-rule:nonzero;stroke:none" + d="M 0,0 H 601.94141 V 290.05078 H 0 Z m 0,0" + id="path540" /> + </g> + <path + style="fill:none;stroke:#000000;stroke-width:1;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-opacity:1" + d="m 187.99928,188.00165 h 31.63243" + transform="matrix(1.082626,0,0,1.082281,0.541313,0.5411)" + id="path544" /> + <path + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" + d="m 244.00391,204.01172 -7.58204,3.78515 1.89844,-3.78515 -1.89844,-3.78906 z m 0,0" + id="path546" /> + <path + style="fill:none;stroke:#000000;stroke-width:1;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-opacity:1" + d="m 224.88153,188.00165 -6.99976,3.49739 1.74994,-3.49739 -1.74994,-3.50099 z m 0,0" + transform="matrix(1.082626,0,0,1.082281,0.541313,0.5411)" + id="path548" /> + <path + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" + d="m 95.269531,204.01172 v 3.24609 H 94.1875 v -3.24609 z m 0,6.49219 V 213.75 H 94.1875 v -3.24609 z m 0,6.49218 v 3.2461 H 94.1875 v -3.2461 z m 0,6.4961 v 3.24609 H 94.1875 v -3.24609 z m 0,6.49218 v 3.2461 H 94.1875 v -3.2461 z m 0,6.49219 v 3.25 H 94.1875 v -3.25 z m 0,6.4961 v 3.24609 H 94.1875 v -3.24609 z m 0,6.49218 v 3.2461 H 94.1875 v -3.2461 z m 0,6.4961 v 1.08203 H 94.730469 V 256.5 h 2.164062 v 1.08203 H 94.1875 v -1.62109 z M 100.14453,256.5 h 3.2461 v 1.08203 h -3.2461 z m 6.49219,0 h 3.25 v 1.08203 h -3.25 z m 6.49609,0 h 3.25 v 1.08203 h -3.25 z m 6.4961,0 h 3.25 v 1.08203 h -3.25 z m 6.49609,0 h 3.25 v 1.08203 h -3.25 z m 6.49609,0 h 3.25 v 1.08203 h -3.25 z m 6.4961,0 h 3.25 v 1.08203 h -3.25 z m 6.49609,0 h 3.24609 v 1.08203 h -3.24609 z m 6.49609,0 h 3.2461 v 1.08203 h -3.2461 z m 6.4961,0 h 3.24609 v 1.08203 h -3.24609 z m 6.49609,0 h 3.2461 v 1.08203 h -3.2461 z m 6.4961,0 h 3.24609 v 1.08203 h -3.24609 z m 6.49609,0 h 3.24609 v 1.08203 h -3.24609 z m 6.49219,0 h 3.25 v 1.08203 h -3.25 z m 6.49609,0 h 3.25 v 1.08203 h -3.25 z m 6.49609,0 h 3.25 v 1.08203 h -3.25 z m 6.4961,0 h 3.25 v 1.08203 h -3.25 z m 6.49609,0 h 3.25 v 1.08203 h -3.25 z m 6.4961,0 h 3.24609 v 1.08203 h -3.24609 z m 6.49609,0 h 3.24609 v 1.08203 h -3.24609 z m 6.49609,0 h 3.2461 v 1.08203 h -3.2461 z m 6.4961,0 h 2.16406 v 0.54297 h -0.54297 v -1.08203 h 1.08594 v 1.62109 h -2.70703 z m 1.62109,-3.78906 v -3.2461 h 1.08594 v 3.2461 z m 0,-6.49219 v -3.24609 h 1.08594 v 3.24609 z m 0,-6.49219 v -3.25 h 1.08594 v 3.25 z m 0,-6.49609 v -3.2461 h 1.08594 v 3.2461 z m 0,-6.49219 v -3.24609 h 1.08594 v 3.24609 z m 0,-6.49609 v -3.2461 h 1.08594 v 3.2461 z m 0,0" + id="path550" /> + <path + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:#000000;stroke-width:1;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-opacity:1" + d="m 219.99974,194.11938 3.49988,7.00199 -3.49988,-1.7505 -3.49988,1.7505 z m 0,0" + transform="matrix(1.082626,0,0,1.082281,0.541313,0.5411)" + id="path552" /> + <path + style="fill:#fff0cc;fill-opacity:1;fill-rule:nonzero;stroke:none" + d="m 116.70703,181.28125 h 80.54688 c 0.44921,0 0.89062,0.043 1.33203,0.13281 0.4375,0.0859 0.86328,0.21485 1.27734,0.38672 0.41406,0.17188 0.80859,0.38281 1.17969,0.62891 0.375,0.25 0.71875,0.53125 1.03515,0.84765 0.31641,0.31641 0.59766,0.66407 0.84766,1.03516 0.25,0.37109 0.45703,0.76562 0.62891,1.17969 0.17187,0.41406 0.30078,0.83984 0.39062,1.27734 0.0859,0.44141 0.12891,0.88281 0.12891,1.33203 v 31.81641 c 0,0.44922 -0.043,0.89062 -0.12891,1.33203 -0.0898,0.4375 -0.21875,0.86328 -0.39062,1.27734 -0.17188,0.41407 -0.37891,0.8086 -0.62891,1.17969 -0.25,0.37109 -0.53125,0.71875 -0.84766,1.03516 -0.3164,0.3164 -0.66015,0.59765 -1.03515,0.84765 -0.3711,0.2461 -0.76563,0.45703 -1.17969,0.62891 -0.41406,0.17187 -0.83984,0.30078 -1.27734,0.38672 -0.44141,0.0898 -0.88282,0.13281 -1.33203,0.13281 h -80.54688 c -0.44922,0 -0.89062,-0.043 -1.33203,-0.13281 -0.4375,-0.0859 -0.86328,-0.21485 -1.27734,-0.38672 -0.41407,-0.17188 -0.8086,-0.38281 -1.17969,-0.62891 -0.37109,-0.25 -0.71875,-0.53125 -1.03516,-0.84765 -0.3164,-0.31641 -0.59765,-0.66407 -0.84765,-1.03516 -0.2461,-0.37109 -0.45703,-0.76562 -0.62891,-1.17969 -0.17187,-0.41406 -0.30078,-0.83984 -0.38672,-1.27734 -0.0898,-0.44141 -0.13281,-0.88281 -0.13281,-1.33203 v -31.81641 c 0,-0.44922 0.043,-0.89062 0.13281,-1.33203 0.0859,-0.4375 0.21485,-0.86328 0.38672,-1.27734 0.17188,-0.41407 0.38281,-0.8086 0.62891,-1.17969 0.25,-0.37109 0.53125,-0.71875 0.84765,-1.03516 0.31641,-0.3164 0.66407,-0.59765 1.03516,-0.84765 0.37109,-0.2461 0.76562,-0.45703 1.17969,-0.62891 0.41406,-0.17187 0.83984,-0.30078 1.27734,-0.38672 0.44141,-0.0898 0.88281,-0.13281 1.33203,-0.13281 z m 0,0" + id="path554" /> + <path + style="fill:none;stroke:#d4b554;stroke-width:1;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1" + d="m 107.29995,166.99928 h 74.39954 c 0.41494,0 0.82265,0.0397 1.23037,0.12272 0.40411,0.0794 0.7974,0.19851 1.17986,0.35732 0.38246,0.1588 0.74688,0.3537 1.08965,0.58109 0.34638,0.23099 0.6639,0.49086 0.95616,0.78321 0.29225,0.29235 0.55204,0.61358 0.78296,0.95646 0.23092,0.34288 0.42215,0.70742 0.58091,1.09 0.15875,0.38258 0.27782,0.77599 0.36081,1.18023 0.0794,0.40785 0.11907,0.8157 0.11907,1.23077 v 29.39754 c 0,0.41507 -0.0397,0.82292 -0.11907,1.23077 -0.083,0.40423 -0.20206,0.79765 -0.36081,1.18023 -0.15876,0.38258 -0.34999,0.74712 -0.58091,1.09 -0.23092,0.34288 -0.49071,0.66411 -0.78296,0.95646 -0.29226,0.29235 -0.60978,0.55222 -0.95616,0.78321 -0.34277,0.22738 -0.70719,0.42229 -1.08965,0.58109 -0.38246,0.15881 -0.77575,0.27792 -1.17986,0.35732 -0.40772,0.083 -0.81543,0.12272 -1.23037,0.12272 h -74.39954 c -0.41493,0 -0.82265,-0.0397 -1.23037,-0.12272 -0.40411,-0.0794 -0.79739,-0.19851 -1.17985,-0.35732 -0.38247,-0.1588 -0.74689,-0.35371 -1.08966,-0.58109 -0.34277,-0.23099 -0.66389,-0.49086 -0.95615,-0.78321 -0.29226,-0.29235 -0.55204,-0.61358 -0.78296,-0.95646 -0.22732,-0.34288 -0.42216,-0.70742 -0.58091,-1.09 -0.15876,-0.38258 -0.27783,-0.776 -0.36082,-1.18023 -0.0794,-0.40785 -0.11906,-0.8157 -0.11906,-1.23077 v -29.39754 c 0,-0.41507 0.0397,-0.82292 0.11906,-1.23077 0.083,-0.40424 0.20206,-0.79765 0.36082,-1.18023 0.15875,-0.38258 0.35359,-0.74712 0.58091,-1.09 0.23092,-0.34288 0.4907,-0.66411 0.78296,-0.95646 0.29226,-0.29235 0.61338,-0.55222 0.95615,-0.78321 0.34277,-0.22739 0.70719,-0.42229 1.08966,-0.58109 0.38246,-0.15881 0.77574,-0.27792 1.17985,-0.35732 0.40772,-0.083 0.81544,-0.12272 1.23037,-0.12272 z m 0,0" + transform="matrix(1.082626,0,0,1.082281,0.541313,0.5411)" + id="path556" /> + <g + style="fill:#000000;fill-opacity:1" + id="g560"> + <use + xlink:href="#glyph0-1" + x="113.11753" + y="207.79796" + id="use558" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g564"> + <use + xlink:href="#glyph0-2" + x="121.05274" + y="207.79796" + id="use562" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g570"> + <use + xlink:href="#glyph0-3" + x="128.27863" + y="207.79796" + id="use566" /> + <use + xlink:href="#glyph0-4" + x="132.6048" + y="207.79796" + id="use568" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g574"> + <use + xlink:href="#glyph0-5" + x="141.98726" + y="207.79796" + id="use572" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g580"> + <use + xlink:href="#glyph0-3" + x="149.21315" + y="207.79796" + id="use576" /> + <use + xlink:href="#glyph0-6" + x="153.53932" + y="207.79796" + id="use578" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g584"> + <use + xlink:href="#glyph0-7" + x="160.7652" + y="207.79796" + id="use582" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g590"> + <use + xlink:href="#glyph0-8" + x="164.37424" + y="207.79796" + id="use586" /> + <use + xlink:href="#glyph0-2" + x="175.19617" + y="207.79796" + id="use588" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g594"> + <use + xlink:href="#glyph0-6" + x="182.42204" + y="207.79796" + id="use592" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g598"> + <use + xlink:href="#glyph0-9" + x="189.64793" + y="207.79796" + id="use596" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g602"> + <use + xlink:href="#glyph0-10" + x="196.87381" + y="207.79796" + id="use600" /> + </g> + <path + style="fill:none;stroke:#000000;stroke-width:1;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-opacity:1" + d="m 333.99845,188.00165 h 38.6322" + transform="matrix(1.082626,0,0,1.082281,0.541313,0.5411)" + id="path604" /> + <path + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:#000000;stroke-width:1;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-opacity:1" + d="m 377.88047,188.00165 -6.99977,3.49739 1.74995,-3.49739 -1.74995,-3.50099 z m 0,0" + transform="matrix(1.082626,0,0,1.082281,0.541313,0.5411)" + id="path606" /> + <path + style="fill:none;stroke:#fff0cc;stroke-width:0.5;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;stroke-opacity:1" + d="m 248.6699,168.46826 v 0 m 0,0 v 0 m -0.25979,6.39202 c 0.71081,-3.73199 5.83073,-3.9702 5.89929,-6.78904 m -5.89929,6.78904 c 1.23038,-2.73944 3.22928,-3.51182 5.89929,-6.78904 m -5.50961,12.43756 c 0.58091,-7.50008 4.36944,-5.91921 11.15993,-12.82737 m -11.15993,12.82737 c 4.25037,-2.05729 5.6395,-6.59054 11.15993,-12.82737 m -11.41971,19.2194 c 6.68946,-6.52197 14.76084,-9.91107 16.39893,-18.86208 m -16.39893,18.86208 c 6.05082,-5.30925 10.93983,-9.62955 16.39893,-18.86208 m -16.65872,25.26132 c 5.43023,-4.89057 14.16911,-15.49101 21.64875,-24.90039 m -21.64875,24.90039 c 6.75802,-6.28014 11.62899,-12.75879 21.64875,-24.90039 m -21.24825,30.54169 c 8.24096,-10.28283 13.19853,-15.31055 26.88775,-30.94232 m -26.88775,30.94232 c 9.47855,-8.65143 17.16025,-19.43234 26.88775,-30.94232 m -26.49807,36.59083 c 6.85905,-7.22938 11.13828,-12.95008 31.48811,-36.2299 m -31.48811,36.2299 c 10.60067,-16.71816 24.23939,-29.17016 31.48811,-36.2299 m -29.77786,40.35891 c 9.6806,-9.96881 19.79779,-25.75939 35.42097,-40.74871 m -35.42097,40.74871 c 13.10832,-14.37935 24.92854,-28.70817 35.42097,-40.74871 m -30.44175,41.10964 c 13.68922,-14.18806 25.32903,-29.92089 35.43178,-40.74872 m -35.43178,40.74872 c 12.36143,-14.80885 23.78115,-30.27099 35.43178,-40.74872 m -29.78146,40.35892 c 11.03004,-8.56842 23.95073,-27.75894 35.42096,-40.75955 m -35.42096,40.75955 c 11.13828,-15.58846 23.81002,-28.05851 35.42096,-40.75955 m -30.44175,41.12048 c 12.04032,-11.86008 22.02039,-23.81039 35.43179,-40.75955 m -35.43179,40.75955 c 13.60985,-15.81224 25.89191,-29.32175 35.43179,-40.75955 m -29.78146,40.35892 c 10.16048,-10.06988 22.1611,-18.62025 35.42096,-40.74872 m -35.42096,40.74872 c 5.56012,-10.56074 15.38865,-17.99946 35.42096,-40.74872 m -30.44175,41.10965 c 6.40081,-10.18177 24.48113,-27.41967 35.43179,-40.75233 m -35.43179,40.75233 c 10.52129,-12.83098 22.04203,-24.95092 35.43179,-40.75233 m -29.78147,40.36252 c 7.58067,-12.56027 20.10087,-20.30217 34.7715,-40.00159 m -34.7715,40.00159 c 8.98063,-9.01236 17.319,-17.77207 34.7715,-40.00159 m -29.79228,40.35891 c 6.00031,-11.79872 13.25264,-16.68929 35.43178,-40.75954 m -35.43178,40.75954 c 8.54043,-13.24965 18.4303,-20.76055 35.43178,-40.75954 m -30.44175,41.12047 c 9.66256,-8.31938 19.64263,-23.38089 35.43179,-40.75955 m -35.43179,40.75955 c 12.6104,-13.05836 22.94046,-29.71877 35.43179,-40.75955 m -29.78868,40.35892 c 10.0378,-8.46736 24.5569,-24.14966 34.11843,-39.24004 m -34.11843,39.24004 c 7.80798,-9.10981 12.97843,-16.8481 34.11843,-39.24004 m -29.12839,39.60097 c 12.39751,-9.20005 20.15859,-20.96989 30.83864,-35.46835 m -30.83864,35.46835 c 10.6584,-15.98909 24.03011,-26.54983 30.83864,-35.46835 m -25.19914,35.07855 c 3.71997,-7.83935 17.51023,-15.98909 25.58882,-29.43003 m -25.58882,29.43003 c 9.88987,-7.78882 17.95042,-18.75019 25.58882,-29.43003 m -20.59879,29.79095 c 3.92925,-8.9907 5.50961,-12.78044 20.339,-23.40254 m -20.339,23.40254 c 3.46019,-6.86123 9.55793,-12.15965 20.339,-23.40254 m -14.6995,23.00191 c 0.53761,-5.42113 2.74939,-3.99907 14.43972,-16.59905 m -14.43972,16.59905 c 4.7483,-5.29119 11.19962,-12.02971 14.43972,-16.59905 m -9.44968,16.95998 c 0.53039,-3.27 7.8585,-7.31239 9.18989,-10.56074 m -9.18989,10.56074 c 3.86069,-3.57318 4.12048,-7.5109 9.18989,-10.56074 m -4.86014,11.67962 c 2.89011,-1.12971 3.6406,-3.01014 5.24982,-6.04193 m -5.24982,6.04193 c 1.46129,-1.69997 3.3303,-2.85133 5.24982,-6.04193" + transform="matrix(1.082626,0,0,1.082281,0.541313,0.5411)" + id="path608" /> + <path + style="fill:none;stroke:#d4b554;stroke-width:1;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;stroke-opacity:1" + d="m 253.29912,166.99928 c 24.97184,2.03924 44.56035,3.87997 74.39954,0 m -74.39954,0 c 15.15052,-2.5301 30.62216,0.36093 74.39954,0 m 0,0 c 0.63142,-1.32821 7.82242,4.60183 6.29979,6.3018 m -6.29979,-6.3018 c 2.90094,1.33182 8.06055,-1.15857 6.29979,6.3018 m 0,0 c -2.98753,10.45968 -3.89678,22.44969 0,29.39754 m 0,-29.39754 c 1.09326,6.43894 1.59118,15.76892 0,29.39754 m 0,0 c -3.76688,6.48226 -2.59785,9.38051 -6.29979,6.3018 m 6.29979,-6.3018 c 1.56232,3.22309 1.952,5.63047 -6.29979,6.3018 m 0,0 c -16.99787,-5.16127 -34.17977,-3.95216 -74.39954,0 m 74.39954,0 c -20.40755,1.0503 -39.877,-1.68192 -74.39954,0 m 0,0 c -2.33806,-3.1906 -2.65918,1.15857 -6.29978,-6.3018 m 6.29978,6.3018 c -4.52819,4.28782 -6.18071,2.41821 -6.29978,-6.3018 m 0,0 c 3.22205,-8.38795 -0.79018,-14.52011 0,-29.39754 m 0,29.39754 c -0.49071,-12.13799 -1.9087,-23.64797 0,-29.39754 m 0,0 c -0.7108,-7.96928 0.6206,-5.35978 6.29978,-6.3018 m -6.29978,6.3018 c -3.4205,-5.51137 -1.64892,-3.04262 6.29978,-6.3018" + transform="matrix(1.082626,0,0,1.082281,0.541313,0.5411)" + id="path610" /> + <g + style="fill:#000000;fill-opacity:1" + id="g616"> + <use + xlink:href="#glyph0-11" + x="285.96548" + y="200.22198" + id="use612" /> + <use + xlink:href="#glyph0-12" + x="294.63083" + y="200.22198" + id="use614" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g624"> + <use + xlink:href="#glyph0-3" + x="301.85669" + y="200.22198" + id="use618" /> + <use + xlink:href="#glyph0-3" + x="306.18286" + y="200.22198" + id="use620" /> + <use + xlink:href="#glyph0-2" + x="310.50903" + y="200.22198" + id="use622" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g628"> + <use + xlink:href="#glyph0-13" + x="317.73492" + y="200.22198" + id="use626" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g632"> + <use + xlink:href="#glyph0-5" + x="324.96082" + y="200.22198" + id="use630" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g636"> + <use + xlink:href="#glyph0-14" + x="332.18668" + y="200.22198" + id="use634" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g640"> + <use + xlink:href="#glyph0-9" + x="335.79572" + y="200.22198" + id="use638" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g646"> + <use + xlink:href="#glyph0-8" + x="296.80862" + y="216.45621" + id="use642" /> + <use + xlink:href="#glyph0-2" + x="307.63055" + y="216.45621" + id="use644" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g650"> + <use + xlink:href="#glyph0-6" + x="314.85645" + y="216.45621" + id="use648" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g654"> + <use + xlink:href="#glyph0-9" + x="322.08231" + y="216.45621" + id="use652" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g658"> + <use + xlink:href="#glyph0-10" + x="329.3082" + y="216.45621" + id="use656" /> + </g> + <path + style="fill:none;stroke:#000000;stroke-width:1;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-opacity:1" + d="m 253.9991,83.00062 v 0.999769 H 144.49972 v 76.628521" + transform="matrix(1.082626,0,0,1.082281,0.541313,0.5411)" + id="path660" /> + <path + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:#000000;stroke-width:1;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-opacity:1" + d="m 144.49972,165.88041 -3.49988,-7.002 3.49988,1.7505 3.49988,-1.7505 z m 0,0" + transform="matrix(1.082626,0,0,1.082281,0.541313,0.5411)" + id="path662" /> + <path + style="fill:#e1d4e6;fill-opacity:1;fill-rule:nonzero;stroke:none" + d="m 419.94922,181.28125 h 76 c 0.59765,0 1.1914,0.0586 1.77734,0.17578 0.58594,0.11719 1.15235,0.28906 1.70313,0.51563 0.55468,0.23046 1.07812,0.51171 1.57422,0.83984 0.49609,0.33203 0.95703,0.71094 1.3789,1.13281 0.42188,0.42188 0.79688,0.87891 1.12891,1.37891 0.33203,0.49609 0.61328,1.01953 0.83984,1.57031 0.23047,0.55078 0.40235,1.12109 0.51953,1.70313 0.11719,0.58593 0.17188,1.17968 0.17188,1.77734 v 27.27344 c 0,0.59375 -0.0547,1.1875 -0.17188,1.77343 -0.11718,0.58204 -0.28906,1.15235 -0.51953,1.70313 -0.22656,0.55078 -0.50781,1.07422 -0.83984,1.57422 -0.33203,0.49609 -0.70703,0.95312 -1.12891,1.375 -0.42187,0.42187 -0.88281,0.80078 -1.3789,1.13281 -0.4961,0.33203 -1.01954,0.60938 -1.57422,0.83984 -0.55078,0.22657 -1.11719,0.39844 -1.70313,0.51563 -0.58594,0.11719 -1.17969,0.17578 -1.77734,0.17578 h -76 c -0.59766,0 -1.1875,-0.0586 -1.77344,-0.17578 -0.58594,-0.11719 -1.15234,-0.28906 -1.70703,-0.51563 -0.55078,-0.23046 -1.07422,-0.50781 -1.57031,-0.83984 -0.4961,-0.33203 -0.95703,-0.71094 -1.37891,-1.13281 -0.42187,-0.42188 -0.79687,-0.87891 -1.12891,-1.375 -0.33203,-0.5 -0.61328,-1.02344 -0.84375,-1.57422 -0.22656,-0.55078 -0.39843,-1.12109 -0.51562,-1.70313 -0.11719,-0.58593 -0.17578,-1.17968 -0.17578,-1.77343 V 190.375 c 0,-0.59766 0.0586,-1.19141 0.17578,-1.77734 0.11719,-0.58204 0.28906,-1.15235 0.51562,-1.70313 0.23047,-0.55078 0.51172,-1.07422 0.84375,-1.57031 0.33204,-0.5 0.70704,-0.95703 1.12891,-1.37891 0.42188,-0.42187 0.88281,-0.80078 1.37891,-1.13281 0.49609,-0.32813 1.01953,-0.60938 1.57031,-0.83984 0.55469,-0.22657 1.12109,-0.39844 1.70703,-0.51563 0.58594,-0.11719 1.17578,-0.17578 1.77344,-0.17578 z m 0,0" + id="path664" /> + <path + style="fill:none;stroke:#9473a6;stroke-width:1;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1" + d="m 387.3987,166.99928 h 70.19968 c 0.55204,0 1.10048,0.0541 1.6417,0.16242 0.54122,0.10828 1.0644,0.26709 1.57314,0.47642 0.51236,0.21295 0.99584,0.47282 1.45408,0.776 0.45823,0.30679 0.88399,0.65689 1.27366,1.04669 0.38968,0.3898 0.73606,0.81208 1.04275,1.27407 0.30669,0.45838 0.56648,0.94202 0.77575,1.45093 0.21288,0.50891 0.37164,1.03586 0.47988,1.57364 0.10824,0.5414 0.16237,1.09001 0.16237,1.64222 v 25.19996 c 0,0.54861 -0.0541,1.09722 -0.16237,1.63861 -0.10824,0.53779 -0.267,1.06474 -0.47988,1.57365 -0.20927,0.50891 -0.46906,0.99255 -0.77575,1.45454 -0.30669,0.45838 -0.65307,0.88066 -1.04275,1.27046 -0.38967,0.3898 -0.81543,0.7399 -1.27366,1.04669 -0.45824,0.30679 -0.94172,0.56305 -1.45408,0.776 -0.50874,0.20933 -1.03192,0.36814 -1.57314,0.47642 -0.54122,0.10828 -1.08966,0.16242 -1.6417,0.16242 H 387.3987 c -0.55204,0 -1.09687,-0.0541 -1.63809,-0.16242 -0.54122,-0.10828 -1.0644,-0.26709 -1.57675,-0.47642 -0.50874,-0.21295 -0.99223,-0.46921 -1.45047,-0.776 -0.45823,-0.30679 -0.88399,-0.65689 -1.27366,-1.04669 -0.38968,-0.3898 -0.73606,-0.81208 -1.04275,-1.27046 -0.30669,-0.46199 -0.56648,-0.94563 -0.77936,-1.45454 -0.20927,-0.50891 -0.36803,-1.03586 -0.47627,-1.57365 -0.10824,-0.54139 -0.16236,-1.09 -0.16236,-1.63861 v -25.19996 c 0,-0.55221 0.0541,-1.10082 0.16236,-1.64222 0.10824,-0.53778 0.267,-1.06473 0.47627,-1.57364 0.21288,-0.50891 0.47267,-0.99255 0.77936,-1.45093 0.30669,-0.46199 0.65307,-0.88427 1.04275,-1.27407 0.38967,-0.3898 0.81543,-0.7399 1.27366,-1.04669 0.45824,-0.30318 0.94173,-0.56305 1.45047,-0.776 0.51235,-0.20933 1.03553,-0.36814 1.57675,-0.47642 0.54122,-0.10828 1.08605,-0.16242 1.63809,-0.16242 z m 0,0" + transform="matrix(1.082626,0,0,1.082281,0.541313,0.5411)" + id="path666" /> + <g + style="fill:#000000;fill-opacity:1" + id="g674"> + <use + xlink:href="#glyph0-15" + x="425.99643" + y="200.22198" + id="use668" /> + <use + xlink:href="#glyph0-16" + x="434.66177" + y="200.22198" + id="use670" /> + <use + xlink:href="#glyph0-17" + x="441.15753" + y="200.22198" + id="use672" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g678"> + <use + xlink:href="#glyph0-12" + x="448.38342" + y="200.22198" + id="use676" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g682"> + <use + xlink:href="#glyph0-18" + x="455.60928" + y="200.22198" + id="use680" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g688"> + <use + xlink:href="#glyph0-19" + x="458.496" + y="200.22198" + id="use684" /> + <use + xlink:href="#glyph0-18" + x="464.99176" + y="200.22198" + id="use686" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g692"> + <use + xlink:href="#glyph0-14" + x="467.87848" + y="200.22198" + id="use690" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g696"> + <use + xlink:href="#glyph0-18" + x="471.48752" + y="200.22198" + id="use694" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g700"> + <use + xlink:href="#glyph0-2" + x="474.37424" + y="200.22198" + id="use698" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g704"> + <use + xlink:href="#glyph0-20" + x="481.60013" + y="200.22198" + id="use702" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g708"> + <use + xlink:href="#glyph0-1" + x="432.49219" + y="216.45621" + id="use706" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g712"> + <use + xlink:href="#glyph0-12" + x="440.42743" + y="216.45621" + id="use710" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g716"> + <use + xlink:href="#glyph0-20" + x="447.65329" + y="216.45621" + id="use714" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g722"> + <use + xlink:href="#glyph0-16" + x="454.87918" + y="216.45621" + id="use718" /> + <use + xlink:href="#glyph0-14" + x="461.37494" + y="216.45621" + id="use720" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g726"> + <use + xlink:href="#glyph0-18" + x="464.98398" + y="216.45621" + id="use724" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g730"> + <use + xlink:href="#glyph0-2" + x="467.8707" + y="216.45621" + id="use728" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g734"> + <use + xlink:href="#glyph0-20" + x="475.09656" + y="216.45621" + id="use732" /> + </g> + <path + style="fill:none;stroke:#000000;stroke-width:1;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-opacity:1" + d="m 265.00027,242.99979 v -18.99922 h 25.0007 v -8.62978" + transform="matrix(1.082626,0,0,1.082281,0.541313,0.5411)" + id="path736" /> + <path + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:#000000;stroke-width:1;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-opacity:1" + d="m 290.00097,210.11929 3.49988,7.002 -3.49988,-1.7505 -3.49988,1.7505 z m 0,0" + transform="matrix(1.082626,0,0,1.082281,0.541313,0.5411)" + id="path738" /> + <path + style="fill:#ffffff;fill-opacity:1;fill-rule:nonzero;stroke:none" + d="m 268.24219,263.53516 h 38.39062 c 0.46875,0 0.92188,0.0898 1.35547,0.26953 0.43359,0.17968 0.81641,0.43359 1.14844,0.76562 0.33203,0.33203 0.58594,0.71485 0.76562,1.14844 0.17969,0.43359 0.26953,0.88672 0.26953,1.35547 v 16.49609 c 0,0.46875 -0.0898,0.91797 -0.26953,1.35156 -0.17968,0.4336 -0.43359,0.81641 -0.76562,1.14844 -0.33203,0.33203 -0.71485,0.58985 -1.14844,0.76953 -0.43359,0.17969 -0.88672,0.26563 -1.35547,0.26953 h -38.39062 c -0.46875,-0.004 -0.92188,-0.0898 -1.35547,-0.26953 -0.4336,-0.17968 -0.81641,-0.4375 -1.14844,-0.76953 -0.33203,-0.33203 -0.58594,-0.71484 -0.76562,-1.14844 -0.17969,-0.43359 -0.26954,-0.88281 -0.26954,-1.35156 v -16.49609 c 0,-0.46875 0.0899,-0.92188 0.26954,-1.35547 0.17968,-0.43359 0.43359,-0.81641 0.76562,-1.14844 0.33203,-0.33203 0.71484,-0.58594 1.14844,-0.76562 0.43359,-0.17969 0.88672,-0.26953 1.35547,-0.26953 z m 0,0" + id="path740" /> + <g + clip-path="url(#clip2)" + clip-rule="nonzero" + id="g744"> + <path + style="fill:none;stroke:#000000;stroke-width:1;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1" + d="m 247.26995,242.99979 h 35.46065 c 0.43298,0 0.85152,0.083 1.25202,0.24904 0.4005,0.16603 0.7541,0.40063 1.06079,0.70742 0.30669,0.30679 0.54122,0.6605 0.70719,1.06112 0.16598,0.40063 0.24896,0.81931 0.24896,1.25242 v 15.24197 c 0,0.43312 -0.083,0.84818 -0.24896,1.24881 -0.16597,0.40063 -0.4005,0.75434 -0.70719,1.06113 -0.30669,0.30679 -0.66029,0.545 -1.06079,0.71103 -0.4005,0.16602 -0.81904,0.24904 -1.25202,0.24904 h -35.46065 c -0.43298,0 -0.85152,-0.083 -1.25202,-0.24904 -0.4005,-0.16603 -0.7541,-0.40424 -1.06079,-0.71103 -0.30669,-0.30679 -0.54122,-0.6605 -0.70719,-1.06113 -0.16598,-0.40063 -0.24896,-0.81569 -0.24896,-1.24881 v -15.24197 c 0,-0.43311 0.083,-0.85179 0.24896,-1.25242 0.16597,-0.40062 0.4005,-0.75433 0.70719,-1.06112 0.30669,-0.30679 0.66029,-0.54139 1.06079,-0.70742 0.4005,-0.16603 0.81904,-0.24904 1.25202,-0.24904 z m 0,0" + transform="matrix(1.082626,0,0,1.082281,0.541313,0.5411)" + id="path742" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g752"> + <use + xlink:href="#glyph1-1" + x="271.33313" + y="279.22849" + id="use746" /> + <use + xlink:href="#glyph1-2" + x="279.27637" + y="279.22849" + id="use748" /> + <use + xlink:href="#glyph1-3" + x="283.24203" + y="279.22849" + id="use750" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g756"> + <use + xlink:href="#glyph1-4" + x="285.88818" + y="279.22849" + id="use754" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g762"> + <use + xlink:href="#glyph1-2" + x="292.5119" + y="279.22849" + id="use758" /> + <use + xlink:href="#glyph1-5" + x="296.47757" + y="279.22849" + id="use760" /> + </g> + <path + style="fill:none;stroke:#000000;stroke-width:1;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-opacity:1" + d="M 422.49854,166.99928 V 83.00062 h -75.12838" + transform="matrix(1.082626,0,0,1.082281,0.541313,0.5411)" + id="path764" /> + <path + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:#000000;stroke-width:1;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-opacity:1" + d="m 342.12034,83.00062 6.99976,-3.500997 -1.74994,3.500997 1.74994,3.500997 z m 0,0" + transform="matrix(1.082626,0,0,1.082281,0.541313,0.5411)" + id="path766" /> + <path + style="fill:#e1d4e6;fill-opacity:1;fill-rule:nonzero;stroke:none" + d="m 282.34766,67.640625 h 80.54687 c 0.44922,0 0.89453,0.04687 1.33203,0.132813 0.4375,0.08594 0.86719,0.214843 1.28125,0.386718 0.41406,0.171875 0.80469,0.382813 1.17578,0.632813 0.375,0.246093 0.71875,0.53125 1.03516,0.847656 0.31641,0.316406 0.60156,0.660156 0.84766,1.03125 0.25,0.375 0.46093,0.765625 0.63281,1.179687 0.16797,0.414063 0.30078,0.839844 0.38672,1.277344 0.0859,0.441406 0.1289,0.882813 0.1289,1.332032 v 31.820312 c 0,0.44531 -0.043,0.89063 -0.1289,1.32813 -0.0859,0.4414 -0.21875,0.86718 -0.38672,1.28125 -0.17188,0.41406 -0.38281,0.80468 -0.63281,1.17578 -0.2461,0.375 -0.53125,0.71875 -0.84766,1.03515 -0.31641,0.31641 -0.66016,0.59766 -1.03516,0.84766 -0.37109,0.25 -0.76172,0.45703 -1.17578,0.62891 -0.41406,0.17187 -0.84375,0.30078 -1.28125,0.39062 -0.4375,0.0859 -0.88281,0.12891 -1.33203,0.12891 h -80.54687 c -0.44532,0 -0.89063,-0.043 -1.32813,-0.12891 -0.44141,-0.0898 -0.86719,-0.21875 -1.28125,-0.39062 -0.41406,-0.17188 -0.80469,-0.37891 -1.17969,-0.62891 -0.37109,-0.25 -0.71484,-0.53125 -1.03125,-0.84766 -0.3164,-0.3164 -0.60156,-0.66015 -0.85156,-1.03515 -0.24609,-0.3711 -0.45703,-0.76172 -0.62891,-1.17578 -0.17187,-0.41407 -0.30078,-0.83985 -0.38671,-1.28125 -0.0899,-0.4375 -0.13282,-0.88282 -0.13282,-1.32813 V 74.460938 c 0,-0.449219 0.043,-0.890626 0.13282,-1.332032 0.0859,-0.4375 0.21484,-0.863281 0.38671,-1.277344 0.17188,-0.414062 0.38282,-0.804687 0.62891,-1.179687 0.25,-0.371094 0.53516,-0.714844 0.85156,-1.03125 0.31641,-0.316406 0.66016,-0.601563 1.03125,-0.847656 0.375,-0.25 0.76563,-0.460938 1.17969,-0.632813 0.41406,-0.171875 0.83984,-0.300781 1.28125,-0.386718 0.4375,-0.08594 0.88281,-0.132813 1.32813,-0.132813 z m 0,0" + id="path768" /> + <path + style="fill:none;stroke:#9473a6;stroke-width:1;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1" + d="m 260.29889,61.998247 h 74.39954 c 0.41493,0 0.82626,0.04331 1.23037,0.122716 0.40772,0.0794 0.801,0.19851 1.18346,0.357318 0.38246,0.158808 0.74328,0.353709 1.08605,0.584702 0.34638,0.227385 0.66389,0.490862 0.95615,0.783213 0.29226,0.292351 0.55565,0.609968 0.78296,0.952849 0.23092,0.34649 0.42576,0.707418 0.58452,1.090001 0.15515,0.382583 0.27783,0.775994 0.3572,1.180233 0.0794,0.407848 0.11907,0.815696 0.11907,1.230763 v 29.401156 c 0,0.411457 -0.0397,0.822914 -0.11907,1.227153 -0.0794,0.407848 -0.20205,0.801259 -0.3572,1.183839 -0.15876,0.38259 -0.3536,0.74351 -0.58452,1.08639 -0.22731,0.3465 -0.4907,0.66411 -0.78296,0.95646 -0.29226,0.29236 -0.60977,0.55222 -0.95615,0.78322 -0.34277,0.23099 -0.70359,0.42228 -1.08605,0.58109 -0.38246,0.15881 -0.77574,0.27791 -1.18346,0.36093 -0.40411,0.0794 -0.81544,0.1191 -1.23037,0.1191 h -74.39954 c -0.41133,0 -0.82266,-0.0397 -1.22676,-0.1191 -0.40772,-0.083 -0.80101,-0.20212 -1.18347,-0.36093 -0.38246,-0.15881 -0.74327,-0.3501 -1.08965,-0.58109 -0.34278,-0.231 -0.66029,-0.49086 -0.95255,-0.78322 -0.29226,-0.29235 -0.55565,-0.60996 -0.78296,-0.95646 -0.23092,-0.34288 -0.42576,-0.7038 -0.58452,-1.08639 -0.15876,-0.38258 -0.27782,-0.775991 -0.3572,-1.183839 -0.083,-0.404239 -0.12268,-0.815696 -0.12268,-1.227153 V 68.300042 c 0,-0.415067 0.0397,-0.822915 0.12268,-1.230763 0.0794,-0.404239 0.19844,-0.79765 0.3572,-1.180233 0.15876,-0.382583 0.3536,-0.743511 0.58452,-1.090001 0.22731,-0.342881 0.4907,-0.660498 0.78296,-0.952849 0.29226,-0.292351 0.60977,-0.555828 0.95255,-0.783213 0.34638,-0.230993 0.70719,-0.425894 1.08965,-0.584702 0.38246,-0.158808 0.77575,-0.277914 1.18347,-0.357318 0.4041,-0.0794 0.81543,-0.122716 1.22676,-0.122716 z m 0,0" + transform="matrix(1.082626,0,0,1.082281,0.541313,0.5411)" + id="path770" /> + <g + style="fill:#000000;fill-opacity:1" + id="g774"> + <use + xlink:href="#glyph0-21" + x="294.28818" + y="94.158447" + id="use772" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g778"> + <use + xlink:href="#glyph0-22" + x="304.39297" + y="94.158447" + id="use776" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g782"> + <use + xlink:href="#glyph0-14" + x="311.61884" + y="94.158447" + id="use780" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g786"> + <use + xlink:href="#glyph0-18" + x="315.22787" + y="94.158447" + id="use784" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g792"> + <use + xlink:href="#glyph0-23" + x="318.11459" + y="94.158447" + id="use788" /> + <use + xlink:href="#glyph0-18" + x="328.93652" + y="94.158447" + id="use790" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g798"> + <use + xlink:href="#glyph0-19" + x="331.82324" + y="94.158447" + id="use794" /> + <use + xlink:href="#glyph0-9" + x="338.319" + y="94.158447" + id="use796" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g802"> + <use + xlink:href="#glyph0-3" + x="345.54489" + y="94.158447" + id="use800" /> + </g> + <path + style="fill:none;stroke:#000000;stroke-width:1;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-opacity:1" + d="m 317.00057,242.99979 v -18.99922 h -26.9996" + transform="matrix(1.082626,0,0,1.082281,0.541313,0.5411)" + id="path804" /> + <path + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" + d="m 366.46875,274.79297 h 1.08203 v 1.08203 h -1.08203 z m 3.24609,0 h 1.08594 v 1.08203 h -1.08594 z m 3.25,0 h 1.08203 v 1.08203 h -1.08203 z m 3.2461,0 h 1.08593 v 1.08203 h -1.08593 z m 3.25,0 h 1.08203 v 1.08203 h -1.08203 z m 3.24609,0 h 1.08203 v 1.08203 h -1.08203 z m 3.25,0 h 1.08203 v 1.08203 h -1.08203 z m 3.24609,0 h 1.08204 v 1.08203 h -1.08204 z m 3.25,0 h 1.08204 v 1.08203 h -1.08204 z m 3.2461,0 h 1.08203 v 1.08203 h -1.08203 z m 3.25,0 h 1.08203 v 1.08203 h -1.08203 z m 3.24609,0 h 1.08203 v 1.08203 h -1.08203 z m 3.25,0 h 1.08203 v 1.08203 h -1.08203 z m 3.2461,0 h 1.08203 v 1.08203 h -1.08203 z m 3.24609,0 h 1.08594 v 1.08203 h -1.08594 z m 3.25,0 h 1.08203 v 1.08203 h -1.08203 z m 3.24609,0 h 1.08203 v 1.08203 h -1.08203 z m 3.25,0 h 1.08203 v 1.08203 h -1.08203 z m 3.2461,0 h 1.08203 v 1.08203 h -1.08203 z m 3.25,0 h 1.08203 v 1.08203 h -1.08203 z m 3.24609,0 h 1.08203 v 1.08203 h -1.08203 z m 3.25,0 h 1.08203 v 1.08203 h -1.08203 z m 3.24609,0 h 1.08204 v 1.08203 h -1.08204 z m 3.25,0 h 1.08204 v 1.08203 h -1.08204 z m 3.2461,0 H 445.5 v 1.08203 h -1.08203 z m 3.24609,0 H 448.75 v 1.08203 h -1.08594 z m 3.25,0 h 1.08203 v 1.08203 h -1.08203 z m 3.2461,0 h 1.08203 v 1.08203 h -1.08203 z m 3.25,0 h 0.53906 v 0.53906 h -0.53906 v -0.53906 h 1.08203 v 1.08203 h -1.08203 z m 0,-2.16797 v -1.08203 h 1.08203 v 1.08203 z m 0,-3.24609 v -1.08204 h 1.08203 v 1.08204 z m 0,-3.2461 v -1.08203 h 1.08203 v 1.08203 z m 0,-3.24609 v -1.08203 h 1.08203 v 1.08203 z m 0,-3.2461 v -1.08203 h 1.08203 v 1.08203 z m 0,-3.25 v -1.08203 h 1.08203 v 1.08203 z m 0,-3.24609 v -1.08203 h 1.08203 v 1.08203 z m 0,-3.24609 v -1.08203 h 1.08203 v 1.08203 z m 0,-3.2461 v -1.08203 h 1.08203 v 1.08203 z m 0,-3.24609 v -1.08203 h 1.08203 v 1.08203 z m 0,-3.25 v -1.08203 h 1.08203 v 1.08203 z m 0,-3.24609 v -1.08204 h 1.08203 v 1.08204 z m 0,-3.2461 v -0.0312 h 1.08203 v 0.0312 z m 0,0" + id="path806" /> + <path + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:#000000;stroke-width:1;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-opacity:1" + d="m 422.49854,210.11929 3.49988,7.002 -3.49988,-1.7505 -3.49988,1.7505 z m 0,0" + transform="matrix(1.082626,0,0,1.082281,0.541313,0.5411)" + id="path808" /> + <path + style="fill:#ffffff;fill-opacity:1;fill-rule:nonzero;stroke:none" + d="m 324.53906,263.53516 h 38.39063 c 0.46875,0 0.92187,0.0898 1.35547,0.26953 0.43359,0.17968 0.8164,0.43359 1.14843,0.76562 0.33203,0.33203 0.58594,0.71485 0.76563,1.14844 0.17969,0.43359 0.26953,0.88672 0.26953,1.35547 v 16.49609 c 0,0.46875 -0.0898,0.91797 -0.26953,1.35156 -0.17969,0.4336 -0.4336,0.81641 -0.76563,1.14844 -0.33203,0.33203 -0.71484,0.58985 -1.14843,0.76953 -0.4336,0.17969 -0.88672,0.26563 -1.35547,0.26953 h -38.39063 c -0.46875,-0.004 -0.92187,-0.0898 -1.35547,-0.26953 -0.43359,-0.17968 -0.8164,-0.4375 -1.14843,-0.76953 -0.33204,-0.33203 -0.58594,-0.71484 -0.76563,-1.14844 C 321.08984,284.48828 321,284.03906 321,283.57031 v -16.49609 c 0,-0.46875 0.0898,-0.92188 0.26953,-1.35547 0.17969,-0.43359 0.43359,-0.81641 0.76563,-1.14844 0.33203,-0.33203 0.71484,-0.58594 1.14843,-0.76562 0.4336,-0.17969 0.88672,-0.26953 1.35547,-0.26953 z m 0,0" + id="path810" /> + <g + clip-path="url(#clip3)" + clip-rule="nonzero" + id="g814"> + <path + style="fill:none;stroke:#000000;stroke-width:1;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1" + d="m 299.27025,242.99979 h 35.46065 c 0.43297,0 0.85152,0.083 1.25202,0.24904 0.4005,0.16603 0.7541,0.40063 1.06079,0.70742 0.30669,0.30679 0.54122,0.6605 0.70719,1.06112 0.16597,0.40063 0.24896,0.81931 0.24896,1.25242 v 15.24197 c 0,0.43312 -0.083,0.84818 -0.24896,1.24881 -0.16597,0.40063 -0.4005,0.75434 -0.70719,1.06113 -0.30669,0.30679 -0.66029,0.545 -1.06079,0.71103 -0.4005,0.16602 -0.81905,0.24904 -1.25202,0.24904 h -35.46065 c -0.43298,0 -0.85152,-0.083 -1.25202,-0.24904 -0.40051,-0.16603 -0.7541,-0.40424 -1.06079,-0.71103 -0.30669,-0.30679 -0.54122,-0.6605 -0.70719,-1.06113 -0.16598,-0.40063 -0.24897,-0.81569 -0.24897,-1.24881 v -15.24197 c 0,-0.43311 0.083,-0.85179 0.24897,-1.25242 0.16597,-0.40062 0.4005,-0.75433 0.70719,-1.06112 0.30669,-0.30679 0.66028,-0.54139 1.06079,-0.70742 0.4005,-0.16603 0.81904,-0.24904 1.25202,-0.24904 z m 0,0" + transform="matrix(1.082626,0,0,1.082281,0.541313,0.5411)" + id="path812" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g818"> + <use + xlink:href="#glyph1-6" + x="324.33105" + y="279.22849" + id="use816" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g824"> + <use + xlink:href="#glyph1-7" + x="332.93164" + y="279.22849" + id="use820" /> + <use + xlink:href="#glyph1-8" + x="338.88608" + y="279.22849" + id="use822" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g828"> + <use + xlink:href="#glyph1-9" + x="345.5098" + y="279.22849" + id="use826" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g834"> + <use + xlink:href="#glyph1-2" + x="352.13351" + y="279.22849" + id="use830" /> + <use + xlink:href="#glyph1-5" + x="356.09918" + y="279.22849" + id="use832" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g838"> + <use + xlink:href="#glyph0-13" + x="389.52548" + y="30.303867" + id="use836" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g844"> + <use + xlink:href="#glyph0-3" + x="396.75134" + y="30.303867" + id="use840" /> + <use + xlink:href="#glyph0-5" + x="401.07755" + y="30.303867" + id="use842" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g848"> + <use + xlink:href="#glyph0-6" + x="408.30341" + y="30.303867" + id="use846" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g852"> + <use + xlink:href="#glyph0-18" + x="415.5293" + y="30.303867" + id="use850" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g856"> + <use + xlink:href="#glyph0-9" + x="418.41602" + y="30.303867" + id="use854" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g860"> + <use + xlink:href="#glyph0-20" + x="425.64188" + y="30.303867" + id="use858" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g864"> + <use + xlink:href="#glyph0-14" + x="432.86777" + y="30.303867" + id="use862" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g868"> + <use + xlink:href="#glyph0-7" + x="436.47681" + y="30.303867" + id="use866" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g872"> + <use + xlink:href="#glyph0-24" + x="440.08585" + y="30.303867" + id="use870" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g876"> + <use + xlink:href="#glyph0-7" + x="443.69489" + y="30.303867" + id="use874" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g880"> + <use + xlink:href="#glyph0-20" + x="447.30392" + y="30.303867" + id="use878" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g884"> + <use + xlink:href="#glyph0-2" + x="454.52982" + y="30.303867" + id="use882" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g888"> + <use + xlink:href="#glyph0-20" + x="461.75568" + y="30.303867" + id="use886" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g892"> + <use + xlink:href="#glyph0-25" + x="468.98157" + y="30.303867" + id="use890" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g896"> + <use + xlink:href="#glyph0-13" + x="384.83975" + y="46.538082" + id="use894" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g902"> + <use + xlink:href="#glyph0-3" + x="392.06564" + y="46.538082" + id="use898" /> + <use + xlink:href="#glyph0-5" + x="396.39182" + y="46.538082" + id="use900" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g906"> + <use + xlink:href="#glyph0-6" + x="403.61771" + y="46.538082" + id="use904" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g910"> + <use + xlink:href="#glyph0-18" + x="410.84357" + y="46.538082" + id="use908" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g914"> + <use + xlink:href="#glyph0-9" + x="413.73029" + y="46.538082" + id="use912" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g918"> + <use + xlink:href="#glyph0-20" + x="420.95618" + y="46.538082" + id="use916" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g922"> + <use + xlink:href="#glyph0-14" + x="428.18204" + y="46.538082" + id="use920" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g926"> + <use + xlink:href="#glyph0-7" + x="431.79108" + y="46.538082" + id="use924" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g930"> + <use + xlink:href="#glyph0-26" + x="435.40012" + y="46.538082" + id="use928" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g934"> + <use + xlink:href="#glyph0-5" + x="442.62601" + y="46.538082" + id="use932" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g940"> + <use + xlink:href="#glyph0-19" + x="449.8519" + y="46.538082" + id="use936" /> + <use + xlink:href="#glyph0-9" + x="456.34766" + y="46.538082" + id="use938" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g944"> + <use + xlink:href="#glyph0-6" + x="463.57352" + y="46.538082" + id="use942" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g948"> + <use + xlink:href="#glyph0-27" + x="470.79941" + y="46.538082" + id="use946" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g952"> + <use + xlink:href="#glyph0-27" + x="474.40845" + y="46.538082" + id="use950" /> + </g> + <path + style="fill:none;stroke:#000000;stroke-width:1;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-opacity:1" + d="m 349.2103,63.340898 21.78947,-15.33942" + transform="matrix(1.082626,0,0,1.082281,0.541313,0.5411)" + id="path954" /> + <path + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:#000000;stroke-width:1;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-opacity:1" + d="m 344.90942,66.358252 3.70915,-6.886497 0.59173,3.869143 3.43855,1.847949 z m 0,0" + transform="matrix(1.082626,0,0,1.082281,0.541313,0.5411)" + id="path956" /> + <path + style="fill:none;stroke:#000000;stroke-width:1;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-opacity:1" + d="m 494.00076,166.99928 h -9.00228 v 21.00237 h -12.62843" + transform="matrix(1.082626,0,0,1.082281,0.541313,0.5411)" + id="path958" /> + <path + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:#000000;stroke-width:1;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-opacity:1" + d="m 467.12022,188.00165 6.99977,-3.50099 -1.74994,3.50099 1.74994,3.49739 z m 0,0" + transform="matrix(1.082626,0,0,1.082281,0.541313,0.5411)" + id="path960" /> + <path + style="fill:#ffffff;fill-opacity:1;fill-rule:nonzero;stroke:none" + d="m 539.90625,168.29297 h 55.86328 c 0.60156,0 1.18359,0.11719 1.73828,0.34765 0.5586,0.23047 1.05078,0.5586 1.47656,0.98438 0.42579,0.42578 0.75391,0.91797 0.98438,1.47656 0.23047,0.55469 0.34766,1.13672 0.34766,1.73828 v 21.21485 c 0,0.60156 -0.11719,1.17968 -0.34766,1.73828 -0.23047,0.55469 -0.55859,1.04687 -0.98438,1.47265 -0.42578,0.42579 -0.91796,0.75782 -1.47656,0.98829 -0.55469,0.23046 -1.13672,0.34375 -1.73828,0.34375 h -55.86328 c -0.60547,0 -1.18359,-0.11329 -1.74219,-0.34375 -0.55469,-0.23047 -1.04687,-0.5625 -1.47265,-0.98829 -0.42579,-0.42578 -0.75782,-0.91796 -0.98829,-1.47265 -0.23046,-0.5586 -0.34375,-1.13672 -0.34375,-1.73828 v -21.21485 c 0,-0.60156 0.11329,-1.18359 0.34375,-1.73828 0.23047,-0.55859 0.5625,-1.05078 0.98829,-1.47656 0.42578,-0.42578 0.91796,-0.75391 1.47265,-0.98438 0.5586,-0.23046 1.13672,-0.34765 1.74219,-0.34765 z m 0,0" + id="path962" /> + <g + clip-path="url(#clip4)" + clip-rule="nonzero" + id="g966"> + <path + style="fill:none;stroke:#000000;stroke-width:1;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1" + d="m 498.20061,154.99844 h 51.5998 c 0.55565,0 1.09326,0.10828 1.60561,0.32123 0.51597,0.21294 0.97059,0.51612 1.36388,0.90953 0.39328,0.39342 0.69637,0.84818 0.90924,1.36431 0.21288,0.51252 0.32113,1.0503 0.32113,1.60613 v 19.60197 c 0,0.55583 -0.10825,1.09 -0.32113,1.60613 -0.21287,0.51252 -0.51596,0.96728 -0.90924,1.3607 -0.39329,0.39702 -0.84791,0.7002 -1.36388,0.91314 -0.51235,0.21295 -1.04996,0.31762 -1.60561,0.31762 h -51.5998 c -0.55926,0 -1.09326,-0.10467 -1.60922,-0.31762 -0.51235,-0.21294 -0.96698,-0.51612 -1.36026,-0.91314 -0.39329,-0.39342 -0.69998,-0.84818 -0.91286,-1.3607 -0.21288,-0.51613 -0.31751,-1.0503 -0.31751,-1.60613 v -19.60197 c 0,-0.55583 0.10463,-1.09361 0.31751,-1.60613 0.21288,-0.51613 0.51957,-0.97089 0.91286,-1.36431 0.39328,-0.39341 0.84791,-0.69659 1.36026,-0.90953 0.51596,-0.21295 1.04996,-0.32123 1.60922,-0.32123 z m 0,0" + transform="matrix(1.082626,0,0,1.082281,0.541313,0.5411)" + id="path964" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g972"> + <use + xlink:href="#glyph0-15" + x="539.48608" + y="187.23462" + id="use968" /> + <use + xlink:href="#glyph0-20" + x="548.15143" + y="187.23462" + id="use970" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g976"> + <use + xlink:href="#glyph0-5" + x="555.37726" + y="187.23462" + id="use974" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g980"> + <use + xlink:href="#glyph0-10" + x="562.60315" + y="187.23462" + id="use978" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g986"> + <use + xlink:href="#glyph0-28" + x="565.48987" + y="187.23462" + id="use982" /> + <use + xlink:href="#glyph0-14" + x="571.98566" + y="187.23462" + id="use984" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g990"> + <use + xlink:href="#glyph0-18" + x="575.59467" + y="187.23462" + id="use988" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g996"> + <use + xlink:href="#glyph0-16" + x="578.48138" + y="187.23462" + id="use992" /> + <use + xlink:href="#glyph0-5" + x="584.97717" + y="187.23462" + id="use994" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g1000"> + <use + xlink:href="#glyph0-10" + x="592.203" + y="187.23462" + id="use998" /> + </g> + <path + style="fill:none;stroke:#000000;stroke-width:1;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-opacity:1" + d="m 494.00076,206.00111 h -9.00228 v -17.99946 h -12.62843" + transform="matrix(1.082626,0,0,1.082281,0.541313,0.5411)" + id="path1002" /> + <path + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:#000000;stroke-width:1;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-opacity:1" + d="m 467.12022,188.00165 6.99977,-3.50099 -1.74994,3.50099 1.74994,3.49739 z m 0,0" + transform="matrix(1.082626,0,0,1.082281,0.541313,0.5411)" + id="path1004" /> + <path + style="fill:#ffffff;fill-opacity:1;fill-rule:nonzero;stroke:none" + d="m 539.90625,208.33984 h 55.86328 c 0.60156,0 1.18359,0.11328 1.73828,0.34375 0.5586,0.23047 1.05078,0.5586 1.47656,0.98828 0.42579,0.42579 0.75391,0.91797 0.98438,1.47266 0.23047,0.55859 0.34766,1.13672 0.34766,1.73828 v 21.21485 c 0,0.60156 -0.11719,1.18359 -0.34766,1.73828 -0.23047,0.55859 -0.55859,1.05078 -0.98438,1.47656 -0.42578,0.42578 -0.91796,0.75391 -1.47656,0.98437 -0.55469,0.23047 -1.13672,0.34766 -1.73828,0.34766 h -55.86328 c -0.60547,0 -1.18359,-0.11719 -1.74219,-0.34766 -0.55469,-0.23046 -1.04687,-0.55859 -1.47265,-0.98437 -0.42579,-0.42578 -0.75782,-0.91797 -0.98829,-1.47656 -0.23046,-0.55469 -0.34375,-1.13672 -0.34375,-1.73828 v -21.21485 c 0,-0.60156 0.11329,-1.17969 0.34375,-1.73828 0.23047,-0.55469 0.5625,-1.04687 0.98829,-1.47266 0.42578,-0.42968 0.91796,-0.75781 1.47265,-0.98828 0.5586,-0.23047 1.13672,-0.34375 1.74219,-0.34375 z m 0,0" + id="path1006" /> + <g + clip-path="url(#clip5)" + clip-rule="nonzero" + id="g1010"> + <path + style="fill:none;stroke:#000000;stroke-width:1;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1" + d="m 498.20061,192.00073 h 51.5998 c 0.55565,0 1.09326,0.10467 1.60561,0.31762 0.51597,0.21294 0.97059,0.51973 1.36388,0.91314 0.39328,0.39341 0.69637,0.84818 0.90924,1.3607 0.21288,0.51613 0.32113,1.0503 0.32113,1.60613 v 19.60197 c 0,0.55583 -0.10825,1.09361 -0.32113,1.60613 -0.21287,0.51613 -0.51596,0.97089 -0.90924,1.36431 -0.39329,0.39341 -0.84791,0.69659 -1.36388,0.90953 -0.51235,0.21295 -1.04996,0.32123 -1.60561,0.32123 h -51.5998 c -0.55926,0 -1.09326,-0.10828 -1.60922,-0.32123 -0.51235,-0.21294 -0.96698,-0.51612 -1.36026,-0.90953 -0.39329,-0.39342 -0.69998,-0.84818 -0.91286,-1.36431 -0.21288,-0.51252 -0.31751,-1.0503 -0.31751,-1.60613 v -19.60197 c 0,-0.55583 0.10463,-1.09 0.31751,-1.60613 0.21288,-0.51252 0.51957,-0.96729 0.91286,-1.3607 0.39328,-0.39341 0.84791,-0.7002 1.36026,-0.91314 0.51596,-0.21295 1.04996,-0.31762 1.60922,-0.31762 z m 0,0" + transform="matrix(1.082626,0,0,1.082281,0.541313,0.5411)" + id="path1008" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g1016"> + <use + xlink:href="#glyph0-11" + x="537.3208" + y="227.27901" + id="use1012" /> + <use + xlink:href="#glyph0-14" + x="545.98615" + y="227.27901" + id="use1014" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g1020"> + <use + xlink:href="#glyph0-2" + x="549.59521" + y="227.27901" + id="use1018" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g1026"> + <use + xlink:href="#glyph0-16" + x="556.82111" + y="227.27901" + id="use1022" /> + <use + xlink:href="#glyph0-29" + x="563.31683" + y="227.27901" + id="use1024" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g1030"> + <use + xlink:href="#glyph0-5" + x="570.54272" + y="227.27901" + id="use1028" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g1036"> + <use + xlink:href="#glyph0-19" + x="577.76862" + y="227.27901" + id="use1032" /> + <use + xlink:href="#glyph0-14" + x="584.26434" + y="227.27901" + id="use1034" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g1040"> + <use + xlink:href="#glyph0-18" + x="587.87341" + y="227.27901" + id="use1038" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g1044"> + <use + xlink:href="#glyph0-16" + x="590.76013" + y="227.27901" + id="use1042" /> + </g> + <use + xlink:href="#image69048" + mask="url(#mask0)" + transform="matrix(0.233306,0,0,0.23327,207.8642,69.26597)" + id="use1046" /> + <use + xlink:href="#image69054" + mask="url(#mask1)" + transform="matrix(0.224508,0,0,0.224573,1.082626,169.91806)" + id="use1048" /> + <path + style="fill:none;stroke:#000000;stroke-width:1;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-opacity:1" + d="M 37.998694,188.00165 H 94.628217" + transform="matrix(1.082626,0,0,1.082281,0.541313,0.5411)" + id="path1050" /> + <path + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:#000000;stroke-width:1;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-opacity:1" + d="m 99.881647,188.00165 -7.00337,3.49739 1.74994,-3.49739 -1.74994,-3.50099 z m 0,0" + transform="matrix(1.082626,0,0,1.082281,0.541313,0.5411)" + id="path1052" /> + <use + xlink:href="#image69060" + mask="url(#mask2)" + transform="matrix(0.171443,0,0,0.17141,215.4425,180.24303)" + id="use1054" /> + <use + xlink:href="#image69066" + mask="url(#mask3)" + transform="matrix(0.203152,0,0,0.202928,224.1035,241.34859)" + id="use1056" /> + <path + style="fill:none;stroke:#000000;stroke-width:1;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-opacity:1" + d="M 225.0006,188.00165 H 245.00044 226.9995 240.631" + transform="matrix(1.082626,0,0,1.082281,0.541313,0.5411)" + id="path1058" /> + <path + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:#000000;stroke-width:1;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-opacity:1" + d="m 245.88082,188.00165 -6.99976,3.49739 1.74994,-3.49739 -1.74994,-3.50099 z m 0,0" + transform="matrix(1.082626,0,0,1.082281,0.541313,0.5411)" + id="path1060" /> + <path + style="fill:#ffffff;fill-opacity:1;fill-rule:nonzero;stroke:#000000;stroke-width:1;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1" + d="m 225.0006,188.00165 c 0,0.6605 -0.12628,1.29934 -0.38246,1.91292 -0.25257,0.60997 -0.61338,1.15136 -1.08244,1.62056 -0.46906,0.46921 -1.01027,0.83014 -1.62366,1.08279 -0.60977,0.25626 -1.24841,0.38258 -1.9123,0.38258 -0.6639,0 -1.29893,-0.12632 -1.91231,-0.38258 -0.61338,-0.25265 -1.1546,-0.61358 -1.62365,-1.08279 -0.46906,-0.4692 -0.82987,-1.01059 -1.08244,-1.62056 -0.25618,-0.61358 -0.38246,-1.25242 -0.38246,-1.91292 0,-0.6641 0.12628,-1.30294 0.38246,-1.91652 0.25257,-0.60997 0.61338,-1.15136 1.08244,-1.62057 0.46905,-0.4692 1.01027,-0.83013 1.62365,-1.08278 0.61338,-0.25626 1.24841,-0.38258 1.91231,-0.38258 0.66389,0 1.30253,0.12632 1.9123,0.38258 0.61339,0.25265 1.1546,0.61358 1.62366,1.08278 0.46906,0.46921 0.82987,1.0106 1.08244,1.62057 0.25618,0.61358 0.38246,1.25242 0.38246,1.91652 z m 0,0" + transform="matrix(1.082626,0,0,1.082281,0.541313,0.5411)" + id="path1062" /> + <g + style="fill:#000000;fill-opacity:1" + id="g1066"> + <use + xlink:href="#glyph0-25" + x="236.01247" + y="207.79796" + id="use1064" /> + </g> + <g + clip-path="url(#clip6)" + clip-rule="nonzero" + id="g1070"> + <use + xlink:href="#image69072" + mask="url(#mask4)" + transform="matrix(0.0949987,0,0,0.0949684,348.6126,185.07715)" + id="use1068" /> + </g> + <g + clip-path="url(#clip7)" + clip-rule="nonzero" + id="g1074"> + <use + xlink:href="#image69078" + mask="url(#mask5)" + transform="matrix(0.0733945,0,0,0.0733756,42.14981,194.71589)" + id="use1072" /> + </g> + <use + xlink:href="#image69083" + transform="matrix(0.120265,0,0,0.120253,413.563,93.07611)" + id="use1076" /> + </g> +</svg> diff --git a/assets/PyBOP_Architecture.drawio b/assets/PyBOP_Architecture.drawio new file mode 100644 index 000000000..9045249c2 --- /dev/null +++ b/assets/PyBOP_Architecture.drawio @@ -0,0 +1,159 @@ +<mxfile host="app.diagrams.net" modified="2023-09-18T10:17:45.280Z" agent="Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/117.0" etag="c32hgD70DTLdr2bVtD3K" version="21.7.5" type="device"> + <diagram name="Page-1" id="KMmnkO2Ysz7c5i8QPpm3"> + <mxGraphModel dx="1450" dy="166" grid="1" gridSize="1" guides="0" tooltips="1" connect="1" arrows="1" fold="1" page="0" pageScale="1" pageWidth="827" pageHeight="1169" math="0" shadow="0"> + <root> + <mxCell id="0" /> + <mxCell id="1" parent="0" /> + <mxCell id="gN4vE8bEkTlw2jWnqAIC-14" value="" style="rounded=1;whiteSpace=wrap;html=1;fillColor=#f5f5f5;fontColor=#333333;strokeColor=#666666;" parent="1" vertex="1"> + <mxGeometry x="-23" y="533" width="821" height="351" as="geometry" /> + </mxCell> + <mxCell id="hdwB_MQwIhiL4xS-3u5l-9" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;exitX=1;exitY=0.5;exitDx=0;exitDy=0;" parent="1" source="hdwB_MQwIhiL4xS-3u5l-1" target="hdwB_MQwIhiL4xS-3u5l-3" edge="1"> + <mxGeometry relative="1" as="geometry" /> + </mxCell> + <mxCell id="hdwB_MQwIhiL4xS-3u5l-1" value="Forward Model" style="rounded=1;whiteSpace=wrap;html=1;fillColor=#fff2cc;strokeColor=#d6b656;" parent="1" vertex="1"> + <mxGeometry x="272" y="681" width="120" height="60" as="geometry" /> + </mxCell> + <mxCell id="hdwB_MQwIhiL4xS-3u5l-10" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;entryX=0.5;entryY=0;entryDx=0;entryDy=0;exitX=0.5;exitY=0;exitDx=0;exitDy=0;" parent="1" source="hdwB_MQwIhiL4xS-3u5l-2" target="hdwB_MQwIhiL4xS-3u5l-6" edge="1"> + <mxGeometry relative="1" as="geometry"> + <mxPoint x="462" y="651" as="targetPoint" /> + <Array as="points"> + <mxPoint x="565" y="566" /> + <mxPoint x="332" y="566" /> + </Array> + </mxGeometry> + </mxCell> + <mxCell id="hdwB_MQwIhiL4xS-3u5l-2" value="Optimiser" style="rounded=1;whiteSpace=wrap;html=1;fillColor=#e1d5e7;strokeColor=#9673a6;" parent="1" vertex="1"> + <mxGeometry x="505" y="586" width="120" height="60" as="geometry" /> + </mxCell> + <mxCell id="hdwB_MQwIhiL4xS-3u5l-8" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;exitX=0.583;exitY=0;exitDx=0;exitDy=0;entryX=0.5;entryY=1;entryDx=0;entryDy=0;exitPerimeter=0;" parent="1" source="hdwB_MQwIhiL4xS-3u5l-3" target="hdwB_MQwIhiL4xS-3u5l-2" edge="1"> + <mxGeometry relative="1" as="geometry" /> + </mxCell> + <mxCell id="hdwB_MQwIhiL4xS-3u5l-3" value="Cost Function" style="rounded=1;whiteSpace=wrap;html=1;fillColor=#e1d5e7;strokeColor=#9673a6;" parent="1" vertex="1"> + <mxGeometry x="505" y="681" width="120" height="60" as="geometry" /> + </mxCell> + <mxCell id="hdwB_MQwIhiL4xS-3u5l-7" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;" parent="1" source="hdwB_MQwIhiL4xS-3u5l-6" target="hdwB_MQwIhiL4xS-3u5l-1" edge="1"> + <mxGeometry relative="1" as="geometry" /> + </mxCell> + <mxCell id="hdwB_MQwIhiL4xS-3u5l-6" value="Parameter Values" style="rounded=1;whiteSpace=wrap;html=1;fillColor=#f8cecc;strokeColor=#b85450;" parent="1" vertex="1"> + <mxGeometry x="272" y="589" width="120" height="60" as="geometry" /> + </mxCell> + <mxCell id="hdwB_MQwIhiL4xS-3u5l-38" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;exitX=1;exitY=0.5;exitDx=0;exitDy=0;" parent="1" source="hdwB_MQwIhiL4xS-3u5l-11" target="hdwB_MQwIhiL4xS-3u5l-6" edge="1"> + <mxGeometry relative="1" as="geometry" /> + </mxCell> + <mxCell id="hdwB_MQwIhiL4xS-3u5l-11" value="Non-optimised Parameters" style="rounded=1;whiteSpace=wrap;html=1;fillColor=#dae8fc;strokeColor=#6c8ebf;" parent="1" vertex="1"> + <mxGeometry x="111" y="594" width="100" height="50" as="geometry" /> + </mxCell> + <mxCell id="hdwB_MQwIhiL4xS-3u5l-91" value="" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;" parent="1" source="hdwB_MQwIhiL4xS-3u5l-13" target="hdwB_MQwIhiL4xS-3u5l-1" edge="1"> + <mxGeometry relative="1" as="geometry" /> + </mxCell> + <mxCell id="hdwB_MQwIhiL4xS-3u5l-92" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;entryX=0.5;entryY=1;entryDx=0;entryDy=0;exitX=1;exitY=0.5;exitDx=0;exitDy=0;dashed=1;" parent="1" source="hdwB_MQwIhiL4xS-3u5l-13" target="hdwB_MQwIhiL4xS-3u5l-3" edge="1"> + <mxGeometry relative="1" as="geometry"> + <Array as="points"> + <mxPoint x="236" y="711" /> + <mxPoint x="236" y="779" /> + <mxPoint x="565" y="779" /> + </Array> + </mxGeometry> + </mxCell> + <mxCell id="hdwB_MQwIhiL4xS-3u5l-13" value="Data" style="rounded=1;whiteSpace=wrap;html=1;fillColor=#dae8fc;strokeColor=#6c8ebf;flipH=1;" parent="1" vertex="1"> + <mxGeometry x="111" y="686" width="100" height="50" as="geometry" /> + </mxCell> + <mxCell id="hdwB_MQwIhiL4xS-3u5l-20" value="" style="shape=image;verticalLabelPosition=bottom;labelBackgroundColor=default;verticalAlign=top;aspect=fixed;imageAspect=0;image=data:image/png,iVBORw0KGgoAAAANSUhEUgAAACIAAABCEAYAAABiI9jbAAAKqGlDQ1BJQ0MgUHJvZmlsZQAASImVlwdQU+kWgP9700NCS4h0Qm/SWwApIbTQpYOohCRAKCEGgogdWVyBtSAighVdEFFwVYosNkSxLQKKXRdkEVHWxYINlXeBIbj75r0378ycOd899/znP+ef+8+cCwBZniMSpcHyAKQLs8ShPh706JhYOm4YQEANEAAJQBxupogZEhIAEJm1f5f3d5BoRG6ZTeX69/f/VRR4/EwuAFAIwgm8TG46wqcQfcEVibMAQO1H/LrLs0RT3IEwVYwUiPC9KU6a4dEpTphmNJiOCQ9lIUwFAE/icMRJAJDoiJ+ezU1C8pDcEbYU8gRChEUIu6anZ/AQPo6wERKD+EhT+RkJ3+VJ+lvOBGlODidJyjO9TAveU5ApSuOs+D+P439Leppkdg8DREnJYt9QxCoiZ3YvNcNfysKEoOBZFvCm46c5WeIbMcvcTFbsLPM4nv7StWlBAbOcKPBmS/NkscNnmZ/pFTbL4oxQ6V6JYhZzljniuX0lqRFSfzKfLc2fmxweNcvZgsigWc5MDfOfi2FJ/WJJqLR+vtDHY25fb2nv6Znf9StgS9dmJYf7SnvnzNXPFzLncmZGS2vj8T295mIipPGiLA/pXqK0EGk8P81H6s/MDpOuzUI+yLm1IdIzTOH4hcwyYIEMkIaoGNBBAPLkCUAWPydrqhFWhmiFWJCUnEVnIjeMT2cLuebz6daW1jYATN3Xmc/hLW36HkK0a3O+vIMAuLhOTk62zfn8hwA4OQYA8fGczwg5I9leAK6UciXi7Bnf9F3CACKQA1SgAjSBLjACZsAa2ANn4A68gB8IBuEgBiwBXJAM0pHKl4NVYD0oAEVgK9gBKsA+cBAcBsfACdAM2sAFcBlcB92gDzwE/WAIvARj4D2YgCAIB5EhCqQCaUH6kClkDTEgV8gLCoBCoRgoHkqChJAEWgVtgIqgEqgCOgDVQr9Ap6EL0FWoB7oPDUAj0BvoM4yCSTAV1oANYAuYATNhfzgcXgwnwcvgXDgf3gyXw1XwUbgJvgBfh/vgfvglPI4CKBkUDaWNMkMxUCxUMCoWlYgSo9agClFlqCpUPaoV1Ym6hepHjaI+obFoCpqONkM7o33REWguehl6DboYXYE+jG5Cd6BvoQfQY+hvGDJGHWOKccKwMdGYJMxyTAGmDFONacRcwvRhhjDvsVgsDWuIdcD6YmOwKdiV2GLsHmwD9jy2BzuIHcfhcCo4U5wLLhjHwWXhCnC7cEdx53C9uCHcR7wMXgtvjffGx+KF+Dx8Gf4I/iy+Fz+MnyDIE/QJToRgAo+wgrCFcIjQSrhJGCJMEBWIhkQXYjgxhbieWE6sJ14iPiK+lZGR0ZFxlFkoI5BZJ1Muc1zmisyAzCeSIsmExCLFkSSkzaQa0nnSfdJbMplsQHYnx5KzyJvJteSL5Cfkj7IUWXNZtixPdq1spWyTbK/sKzmCnL4cU26JXK5cmdxJuZtyo/IEeQN5ljxHfo18pfxp+bvy4woUBSuFYIV0hWKFIwpXFZ4r4hQNFL0UeYr5igcVLyoOUlAUXQqLwqVsoByiXKIMUbFUQyqbmkItoh6jdlHHlBSVbJUilXKUKpXOKPXTUDQDGpuWRttCO0G7Q/s8T2Mecx5/3qZ59fN6531QVlN2V+YrFyo3KPcpf1ahq3ippKpsU2lWeayKVjVRXai6XHWv6iXVUTWqmrMaV61Q7YTaA3VY3UQ9VH2l+kH1G+rjGpoaPhoijV0aFzVGNWma7popmqWaZzVHtCharloCrVKtc1ov6Ep0Jj2NXk7voI9pq2v7aku0D2h3aU/oGOpE6OTpNOg81iXqMnQTdUt123XH9LT0AvVW6dXpPdAn6DP0k/V36nfqfzAwNIgy2GjQbPDcUNmQbZhrWGf4yIhs5Ga0zKjK6LYx1phhnGq8x7jbBDaxM0k2qTS5aQqb2psKTPeY9szHzHecL5xfNf+uGcmMaZZtVmc2YE4zDzDPM282f2WhZxFrsc2i0+KbpZ1lmuUhy4dWilZ+VnlWrVZvrE2sudaV1rdtyDbeNmttWmxe25ra8m332t6zo9gF2m20a7f7au9gL7avtx9x0HOId9jtcJdBZYQwihlXHDGOHo5rHdscPznZO2U5nXD6y9nMOdX5iPPzBYYL+AsOLRh00XHhuBxw6Xelu8a77nftd9N247hVuT1113XnuVe7DzONmSnMo8xXHpYeYo9Gjw8sJ9Zq1nlPlKePZ6Fnl5eiV4RXhdcTbx3vJO867zEfO5+VPud9Mb7+vtt877I12Fx2LXvMz8FvtV+HP8k/zL/C/2mASYA4oDUQDvQL3B74KEg/SBjUHAyC2cHbgx+HGIYsC/l1IXZhyMLKhc9CrUJXhXaGUcKWhh0Jex/uEb4l/GGEUYQkoj1SLjIusjbyQ5RnVElUf7RF9Oro6zGqMYKYllhcbGRsdez4Iq9FOxYNxdnFFcTdWWy4OGfx1SWqS9KWnFkqt5Sz9GQ8Jj4q/kj8F04wp4oznsBO2J0wxmVxd3Jf8tx5pbwRvgu/hD+c6JJYkvg8ySVpe9JIsltyWfKogCWoELxO8U3Zl/IhNTi1JnUyLSqtIR2fHp9+WqgoTBV2ZGhm5GT0iExFBaL+ZU7LdiwbE/uLqzOhzMWZLVlUZDC6ITGS/CAZyHbNrsz+uDxy+ckchRxhzo0VJis2rRjO9c79eSV6JXdl+yrtVetXDaxmrj6wBlqTsKZ9re7a/LVD63zWHV5PXJ+6/rc8y7ySvHcboja05mvkr8sf/MHnh7oC2QJxwd2Nzhv3/Yj+UfBj1yabTbs2fSvkFV4rsiwqK/pSzC2+9pPVT+U/TW5O3Ny1xX7L3q3YrcKtd7a5bTtcolCSWzK4PXB7Uym9tLD03Y6lO66W2Zbt20ncKdnZXx5Q3rJLb9fWXV8qkiv6Kj0qG3ar7960+8Me3p7eve576/dp7Cva93m/YP+9Az4HmqoMqsoOYg9mH3x2KPJQ58+Mn2urVauLqr/WCGv6D4ce7qh1qK09on5kSx1cJ6kbORp3tPuY57GWerP6Aw20hqLj4Ljk+Itf4n+5c8L/RPtJxsn6U/qndjdSGguboKYVTWPNyc39LTEtPaf9Tre3Orc2/mr+a02bdlvlGaUzW84Sz+afnTyXe278vOj86IWkC4PtS9sfXoy+eLtjYUfXJf9LVy57X77Yyew8d8XlSttVp6unrzGuNV+3v950w+5G4292vzV22Xc13XS42dLt2N3as6DnbK9b74Vbnrcu32bfvt4X1NdzJ+LOvbtxd/vv8e49v592//WD7AcTD9c9wjwqfCz/uOyJ+pOq341/b+i37z8z4Dlw42nY04eD3MGXf2T+8WUo/xn5Wdmw1nDtc+vnbSPeI90vFr0Yeil6OTFa8KfCn7tfGb069Zf7XzfGoseGXotfT74pfqvytuad7bv28ZDxJ+/T3098KPyo8vHwJ8anzs9Rn4cnln/BfSn/avy19Zv/t0eT6ZOTIo6YMz0KoBCFExMBeFMDADkGAEo3Mj8smpmnpwWa+QeYJvCfeGbmnhZ7AOoRMzUWsc4DcBxRA0TJiE6NROHuALaxkers7Ds9p08JFvlj2W87Rb20nHXgHzIzw39X9z8tmMo6vfxv9l8BhAf7uiw5BAAABdxlWElmTU0AKgAAAAgABgEGAAMAAAABAAIAAAESAAMAAAABAAEAAAEaAAUAAAABAAAAVgEbAAUAAAABAAAAXgEoAAMAAAABAAIAAIdpAAQAAAABAAAAZgAAAAAAAACQAAAAAQAAAJAAAAABAAOShgAHAAAFTAAAAJCgAgAEAAAAAQAAACKgAwAEAAAAAQAAAEIAAAAAQVNDSUkAAABBQUFFM25qYWJWTk5iQnRGRkg2ejQ3Wkoyc1NicEQ5cCtyY2xEcVNVbHFRTk5LVDh4R21hTnJSeGY5YU9uY1N1CkdhL0g5amJyWGJNN205YTFJczBCRllUZ3dLblFBNUJFQ0lxQUFpb1ZRaW9JMFFDcVVBUkpCRWdJVU9IUUMrTEEKQmFFS2lWbmJLZ1YxUnF0OTc4MjhlZC83NXB0VXdkQWQxdG01aENUc1c3WjhSVjBzTUVsdFI3Zk0wUUN4dFp3dQp2SENBV1lWWXdFcWRwQnB6bWdDZGZUVXArMFBxSVZxazZXQjEwemMxdFdIYnNoaEhGK1d0SzFlMTMzMVB4N1o3CnQ5KzNZK2Y5RCt4OXVHL2c4VVBIam8rTm55QTBjekpmWUc0a1lMcUdzVmpmNEpkYkE5R1F1bk9DRnAweDhhOFcKR1Fsb0JuR2NDNDFOemF2WHJGM1hzcDVMSEhNZlg4YVg4eFc4aHRmeXVnc2JObTdhdkVYWmVsY2JYOGxYOFFidQo1NDI4bFcvZ20vaG1yc1JTeEtHR2J0S0laaG1XSGM1YmFScGhPak5vckdCVGtrOFpOSkVuV1ZQUDZCcGhvdDF3Cm1qQXEya29SYlNKclc2NlozdWNsamptV2EyczBURSt6TnFpT3hjNHUvNjdkM1pHUWV2eEFmenlrbGplcUJhTFIKd1U1RlRKQVJyMTk0Y0UvUFEyT1ZOa3lTcDdHS1NaMW9OV0dtcHpjV1VvK1UrNVY5Qy81SEhuMXNWQkRnTUZzMwpzMXcrS2c0STlwZDVIbllaRVhqVjhzcHNjSitYVjNFVzkvc0hEeHdjdXVVTE1FRW1ySlRMcU1PYitIcmVuSlFYCjRtbExjL1BVWkdVRTQxMmRCWllvRVp2cG1rR242dUt1UXdYMkNaS2w0OEwwc0RxSlVwbTFLYVZkUk5KS3hyTEYKWnpLbEhMMDlvMFR5amxQTXA4VE9QR0U1NS85clh2Qk9hK011eS9Ra1NycFpFRWhOclZJbzR4b0tzeFJXTEZBbApyZHVDRjZNb0RLTFp1c0NxYURsaUU0MEpkZFo1d2prY09qbzl6RmRQSCtGcmVNdElTQjBVQUpmVWNNUS9FbzJOCkNsL1Z6MUJCVEdiUUlGbEgrQ0hSV0Z0ZlIrVUtaWm12NWV0R2hpMlRhSlpnT3A2b25qQVQ3eFZ1OGduQjVJQ3UKZWNJZ2RuRW02UVZUV2xKdXVvM2dkSVh6bVhUdkhlTnRmZjJWV2d0WmYwNzNOTTUwZ1NCNGRlNlh0MzIvWHVFYgp4WkVUaGlnN0lJUTNNOUhycWNyYzNUM1lwWWdKdk42NzJ5Y1BEdkV0M2kxRzR6bkNTc1Vwa1RONUtpazMzeExGCnZ5Qm5KNU85VUFPTjBBb0IyQWE3WUE4TXdXRTRCaXFjZ2lsNENwNkRjL0F5dkFGdndsdndEcndMNzhNbHVBd2YKd2tkd0ZUNkhMK0VhZkFYejhEVXN3Qko4QzkvRGRiZ0J2OEVmY0JQVm9nYWtvTzJvRysxRlFSUkNFUlJGbytnRQowcEdOenFBcGRCWTlnNTVINTlCTDZEeDZCYjJIUGtBZm96azBqMzVBUDZLZjBYWHBzblJGK2tUNlZQcE1tcE8rCmtPYWw3NlNmcEJ2Uzc5S2YwbC9TVGVsdjdNTzFXTWJOdUFXMzR3NjhBL2ZqL1hnTWF6aUhDN2lJUzVqanAvR3oKK0FYOElqNlBwL0VzZmcyL2ppL2lTL2hhaFdBSlZSL21hZmpQd1BQL0FManprOHM9WVa4nQAAAAlwSFlzAAAWJQAAFiUBSVIk8AAACNtpVFh0WE1MOmNvbS5hZG9iZS54bXAAAAAAADx4OnhtcG1ldGEgeG1sbnM6eD0iYWRvYmU6bnM6bWV0YS8iIHg6eG1wdGs9IlhNUCBDb3JlIDYuMC4wIj4KICAgPHJkZjpSREYgeG1sbnM6cmRmPSJodHRwOi8vd3d3LnczLm9yZy8xOTk5LzAyLzIyLXJkZi1zeW50YXgtbnMjIj4KICAgICAgPHJkZjpEZXNjcmlwdGlvbiByZGY6YWJvdXQ9IiIKICAgICAgICAgICAgeG1sbnM6dGlmZj0iaHR0cDovL25zLmFkb2JlLmNvbS90aWZmLzEuMC8iCiAgICAgICAgICAgIHhtbG5zOmV4aWY9Imh0dHA6Ly9ucy5hZG9iZS5jb20vZXhpZi8xLjAvIj4KICAgICAgICAgPHRpZmY6Q29tcHJlc3Npb24+MTwvdGlmZjpDb21wcmVzc2lvbj4KICAgICAgICAgPHRpZmY6UmVzb2x1dGlvblVuaXQ+MjwvdGlmZjpSZXNvbHV0aW9uVW5pdD4KICAgICAgICAgPHRpZmY6WFJlc29sdXRpb24+MTQ0PC90aWZmOlhSZXNvbHV0aW9uPgogICAgICAgICA8dGlmZjpZUmVzb2x1dGlvbj4xNDQ8L3RpZmY6WVJlc29sdXRpb24+CiAgICAgICAgIDx0aWZmOlBob3RvbWV0cmljSW50ZXJwcmV0YXRpb24+MjwvdGlmZjpQaG90b21ldHJpY0ludGVycHJldGF0aW9uPgogICAgICAgICA8dGlmZjpPcmllbnRhdGlvbj4xPC90aWZmOk9yaWVudGF0aW9uPgogICAgICAgICA8ZXhpZjpQaXhlbFhEaW1lbnNpb24+MzQ8L2V4aWY6UGl4ZWxYRGltZW5zaW9uPgogICAgICAgICA8ZXhpZjpVc2VyQ29tbWVudD5BQUFFM25qYWJWTk5iQnRGRkg2ejQ3Wkoyc1NicEQ5cCtyY2xEcVNVbHFRTk5LVDh4R21hTnJSeGY5YU9uY1N1JiN4QTtHYS9IOWpiclhiTTdtOWExSXMwQkZZVGd3S25RQTVCRUNJcUFBaW9WUWlvSTBRQ3FVQVJKQkVnSVVPSFFDK0xBJiN4QTtCYUVLaVZuYktnVjFScXQ5NzgyOGVkLzc1cHRVd2RBZDF0bTVoQ1RzVzdaOFJWMHNNRWx0UjdmTTBRQ3h0Wnd1JiN4QTt2SENBV1lWWXdFcWRwQnB6bWdDZGZUVXArMFBxSVZxazZXQjEwemMxdFdIYnNoaEhGK1d0SzFlMTMzMVB4N1o3JiN4QTt0OSszWStmOUQreDl1Ry9nOFVQSGpvK05ueUEwY3pKZllHNGtZTHFHc1ZqZjRKZGJBOUdRdW5PQ0ZwMHg4YThXJiN4QTtHUWxvQm5HY0M0MU56YXZYckYzWHNwNUxISE1mWDhhWDh4VzhodGZ5dWdzYk5tN2F2RVhaZWxjYlg4bFg4UWJ1JiN4QTs1NDI4bFcvZ20vaG1yc1JTeEtHR2J0S0laaG1XSGM1YmFScGhPak5vckdCVGtrOFpOSkVuV1ZQUDZCcGhvdDF3JiN4QTttakFxMmtvUmJTSnJXNjZaM3VjbGpqbVdhMnMwVEUrek5xaU94YzR1LzY3ZDNaR1FldnhBZnp5a2xqZXFCYUxSJiN4QTt3VTVGVEpBUnIxOTRjRS9QUTJPVk5reVNwN0dLU1oxb05XR21wemNXVW8rVSs1VjlDLzVISG4xc1ZCRGdNRnMzJiN4QTtzMXcrS2c0STlwZDVIbllaRVhqVjhzcHNjSitYVjNFVzkvc0hEeHdjdXVVTE1FRW1ySlRMcU1PYitIcmVuSlFYJiN4QTs0bWxMYy9QVVpHVUU0MTJkQlpZb0VadnBta0duNnVLdVF3WDJDWktsNDhMMHNEcUpVcG0xS2FWZFJOSkt4ckxGJiN4QTtaektsSEwwOW8wVHlqbFBNcDhUT1BHRTU1LzlyWHZCT2ErTXV5L1FrU3JwWkVFaE5yVklvNHhvS3N4UldMRkFsJiN4QTtyZHVDRjZNb0RLTFp1c0NxYURsaUU0MEpkZFo1d2prY09qbzl6RmRQSCtGcmVNdElTQjBVQUpmVWNNUS9FbzJOJiN4QTtDbC9WejFCQlRHYlFJRmxIK0NIUldGdGZSK1VLWlptdjVldEdoaTJUYUpaZ09wNm9uakFUN3hWdThnbkI1SUN1JiN4QTtlY0lnZG5FbTZRVlRXbEp1dW8zZ2RJWHptWFR2SGVOdGZmMlZXZ3RaZjA3M05NNTBnU0I0ZGU2WHQzMi9YdUViJiN4QTt4WkVUaGlnN0lJUTNNOUhycWNyYzNUM1lwWWdKdk42NzJ5Y1BEdkV0M2kxRzR6bkNTc1Vwa1RONUtpazMzeExGJiN4QTt2eUJuSjVPOVVBT04wQW9CMkFhN1lBOE13V0U0QmlxY2dpbDRDcDZEYy9BeXZBRnZ3bHZ3RHJ3TDc4TWx1QXdmJiN4QTt3a2R3RlQ2SEwrRWFmQVh6OERVc3dCSjhDOS9EZGJnQnY4RWZjQlBWb2dha29PMm9HKzFGUVJSQ0VSUkZvK2dFJiN4QTswcEdOenFBcGRCWTlnNTVINTlCTDZEeDZCYjJIUGtBZm96azBqMzVBUDZLZjBYWHBzblJGK2tUNlZQcE1tcE8rJiN4QTtrT2FsNzZTZnBCdlM3OUtmMGwvU1RlbHY3TU8xV01iTnVBVzM0dzY4QS9mai9YZ01hemlIQzdpSVM1ampwL0d6JiN4QTsrQVg4SWo2UHAvRXNmZzIvamkvaVMvaGFoV0FKVlIvbWFmalB3UFAvQUxqems4cz08L2V4aWY6VXNlckNvbW1lbnQ+CiAgICAgICAgIDxleGlmOlBpeGVsWURpbWVuc2lvbj42NjwvZXhpZjpQaXhlbFlEaW1lbnNpb24+CiAgICAgIDwvcmRmOkRlc2NyaXB0aW9uPgogICA8L3JkZjpSREY+CjwveDp4bXBtZXRhPgrXRJA9AAAG6ElEQVR4Ae1be4iUVRQfXcWyWrcwXWqNUSnXlHYrayWS/YzCJQq3IAqCGOsfs8Dt8UdFNJMV9ICiLIqEhpKelj3UUhNnkArLKO1FEeyMFr32kZb20pyoc36Dc5bjPfebb2Z2t50/5nzn3HPPOff33Xu++/i+WGzkV4JAXQk36Jiz51JI9UcT7e0ddCFWJ6ALAvLze4FoT47o7Fai/5v/8wJq6m8MREHQHxmYmc3DHJJ2BmKfAEACAv47BuaU4QbMPAZirxEIAAL6LQMzPT7Ee8w5nCx/dQDxTJoa+laGKICQdCcDEx9qwLQxEHsUIA6y/JYUAYD/On4aPpkmiQQEfDcDM6UJNQcpPYuB2K0A8SfLr0zYGnBHivQAhKRfMzAnDDZgzuDH5M8coAwcAM0PbEBIrUUJkuxXgP6S/TY2yppV5lsZiD4FiF0sj2pe0dFJDdRy0ufs7/iJVQYC7n5QgNjO8kp15TP5Rmj+12YQYZXpzV3kEENkIwdyTH11ApkaJz9f8Q3AjHdBQPKa/eOpMnZsbUI4jofIsJ/Z1gbeEa8jCIwgMIKAC4GQO2ZYWzTPIAdt5xKFub4+l+MhXj6Zp77pNDVE28DBvKOXn/8vsn5DQ20BmBYn/0t5foTFYwtP5MzRXdhJqlhzoMGSYnEm5eA/zpCdak+dzw/Ir7bf8keByme5Npqwp4kKaNjfbOCeJBnCxgyG0NNpkkNf0i9yVF6tiRo2kGQckr+eew5Fd8g/9hHkfgVWq66pL3qUdCj5y7nnHeI60kvccelX468tAjK6NI4VK4mXS44ld5J8Q7ZUX3JHSIHCz1+oFEQkbu/wM7Rtq9C/iO+YRPBVHgJCXWVvS1GRtCP5dRnVRCQFL3Dc0q/kkRsx5IvOP+AAUQH7Cni6FBUdF68JO7An6WoO2GEudPH3Oaoq/Up+Dcc7wJFUfMQz4HoeY1hmS3uSvz85IIRIBM38tJD+NP7GYu6Ae5FDIH70PlzZ6MJLSc+aQz7cYbPrqxV45o5sVvEABD/SupBSD+INXA92NIr5wFF8Vov6UVFr7sBTc7TSIWJowK0pv9CwFYj5Cexo9CnPoegXTSxmzR1vuG78LwVyjQZaA5FbhRoQkM8LrJb99Hxzxw0DcofwF3bm+EmODKHBGu1mvVGjhOOI2MXcQM2/lJ/eGpFjmMGiSDrS+GVJ1KwMteaOfr4xau4IG97d3EANACk/mR+HYf256llzB+ZJLnve5VikyYZLfmvG27RXBd/c0eXKHTHtsaOEhe38mXFFQYhXvy4EEbORzTuKcXkCcskVxZqmizXrTWqhlYIWW9X+POntiHpCuImHgBwaksfpuy3c8FrW3GFfpBp7yJgxFHRbYAt+XdamF1ZrBifpxrjNQtbcM4yAtMwmx9YZ93uVzh1zbUBAK5PFlYsaAWn2nMi8v93luLzyoN1Wvy9Pep9G3UMmN9gC6OEAdjK11fLXCgJbnS1Z0kOOc9cy9pBJE9ym/tXYlbfphdXyzR0Zc89AREZADkDfQXsc5eUWd0S136EGYgQkt1O1UFJwsISLjhk3jmzdtNRmszdPep9Vqod0swNXOJNcCiHLlz9BFafEbQb8c4fNblHrWE6qrlev/ypQlYkRvdy2pIvsISlaqXrwVGxRRBcPJW0BDty8tQWA44C72I91J04CFdXbjc6oT2wiFXyuIQMBj55ycafT5H8KOIzekiF92PGlP+WofqU2otTWnNZKRTjl1wLHC7XvcEMf4DuPs+G3Wa71BOx9avalfFVaDbk6Bbizz3EgeFddBmrlcaZ8VYLi104UNXvXcc4J3/qI9zinxymUOdyDZvHy/FSWNzHtJ7XYN3m62Mxrn7WbiN+3l+jjDPTiBPGu/2lTSSOXd2kO0XJ89qH1CMi38dArv5nGiVn5jvws4KOBk+K2ei9xD7Nph9DCeyDYzcZh+MvchfEeSAjTpior2Q96gEZxKF+xN5OSKYpXCwByJM85nvsSLjSa+LGOxzb8aXRZ0mUxZDkObg4UbIAgwNtTIR0q1VYYewbmQRMaFEOhxZxDFnSShTpPQ776mvkgoJJrEkS1//1ccNkiutizW9MsU/6s8c6gZ4CiIWHdHzmeamJTGnY1enUirCfPeq94ArIxQw6w9vB0F8PU+nmj33uTvh7K1MdiTLszeDPoYW5A2LELIGBH8wc5bhTqldlMe/VWnlkiEFB8q4YNGrvFUk0AiLNV2NcovtMdz0Oq1FoVONwBLLZkoG/yELF+Wo7cgP0M14wTTze8sIN4qtD0w7vAq05YnUpgsHp9lwF6kMf2ch5K61nuWgXD7mbWx3e9h4+uhqXo4o9xQ107ZWigRpGDsJzHO+g1bKLi+h+iOdURNKIdJQAAAABJRU5ErkJggg==;" parent="1" vertex="1"> + <mxGeometry x="462" y="716" width="6.7" height="13" as="geometry" /> + </mxCell> + <mxCell id="hdwB_MQwIhiL4xS-3u5l-23" value="" style="shape=image;verticalLabelPosition=bottom;labelBackgroundColor=default;verticalAlign=top;aspect=fixed;imageAspect=0;image=data:image/png,iVBORw0KGgoAAAANSUhEUgAAACIAAABGEAYAAAD5sprNAAAKqGlDQ1BJQ0MgUHJvZmlsZQAASImVlwdQU+kWgP9700NCS4h0Qm/SWwApIbTQpYOohCRAKCEGgogdWVyBtSAighVdEFFwVYosNkSxLQKKXRdkEVHWxYINlXeBIbj75r0378ycOd899/znP+ef+8+cCwBZniMSpcHyAKQLs8ShPh706JhYOm4YQEANEAAJQBxupogZEhIAEJm1f5f3d5BoRG6ZTeX69/f/VRR4/EwuAFAIwgm8TG46wqcQfcEVibMAQO1H/LrLs0RT3IEwVYwUiPC9KU6a4dEpTphmNJiOCQ9lIUwFAE/icMRJAJDoiJ+ezU1C8pDcEbYU8gRChEUIu6anZ/AQPo6wERKD+EhT+RkJ3+VJ+lvOBGlODidJyjO9TAveU5ApSuOs+D+P439Leppkdg8DREnJYt9QxCoiZ3YvNcNfysKEoOBZFvCm46c5WeIbMcvcTFbsLPM4nv7StWlBAbOcKPBmS/NkscNnmZ/pFTbL4oxQ6V6JYhZzljniuX0lqRFSfzKfLc2fmxweNcvZgsigWc5MDfOfi2FJ/WJJqLR+vtDHY25fb2nv6Znf9StgS9dmJYf7SnvnzNXPFzLncmZGS2vj8T295mIipPGiLA/pXqK0EGk8P81H6s/MDpOuzUI+yLm1IdIzTOH4hcwyYIEMkIaoGNBBAPLkCUAWPydrqhFWhmiFWJCUnEVnIjeMT2cLuebz6daW1jYATN3Xmc/hLW36HkK0a3O+vIMAuLhOTk62zfn8hwA4OQYA8fGczwg5I9leAK6UciXi7Bnf9F3CACKQA1SgAjSBLjACZsAa2ANn4A68gB8IBuEgBiwBXJAM0pHKl4NVYD0oAEVgK9gBKsA+cBAcBsfACdAM2sAFcBlcB92gDzwE/WAIvARj4D2YgCAIB5EhCqQCaUH6kClkDTEgV8gLCoBCoRgoHkqChJAEWgVtgIqgEqgCOgDVQr9Ap6EL0FWoB7oPDUAj0BvoM4yCSTAV1oANYAuYATNhfzgcXgwnwcvgXDgf3gyXw1XwUbgJvgBfh/vgfvglPI4CKBkUDaWNMkMxUCxUMCoWlYgSo9agClFlqCpUPaoV1Ym6hepHjaI+obFoCpqONkM7o33REWguehl6DboYXYE+jG5Cd6BvoQfQY+hvGDJGHWOKccKwMdGYJMxyTAGmDFONacRcwvRhhjDvsVgsDWuIdcD6YmOwKdiV2GLsHmwD9jy2BzuIHcfhcCo4U5wLLhjHwWXhCnC7cEdx53C9uCHcR7wMXgtvjffGx+KF+Dx8Gf4I/iy+Fz+MnyDIE/QJToRgAo+wgrCFcIjQSrhJGCJMEBWIhkQXYjgxhbieWE6sJ14iPiK+lZGR0ZFxlFkoI5BZJ1Muc1zmisyAzCeSIsmExCLFkSSkzaQa0nnSfdJbMplsQHYnx5KzyJvJteSL5Cfkj7IUWXNZtixPdq1spWyTbK/sKzmCnL4cU26JXK5cmdxJuZtyo/IEeQN5ljxHfo18pfxp+bvy4woUBSuFYIV0hWKFIwpXFZ4r4hQNFL0UeYr5igcVLyoOUlAUXQqLwqVsoByiXKIMUbFUQyqbmkItoh6jdlHHlBSVbJUilXKUKpXOKPXTUDQDGpuWRttCO0G7Q/s8T2Mecx5/3qZ59fN6531QVlN2V+YrFyo3KPcpf1ahq3ippKpsU2lWeayKVjVRXai6XHWv6iXVUTWqmrMaV61Q7YTaA3VY3UQ9VH2l+kH1G+rjGpoaPhoijV0aFzVGNWma7popmqWaZzVHtCharloCrVKtc1ov6Ep0Jj2NXk7voI9pq2v7aku0D2h3aU/oGOpE6OTpNOg81iXqMnQTdUt123XH9LT0AvVW6dXpPdAn6DP0k/V36nfqfzAwNIgy2GjQbPDcUNmQbZhrWGf4yIhs5Ga0zKjK6LYx1phhnGq8x7jbBDaxM0k2qTS5aQqb2psKTPeY9szHzHecL5xfNf+uGcmMaZZtVmc2YE4zDzDPM282f2WhZxFrsc2i0+KbpZ1lmuUhy4dWilZ+VnlWrVZvrE2sudaV1rdtyDbeNmttWmxe25ra8m332t6zo9gF2m20a7f7au9gL7avtx9x0HOId9jtcJdBZYQwihlXHDGOHo5rHdscPznZO2U5nXD6y9nMOdX5iPPzBYYL+AsOLRh00XHhuBxw6Xelu8a77nftd9N247hVuT1113XnuVe7DzONmSnMo8xXHpYeYo9Gjw8sJ9Zq1nlPlKePZ6Fnl5eiV4RXhdcTbx3vJO867zEfO5+VPud9Mb7+vtt877I12Fx2LXvMz8FvtV+HP8k/zL/C/2mASYA4oDUQDvQL3B74KEg/SBjUHAyC2cHbgx+HGIYsC/l1IXZhyMLKhc9CrUJXhXaGUcKWhh0Jex/uEb4l/GGEUYQkoj1SLjIusjbyQ5RnVElUf7RF9Oro6zGqMYKYllhcbGRsdez4Iq9FOxYNxdnFFcTdWWy4OGfx1SWqS9KWnFkqt5Sz9GQ8Jj4q/kj8F04wp4oznsBO2J0wxmVxd3Jf8tx5pbwRvgu/hD+c6JJYkvg8ySVpe9JIsltyWfKogCWoELxO8U3Zl/IhNTi1JnUyLSqtIR2fHp9+WqgoTBV2ZGhm5GT0iExFBaL+ZU7LdiwbE/uLqzOhzMWZLVlUZDC6ITGS/CAZyHbNrsz+uDxy+ckchRxhzo0VJis2rRjO9c79eSV6JXdl+yrtVetXDaxmrj6wBlqTsKZ9re7a/LVD63zWHV5PXJ+6/rc8y7ySvHcboja05mvkr8sf/MHnh7oC2QJxwd2Nzhv3/Yj+UfBj1yabTbs2fSvkFV4rsiwqK/pSzC2+9pPVT+U/TW5O3Ny1xX7L3q3YrcKtd7a5bTtcolCSWzK4PXB7Uym9tLD03Y6lO66W2Zbt20ncKdnZXx5Q3rJLb9fWXV8qkiv6Kj0qG3ar7960+8Me3p7eve576/dp7Cva93m/YP+9Az4HmqoMqsoOYg9mH3x2KPJQ58+Mn2urVauLqr/WCGv6D4ce7qh1qK09on5kSx1cJ6kbORp3tPuY57GWerP6Aw20hqLj4Ljk+Itf4n+5c8L/RPtJxsn6U/qndjdSGguboKYVTWPNyc39LTEtPaf9Tre3Orc2/mr+a02bdlvlGaUzW84Sz+afnTyXe278vOj86IWkC4PtS9sfXoy+eLtjYUfXJf9LVy57X77Yyew8d8XlSttVp6unrzGuNV+3v950w+5G4292vzV22Xc13XS42dLt2N3as6DnbK9b74Vbnrcu32bfvt4X1NdzJ+LOvbtxd/vv8e49v592//WD7AcTD9c9wjwqfCz/uOyJ+pOq341/b+i37z8z4Dlw42nY04eD3MGXf2T+8WUo/xn5Wdmw1nDtc+vnbSPeI90vFr0Yeil6OTFa8KfCn7tfGb069Zf7XzfGoseGXotfT74pfqvytuad7bv28ZDxJ+/T3098KPyo8vHwJ8anzs9Rn4cnln/BfSn/avy19Zv/t0eT6ZOTIo6YMz0KoBCFExMBeFMDADkGAEo3Mj8smpmnpwWa+QeYJvCfeGbmnhZ7AOoRMzUWsc4DcBxRA0TJiE6NROHuALaxkers7Ds9p08JFvlj2W87Rb20nHXgHzIzw39X9z8tmMo6vfxv9l8BhAf7uiw5BAAABeBlWElmTU0AKgAAAAgABgEGAAMAAAABAAIAAAESAAMAAAABAAEAAAEaAAUAAAABAAAAVgEbAAUAAAABAAAAXgEoAAMAAAABAAIAAIdpAAQAAAABAAAAZgAAAAAAAACQAAAAAQAAAJAAAAABAAOShgAHAAAFUAAAAJCgAgAEAAAAAQAAACKgAwAEAAAAAQAAAEYAAAAAQVNDSUkAAABBQUFFNDNqYWJWTmJiQnRGRkwyems3Wkoyc1NicEk4MGZXMkpBeW1seFdrRERTNlBPRTNUaGpadTA3VVRKN0ZyCnh1dXh2ZlY2MSt5TzA3cFdwUGxBQlNINDRLdlFEeUNKRUJRaFhpb1ZJQUZDTklBUUN1QkVnSVFBVlh6MEIvR0IKa0JDcWtKaTFyVkpRWjdUYWUrL01uWHZ1bVRPSnZLRTd6T2RiUmhLdVc3RnlWV1BFTzAxdFI3Zk1DUyt4dFl3dQp2SkNYV2ZtSTEwcWNvaHB6V2dHZGV6RXVlNExxRVZxa3lVQnQwemYxRFNIYnNoaEhiOGpiVjYvcHV2Mk83aDEzCjdyeHIxKzY3NzlsL2YvL2d3MGRHVDB4T25TUTBkU3FYWjRXdzF5d1l4bEpUczBmdThJNEgxZDFaV25RbXhiOVcKWk15ckdjUnhMcmEwdHExZHQzNUQrMFl1Y2N6citBcStrcS9pOWJ5Qk4xN2N0SG5MMW0zSzl0czYrV3EraGpkegpEMi9oSFh3VDM4SzNjaVdTSUE0MWRKT0dOY3V3N0ZET1N0SXcwNWxCSTNtYmtsekNvTEVjU1p0NlN0Y0lFKzJHCmtvUlIwVmFDYU5tMGJSWE01QUUzY2RLeENyWkdRL1FNNjRUYVdQTDFlUGJzN1EwSDFST0hCcUpCdGJKUnpST04KRHZrVU1VRkd2S2w4Nzc2Kyt5YXJiWmdrUnlOVmt6cmp0WVM1UG44a3FCNnI5Q3ZYbFQwUFBQalFoQ0RBWWJadQpwcmw4WEJ3UUdLandQRkpnUk9CVkt5dnpnUU51WHRWWk91Z1pPblI0K0lZdndBU1lzQklGUmgzZXlqZnl0cmhjCmppWXRyWkNqSnFzZ21Pcng1Vm1zUkd5bWF3YWRhWXdXSENxd1owbWFUZ25UeGVyRVNoWFdacFF1RVVrcUtjc1cKbjhtVVN2VG1qQkxKT1U0eGx4QTdjNFJsblArdnVjRmJyVTBWV0tvdlZ0TE52RUJxYXRWQ3FZS2hNRXRoeFR4Vgprcm90ZURHS3dpQ2FyUXVzaXBZaE50R1lVR2VqSzV5andlT3pJM3p0N0RHK2pyZVBCZFVoQVhCWkRZVTlZK09SCkNlR3IrbGtxaUVrTkdTVHRDRDhvR3V2czc2NWVvU3p6OVh6RDJJaGxFczBTVEVkanRSUG1vbjdoeGg4UlRBN3EKbWlzTVloZm40bTR3b2NYbDFwc0lUbFk1bjB2NmJ4bnY3QitvMWlxblBSbmQxVGpUQllMQWxZVmZsSUUvUnZsbQpjV1RXRUdVSGhmRG1zbjVYVmViZTNxRWVSVXpnVGU3ZFBucDRtRzl6YnpFYXpSQldpcklNWldSR0pFNmZqc3R0Ck41VHhMOUw1NmJnZjZxRUZPc0FMTzJBUDdJTmhPQXFqb01KcG1JSEg0Q2s0RDgvREsvQXF2QWF2dzV2d05seUMKeS9BdXZBOVg0RlA0SEw2QUwyRVJ2b1l5TE1PMzhEMWNoV3Z3Sy93TzExRURha1lLMm9sNjBYNFVRRUVVUnVObwpBcDFFT3JMUldUU0R6cUVuME5Qb1BIb09YVUF2b0xmUU8raER0SUFXMFEvb1IvUXp1aXBkbGo2UVBwSStsajZSCkZxVFBwRVhwTytrbjZacjBtL1NuOUpkMFhmb2IxK0VHTE9NMjNJNjdjRGZlaFFmd1FUeUpOWnpCZVZ6RUpjengKNC9oSi9BeCtGbC9BczNnZXY0UmZ4cGZ3ZS9pcktzc1NxcjNPTS9DZmdaZitBWHNVbFRRPcxmgcUAAAAJcEhZcwAAFiUAABYlAUlSJPAAAAjfaVRYdFhNTDpjb20uYWRvYmUueG1wAAAAAAA8eDp4bXBtZXRhIHhtbG5zOng9ImFkb2JlOm5zOm1ldGEvIiB4OnhtcHRrPSJYTVAgQ29yZSA2LjAuMCI+CiAgIDxyZGY6UkRGIHhtbG5zOnJkZj0iaHR0cDovL3d3dy53My5vcmcvMTk5OS8wMi8yMi1yZGYtc3ludGF4LW5zIyI+CiAgICAgIDxyZGY6RGVzY3JpcHRpb24gcmRmOmFib3V0PSIiCiAgICAgICAgICAgIHhtbG5zOnRpZmY9Imh0dHA6Ly9ucy5hZG9iZS5jb20vdGlmZi8xLjAvIgogICAgICAgICAgICB4bWxuczpleGlmPSJodHRwOi8vbnMuYWRvYmUuY29tL2V4aWYvMS4wLyI+CiAgICAgICAgIDx0aWZmOkNvbXByZXNzaW9uPjE8L3RpZmY6Q29tcHJlc3Npb24+CiAgICAgICAgIDx0aWZmOlJlc29sdXRpb25Vbml0PjI8L3RpZmY6UmVzb2x1dGlvblVuaXQ+CiAgICAgICAgIDx0aWZmOlhSZXNvbHV0aW9uPjE0NDwvdGlmZjpYUmVzb2x1dGlvbj4KICAgICAgICAgPHRpZmY6WVJlc29sdXRpb24+MTQ0PC90aWZmOllSZXNvbHV0aW9uPgogICAgICAgICA8dGlmZjpQaG90b21ldHJpY0ludGVycHJldGF0aW9uPjI8L3RpZmY6UGhvdG9tZXRyaWNJbnRlcnByZXRhdGlvbj4KICAgICAgICAgPHRpZmY6T3JpZW50YXRpb24+MTwvdGlmZjpPcmllbnRhdGlvbj4KICAgICAgICAgPGV4aWY6UGl4ZWxYRGltZW5zaW9uPjM0PC9leGlmOlBpeGVsWERpbWVuc2lvbj4KICAgICAgICAgPGV4aWY6VXNlckNvbW1lbnQ+QUFBRTQzamFiVk5iYkJ0RkZMMnprN1pKMnNTYnBJODBmVzJKQXltbHhXa0REUzZQT0UzVGhqWnUwN1VUSjdGciYjeEE7eHV1eHZmVjYxK3lPMDdwV3BQbEFCU0g0NEt2UUR5Q0pFQlFoWGlvVklBRkNOSUFRQ3VCRWdJUUFWWHowQi9HQiYjeEE7a0JDcWtKaTFyVkpRWjdUYWUrL01uWHZ1bVRPSnZLRTd6T2RiUmhLdVc3RnlWV1BFTzAxdFI3Zk1DUyt4dFl3dSYjeEE7dkpDWFdmbUkxMHFjb2hweldnR2RlekV1ZTRMcUVWcWt5VUJ0MHpmMURTSGJzaGhIYjhqYlY2L3B1djJPN2gxMyYjeEE7N3J4cjErNjc3OWwvZi8vZ3cwZEdUMHhPblNRMGRTcVhaNFd3MXl3WXhsSlRzMGZ1OEk0SDFkMVpXblFteGI5VyYjeEE7Wk15ckdjUnhMcmEwdHExZHQzNUQrMFl1Y2N6citBcStrcS9pOWJ5Qk4xN2N0SG5MMW0zSzl0czYrV3EraGpkeiYjeEE7RDIvaEhYd1QzOEszY2lXU0lBNDFkSk9HTmN1dzdGRE9TdEl3MDVsQkkzbWJrbHpDb0xFY1NadDZTdGNJRSsyRyYjeEE7a29SUjBWYUNhTm0wYlJYTTVBRTNjZEt4Q3JaR1EvUU02NFRhV1BMMWVQYnM3UTBIMVJPSEJxSkJ0YkpSelJPTiYjeEE7RHZrVU1VRkd2S2w4Nzc2Kyt5YXJiWmdrUnlOVmt6cmp0WVM1UG44a3FCNnI5Q3ZYbFQwUFBQalFoQ0RBWWJadSYjeEE7cHJsOFhCd1FHS2p3UEZKZ1JPQlZLeXZ6Z1FOdVh0VlpPdWdaT25SNCtJWXZ3QVNZc0JJRlJoM2V5amZ5dHJoYyYjeEE7amlZdHJaQ2pKcXNnbU9yeDVWbXNSR3ltYXdhZGFZd1dIQ3F3WjBtYVRnblR4ZXJFU2hYV1pwUXVFVWtxS2NzVyYjeEE7bjhtVVN2VG1qQkxKT1U0eGx4QTdjNFJsblArdnVjRmJyVTBWV0tvdlZ0TE52RUJxYXRWQ3FZS2hNRXRoeFR4ViYjeEE7a3JvdGVER0t3aUNhclF1c2lwWWhOdEdZVUdlaks1eWp3ZU96STN6dDdERytqcmVQQmRVaEFYQlpEWVU5WStPUiYjeEE7Q2VHcitsa3FpRWtOR1NUdENEOG9HdXZzNzY1ZW9Teno5WHpEMklobEVzMFNURWRqdFJQbW9uN2h4aDhSVEE3cSYjeEE7bWlzTVloZm40bTR3b2NYbDFwc0lUbFk1bjB2NmJ4bnY3QitvMWlxblBSbmQxVGpUQllMQWxZVmZsSUUvUnZsbSYjeEE7Y1dUV0VHVUhoZkRtc241WFZlYmUzcUVlUlV6Z1RlN2RQbnA0bUc5emJ6RWF6UkJXaXJJTVpXUkdKRTZmanN0dCYjeEE7TjVUeEw5TDU2YmdmNnFFRk9zQUxPMkFQN0lOaE9BcWpvTUpwbUlISDRDazREOC9ESy9BcXZBYXZ3NXZ3Tmx5QyYjeEE7eS9BdXZBOVg0RlA0SEw2QUwyRVJ2b1l5TE1PMzhEMWNoV3Z3Sy93TzExRURha1lLMm9sNjBYNFVRRUVVUnVObyYjeEE7QXAxRU9yTFJXVFNEenFFbjBOUG9QSG9PWFVBdm9MZlFPK2hEdElBVzBRL29SL1F6dWlwZGxqNlFQcEkrbGo2UiYjeEE7RnFUUHBFWHBPK2tuNlpyMG0vU245SmQwWGZvYjErRUdMT00yM0k2N2NEZmVoUWZ3UVR5Sk5aekJlVnpFSmN6eCYjeEE7NC9oSi9BeCtGbC9BczNnZXY0UmZ4cGZ3ZS9pcktzc1NxcjNPTS9DZmdaZitBWHNVbFRRPTwvZXhpZjpVc2VyQ29tbWVudD4KICAgICAgICAgPGV4aWY6UGl4ZWxZRGltZW5zaW9uPjcwPC9leGlmOlBpeGVsWURpbWVuc2lvbj4KICAgICAgPC9yZGY6RGVzY3JpcHRpb24+CiAgIDwvcmRmOlJERj4KPC94OnhtcG1ldGE+CvXptlIAAAcPSURBVHgB7VxbbBRVGC53DBVrAa1Q0sEbEgldAdMqUkaEKDHBPqgh8sCq8fLgpYpGjYldEq0vmoC8GKMu3kLlwag1ojZmFxu1GtRW0YBgd9EqGFppsVZpa1fN/38lPTtnzjmzM3up7cP+c/7zX785c25zpkVFBfG31qYw/0wRPZYgujhE9H/zu9qmVPsZiJRAf2VgFl00xiFZxUD8IQAgAoLyLwzMhWMNmJUMRJ8mEAAEtJOBOc8q8BZzeTUl8LsCiJejJLc7RhRAiPQwA2NZJFcwv1UMRK8EiGHmPxwZndKkSVR+LkpUBATlDgZmfvlo/bwrXcpA9EiAOMn8jWG90B+LkByAEOlBBmZuvgGzlIfJ4xygGDgAutLWA0KUujlMnEEJ0PvZb1mZqJnlcoiB6JYA8SPz/ZpXXFNLCcr6pG/Z35zZWQYC7o5KgGhjflBNeRnfCJn/d2KIMMv0gTpyiEfkAw7k9JnZCWSBRX4O8A3AjPdqm/g5+8WoMmVKbkIo5UdkzM9scwPvuNdxBMYRGEdARGCCyMjP8tSpFNf8uUSHOczkYbrAcM7ssUMwLD7I85aveL6CRR4SB8U2wScst55nqAWLyMSJFPo9DMBvPHFCwl7pG1GyO21agUAziydI7/OdlSWOtc+T9ZRYjU30Yt4Ze40Tl+m/yvV5C0s5L787EhSiLBFMsc9XbAliXwRrIpm928J5BglaxHcKIL6MUeBnlpglgJYjAwSr6Zw/QsXFlNhnnKgsYOyDnGuZASFK4/WEzA/2S0S9wMsYJrGqlQUIfq1Po4PKX2M08NSdHWxlx0hYRnf6HODT9RSPzB/e40zI1vxrBe+V/p1yDww7WfN83uN8NOLuF0DJd+Z4HkBmvP9On066L+wkqjLbsIXkfu707tNJs7/HiZvOW22n84ijilymJ/C3PESMhZZQIRS7k8TY/pRQ4VNxUNNOVaVMMENAlvMjsjkiczCav/UlKvf1jeb7VTpN01C5pSloKtYSIw08mzKKYfUMw/mFaTyRiF48eE+Tbt9jC8HL6CvsdJNOnGcjxO3VfMadbOjwzqnQkSoqmqEnpi/VrNky0GKy9VZetTZCPN8n9HN1lcSuOQyr6KcMnKtRHyuRqCouHJ/I2HWTYcu4sy5jl1oGMOwPpkhcBci+TFvIkpCeIwQywIGZLtK0sncQwmgH/yoa5xubbkqzUw1fl67qxmmJU+3xgDtRxBBSbBNADrQriSuRKgDBjtaNYVHRvdz0lnu937WXrDKzeEwqrgCkpoY051lSC44VTW86sgNjXmaZmfbcQjZsMnN0IEnyPzA10zaXxn7LEttMt5N369O1JC0EL6OvN3TUHE93ESSnajlZ5xNW2q4+b5OJSgBZey0pzLJkis785iz3HSts5zhk3H6u+GafTGKyc8VV0tWgszy4t95LVzcYjkrQN6W6SwfY/SJOV0ND4IhUAki1LQrqldd71NOznrlUa1xlQ3hk0HcstVWKhVnf2q6KW2ghlctIgTfAVNoj9fffR5dt0s5qRNSXi4Z6MmPaklv3Grq/q44UVFNf1A+lSH5mls6KIZ29MbM49ReZwiNTbdiZtscpsBMnEGqwtKSE7IdsMz+N2qOfAMhiQ0cfxc0Cy1Qa383ozjuG2eGuRl3PAiBzdPVYrkXZSRkaVIivMxzO98TJ4JGjCsOyapwxRx+hon6/V5HFhRdLRxIkoYoL9beHZRYVfByghSEV7eLAFGZ9qzbdqcN+DF6y6wfCj8zsUn2V/yS/TprJZyp90x1mFl7ZQfLdXWZ6I9L4XEPVMlCPd7cjBgK6wPkP2Vl1xAOKV6gXGG4YnQqfW0ip4UzsUJY60zUrKdSzrVMhu13t2kG1B/e7SbnVMSAn3WQc6n5KOjADYN2ySc9oisUatunJK6VwZgtNT0XxIZDSsEeBBRYpYiasiuftmEdHMrWzyqhG5Rj1FZbMkj/8Z6J68aDPwHcx/nj/1wo6LzhA4jIa1JdIOKeq+71u4J276owWAELgvt0RNvREPV3Aj4x2JEhuRrHfEQj2PuZnURYI+H5/xIdHEF86wY+MrrGFwIMqPhIhy7JAwF/oeZx3jvx1zT7jRZZzthIAF2evkLiMrrb9cW6zHZkf8A/xI4Llvz/eDawkOAAEJNLNvJFkYHKUKDplfKsv2kcZi7lMz6+Ocu6loBr2Pox5sVpUhFejqvOkvSmyXxny5sd3LZwx/4sDwx0DxWpSd7TB5vXzUQoVdkQKfzih5HtimRp8vN49AZzYmSxsVsMvHo09MXc7OIO2rhaaeUqRKL4/Ee8oytj03cYtAP/OQvafYaDXnqDEva9OcwQcmvx2Tlj3pA4SB8XE727ulAF4jtJycOvxzDf6mI0byOaiCqKYYPWwq2SSLt7jXe/d71J5YIAF8o78Axuajf6pP+ghAAAAAElFTkSuQmCC;" parent="1" vertex="1"> + <mxGeometry x="315" y="658" width="7" height="14.42" as="geometry" /> + </mxCell> + <mxCell id="hdwB_MQwIhiL4xS-3u5l-30" value="Physics-based" style="rounded=1;whiteSpace=wrap;html=1;strokeColor=#585858;" parent="1" vertex="1"> + <mxGeometry x="185" y="829" width="90" height="40" as="geometry" /> + </mxCell> + <mxCell id="hdwB_MQwIhiL4xS-3u5l-31" value="Empirical" style="rounded=1;whiteSpace=wrap;html=1;strokeColor=#585858;" parent="1" vertex="1"> + <mxGeometry x="385" y="829" width="90" height="40" as="geometry" /> + </mxCell> + <mxCell id="hdwB_MQwIhiL4xS-3u5l-32" value="Data-driven" style="rounded=1;whiteSpace=wrap;html=1;strokeColor=#585858;" parent="1" vertex="1"> + <mxGeometry x="285" y="829" width="90" height="40" as="geometry" /> + </mxCell> + <mxCell id="hdwB_MQwIhiL4xS-3u5l-34" value="" style="endArrow=none;html=1;rounded=0;exitX=0;exitY=0;exitDx=0;exitDy=0;strokeColor=#585858;" parent="1" source="hdwB_MQwIhiL4xS-3u5l-30" edge="1"> + <mxGeometry width="50" height="50" relative="1" as="geometry"> + <mxPoint x="212" y="801" as="sourcePoint" /> + <mxPoint x="271" y="738" as="targetPoint" /> + </mxGeometry> + </mxCell> + <mxCell id="hdwB_MQwIhiL4xS-3u5l-35" value="" style="endArrow=none;html=1;rounded=0;exitX=1;exitY=0;exitDx=0;exitDy=0;strokeColor=#585858;" parent="1" source="hdwB_MQwIhiL4xS-3u5l-31" edge="1"> + <mxGeometry width="50" height="50" relative="1" as="geometry"> + <mxPoint x="482" y="849.62" as="sourcePoint" /> + <mxPoint x="393" y="736" as="targetPoint" /> + </mxGeometry> + </mxCell> + <mxCell id="hdwB_MQwIhiL4xS-3u5l-43" value="" style="shape=image;verticalLabelPosition=bottom;labelBackgroundColor=default;verticalAlign=top;aspect=fixed;imageAspect=0;image=data:image/png,iVBORw0KGgoAAAANSUhEUgAAACYAAAAiEAYAAABjPHf7AAAKqGlDQ1BJQ0MgUHJvZmlsZQAASImVlwdQU+kWgP9700NCS4h0Qm/SWwApIbTQpYOohCRAKCEGgogdWVyBtSAighVdEFFwVYosNkSxLQKKXRdkEVHWxYINlXeBIbj75r0378ycOd899/znP+ef+8+cCwBZniMSpcHyAKQLs8ShPh706JhYOm4YQEANEAAJQBxupogZEhIAEJm1f5f3d5BoRG6ZTeX69/f/VRR4/EwuAFAIwgm8TG46wqcQfcEVibMAQO1H/LrLs0RT3IEwVYwUiPC9KU6a4dEpTphmNJiOCQ9lIUwFAE/icMRJAJDoiJ+ezU1C8pDcEbYU8gRChEUIu6anZ/AQPo6wERKD+EhT+RkJ3+VJ+lvOBGlODidJyjO9TAveU5ApSuOs+D+P439Leppkdg8DREnJYt9QxCoiZ3YvNcNfysKEoOBZFvCm46c5WeIbMcvcTFbsLPM4nv7StWlBAbOcKPBmS/NkscNnmZ/pFTbL4oxQ6V6JYhZzljniuX0lqRFSfzKfLc2fmxweNcvZgsigWc5MDfOfi2FJ/WJJqLR+vtDHY25fb2nv6Znf9StgS9dmJYf7SnvnzNXPFzLncmZGS2vj8T295mIipPGiLA/pXqK0EGk8P81H6s/MDpOuzUI+yLm1IdIzTOH4hcwyYIEMkIaoGNBBAPLkCUAWPydrqhFWhmiFWJCUnEVnIjeMT2cLuebz6daW1jYATN3Xmc/hLW36HkK0a3O+vIMAuLhOTk62zfn8hwA4OQYA8fGczwg5I9leAK6UciXi7Bnf9F3CACKQA1SgAjSBLjACZsAa2ANn4A68gB8IBuEgBiwBXJAM0pHKl4NVYD0oAEVgK9gBKsA+cBAcBsfACdAM2sAFcBlcB92gDzwE/WAIvARj4D2YgCAIB5EhCqQCaUH6kClkDTEgV8gLCoBCoRgoHkqChJAEWgVtgIqgEqgCOgDVQr9Ap6EL0FWoB7oPDUAj0BvoM4yCSTAV1oANYAuYATNhfzgcXgwnwcvgXDgf3gyXw1XwUbgJvgBfh/vgfvglPI4CKBkUDaWNMkMxUCxUMCoWlYgSo9agClFlqCpUPaoV1Ym6hepHjaI+obFoCpqONkM7o33REWguehl6DboYXYE+jG5Cd6BvoQfQY+hvGDJGHWOKccKwMdGYJMxyTAGmDFONacRcwvRhhjDvsVgsDWuIdcD6YmOwKdiV2GLsHmwD9jy2BzuIHcfhcCo4U5wLLhjHwWXhCnC7cEdx53C9uCHcR7wMXgtvjffGx+KF+Dx8Gf4I/iy+Fz+MnyDIE/QJToRgAo+wgrCFcIjQSrhJGCJMEBWIhkQXYjgxhbieWE6sJ14iPiK+lZGR0ZFxlFkoI5BZJ1Muc1zmisyAzCeSIsmExCLFkSSkzaQa0nnSfdJbMplsQHYnx5KzyJvJteSL5Cfkj7IUWXNZtixPdq1spWyTbK/sKzmCnL4cU26JXK5cmdxJuZtyo/IEeQN5ljxHfo18pfxp+bvy4woUBSuFYIV0hWKFIwpXFZ4r4hQNFL0UeYr5igcVLyoOUlAUXQqLwqVsoByiXKIMUbFUQyqbmkItoh6jdlHHlBSVbJUilXKUKpXOKPXTUDQDGpuWRttCO0G7Q/s8T2Mecx5/3qZ59fN6531QVlN2V+YrFyo3KPcpf1ahq3ippKpsU2lWeayKVjVRXai6XHWv6iXVUTWqmrMaV61Q7YTaA3VY3UQ9VH2l+kH1G+rjGpoaPhoijV0aFzVGNWma7popmqWaZzVHtCharloCrVKtc1ov6Ep0Jj2NXk7voI9pq2v7aku0D2h3aU/oGOpE6OTpNOg81iXqMnQTdUt123XH9LT0AvVW6dXpPdAn6DP0k/V36nfqfzAwNIgy2GjQbPDcUNmQbZhrWGf4yIhs5Ga0zKjK6LYx1phhnGq8x7jbBDaxM0k2qTS5aQqb2psKTPeY9szHzHecL5xfNf+uGcmMaZZtVmc2YE4zDzDPM282f2WhZxFrsc2i0+KbpZ1lmuUhy4dWilZ+VnlWrVZvrE2sudaV1rdtyDbeNmttWmxe25ra8m332t6zo9gF2m20a7f7au9gL7avtx9x0HOId9jtcJdBZYQwihlXHDGOHo5rHdscPznZO2U5nXD6y9nMOdX5iPPzBYYL+AsOLRh00XHhuBxw6Xelu8a77nftd9N247hVuT1113XnuVe7DzONmSnMo8xXHpYeYo9Gjw8sJ9Zq1nlPlKePZ6Fnl5eiV4RXhdcTbx3vJO867zEfO5+VPud9Mb7+vtt877I12Fx2LXvMz8FvtV+HP8k/zL/C/2mASYA4oDUQDvQL3B74KEg/SBjUHAyC2cHbgx+HGIYsC/l1IXZhyMLKhc9CrUJXhXaGUcKWhh0Jex/uEb4l/GGEUYQkoj1SLjIusjbyQ5RnVElUf7RF9Oro6zGqMYKYllhcbGRsdez4Iq9FOxYNxdnFFcTdWWy4OGfx1SWqS9KWnFkqt5Sz9GQ8Jj4q/kj8F04wp4oznsBO2J0wxmVxd3Jf8tx5pbwRvgu/hD+c6JJYkvg8ySVpe9JIsltyWfKogCWoELxO8U3Zl/IhNTi1JnUyLSqtIR2fHp9+WqgoTBV2ZGhm5GT0iExFBaL+ZU7LdiwbE/uLqzOhzMWZLVlUZDC6ITGS/CAZyHbNrsz+uDxy+ckchRxhzo0VJis2rRjO9c79eSV6JXdl+yrtVetXDaxmrj6wBlqTsKZ9re7a/LVD63zWHV5PXJ+6/rc8y7ySvHcboja05mvkr8sf/MHnh7oC2QJxwd2Nzhv3/Yj+UfBj1yabTbs2fSvkFV4rsiwqK/pSzC2+9pPVT+U/TW5O3Ny1xX7L3q3YrcKtd7a5bTtcolCSWzK4PXB7Uym9tLD03Y6lO66W2Zbt20ncKdnZXx5Q3rJLb9fWXV8qkiv6Kj0qG3ar7960+8Me3p7eve576/dp7Cva93m/YP+9Az4HmqoMqsoOYg9mH3x2KPJQ58+Mn2urVauLqr/WCGv6D4ce7qh1qK09on5kSx1cJ6kbORp3tPuY57GWerP6Aw20hqLj4Ljk+Itf4n+5c8L/RPtJxsn6U/qndjdSGguboKYVTWPNyc39LTEtPaf9Tre3Orc2/mr+a02bdlvlGaUzW84Sz+afnTyXe278vOj86IWkC4PtS9sfXoy+eLtjYUfXJf9LVy57X77Yyew8d8XlSttVp6unrzGuNV+3v950w+5G4292vzV22Xc13XS42dLt2N3as6DnbK9b74Vbnrcu32bfvt4X1NdzJ+LOvbtxd/vv8e49v592//WD7AcTD9c9wjwqfCz/uOyJ+pOq341/b+i37z8z4Dlw42nY04eD3MGXf2T+8WUo/xn5Wdmw1nDtc+vnbSPeI90vFr0Yeil6OTFa8KfCn7tfGb069Zf7XzfGoseGXotfT74pfqvytuad7bv28ZDxJ+/T3098KPyo8vHwJ8anzs9Rn4cnln/BfSn/avy19Zv/t0eT6ZOTIo6YMz0KoBCFExMBeFMDADkGAEo3Mj8smpmnpwWa+QeYJvCfeGbmnhZ7AOoRMzUWsc4DcBxRA0TJiE6NROHuALaxkers7Ds9p08JFvlj2W87Rb20nHXgHzIzw39X9z8tmMo6vfxv9l8BhAf7uiw5BAAABdRlWElmTU0AKgAAAAgABgEGAAMAAAABAAIAAAESAAMAAAABAAEAAAEaAAUAAAABAAAAVgEbAAUAAAABAAAAXgEoAAMAAAABAAIAAIdpAAQAAAABAAAAZgAAAAAAAACQAAAAAQAAAJAAAAABAAOShgAHAAAFRAAAAJCgAgAEAAAAAQAAACagAwAEAAAAAQAAACIAAAAAQVNDSUkAAABBQUFFMkhqYWJWTmRiQlJWRkQ1MzdnSnRvZDFweTA4cGY0UGRhaEhCTFZTcGl6L2RVZ29WdWxCbXQ5MytMT3ZkCjJidmJvYk16Njh5ZHdySnBjaDhNR0tNUFBxRThxRzFqdE1iVW55Z3hKbXFNQlluUlJ0dEdUWXdhbm5neFB2aGkKRERIeHp1NEcwVEEza3pubjNIUHUrYzUzdjBubERkMWh3ZUFLa3JCdjFlbzFOZkhBSkxVZDNUS0hBOFRXeG5YaApSUVBNeXNjRFZ1b00xWmpUQU9qQ2EwblpIMUdQMFFKTmh5dEozMVZWUjIzTFloeTlJKzljdTY3MTN2dmFkdDIvCis0RTlleDk4Nk9DalhUMVBIaHM0TlRKNm10RE1tVnlldWJHQTZSckdjbTJkWDI0T0RFWFV2Uk8wNEl5SWI2WEoKWUVBemlPUE0xVGMwcnQrd2NWUFRaaTV4ekgxOEZWL04xL0FxWHMxcjVyWnMzYlo5aDdMem5oYStscS9qZGR6UAo2M2t6MzhLMzhlMWNpYWVJUXczZHBESE5NaXc3bXJQU05NWjBadEI0M3FZa2x6Sm9Ja2V5cHA3Uk5jTEV1TkUwCllWU01sU0xhUk5hMlhETjl5Q3NjY1N6WDFtaVVubU10VUhtV2crMytmZnM3WWhIMTFKSHVzWWhhU2xUelJLTzkKUVVVc2tCR3ZYWHI0UU9jakkrVXhUSktqOGJKSm5hRkt3VXhuS0I1UlQ1VG1sWDFML3NjZWYySllFT0F3V3plegpYRDRwRGdoM2wzanVkeGtSZU5YU3ptejRrRmRYZHBZUCszdVBITzI3N1Fzd1lTYXNsTXVvd3h2NFp0NllsSmZHCjBwYm01cWpKU2doRzI0TjVsaWdTbSttYVFhZHF4bHlIQ3V3VEpFdEhoZWxoZFJMRkVtdFRTcXVJcEpXTVpZdlgKWkVvcGVtZEZrZVFjcDVCTGljd2NZZVBPLy9lODROMzJSbDJXNlV3VWRUTXZrSnBhdVZIR05SUm1LYXlRcDBwYQp0d1V2UmtFWVJMTjFnVlhSeG9sTk5DYlVXZU1KNTNqazVIUS9Yejk5Z20vZ1RZTVJ0VmNBWEZHak1mL2dVSHhZCitLcCtuZ3BpTXIwR3lUckNqNGpCV3JyYXlsY295M3dqM3pUWWI1bEVzd1RUWTRuS0NUTmpJZUVtbnhKTTl1aWEKSnd4aUYyYVNYakNsSmVXR093aE9sem1mU1lmdUdtL3A2aTczV3NyNngzVlA0MHdYQ01JTDEzekJiK1puK1ZaeAo1SVFoMnZZSTRjMU1oRHhWbWZzN2V0c1ZzWURYZW5mNzlORSt2c083eFFGWFpFK2VUY3FOdCtYd0w3elp5V1FJCnFxQWVtaUVBdTJBZkhJQStPQTREb01KWm1JSm40SG00QksvQW0vQVd2QTN6OEM2OER4L0FGZmdJUG9ZRnVBYlgKNFN2NEdoYmhXMWlDRmZnZWZvUWJjQk4rZ3ovZ0ZxcEdkVWhCdTFFSE9vakNLSUppYUFnTm85TklSelk2ajZiUQpCZlFzZWdGZFFpK2p5K2hWOUI3NkVIMktycUpGOUJQNkdmMktia2hYcEUra3o2VFBwUytrcTlLWDBxTDBnL1NMCmRGUDZYZnBUK2t1NkpmMk5mYmdheTdnUk4rRlczSWIzNEc1OEdJOWdEWS9qUEM3Z0l1YjRJbjRPdjRoZndwZngKTko3RnIrTTM4QnlleHd0bGFpVlUrU1hQd1g4ZWZQMGYzWnVRT0E9PRrZ8zAAAAAJcEhZcwAAFiUAABYlAUlSJPAAAAjTaVRYdFhNTDpjb20uYWRvYmUueG1wAAAAAAA8eDp4bXBtZXRhIHhtbG5zOng9ImFkb2JlOm5zOm1ldGEvIiB4OnhtcHRrPSJYTVAgQ29yZSA2LjAuMCI+CiAgIDxyZGY6UkRGIHhtbG5zOnJkZj0iaHR0cDovL3d3dy53My5vcmcvMTk5OS8wMi8yMi1yZGYtc3ludGF4LW5zIyI+CiAgICAgIDxyZGY6RGVzY3JpcHRpb24gcmRmOmFib3V0PSIiCiAgICAgICAgICAgIHhtbG5zOnRpZmY9Imh0dHA6Ly9ucy5hZG9iZS5jb20vdGlmZi8xLjAvIgogICAgICAgICAgICB4bWxuczpleGlmPSJodHRwOi8vbnMuYWRvYmUuY29tL2V4aWYvMS4wLyI+CiAgICAgICAgIDx0aWZmOkNvbXByZXNzaW9uPjE8L3RpZmY6Q29tcHJlc3Npb24+CiAgICAgICAgIDx0aWZmOlJlc29sdXRpb25Vbml0PjI8L3RpZmY6UmVzb2x1dGlvblVuaXQ+CiAgICAgICAgIDx0aWZmOlhSZXNvbHV0aW9uPjE0NDwvdGlmZjpYUmVzb2x1dGlvbj4KICAgICAgICAgPHRpZmY6WVJlc29sdXRpb24+MTQ0PC90aWZmOllSZXNvbHV0aW9uPgogICAgICAgICA8dGlmZjpQaG90b21ldHJpY0ludGVycHJldGF0aW9uPjI8L3RpZmY6UGhvdG9tZXRyaWNJbnRlcnByZXRhdGlvbj4KICAgICAgICAgPHRpZmY6T3JpZW50YXRpb24+MTwvdGlmZjpPcmllbnRhdGlvbj4KICAgICAgICAgPGV4aWY6UGl4ZWxYRGltZW5zaW9uPjM4PC9leGlmOlBpeGVsWERpbWVuc2lvbj4KICAgICAgICAgPGV4aWY6VXNlckNvbW1lbnQ+QUFBRTJIamFiVk5kYkJSVkZENTM3Z0p0b2QxcHkwOHBmNFBkYWhIQkxWU3Bpei9kVWdvVnVsQm10OTMrTE92ZCYjeEE7MmJ2Ym9iTXo2OHlkd3JKcGNoOE1HS01QUHFFOHFHMWp0TWJVbnlneEptcU1CWW5SUnR0R1RZd2Fubmd4UHZoaSYjeEE7RERIeHp1NEcwVEEza3pubjNIUHUrYzUzdjBubERkMWh3ZUFLa3JCdjFlbzFOZkhBSkxVZDNUS0hBOFRXeG5YaCYjeEE7UlFQTXlzY0RWdW9NMVpqVEFPakNhMG5aSDFHUDBRSk5oeXRKMzFWVlIyM0xZaHk5SSs5Y3U2NzEzdnZhZHQyLyYjeEE7KzRFOWV4OTg2T0NqWFQxUEhoczROVEo2bXRETW1WeWV1YkdBNlJyR2NtMmRYMjRPREVYVXZSTzA0SXlJYjZYSiYjeEE7WUVBemlPUE0xVGMwcnQrd2NWUFRaaTV4ekgxOEZWL04xL0FxWHMxcjVyWnMzYlo5aDdMem5oYStscS9qZGR6UCYjeEE7NjNrejM4SzM4ZTFjaWFlSVF3M2RwREhOTWl3N21yUFNOTVowWnRCNDNxWWtsekpvSWtleXBwN1JOY0xFdU5FMCYjeEE7WVZTTWxTTGFSTmEyWEROOXlDc2NjU3pYMW1pVW5tTXRVSG1XZyszK2ZmczdZaEgxMUpIdXNZaGFTbFR6UktPOSYjeEE7UVVVc2tCR3ZYWHI0UU9jakkrVXhUSktqOGJKSm5hRkt3VXhuS0I1UlQ1VG1sWDFML3NjZWYySllFT0F3V3pleiYjeEE7WEQ0cERnaDNsM2p1ZHhrUmVOWFN6bXo0a0ZkWGRwWVArM3VQSE8yNzdRc3dZU2FzbE11b3d4djRadDZZbEpmRyYjeEE7MHBibTVxakpTZ2hHMjRONWxpZ1NtK21hUWFkcXhseUhDdXdUSkV0SGhlbGhkUkxGRW10VFNxdUlwSldNWll2WCYjeEE7WkVvcGVtZEZrZVFjcDVCTGljd2NZZVBPLy9lODROMzJSbDJXNlV3VWRUTXZrSnBhdVZIR05SUm1LYXlRcDBwYSYjeEE7dHdVdlJrRVlSTE4xZ1ZYUnhvbE5OQ2JVV2VNSjUzams1SFEvWHo5OWdtL2dUWU1SdFZjQVhGR2pNZi9nVUh4WSYjeEE7K0twK25ncGlNcjBHeVRyQ2o0akJXcnJheWxjb3kzd2ozelRZYjVsRXN3VFRZNG5LQ1ROakllRW1ueEpNOXVpYSYjeEE7Snd4aUYyYVNYakNsSmVXR093aE9sem1mU1lmdUdtL3A2aTczV3NyNngzVlA0MHdYQ01JTDEzekJiK1puK1ZaeCYjeEE7NUlRaDJ2WUk0YzFNaER4Vm1mczdldHNWc1lEWGVuZjc5TkUrdnNPN3hRRlhaRStlVGNxTnQrWHdMN3paeVdRSSYjeEE7cXFBZW1pRUF1MkFmSElBK09BNERvTUpabUlKbjRIbTRCSy9BbS9BV3ZBM3o4QzY4RHgvQUZmZ0lQb1lGdUFiWCYjeEE7NFN2NEdoYmhXMWlDRmZnZWZvUWJjQk4rZ3ovZ0ZxcEdkVWhCdTFFSE9vakNLSUppYUFnTm85TklSelk2ajZiUSYjeEE7QmZRc2VnRmRRaStqeStoVjlCNzZFSDJLcnFKRjlCUDZHZjJLYmtoWHBFK2t6NlRQcFMra3E5S1gwcUwwZy9TTCYjeEE7ZEZQNlhmcFQra3U2SmYyTmZiZ2F5N2dSTitGVzNJYjM0RzU4R0k5Z0RZL2pQQzdnSXViNEluNE92NGhmd3BmeCYjeEE7Tko3RnIrTTM4QnlleHd0bGFpVlUrU1hQd1g4ZWZQMGYzWnVRT0E9PTwvZXhpZjpVc2VyQ29tbWVudD4KICAgICAgICAgPGV4aWY6UGl4ZWxZRGltZW5zaW9uPjM0PC9leGlmOlBpeGVsWURpbWVuc2lvbj4KICAgICAgPC9yZGY6RGVzY3JpcHRpb24+CiAgIDwvcmRmOlJERj4KPC94OnhtcG1ldGE+CgggJJIAAAUgSURBVGgF1VpNbFRVFJ5a/jFaE7QgCE8U6cZYwR9ACK8JSIMkYFwYwqa6cWldmYBmJsGfGDW60gSMU6ML2CjEGiVRZiRBoCYYF/4BcYo2VZT6hzYihafxOx/1ncztPffNG42zeGfOOd/5zrl37r3vvvumtdDQp7UV4R2LIW9fCSnmwshIQ/T//+D22WhDuQw5mkAmDnm6Bv9uwbe1Qf+vrtd3IPPDvZBbS5C3LYPM7bp+E6h+cnQMO+ycx/9RBTxXzsqtNBPRCumQXx31jYmdOBNpPdDaGNbfVaLzom8vwt8hv9ykSdBfK0OyI7X8tAb/5MmQzb6+V5m4HtZXLGWs5Jp5CPw5SSf6RfQNMuJc9ByRLMQl7/XwuPitdi4hrvza/qBMVTf/JfVdO1+F/TLlvv9uGPr3KIdSpyndpXZtdHnysXd1h/EMHA7DFzhydM/vkSFtpXukBKTm0fpbgbzW/MTtKNvq4M1ryhRGGuWANIANO5MgcK5MUSNNYa/iIZ+Wr0uDrLyhuBM1ROi8Wq9KvWb+5XIX0UQvBTaI2wZ9k9C81J8qmksMAnINZh6ffMxch6xh9z1Qv56+V+rbXdZ7ZBGf6gIo+5GPlSEntWtNGFH1/TB84VQNAfwlOJQDaQoc2uRxSe7nps8IzWDDvywzw5Wfds6Eada7FNOTgPLREj02uSAC7kICSR6XfEEaZGMPR9XUAHDVUamEc/8dwZ7mPuvqwEWejxiuwrT9jrwfRaTd/OF0PpdeKmXssKmy6GTdeX9m/EW/ElxLS8ZCPWE9PQC4Okjb18QewrzdSzvDCnymmHcFab6+sq2eswlwM5q0hqar+of2pHSA/uVc+i1Nmoos6WQN31z5aT9QYcS/LI8ZCzwuuGaVF0VgZof4ZOaH7ILjWdLXsBtlKi6SQn343X0+RGP+OA6L318Nw4+jM3bYRtmgjhNN/G3X3on9jXrj1TaGUYEd+cCGzw31rqwBvqH/RZOnIhtk3Xe9I3UzLlwGjjBuO5bFtlTVqg2XFTU/QiTXMB/P/oZHemCH3bwUJc30VSb+A6HPaEZewlbH/GaTlcDzrt5e8HI3wAFjy/YXanMPoL6pSP+8wCcGcyEC3Fm21fNbAhyP0H15FnXU510ZB46wOW2+VPD/OAg5NGTDZ0Wtim2RA1XgxsZs+O7u+rjjnwd2WPvl9Ym0dVgbctavmg3CxZGN+GDVhiPqTnV0fmwQnlPfBnbYWTJ65LAk8MAyu+PAJ4ZDxnM3HlHHcbq08X1bYId9eTJN5NLOuRwN2rnobn0ujOiocbHfsB68lyr6/qx3V96VuKi75IcVlTEn9XnjIs+6RmphifulbsbzxW/mg06e2ZOIxFryDfisnN5wb+lBw3Uen85jJ1+3zY+A4Btw8vIvEb54r//ZIiAkdknuY7yECsDzMh7w6ZNc/mfDlZf2Ic8IY559amQxvuG/DrBdc+Qu9b0UxARa/pEg4i7jsyff9uipQV6+e+DD/9NF8NPvkks6WXlaPiQbUx33pnRgGp2DxsK/83Qcp+hBKYQHiU9Ig98W+/kERekG8HhoYZQumi8vjkq8jqM+XEPc40VIvg+ln5Lt4FF3OluO2rURyPgnFFfDWZhP8q3SthJ4Z+rbFswXr1fIhvqNMkw+fu3n1O10jMSLiQot41/z/HZdBLZ1myCX3wTZLnb+Z+ObQdg/oZRty75+2H84DRl6vVX2aZvXIfKGGJL3oK8HoR+W/dmLO6CP8vwHap3rnw9NrtZXWLL+AAAAAElFTkSuQmCC;" parent="1" vertex="1"> + <mxGeometry x="234" y="696" width="7.85" height="7.02" as="geometry" /> + </mxCell> + <mxCell id="hdwB_MQwIhiL4xS-3u5l-81" value="" style="shape=image;verticalLabelPosition=bottom;labelBackgroundColor=default;verticalAlign=top;aspect=fixed;imageAspect=0;image=data:image/png,iVBORw0KGgoAAAANSUhEUgAAAQYAAABKEAYAAAAJSCbcAAAKqGlDQ1BJQ0MgUHJvZmlsZQAASImVlwdQU+kWgP9700NCS4h0Qm/SWwApIbTQpYOohCRAKCEGgogdWVyBtSAighVdEFFwVYosNkSxLQKKXRdkEVHWxYINlXeBIbj75r0378ycOd899/znP+ef+8+cCwBZniMSpcHyAKQLs8ShPh706JhYOm4YQEANEAAJQBxupogZEhIAEJm1f5f3d5BoRG6ZTeX69/f/VRR4/EwuAFAIwgm8TG46wqcQfcEVibMAQO1H/LrLs0RT3IEwVYwUiPC9KU6a4dEpTphmNJiOCQ9lIUwFAE/icMRJAJDoiJ+ezU1C8pDcEbYU8gRChEUIu6anZ/AQPo6wERKD+EhT+RkJ3+VJ+lvOBGlODidJyjO9TAveU5ApSuOs+D+P439Leppkdg8DREnJYt9QxCoiZ3YvNcNfysKEoOBZFvCm46c5WeIbMcvcTFbsLPM4nv7StWlBAbOcKPBmS/NkscNnmZ/pFTbL4oxQ6V6JYhZzljniuX0lqRFSfzKfLc2fmxweNcvZgsigWc5MDfOfi2FJ/WJJqLR+vtDHY25fb2nv6Znf9StgS9dmJYf7SnvnzNXPFzLncmZGS2vj8T295mIipPGiLA/pXqK0EGk8P81H6s/MDpOuzUI+yLm1IdIzTOH4hcwyYIEMkIaoGNBBAPLkCUAWPydrqhFWhmiFWJCUnEVnIjeMT2cLuebz6daW1jYATN3Xmc/hLW36HkK0a3O+vIMAuLhOTk62zfn8hwA4OQYA8fGczwg5I9leAK6UciXi7Bnf9F3CACKQA1SgAjSBLjACZsAa2ANn4A68gB8IBuEgBiwBXJAM0pHKl4NVYD0oAEVgK9gBKsA+cBAcBsfACdAM2sAFcBlcB92gDzwE/WAIvARj4D2YgCAIB5EhCqQCaUH6kClkDTEgV8gLCoBCoRgoHkqChJAEWgVtgIqgEqgCOgDVQr9Ap6EL0FWoB7oPDUAj0BvoM4yCSTAV1oANYAuYATNhfzgcXgwnwcvgXDgf3gyXw1XwUbgJvgBfh/vgfvglPI4CKBkUDaWNMkMxUCxUMCoWlYgSo9agClFlqCpUPaoV1Ym6hepHjaI+obFoCpqONkM7o33REWguehl6DboYXYE+jG5Cd6BvoQfQY+hvGDJGHWOKccKwMdGYJMxyTAGmDFONacRcwvRhhjDvsVgsDWuIdcD6YmOwKdiV2GLsHmwD9jy2BzuIHcfhcCo4U5wLLhjHwWXhCnC7cEdx53C9uCHcR7wMXgtvjffGx+KF+Dx8Gf4I/iy+Fz+MnyDIE/QJToRgAo+wgrCFcIjQSrhJGCJMEBWIhkQXYjgxhbieWE6sJ14iPiK+lZGR0ZFxlFkoI5BZJ1Muc1zmisyAzCeSIsmExCLFkSSkzaQa0nnSfdJbMplsQHYnx5KzyJvJteSL5Cfkj7IUWXNZtixPdq1spWyTbK/sKzmCnL4cU26JXK5cmdxJuZtyo/IEeQN5ljxHfo18pfxp+bvy4woUBSuFYIV0hWKFIwpXFZ4r4hQNFL0UeYr5igcVLyoOUlAUXQqLwqVsoByiXKIMUbFUQyqbmkItoh6jdlHHlBSVbJUilXKUKpXOKPXTUDQDGpuWRttCO0G7Q/s8T2Mecx5/3qZ59fN6531QVlN2V+YrFyo3KPcpf1ahq3ippKpsU2lWeayKVjVRXai6XHWv6iXVUTWqmrMaV61Q7YTaA3VY3UQ9VH2l+kH1G+rjGpoaPhoijV0aFzVGNWma7popmqWaZzVHtCharloCrVKtc1ov6Ep0Jj2NXk7voI9pq2v7aku0D2h3aU/oGOpE6OTpNOg81iXqMnQTdUt123XH9LT0AvVW6dXpPdAn6DP0k/V36nfqfzAwNIgy2GjQbPDcUNmQbZhrWGf4yIhs5Ga0zKjK6LYx1phhnGq8x7jbBDaxM0k2qTS5aQqb2psKTPeY9szHzHecL5xfNf+uGcmMaZZtVmc2YE4zDzDPM282f2WhZxFrsc2i0+KbpZ1lmuUhy4dWilZ+VnlWrVZvrE2sudaV1rdtyDbeNmttWmxe25ra8m332t6zo9gF2m20a7f7au9gL7avtx9x0HOId9jtcJdBZYQwihlXHDGOHo5rHdscPznZO2U5nXD6y9nMOdX5iPPzBYYL+AsOLRh00XHhuBxw6Xelu8a77nftd9N247hVuT1113XnuVe7DzONmSnMo8xXHpYeYo9Gjw8sJ9Zq1nlPlKePZ6Fnl5eiV4RXhdcTbx3vJO867zEfO5+VPud9Mb7+vtt877I12Fx2LXvMz8FvtV+HP8k/zL/C/2mASYA4oDUQDvQL3B74KEg/SBjUHAyC2cHbgx+HGIYsC/l1IXZhyMLKhc9CrUJXhXaGUcKWhh0Jex/uEb4l/GGEUYQkoj1SLjIusjbyQ5RnVElUf7RF9Oro6zGqMYKYllhcbGRsdez4Iq9FOxYNxdnFFcTdWWy4OGfx1SWqS9KWnFkqt5Sz9GQ8Jj4q/kj8F04wp4oznsBO2J0wxmVxd3Jf8tx5pbwRvgu/hD+c6JJYkvg8ySVpe9JIsltyWfKogCWoELxO8U3Zl/IhNTi1JnUyLSqtIR2fHp9+WqgoTBV2ZGhm5GT0iExFBaL+ZU7LdiwbE/uLqzOhzMWZLVlUZDC6ITGS/CAZyHbNrsz+uDxy+ckchRxhzo0VJis2rRjO9c79eSV6JXdl+yrtVetXDaxmrj6wBlqTsKZ9re7a/LVD63zWHV5PXJ+6/rc8y7ySvHcboja05mvkr8sf/MHnh7oC2QJxwd2Nzhv3/Yj+UfBj1yabTbs2fSvkFV4rsiwqK/pSzC2+9pPVT+U/TW5O3Ny1xX7L3q3YrcKtd7a5bTtcolCSWzK4PXB7Uym9tLD03Y6lO66W2Zbt20ncKdnZXx5Q3rJLb9fWXV8qkiv6Kj0qG3ar7960+8Me3p7eve576/dp7Cva93m/YP+9Az4HmqoMqsoOYg9mH3x2KPJQ58+Mn2urVauLqr/WCGv6D4ce7qh1qK09on5kSx1cJ6kbORp3tPuY57GWerP6Aw20hqLj4Ljk+Itf4n+5c8L/RPtJxsn6U/qndjdSGguboKYVTWPNyc39LTEtPaf9Tre3Orc2/mr+a02bdlvlGaUzW84Sz+afnTyXe278vOj86IWkC4PtS9sfXoy+eLtjYUfXJf9LVy57X77Yyew8d8XlSttVp6unrzGuNV+3v950w+5G4292vzV22Xc13XS42dLt2N3as6DnbK9b74Vbnrcu32bfvt4X1NdzJ+LOvbtxd/vv8e49v592//WD7AcTD9c9wjwqfCz/uOyJ+pOq341/b+i37z8z4Dlw42nY04eD3MGXf2T+8WUo/xn5Wdmw1nDtc+vnbSPeI90vFr0Yeil6OTFa8KfCn7tfGb069Zf7XzfGoseGXotfT74pfqvytuad7bv28ZDxJ+/T3098KPyo8vHwJ8anzs9Rn4cnln/BfSn/avy19Zv/t0eT6ZOTIo6YMz0KoBCFExMBeFMDADkGAEo3Mj8smpmnpwWa+QeYJvCfeGbmnhZ7AOoRMzUWsc4DcBxRA0TJiE6NROHuALaxkers7Ds9p08JFvlj2W87Rb20nHXgHzIzw39X9z8tmMo6vfxv9l8BhAf7uiw5BAAABehlWElmTU0AKgAAAAgABgEGAAMAAAABAAIAAAESAAMAAAABAAEAAAEaAAUAAAABAAAAVgEbAAUAAAABAAAAXgEoAAMAAAABAAIAAIdpAAQAAAABAAAAZgAAAAAAAACQAAAAAQAAAJAAAAABAAOShgAHAAAFWAAAAJCgAgAEAAAAAQAAAQagAwAEAAAAAQAAAEoAAAAAQVNDSUkAAABBQUFFNjNqYWJWTmRiQlJWRkQ1M2JpbHRvZDFweTA4cGY0UGRhaXNXMjFLbEZuKzZwUlFxZFBtWjNYYmI3ckxlCm5iMjdPK3pzekRwenQ3QnNtOXdIZzhiSUEwOG9EMnJiR01VWS82TEVHSDlDQkRScUdtMGJJU0ZxZU9MRitPQ0wKTWNURU83c2JSTVBjVE9hY2MrODU1enZmL1NhV05YU0hkWFl1SXdsWHJLaGNXUlB5VGxIYjBTMXozRXRzTGFVTApMK0JsVmpia3RXTEhxY2FjQmtDblg0L0tIcjk2Z09acDNGYys5R05WZGNDMkxNYlJlL0syVmF0YjczK2dyZjNCCjdROTE3SGo0a2QyUDl3OCtmZURJMFluSlk0UW1qbWV5TEJmMG1qbkRXS3F0ODhqTjNqRy91aU5OODg2RStKYWIKakhvMWd6ak9oZnFHeGpWcjE2MXYyc0Fsam5rRlg4RXIrVXBleGF0NXpZV05telp2MmFwc3U2K0ZyK0tyZVIzMwo4SHJlekRmeXpYd0xWMEl4NGxCRE4ybFFzd3pMRG1Tc09BMHluUmswbExVcHljUU1Hc21RcEtrbmRJMHdNVzRnClRoZ1ZZOFdJbGs3YVZzNk03M0VUSnh3cloyczBRRSt5RmlnL1M1MWRudTZkUFVHL2VuVGZRTml2RmcrcVdhTFIKb1U1RkxKQVJyMTE4ZEZmdll4T2xNVXlTb2FHU1NaMnhjc0pjYjEvSXJ4NHF6aXRYTEhxZWVQS3BjVUdBdzJ6ZApUSEw1c0NqZ0d5anlQSkpqUk9CVml6dnp2ajF1WHNsWjJ1c1oycmQvK0k0dndQaVlzR0k1UmgzZXdEZnd4cWk4CkdJNWJXaTVEVFZaRU1OblZtV1dSQXJHWnJobDBwaWFjYzZqQW5pWkpPaWxNRjZzVEtSUlptMUZhUlNTdUpDeGIKdkNaVGl0RzdNd29rNHpqNVRFeWN6QkNXY3Y2LzV3YnZ0VGVaWTRuZVNFRTNzd0twcVpVYUpYS0d3aXlGNWJOVQppZXUyNE1YSUM0Tm90aTZ3S2xxSzJFUmpRcDAxcm5BTytnL1BqdkExczRmNFd0NDA2bGVIQk1CbE5SRDBqSTZGCnhvV3Y2cWVvSUNZeFpKQ2tJM3kvR0t5bHY2MTBoYkxNMS9IMW95T1dTVFJMTUIyT2xDdk1oZnVFRzMxR01EbW8KYTY0d2lKMmZpN3JCbUJhVkcrNGlPRjdpZkM3ZWQ4OTRTLzlBcWRkaTBwUFNYWTB6WFNEd1hiNWEyUjYvL2gzZgpKRXFtRGRGMlVBaHZMdDNucXNyYzJUUFVwWWdGdk5hOTIyZjNEL090cFZ0c21KNVd3aW5DQ3ZrWnBVUEpUMDlICnUwV0JxUk5SdWZHT1F2NUZQRDhWN1lNcXFJZG04RUk3ZE1NdUdJYURjQVJVT0FFejhCeThCT2ZnVlhnTDNvWjMKNEYxNEh6NkVqK0FpZkFLZndtVzRDdC9BdC9BOUxNQVBzQWpMOEJOY2g1dHdDMzZEUCtBMnFrWjFTRUhiVVEvYQpqWHpJajRKb0RJMmpZMGhITmpxRlp0QnA5QUk2Zzg2aFY5QjU5QnI2QUgyTXZrQlgwQUs2Z1g1R3Y2S2Iwa1hwCmMrbEw2WkwwbFhSRitscGFrSzVKdjBpM3BOK2xQNlcvcE52UzM3Z0NWMk1aTitJbTNJcmJjQWNld0h2eEJOWncKQ21keEhoY3d4OC9qRi9GWi9ESStqMmZ4UEg0RHY0ay93NWZ3dFJMYkVpci9wU2ZoUHcrKzhROGt4WmEwZJJWPgAAAAlwSFlzAAAWJQAAFiUBSVIk8AAACOhpVFh0WE1MOmNvbS5hZG9iZS54bXAAAAAAADx4OnhtcG1ldGEgeG1sbnM6eD0iYWRvYmU6bnM6bWV0YS8iIHg6eG1wdGs9IlhNUCBDb3JlIDYuMC4wIj4KICAgPHJkZjpSREYgeG1sbnM6cmRmPSJodHRwOi8vd3d3LnczLm9yZy8xOTk5LzAyLzIyLXJkZi1zeW50YXgtbnMjIj4KICAgICAgPHJkZjpEZXNjcmlwdGlvbiByZGY6YWJvdXQ9IiIKICAgICAgICAgICAgeG1sbnM6dGlmZj0iaHR0cDovL25zLmFkb2JlLmNvbS90aWZmLzEuMC8iCiAgICAgICAgICAgIHhtbG5zOmV4aWY9Imh0dHA6Ly9ucy5hZG9iZS5jb20vZXhpZi8xLjAvIj4KICAgICAgICAgPHRpZmY6Q29tcHJlc3Npb24+MTwvdGlmZjpDb21wcmVzc2lvbj4KICAgICAgICAgPHRpZmY6UmVzb2x1dGlvblVuaXQ+MjwvdGlmZjpSZXNvbHV0aW9uVW5pdD4KICAgICAgICAgPHRpZmY6WFJlc29sdXRpb24+MTQ0PC90aWZmOlhSZXNvbHV0aW9uPgogICAgICAgICA8dGlmZjpZUmVzb2x1dGlvbj4xNDQ8L3RpZmY6WVJlc29sdXRpb24+CiAgICAgICAgIDx0aWZmOlBob3RvbWV0cmljSW50ZXJwcmV0YXRpb24+MjwvdGlmZjpQaG90b21ldHJpY0ludGVycHJldGF0aW9uPgogICAgICAgICA8dGlmZjpPcmllbnRhdGlvbj4xPC90aWZmOk9yaWVudGF0aW9uPgogICAgICAgICA8ZXhpZjpQaXhlbFhEaW1lbnNpb24+MjYyPC9leGlmOlBpeGVsWERpbWVuc2lvbj4KICAgICAgICAgPGV4aWY6VXNlckNvbW1lbnQ+QUFBRTYzamFiVk5kYkJSVkZENTNiaWx0b2QxcHkwOHBmNFBkYWlzVzIxS2xGbis2cFJRcWRQbVozWGJiN3JMZSYjeEE7bmIyN08renN6RHB6dDdCc205d0hnOGJJQTA4b0QycmJHTVVZLzZMRUdIOUNCRFJxR20wYklTRnFlT0xGK09DTCYjeEE7TWNURU83c2JSTVBjVE9hY2MrODU1enZmL1NhV05YU0hkWFl1SXdsWHJLaGNXUlB5VGxIYjBTMXozRXRzTGFVTCYjeEE7TCtCbFZqYmt0V0xIcWNhY0JrQ25YNC9LSHI5NmdPWnAzRmMrOUdOVmRjQzJMTWJSZS9LMlZhdGI3MytncmYzQiYjeEE7N1E5MTdIajRrZDJQOXc4K2ZlREkwWW5KWTRRbWptZXlMQmYwbWpuRFdLcXQ4OGpOM2pHL3VpTk44ODZFK0phYiYjeEE7akhvMWd6ak9oZnFHeGpWcjE2MXYyc0Fsam5rRlg4RXIrVXBleGF0NXpZV05telp2MmFwc3U2K0ZyK0tyZVIzMyYjeEE7OEhyZXpEZnl6WHdMVjBJeDRsQkROMmxRc3d6TERtU3NPQTB5blJrMGxMVXB5Y1FNR3NtUXBLa25kSTB3TVc0ZyYjeEE7VGhnVlk4V0lsazdhVnM2TTczRVRKeHdyWjJzMFFFK3lGaWcvUzUxZG51NmRQVUcvZW5UZlFOaXZGZytxV2FMUiYjeEE7b1U1RkxKQVJyMTE4ZEZmdll4T2xNVXlTb2FHU1NaMnhjc0pjYjEvSXJ4NHF6aXRYTEhxZWVQS3BjVUdBdzJ6ZCYjeEE7VEhMNXNDamdHeWp5UEpKalJPQlZpenZ6dmoxdVhzbFoydXNaMnJkLytJNHZ3UGlZc0dJNVJoM2V3RGZ3eHFpOCYjeEE7R0k1YldpNURUVlpFTU5uVm1XV1JBckdacmhsMHBpYWNjNmpBbmlaSk9pbE1GNnNUS1JSWm0xRmFSU1N1SkN4YiYjeEE7dkNaVGl0RzdNd29rNHpqNVRFeWN6QkNXY3Y2LzV3YnZ0VGVaWTRuZVNFRTNzd0twcVpVYUpYS0d3aXlGNWJOVSYjeEE7aWV1MjRNWElDNE5vdGk2d0tscUsyRVJqUXAwMXJuQU8rZy9QanZBMXM0ZjRXdDQwNmxlSEJNQmxOUkQwakk2RiYjeEE7eG9XdjZxZW9JQ1l4WkpDa0kzeS9HS3lsdjYxMGhiTE0xL0gxb3lPV1NUUkxNQjJPbEN2TWhmdUVHMzFHTURtbyYjeEE7YTY0d2lKMmZpN3JCbUJhVkcrNGlPRjdpZkM3ZWQ4OTRTLzlBcWRkaTBwUFNYWTB6WFNEd1hiNWEyUjYvL2gzZiYjeEE7SkVxbURkRjJVQWh2THQzbnFzcmMyVFBVcFlnRnZOYTkyMmYzRC9PdHBWdHNtSjVXd2luQ0N2a1pwVVBKVDA5SCYjeEE7dTBXQnFSTlJ1ZkdPUXY1RlBEOFY3WU1xcUlkbThFSTdkTU11R0lhRGNBUlVPQUV6OEJ5OEJPZmdWWGdMM29aMyYjeEE7NEYxNEh6NkVqK0FpZkFLZndtVzRDdC9BdC9BOUxNQVBzQWpMOEJOY2g1dHdDMzZEUCtBMnFrWjFTRUhiVVEvYSYjeEE7alh6SWo0Sm9ESTJqWTBoSE5qcUZadEJwOUFJNmc4NmhWOUI1OUJyNkFIMk12a0JYMEFLNmdYNUd2NktiMGtYcCYjeEE7YytsTDZaTDBsWFJGK2xwYWtLNUp2MGkzcE4rbFA2Vy9wTnZTMzdnQ1YyTVpOK0ltM0lyYmNBY2V3SHZ4Qk5adyYjeEE7Q21keEhoY3d4OC9qRi9GWi9ESStqMmZ4UEg0RHY0ay93NWZ3dFJMYkVpci9wU2ZoUHcrKzhROGt4WmEwPC9leGlmOlVzZXJDb21tZW50PgogICAgICAgICA8ZXhpZjpQaXhlbFlEaW1lbnNpb24+NzQ8L2V4aWY6UGl4ZWxZRGltZW5zaW9uPgogICAgICA8L3JkZjpEZXNjcmlwdGlvbj4KICAgPC9yZGY6UkRGPgo8L3g6eG1wbWV0YT4Kr2v84wAAEtNJREFUeAHtnXuUFMUVh0eRCIi8RCQq0ijCiiYggkKMoTESiEJ4JD7jYyCJGsk5QHLUcIyykpOIjxxBNHrUsEPU+DyiURDksSOcKI8YwCj4ZBuVKBEJRFAQcEPOvZfd7u3qrp7pma6Z+e0fc7vuvVV1+6upntrq6upUCn8gAAIgAAIgAAIgEEKgGdlbtSI5+jySVVUkN9SR3LePZFKfpseXFBfUCwIgAAKmEjD9um16fKa2a+q2KRRafb1b3lBtRsimx2cGJUQBAiAAAuYQMP26bXp85rSkRHIwHfS0ReGWPbu600mlTI8vKS6oFwRAAARMJWD6ddv0+MxrVx4wdFBE1sFSGIqsNj2+IuNAdSAAAiBgPAHTr9umx2deA/OAwbzAEFEQgdMHkPUkXmsS5AsbCIAACIAACORPAAOG/BkWsYQhNlX20iskl75A8pQ+JPEJAiAAAiAAAoUhgAFDYbjGXOrZNhX4bC3JFiRSHS06WDyHJGYcGAwECIAACIBAzAQwYIgZaLzFDbKpvOd4oNBSUXwniwyLecahB25VKEhBDQIgAAIgkBsBDBhy41bgXGfZVMFcHijwNhmhtX7dIpclPHA4gdOhGeEAAiAAAiAAAoEEMGAIxFNs47d4MeM8HigcpgjgoQwZ5mf9HY6xSL+Ey7E47e8NLQiAAAiAAAiEEcCAIYxQUexn8EDhBV7M2NpTaz2nJ99MB5ePJTn8HJIPZEh6P4+zSCMDhy7Hej2QBgEQAAEQAAEdAhgw6FAqmE9/Higs4IFCG09NX3L6Mh4gTKt2O8iW3VeyfQoPKNxeqVQ3izRLlpE8GgMHAoFPEAABEAABTQIYMGiCitetLz8G+eKjVG5bT/HbOT1sMB08kmFFiJhaTQ7jeACx1+Pf3SKFDBw6d/Y4IAkCIAACIAACvgQwYPDFUihlHx4oLOTHINtZ7po+cCj97VNJ1mZJRv2syVCOEaNJ7vAU0NMixWKe2Tiyo8cBSRAAARAAARBwEcCAwYWj0In5PFDwbrm91qGaB5xF8vU18UQy/xkqx+YByGbHXW4vi9I1T7r1SIEACIAACICAmwAGDG4eBU7dMcNdwcIspc/qTfJfH7rtcaVe5QHIQL7F8bZDJe/iCmbeHFdNKAcEQAAEQKA8CRxSnqdl6lndMZ0iW7ac5D9eJblnT3EirnOonoH9SR7FtyLWv1mc+lELCIAACIBAqRLAgCGRllvBA4ZEKt9f6dYtVLPIpOJAvSAAAiAAAqVCALckSqWlECcIgAAIgAAIJEgAA4YE4aNqEAABEAABECgVAhgwlEpLIU4QAAEQAAEQSJAABgwJwkfVIAACIAACIFAqBLDoMdaWataMiutxIsnj+TXT7/FTCG+9Rfp6eTlErLWjMBAAgWIQQD8vBmXUYR4BDBjyapOjOlP2abeQvDBNsiWJJp+fOqRanCV51SSS27aRLPbn8RbVOGIUyZbtSL7wDMm1a0jiEwQqmQD6eSW3Ps69CYFl/Bpk+c9X5POsb5KhyArT4juXf2C38UyB8PLK3SH21cy32Fszn2NTA+5QxLeL9SfzDEmRmxvVgYARBNDP82sG067b3rMxPT5vvMmnsYYhUhsMscn9ad7iuS3n/orl76vpoHs3kq14BufPGUp7P/vYpHlpFcnmzb0ehUlnaqjcwxTFH8r6wcMUDlCDQBkTQD8v48bFqeVBAAMGLXhd+HXQT/GMgPygbnMo+7m85fINvMXye6yX108//mxwNSdZZB9zXrBfvlaZMTiG6wsrb1+YA+wgUEYE0M/LqDFxKgUggAGDFtQHHiK3Nh7va3iAsCDrMXiSLTxpVXLwSJUlHv2giDMGq5bHUy9KAYFSIIB+XgqthBiTI4ABQyD74bxWYajtdnsmQ+lHWbqtTVNVfZrq/DRdLD9tfLrv8Euuwkrczg6r+VZJmD/sIFDKBNDPS7n1EHvxCGDAEMj6pglu8w5OXj3ZrQ9LnT4ozIPsux09v1y9Btl6OZdlyU9uqejlghcIlCYB9PPSbDdEXWwCGDD4Eh84gNT9bbe5JkPpzR+79apUG76H4Z2hUPm/66gs+emrqih/Z0uvnNqQNRd6pcALBMwmgH5udvsgOtMIYMDg2yJjr/JVp+6+1V+v0o4cQ5YWKgeP/u9rPYqYkvawaAVls9H84Q0CpUgA/bwUWw0xJ0cAGze52B/MA6iRtkudWp2l9Nu8Y6Pbqk5deoXa1tiykxNzFzXWxndsa65dkKc+1rwWX90oCQRMI4B+Ti2Cfm7aN9Mdj+woOnQE6b/Hi+JPsyjdiWV7Sqa2snQcOqgTyf+IzplP+nci/o5Rrv9/YsDQwGL/UVUPSkpDiPHJl+RITx7Nj2HKBklhuZ7IkMdOWSQRliGiXXvtgkMFfyUbS0SsB+4gUAoE0M+pldDPzfy2yq2yex+l+HpbenEeyW49Ff7T7iQHearvrhmUnv8sSdl4kFJ+nxgwuKh8xj/Yu1n7JcvZD7rcQhOX/IhcdO/41MwOLTInB6xdyAkbMpU5AfTzMm/gEju99u0o4Nv5B31cmtIHec5DZoAXZcmwie2dWfaz6eAEixUeIeUNs8kgUm5BX3A+6T/Z4snoTZq+RWax4zuUd2bKdefF1+qIsIzYVHID+x0kLeltmDzTV0/Ui0PiO1Xz8c88wypadumIL9ZSlZuY9xf1lIaMxmEnc/uQOc6oKVpTFqQi9POCYD1QaLGv2wcq1jxIOj657i+opYDlOixSrlcXp8neQnMx3BEdyf9B7p9SXph8n/u1asBBpe7/TBrcgUAUB6bHJ2H35h/csIYR+9QpkrMw8jHNL8xW/qLIvd3CRFP8UkePojqFN2S8PL6qp/IO9+5oVvymLmqN6Od6uE2/bicd3+Rq4ui9Li2sJX1c7xi6NE3lqd4d5K1/Df8etGxF+Ro+defMG3LgKIDA+bwoJcDFZXrocVcy9oTu2oWlDlVdbvc0N30cO1IU2IjAZ3z8xeeNlBVwiH5eAY1cwFPsP4AK9/7D+I5D+h/wKwJCbw1oxvhwhhyvm6SXQdZM3Hit1x9rGLxE8kqPSetlX5Elv9xXqwbXE3XtQpYXvQSXWnrWlcsp5iGDSX6TZ4DatCu9czEhYlkLu9mhaJYx3717TYiueDGgnxePdTnWdOFQOivvz+/cDOllxi7ugfj9d1P54yeQ7GWRVH1emSbLVN5OYNcu9kx6akYVsOhNj++kKorUO7WjSl83Uc6sMDLq2oU+/ENamGhQKgiUBwH082jtaPp1O6n4XuZbDqrfB7lFfFqBrssXjKJ2VNXv1Y9h/1QKtySi9QCF9+iLFAaF+rn5CkNMat19F7Y6VOHatTFVjGJAoIwJoJ+XceMW4dRkkW1fO7iy9hbZr+OZgGDv6NaVa6Ll6dlH/DFgEBJ5ybMH6WWXrZ/Xv6nnn6uX9tqFLNUgI8pc60M+EKgEAujnldDKhTvHI3mjBH4IL7SiY61Ql5wcNm6kbLpLj6yuUg0GDEIiJ3kI34Q6w9bLPjer55erV0++NaL7zogsZhZyRY18FUQA/byCGruAp/rhh1T4JkevEvkHU89b30v+QdylGUfDAAcDBn3KPp69TyFlax+bn+rlAi8utAf41arW1WbVNlhAAASIAPo5vglxErhjBpVWryj0U4cMt7Ofwi1ntezT0MHSK2IDz0hga2g9XkqvqgP3dpQuLsOKiPeOXJk1ErbmrRH5Qv4TMwwaVOFS6QTQzyv9GxDv+U+fTuW9zE8Zncn/6DkO6efOI/mlbDVMydg+e/E/uroFvu2Ip/e5DtFDahE4qp2WW+oTh/w2stTLFd3LtvXyLM2Sn0xN6eWCFwhUJgH088ps90KftTz2LbLQ9Un5P7xCjoLlHjYvWyR+uCUhJHKSndrqZXvf0fPL1Svq2oVazCzkihr5KpAA+nkFNnoZnnIH3jL6p2m9k3ssQ36beO0FHqvU46b00t2v5hNlCfEYhg2LVo68bCRaLniDQGUSQD+vzHYvt7OeOJ7O6LCQE5OXL07jDZsa3DHD0MAih6O6A4tBgjPLDnnBXtGt8lzvrzSf193iUB2vY4YhOmzkqFgC6OcV2/RlceLy7pPrq/VO55eTyG9dk8f/MWDQI6jw2uAoDB51J086ruTM+6ikLpZeiVi7oMcJXiDQmAD6eWMaOC4VAvJ2y0fmUMRfCwk8kyGHP/KizKbuGDA0ZRJBs4afegjbAKO3TYV25HtIEarwdb1mIql/lvY1K5VYu6BEAwMIKAmgnyvRwGAgAXltduZeCu5kKzjIGRmyjxsX7Ic1DGF8Quz/2UYO91cHOzZn8+WXBvuprM2akeW3U0jOvFPlGazH2oVgPrCCgB8B9HM/KtCZSmDaTRTZhengCH/Ntx4mjiU/7afmknoJR/DpNFhNj++YYynWT+rc4KUBRH5ZT/YRoxrOLejoeIusS2tJSjlR5b85Lhl5BtUJGwiAgD8B9HN/Liqt6ddt0+NTcVXpb5lCFtXvwx7+/bkirSohTI99GMIIadnlsZPvjib3JXzP6AjLnV1mGp5m+4os2V9hKft0nG6T/myW3jtHz2XJPoLtlFJ/vpQlm3yR1J6wgAAIqAign6vIQJ8kgdt4oHBttX8U8pLBi3km4cWsv5+21vSRlunxeUHLzMBfasjyFY/s5Ac7qtzO+S9PU3nDeYZCt5zxvObBGyfSIAACuRNAPw9mZ/p12/T4gummUn/ggYLqd2BNHZXQzQorSdeOGQZdUpH8ZFX1JTyiu/Fmyt6vD8mTe5PsZZGUt5JtpWTqA4cOljxL8vlFJHfuIHlvDUndz3nP6HrCDwRAQJcA+rkuKfjFSWA6X/8npP1LfSJD+rG878LnYavy/YtRa00faZken5psYSwbeeSoGlmKflVtYepHqSAAAoUnUOr93PTrtunxyTdM1p7N5IGCXN9Fygz2DdWSIz958xTKP59/P87jGW08JZEf16Ln7sszFMdZelU/wTMUet7wAgEQMIEA+rkJrZB8DDJQuGcWxfKLtDumLzh5Aa+d+121255rSp6uGGpTCYN4RhwDhohEBeBjNZRxJY/AnuL0uQdGYhEL1nSfNEHPke9cpDIP6/nDCwRAoIEA+nkDCxwVn4AMFO7jgcLP0+4YNjuUtgeSfCqmW85t2lB5PSyS8rluoxyxNH1qJun4plQTKJkCUkmZGurHryv1YM45eSw/timPZarqF/3UKTlXhYwgULEE0M/jbfqkr9thZ2NafDJQeID/AZXrucj1dXRGlhV2ZrnZR/M/vFKfyNO9v2emgfOeblLxncq3APbWU0QCMEz+ptp7BvmlVV8gbxyyD0TbdvnVh9wgUEkE0M8L09pJXbd1z8aU+A7m5+ZnKQYKsg9P+wJd11u3JmKLa0l6f1cO55mHVApPSQR+t4byiIs3Wgz0bWyM6t84b+Nj26bUT9IkVZ/y3vLzx5LH9m0qT+hBAAS8BNDPvUSQLgYBGSjU/Ilqk8fmvXV3tUizfLXXopc+iN3kd0n2Azqc9W0tOhA/Vh94Wu+z/4oGAwYh4Su/0dVXHaqUjZJCHRUOLVuRQWYWvA3pzXY1DxSw9bOXDNIgEE4A/TycETziIyBb/c9+kMr8cTq47OOsYHuhrG843pK9Wwh67RWebhHx/BdmKcOyZREzsrvcw5p1Dym6W8Hl3FpN9lmZYD9YQQAE1ATQz9VsYImfwCzNgUL8NUcrcV3W648Bg5eIK/23ta5kk8Qu1tyVoYPz+fGWffuauAYqZKAwnVfFXpQOdE89nSH75KnBfrCCAAiEE0A/D2cEj/wJHNmRylDdesi/hnhLaPJ0BNYwBANekvW3r3NI37eK5O7d/n5hWlmcOHsOeY60g3PMz5L9Mt7BSxanBOeCFQRAIIgA+nkQHdjiIrB3L5Uk7wz6WlwFF6icdW8qCjZltagivFRS8cl//gsVq0fnsb4HDxxU8Yte1iZcM5E0YTu5ydMZk6vJX+KR8iBBAATyJyD9Cv08f5aNS0jqut04hqBj0+MLij0ZGxY9BnKX/+BHjSC3Bc+RPNMm+X2WQ9ZTemWW5AqWzS1Kn8iyH0vvWyzJq+GzNkvH108muWp5gw1HIAAC8RJAP4+XJ0orcwKmj7RMiU9uIdxTQ1+InfUk5YITVX7B+f/KMxXn2GX+RcPpgUAJEEA/j6eRTLluq87G9PhUcSenxwxDJPayv8F4fozxxmsp+8jhJLt3JdnNItmK5ccOpTdtJPnGGpILFpGUt1BSCp8gAAJJEkA/T5I+6jaXAA8YZOMfb6B7HK8mmbSp8W3dQjxqMslwQa0gAAKFJ4B+nhtjU6/bcjamxydxmiP5scqPHP+QPvJXF137keNfpSnx+UcHLQiAAAhULoGPHP9zN+W6bXp8/vQM0Mr7ruvqKJh3Wdq2AcHtD8H0+MyghChAAARAwBwCpl+3TY/PnJaUSP4HyiARXCXX284AAAAASUVORK5CYII=;" parent="1" vertex="1"> + <mxGeometry x="518" y="660" width="41.49" height="11.72" as="geometry" /> + </mxCell> + <mxCell id="hdwB_MQwIhiL4xS-3u5l-86" value="" style="shape=image;verticalLabelPosition=bottom;labelBackgroundColor=default;verticalAlign=top;aspect=fixed;imageAspect=0;image=data:image/png,iVBORw0KGgoAAAANSUhEUgAAAHQAAABAEAYAAACb4Y/fAAAKqGlDQ1BJQ0MgUHJvZmlsZQAASImVlwdQU+kWgP9700NCS4h0Qm/SWwApIbTQpYOohCRAKCEGgogdWVyBtSAighVdEFFwVYosNkSxLQKKXRdkEVHWxYINlXeBIbj75r0378ycOd899/znP+ef+8+cCwBZniMSpcHyAKQLs8ShPh706JhYOm4YQEANEAAJQBxupogZEhIAEJm1f5f3d5BoRG6ZTeX69/f/VRR4/EwuAFAIwgm8TG46wqcQfcEVibMAQO1H/LrLs0RT3IEwVYwUiPC9KU6a4dEpTphmNJiOCQ9lIUwFAE/icMRJAJDoiJ+ezU1C8pDcEbYU8gRChEUIu6anZ/AQPo6wERKD+EhT+RkJ3+VJ+lvOBGlODidJyjO9TAveU5ApSuOs+D+P439Leppkdg8DREnJYt9QxCoiZ3YvNcNfysKEoOBZFvCm46c5WeIbMcvcTFbsLPM4nv7StWlBAbOcKPBmS/NkscNnmZ/pFTbL4oxQ6V6JYhZzljniuX0lqRFSfzKfLc2fmxweNcvZgsigWc5MDfOfi2FJ/WJJqLR+vtDHY25fb2nv6Znf9StgS9dmJYf7SnvnzNXPFzLncmZGS2vj8T295mIipPGiLA/pXqK0EGk8P81H6s/MDpOuzUI+yLm1IdIzTOH4hcwyYIEMkIaoGNBBAPLkCUAWPydrqhFWhmiFWJCUnEVnIjeMT2cLuebz6daW1jYATN3Xmc/hLW36HkK0a3O+vIMAuLhOTk62zfn8hwA4OQYA8fGczwg5I9leAK6UciXi7Bnf9F3CACKQA1SgAjSBLjACZsAa2ANn4A68gB8IBuEgBiwBXJAM0pHKl4NVYD0oAEVgK9gBKsA+cBAcBsfACdAM2sAFcBlcB92gDzwE/WAIvARj4D2YgCAIB5EhCqQCaUH6kClkDTEgV8gLCoBCoRgoHkqChJAEWgVtgIqgEqgCOgDVQr9Ap6EL0FWoB7oPDUAj0BvoM4yCSTAV1oANYAuYATNhfzgcXgwnwcvgXDgf3gyXw1XwUbgJvgBfh/vgfvglPI4CKBkUDaWNMkMxUCxUMCoWlYgSo9agClFlqCpUPaoV1Ym6hepHjaI+obFoCpqONkM7o33REWguehl6DboYXYE+jG5Cd6BvoQfQY+hvGDJGHWOKccKwMdGYJMxyTAGmDFONacRcwvRhhjDvsVgsDWuIdcD6YmOwKdiV2GLsHmwD9jy2BzuIHcfhcCo4U5wLLhjHwWXhCnC7cEdx53C9uCHcR7wMXgtvjffGx+KF+Dx8Gf4I/iy+Fz+MnyDIE/QJToRgAo+wgrCFcIjQSrhJGCJMEBWIhkQXYjgxhbieWE6sJ14iPiK+lZGR0ZFxlFkoI5BZJ1Muc1zmisyAzCeSIsmExCLFkSSkzaQa0nnSfdJbMplsQHYnx5KzyJvJteSL5Cfkj7IUWXNZtixPdq1spWyTbK/sKzmCnL4cU26JXK5cmdxJuZtyo/IEeQN5ljxHfo18pfxp+bvy4woUBSuFYIV0hWKFIwpXFZ4r4hQNFL0UeYr5igcVLyoOUlAUXQqLwqVsoByiXKIMUbFUQyqbmkItoh6jdlHHlBSVbJUilXKUKpXOKPXTUDQDGpuWRttCO0G7Q/s8T2Mecx5/3qZ59fN6531QVlN2V+YrFyo3KPcpf1ahq3ippKpsU2lWeayKVjVRXai6XHWv6iXVUTWqmrMaV61Q7YTaA3VY3UQ9VH2l+kH1G+rjGpoaPhoijV0aFzVGNWma7popmqWaZzVHtCharloCrVKtc1ov6Ep0Jj2NXk7voI9pq2v7aku0D2h3aU/oGOpE6OTpNOg81iXqMnQTdUt123XH9LT0AvVW6dXpPdAn6DP0k/V36nfqfzAwNIgy2GjQbPDcUNmQbZhrWGf4yIhs5Ga0zKjK6LYx1phhnGq8x7jbBDaxM0k2qTS5aQqb2psKTPeY9szHzHecL5xfNf+uGcmMaZZtVmc2YE4zDzDPM282f2WhZxFrsc2i0+KbpZ1lmuUhy4dWilZ+VnlWrVZvrE2sudaV1rdtyDbeNmttWmxe25ra8m332t6zo9gF2m20a7f7au9gL7avtx9x0HOId9jtcJdBZYQwihlXHDGOHo5rHdscPznZO2U5nXD6y9nMOdX5iPPzBYYL+AsOLRh00XHhuBxw6Xelu8a77nftd9N247hVuT1113XnuVe7DzONmSnMo8xXHpYeYo9Gjw8sJ9Zq1nlPlKePZ6Fnl5eiV4RXhdcTbx3vJO867zEfO5+VPud9Mb7+vtt877I12Fx2LXvMz8FvtV+HP8k/zL/C/2mASYA4oDUQDvQL3B74KEg/SBjUHAyC2cHbgx+HGIYsC/l1IXZhyMLKhc9CrUJXhXaGUcKWhh0Jex/uEb4l/GGEUYQkoj1SLjIusjbyQ5RnVElUf7RF9Oro6zGqMYKYllhcbGRsdez4Iq9FOxYNxdnFFcTdWWy4OGfx1SWqS9KWnFkqt5Sz9GQ8Jj4q/kj8F04wp4oznsBO2J0wxmVxd3Jf8tx5pbwRvgu/hD+c6JJYkvg8ySVpe9JIsltyWfKogCWoELxO8U3Zl/IhNTi1JnUyLSqtIR2fHp9+WqgoTBV2ZGhm5GT0iExFBaL+ZU7LdiwbE/uLqzOhzMWZLVlUZDC6ITGS/CAZyHbNrsz+uDxy+ckchRxhzo0VJis2rRjO9c79eSV6JXdl+yrtVetXDaxmrj6wBlqTsKZ9re7a/LVD63zWHV5PXJ+6/rc8y7ySvHcboja05mvkr8sf/MHnh7oC2QJxwd2Nzhv3/Yj+UfBj1yabTbs2fSvkFV4rsiwqK/pSzC2+9pPVT+U/TW5O3Ny1xX7L3q3YrcKtd7a5bTtcolCSWzK4PXB7Uym9tLD03Y6lO66W2Zbt20ncKdnZXx5Q3rJLb9fWXV8qkiv6Kj0qG3ar7960+8Me3p7eve576/dp7Cva93m/YP+9Az4HmqoMqsoOYg9mH3x2KPJQ58+Mn2urVauLqr/WCGv6D4ce7qh1qK09on5kSx1cJ6kbORp3tPuY57GWerP6Aw20hqLj4Ljk+Itf4n+5c8L/RPtJxsn6U/qndjdSGguboKYVTWPNyc39LTEtPaf9Tre3Orc2/mr+a02bdlvlGaUzW84Sz+afnTyXe278vOj86IWkC4PtS9sfXoy+eLtjYUfXJf9LVy57X77Yyew8d8XlSttVp6unrzGuNV+3v950w+5G4292vzV22Xc13XS42dLt2N3as6DnbK9b74Vbnrcu32bfvt4X1NdzJ+LOvbtxd/vv8e49v592//WD7AcTD9c9wjwqfCz/uOyJ+pOq341/b+i37z8z4Dlw42nY04eD3MGXf2T+8WUo/xn5Wdmw1nDtc+vnbSPeI90vFr0Yeil6OTFa8KfCn7tfGb069Zf7XzfGoseGXotfT74pfqvytuad7bv28ZDxJ+/T3098KPyo8vHwJ8anzs9Rn4cnln/BfSn/avy19Zv/t0eT6ZOTIo6YMz0KoBCFExMBeFMDADkGAEo3Mj8smpmnpwWa+QeYJvCfeGbmnhZ7AOoRMzUWsc4DcBxRA0TJiE6NROHuALaxkers7Ds9p08JFvlj2W87Rb20nHXgHzIzw39X9z8tmMo6vfxv9l8BhAf7uiw5BAAABeRlWElmTU0AKgAAAAgABgEGAAMAAAABAAIAAAESAAMAAAABAAEAAAEaAAUAAAABAAAAVgEbAAUAAAABAAAAXgEoAAMAAAABAAIAAIdpAAQAAAABAAAAZgAAAAAAAACQAAAAAQAAAJAAAAABAAOShgAHAAAFVAAAAJCgAgAEAAAAAQAAAHSgAwAEAAAAAQAAAEAAAAAAQVNDSUkAAABBQUFFNjNqYWJWTnJiQlJWRkQ1M2JxRVBhSGZhOGlqbE5kaXRGaERjUXBXNitPaVdzbENoeTJOMnU5dDJ5M3AzCjl1N3VzTE16Njh6ZHdySnBjbjhZTUFaLytBc2hSRzBib3hqakswcU04UkVpb0RHbTBXMGpKa1FOdi9oai9PRWYKWTRpSmR4OUJOTXpOWk00NTk1NXp2dlBkYitJNVEzZVl4N09JSkZ5M1pHbDlVOFE5UlcxSHQ4d3hON0cxdEM2OApvSnRadVlqYmloK25HblBhQUoxK1BTYTdBdW9CV3FBSlgrM1FEdzJOUWR1eUdFZnZ5WnVXTGU5KzhLR2V6VnUyClByeHQreU9QN241aVlPaVpBMGVPams4Y0l6UjVQSnRqK1pEYnpCdkdRbk9MUys1MGh3UHE5Z3d0T09QaVcyc3kKNnRZTTRqaVhXdHZhVjZ4Y3RicGpEWmM0NW5WOENWL0s2M2tEYitSTmw5YXVXNzlobzdMcGdTNitqQy9uTGR6RgpXM2tuWDh2WDh3MWNpY1NKUXczZHBDSE5NaXc3bUxVU05NUjBadEJJenFZa0d6Zm9aSmFrVEQycGE0U0pjWU1KCndxZ1lLMDYwVE1xMjhtWmlUemx4M0xIeXRrYUQ5Q1RyZ3RxejRPbDE3ZGpaRndxb1IvY05SZ05xNWFDYUl4cjEKZXhTeFFFYTh1ZlRZcnY3SHg2dGptQ1JMSTFXVE91RmF3bXkvTnhKUUQxWG1sZXRLcmllZmVucE1FT0F3V3pkVApYRDRzQ3ZnR0t6eVA1QmtSZU5YS3pweHZUem12Nml6c2RmbjM3UisrNndzd1BpYXNlSjVSaDdmeE5idzlKcGVpCkNVdkxaNm5KS2dnbWVqMDVObGtrTnRNMWcwNDNSZk1PRmRnekpFVW5oRm5HNmt3V0s2eE5LOTBpa2xDU2xpMWUKa3ltVjZMMFpSWkoxbkVJMkxrNW1DVXM3Lzk4ckIrKzNONUZueWY3Sm9tN21CRkpUcXpaSzVnMkZXUW9yNUtpUwowRzNCaTFFUUJ0RnNYV0JWdERTeGljYUVPcHZLd2prWU9Ed3p3bGZNSE9JcmVjZG9RUFVMZ0l0cU1PUWFEVWZHCmhLL3FwNmdnSnVrM1NNb1Jma0FNMWpYUVU3MUNXZWFyK09yUkVjc2ttaVdZams3V0tzeEd2Y0tOUFN1WUhOSzEKc2pDSVhaaU5sWU54TFNhMzNVTndvc3I1Yk1KNzMzalh3R0MxVnlubFN1dGxqVE5kSVBCZHZWNS85bUo0QzE4bgpTbVlNMFhaSUNHODI0eTJyeXR6WjUrOVZ4QUxlWEw3YjUvWVA4NDNWVzJ5THNqUmxKQlpsUW9xQ09KMU5pd0pUCkoySnkrMTJGL0l0NGJpcm1oUVpvaFU1d3cyYllBYnRnR0E3Q0VWRGhCRXpEODNBV3pzR3I4QmE4RGUvQXUvQSsKZkFnZndXWDRCRDZGcTNBZHZvRnY0VHVZaCsraEJJdndJL3dFdCtBMi9BWi93QjNVaUZxUWdyYWlQclFiK1ZBQQpoVkFZamFGalNFYzJPb1dtMFduMEFub0puVVBuMFFYMEd2b0FmWXkrUU5mUVBMcUpma2Evb2x2U1plbHo2VXZwCml2U1ZkRTM2V3BxWGJraS9TTGVsMzZVL3BiK2tPOUxmdUE0M1lobTM0dzdjalh2d05qeUk5K0p4ck9FMHp1RUMKTG1LT3orQVg4Y3Y0Rlh3QnorQTUvQVorRTMrR3IrQWJWYllsVlB0TFQ4Si9Ibnp6SDZnbGx6cz11ijupAAAACXBIWXMAABYlAAAWJQFJUiTwAAAI5GlUWHRYTUw6Y29tLmFkb2JlLnhtcAAAAAAAPHg6eG1wbWV0YSB4bWxuczp4PSJhZG9iZTpuczptZXRhLyIgeDp4bXB0az0iWE1QIENvcmUgNi4wLjAiPgogICA8cmRmOlJERiB4bWxuczpyZGY9Imh0dHA6Ly93d3cudzMub3JnLzE5OTkvMDIvMjItcmRmLXN5bnRheC1ucyMiPgogICAgICA8cmRmOkRlc2NyaXB0aW9uIHJkZjphYm91dD0iIgogICAgICAgICAgICB4bWxuczp0aWZmPSJodHRwOi8vbnMuYWRvYmUuY29tL3RpZmYvMS4wLyIKICAgICAgICAgICAgeG1sbnM6ZXhpZj0iaHR0cDovL25zLmFkb2JlLmNvbS9leGlmLzEuMC8iPgogICAgICAgICA8dGlmZjpDb21wcmVzc2lvbj4xPC90aWZmOkNvbXByZXNzaW9uPgogICAgICAgICA8dGlmZjpSZXNvbHV0aW9uVW5pdD4yPC90aWZmOlJlc29sdXRpb25Vbml0PgogICAgICAgICA8dGlmZjpYUmVzb2x1dGlvbj4xNDQ8L3RpZmY6WFJlc29sdXRpb24+CiAgICAgICAgIDx0aWZmOllSZXNvbHV0aW9uPjE0NDwvdGlmZjpZUmVzb2x1dGlvbj4KICAgICAgICAgPHRpZmY6UGhvdG9tZXRyaWNJbnRlcnByZXRhdGlvbj4yPC90aWZmOlBob3RvbWV0cmljSW50ZXJwcmV0YXRpb24+CiAgICAgICAgIDx0aWZmOk9yaWVudGF0aW9uPjE8L3RpZmY6T3JpZW50YXRpb24+CiAgICAgICAgIDxleGlmOlBpeGVsWERpbWVuc2lvbj4xMTY8L2V4aWY6UGl4ZWxYRGltZW5zaW9uPgogICAgICAgICA8ZXhpZjpVc2VyQ29tbWVudD5BQUFFNjNqYWJWTnJiQlJWRkQ1M2JxRVBhSGZhOGlqbE5kaXRGaERjUXBXNitPaVdzbENoeTJOMnU5dDJ5M3AzJiN4QTs5dTd1c0xNejY4emR3ckpwY244WU1BWi8rQXNoUkcwYm94ampLMHFNOFJFaW9ER20wVzBqSmtRTnYvaGovT0VmJiN4QTtZNGlKZHg5Qk5Nek5aTTQ1OTU1enZ2UGRiK0k1UTNlWXg3T0lKRnkzWkdsOVU4UTlSVzFIdDh3eE43RzF0QzY4JiN4QTtvSnRadVlqYmloK25HblBhQUoxK1BTYTdBdW9CV3FBSlgrM1FEdzJOUWR1eUdFZnZ5WnVXTGU5KzhLR2V6VnUyJiN4QTtQcnh0K3lPUDduNWlZT2laQTBlT2prOGNJelI1UEp0aitaRGJ6QnZHUW5PTFMrNTBod1BxOWd3dE9PUGlXMnN5JiN4QTs2dFlNNGppWFd0dmFWNnhjdGJwakRaYzQ1blY4Q1YvSzYza0RiK1JObDlhdVc3OWhvN0xwZ1M2K2pDL25MZHpGJiN4QTtXM2tuWDh2WDh3MWNpY1NKUXczZHBDSE5NaXc3bUxVU05NUjBadEJJenFZa0d6Zm9aSmFrVEQycGE0U0pjWU1KJiN4QTt3cWdZSzA2MFRNcTI4bVppVHpseDNMSHl0a2FEOUNUcmd0cXo0T2wxN2RqWkZ3cW9SL2NOUmdOcTVhQ2FJeHIxJiN4QTtleFN4UUVhOHVmVFlydjdIeDZ0am1DUkxJMVdUT3VGYXdteS9OeEpRRDFYbWxldEtyaWVmZW5wTUVPQXdXemRUJiN4QTtYRDRzQ3ZnR0t6eVA1QmtSZU5YS3pweHZUem12Nml6c2RmbjM3UisrNndzd1BpYXNlSjVSaDdmeE5idzlKcGVpJiN4QTtDVXZMWjZuSktnZ21lajA1Tmxra050TTFnMDQzUmZNT0ZkZ3pKRVVuaEZuRzZrd1dLNnhOSzkwaWtsQ1NsaTFlJiN4QTtreW1WNkwwWlJaSjFuRUkyTGs1bUNVczcvOThyQisrM041Rm55ZjdKb203bUJGSlRxelpLNWcyRldRb3I1S2lTJiN4QTswRzNCaTFFUUJ0RnNYV0JWdERTeGljYUVPcHZLd2prWU9Ed3p3bGZNSE9JcmVjZG9RUFVMZ0l0cU1PUWFEVWZHJiN4QTtoSy9xcDZnZ0p1azNTTW9SZmtBTTFqWFFVNzFDV2VhcitPclJFY3NrbWlXWWprN1dLc3hHdmNLTlBTdVlITksxJiN4QTtzakNJWFppTmxZTnhMU2EzM1VOd29zcjViTUo3MzNqWHdHQzFWeW5sU3V0bGpUTmRJUEJkdlY1LzltSjRDMThuJiN4QTtTbVlNMFhaSUNHODI0eTJyeXR6WjUrOVZ4QUxlWEw3YjUvWVA4NDNWVzJ5THNqUmxKQlpsUW9xQ09KMU5pd0pUJiN4QTtKMkp5KzEyRi9JdDRiaXJtaFFab2hVNXd3MmJZQWJ0Z0dBN0NFVkRoQkV6RDgzQVd6c0dyOEJhOERlL0F1L0ErJiN4QTtmQWdmd1dYNEJENkZxM0Fkdm9GdjRUdVloKytoQkl2d0kvd0V0K0EyL0FaL3dCM1VpRnFRZ3JhaVByUWIrVkFBJiN4QTtoVkFZamFGalNFYzJPb1dtMFduMEFub0puVVBuMFFYMEd2b0FmWXkrUU5mUVBMcUpma2Evb2x2U1plbHo2VXZwJiN4QTtpdlNWZEUzNldwcVhia2kvU0xlbDM2VS9wYitrTzlMZnVBNDNZaG0zNHc3Y2pYdndOanlJOStKeHJPRTB6dUVDJiN4QTtMbUtPeitBWDhjdjRGWHdCeitBNS9BWitFMytHcitBYlZiWWxWUHRMVDhKL0huenpINmdsbHpzPTwvZXhpZjpVc2VyQ29tbWVudD4KICAgICAgICAgPGV4aWY6UGl4ZWxZRGltZW5zaW9uPjY0PC9leGlmOlBpeGVsWURpbWVuc2lvbj4KICAgICAgPC9yZGY6RGVzY3JpcHRpb24+CiAgIDwvcmRmOlJERj4KPC94OnhtcG1ldGE+Cqzwjq0AAAzWSURBVHgB7V17jBXVGb/LG0RZHkYsWEalKGhhFRuwFhioUrURoaVIX+ECKdFYKmhM09p0L23FmqpAS9LGhC61NVBNH5QEq7TsFapFA7goEqiPHYQClgUXBY089rbp9/12s+fOueecmbkPdr/9Y7453/v87n7zOHPmTFXqnPjr0YPSvOQTRFs462Af7eRyzBAiCAgCxUNgwCDyff8ioq/UE23hAkQhgp5g/ousN2168XITz4JAp0OgSxfq8ne4II81UhsFGJX+sY789OzZ6SCVDgsC8REYyGfKZ/nMpyvEo1ywD9VSzIk+0auuJPokF6LO/ncsJ23ZCgKCQEEEhg4l8dtceLrC2svy4VyIOqddu5KkweDvW2mdB+ELAoJACmfM3YZC2lFPYPWvdgMNZ1Zdwb/DceWS1w1X0e7gCPTtSx18iQtPV0DNOdK7zIsHyBEuRF2cuel4/sVaEOgQCOCxyHOGwkQhTU9o9NUUb21dh4BXOiEIxENgORcCClBH1yRcMI/WUt66eO82kryqKl7/xFoQOCcRuGE8pX02R1RXKB+wfAgPGiXV2QcyheMin6trkooofgSBYiLAzyHjhujVizysWkPU5HbpEtL794G4kdvbf9jcvq1rTfF1EuELApWEgKmSLHNd8l1SvMIrbHA0IPkvHimsF1V62tJw3BhLRVETBMqKQMwCvY4vae/L2PVi+W9I78QJO31Xrd6WBkM9S0VREwTOZQS21FP2uLfTUTxG6ef4fNMVm0zGLp83Gl09i74gUA4EIp5BJ/mU7OeYmlL/VYY0jlveI5r86eQXD9NJ2vPPa9+UliDQsRDYaHnmxBl1hGHKXlLomOb2Ip9/yRk0KcjFTyUhMI7vOfGPbqL/5EIuVR9QeKa8DkqBluonkTilRGC945nzzkWlyQ6PeU7nKJ6pQHdJgZbmh5EopUFgdI3dPz4K4xQXiuuk96i9wWgy4ptolg80UeOJnSBQGgQsB4nSt7ulsyVL+u8VeVAIWdU43uM2BbAUKghUMgKGAsWKB7PSbp1Yv85NP672NZPcPBxxUxdtQaBMCBgKdOJEymuI55bf+j+76cfVvt4xPzmDxkVc7EuDgKFAZ89xS2NvQPpvMXWzdtfG+6ajfTfbA7waoJuVaAsCpUZAU6Ddu1MiM323hDZm3fTjao+7jjzwyifW7l5usFYVRUGgjAhoCvSmL1JOAz233DaW+N7zBt8tvw9Z/bVdbnaiLQiUB4Fu4WE/H/Ftj/n3kL+vOI76hmdh5tpONYSn7VnaO3MGHKGCQCUjoCnQ8X60pKdFtIsWzd1qa9bdRiwEgfIhoFzi4t7zWr98KRUz8tadxfQuvgWBpBFQzqBjxlIAXiDBOtq9i0m1oUSDL0trKZ7rmX7rNusuhSp+lucij2a6h/u7eTOpt7SEmgkzIQQ6Pf7fXkRImqbKQX4mR/oXXJDQL2DpZlu9W55xJ+3X1RWOFzSSHAtzW3ZD1CwREPwZKHwqAQVootu5UCxxjq1WXU0ucGAw5Qf5PXzgcU1gik8W8GOi+BSFaxzRD0dgik98E+6Qdzz8lUvcqxkQgsW83Zw16ySpcZNP3myfe+KK86m10bK4psbNLu7C227ROr52peOPj37hlvCZLP0mrzUk9dsoBXqho98tJR50ucXx8c3zDNihw44dY/WDzW52tgcON6+dV7tS8cfrjcuX0W+DZZab5lI7uQJVfvuPc8TAJYOJJr2urZJOaxMLTR/iez1TXpAvSLe6iLQziL/CZvqkBOItjHgpHSm5TmBUqfhfcSWBj98ddF66SD/K+TzIg0Am2sSFUqR08ty6ruSA91Hx0aY8h44MvA/7dB0ZHub+48Xve7kwcSBxdC/qBgQqDf8v+JSwWidFK9BLvfCAagJob6on/VJtV3BhIL6JrmL9UuUncToXArpPmyRfoDxRYdBgN4BfDdz0o2rj+593+HYeMCj004ft9EVLEHBBoHcf0p7ju1jF0eUCHYBhKEtfb5ZocOjGCZTQRZ5dYk+tJr039tjpi5Yg4ILA7FmkXe25WMXR5QL92NHH/sDRIKL6vDl2hjlWW7rCTl+0BAEXBDAo9FCti1WCuldpRqV093rX1iQYPMTVpR4xbSck/KU+xImwBIGYCHgeOdjfSFRXD+Anfw/Kz0GPOD7vO+qo74rTYj5SmZ4r4p5zyWLXCOH6/aqJ/2k+AA3kdh7tR3p4X5afxqRe5Ev/ny0P92/iXsKfYxw+nP2r8T3m55iizXTlEuI/myWqbjEl8/YvkeRTw4gO94j2Z3ogoPZb+5g2EP37P4geayKa9Lbc+GOFjq/OpJ79kP8Ph3p2Pb2c8bye52rbWbVp4T3lvG8XYTDG9F1PHCkuxH9km+9E9gaw35M5cod4OorRtESC/8/JzOl2cXX5PFEXL5OVbK/zb+KrR3BMjXy4lvI6bomrLs7RRvJz9yKi+L+J1+s263Lhj6cSLTHx0eFmy8fjxDZE+Ax69iyxjgVEB3lEdVtW14kj8++7m0x5sEzrpzEg0QMLtSqRBKVaJjRScg5GwzxS3lBPdBS3qZVK7Q5ob1OW6Ot85sc7D5N4xtatPsmxHeDR3kqeQTN+DLW/ORca8Wi58McgZFW89Itv/QL/oKaKHzw42VzwD/WR5RHsRj/Z+Ko3XKJ8mc+of6gjDRMucc+gmMuL/n0jTXHrLX+X72VIH5+2QL6YWIKV/rGcKmnrtz+pJRn86OhkX+8jiqTU+F/uUZajeCxGpbdZXln9IFPYj+pXbeMxDnkJ2eIH1v0Q4GNUK8RFJNbvLQvg16wXKUgMo258pfFOIzkBDiqNW6C6FHHveCJXOL6azwHO96KIB1TMjIIf1T/auETU5R+XX278UUjor46qtxhx+51K8WMWOLJdz3ZIxB8ccUB9n/ZmpcEJp1jGEy+Gh2sVj4s1jN4OihejkOf33yfpoaCQVpsMtyBf40vPdw+3yVz28I+4PlvYaqRXWB5XWm784+Yf3V4p0F0N5CoICrt0fQ1I9YZBJrx/qsrRPhzQ3tTJRJubISkPxaqA5YmeSp20DPxohhQ3Zy0NDGr79hVWGOyRHKOghbWjS8uNf/TMo1oqBQo3piPmrTyIAH1binufJ58miyFeuCWfMFI3zyB5uc5c4dlVPnfD88nmeNzywHgxPyZKNnpn9qYp0J/zXFbdDKMJPoGGxyImCLEY2eOrSBMvXqt2iDeNz5g7+Yyu6kk7HAE8F94ec+0l1ftZywKtUg2lHRMBTYG+uYf8PpIJ988Lz6fW8JkQN/GqNi5l//YcSeanVQ1qH2f2DD5j4kXrcG3h6hDYG5Ak70G3zkD4FY4Aj07qssw8SBI8R5uRbq851af21o1EXwiIjvCITvKJ9iaSt301INbMW4jKJPc8iJwYBwMndVGueAQMBYrRszsWUE8e4w7dmaYdmI/1qc2rdlIjZNsUEPNHK4j+ciVRxKGWbAUBQYAQQIUZ8Dh9mhQWziW6gu9Rvz6b2iOHEcWEA9yyYDT4r+tI/swGoqdOEZWtICAIFELAskBVF7hHXZJRJdIWBAQBWwTwcsRjP25vcdf91G5q0gwStVeXliAgCBQDgQv6kteZ6fa0D/PzZhIVIwnxKQgIAlERkDNoVOTErhMhwFOgjT12vWPE+6+q45bWz2NKgarYSFsQyEPAduHzQV6eaUHGMH57Bko8Fps63Dp3WgoU2FhR0xGyq5WX6Eqm+CZ51Mjdqu0sixUf0U3+i4U/5oC/FyCTcPoZfpoRLs3nqvqY0tr22FEKNB+1EA5eu8JjpBCV/7M+6ekk8fiYKjnE4Abxka9B3Vrs9bNT9ZQzgp2VWQv9KRf+yLA+i71wOjVN/Mu8cDm4uLSdnwGH6NZs+3YqJZMn2yFSU0PN8T7R81iKFQZuYz6zteSJ1STatpMo1nxay3zi5m/V719ihYOb+eWEyX6+TRhnQ5a4m/j580lWepn5OxqYwQRLo8yaTowe1URHjCG6IE20JxHtdn9AIvT/4HFqf9BM9Lerieq25cZflxf4Y2tob9sr4ITTLVniz7uLKB5L9mdc1/2J+BN8orjlHDmyvT61ZNuKwPcztIv3IJOmfQxrucRdk8iUb4b719ph3rF9IdnkXyf/T6MaMbxdbvzDs8rnLl5EPF1/VT6+H6tbMeTB2vwYxDFd1OvsOih/dwN1DBOdTgbUxhkI7yPirZsc49CLKeqvN9oe7UCO1+1YrCWIfyIgFTU+5GdZ3sUjPZzhWuMTO3U+y1/n/jE7j7QwB/EQ/yPmg54OiFHlEe1OJIV+Aoe+LN8VsIKBVAr+hjRTy5aTBu4Zly6jNuasq/bqpTl+P8zMe3y1aoG2XOICCaGCQGwE8IX1UcPJ1agaojhw4tbipR3Ex0oZ+sD/BS3zQy4VFGS9AAAAAElFTkSuQmCC;" parent="1" vertex="1"> + <mxGeometry x="226" y="630" width="24.82" height="13.7" as="geometry" /> + </mxCell> + <mxCell id="hdwB_MQwIhiL4xS-3u5l-89" value="" style="shape=image;verticalLabelPosition=bottom;labelBackgroundColor=default;verticalAlign=top;aspect=fixed;imageAspect=0;image=data:image/png,iVBORw0KGgoAAAANSUhEUgAAACIAAAAwEAYAAAAkyXQRAAAKqGlDQ1BJQ0MgUHJvZmlsZQAASImVlwdQU+kWgP9700NCS4h0Qm/SWwApIbTQpYOohCRAKCEGgogdWVyBtSAighVdEFFwVYosNkSxLQKKXRdkEVHWxYINlXeBIbj75r0378ycOd899/znP+ef+8+cCwBZniMSpcHyAKQLs8ShPh706JhYOm4YQEANEAAJQBxupogZEhIAEJm1f5f3d5BoRG6ZTeX69/f/VRR4/EwuAFAIwgm8TG46wqcQfcEVibMAQO1H/LrLs0RT3IEwVYwUiPC9KU6a4dEpTphmNJiOCQ9lIUwFAE/icMRJAJDoiJ+ezU1C8pDcEbYU8gRChEUIu6anZ/AQPo6wERKD+EhT+RkJ3+VJ+lvOBGlODidJyjO9TAveU5ApSuOs+D+P439Leppkdg8DREnJYt9QxCoiZ3YvNcNfysKEoOBZFvCm46c5WeIbMcvcTFbsLPM4nv7StWlBAbOcKPBmS/NkscNnmZ/pFTbL4oxQ6V6JYhZzljniuX0lqRFSfzKfLc2fmxweNcvZgsigWc5MDfOfi2FJ/WJJqLR+vtDHY25fb2nv6Znf9StgS9dmJYf7SnvnzNXPFzLncmZGS2vj8T295mIipPGiLA/pXqK0EGk8P81H6s/MDpOuzUI+yLm1IdIzTOH4hcwyYIEMkIaoGNBBAPLkCUAWPydrqhFWhmiFWJCUnEVnIjeMT2cLuebz6daW1jYATN3Xmc/hLW36HkK0a3O+vIMAuLhOTk62zfn8hwA4OQYA8fGczwg5I9leAK6UciXi7Bnf9F3CACKQA1SgAjSBLjACZsAa2ANn4A68gB8IBuEgBiwBXJAM0pHKl4NVYD0oAEVgK9gBKsA+cBAcBsfACdAM2sAFcBlcB92gDzwE/WAIvARj4D2YgCAIB5EhCqQCaUH6kClkDTEgV8gLCoBCoRgoHkqChJAEWgVtgIqgEqgCOgDVQr9Ap6EL0FWoB7oPDUAj0BvoM4yCSTAV1oANYAuYATNhfzgcXgwnwcvgXDgf3gyXw1XwUbgJvgBfh/vgfvglPI4CKBkUDaWNMkMxUCxUMCoWlYgSo9agClFlqCpUPaoV1Ym6hepHjaI+obFoCpqONkM7o33REWguehl6DboYXYE+jG5Cd6BvoQfQY+hvGDJGHWOKccKwMdGYJMxyTAGmDFONacRcwvRhhjDvsVgsDWuIdcD6YmOwKdiV2GLsHmwD9jy2BzuIHcfhcCo4U5wLLhjHwWXhCnC7cEdx53C9uCHcR7wMXgtvjffGx+KF+Dx8Gf4I/iy+Fz+MnyDIE/QJToRgAo+wgrCFcIjQSrhJGCJMEBWIhkQXYjgxhbieWE6sJ14iPiK+lZGR0ZFxlFkoI5BZJ1Muc1zmisyAzCeSIsmExCLFkSSkzaQa0nnSfdJbMplsQHYnx5KzyJvJteSL5Cfkj7IUWXNZtixPdq1spWyTbK/sKzmCnL4cU26JXK5cmdxJuZtyo/IEeQN5ljxHfo18pfxp+bvy4woUBSuFYIV0hWKFIwpXFZ4r4hQNFL0UeYr5igcVLyoOUlAUXQqLwqVsoByiXKIMUbFUQyqbmkItoh6jdlHHlBSVbJUilXKUKpXOKPXTUDQDGpuWRttCO0G7Q/s8T2Mecx5/3qZ59fN6531QVlN2V+YrFyo3KPcpf1ahq3ippKpsU2lWeayKVjVRXai6XHWv6iXVUTWqmrMaV61Q7YTaA3VY3UQ9VH2l+kH1G+rjGpoaPhoijV0aFzVGNWma7popmqWaZzVHtCharloCrVKtc1ov6Ep0Jj2NXk7voI9pq2v7aku0D2h3aU/oGOpE6OTpNOg81iXqMnQTdUt123XH9LT0AvVW6dXpPdAn6DP0k/V36nfqfzAwNIgy2GjQbPDcUNmQbZhrWGf4yIhs5Ga0zKjK6LYx1phhnGq8x7jbBDaxM0k2qTS5aQqb2psKTPeY9szHzHecL5xfNf+uGcmMaZZtVmc2YE4zDzDPM282f2WhZxFrsc2i0+KbpZ1lmuUhy4dWilZ+VnlWrVZvrE2sudaV1rdtyDbeNmttWmxe25ra8m332t6zo9gF2m20a7f7au9gL7avtx9x0HOId9jtcJdBZYQwihlXHDGOHo5rHdscPznZO2U5nXD6y9nMOdX5iPPzBYYL+AsOLRh00XHhuBxw6Xelu8a77nftd9N247hVuT1113XnuVe7DzONmSnMo8xXHpYeYo9Gjw8sJ9Zq1nlPlKePZ6Fnl5eiV4RXhdcTbx3vJO867zEfO5+VPud9Mb7+vtt877I12Fx2LXvMz8FvtV+HP8k/zL/C/2mASYA4oDUQDvQL3B74KEg/SBjUHAyC2cHbgx+HGIYsC/l1IXZhyMLKhc9CrUJXhXaGUcKWhh0Jex/uEb4l/GGEUYQkoj1SLjIusjbyQ5RnVElUf7RF9Oro6zGqMYKYllhcbGRsdez4Iq9FOxYNxdnFFcTdWWy4OGfx1SWqS9KWnFkqt5Sz9GQ8Jj4q/kj8F04wp4oznsBO2J0wxmVxd3Jf8tx5pbwRvgu/hD+c6JJYkvg8ySVpe9JIsltyWfKogCWoELxO8U3Zl/IhNTi1JnUyLSqtIR2fHp9+WqgoTBV2ZGhm5GT0iExFBaL+ZU7LdiwbE/uLqzOhzMWZLVlUZDC6ITGS/CAZyHbNrsz+uDxy+ckchRxhzo0VJis2rRjO9c79eSV6JXdl+yrtVetXDaxmrj6wBlqTsKZ9re7a/LVD63zWHV5PXJ+6/rc8y7ySvHcboja05mvkr8sf/MHnh7oC2QJxwd2Nzhv3/Yj+UfBj1yabTbs2fSvkFV4rsiwqK/pSzC2+9pPVT+U/TW5O3Ny1xX7L3q3YrcKtd7a5bTtcolCSWzK4PXB7Uym9tLD03Y6lO66W2Zbt20ncKdnZXx5Q3rJLb9fWXV8qkiv6Kj0qG3ar7960+8Me3p7eve576/dp7Cva93m/YP+9Az4HmqoMqsoOYg9mH3x2KPJQ58+Mn2urVauLqr/WCGv6D4ce7qh1qK09on5kSx1cJ6kbORp3tPuY57GWerP6Aw20hqLj4Ljk+Itf4n+5c8L/RPtJxsn6U/qndjdSGguboKYVTWPNyc39LTEtPaf9Tre3Orc2/mr+a02bdlvlGaUzW84Sz+afnTyXe278vOj86IWkC4PtS9sfXoy+eLtjYUfXJf9LVy57X77Yyew8d8XlSttVp6unrzGuNV+3v950w+5G4292vzV22Xc13XS42dLt2N3as6DnbK9b74Vbnrcu32bfvt4X1NdzJ+LOvbtxd/vv8e49v592//WD7AcTD9c9wjwqfCz/uOyJ+pOq341/b+i37z8z4Dlw42nY04eD3MGXf2T+8WUo/xn5Wdmw1nDtc+vnbSPeI90vFr0Yeil6OTFa8KfCn7tfGb069Zf7XzfGoseGXotfT74pfqvytuad7bv28ZDxJ+/T3098KPyo8vHwJ8anzs9Rn4cnln/BfSn/avy19Zv/t0eT6ZOTIo6YMz0KoBCFExMBeFMDADkGAEo3Mj8smpmnpwWa+QeYJvCfeGbmnhZ7AOoRMzUWsc4DcBxRA0TJiE6NROHuALaxkers7Ds9p08JFvlj2W87Rb20nHXgHzIzw39X9z8tmMo6vfxv9l8BhAf7uiw5BAAABdRlWElmTU0AKgAAAAgABgEGAAMAAAABAAIAAAESAAMAAAABAAEAAAEaAAUAAAABAAAAVgEbAAUAAAABAAAAXgEoAAMAAAABAAIAAIdpAAQAAAABAAAAZgAAAAAAAACQAAAAAQAAAJAAAAABAAOShgAHAAAFRAAAAJCgAgAEAAAAAQAAACKgAwAEAAAAAQAAADAAAAAAQVNDSUkAAABBQUFFMkhqYWJWTmRiQlJWRkQ1M2JvRzIwTzYwNWFlVXY4RnV0WWpnRnFyVTRrKzNsSVVLWFNpejIyNzNoL1h1CjdOM3QwTm1aZGVadVlXbWEzQWNEeHNpRFR3Z1BhTnNZclRINEV5WEdSSTJ4SURHbTBXMmpKa1lOVDd3WUgzd3gKaHBoNFozZURhSmlieVp4ejdqbjNmT2U3MzZUeWh1NHduMjhaU2JobXhjcFY5Ukh2SkxVZDNUTEh2TVRXeG5YaApoYnpNeWtlOFZ1b1UxWmpURE9qYzYwblpFMVNQMENKTis2dEozOVhXaFd6TFloeTlLMjlmdmFiandZYzZkenk4Cjg1RmR1eDk5YlArVGZRUFBIaGsrRVkyZEpEUnpLcGRuaGJEWExCakdVa09qUjI3empnYlYzUk8wNkVURnQ5cGsKeEtzWnhISG1tNXBiMXE1YnY2RjFJNWM0NWpWOEJWL0pWL0ZhWHNmcjV6ZHQzckoxbTdMOWdYYSttcS9oamR6RAptM2diMzhTMzhLMWNpYVNJUXczZHBHSE5NaXc3bExQU05NeDBadEJJM3FZa2x6Sm9Ja2V5cHA3Uk5jTEV1S0UwCllWU01sU0xhUk5hMkNtYjZnRnNZZGF5Q3JkRVFQY1Bhb2ZvcytibzhlL1oyaDRQcWlVUDk4YUJhVGxUelJLTUIKbnlJV3lJZzNsQjdmMS9ORXRES0dTWEkwVWpHcE0xb3RtTzNwalFUVlkrVjU1WnFTNTZtbm54a1RCRGpNMXMwcwpsNCtMQS96OVpaNkhDb3dJdkdwNVo4NS93SzJyT0VzSFBZRkRod2Z2K2dLTW53a3JWV0RVNGMxOEkyOUp5cVY0CjJ0SUtPV3F5TW9KWWx5L1BFbFBFWnJwbTBPbjZlTUdoQXZzRXlkS1lNRjJzVG1LcXpOcTAwaUVpYVNWajJlSTEKbVZLTzNsc3hSWEtPVTh5bFJHYU9zSEhuLzN0dThINTdzUUxMOUNTbWRETXZrSnBhcFZHbVlDak1VbGd4VDVXMApiZ3RlaktJd2lHYnJBcXVpalJPYmFFeW9zOTRWenRIZzhaa2h2bmJtR0YvSFcwZUNha0FBWEZaRFljL0lhR1JNCitLcCtsZ3BpTWdHRFpCM2hCOFZnN1gyZGxTdVVaYjZlYnhnWnNreWlXWUxwZUtKNndteThWN2pKNXdTVEE3cm0KQ29QWXhkbWtHMHhwU2JuNUhvTFRGYzVuMDczM2piZjM5VmQ2bGJLZWNkM1ZPTk1GQXYvQ0RjLzVDOTRZM3l5TwpuREJFMndFaHZObUpYbGRWNXQ3dVFKY2lGdkFHOTI2ZlB6ekl0N20zT0Z3VTJaT25rM0xMWFRuOEMyOXVNdGtMCnRkQUViZUNGSGJBSDlzRWdISVZoVU9FMFRNTUw4REpjaEN2d0Zyd043OEJWZUE4K2dBL2hHbndNbjhBQzNJQ2IKOERWOEE0dndMWlJnR2I2SEgrRVczSWJmNEErNGcrcFFJMUxRVHRTTjlpTS9DcUl3R2tWajZDVFNrWTNPb21sMApEcjJJTHFDTDZCSzZqRjVENzZPUDBHZm9PbHBFUDZHZjBhL29sblJOK2xUNlhQcEMrbEs2TG4wbExVby9TTDlJCnQ2WGZwVCtsdjZRNzB0KzRCdGRoR2JmZ1Z0eUJPL0V1M0k4UDRpalc4RGpPNHlLZXdoeWZ4eS9oVi9DcitES2UKd1hQNERmd21uc2RYOFVLRldnbFZmOGt6OEo4SDMvd0g4SE9QakE9PS1PM0UAAAAJcEhZcwAAFiUAABYlAUlSJPAAAAjTaVRYdFhNTDpjb20uYWRvYmUueG1wAAAAAAA8eDp4bXBtZXRhIHhtbG5zOng9ImFkb2JlOm5zOm1ldGEvIiB4OnhtcHRrPSJYTVAgQ29yZSA2LjAuMCI+CiAgIDxyZGY6UkRGIHhtbG5zOnJkZj0iaHR0cDovL3d3dy53My5vcmcvMTk5OS8wMi8yMi1yZGYtc3ludGF4LW5zIyI+CiAgICAgIDxyZGY6RGVzY3JpcHRpb24gcmRmOmFib3V0PSIiCiAgICAgICAgICAgIHhtbG5zOnRpZmY9Imh0dHA6Ly9ucy5hZG9iZS5jb20vdGlmZi8xLjAvIgogICAgICAgICAgICB4bWxuczpleGlmPSJodHRwOi8vbnMuYWRvYmUuY29tL2V4aWYvMS4wLyI+CiAgICAgICAgIDx0aWZmOkNvbXByZXNzaW9uPjE8L3RpZmY6Q29tcHJlc3Npb24+CiAgICAgICAgIDx0aWZmOlJlc29sdXRpb25Vbml0PjI8L3RpZmY6UmVzb2x1dGlvblVuaXQ+CiAgICAgICAgIDx0aWZmOlhSZXNvbHV0aW9uPjE0NDwvdGlmZjpYUmVzb2x1dGlvbj4KICAgICAgICAgPHRpZmY6WVJlc29sdXRpb24+MTQ0PC90aWZmOllSZXNvbHV0aW9uPgogICAgICAgICA8dGlmZjpQaG90b21ldHJpY0ludGVycHJldGF0aW9uPjI8L3RpZmY6UGhvdG9tZXRyaWNJbnRlcnByZXRhdGlvbj4KICAgICAgICAgPHRpZmY6T3JpZW50YXRpb24+MTwvdGlmZjpPcmllbnRhdGlvbj4KICAgICAgICAgPGV4aWY6UGl4ZWxYRGltZW5zaW9uPjM0PC9leGlmOlBpeGVsWERpbWVuc2lvbj4KICAgICAgICAgPGV4aWY6VXNlckNvbW1lbnQ+QUFBRTJIamFiVk5kYkJSVkZENTNib0cyME82MDVhZVV2OEZ1dFlqZ0ZxclU0ayszbElVS1hTaXoyMjczaC9YdSYjeEE7N04zdDBObVpkZVp1WVdtYTNBY0R4c2lEVHdnUGFOc1lyVEg0RXlYR1JJMnhJREdtMFcyakprWU5UN3dZSDN3eCYjeEE7aHBoNFozZURhSmlieVp4ejdqbjNmT2U3MzZUeWh1NHduMjhaU2JobXhjcFY5Ukh2SkxVZDNUTEh2TVRXeG5YaCYjeEE7aGJ6TXlrZThWdW9VMVpqVERPamM2MG5aRTFTUDBDSk4rNnRKMzlYV2hXekxZaHk5SzI5ZnZhYmp3WWM2ZHp5OCYjeEE7ODVGZHV4OTliUCtUZlFQUEhoaytFWTJkSkRSektwZG5oYkRYTEJqR1VrT2pSMjd6amdiVjNSTzA2RVRGdDlwayYjeEE7eEtzWnhISG1tNXBiMXE1YnY2RjFJNWM0NWpWOEJWL0pWL0ZhWHNmcjV6ZHQzckoxbTdMOWdYYSttcS9oamR6RCYjeEE7bTNnYjM4UzM4SzFjaWFTSVF3M2RwR0hOTWl3N2xMUFNOTXgwWnRCSTNxWWtsekpvSWtleXBwN1JOY0xFdUtFMCYjeEE7WVZTTWxTTGFSTmEyQ21iNmdGc1lkYXlDcmRFUVBjUGFvZm9zK2JvOGUvWjJoNFBxaVVQOThhQmFUbFR6UktNQiYjeEE7bnlJV3lJZzNsQjdmMS9ORXRES0dTWEkwVWpHcE0xb3RtTzNwalFUVlkrVjU1WnFTNTZtbm54a1RCRGpNMXMwcyYjeEE7bDQrTEEvejlaWjZIQ293SXZHcDVaODUvd0syck9Fc0hQWUZEaHdmditnS01ud2tyVldEVTRjMThJMjlKeXFWNCYjeEE7MnRJS09XcXlNb0pZbHkvUEVsUEVacnBtME9uNmVNR2hBdnNFeWRLWU1GMnNUbUtxek5xMDBpRWlhU1ZqMmVJMSYjeEE7bVZLTzNsc3hSWEtPVTh5bFJHYU9zSEhuLzN0dThINTdzUUxMOUNTbWRETXZrSnBhcFZHbVlDak1VbGd4VDVXMCYjeEE7Ymd0ZWpLSXdpR2JyQXF1aWpST2JhRXlvczk0Vnp0SGc4Wmtodm5ibUdGL0hXMGVDYWtBQVhGWkRZYy9JYUdSTSYjeEE7K0twK2xncGlNZ0dEWkIzaEI4Vmc3WDJkbFN1VVpiNmVieGdac2t5aVdZTHBlS0o2d215OFY3ako1d1NUQTdybSYjeEE7Q29QWXhkbWtHMHhwU2JuNUhvTFRGYzVuMDczM2piZjM5VmQ2bGJLZWNkM1ZPTk1GQXYvQ0RjLzVDOTRZM3l5TyYjeEE7bkRCRTJ3RWh2Tm1KWGxkVjV0N3VRSmNpRnZBRzkyNmZQenpJdDdtM09Gd1UyWk9uazNMTFhUbjhDMjl1TXRrTCYjeEE7dGRBRWJlQ0ZIYkFIOXNFZ0hJVmhVT0UwVE1NTDhESmNoQ3Z3RnJ3Tjc4QlZlQTgrZ0EvaEdud01uOEFDM0lDYiYjeEE7OERWOEE0dndMWlJnR2I2SEgrRVczSWJmNEErNGcrcFFJMUxRVHRTTjlpTS9DcUl3R2tWajZDVFNrWTNPb21sMCYjeEE7RHIySUxxQ0w2Qks2akY1RDc2T1AwR2ZvT2xwRVA2R2YwYS9vbG5STitsVDZYUHBDK2xLNkxuMGxMVW8vU0w5SSYjeEE7dDZYZnBUK2x2NlE3MHQrNEJ0ZGhHYmZnVnR5Qk8vRXUzSThQNGlqVzhEak80eUtld2h5Znh5L2hWL0NyK0RLZSYjeEE7d1hQNERmd21uc2RYOFVLRldnbFZmOGt6OEo4SDMvd0g4SE9QakE9PTwvZXhpZjpVc2VyQ29tbWVudD4KICAgICAgICAgPGV4aWY6UGl4ZWxZRGltZW5zaW9uPjQ4PC9leGlmOlBpeGVsWURpbWVuc2lvbj4KICAgICAgPC9yZGY6RGVzY3JpcHRpb24+CiAgIDwvcmRmOlJERj4KPC94OnhtcG1ldGE+CpkM7wwAAAXiSURBVGgF1VpriFVVFL46ijWFTmEqNdZVK8eUZgrDfhSeoHAIY6Yg6ldM9ccscHr8qAjuzQp6QFEWBUKXkN5lD7OcEu9FKiyjtLI/gedOD4rGmbS0l+aJWOu7cNdlzV57330t74+7zlp7rW+tvc4+6+zHacsF/drayKxrPtElFxBlcW50NAj26DGaOYtiLZWI/pYRzRS6J6X2F1m/o4P4/+p/bp48rxokenuRaHcPUfP/pf2kulfpOBLyp6P9szLhnDTd7DqK4sUJwexX4vuD5Qu7HO4uYSAYoON/M8B9BQKYlyeKR+iZEvHQl/SrlNonTyba6v/v2J+MQ/I38chpiGd2J4n2ZURh+DMDL0saTOoEGFGw0+hVPPLqjCMyuOOafym/oZaQifVRrF1H/NR6cW7l3SQYqogGwR4jeI29qE9riSNf2uuHs32b0F/Od0xm7rWSUHSwdxZJQeJIfmPZAdRk8wsct/QredRGPPI1tx9zgDD4NaMmvF1qio6L1wUO8CRdzwE74IKbf0jJVPqV/AaOt8GRVHzMM+Cp/Iz9ntkCebDQEEIUQRe/LWR/NP6WWu2Ae1FDIH78AVzZaN8VpGetIZ/stOH6aiWetaNSUTwgg59qQ0ixg3iI7YCjUcwHjjselnGptXbgrTlRGRA5dOCOol+AJ/NrGvMT4Gj06ZIfvq+2tXa86brxv2TkGh20BnIbP4NaAqT8wsSK7KfnWztubqgdwl/ozPHzlIBkxyW/m/UmTBCOI7ErPG/MOT2RHAMGiyLZcY1fXYBla6i1dozxjVFrR2h493IHtQRI+Rn8Ogz157Kz1g7Mk1x43u1YpMmOS35b2Rvay8C3dgy6akdOe+0oYS3gO70grygI8fo3hCAyG23eUYvLMyGXX12zNF1s2GRSC1ZKum2mY1XS2xl7QriZHwH5aEj+ay5etnDDtay1w75INY6QSZMo6CWJLfiNFZteqNZ8fnRn5W0IFfPIMCakexE5ts64P2x17TjflgholSu4clFjQro8JzIf7XA5bq49WWqzH62S3hexR8jMDlsAIxzAMFOblb9WkthstlZIDzXObWUcITOmuaH+1fimatML1fKtHWXzyEBExoQcgr6Djjjam23u7fVDUPc7VBhjQtJhFaGu4XAdF4+ZMoWwbl1lw9xTJb0vWzVCdrMDVzgzXAqB7WueIsPZeRuAf+2w4da0TuCieiAjEYqUpH9x+/RIJ3QrB8f3J/2DVw+eaj2KdPFIwRZg4+atLQAcB9zDfqw7cUgE6KIem7+mtU7hLcORdPzEYKRc1m9zicPoreXxcdFhjf7EcbVqI0rtzdl8B3DKrwV4MCOI97mjDxWIx9nweyzXRgL2PjV8KX+5pIZ8ZBpwZ5/jQA5n5FcGauVxpnzNAOFoJ4oa3o1cc8J7H3mPc16eQlnMI2ghL8/PYnkn0zFSy31bpYstvPZ5azPxB/YTfZITvWKAeNf/3DmkkVZdmkdp+3BKgWsjAvLt5VgdNE7MYrmz4pzLI+zUvM3iJR5hNu0ALXwHgt1sHIa/wkMY34EEQJtM1rEfjACN4lC+ZV8mFYoUrxYA5Cieiz33JVzZ6OTXOl7b8KfR1QUXYmA7Dm4OZbaEIMC7ioEOFbO1xpGBedC0DgUoWMw1ZFk/IbR5Avnqa/BJQi3XDxDV/g9yw5XX0sW+vZpmk/JnjXcGIwMUHQl1f2w7WWJTGrgavW4g1JOn3aueCXm3TA6w9vB0l8PU+nmj3/sLvh6a1MdiTLsz+DLoUe5A6LOLRABH8wc5bhTsmuym3byH3/sIBHRXShjYoLEj1msigThbBb5G3ymTfTs/UvVoR4DDHcBiSwb6Ngd4Jp+HuEJCbcB+hmvGibcbPthBPC4/LW/Hp05YncrEYPX6ASfo4QKFtKZEdBPLXatg4G5h/fMiz2eiJwpD/AnuqGunDB3UKGoQlvP4Bj164E0DGle7J/KWYN9y8nj6aUTn5Im2M/2xSvz3w0R37SA6JFaxJP0//v8DbwtAGhXOAzEAAAAASUVORK5CYII=;" parent="1" vertex="1"> + <mxGeometry x="551" y="767" width="6.38" height="9" as="geometry" /> + </mxCell> + <mxCell id="BE7m5MwMy8wg7SoJYegb-1" value="MLE" style="rounded=1;whiteSpace=wrap;html=1;strokeColor=#585858;" parent="1" vertex="1"> + <mxGeometry x="700" y="641" width="70" height="30" as="geometry" /> + </mxCell> + <mxCell id="BE7m5MwMy8wg7SoJYegb-2" value="PEM" style="rounded=1;whiteSpace=wrap;html=1;strokeColor=#585858;" parent="1" vertex="1"> + <mxGeometry x="700" y="677" width="70" height="30" as="geometry" /> + </mxCell> + <mxCell id="BE7m5MwMy8wg7SoJYegb-4" value="" style="endArrow=none;html=1;rounded=0;entryX=1;entryY=0;entryDx=0;entryDy=0;strokeColor=#585858;" parent="1" edge="1"> + <mxGeometry width="50" height="50" relative="1" as="geometry"> + <mxPoint x="696" y="646" as="sourcePoint" /> + <mxPoint x="628" y="696" as="targetPoint" /> + </mxGeometry> + </mxCell> + <mxCell id="BE7m5MwMy8wg7SoJYegb-5" value="" style="endArrow=none;html=1;rounded=0;entryX=1;entryY=1;entryDx=0;entryDy=0;strokeColor=#585858;" parent="1" edge="1"> + <mxGeometry width="50" height="50" relative="1" as="geometry"> + <mxPoint x="695" y="780" as="sourcePoint" /> + <mxPoint x="628" y="728" as="targetPoint" /> + </mxGeometry> + </mxCell> + <mxCell id="BE7m5MwMy8wg7SoJYegb-6" value="MAP" style="rounded=1;whiteSpace=wrap;html=1;strokeColor=#585858;" parent="1" vertex="1"> + <mxGeometry x="700" y="714" width="70" height="30" as="geometry" /> + </mxCell> + <mxCell id="BE7m5MwMy8wg7SoJYegb-9" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;entryX=1;entryY=0.5;entryDx=0;entryDy=0;curved=1;endArrow=none;endFill=0;strokeColor=#585858;" parent="1" target="hdwB_MQwIhiL4xS-3u5l-2" edge="1"> + <mxGeometry relative="1" as="geometry"> + <mxPoint x="675" y="598" as="sourcePoint" /> + </mxGeometry> + </mxCell> + <mxCell id="BE7m5MwMy8wg7SoJYegb-11" value="Design -related" style="rounded=1;whiteSpace=wrap;html=1;strokeColor=#585858;" parent="1" vertex="1"> + <mxGeometry x="700" y="751" width="70" height="30" as="geometry" /> + </mxCell> + <mxCell id="ilc09JGzDhpx_nHwKlJr-1" value="" style="shape=image;verticalLabelPosition=bottom;labelBackgroundColor=default;verticalAlign=top;aspect=fixed;imageAspect=0;image=https://cdn.onlinewebfonts.com/svg/img_827.svg;flipV=1;" parent="1" vertex="1"> + <mxGeometry x="437" y="632.8" width="20" height="20" as="geometry" /> + </mxCell> + <mxCell id="gN4vE8bEkTlw2jWnqAIC-4" value="" style="shape=image;verticalLabelPosition=bottom;labelBackgroundColor=default;verticalAlign=top;aspect=fixed;imageAspect=0;image=data:image/png,iVBORw0KGgoAAAANSUhEUgAAADwAAAA4EAYAAADx/UcnAAAKqGlDQ1BJQ0MgUHJvZmlsZQAASImVlwdQU+kWgP9700NCS4h0Qm/SWwApIbTQpYOohCRAKCEGgogdWVyBtSAighVdEFFwVYosNkSxLQKKXRdkEVHWxYINlXeBIbj75r0378ycOd899/znP+ef+8+cCwBZniMSpcHyAKQLs8ShPh706JhYOm4YQEANEAAJQBxupogZEhIAEJm1f5f3d5BoRG6ZTeX69/f/VRR4/EwuAFAIwgm8TG46wqcQfcEVibMAQO1H/LrLs0RT3IEwVYwUiPC9KU6a4dEpTphmNJiOCQ9lIUwFAE/icMRJAJDoiJ+ezU1C8pDcEbYU8gRChEUIu6anZ/AQPo6wERKD+EhT+RkJ3+VJ+lvOBGlODidJyjO9TAveU5ApSuOs+D+P439Leppkdg8DREnJYt9QxCoiZ3YvNcNfysKEoOBZFvCm46c5WeIbMcvcTFbsLPM4nv7StWlBAbOcKPBmS/NkscNnmZ/pFTbL4oxQ6V6JYhZzljniuX0lqRFSfzKfLc2fmxweNcvZgsigWc5MDfOfi2FJ/WJJqLR+vtDHY25fb2nv6Znf9StgS9dmJYf7SnvnzNXPFzLncmZGS2vj8T295mIipPGiLA/pXqK0EGk8P81H6s/MDpOuzUI+yLm1IdIzTOH4hcwyYIEMkIaoGNBBAPLkCUAWPydrqhFWhmiFWJCUnEVnIjeMT2cLuebz6daW1jYATN3Xmc/hLW36HkK0a3O+vIMAuLhOTk62zfn8hwA4OQYA8fGczwg5I9leAK6UciXi7Bnf9F3CACKQA1SgAjSBLjACZsAa2ANn4A68gB8IBuEgBiwBXJAM0pHKl4NVYD0oAEVgK9gBKsA+cBAcBsfACdAM2sAFcBlcB92gDzwE/WAIvARj4D2YgCAIB5EhCqQCaUH6kClkDTEgV8gLCoBCoRgoHkqChJAEWgVtgIqgEqgCOgDVQr9Ap6EL0FWoB7oPDUAj0BvoM4yCSTAV1oANYAuYATNhfzgcXgwnwcvgXDgf3gyXw1XwUbgJvgBfh/vgfvglPI4CKBkUDaWNMkMxUCxUMCoWlYgSo9agClFlqCpUPaoV1Ym6hepHjaI+obFoCpqONkM7o33REWguehl6DboYXYE+jG5Cd6BvoQfQY+hvGDJGHWOKccKwMdGYJMxyTAGmDFONacRcwvRhhjDvsVgsDWuIdcD6YmOwKdiV2GLsHmwD9jy2BzuIHcfhcCo4U5wLLhjHwWXhCnC7cEdx53C9uCHcR7wMXgtvjffGx+KF+Dx8Gf4I/iy+Fz+MnyDIE/QJToRgAo+wgrCFcIjQSrhJGCJMEBWIhkQXYjgxhbieWE6sJ14iPiK+lZGR0ZFxlFkoI5BZJ1Muc1zmisyAzCeSIsmExCLFkSSkzaQa0nnSfdJbMplsQHYnx5KzyJvJteSL5Cfkj7IUWXNZtixPdq1spWyTbK/sKzmCnL4cU26JXK5cmdxJuZtyo/IEeQN5ljxHfo18pfxp+bvy4woUBSuFYIV0hWKFIwpXFZ4r4hQNFL0UeYr5igcVLyoOUlAUXQqLwqVsoByiXKIMUbFUQyqbmkItoh6jdlHHlBSVbJUilXKUKpXOKPXTUDQDGpuWRttCO0G7Q/s8T2Mecx5/3qZ59fN6531QVlN2V+YrFyo3KPcpf1ahq3ippKpsU2lWeayKVjVRXai6XHWv6iXVUTWqmrMaV61Q7YTaA3VY3UQ9VH2l+kH1G+rjGpoaPhoijV0aFzVGNWma7popmqWaZzVHtCharloCrVKtc1ov6Ep0Jj2NXk7voI9pq2v7aku0D2h3aU/oGOpE6OTpNOg81iXqMnQTdUt123XH9LT0AvVW6dXpPdAn6DP0k/V36nfqfzAwNIgy2GjQbPDcUNmQbZhrWGf4yIhs5Ga0zKjK6LYx1phhnGq8x7jbBDaxM0k2qTS5aQqb2psKTPeY9szHzHecL5xfNf+uGcmMaZZtVmc2YE4zDzDPM282f2WhZxFrsc2i0+KbpZ1lmuUhy4dWilZ+VnlWrVZvrE2sudaV1rdtyDbeNmttWmxe25ra8m332t6zo9gF2m20a7f7au9gL7avtx9x0HOId9jtcJdBZYQwihlXHDGOHo5rHdscPznZO2U5nXD6y9nMOdX5iPPzBYYL+AsOLRh00XHhuBxw6Xelu8a77nftd9N247hVuT1113XnuVe7DzONmSnMo8xXHpYeYo9Gjw8sJ9Zq1nlPlKePZ6Fnl5eiV4RXhdcTbx3vJO867zEfO5+VPud9Mb7+vtt877I12Fx2LXvMz8FvtV+HP8k/zL/C/2mASYA4oDUQDvQL3B74KEg/SBjUHAyC2cHbgx+HGIYsC/l1IXZhyMLKhc9CrUJXhXaGUcKWhh0Jex/uEb4l/GGEUYQkoj1SLjIusjbyQ5RnVElUf7RF9Oro6zGqMYKYllhcbGRsdez4Iq9FOxYNxdnFFcTdWWy4OGfx1SWqS9KWnFkqt5Sz9GQ8Jj4q/kj8F04wp4oznsBO2J0wxmVxd3Jf8tx5pbwRvgu/hD+c6JJYkvg8ySVpe9JIsltyWfKogCWoELxO8U3Zl/IhNTi1JnUyLSqtIR2fHp9+WqgoTBV2ZGhm5GT0iExFBaL+ZU7LdiwbE/uLqzOhzMWZLVlUZDC6ITGS/CAZyHbNrsz+uDxy+ckchRxhzo0VJis2rRjO9c79eSV6JXdl+yrtVetXDaxmrj6wBlqTsKZ9re7a/LVD63zWHV5PXJ+6/rc8y7ySvHcboja05mvkr8sf/MHnh7oC2QJxwd2Nzhv3/Yj+UfBj1yabTbs2fSvkFV4rsiwqK/pSzC2+9pPVT+U/TW5O3Ny1xX7L3q3YrcKtd7a5bTtcolCSWzK4PXB7Uym9tLD03Y6lO66W2Zbt20ncKdnZXx5Q3rJLb9fWXV8qkiv6Kj0qG3ar7960+8Me3p7eve576/dp7Cva93m/YP+9Az4HmqoMqsoOYg9mH3x2KPJQ58+Mn2urVauLqr/WCGv6D4ce7qh1qK09on5kSx1cJ6kbORp3tPuY57GWerP6Aw20hqLj4Ljk+Itf4n+5c8L/RPtJxsn6U/qndjdSGguboKYVTWPNyc39LTEtPaf9Tre3Orc2/mr+a02bdlvlGaUzW84Sz+afnTyXe278vOj86IWkC4PtS9sfXoy+eLtjYUfXJf9LVy57X77Yyew8d8XlSttVp6unrzGuNV+3v950w+5G4292vzV22Xc13XS42dLt2N3as6DnbK9b74Vbnrcu32bfvt4X1NdzJ+LOvbtxd/vv8e49v592//WD7AcTD9c9wjwqfCz/uOyJ+pOq341/b+i37z8z4Dlw42nY04eD3MGXf2T+8WUo/xn5Wdmw1nDtc+vnbSPeI90vFr0Yeil6OTFa8KfCn7tfGb069Zf7XzfGoseGXotfT74pfqvytuad7bv28ZDxJ+/T3098KPyo8vHwJ8anzs9Rn4cnln/BfSn/avy19Zv/t0eT6ZOTIo6YMz0KoBCFExMBeFMDADkGAEo3Mj8smpmnpwWa+QeYJvCfeGbmnhZ7AOoRMzUWsc4DcBxRA0TJiE6NROHuALaxkers7Ds9p08JFvlj2W87Rb20nHXgHzIzw39X9z8tmMo6vfxv9l8BhAf7uiw5BAAABdxlWElmTU0AKgAAAAgABgEGAAMAAAABAAIAAAESAAMAAAABAAEAAAEaAAUAAAABAAAAVgEbAAUAAAABAAAAXgEoAAMAAAABAAIAAIdpAAQAAAABAAAAZgAAAAAAAACQAAAAAQAAAJAAAAABAAOShgAHAAAFTAAAAJCgAgAEAAAAAQAAADygAwAEAAAAAQAAADgAAAAAQVNDSUkAAABBQUFFMzNqYWJWTk5iQnRGRkg2ems2Wkoyc1NicEQ5cCtyY2xEcVF0TFVrYmFIRDVpZE0wYldqai9xeWRPSWtUCk0xNlA3YTNYdTJaM25OYTFJczBCdFFqQkFYRW85QURFRVlJaUJBWFJDaUVCUXJRRkZSVEFpUUFKQWVxcEY4U0IKQzBJVkVyTzJWUXJxakZiNzNwdDU4NzczelRleHJLRTdyTHQ3Q1VtNFpsbnQ4b2F3ZDRiYWptNlo0MTVpYXlsZAplRUV2czdKaHJ4VTdRVFhtdEFBNjgxcFU5Z1RVUXpSUDQvN3FwdS9xNm9PMlpUR08zcFczckZqWmVlOTlYVnUzCmJiOS94ODRISHR6N1NQL2dFNGVPSForWW5DWTBjU0tUWmJtUTE4d1p4bUpqazBkdTk0NEYxSjFwbW5jbXhMOWEKWk5TckdjUnhMalMzdEs1YXZXWnQyem91Y2N4citESmV5NWZ6T2w3UEd5NnMzN0J4MDJabHl6MGRmQVZmeVp1NApoemZ6ZHI2ZWIrU2J1QktPRVljYXVrbERtbVZZZGpCanhXbUk2Y3lnNGF4TlNTWm0wS2tNU1pwNlF0Y0lFKzBHCjQ0UlIwVmFNYU9ta2JlWE0rRDQzY2NLeGNyWkdnL1FVNjREcVdPenU4ZXphM1JzS3FNY1BERVFDYW5tam1pVWEKSGVwV3hBUVo4Y2JTUTN2NkhwNm90R0dTREExWFRPcU1WUk9LZmI1d1FEMVM3bGV1S1hrZWZlenhjVUdBdzJ6ZApUSEw1cURqQVAxRG1lU1RIaU1DcmxsZm0vZnZjdklxenVOOHpkT0RnOEcxZmdQRXpZY1Z5akRxOGhhL2pyVkc1CkZJbGJXaTVEVFZaR01OblRuV1ZUQldJelhUUG9iRU1rNTFDQlBVMlNkRktZTGxabnFsQm1iVmJwRkpHNGtyQnMKOFpsTUtVZnZ6Q2lRak9Qa016R3hNME5ZeXZuL21odTgyOXBramlYNnBncTZtUlZJVGExU0tKRXpGR1lwTEorbApTbHkzQlM5R1hoaEVzM1dCVmRGU3hDWWFFK3BzY0lWek9IQjBib1N2bWp2Q1YvTzIwWUE2SkFBdXFjR1FaM1FzClBDNThWVDlOQlRHSklZTWtIZUVIUkdNZC9WMlZLNVJsdm9hdkhSMnhUS0paZ3VuSVZQV0VZc1FuM09pVGdzbEIKWFhPRlFleDhNZW9HWTFwVWJybUQ0SGlGODJMY2Q5ZDRSLzlBcFZZcDZVbnByc2FaTGhENHIxeXJUYjU0UGM0MwppQ1BUaGlnN0tJUlhUUHRjVlptN2U0ZDZGREdCTjdwMys5VEJZYjdadmNWd2hLVW9JOVBiUk5MTXlhamNlbHNWCi82S2NuNG42b0E2YW9SMjhzQlYyd1I0WWhzTndERlE0Q2JQd05Ed0g1K0FWZUJQZWdyZmhIYmdJNzhNSGNCaysKaEkvZ0NseURMK0U2ZkEwTDhDMlVZQW0raHgvaEJ0eUUzK0FQdUlYcVVSTlMwSGJVaS9ZaVB3cWdFQnBENDJnYQo2Y2hHcDlFc09vT2VRYytqYytobGRCNjlpdDVEbDlBbjZDcGFRRCtobjlHdjZJWjBXZnBZK2xUNlRQcGN1aXA5CklTMUlQMGkvU0RlbDM2VS9wYitrVzlMZnVBYlhZeG0zNGpiY2lidndEanlBOStNSnJPRVV6dUk4TG1DT3orSm4KOFF2NEpYd2V6K0Y1L0RwK0ExL0VsL0JYRllZbFZIMlpwK0EvQTMvekQzcVhrcnc9NsYx2QAAAAlwSFlzAAAWJQAAFiUBSVIk8AAACNtpVFh0WE1MOmNvbS5hZG9iZS54bXAAAAAAADx4OnhtcG1ldGEgeG1sbnM6eD0iYWRvYmU6bnM6bWV0YS8iIHg6eG1wdGs9IlhNUCBDb3JlIDYuMC4wIj4KICAgPHJkZjpSREYgeG1sbnM6cmRmPSJodHRwOi8vd3d3LnczLm9yZy8xOTk5LzAyLzIyLXJkZi1zeW50YXgtbnMjIj4KICAgICAgPHJkZjpEZXNjcmlwdGlvbiByZGY6YWJvdXQ9IiIKICAgICAgICAgICAgeG1sbnM6dGlmZj0iaHR0cDovL25zLmFkb2JlLmNvbS90aWZmLzEuMC8iCiAgICAgICAgICAgIHhtbG5zOmV4aWY9Imh0dHA6Ly9ucy5hZG9iZS5jb20vZXhpZi8xLjAvIj4KICAgICAgICAgPHRpZmY6Q29tcHJlc3Npb24+MTwvdGlmZjpDb21wcmVzc2lvbj4KICAgICAgICAgPHRpZmY6UmVzb2x1dGlvblVuaXQ+MjwvdGlmZjpSZXNvbHV0aW9uVW5pdD4KICAgICAgICAgPHRpZmY6WFJlc29sdXRpb24+MTQ0PC90aWZmOlhSZXNvbHV0aW9uPgogICAgICAgICA8dGlmZjpZUmVzb2x1dGlvbj4xNDQ8L3RpZmY6WVJlc29sdXRpb24+CiAgICAgICAgIDx0aWZmOlBob3RvbWV0cmljSW50ZXJwcmV0YXRpb24+MjwvdGlmZjpQaG90b21ldHJpY0ludGVycHJldGF0aW9uPgogICAgICAgICA8dGlmZjpPcmllbnRhdGlvbj4xPC90aWZmOk9yaWVudGF0aW9uPgogICAgICAgICA8ZXhpZjpQaXhlbFhEaW1lbnNpb24+NjA8L2V4aWY6UGl4ZWxYRGltZW5zaW9uPgogICAgICAgICA8ZXhpZjpVc2VyQ29tbWVudD5BQUFFMzNqYWJWTk5iQnRGRkg2ems2Wkoyc1NicEQ5cCtyY2xEcVF0TFVrYmFIRDVpZE0wYldqai9xeWRPSWtUJiN4QTtNMTZQN2EzWHUyWjNuTmExSXMwQnRRakJBWEVvOUFERUVZSWlCQVhSQ2lFQlFyUUZGUlRBaVFBSkFlcXBGOFNCJiN4QTtDMElWRXJPMlZRcnFqRmI3M3B0NTg3NzN6VGV4cktFN3JMdDdDVW00WmxudDhvYXdkNGJham02WjQxNWlheWxkJiN4QTtlRUV2czdKaHJ4VTdRVFhtdEFBNjgxcFU5Z1RVUXpSUDQvN3FwdS9xNm9PMlpUR08zcFczckZqWmVlOTlYVnUzJiN4QTtiYjkveDg0SEh0ejdTUC9nRTRlT0haK1luQ1kwY1NLVFpibVExOHdaeG1KamswZHU5NDRGMUoxcG1uY214TDlhJiN4QTtaTlNyR2NSeExqUzN0SzVhdldadDJ6b3VjY3hyK0RKZXk1ZnpPbDdQR3k2czM3QngwMlpseXowZGZBVmZ5WnU0JiN4QTtoemZ6ZHI2ZWIrU2J1QktPRVljYXVrbERtbVZZZGpCanhXbUk2Y3lnNGF4TlNTWm0wS2tNU1pwNlF0Y0lFKzBHJiN4QTs0NFJSMFZhTWFPbWtiZVhNK0Q0M2NjS3hjclpHZy9RVTY0RHFXT3p1OGV6YTNSc0txTWNQREVRQ2FubWptaVVhJiN4QTtIZXBXeEFRWjhjYlNRM3Y2SHA2b3RHR1NEQTFYVE9xTVZST0tmYjV3UUQxUzdsZXVLWGtlZmV6eGNVR0F3MnpkJiN4QTtUSEw1cURqQVAxRG1lU1RIaU1DcmxsZm0vZnZjdklxenVOOHpkT0RnOEcxZmdQRXpZY1Z5akRxOGhhL2pyVkc1JiN4QTtGSWxiV2k1RFRWWkdNTm5UbldWVEJXSXpYVFBvYkVNazUxQ0JQVTJTZEZLWUxsWm5xbEJtYlZicEZKRzRrckJzJiN4QTs4WmxNS1VmdnpDaVFqT1BrTXpHeE0wTll5dm4vbWh1ODI5cGtqaVg2cGdxNm1SVklUYTFTS0pFekZHWXBMSitsJiN4QTtTbHkzQlM5R1hoaEVzM1dCVmRGU3hDWWFFK3BzY0lWek9IQjBib1N2bWp2Q1YvTzIwWUE2SkFBdXFjR1FaM1FzJiN4QTtQQzU4VlQ5TkJUR0pJWU1rSGVFSFJHTWQvVjJWSzVSbHZvYXZIUjJ4VEtKWmd1bklWUFdFWXNRbjNPaVRnc2xCJiN4QTtYWE9GUWV4OE1lb0dZMXBVYnJtRDRIaUY4MkxjZDlkNFIvOUFwVllwNlVucHJzYVpMaEQ0cjF5clRiNTRQYzQzJiN4QTtpQ1BUaGlnN0tJUlhUUHRjVlptN2U0ZDZGREdCTjdwMys5VEJZYjdadmNWd2hLVW9JOVBiUk5MTXlhamNlbHNWJiN4QTsvNktjbjRuNm9BNmFvUjI4c0JWMndSNFloc053REZRNENiUHdORHdINStBVmVCUGVncmZoSGJnSTc4TUhjQmsrJiN4QTtoSS9nQ2x5REwrRTZmQTBMOEMyVVlBbStoeC9oQnR5RTMrQVB1SVhxVVJOUzBIYlVpL1lpUHdxZ0VCcEQ0MmdhJiN4QTs2Y2hHcDlFc09vT2VRYytqYytobGRCNjlpdDVEbDlBbjZDcGFRRCtobjlHdjZJWjBXZnBZK2xUNlRQcGN1aXA5JiN4QTtJUzFJUDBpL1NEZWwzNlUvcGIra1c5TGZ1QWJYWXhtMzRqYmNpYnZ3RGp5QTkrTUpyT0VVenVJOExtQ096K0puJiN4QTs4UXY0Slh3ZXorRjUvRHArQTEvRWwvQlhGWVlsVkgyWnArQS9BMy96RDNxWGtydz08L2V4aWY6VXNlckNvbW1lbnQ+CiAgICAgICAgIDxleGlmOlBpeGVsWURpbWVuc2lvbj41NjwvZXhpZjpQaXhlbFlEaW1lbnNpb24+CiAgICAgIDwvcmRmOkRlc2NyaXB0aW9uPgogICA8L3JkZjpSREY+CjwveDp4bXBtZXRhPgp0V0RkAAAIWklEQVR4Ae1caYwURRQebqKAK4dsEMLgfRBYDoWISqvwAzG4P5QQNWHUqD+8QOMPI2YmHqA/jOKVEA2DVwQS8YqCEjKDeKwEFRAVZGUGQQ45RIi4LMeY+N5HQu28qaru6t6d2dkf+6aq3vG997qqq6urKxar/lUjUI1AWBGYnSTNu3JEV2eIDhoYlsWq3kgigAQeL5C5gkJvT7iC0dmVonD1dO1K+gcNIHqCzeW30g8EiKvbPDmtB0HsKCDtUyM0WFdLFqwVuRHo3Zf0PDKD6A88ZDUdoXJjjugWpoc4018z35R6am/r/3fvKo3wrwOl28umtSNfYA9wQvdz4tAj/dIlaQpBt27hhuJqj/TjwurSxc7eoQLxq35OsrxQx4wlPVNZrh93FDs0Drn7MIDPuOepDqK8jxM+J0nGEdBLL6LyO2mi4Ffp29zuEPr/qp5iPKq9DTmyNKrOzOIvzK/qGa6R79WL9L/G/qnyOdbbqZMZDmdcA3l2uEVwDEA3cft5nEgJABxYq9F3V0LS4K/++wzJAa9Kjxao/YkkUalnrxD0SD1wokf6tuaIqnbV8pA48YX+Hz32Zw0wBO7MGjtI6Nmqgyj/znZdDdnz0oQP+nUUF+AwpWdihIF8c4H0duhAtCf3VFt7G9lf6LGLpgV3D54tfpshITii0gPs2DlxC+VFWPewY6p+lF09fqBHYmTAZBB2JIoEzkoR+OeTRMGPnjnBo/q8xh/I7Wa+x1MkV2PZQUjK4j8eaz7PkBCASLS+3kJ5CVadvYXpEsIOmq7gyQ7mBkcKpFTyW6o/oZFr4LjeliD9iLcDF8xUvJAmPskB1L/LfGZa9VzPJUvbxZUe+tDFUM+qpR+PpYjiVgH/dRQXyJscp9F8AbH66Mk4BiCt0MAhPB6czZMuV0gRSNiR6FDlXujKvqQHk8WXOVESLrX+ywxpvMaTNEdU3707GcLNXQWqlh9NhQNs5gzSq9pTy3judo0CIwOeYz/hBOmGXBWfVP4pR4jvZT8xCXPtRwt9zyapSgKG+r0MEJOvFooCVtxnmGDcIwOai8EPXDCb2T/4K9F1zIcLAHx/cP38tFk8MRK+yvxYHwjq10l53BOOFcwAzUqdFA3lB5Y4ETCJrswEMz+5nuSxECPZQb30XKwmEit5QIeRYHuOaqBPR11dwLFVHCidQTwGnVED6OHQVMosEOhpflGY+r2eEzOyrrilZUL81Od1xE29IHRxH+B3jjPeMwskADyTLO6g69p5aTNcOzjwfu1LiUFPxVKm7vEFQzXiBBqPl0aGno0hHXKgBwskfzqvQ5TWVqR1eYYqoVBHL9AsORYx4atKt7YNnL8GTPCFylr4e2mCa7oGDef+ZBzABYqnEfBJFEuar7D995lez7cQSU6sx1sLANHRbzKiqlAakDgdrqA9OCh4rIRJs+tpiaAWIG/5PnjWHAia0Tc+NOMLyoXHtCFxM037zdhC46rtT6p5ybmFnQHO5iqGCcYi+Q1eCyxFK45y7aIFRZudV2LhwnSDyt68cwhWCms072t7Rp3gxI1W+GOrssQf1c6EOst7fGsnePNGis+OPFH8L/CPJR+gJijVXPLYcTE1YWfo44iGZqAaMR6/zOgeM7bQuJqaSPUlI4heXkd0YyPRbduJhv7f88iEbtKitp8bDx3aKQbwHlnFIZWfTJ4iXsEFzT142nQ73zflif83pnbS9txYKhzm2clu32rHX77cQoIxjb/JMnDLs9GGYsxosme79Wj12mhxtp41IcETJxOkPnE7aMsjvveO8+zwHWb2HzfYyZUvtzDJum64P5fufJDkbracdfuzFotd6dlJfpcl/mPH7OTKl1tI8FjPn0tTfMr5s2Yv1ZC1lylvCWWIxr13pFfebknoG9ZJLZVar/Tg4aPIUd6gYez1QzOJdW1Ekxd8lWc70jSsMXapMhlNd0Tg+RIv+rHTPqqorMmQJeDQ0ahfekQVB70dZYgeazm5WpclEwcP6k254MB+3zrPTtvCiGf3dujC5FYSPNQycF9kwwTXUjc+3TB97sVnposXttTVPmqUBPez9HpVxJOWSZaPXyuz5NDOXZaOVSo7Nlrr7mlod72vWYortqPuzBEH7Ovo3QlJYzurx/5aXcDQju2vUYXJdidJc4GQ4aO3qHC2PTs8RPftbQdtfd6OPyj3LffYaXhrAfHv22snV7Hcl/EnJ+ihOopvj8IOCL7/xSk0OlzHueeeb7kBIGw/Wk8/9+DelisbjRFNriZcRaHpHzcL0eIFxIcdE2ZSlczFCeYzTow93ZY3Zg3EeMd0M3HuuLHZc8342x0XvmnRDYFol3bquwrckDhpwkoZ7Er0o4wryxWqB9+xSgFU6wdzAsIKx4tp0qzaVcu459puOA8Ld5vVi8kMAqYGUi1jR71rh3BO1j885qp21XJUkz3XfraaPt0ZFwgwEuEa6NNJ0gg7Et2SIz7f3964Bl4u+r7KmAW4ttatRxjy/zXsuTikxC2KdqANX95LPQf1+PjKVUgWpUkT9Et0PvO5stvu9OATECnAqL/WcxMaj/VAr0Qbc2QPrwvdWG/HWnAUnhTwh2cECw4mabov1/FyIej5WcHQVqC07jFlRcaf0/gURnee1d8F0q87s9EfiqpUDMf+NHGg1Z6MtzWms2ls5ns9TcFV9aEMezhBoJqKkCOAowiQAJXii/rOyuY9wMJQjENPVHmUcYYHjiaAfJWGHAEkbomm52ET3FzmW5ohYIcLRJFIleKMiurbn5ATqVOPIfYlTuBRTeLURKKMhZT7eZKGC0hnv9ruNwLSGQIafbhH3zqNGC8eTBQLFgdYPp+nH8t4V+PST6nc3MwMVRJyBP4DtrOFQFKnucgAAAAASUVORK5CYII=;" parent="1" vertex="1"> + <mxGeometry x="481" y="548" width="12.93" height="12.07" as="geometry" /> + </mxCell> + <mxCell id="gN4vE8bEkTlw2jWnqAIC-6" value="Excitation" style="rounded=1;whiteSpace=wrap;html=1;strokeColor=#585858;" parent="1" vertex="1"> + <mxGeometry x="-10" y="677" width="70" height="30" as="geometry" /> + </mxCell> + <mxCell id="gN4vE8bEkTlw2jWnqAIC-8" value="" style="endArrow=none;html=1;rounded=0;strokeColor=#585858;" parent="1" edge="1"> + <mxGeometry width="50" height="50" relative="1" as="geometry"> + <mxPoint x="108" y="725" as="sourcePoint" /> + <mxPoint x="64" y="744" as="targetPoint" /> + </mxGeometry> + </mxCell> + <mxCell id="gN4vE8bEkTlw2jWnqAIC-9" value="Design Space" style="rounded=1;whiteSpace=wrap;html=1;strokeColor=#585858;" parent="1" vertex="1"> + <mxGeometry x="-10" y="714" width="70" height="30" as="geometry" /> + </mxCell> + <mxCell id="gN4vE8bEkTlw2jWnqAIC-10" value="" style="endArrow=none;html=1;rounded=0;strokeColor=#585858;" parent="1" edge="1"> + <mxGeometry width="50" height="50" relative="1" as="geometry"> + <mxPoint x="63" y="678" as="sourcePoint" /> + <mxPoint x="107" y="696" as="targetPoint" /> + </mxGeometry> + </mxCell> + <mxCell id="gN4vE8bEkTlw2jWnqAIC-11" value="Gradient or non-gradient based..." style="rounded=1;whiteSpace=wrap;html=1;strokeColor=#585858;" parent="1" vertex="1"> + <mxGeometry x="679" y="578" width="104" height="42" as="geometry" /> + </mxCell> + </root> + </mxGraphModel> + </diagram> +</mxfile> diff --git a/assets/PyBOP_Architecture.png b/assets/PyBOP_Architecture.png new file mode 100644 index 000000000..25ea6d42f Binary files /dev/null and b/assets/PyBOP_Architecture.png differ diff --git a/assets/Temp_Logo.png b/assets/Temp_Logo.png new file mode 100644 index 000000000..4ef2853b3 Binary files /dev/null and b/assets/Temp_Logo.png differ diff --git a/conftest.py b/conftest.py new file mode 100644 index 000000000..b37cbd0f5 --- /dev/null +++ b/conftest.py @@ -0,0 +1,24 @@ +import pytest +import matplotlib + +matplotlib.use("Template") + + +def pytest_addoption(parser): + parser.addoption( + "--unit", action="store_true", default=False, help="run unit tests" + ) + + +def pytest_configure(config): + config.addinivalue_line("markers", "unit: mark test as a unit test") + + +def pytest_collection_modifyitems(config, items): + if config.getoption("--unit"): + # --unit given in cli: do not skip unit tests + return + skip_unit = pytest.mark.skip(reason="need --unit option to run") + for item in items: + if "unit" in item.keywords: + item.add_marker(skip_unit) diff --git a/examples/notebooks/spm_nlopt.ipynb b/examples/notebooks/spm_nlopt.ipynb new file mode 100644 index 000000000..811575160 --- /dev/null +++ b/examples/notebooks/spm_nlopt.ipynb @@ -0,0 +1,793 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "expmkveO04pw" + }, + "source": [ + "## A NMC/Gr parameterisation example using PyBOP\n", + "\n", + "This notebook introduces a synthetic re-parameterisation of the single-particle model with corrupted observations. To start, we import the PyBOP package for parameterisation and the PyBaMM package to generate the initial synethic data," + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "X87NUGPW04py", + "outputId": "0d785b07-7cff-4aeb-e60a-4ff5a669afbf" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.1/2.1 MB\u001b[0m \u001b[31m19.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m139.4/139.4 kB\u001b[0m \u001b[31m14.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m15.9/15.9 MB\u001b[0m \u001b[31m78.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.3/2.3 MB\u001b[0m \u001b[31m79.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m44.9/44.9 kB\u001b[0m \u001b[31m5.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m160.1/160.1 kB\u001b[0m \u001b[31m17.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m75.3/75.3 MB\u001b[0m \u001b[31m8.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m561.4/561.4 kB\u001b[0m \u001b[31m27.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.6/1.6 MB\u001b[0m \u001b[31m51.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25h Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m423.7/423.7 kB\u001b[0m \u001b[31m6.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m260.7/260.7 kB\u001b[0m \u001b[31m15.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m284.9/284.9 kB\u001b[0m \u001b[31m15.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25h Building wheel for pybop (setup.py) ... \u001b[?25l\u001b[?25hdone\n", + "\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\u001b[0m\u001b[33m\n", + "\u001b[0m" + ] + } + ], + "source": [ + "%pip install --upgrade pip ipywidgets pybamm -q\n", + "%pip install git+https://github.com/pybop-team/PyBOP.git@develop -q" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "jAvD5fk104p0" + }, + "source": [ + "Next, we import the added packages plus any additional dependencies," + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "id": "SQdt4brD04p1" + }, + "outputs": [], + "source": [ + "import pybop\n", + "import pybamm\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "5XU-dMtU04p2" + }, + "source": [ + "## Generate Synthetic Data" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "MlBYO-xK04p3" + }, + "source": [ + "We need to generate the synthetic data required for later reparameterisation. To do this we will run the PyBaMM forward model and store the generated data. This will be integrated into PyBOP in a future release for fast synthetic generation. For now, we define the PyBaMM model with a default parameter set," + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "id": "sBasxv8U04p3" + }, + "outputs": [], + "source": [ + "synthetic_model = pybamm.lithium_ion.SPM()\n", + "params = synthetic_model.default_parameter_values" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "wRDiC_dj04p5" + }, + "source": [ + "We can now modify individual parameters with the bespoke values and run the simulation." + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "id": "JgN4C76x04p6" + }, + "outputs": [], + "source": [ + "params.update(\n", + " {\n", + " \"Negative electrode active material volume fraction\": 0.52,\n", + " \"Positive electrode active material volume fraction\": 0.63,\n", + " }\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "KWA5Fmbv04p7" + }, + "source": [ + "Define the experiment and run the forward model to capture the synthetic data." + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "id": "LvQ7eXGf04p7" + }, + "outputs": [], + "source": [ + "experiment = pybamm.Experiment(\n", + " [\n", + " (\n", + " \"Discharge at 1C for 15 minutes (1 second period)\",\n", + " \"Rest for 2 minutes (1 second period)\",\n", + " \"Charge at 1C for 15 minutes (1 second period)\",\n", + " \"Rest for 2 minutes (1 second period)\",\n", + " ),\n", + " ]\n", + " * 2\n", + ")\n", + "sim = pybamm.Simulation(synthetic_model, experiment=experiment, parameter_values=params)\n", + "synthetic_sol = sim.solve()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "u6QbgzJD04p-" + }, + "source": [ + "Plot the synthetic data," + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 602, + "referenced_widgets": [ + "8d003c14da5f4fa68284b28c15cee6e6", + "aef2fa7adcc14ad0854b73d5910ae3b4", + "7d46516469314b88be3500e2afcafcf6", + "423bffea3a1c42b49a9ad71218e5811b", + "06f2374f91c8455bb63252092512f2ed", + "56ff19291e464d63b23e63b8e2ac9ea3", + "646a8670cb204a31bb56bc2380898093" + ] + }, + "id": "_F-7UPUl04p-", + "outputId": "cf548842-64ae-4389-b16d-d3cf3239ce8f" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "interactive(children=(FloatSlider(value=0.0, description='t', max=1.1333333333333333, step=0.01133333333333333…" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "8d003c14da5f4fa68284b28c15cee6e6" + } + }, + "metadata": {} + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "<pybamm.plotting.quick_plot.QuickPlot at 0x7d7b2d770eb0>" + ] + }, + "metadata": {}, + "execution_count": 25 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "<Figure size 1500x700 with 8 Axes>" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABdEAAAKxCAYAAAC8BuXeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeVxU1f8/8NeADKsDorIlAqYhmIDiRxzLHRnQj2n5KRdS3D8aaEhp8ckItcJc0ST5mAtW8nGpNFMDCUNccENHccMN0xIwU0BQAeH8/vDH/ToybIoMwuv5eNxH3Xve9973PTNzOZ65c45MCCFARERERERERERERETl6Ok6ASIiIiIiIiIiIiKi+oqd6EREREREREREREREFWAnOhERERERERERERFRBdiJTkRERERERERERERUAXaiExERERERERERERFVgJ3oREREREREREREREQVYCc6EREREREREREREVEF2IlORERERERERERERFQBdqITEREREREREREREVWAnehPyNHREZGRkbpOo1ZduXIFMpkMarW6WvFjxozBkCFDnmlOT2r//v3o2LEjDAwM6m2OpEkmk2Hr1q3P9Bzh4eGQyWSQyWR18vmti2uqrrq+9sasPr3ujwsPD4eHh4eu06Aq1EUbIyYmRronBAcHP9NzAfWr3VTX1061JykpCTKZDDk5OZXG1af3W21hO510ie30Z4vtdKL6o+zvrUwme6J/N5Xta2FhUeu5ke7Vu070MWPGQCaTYd68eRrbt27dCplMVuf5xMTEaH3zHzlyBJMmTarzfGqLtoa1vb09MjMz8fLLL+smqVoUEhICDw8PZGRkICYmRtfpPNcq+gw8qYo68TIzM+Hn51dr56lIhw4dkJmZ+Vx/fh+Xnp6OPn36wNraGkZGRmjTpg1mzZqF4uJiKeb9999HZmYmWrVqpcNMn39lf6MeX3x9fZ/ZOXX5j7za/vw/76rbgVddum5jKBQKZGZmYu7cuc/8XHXl77//hq+vL+zs7GBoaAh7e3sEBQUhLy9Pihk2bBgyMzOhVCp1mGnD9eh9Ui6Xo23btpgzZw4ePHjw1Mfu3r07MjMzYW5uDkD3n6Fnhe10qi620+s/ttOpIcrKysLUqVPRpk0bqb01aNAgJCYm6jq1StXk31W//vqr1uv5448/IJfLK/x7nJmZyS/DGrAmuk5AGyMjI3zxxRf497//jWbNmuk6Ha1atmyp6xSeSElJSYVfRujr68PGxqaOM6pdxcXFMDAwwKVLlzB58mQ2ROpQUVER5HL5E+9fV++9Jk2aPPfv88cZGBhg9OjR6Ny5MywsLHDixAlMnDgRpaWl+PzzzwEAZmZmMDMzg76+vo6zff75+vpi7dq1GtsMDQ11lM1DT/v5o9r1tK9HXbUxZDJZg7sf6unpYfDgwfj000/RsmVLXLx4EYGBgbh16xZiY2MBAMbGxjA2NuZn5hkqu08WFhZi586dCAwMhIGBAUJDQ5/quHK5vFrvWbbT6ye203WH7XTdYTudGporV67glVdegYWFBRYsWICOHTuiuLgY8fHxCAwMxLlz557ouEIIlJSUoEkTzW5KXf07p3nz5mjevHm57TExMXjrrbeQnJyMQ4cOwcvLS6PcxsZG+rKfGp569yQ6AHh7e8PGxgYRERGVxu3btw89evSAsbEx7O3tMW3aNBQUFEjlmZmZGDhwIIyNjeHk5ITY2NhyP+9cvHgxOnbsCFNTU9jb2+Odd95Bfn4+gIdPnI0dOxa5ubnSEzXh4eEANH8mOnLkSAwbNkwjt+LiYrRo0QLffPMNAKC0tBQRERFwcnKCsbEx3N3d8f3331d6fY6Ojpg7dy5GjBgBU1NTvPDCC4iKitKIqSx/4P+eTti2bRtcXV1haGiIcePGYd26dfjpp5+k60pKStL6M9HTp0/jn//8JxQKBZo2bYoePXrg0qVLWvN9kmv86quv0K5dOxgZGcHa2hr/+te/NK7/8W/wPDw8pNcAeNgBsGLFCrz22mswNTXFxIkTIZPJ8Pfff2PcuHGQyWSIiYlBSUkJxo8fL+Xm7OyMpUuXlstnzZo16NChAwwNDWFra4ugoCCpLCcnBxMmTEDLli2hUCjQt29fnDhxotLr++OPPzBixAhYWlrC1NQUXbp0waFDh6TyFStW4MUXX4RcLoezszO+/fZbjf1lMhlWrVqF119/HSYmJmjXrh22bdumEVPVa7Rq1Sq4uLjAyMgI7du3x1dffSWVlb3mP/74I/r06QMTExO4u7sjJSUFQNWfgblz52L06NFQKBTSEyMffPABXnrpJZiYmKBNmzb4+OOPpSctYmJiMHv2bJw4cUI6XtkTSI9/K5yWloa+ffvC2NgYzZs3x6RJkzTe22VPaS1cuBC2trZo3rw5AgMDNZ7qqC6ZTIb//ve/+Oc//wkTExO4uLggJSUFFy9eRO/evWFqaoru3buXe+9X9fpVpXfv3pg6dSqCg4PRrFkzWFtb4+uvv0ZBQQHGjh2Lpk2bom3btvjll18qPU6bNm0wduxYuLu7w8HBAa+99hr8/f2xd+/eGtcFVc3Q0BA2NjYaS2Vf+F67dg1vvfUWLCwsYGlpicGDB+PKlSsaMRXdexwdHQEAr7/+OmQymbRe9qTYqlWr4OTkBCMjIwDA1atXMXjwYJiZmUGhUOCtt95Cdna21rySk5NhYGCArKwsje3BwcHo0aNHpZ//wsJCvP/++3jhhRdgamoKLy8vJCUlVVpvOTk5+Pe//y09ifXyyy9j+/btUvkPP/wg1YGjoyMWLVqksb+joyM+//xzjBs3Dk2bNkXr1q2xcuVKjZiq7rk//fQTOnfuLD0JNnv2bI2nYyu75165cgV9+vQBADRr1gwymQxjxowB8PCzHBQUhODgYLRo0QIqlQpA7bQxgKpf17L3w7fffgtHR0eYm5tj+PDhuHPnTqWviTaOjo749NNPMXr0aJiZmcHBwQHbtm3DX3/9JeXg5uaGo0ePauxX1etXlbJ7+ueffw5ra2tYWFhITy/PmDEDlpaWaNWqVbkvsB7XrFkzTJkyBV26dIGDgwP69euHd955h/fDOlZ2n3RwcMCUKVPg7e0tfZZu376N0aNHo1mzZjAxMYGfnx8uXLgg7fv7779j0KBBaNasGUxNTdGhQwfs3LkTgOavQdhOZzud7XS209lOJ6p777zzDmQyGQ4fPoyhQ4fipZdeQocOHRASEoKDBw8C0D4EWU5OjvQ3Dfi/v+m//PILPD09YWhoiH379lXYrj516hT8/PxgZmYGa2trjBo1Cjdv3pSO37t3b0ybNg0zZ86EpaUlbGxsNP4mVfTvqpoQQmDt2rUYNWoURo4cidWrV9f4GPScE/VMQECAGDx4sPjxxx+FkZGRuHbtmhBCiC1btohH07148aIwNTUVS5YsEefPnxf79+8XnTp1EmPGjJFivL29hYeHhzh48KBITU0VvXr1EsbGxmLJkiVSzJIlS8Tu3btFRkaGSExMFM7OzmLKlClCCCEKCwtFZGSkUCgUIjMzU2RmZoo7d+4IIYRwcHCQjrN9+3ZhbGwslQkhxM8//yyMjY1FXl6eEEKITz/9VLRv317ExcWJS5cuibVr1wpDQ0ORlJRUYV04ODiIpk2bioiICJGeni6WLVsm9PX1xa5du6qVvxBCrF27VhgYGIju3buL/fv3i3Pnzonc3Fzx1ltvCV9fX+m6CgsLRUZGhgAgjh8/LoQQ4o8//hCWlpbijTfeEEeOHBHp6elizZo14ty5cxqvVZmaXuORI0eEvr6+iI2NFVeuXBHHjh0TS5cu1bj+R18rIYRwd3cXn3zyibQOQFhZWYk1a9aIS5cuiStXrojMzEyhUChEZGSkyMzMFHfv3hVFRUUiLCxMHDlyRFy+fFl89913wsTERGzcuFE61ldffSWMjIxEZGSkSE9PF4cPH9Y4v7e3txg0aJA4cuSIOH/+vHjvvfdE8+bNxd9//631+u7cuSPatGkjevToIfbu3SsuXLggNm7cKA4cOCCEEOLHH38UBgYGIioqSqSnp4tFixYJfX19sXv3bo3ra9WqlYiNjRUXLlwQ06ZNE2ZmZtI5q3qNvvvuO2Frayt++OEHcfnyZfHDDz8IS0tLERMTI4QQ0mvevn17sX37dpGeni7+9a9/CQcHB1FcXFzlZ0ChUIiFCxeKixcviosXLwohhJg7d67Yv3+/yMjIENu2bRPW1tbiiy++EEIIcffuXfHee++JDh06SMe7e/eudK1btmwRQgiRn58vbG1txRtvvCHS0tJEYmKicHJyEgEBAVLdBAQECIVCISZPnizOnj0rfv75Z2FiYiJWrlyp9fUQQohPPvlEuLu7l9sOQLzwwgti48aNIj09XQwZMkQ4OjqKvn37iri4OHHmzBnRrVs34evrK+1T3dev7Jq06dWrl2jatKmYO3euOH/+vJg7d67Q19cXfn5+YuXKleL8+fNiypQponnz5qKgoKDC4zzuwoULwsXFRXz00UflyrR9rqj6Hr/vafPo615UVCRcXFzEuHHjxMmTJ8WZM2fEyJEjhbOzsygsLBRCVH7vuXHjhgAg1q5dKzIzM8WNGzeEEA/fy6ampsLX11ccO3ZMnDhxQpSUlAgPDw/x6quviqNHj4qDBw8KT09P0atXLym3xz8DL730kpg/f760XlRUJFq0aCHWrFlT6ed/woQJonv37iI5OVlcvHhRLFiwQBgaGorz589rrZOSkhLRrVs30aFDB7Fr1y5x6dIl8fPPP4udO3cKIYQ4evSo0NPTE3PmzBHp6eli7dq1wtjYWKxdu1Y6hoODg7C0tBRRUVHiwoULIiIiQujp6Un3u6ruucnJyUKhUIiYmBhx6dIlsWvXLuHo6CjCw8M1XruK7rkPHjwQP/zwgwAg0tPTRWZmpsjJyRFCPPwsm5mZiRkzZohz585JOdVGG6O6r6uZmZl0z0xOThY2NjbiP//5TwXv0oftA3Nz83Lby+o5OjpaugcpFArh6+srNm3aJN0jXVxcRGlpaY1ev8ruPQEBAaJp06YiMDBQnDt3TqxevVoAECqVSnz22WfSPdLAwEBqG1bHn3/+KXr16iX8/f3LlfXq1Uu8++671T4WVY+2++Rrr70mOnfuLP2/i4uLSE5OFmq1WqhUKtG2bVtRVFQkhBBi4MCBon///uLkyZPSvWLPnj1CCCF+++03AUDcvn2b7XS209lOZzud7XSiOvb3338LmUwmPv/880rjHv+bJYQQt2/fFgDEb7/9JoT4v7/pbm5uYteuXeLixYvi77//1tquvn37tmjZsqUIDQ0VZ8+eFceOHRP9+/cXffr0kY7fq1cvoVAoRHh4uDh//rxYt26dkMlk0t/liv5dVZ3cyyQmJgobGxvx4MEDkZaWJpo2bSry8/PLxVXUzqbnX73tRBdCiG7duolx48YJIcp3oo8fP15MmjRJY9+9e/cKPT09ce/ePXH27FkBQBw5ckQqv3DhggBQ6R+mzZs3i+bNm0vrlf0js+w4xcXFokWLFuKbb76RykeMGCGGDRsmhBDi/v37wsTERGqUPXoNI0aMqDAXBwcHjcaAEEIMGzZM+Pn51Sh/AEKtVmvEafsHzuM3i9DQUOHk5CT9o+Zxjx7jSa7xhx9+EAqFQvoHzOOq2zgPDg4ut6+5ubnGP961CQwMFEOHDpXW7ezstDZmhHj43lIoFOL+/fsa21988UXx3//+V+s+//3vf0XTpk0rbLx3795dTJw4UWPbm2++KQYMGCCtAxCzZs2S1vPz8wUA8csvvwghqn6NXnzxRREbG6uxbe7cuUKpVAoh/u81X7VqlVR++vRpAUCcPXtWCFH5Z2DIkCFaz/uoBQsWCE9PT2m9sgZyWUN25cqVolmzZhp/kHbs2CH09PREVlaWEOLh+8/BwUE8ePBAinnzzTelz502lZ370XpOSUkRAMTq1aulbf/73/+EkZGRtF7d16+qxvmrr74qrT948ECYmpqKUaNGSdsyMzMFAJGSklLhccoolUphaGgoAIhJkyaJkpKScjFsnD+dgIAAoa+vL0xNTTWWzz77TIp59HX/9ttvhbOzs9TZKMTDzlNjY2MRHx8vhKj83vP48cp88sknwsDAQKPxt2vXLqGvry+uXr0qbSv7PB8+fFja79HPwBdffCFcXFyk9R9++EGYmZlJnz1tn//ff/9d6Ovriz///FNje79+/URoaKjWa4iPjxd6enoiPT1da/nIkSNF//79NbbNmDFDuLq6SusODg7i7bffltZLS0uFlZWVWLFihRCi6ntuv379yjX4v/32W2FrayutV3XPfbQD71G9evUSnTp10nreRz1JG6O6r6uJiYnG39MZM2YILy+vCnOp7NyP1nPZPejjjz+WtpXdIzMzM4UQ1X/9qupEd3Bw0LhvOTs7ix49ekjrZffI//3vfxUep8zw4cOFsbGxACAGDRok7t27Vy6GnejPxqPtw9LSUpGQkCAMDQ3F+++/L86fPy8AiP3790vxN2/eFMbGxmLTpk1CCCE6duyo8eXWox7/DLKdzna6EGyns53OdjpRXTl06JAAIH788cdK42rSib5161aNfbW1q+fOnSt8fHw0tl27dk16uKVsv0c/s0II8Y9//EN88MEH0npVn/uKci8zcuRIjb9r7u7uWv+esRO94aqXw7mU+eKLL7Bu3TqcPXu2XNmJEycQExMjjR9mZmYGlUqF0tJSZGRkID09HU2aNEHnzp2lfdq2bVvuJ/e//vor+vXrhxdeeAFNmzbFqFGj8Pfff+Pu3bvVzrNJkyZ46623sH79egBAQUEBfvrpJ/j7+wMALl68iLt376J///4a+X7zzTcV/uSyzOOTXimVSo36qE7+crkcbm5u1b6eMmq1Gj169ICBgUGVsU9yjf3794eDgwPatGmDUaNGYf369TWq9zJdunSpVlxUVBQ8PT3RsmVLmJmZYeXKlbh69SoA4MaNG7h+/Tr69eundd8TJ04gPz8fzZs317i+jIyMCq9PrVajU6dOsLS01Fp+9uxZvPLKKxrbXnnllXLv90dfO1NTUygUCty4cUM6R0WvUUFBAS5duoTx48dr5Pzpp5+Wy/nRc9ja2kp1UhVtdb9x40a88sorsLGxgZmZGWbNmiXVc3WdPXsW7u7uMDU1lba98sorKC0tRXp6urStQ4cOGmMH2traVitvbR6tA2trawBAx44dNbbdv39fmpyuuq9fTc6rr6+P5s2blzsv8H+vR4cOHaTX8vEJnjZu3Ihjx44hNjYWO3bswMKFC2uUC1VPnz59oFarNZbJkydrjT1x4gQuXryIpk2bSq+bpaUl7t+/j0uXLlV576mMg4ODxri/Z8+ehb29Pezt7aVtrq6usLCwqPB9OWbMGFy8eFH66WXZGH+PfvYel5aWhpKSErz00ksa95Y9e/ZUej9s1aoVXnrpJa3lFX2eLly4gJKSEmnbo5+XsvG8H70fVnbPPXHiBObMmaOR88SJE5GZmanxt6eye25lPD09y22rjTZGdV9XR0dHNG3aVFp/1vdD4P/uS9V9/arSoUMH6On9X9PU2tpa47xl98iy85b9pNfMzAwdOnTQONaSJUtw7Ngx/PTTT7h06RJCQkKqnQc9ve3bt8PMzAxGRkbw8/PDsGHDEB4ejrNnz6JJkyYa44c2b94czs7O0vt52rRp+PTTT/HKK6/gk08+wcmTJ58qF7bT2U7Xhu10ttNrel6204keDmdS27Tdqx5vV584cQK//fabxv2yffv2AKBxz3z87+nT3Hcel5OTgx9//BFvv/22tO3tt9/mkC6NTL2cWLRMz549oVKpEBoaKo07WiY/Px///ve/MW3atHL7tW7dGufPn6/y+FeuXME///lPTJkyBZ999hksLS2xb98+jB8/HkVFRTAxMal2rv7+/ujVqxdu3LiBhIQEGBsbw9fXV8oVAHbs2IEXXnhBY7+nmYyuuvkbGxtXOElRZYyNjasd+yTX2LRpUxw7dgxJSUnYtWsXwsLCEB4ejiNHjsDCwgJ6enrlbtLaxtGrrLOnzIYNG/D+++9j0aJFUCqVaNq0KRYsWCCNe1jVtebn58PW1lbrmL8WFhZa96lJ/VXm8Ya3TCZDaWlplecoe02+/vrrcpNdPD5pzaPnKHuvlJ2jMo/XfUpKCvz9/TF79myoVCqYm5tjw4YNNR4bt7oqq5unOVZZHTxpvTzpecvOU9l5d+7cKX0OHn/9yzrZXF1dUVJSgkmTJuG9997jJEW1zNTUFG3btq1WbH5+Pjw9PaXOm0e1bNlSo8PwSfJ4WlZWVhg0aBDWrl0LJycn/PLLL1WObZ6fnw99fX2kpqaWe2+ZmZlp3UfX90PgYd6zZ8/GG2+8Ua6sbEz5qs5Rmcdfj9psY1RHY7gflm0rO++qVatw7949rfuWzVfQvn17WFpaokePHvj444+lDih6tvr06YMVK1ZALpfDzs6u3CRhlZkwYQJUKhV27NiBXbt2ISIiAosWLcLUqVOfOB+209lOf5yu/y6xnf7kx6pPf5fYTqfGpl27dpDJZFVOHlr2b5xH/05UNCeCtr8Tj2/Lz8/HoEGD8MUXX5SLfbRtV5v3ncfFxsbi/v37GvdsIQRKS0tx/vz5Ch8WooalXneiA8C8efPg4eEBZ2dnje2dO3fGmTNnKuzIcHZ2xoMHD3D8+HHpW6yLFy/i9u3bUkxqaipKS0uxaNEi6UO+adMmjePI5fJqPUXVvXt32NvbY+PGjfjll1/w5ptvSh/gsomCrl69il69elX/4gHp6cBH111cXKqdf0Wqc11ubm5Yt24diouLq3zK5UmvsUmTJvD29oa3tzc++eQTWFhYYPfu3XjjjTfQsmVLZGZmSrF5eXnIyMio9rEftX//fnTv3h3vvPOOtO3RbyybNm0KR0dHJCYmShPHPapz587IyspCkyZNqj0BhZubG1atWoVbt25pfcrFxcUF+/fvR0BAgEaerq6u1b6uyl4ja2tr2NnZ4fLly9LTVk+iup8BADhw4AAcHBzw0UcfSdt+//33Gh/PxcUFMTExKCgokP6A7t+/H3p6euXuBbpSG6/fk3BwcKhWXGlpKYqLi1FaWsrGuQ517twZGzduhJWVFRQKhdaYyu49wMPGYHU+gy4uLrh27RquXbsm/UPtzJkzyMnJqfR9OWHCBIwYMQKtWrXCiy++qPHklrbPa6dOnVBSUoIbN26gR48eVeYFPLxX/fHHHxU2MMs+T4/av38/XnrppWq/f6u653bu3Bnp6enV/gJEG7lcDgDVej1qq43xpK9rXaqN1+9JPN4ZWJGyfzwVFhY+s1xIU0VfNrq4uODBgwc4dOgQunfvDgD4+++/kZ6ervF+tre3x+TJkzF58mSEhobi66+/1tqJznY62+kA2+lsp5fHdjrRs2FpaQmVSoWoqChMmzatXGd3Tk4OLCwspF/LZmZmolOnTgCgMcloTXXu3Bk//PADHB0da/TF/OOq++8qbVavXo333nuv3AO+77zzDtasWYN58+Y9cV70/KjXw7kAD3+m5e/vj2XLlmls/+CDD3DgwAEEBQVBrVbjwoUL+Omnn6RZ2tu3bw9vb29MmjQJhw8fxvHjxzFp0iSNpz3atm2L4uJifPnll7h8+TK+/fZbREdHa5zH0dER+fn5SExMxM2bNyv9GePIkSMRHR2NhIQEjcZQ06ZN8f7772P69OlYt24dLl26hGPHjuHLL7/EunXrKr3+/fv3Y/78+Th//jyioqKwefNmvPvuu9XOvyKOjo44efIk0tPTcfPmTa3fCgYFBSEvLw/Dhw/H0aNHceHCBXz77bcaP9N7mmvcvn07li1bBrVajd9//x3ffPMNSktLpcZX37598e2332Lv3r1IS0tDQEDAEzcy2rVrh6NHjyI+Ph7nz5/Hxx9/jCNHjmjEhIeHY9GiRVi2bBkuXLgg5Q8A3t7eUCqVGDJkCHbt2oUrV67gwIED+Oijj3D06FGt5xwxYgRsbGwwZMgQ7N+/H5cvX8YPP/yAlJQUAMCMGTMQExODFStW4MKFC1i8eDF+/PFHvP/++9W+rqpeo9mzZyMiIgLLli3D+fPnkZaWhrVr12Lx4sXVPkdNPgPt2rXD1atXsWHDBly6dAnLli3Dli1byh0vIyMDarUaN2/e1Nqp4e/vDyMjIwQEBODUqVP47bffMHXqVIwaNUr62aSuPcnr169fPyxfvrzWc1m/fj02bdqEs2fP4vLly9i0aRNCQ0MxbNiwav3Mm2qmsLAQWVlZGsujM8M/yt/fHy1atMDgwYOxd+9eZGRkICkpCdOmTcMff/wBoPJ7D/B/nexZWVkaXwQ/ztvbW/qbeezYMRw+fBijR49Gr169Kv05vUqlgkKhwKeffoqxY8dqlGn7/L/00kvw9/fH6NGj8eOPPyIjIwOHDx9GREQEduzYofUcvXr1Qs+ePTF06FAkJCQgIyMDv/zyC+Li4gAA7733HhITEzF37lycP38e69atw/Lly2t0P6zqnhsWFoZvvvkGs2fPxunTp3H27Fls2LABs2bNqvY5HBwcIJPJsH37dvz111/Sk4Ta1FYb40lf17r0JK/f6NGjERoaWuu57Ny5E2vXrsWpU6dw5coV7NixA5MnT8Yrr7xS7c41enbatWuHwYMHY+LEidi3bx9OnDiBt99+Gy+88AIGDx4MAAgODkZ8fDwyMjJw7Ngx/Pbbb1LH9OPYTmc7HWA7ne308thOJ3p2oqKiUFJSgq5du+KHH37AhQsXcPbsWSxbtkwa5szY2BjdunXDvHnzcPbsWezZs6dGbe7HBQYG4tatWxgxYgSOHDmCS5cuIT4+HmPHjq1Rp3h1/131OLVajWPHjmHChAl4+eWXNZYRI0Zg3bp1ePDgwZNcGj1vdDoiuxYVTaQjl8vF4+kePnxY9O/fX5iZmQlTU1Ph5uamMbnb9evXhZ+fnzA0NBQODg4iNjZWWFlZiejoaClm8eLFwtbWVhgbGwuVSiW++eabcpOGTZ48WTRv3lwAkCbL0Tbpx5kzZwQA4eDgoDGJnBAPJ1aKjIwUzs7OwsDAQLRs2VKoVCqxZ8+eCuvCwcFBzJ49W7z55pvCxMRE2NjYiKVLl2rEVJV/RRMa3LhxQ6o7/P/JHbRNoHDixAnh4+MjTExMRNOmTUWPHj3EpUuXhBDlX6uaXuPevXtFr169RLNmzYSxsbFwc3MTGzdulMpzc3PFsGHDhEKhEPb29iImJkbrhEXaJoZ4fMKi+/fvizFjxghzc3NhYWEhpkyZIj788MNyk9dER0dL+dva2oqpU6dKZXl5eWLq1KnCzs5OGBgYCHt7e+Hv768x2dvjrly5IoYOHSoUCoUwMTERXbp0EYcOHZLKv/rqK9GmTRthYGAgXnrpJY1Jryq6vsevrbLXSAgh1q9fLzw8PIRcLhfNmjUTPXv2lCYCqc6EH0JU/zMgxMPJ5Jo3by7MzMzEsGHDxJIlSzTeg/fv3xdDhw4VFhYW0uzY2q715MmTok+fPsLIyEhYWlqKiRMnijt37kjl2u4V7777rujVq1e5nMpUZ7KkiupF24SCNX39HBwcNN6/2ia101avFb3Py2zYsEF07txZuhe6urqKzz//XOtEepyw6OkEBAQIAOUWZ2dnKebx1yszM1OMHj1atGjRQhgaGoo2bdqIiRMnitzcXCmmsnvPtm3bRNu2bUWTJk2Eg4ODEKLi9/Lvv/8uXnvtNWFqaiqaNm0q3nzzTWmSr8r2+/jjj4W+vr64fv16uTJtn/+ioiIRFhYmHB0dpZxff/11cfLkyQrr7u+//xZjx44VzZs3F0ZGRuLll18W27dvl8q///574erqKgwMDETr1q3FggULNPavziR2Vd1z4+LiRPfu3YWxsbFQKBSia9euYuXKlVJ5de65c+bMETY2NkImk4mAgAAhRMUTVNZWG+NJXtclS5ZI7xdtqjMhY5nq3CNr+vr16tVLqj8htN/Tq3uPfNTu3buFUqkU5ubmwsjISLRr10588MEH5SaDrej49PS0vZaPunXrlhg1apQwNzeXPhvnz5+XyoOCgsSLL74oDA0NRcuWLcWoUaPEzZs3hRDa/xaznc52uhBsp7OdznY6UV26fv26CAwMFA4ODkIul4sXXnhBvPbaaxr3pjNnzgilUimMjY2Fh4eH2LVrl9aJRR9vo1XUPjt//rx4/fXXhYWFhTA2Nhbt27cXwcHB0t90bfsNHjxYo72p7d9Vj9N2jwkKChKurq5a4zMzM4Wenp746aefpG2cWLThkgnxDGYGqKf++OMP2NvbS5P81HeOjo4IDg5GcHCwrlMhahDCw8OxdevWp/op2fOO9xXSZvz48fjrr7+wbds2XadCdSQmJgbBwcHIycnRdSo607t3b3h4eCAyMlLXqdBziH9PiWoX2+m8rxDVB1euXIGTkxOOHz8ODw+PJzoG29kNV70fzuVp7N69G9u2bUNGRgYOHDiA4cOHw9HRET179tR1akSkI2lpaTAzM8NXX32l61Tq1Oeffw4zMzNcvXpV16lQPZKbm4t9+/YhNjb2qSbto+dTbm4uzMzM8MEHH+g6lTq1fv16mJmZYe/evbpOhYiIHsF2OtvpRPVF9+7dpflbasLMzAyTJ09+BhlRfdCgn0SPj4/He++9h8uXL6Np06bo3r07IiMjqz3hh67xm2ii2nXr1i3cunULANCyZUuYm5vrOKO605ivnSrWu3dvHD58GP/+97+xZMkSXadDdejOnTvIzs4GAFhYWKBFixY6zqjuNOZrp9rDdjpR7WrMbdXGfO1E9c2DBw9w5coVAIChoSHs7e1rtP/FixcBAPr6+nBycqrt9EjHGnQnOhERERERERERERHR02jQw7kQETVGycnJGDRoEOzs7CCTybB161aNciEEwsLCYGtrC2NjY3h7e+PChQsaMbdu3YK/vz8UCgUsLCwwfvx45OfnS+X379/HmDFj0LFjRzRp0gRDhgypVm5VHRcATp48iR49esDIyAj29vaYP3/+E9UDEREREREREVFtYCc6EVEDU1BQAHd3d0RFRWktnz9/PpYtW4bo6GgcOnQIpqamUKlUuH//vhTj7++P06dPIyEhAdu3b0dycjImTZoklZeUlMDY2BjTpk2Dt7d3tXOr6rh5eXnw8fGBg4MDUlNTsWDBAoSHh2PlypVPUBNERERERERERE+vUQ/nUlpaiuvXr6Np06aQyWS6ToeIGiEhBO7cuQM7Ozvo6dX+95oymQxbtmyRnhQXQsDOzg7vvfce3n//fQAPJxe0trZGTEwMhg8fjrNnz8LV1RVHjhxBly5dAABxcXEYMGAA/vjjD9jZ2WmcY8yYMcjJySn3xPvjqnPcFStW4KOPPkJWVhbkcjkA4MMPP8TWrVtx7tw5rcctLCxEYWGhtF5aWopbt26hefPmvLcTkc486/t7Y8N2OxHVB7y31y7e24moPqjuvb1JHeZU71y/fr3GkwQQET0L165dQ6tWrZ75eTIyMpCVlaXx9Li5uTm8vLyQkpKC4cOHIyUlBRYWFlJHNwB4e3tDT08Phw4dwuuvv/5E567OcVNSUtCzZ0+pAx0AVCoVvvjiC9y+fRvNmjUrd9yIiAjMnj37iXIiInrW6ur+3tCx3U5E9Qnv7bWD93Yiqk+qurfXqBM9IiICP/74I86dOwdjY2N0794dX3zxBZydnaWYlStXIjY2FseOHcOdO3dw+/ZtWFhYaBzn1q1bmDp1Kn7++Wfo6elh6NChWLp0KczMzKSYkydPIjAwEEeOHEHLli0xdepUzJw5U+M4mzdvxscff4wrV66gXbt2+OKLLzBgwIBqX0/Tpk0BPKwkhUJRk6ogIqoVeXl5sLe3l+5Hz1pWVhYAwNraWmO7tbW1VJaVlQUrKyuN8iZNmsDS0lKKedJzV3XcrKyscrOYl+WalZWltRM9NDQUISEh0npubi5at27Ne3sjlpWVhbVr12Ls2LGwsbFpdOen+qGu7+8NHdvtRFQf8N5eu8rqMT09nW0mItKZ6t7ba9SJvmfPHgQGBuIf//gHHjx4gP/85z/w8fHBmTNnYGpqCgC4e/cufH194evri9DQUK3H8ff3R2ZmJhISElBcXIyxY8di0qRJiI2NlZL38fGBt7c3oqOjkZaWhnHjxsHCwkIaO/fAgQMYMWIEIiIi8M9//hOxsbEYMmQIjh07hpdffrla11P2cyGFQsHGOBHpFH+++OQMDQ1haGhYbjvv7Y1XQUEBjIyM0LRpU528B3R9fqpfeH+vHWy3E1F9wnt77SirR7aZiKg+qOreXqNO9Li4OI31mJgYWFlZITU1FT179gQABAcHAwCSkpK0HuPs2bOIi4vTGBP3yy+/xIABA7Bw4ULY2dlh/fr1KCoqwpo1ayCXy9GhQweo1WosXrxY6kRfunQpfH19MWPGDADA3LlzkZCQgOXLlyM6OlrruR8fNzcvL68ml09E9Nwre8IjOzsbtra20vbs7Gx4eHhIMTdu3NDY78GDB7h169ZTPSFSnePa2NggOztbI6ZsnU+nEBEREREREZEuPNVMGLm5uQAAS0vLau9T1Zi4ZTHaxsRNT0/H7du3pZhHx/Qti0lJSanw3BERETA3N5cWjr1FRI2Nk5MTbGxskJiYKG3Ly8vDoUOHoFQqAQBKpRI5OTlITU2VYnbv3o3S0lJ4eXk98bmrc1ylUonk5GQUFxdLMQkJCXB2dtY6lAsRERERERER0bP2xJ3opaWlCA4OxiuvvFLt4VOA6o+Jq2283rKyymIqG683NDQUubm50nLt2rVq501E9LzIz8+HWq2GWq0G8HAyUbVajatXr0ImkyE4OBiffvoptm3bhrS0NIwePRp2dnYYMmQIAMDFxQW+vr6YOHEiDh8+jP379yMoKAjDhw+HnZ2ddJ4zZ85ArVbj1q1byM3N1TgnABw+fBjt27fHn3/+We3jjhw5EnK5HOPHj8fp06exceNGLF26VGPMcyIiIiIiIiKiulSj4VweFRgYiFOnTmHfvn21mc8zVdG4uUREDcnRo0fRp08fab2sAzogIAAxMTGYOXMmCgoKMGnSJOTk5ODVV19FXFwcjIyMpH3Wr1+PoKAg9OvXT5oAetmyZRrnGTBgAH7//XdpvVOnTgAAIQSAh3NkpKenazxVXtVxzc3NsWvXLgQGBsLT0xMtWrRAWFiYNJQXEREREREREVFde6JO9KCgIGzfvh3Jyclo1apVjfatrTFxK4rhmLlE1Nj17t1b6sjWRiaTYc6cOZgzZ06FMZaWltJkzxW5cuVKjfOoznHd3Nywd+/eSmOIiIiIiKhhMDEx0XUKRERVqtFwLkIIBAUFYcuWLdi9ezecnJxqfMLaGhNXqVRqjOlbFlM2pi8REREREREREdVvMplM1ykQEVWpRp3ogYGB+O677xAbG4umTZsiKysLWVlZuHfvnhSTlZUFtVqNixcvAgDS0tKkMXOB2hsT991330VcXBwWLVqEc+fOITw8HEePHkVQUNBTVwoREREREREREREREVDDTvQVK1YgNzcXvXv3hq2trbRs3LhRiomOjkanTp0wceJEAEDPnj3RqVMnbNu2TYpZv3492rdvj379+mHAgAF49dVXsXLlSqm8bEzcjIwMeHp64r333is3Jm737t0RGxuLlStXwt3dHd9//z22bt1ao0lOiYiIiIiIiIhIdwoLC3WdAhFRlWo0JnplY+yWCQ8PR3h4eKUxtTUm7ptvvok333yzypyIiIiIiBqbFStWYMWKFdIcFh06dEBYWBj8/Pw04oQQGDBgAOLi4rBlyxYMGTJEKtP2E/v//e9/GD58uLSelJSEkJAQnD59Gvb29pg1axbGjBmjsU9UVBQWLFiArKwsuLu748svv0TXrl1r7VqJiOj59cDLC2jyRFP2Pf9MTIBly4CePXWdyfPp/n3gjTeA/z8aRqMkkwHvvAO8+66uM2nwGuldioiIiIioYWvVqhXmzZuHdu3aQQiBdevWYfDgwTh+/Dg6dOggxUVGRlY6Hu3atWvh6+srrVtYWEj/n5GRgYEDB2Ly5MlYv349EhMTMWHCBNja2kKlUgEANm7ciJCQEERHR8PLywuRkZFQqVRIT0+HlZVV7V84ERE9XzIydJ2BbsXGshP9SaWmAr/8oussdG/5cnai1wF2ohMRERERNUCDBg3SWP/ss8+wYsUKHDx4UOpEV6vVWLRoEY4ePQpbW1utx7GwsICNjY3WsujoaDg5OWHRokUAHs5/tG/fPixZskTqRF+8eDEmTpyIsWPHSvvs2LEDa9aswYcfflgr10pERM+xLVuAFi10nUXdW7cOWLUKKC3VdSbPr7K6s7d/+GVEY3P6NDB5Mt9DdYSd6EREREREDVxJSQk2b96MgoICKJVKAMDdu3cxcuRIREVFVdhJDgCBgYGYMGEC2rRpg8mTJ2Ps2LHSk+spKSnw9vbWiFepVAgODgYAFBUVITU1FaGhoVK5np4evL29kZKSUuE5CwsLNcbIzcvLq/E1ExHRc8LLC6jgi9wGbc8eXWfQcJiYAK++quss6l5jHQZJR1jbREREREQNVFpaGpRKJe7fvw8zMzNs2bIFrq6uAIDp06eje/fuGDx4cIX7z5kzB3379oWJiQl27dqFd955B/n5+Zg2bRoAICsrC9bW1hr7WFtbIy8vD/fu3cPt27dRUlKiNebcuXMVnjciIgKzZ89+0ssmIiIiIqpV7EQnIiIiImqgnJ2doVarkZubi++//x4BAQHYs2cPLl68iN27d+P48eOV7v/xxx9L/9+pUycUFBRgwYIFUif6sxIaGoqQkBBpPS8vD/b29s/0nEREREREFWEnOhERERFRAyWXy9G2bVsAgKenJ44cOYKlS5fC2NgYly5d0pgkFACGDh2KHj16ICkpSevxvLy8MHfuXBQWFsLQ0BA2NjbIzs7WiMnOzoZCoYCxsTH09fWhr6+vNaayIWQMDQ1haGhY8wsmIiIiInoG9HSdABERERER1Y3S0lIUFhbiww8/xMmTJ6FWq6UFAJYsWYK1a9dWuL9arUazZs2kDm6lUonExESNmISEBGncdblcDk9PT42Y0tJSJCYmSjFERNS4mZiY6DoF3RJC1xk8v1h3D7Ee6gSfRCciIiIiaoBCQ0Ph5+eH1q1b486dO4iNjUVSUhLi4+NhY2Oj9Unw1q1bw8nJCQDw888/Izs7G926dYORkRESEhLw+eef4/3335fiJ0+ejOXLl2PmzJkYN24cdu/ejU2bNmHHjh1STEhICAICAtClSxd07doVkZGRKCgowNixY599JRARUb1XNlk1EVF9xk50IiIiIqIG6MaNGxg9ejQyMzNhbm4ONzc3xMfHo3///tXa38DAAFFRUZg+fTqEEGjbti0WL16MiRMnSjFOTk7YsWMHpk+fjqVLl6JVq1ZYtWoVVCqVFDNs2DD89ddfCAsLQ1ZWFjw8PBAXF1duslEiIqJGhV8e1J7GWpeN9bp1hJ3oREREREQN0OrVq2sULx77KbCvry98fX2r3K93795VTlAaFBSEoKCgGuVDRESNQ2Fhoa5TICKqEsdEJyIiIiIiIiIinXjw4IGuUyAiqhI70YmIiIiIiIiICFFRUXB0dISRkRG8vLxw+PDhSuNzcnIQGBgIW1tbGBoa4qWXXsLOnTvrKFsiorrD4VyIiIiIiIiIiBq5jRs3IiQkBNHR0fDy8kJkZCRUKhXS09NhZWVVLr6oqAj9+/eHlZUVvv/+e7zwwgv4/fffYWFhUffJExE9Y+xEJyIiIiIiIiJq5Momjx47diwAIDo6Gjt27MCaNWvw4Ycflotfs2YNbt26hQMHDsDAwAAA4OjoWOHxCwsLNcY/z8vLq90LeF49NicJ1QDr7iHWQ53gcC5ERERERERERI1YUVERUlNT4e3tLW3T09ODt7c3UlJStO6zbds2KJVKBAYGwtraGi+//DI+//xzlJSUaI2PiIiAubm5tNjb2z+TayEiehbYiU5ERERERERE1IjdvHkTJSUlsLa21thubW2NrKwsrftcvnwZ33//PUpKSrBz5058/PHHWLRoET799FOt8aGhocjNzZWWa9eu1fp1PFdkMl1n0HA01rpsrNetIxzOhYiIiIiIiIiIaqS0tBRWVlZYuXIl9PX14enpiT///BMLFizAJ598Ui7e0NAQhoaGOsiUiOjp8Ul0IqIGJjk5GYMGDYKdnR1kMhm2bt2qUS6EQFhYGGxtbWFsbAxvb29cuHBBI+bWrVvw9/eHQqGAhYUFxo8fj/z8fI2YkydPokePHjAyMoK9vT3mz59faV4xMTGQyWRalxs3bgAAkpKStJZX9PQLERERERE9vRYtWkBfXx/Z2dka27Ozs2FjY6N1H1tbW7z00kvQ19eXtrm4uCArKwtFRUXVPrexsfGTJU1EVIfYiU5E1MAUFBTA3d0dUVFRWsvnz5+PZcuWITo6GocOHYKpqSlUKhXu378vxfj7++P06dNISEjA9u3bkZycjEmTJknleXl58PHxgYODA1JTU7FgwQKEh4dj5cqVFeY1bNgwZGZmaiwqlQq9evWClZWVRmx6erpG3OPlRERERERUe+RyOTw9PZGYmChtKy0tRWJiIpRKpdZ9XnnlFVy8eBGlpaXStvPnz8PW1hZyubza59bTY9cUEdV/HM6FiKiB8fPzg5+fn9YyIQQiIyMxa9YsDB48GADwzTffwNraGlu3bsXw4cNx9uxZxMXF4ciRI+jSpQsA4Msvv8SAAQOwcOFC2NnZYf369SgqKsKaNWsgl8vRoUMHqNVqLF68WKOz/VHGxsYaT5n89ddf2L17N1avXl0u1srKChYWFk9ZE0REREREVF0hISEICAhAly5d0LVrV0RGRqKgoABjx44FAIwePRovvPACIiIiAABTpkzB8uXL8e6772Lq1Km4cOECPv/8c0ybNk2Xl/H8EULXGTy/WHcPsR7qBL/uIyJqRDIyMpCVlQVvb29pm7m5Oby8vJCSkgIASElJgYWFhdSBDgDe3t7Q09PDoUOHpJiePXtqPGGiUqmQnp6O27dvVyuXb775BiYmJvjXv/5VrszDwwO2trbo378/9u/fX+lxCgsLkZeXp7EQEREREVHNDBs2DAsXLkRYWBg8PDygVqsRFxcnTTZ69epVZGZmSvH29vaIj4/HkSNH4ObmhmnTpuHdd9/Fhx9+WKPz1mToFyIiXeGT6EREjUjZ2OJlDeEy1tbWUllWVla54VOaNGkCS0tLjRgnJ6dyxygra9asWZW5rF69GiNHjtR4Ot3W1hbR0dHo0qULCgsLsWrVKvTu3RuHDh1C586dtR4nIiICs2fPrvJ8RERERERUuaCgIAQFBWktS0pKKrdNqVTi4MGDT3XO4uLip9r/uSWT6TqDhqOx1mVjvW4dYSc6ERHVuZSUFJw9exbffvutxnZnZ2c4OztL6927d8elS5ewZMmScrFlQkNDERISIq3n5eXB3t7+2SRORERERERERI0Oh3MhImpEbGxsAADZ2dka27Ozs6UyGxsb3LhxQ6P8wYMHuHXrlkaMtmM8eo7KrFq1Ch4eHvD09KwytmvXrrh48WKF5YaGhlAoFBoLEREREREREVFtYSc6EVEj4uTkBBsbGyQmJkrb8vLycOjQISiVSgAPf5KZk5OD1NRUKWb37t0oLS2Fl5eXFJOcnKzx08uEhAQ4OztXOZRLfn4+Nm3ahPHjx1crZ7VaDVtb22pfIxERERERERFRbWInOhFRA5Ofnw+1Wg21Wg3g4WSiarUaV69ehUwmQ3BwMD799FNs27YNaWlpGD16NOzs7DBkyBAAgIuLC3x9fTFx4kQcPnwY+/fvR1BQEIYPHw47OzsAwMiRIyGXyzF+/HicPn0aGzduxNKlSzWGVdmyZQvat29fLr+NGzfiwYMHePvtt8uVRUZG4qeffsLFixdx6tQpBAcHY/fu3QgMDKz9iiIiIiIiIiIiqgaOiU5E1MAcPXoUffr0kdbLOrYDAgIQExODmTNnoqCgAJMmTUJOTg5effVVxMXFwcjISNpn/fr1CAoKQr9+/aCnp4ehQ4di2bJlUrm5uTl27dqFwMBAeHp6okWLFggLC8OkSZOkmNzcXKSnp5fLb/Xq1XjjjTdgYWFRrqyoqAjvvfce/vzzT5iYmMDNzQ2//vqrxvUQERERERE1GELoOoPnF+vuIdZDnWAnOhFRA9O7d2+ISv6IymQyzJkzB3PmzKkwxtLSErGxsZWex83NDXv37q2wfMyYMRgzZky57QcOHKhwn5kzZ2LmzJmVnpeIiIiIiIiIqC5xOBciIiIiogZoxYoVcHNzkyZdViqV+OWXX8rFCSHg5+cHmUyGrVu3apRdvXoVAwcOhImJCaysrDBjxgw8ePBAIyYpKQmdO3eGoaEh2rZti5iYmHLniIqKgqOjI4yMjODl5YXDhw/X5qUSEdFzzNjYWNcp6IZMpusMGo7GWpeN9bp1pEad6BEREfjHP/6Bpk2bwsrKCkOGDCn3U/379+8jMDAQzZs3h5mZGYYOHYrs7GyNGDbGiYiIiIierVatWmHevHlITU3F0aNH0bdvXwwePBinT5/WiIuMjIRMyz/CSkpKMHDgQBQVFeHAgQNYt24dYmJiEBYWJsVkZGRg4MCB6NOnD9RqNYKDgzFhwgTEx8dLMRs3bkRISAg++eQTHDt2DO7u7lCpVLhx48azu3giInpu6Onx+U4iqv9qdKfas2cPAgMDcfDgQSQkJKC4uBg+Pj4oKCiQYqZPn46ff/4Zmzdvxp49e3D9+nW88cYbUjkb40REREREz96gQYMwYMAAtGvXDi+99BI+++wzmJmZ4eDBg1KMWq3GokWLsGbNmnL779q1C2fOnMF3330HDw8P+Pn5Ye7cuYiKikJRUREAIDo6Gk5OTli0aBFcXFwQFBSEf/3rX1iyZIl0nMWLF2PixIkYO3YsXF1dER0dDRMTE63nJCIiIiKqj2o0JnpcXJzGekxMDKysrJCamoqePXsiNzcXq1evRmxsLPr27QsAWLt2LVxcXHDw4EF069ZNaoz/+uuvsLa2hoeHB+bOnYsPPvgA4eHhkMvlGo1xAHBxccG+ffuwZMkSqFQqAJqNceBhA37Hjh1Ys2YNPvzwQ635FxYWorCwUFrPy8uDCQAUFAD6+jWpCiKi2vHIl5BERETPSklJCTZv3oyCggIolUoAwN27dzFy5EhERUXBxsam3D4pKSno2LEjrK2tpW0qlQpTpkzB6dOn0alTJ6SkpMDb21tjP5VKheDgYAAPJ4xOTU1FaGioVK6npwdvb2+kpKRUmK+2djsRETVMZV/MEhHVZ081sWhubi6AhxPQAUBqaiqKi4s1GtLt27dH69atkZKSgm7duum0MR4REYHZs2drbBMAYGf3JJdPRPTUFLpOgIiIGrS0tDQolUrcv38fZmZm2LJlC1xdXQE8/AVp9+7dMXjwYK37ZmVlabTZAUjrWVlZlcbk5eXh3r17uH37NkpKSrTGnDt3rsK8tbXbiYioYSouLtZ1CrolhK4zeH6x7h5iPdSJJx54qrS0FMHBwXjllVfw8ssvA3jYiJbL5bCwsNCItba2rrKhXVZWWUxZY/zmzZsVNsbLjqFNaGgocnNzpeXatWs1v3AiIiIioueEs7Mz1Go1Dh06hClTpiAgIABnzpzBtm3bsHv3bkRGRuo6Ra3YbiciIiKi+uSJn0QPDAzEqVOnsG/fvtrM55kyNDSEoaGhxjZTAJnXr0Oh4POgRFT38vLy+GsYIiJ6ZuRyOdq2bQsA8PT0xJEjR7B06VIYGxvj0qVL5R5+GTp0KHr06IGkpCTY2Njg8OHDGuXZ2dkAIA3/YmNjI217NEahUMDY2Bj6+vrQ19fXGqNtCJky2trtREREDYqWSb3pCTXWumys160jT9SJHhQUhO3btyM5ORmtWrWSttvY2KCoqAg5OTkaDfJHG8m6bIxrcxcATE0fLkREda2kRNcZEBFRI1JaWorCwkLMnj0bEyZM0Cjr2LEjlixZgkGDBgEAlEolPvvsM9y4cQNWVlYAgISEBCgUCmlIGKVSiZ07d2ocJyEhQRp3XS6Xw9PTE4mJiRgyZIiUQ2JiIoKCgp7lpRIRERER1ZoaDecihEBQUBC2bNmC3bt3w8nJSaPc09MTBgYGSExMlLalp6fj6tWrUkNaqVQiLS0NN27ckGK0NcYfPUZZjLbGeJmyxnhZDBERERFRYxYaGork5GRcuXIFaWlpCA0NRVJSEvz9/WFjY4OXX35ZYwGA1q1bS218Hx8fuLq6YtSoUThx4gTi4+Mxa9YsBAYGSk+JT548GZcvX8bMmTNx7tw5fPXVV9i0aROmT58u5RESEoKvv/4a69atw9mzZzFlyhQUFBRg7NixdV8pRERERERPoEZPogcGBiI2NhY//fQTmjZtKo0/bm5uDmNjY5ibm2P8+PEICQmBpaUlFAoFpk6dCqVSiW7dugHQbIzPnz8fWVlZWhvjy5cvx8yZMzFu3Djs3r0bmzZtwo4dO6RcQkJCEBAQgC5duqBr166IjIxkY5yIiIiI6P+7ceMGRo8ejczMTJibm8PNzQ3x8fHo379/tfbX19fH9u3bMWXKFCiVSpiamiIgIABz5syRYpycnLBjxw5Mnz4dS5cuRatWrbBq1SqoVCopZtiwYfjrr78QFhaGrKwseHh4IC4urtz8RkRERERE9VWNOtFXrFgBAOjdu7fG9rVr12LMmDEAgCVLlkBPTw9Dhw5FYWEhVCoVvvrqKymWjXEiIiIiomdv9erVNYoXQpTb5uDgUG64lsf17t0bx48frzQmKCiIw7cQERER0XOrRp3o2hrWjzMyMkJUVBSioqIqjGFjnIiIiIiIiIiIjIyMdJ2CblWjr40qwLp7iPVQJ2o0JjoREREREREREVFt0dfX13UKRERVYic6ERERERERERFRXZLJdJ1Bw9FY67KxXreOsBOdiIiIiIiIiIh0oqioSNcpEBFViZ3oRERERERERESkE8XFxbpOgYioSuxEJyIiIiIiIiIiIiKqADvRiYiIiIiIiIiIdEEIXWfw/GLdPcR6qBPsRCciIiIiIiIiIkRFRcHR0RFGRkbw8vLC4cOHq7Xfhg0bIJPJMGTIkGebIBGRjrATnYiIiIiIiIiokdu4cSNCQkLwySef4NixY3B3d4dKpcKNGzcq3e/KlSt4//330aNHjzrKtIGQyXSdQcPRWOuysV63jrATnYiIiIiIiIiokVu8eDEmTpyIsWPHwtXVFdHR0TAxMcGaNWsq3KekpAT+/v6YPXs22rRpU+nxCwsLkZeXp7EQET0v2IlORERERERERNSIFRUVITU1Fd7e3tI2PT09eHt7IyUlpcL95syZAysrK4wfP77Kc0RERMDc3Fxa7O3tayV3IqK6wE50IqIGJjk5GYMGDYKdnR1kMhm2bt2qUS6EQFhYGGxtbWFsbAxvb29cuHBBI+bWrVvw9/eHQqGAhYUFxo8fj/z8fI2YkydPokePHjAyMoK9vT3mz59fZW4ymazcsmHDBo2YpKQkdO7cGYaGhmjbti1iYmKeqB6IiIiIiKh6bt68iZKSElhbW2tst7a2RlZWltZ99u3bh9WrV+Prr7+u1jlCQ0ORm5srLdeuXQMAGBkZPV3yRER1gJ3oREQNTEFBAdzd3REVFaW1fP78+Vi2bBmio6Nx6NAhmJqaQqVS4f79+1KMv78/Tp8+jYSEBGzfvh3JycmYNGmSVJ6XlwcfHx84ODggNTUVCxYsQHh4OFauXFllfmvXrkVmZqa0PDr5UEZGBgYOHIg+ffpArVYjODgYEyZMQHx8/JNXCBERERER1ao7d+5g1KhR+Prrr9GiRYtq7WNoaAiFQqGxAIC+vv6zTJWIqFY00XUCRERUu/z8/ODn56e1TAiByMhIzJo1C4MHDwYAfPPNN7C2tsbWrVsxfPhwnD17FnFxcThy5Ai6dOkCAPjyyy8xYMAALFy4EHZ2dli/fj2KioqwZs0ayOVydOjQAWq1GosXL9bobNfGwsICNjY2Wsuio6Ph5OSERYsWAQBcXFywb98+LFmyBCqV6kmrhIiIiIiIKtGiRQvo6+sjOztbY3t2drbWtvulS5dw5coVDBo0SNpWWloKAGjSpAnS09Px4osvPtukGwohdJ3B84t19xDroU7wSXQiokYkIyMDWVlZGmMdmpubw8vLSxrrMCUlBRYWFlIHOgB4e3tDT08Phw4dkmJ69uwJuVwuxahUKqSnp+P27duV5hAYGIgWLVqga9euWLNmDcQjf/BTUlI0cis7bmXjMHKCIiIiIiKipyOXy+Hp6YnExERpW2lpKRITE6FUKsvFt2/fHmlpaVCr1dLy2muvSb8orcl458XFxbVyDUREzxKfRCciakTKxjOsbKzDrKwsWFlZaZQ3adIElpaWGjFOTk7ljlFW1qxZM63nnzNnDvr27QsTExPs2rUL77zzDvLz8zFt2jRpX2255eXl4d69ezA2Ni53zIiICMyePbta109ERERERNqFhIQgICAAXbp0QdeuXREZGYmCggKMHTsWADB69Gi88MILiIiIgJGREV5++WWN/S0sLACg3PaqFBUV1Ur+zx2ZTNcZNByNtS4b63XrCDvRiYioznz88cfS/3fq1AkFBQVYsGCB1In+JEJDQxESEiKt5+Xl1ejJFyIiIiIiAoYNG4a//voLYWFhyMrKgoeHB+Li4qSHXK5evQo9PQ5oQESNEzvRiYgakbLxDLOzs2Frayttz87OhoeHhxRz48YNjf0ePHiAW7duSfvb2NhoHS/x0XNUh5eXF+bOnYvCwkIYGhpWeFyFQqH1KXTg4QRFhoaG1T4nERERERFpFxQUhKCgIK1lSUlJle4bExNT+wkREdUT/AqRiKgRcXJygo2NjcZYh3l5eTh06JA01qFSqUROTg5SU1OlmN27d6O0tBReXl5STHJyssb4hQkJCXB2dq5wKBdt1Go1mjVrJnWCK5VKjdzKjqttHEYiIiIiIiIiorrATnQiogYmPz9fmtwHeDiZqFqtxtWrVyGTyRAcHIxPP/0U27ZtQ1paGkaPHg07OzsMGTIEAODi4gJfX19MnDgRhw8fxv79+xEUFIThw4fDzs4OADBy5EjI5XKMHz8ep0+fxsaNG7F06VKNYVW2bNmC9u3bS+s///wzVq1ahVOnTuHixYtYsWIFPv/8c0ydOlWKmTx5Mi5fvoyZM2fi3Llz+Oqrr7Bp0yZMnz792VccEVEDs2LFCri5uUGhUEChUECpVOKXX36Ryv/973/jxRdfhLGxMVq2bInBgwfj3LlzGseQyWTllg0bNmjEJCUloXPnzjA0NETbtm21PokYFRUFR0dHGBkZwcvLC4cPH34m10xERPTcEULXGTy/WHcPsR7qBDvRiYgamKNHj6JTp07o1KkTgIcTBHXq1AlhYWEAgJkzZ2Lq1KmYNGkS/vGPfyA/Px9xcXEwMjKSjrF+/Xq0b98e/fr1w4ABA/Dqq69i5cqVUrm5uTl27dqFjIwMeHp64r333kNYWBgmTZokxeTm5iI9PV1aNzAwQFRUFJRKJTw8PPDf//4XixcvxieffCLFODk5YceOHUhISIC7uzsWLVqEVatWQaVSPbP6IiJqqFq1aoV58+YhNTUVR48eRd++fTF48GCcPn0aAODp6Ym1a9fi7NmziI+PhxACPj4+KCkp0TjO2rVrkZmZKS1lX7oCD7+oHThwIPr06QO1Wo3g4GBMmDAB8fHxUszGjRsREhKCTz75BMeOHYO7uztUKlW5ocOIiIiIiOormRCN9+uKvLw8mJubIzc3FwqFQtfpEFEjxPtQ7WOdUmZmJlauXIlJkyZpjP3fWM5P9UN9vRdZWlpiwYIFGD9+fLmykydPwt3dHRcvXsSLL74I4OGT6Fu2bNHoOH/UBx98gB07duDUqVPStuHDhyMnJwdxcXEAHs5/8Y9//APLly8HAJSWlsLe3h5Tp07Fhx9+qPW4hYWFKCwslNbLJo2ub/VJRI1Lfb23P6/K6vP69euNs820aBHw/vvA228D336r62yeT7t2ASoV4O4O/P9fYjcqajXQqRNgawtcv67rbJ5b1b2380l0IiIiIqIGrqSkBBs2bEBBQYHWeSYKCgqwdu1aODk5wd7eXqMsMDAQLVq0QNeuXbFmzRo8+gxOSkoKvL29NeJVKhVSUlIAAEVFRUhNTdWI0dPTg7e3txSjTUREBMzNzaXl8ZyIiKjhKJsfqdGRyXSdQcPRWOuysV63jrATnYiIiIiogUpLS4OZmRkMDQ0xefJkbNmyBa6urlL5V199BTMzM5iZmeGXX35BQkIC5HK5VD5nzhxs2rQJCQkJGDp0KN555x18+eWXUnlWVhasra01zmltbY28vDzcu3cPN2/eRElJidaYrKysCvMODQ1Fbm6utFy7du1pq4KIiOqpJk2a6DoFIqIq8U5FRERERNRAOTs7Q61WIzc3F99//z0CAgKwZ88eqSPd398f/fv3R2ZmJhYuXIi33noL+/fvl+bJ+Pjjj6VjderUCQUFBViwYAGmTZv2TPM2NDRsvE8mEhEREVG9wyfRiYiIiIgaKLlcjrZt28LT0xMRERFwd3fH0qVLpXJzc3O0a9cOPXv2xPfff49z585hy5YtFR7Py8sLf/zxhzReuY2NDbKzszVisrOzoVAoYGxsjBYtWkBfX19rjI2NTS1eKRERPa+Ki4t1nQIRUZXYiU5ERERE1EiUlpZqTNj5KCEEhBAVlgOAWq1Gs2bNpKfElUolEhMTNWISEhKkcdflcjk8PT01YkpLS5GYmKh1bHYiImp8ioqKdJ2Cbj0y1wjVEOvuIdZDneBwLkREREREDVBoaCj8/PzQunVr3LlzB7GxsUhKSkJ8fDwuX76MjRs3wsfHBy1btsQff/yBefPmwdjYGAMGDAAA/Pzzz8jOzka3bt1gZGSEhIQEfP7553j//felc0yePBnLly/HzJkzMW7cOOzevRubNm3Cjh07pJiQkBAEBASgS5cu6Nq1KyIjI1FQUICxY8fWeZ0QERERET0JdqITERERETVAN27cwOjRo5GZmQlzc3O4ubkhPj4e/fv3x/Xr17F3715ERkbi9u3bsLa2Rs+ePXHgwAFYWVkBAAwMDBAVFYXp06dDCIG2bdti8eLFmDhxonQOJycn7NixA9OnT8fSpUvRqlUrrFq1CiqVSooZNmwY/vrrL4SFhSErKwseHh6Ii4srN9koERFRoyKT6TqDhqOx1mVjvW4dYSc6EREREVEDtHr16grL7OzssHPnzkr39/X1ha+vb5Xn6d27N44fP15pTFBQEIKCgqo8FhERERFRfVTjMdGTk5MxaNAg2NnZQSaTYevWrRrl2dnZGDNmDOzs7GBiYgJfX19cuHBBI+b+/fsIDAxE8+bNYWZmhqFDh5abbOjq1asYOHAgTExMYGVlhRkzZuDBgwcaMUlJSejcuTMMDQ3Rtm1bxMTE1PRyiIiIiIiIiIiIiIgqVONO9IKCAri7uyMqKqpcmRACQ4YMweXLl/HTTz/h+PHjcHBwgLe3NwoKCqS46dOn4+eff8bmzZuxZ88eXL9+HW+88YZUXlJSgoEDB6KoqAgHDhzAunXrEBMTg7CwMCkmIyMDAwcORJ8+faBWqxEcHIwJEyYgPj6+ppdERERERERERERERKRVjYdz8fPzg5+fn9ayCxcu4ODBgzh16hQ6dOgAAFixYgVsbGzwv//9DxMmTEBubi5Wr16N2NhY9O3bFwCwdu1auLi44ODBg+jWrRt27dqFM2fO4Ndff4W1tTU8PDwwd+5cfPDBBwgPD4dcLkd0dDScnJywaNEiAICLiwv27duHJUuWaIzB+KjCwkIUFhZK63l5eTW9fCIiIiIiIiIiIiJqRGr8JHplyjqojYyM/u8EenowNDTEvn37AACpqakoLi6Gt7e3FNO+fXu0bt0aKSkpAICUlBR07NhRY7IhlUqFvLw8nD59Wop59BhlMWXH0CYiIgLm5ubSYm9v/5RXTERERERERERET8rQ0FDXKeiWELrO4PnFunuI9VAnarUTvawzPDQ0FLdv30ZRURG++OIL/PHHH8jMzAQAZGVlQS6Xw8LCQmNfa2trZGVlSTGPdqCXlZeVVRaTl5eHe/fuac0vNDQUubm50nLt2rWnvmYiIiIiIiIiInoyTZrUeJAEIqI6V6ud6AYGBvjxxx9x/vx5WFpawsTEBL/99hv8/Pygp1erp3oihoaGUCgUGgsREREREREREVGdksl0nUHD0VjrsrFet47Ues+2p6cn1Go1cnJykJmZibi4OPz9999o06YNAMDGxgZFRUXIycnR2C87Oxs2NjZSTHZ2drnysrLKYhQKBYyNjWv7soiIiIiIiIiIqJY9ePBA1ykQEVXpmT0ebm5ujpYtW+LChQs4evQoBg8eDOBhJ7uBgQESExOl2PT0dFy9ehVKpRIAoFQqkZaWhhs3bkgxCQkJUCgUcHV1lWIePUZZTNkxiIiIiIiIiIiofiubX4+IqD6r8cBT+fn5uHjxorSekZEBtVoNS0tLtG7dGps3b0bLli3RunVrpKWl4d1338WQIUPg4+MD4GHn+vjx4xESEgJLS0soFApMnToVSqUS3bp1AwD4+PjA1dUVo0aNwvz585GVlYVZs2YhMDBQmnBi8uTJWL58OWbOnIlx48Zh9+7d2LRpE3bs2FEb9UJEREREREREREREVPNO9KNHj6JPnz7SekhICAAgICAAMTExyMzMREhICLKzs2Fra4vRo0fj448/1jjGkiVLoKenh6FDh6KwsBAqlQpfffWVVK6vr4/t27djypQpUCqVMDU1RUBAAObMmSPFODk5YceOHZg+fTqWLl2KVq1aYdWqVVCpVDWuBCIiIiIiIiIiojonhK4zeH6x7h5iPdSJGnei9+7dG6KSF2fatGmYNm1apccwMjJCVFQUoqKiKoxxcHDAzp07q8zl+PHjlSdMRERERERERERERPSEntmY6ERERERERERE9PyIioqCo6MjjIyM4OXlhcOHD1cY+/XXX6NHjx5o1qwZmjVrBm9v70rj6TEyma4zaDgaa1021uvWEXaiExERERERERE1chs3bkRISAg++eQTHDt2DO7u7lCpVLhx44bW+KSkJIwYMQK//fYbUlJSYG9vDx8fH/z55591nDkR0bPHTnQiIiIiIiIiokZu8eLFmDhxIsaOHQtXV1dER0fDxMQEa9as0Rq/fv16vPPOO/Dw8ED79u2xatUqlJaWIjExsY4zJyJ69tiJTkTUwCQnJ2PQoEGws7ODTCbD1q1bNcqFEAgLC4OtrS2MjY3h7e2NCxcuaMTcunUL/v7+UCgUsLCwwPjx45Gfn68Rc/LkSfTo0QNGRkawt7fH/PnzK83rxIkTGDFiBOzt7WFsbAwXFxcsXbpUIyYpKQkymazckpWV9eQVQkRERERElSoqKkJqaiq8vb2lbXp6evD29kZKSkq1jnH37l0UFxfD0tJSa3lhYSHy8vI0FgCQy+VPfwFERM8YO9GJiBqYgoICuLu7Vzh58/z587Fs2TJER0fj0KFDMDU1hUqlwv3796UYf39/nD59GgkJCdi+fTuSk5MxadIkqTwvLw8+Pj5wcHBAamoqFixYgPDwcKxcubLCvFJTU2FlZYXvvvsOp0+fxkcffYTQ0FAsX768XGx6ejoyMzOlxcrK6ilqhIiIiIiIKnPz5k2UlJTA2tpaY7u1tXW1H2j54IMPYGdnp9ER/6iIiAiYm5tLi729PQDAwMDg6ZInIqoDTXSdABER1S4/Pz/4+flpLRNCIDIyErNmzcLgwYMBAN988w2sra2xdetWDB8+HGfPnkVcXByOHDmCLl26AAC+/PJLDBgwAAsXLoSdnR3Wr1+PoqIirFmzBnK5HB06dIBarcbixYs1OtsfNW7cOI31Nm3aICUlBT/++COCgoI0yqysrGBhYVGt6y0sLERhYaG0XvZECxERERER1Y158+Zhw4YNSEpKgpGRkdaY0NBQhISESOt5eXlSR3qjJoSuM3h+se4eYj3UCT6JTkTUiGRkZCArK0vj6RBzc3N4eXlJP9NMSUmBhYWF1IEOAN7e3tDT08OhQ4ekmJ49e2r89FKlUiE9PR23b9+udj65ublaf+7p4eEBW1tb9O/fH/v376/0GBU90UJERERERNXTokUL6OvrIzs7W2N7dnY2bGxsKt134cKFmDdvHnbt2gU3N7cK4wwNDaFQKDQWAHjw4MHTXwAR0TPGTnQiokak7KeYlf1MMysrq9zwKU2aNIGlpaVGjLZjPHqOqhw4cAAbN27UeHLd1tYW0dHR+OGHH/DDDz/A3t4evXv3xrFjxyo8TmhoKHJzc6Xl2rVr1To/EVFDt2LFCri5uUkdFUqlEr/88otU/u9//xsvvvgijI2N0bJlSwwePBjnzp3TOMbVq1cxcOBAmJiYwMrKCjNmzCjX2ZGUlITOnTvD0NAQbdu2RUxMTLlcoqKi4OjoCCMjI3h5eeHw4cPP5JqJiOjJyOVyeHp6akwKWjZJqFKprHC/+fPnY+7cuYiLi9N4CKcmHv1VaaMik+k6g4ajsdZlY71uHeFwLkREVOdOnTqFwYMH45NPPoGPj4+03dnZGc7OztJ69+7dcenSJSxZsgTffvut1mMZGhrC0NDwmedMRPS8adWqFebNm4d27dpBCIF169Zh8ODBOH78ODp06ABPT0/4+/ujdevWuHXrFsLDw+Hj44OMjAzo6+ujpKQEAwcOhI2NDQ4cOIDMzEyMHj0aBgYG+PzzzwE8/IXTwIEDMXnyZKxfvx6JiYmYMGECbG1toVKpAAAbN25ESEgIoqOj4eXlhcjISOnXS5zzgoio/ggJCUFAQAC6dOmCrl27IjIyEgUFBRg7diwAYPTo0XjhhRcQEREBAPjiiy8QFhaG2NhYODo6Sg/TmJmZwczMTGfXQUT0LPBJdCKiRqTsp5iV/UzTxsYGN27c0Ch/8OABbt26pRGj7RiPnqMiZ86cQb9+/TBp0iTMmjWrypy7du2KixcvVhlHRESaBg0ahAEDBqBdu3Z46aWX8Nlnn8HMzAwHDx4EAEyaNAk9e/aEo6MjOnfujE8//RTXrl3DlStXAAC7du3CmTNn8N1338HDwwN+fn6YO3cuoqKiUFRUBACIjo6Gk5MTFi1aBBcXFwQFBeFf//oXlixZIuWxePFiTJw4EWPHjoWrqyuio6NhYmKCNWvWVJh7YWEh8vLyNBYiInq2hg0bhoULFyIsLAweHh5Qq9WIi4uTfnF69epVZGZmSvErVqxAUVER/vWvf8HW1lZaFi5cqKtLICJ6ZtiJTkTUiDg5OcHGxkbjZ5p5eXk4dOiQ9DNNpVKJnJwcpKamSjG7d+9GaWkpvLy8pJjk5GQUFxdLMQkJCXB2dkazZs0qPP/p06fRp08fBAQE4LPPPqtWzmq1Gra2tjW6TiIi0lRSUoINGzagoKBA68/yCwoKsHbtWjg5OUlzS6SkpKBjx44aw3epVCrk5eXh9OnTUsyj82yUxZTNs1FUVITU1FSNGD09PXh7e0sx2nC+CyIi3QgKCsLvv/+OwsJCHDp0SGr/Aw+H73p0yK4rV65ACFFuCQ8Pr/vEiYieMXaiExE1MPn5+VCr1VCr1QAe/tRerVbj6tWrkMlkCA4Oxqeffopt27YhLS0No0ePhp2dHYYMGQIAcHFxga+vLyZOnIjDhw9j//79CAoKwvDhw2FnZwcAGDlyJORyOcaPH4/Tp09j48aNWLp0KUJCQqQ8tmzZgvbt20vrp06dQp8+feDj44OQkBBkZWUhKysLf/31lxQTGRmJn376CRcvXsSpU6cQHByM3bt3IzAw8NlXHBFRA5SWlgYzMzMYGhpi8uTJ2LJlC1xdXaXyr776SvrZ/S+//IKEhARp0ujqzH9RUUxeXh7u3buHmzdvoqSkpNK5OLThfBdERNRoCKHrDJ5frLuHWA91gmOiExE1MEePHkWfPn2k9bKO7YCAAMTExGDmzJkoKCjApEmTkJOTg1dffRVxcXEwMjKS9lm/fj2CgoLQr18/6OnpYejQoVi2bJlUbm5ujl27diEwMBCenp5o0aIFwsLCNCYJzc3NRXp6urT+/fff46+//sJ3332H7777Ttru4OAgDR1QVFSE9957D3/++SdMTEzg5uaGX3/9VeN6iIio+pydnaFWq5Gbm4vvv/8eAQEB2LNnj9SR7u/vj/79+yMzMxMLFy7EW2+9hf3792v8TdAFzndBRERERPUJO9GJiBqY3r17Q1TyTbRMJsOcOXMwZ86cCmMsLS0RGxtb6Xnc3Nywd+/eCsvHjBmDMWPGSOvh4eFV/rRz5syZmDlzZqUxRERUfXK5HG3btgUAeHp64siRI1i6dCn++9//AoA0XEq7du3QrVs3NGvWDFu2bMGIESNgY2ODw4cPaxzv8fkvKpojQ6FQwNjYGPr6+tDX1690Lg4iIqJGSSbTdQYNR2Oty8Z63TrC4VyIiIiIiBqJ0tJSFBYWai0rG8u2rFypVCItLU1jsumEhAQoFArpSXalUqkxz0ZZTNm463K5HJ6enhoxpaWlSExM1Do2OxERNT5lw4gREdVnfBKdiIiIiKgBCg0NhZ+fH1q3bo07d+4gNjYWSUlJiI+Px+XLl7Fx40b4+PigZcuW+OOPPzBv3jwYGxtjwIABAAAfHx+4urpi1KhRmD9/PrKysjBr1iwEBgZKQ61MnjwZy5cvx8yZMzFu3Djs3r0bmzZtwo4dO6Q8QkJCEBAQgC5duqBr166IjIxEQUEBxo4dq5N6ISKi+sXAwEDXKRARVYmd6EREREREDdCNGzcwevRoZGZmwtzcHG5uboiPj0f//v1x/fp17N27F5GRkbh9+zasra3Rs2dPHDhwAFZWVgAAfX19bN++HVOmTIFSqYSpqSkCAgI0hgNzcnLCjh07MH36dCxduhStWrXCqlWroFKppJhhw4bhr7/+QlhYGLKysuDh4YG4uLhyk40SEREREdVX7EQnIiIiImqAVq9eXWGZnZ0ddu7cWeUxHBwcqozr3bs3jh8/XmlMUFAQgoKCqjwfERE1PiUlJbpOgYioShwTnYiIiIiIiIiIdOL+/fu6TkG3hNB1Bs8v1t1DrIc6wU50IiIiIiIiIiIiIqIKsBOdiIiIiIiIiIioLslkus6g4WisddlYr1tH2IlORERERERERERERFQBdqITEREREREREREREVWAnehERERERERERERERBVgJzoREREREREREZEuCKHrDJ5frLuHWA91gp3oRERERERERESkEwYGBrpOgYioSuxEJyIiIiIiIiIinZDL5bpOQTdkMl1n0HA01rpsrNetI+xEJyIiIiIiIiIiIiKqADvRiYiIiIiIiIhIJ0pKSnSdAhFRlWrciZ6cnIxBgwbBzs4OMpkMW7du1SjPz89HUFAQWrVqBWNjY7i6uiI6Oloj5v79+wgMDETz5s1hZmaGoUOHIjs7WyPm6tWrGDhwIExMTGBlZYUZM2bgwYMHGjFJSUno3LkzDA0N0bZtW8TExNT0coiIiIiIiIiISEfu37+v6xSIiKpU4070goICuLu7IyoqSmt5SEgI4uLi8N133+Hs2bMIDg5GUFAQtm3bJsVMnz4dP//8MzZv3ow9e/bg+vXreOONN6TykpISDBw4EEVFRThw4ADWrVuHmJgYhIWFSTEZGRkYOHAg+vTpA7VajeDgYEyYMAHx8fE1vSQiIiIiIiIiIiIiIq2a1HQHPz8/+Pn5VVh+4MABBAQEoHfv3gCASZMm4b///S8OHz6M1157Dbm5uVi9ejViY2PRt29fAMDatWvh4uKCgwcPolu3bti1axfOnDmDX3/9FdbW1vDw8MDcuXPxwQcfIDw8HHK5HNHR0XBycsKiRYsAAC4uLti3bx+WLFkClUqlNbfCwkIUFhZK63l5eTW9fCIiIiIiIiIiotohhK4zeH6x7h5iPdSJWh8TvXv37ti2bRv+/PNPCCHw22+/4fz58/Dx8QEApKamori4GN7e3tI+7du3R+vWrZGSkgIASElJQceOHWFtbS3FqFQq5OXl4fTp01LMo8coiyk7hjYREREwNzeXFnt7+1q7biIiIiIiIiIiIiJqeGq9E/3LL7+Eq6srWrVqBblcDl9fX0RFRaFnz54AgKysLMjlclhYWGjsZ21tjaysLCnm0Q70svKysspi8vLycO/ePa25hYaGIjc3V1quXbv21NdLRERERERERERUIzKZrjNoOBprXTbW69aRGg/nUpUvv/wSBw8exLZt2+Dg4IDk5GQEBgbCzs6u3JPjdc3Q0BCGhoY6zYGIiIiIiIiIiIiInh+1+iT6vXv38J///AeLFy/GoEGD4ObmhqCgIAwbNgwLFy4EANjY2KCoqAg5OTka+2ZnZ8PGxkaKyc7OLldeVlZZjEKhgLGxcW1eFhHRcyU5ORmDBg2CnZ0dZDIZtm7dqlEuhEBYWBhsbW1hbGwMb29vXLhwQSPm1q1b8Pf3h0KhgIWFBcaPH4/8/HyNmJMnT6JHjx4wMjKCvb095s+fX2VuV69excCBA2FiYgIrKyvMmDEDDx480IhJSkpC586dYWhoiLZt2yImJuaJ6oGIiIiIiGomKioKjo6OMDIygpeXFw4fPlxp/ObNm9G+fXsYGRmhY8eO2LlzZx1lSkRUt2q1E724uBjFxcXQ09M8rL6+PkpLSwEAnp6eMDAwQGJiolSenp6Oq1evQqlUAgCUSiXS0tJw48YNKSYhIQEKhQKurq5SzKPHKIspOwYRUWNVUFAAd3d3REVFaS2fP38+li1bhujoaBw6dAimpqZQqVS4f/++FOPv74/Tp08jISEB27dvR3JyMiZNmiSV5+XlwcfHBw4ODkhNTcWCBQsQHh6OlStXVphXSUkJBg4ciKKiIhw4cADr1q1DTEwMwsLCpJiMjAwMHDgQffr0gVqtRnBwMCZMmID4+PhaqBkiosZlxYoVcHNzg0KhgEKhgFKpxC+//ALg4ZelU6dOhbOzM4yNjdG6dWtMmzYNubm5GseQyWTllg0bNmjEVOfLz5p2yhARUd3buHEjQkJC8Mknn+DYsWNwd3eHSqXS6Jt51IEDBzBixAiMHz8ex48fx5AhQzBkyBCcOnWqRuc1MDCojfSJiJ6pGg/nkp+fj4sXL0rrGRkZUKvVsLS0ROvWrdGrVy/MmDEDxsbGcHBwwJ49e/DNN99g8eLFAABzc3OMHz8eISEhsLS0hEKhwNSpU6FUKtGtWzcAgI+PD1xdXTFq1CjMnz8fWVlZmDVrFgIDA6XhWCZPnozly5dj5syZGDduHHbv3o1NmzZhx44dtVEvRETPLT8/P/j5+WktE0IgMjISs2bNwuDBgwEA33zzDaytrbF161YMHz4cZ8+eRVxcHI4cOYIuXboAeDhU14ABA7Bw4ULY2dlh/fr1KCoqwpo1ayCXy9GhQweo1WosXrxYo7P9Ubt27cKZM2fw66+/wtraGh4eHpg7dy4++OADhIeHQy6XIzo6Gk5OTli0aBEAwMXFBfv27cOSJUugUqmqXQcmAFBQAOjrV7/iqMGQ3b0Lg6IiyO7effg+aGTnp3qiHrz2rVq1wrx589CuXTsIIbBu3ToMHjwYx48fhxAC169fx8KFC+Hq6orff/8dkydPxvXr1/H9999rHGft2rXw9fWV1h+d26jsy8/Jkydj/fr1SExMxIQJE2Brayvdt8s6ZaKjo+Hl5YXIyEioVCqkp6fDysqqTuqCiIiqtnjxYkycOBFjx44FAERHR2PHjh1Ys2YNPvzww3LxS5cuha+vL2bMmAEAmDt3LhISErB8+XJER0dX+7xyubx2LuB5lZ0N/PprxeXOzoC9fd3lU5/cvw+kpAAlJdrL1eo6TafeKiqq/D3UsiXg5tY4x1AXAjhyBMjLqzimuu12UUO//fabAFBuCQgIEEIIkZmZKcaMGSPs7OyEkZGRcHZ2FosWLRKlpaXSMe7duyfeeecd0axZM2FiYiJef/11kZmZqXGeK1euCD8/P2FsbCxatGgh3nvvPVFcXFwuFw8PDyGXy0WbNm3E2rVra3Qtubm5AoDIzc2taTUQEdWKZ30fAiC2bNkirV+6dEkAEMePH9eI69mzp5g2bZoQQojVq1cLCwsLjfLi4mKhr68vfvzxRyGEEKNGjRKDBw/WiNm9e7cAIG7duqU1l48//li4u7trbLt8+bIAII4dOyaEEKJHjx7i3Xff1YhZs2aNUCgUFV7j/fv3RW5urrRcu3ZNiId/Krlw4cJFp0t9bGc2a9ZMrFq1SmvZpk2bhFwu12hzP/535HEzZ84UHTp00Ng2bNgwoVKppPWuXbuKwMBAab2kpETY2dmJiIiICo+r7d5eH+uTiBqXhtyHUFhYKPT19cvd80ePHi1ee+01rfvY29uLJUuWaGwLCwsTbm5uWuN5b39MdHT12hTGxkLk5Og6W90YPrx6ddS9u64z1Y0LF6rfNt25U9fZ6sbXX1dZN7nVbLfX+En03r17QwhRYbmNjQ3Wrl1b6TGMjIwQFRVV4VADAODg4FDlWFq9e/fG8ePHK0+YiIgkWVlZAABra2uN7dbW1lJZVlZWuScDmzRpAktLS40YJyencscoK2vWrJnWc2s776N5VRSTl5eHe/fuaZ3zIiIiArNnz9bYVvFfKSKixqmkpASbN29GQUFBhcMf5ubmQqFQoEkTzX8iBAYGYsKECWjTpg0mT56MsWPHQvb/n2RKSUmBt7e3RrxKpUJwcDAAoKioCKmpqQgNDZXK9fT04O3tjZSUlArz1XZvJyKiZ+fmzZsoKSnR2hY/d+6c1n0qaruXte0fV9G9vWz430ZnwACgb1/gr78qjjl1Crh3D7hxAzA3r7vc6ouMjIf/dXAAFArtMfr6wNSpdZdTfdKmDTBqVOVP5P/++8OnsK9cqaus6pey91Dz5oCdnfaYkhLgzJkqD1XjTnQiIqL6JDQ0FCEhIdJ6Xl4eTO3tkXn9OhQVNbSoQcvKysKaNWswbtw4aULyxnR+qh/y8vIqbqjXobS0NCiVSty/fx9mZmbYsmWLNMfQo27evIm5c+eWG5Jrzpw56Nu3L0xMTLBr1y688847yM/Px7Rp0wBU/eXn7du3a9wpA2i/t9s31p+yExE1EBXd2+/du6cxVFijYW8PPDbXXzkWFsBj85U0Sl9+CQwapOss6h89PeCbbyqP+de/gB9+qJt86rO33wYiI7WX5eVV60sqdqITETUiZR162dnZsLW1lbZnZ2fDw8NDinl88qAHDx7g1q1b0v42NjbIzs7WiClbr6jT0MbGptxEco/vU9FxFQqF1qfQAcDQ0FCaL6PMXQAwNX24UKMjTExQLJdDmJjo5D2g6/NTPVHR2J11zNnZGWq1Grm5ufj+++8REBCAPXv2aHSk5+XlYeDAgXB1dUV4eLjG/h9//LH0/506dUJBQQEWLFggdaI/K9ru7URE9Oy0aNEC+vr6WtvilbXvaxLPezsRPc/0dJ0AERHVHScnJ9jY2CDxkSce8vLycOjQIenn/UqlEjk5OUhNTZVidu/ejdLSUnh5eUkxycnJKC4ulmISEhLg7OysdSiXsn3S0tI0OugTEhKgUCikzhylUqmRW1lMRUMPEBFR5eRyOdq2bQtPT09ERETA3d0dS5culcrv3LkDX19fNG3aFFu2bIGBgUGlx/Py8sIff/yBwsJCAFV/+fkknTJERFT35HI5PD09NdripaWlSExMrLAtzrY7ETUm7EQnImpg8vPzoVarof7/46JlZGRArVbj6tWrkMlkCA4Oxqeffopt27YhLS0No0ePhp2dHYYMGQIAcHFxga+vLyZOnIjDhw9j//79CAoKwvDhw2H3/4cmGDlyJORyOcaPH4/Tp09j48aNWLp0qcbPM7ds2YL27dtL6z4+PnB1dcWoUaNw4sQJxMfHY9asWQgMDJSeSJk8eTIuX76MmTNn4ty5c/jqq6+wadMmTJ8+vW4qj4iogSstLZU6wPPy8uDj4wO5XI5t27bByMioyv3VajWaNWsm3ber6kB5kk4ZIiLSjZCQEHz99ddYt24dzp49iylTpqCgoABjx44FAIwePVpjjot3330XcXFxWLRoEc6dO4fw8HAcPXoUQUFBuroEIqJnhsO5EBE1MEePHkWfPn2k9bKO7YCAAMTExGDmzJkoKCjApEmTkJOTg1dffRVxcXEanSfr169HUFAQ+vXrBz09PQwdOhTLli2Tys3NzbFr1y4EBgbC09MTLVq0QFhYmMZYurm5uUhPT5fW9fX1sX37dkyZMgVKpRKmpqYICAjAnDlzpBgnJyfs2LED06dPx9KlS9GqVSusWrUKKpXqmdQVEVFDFhoaCj8/P7Ru3Rp37txBbGwskpKSEB8fL3Wg3717F9999x3y8vIejuMOoGXLltDX18fPP/+M7OxsdOvWDUZGRkhISMDnn3+O999/XzrH5MmTsXz5csycORPjxo3D7t27sWnTJuzYsUOKCQkJQUBAALp06YKuXbsiMjJSo1OGiIjqh2HDhuGvv/5CWFgYsrKy4OHhgbi4OGlei6tXr0JP7/+exezevTtiY2Mxa9Ys/Oc//0G7du2wdetWvPzyy7q6BGpohNB1BkQSdqITETUwvXv3hqiksSGTyTBnzhyNzuvHWVpaIjY2ttLzuLm5Ye/evRWWjxkzBmPGjNHY5uDggJ07d1Z63N69e+P48eOVxhARUdVu3LiB0aNHIzMzE+bm5nBzc0N8fDz69++PpKQkHDp0CADQtm1bjf0yMjLg6OgIAwMDREVFYfr06RBCoG3btli8eDEmTpwoxVbny8+qOmWIiKj+CAoKqvBJ8qSkpHLb3nzzTbz55pvPOCtiZzI9tcb6HqrF62YnOhERERFRA7R69eoKy6r6whUAfH194evrW+V5qvPlZ2WdMkRERERE9R3HRCciIiIiIiIiIp2oalLrRk0m03UG9QPr4cmx7h6qhXpgJzoREREREREREemEXC7XdQpERFViJzoRERERERERERERUQXYiU5ERERERERERDpRWlqq6xSIiKrETnQiIiIiIiIiItKJe/fu6TqF+q+KycAbrMZ63c9CY63LWrxudqITEREREREREREREVWAnehERERERERERET1jUym6wzqB9bDk2PdPVQL9cBOdCIiIiIiIiIiIiKiCrATnYiIiIiIiIiIiIioAuxEJyIiIiIiIiIiIiKqADvRiYiIiIiIiIiIqH4RQtcZEEnYiU5ERERERERERDrRpEkTXadQ/7EzmZ5WY30P1eJ1sxOdiIiIiIiIiIh0wtDQUNcpEBFViZ3oRERERERERERE9Y1MpusM6gfWw5Nj3T1UC/XATnQiIiIiIiIiItIJ0ViHmSCi5wo70YmIiIiIiIiISCfu3r2r6xSIiKrETnQiIiIiIiIiIiKqX/grBapH2IlORERERERERERUX7EzmZ5WY30P1eJ1sxOdiIiIiKgBWrFiBdzc3KBQKKBQKKBUKvHLL78AAG7duoWpU6fC2dkZxsbGaN26NaZNm4bc3FyNY1y9ehUDBw6EiYkJrKysMGPGDDx48EAjJikpCZ07d4ahoSHatm2LmJiYcrlERUXB0dERRkZG8PLywuHDh5/ZdRMRERER1TZ2ohMRERERNUCtWrXCvHnzkJqaiqNHj6Jv374YPHgwTp8+jevXr+P69etYuHAhTp06hZiYGMTFxWH8+PHS/iUlJRg4cCCKiopw4MABrFu3DjExMQgLC5NiMjIyMHDgQPTp0wdqtRrBwcGYMGEC4uPjpZiNGzciJCQEn3zyCY4dOwZ3d3eoVCrcuHGjTuuDiIjouSOT6TqD+oH18ORYdw/VQj00qYU0iIiIiIionhk0aJDG+meffYYVK1bg4MGDGD9+PH744Qep7MUXX8Rnn32Gt99+Gw8ePECTJk2wa9cunDlzBr/++iusra3h4eGBuXPn4oMPPkB4eDjkcjmio6Ph5OSERYsWAQBcXFywb98+LFmyBCqVCgCwePFiTJw4EWPHjgUAREdHY8eOHVizZg0+/PBDrbkXFhaisLBQWs/Ly6vVuiEiIiIiqgk+iU5E1AjduXMHwcHBcHBwgLGxMbp3744jR45I5dnZ2RgzZgzs7OxgYmICX19fXLhwQeMYly5dwuuvv46WLVtCoVDgrbfeQnZ2dqXndXR0hEwmK7cEBgZKMb179y5XPnny5NqtACKiRqakpAQbNmxAQUEBlEql1pjc3FwoFAo0afLwOZuUlBR07NgR1tbWUoxKpUJeXh5Onz4txXh7e2scR6VSISUlBQBQVFSE1NRUjRg9PT14e3tLMdpERETA3NxcWuzt7Z/swomIiIiIakGNO9GTk5MxaNAg2NnZQSaTYevWrRrl2jpHZDIZFixYIMXcunUL/v7+UCgUsLCwwPjx45Gfn69xnJMnT6JHjx4wMjKCvb095s+fXy6XzZs3o3379jAyMkLHjh2xc+fOml4OEVGjNGHCBCQkJODbb79FWloafHx84O3tjT///BNCCAwZMgSXL1/GTz/9hOPHj8PBwQHe3t4oKCgAABQUFMDHxwcymQy7d+/G/v37UVRUhEGDBqG0tLTC8x45cgSZmZnSkpCQAAB48803NeImTpyoEaftbwAREVUtLS0NZmZmMDQ0xOTJk7Flyxa4urqWi7t58ybmzp2LSZMmSduysrI0OtABSOtZWVmVxuTl5eHevXu4efMmSkpKtMaUHUOb0NBQ5ObmSsu1a9dqduFERPTcKPvylqicxjoZJtVLNe5ELygogLu7O6KiorSWP9rpkZmZiTVr1kAmk2Ho0KFSjL+/P06fPo2EhARs374dycnJGg32vLw8+Pj4wMHBAampqViwYAHCw8OxcuVKKebAgQMYMWIExo8fj+PHj2PIkCEYMmQITp06VdNLIiJqVO7du4cffvgB8+fPR8+ePdG2bVuEh4ejbdu2WLFiBS5cuICDBw9ixYoV+Mc//gFnZ2esWLEC9+7dw//+9z8AwP79+3HlyhXExMSgY8eO6NixI9atW4ejR49i9+7dFZ67ZcuWsLGxkZbt27fjxRdfRK9evTTiTExMNOIUCkWFxywsLEReXp7GQkREDzk7O0OtVuPQoUOYMmUKAgICcObMGY2YvLw8DBw4EK6urggPD9dNoo8xNDSUJkQtW4iI6NmpzsOOj8dXZ4Lq6jA0NHya1ImI6kSNO9H9/Pzw6aef4vXXX9da/minh42NDX766Sf06dMHbdq0AQCcPXsWcXFxWLVqFby8vPDqq6/iyy+/xIYNG3D9+nUAwPr161FUVIQ1a9agQ4cOGD58OKZNm4bFixdL51m6dCl8fX0xY8YMuLi4YO7cuejcuTOWL19eYe7saCEiAh48eICSkhIYGRlpbDc2Nsa+ffukMWgfLdfT04OhoSH27dsH4OH9VCaTaTR4jYyMoKenJ8VUpaioCN999x3GjRsH2WOTfKxfvx4tWrTAyy+/jNDQUNy9e7fC4/An/0REFZPL5Wjbti08PT0REREBd3d3LF26VCq/c+cOfH190bRpU2zZsgUGBgZSmY2NTblhusrWbWxsKo1RKBQwNjZGixYtoK+vrzWm7BhERKR7VT3s+LjqTFBNtYhPZNPTaqzvoVq87mc6Jnp2djZ27NihcRNNSUmBhYUFunTpIm3z9vaGnp4eDh06JMX07NkTcrlcilGpVEhPT8ft27elmMrGX9SGHS1EREDTpk2hVCoxd+5cXL9+HSUlJfjuu++QkpKCzMxMtG/fHq1bt0ZoaChu376NoqIifPHFF/jjjz+QmZkJAOjWrRtMTU3xwQcf4O7duygoKMD777+PkpISKaYqW7duRU5ODsaMGaOxfeTIkfjuu+/w22+/ITQ0FN9++y3efvvtCo/Dn/wTEVVfaWmp9GVp2a8/5XI5tm3bVu7LVaVSibS0NNy4cUPalpCQAIVCIQ0Jo1QqkZiYqLFfQkKCNO66XC6Hp6enRkxpaSkSExMrHJudiIjqVnUednzcyy+/jB9++AGDBg3Ciy++iL59++Kzzz7Dzz//jAcPHtTo/KKxdu4R0XPlmXair1u3Dk2bNsUbb7whbcvKyoKVlZVGXJMmTWBpaVnl2IplZZXFcGxFIqKqffvttxBC4IUXXoChoSGWLVuGESNGQE9PDwYGBvjxxx9x/vx5WFpawsTEBL/99hv8/Pygp/fwz0bLli2xefNm/PzzzzAzM4O5uTlycnLQuXNnKaYqq1evhp+fH+zs7DS2T5o0CSqVCh07doS/vz+++eYbbNmyBZcuXdJ6HP7kn4hIu9DQUCQnJ+PKlStIS0tDaGgokpKS4O/vL3WgFxQUYPXq1cjLy0NWVhaysrJQUlICAPDx8YGrqytGjRqFEydOID4+HrNmzUJgYKD0S6TJkyfj8uXLmDlzJs6dO4evvvoKmzZtwvTp06U8QkJC8PXXX2PdunU4e/YspkyZgoKCAowdO1Yn9UJERJqq87BjdTw+QfXjKhodoLJfnTZ6j/1it9FiPTw51t1DtVAPz3T2hjVr1sDf37/cUy26YmhoyLG2iIgAvPjii9izZw8KCgqQl5cHW1tbDBs2TBp6y9PTE2q1Grm5uSgqKkLLli3h5eWl0bD28fHBpUuXcPPmTTRp0gQWFhawsbGRjlGZ33//Hb/++it+/PHHKmO9vLwAABcvXsSLL774hFdMRNT43LhxA6NHj0ZmZibMzc3h5uaG+Ph49O/fH0lJSVLHSNu2bTX2y8jIgKOjI/T19bF9+3ZMmTIFSqUSpqamCAgIwJw5c6RYJycn7NixA9OnT8fSpUvRqlUrrFq1CiqVSooZNmwY/vrrL4SFhSErKwseHh6Ii4sr90AMERHpRnUedqyKtgmqHxcREYHZs2c/Va5ERLryzDrR9+7di/T0dGzcuFFju42NjcZPQoGH4/PeunWryrEVy8oqi+HYikRE1WdqagpTU1Pcvn0b8fHxmD9/vka5ubk5AODChQs4evQo5s6dW+4YLVq0AADs3r0bN27cwGuvvVbledeuXQsrKysMHDiwyli1Wg0AsLW1rTKWiIj+z+rVqyss6927d7V+Pu/g4ICdO3dWGtO7d28cP3680pigoCAEBQVVeT4iIqo9H374Ib744otKY86ePfvU56nuBNWhoaEICQnR2I/D7FKlONQP1SPPrBN99erV8PT0hLu7u8Z2pVKJnJwcpKamwtPTE8DDjpfS0lLpaUOlUomPPvoIxcXF0uRGCQkJcHZ2RrNmzaSYxMREBAcHS8d+dPxFIiKqWHx8PIQQcHZ2xsWLFzFjxgy0b99e+mn95s2b0bJlS7Ru3RppaWl49913MWTIEPj4+EjHWLt2LVxcXNCyZUukpKTg3XffxfTp0+Hs7CzF9OvXD6+//rpGx0lpaSnWrl2LgICAcj/1vHTpEmJjYzFgwAA0b94cJ0+exPTp09GzZ0+4ubk941ohIiIiImo43nvvvXLzDz2uTZs21XrYsSKVTVD9OI4OQETPsxp3oufn5+PixYvSekZGBtRqNSwtLdG6dWsAD79N3Lx5MxYtWlRufxcXF/j6+mLixImIjo5GcXExgoKCMHz4cGlc3JEjR2L27NkYP348PvjgA5w6dQpLly7FkiVLpOO8++676NWrFxYtWoSBAwdiw4YNOHr0KFauXFnjSiAiamxyc3MRGhqKP/74A5aWlhg6dCg+++wzqdGbmZmJkJAQZGdnw9bWFqNHj8bHH3+scYz09HSEhobi1q1bcHR0xEcffaQxBi4AabiXR/3666+4evUqxo0bVy4vuVyOX3/9FZGRkSgoKIC9vT2GDh2KWbNm1XINEBERERE1bC1btkTLli2rjKvOw47a5OXlQaVSwdDQUOsE1VSL+EQ2Pa3G+h6qxeuucSf60aNH0adPH2m97Kc4AQEBiImJAQBs2LABQgiMGDFC6zHWr1+PoKAg9OvXD3p6ehg6dCiWLVsmlZubm2PXrl0IDAyEp6cnWrRogbCwMI2xtbp3747Y2FjMmjUL//nPf9CuXTts3boVL7/8ck0viYio0Xnrrbfw1ltvVVg+bdo0TJs2rdJjzJs3D/Pmzas05sqVK+W2+fj4VDiEgL29Pfbs2VPpMYmIiIiIqPZU52HHP//8E/369cM333yDrl27ShNU3717F999953GRKEtW7aEvr6+Li+JiKjW1bgTvTrjJ06aNKnSySQsLS0RGxtb6THc3Nywd+/eSmPefPNNvPnmm5XGEBERERERERFRxap62LG4uBjp6em4e/cuAODYsWNVTlBNRNSQPLMx0YmIiIiIiIiIqP6r6mFHR0dHjQcqqztBdXXwqfVKyGS6zqB+YD08OdbdQ7VQD3q1kAYREREREREREVGNcSx1InoesBOdiIiIiIiIiIiI6pfGOhkm1UvsRCciIiIiIiIiIiIiqgA70YmIiIiIiIiISCcKCgp0nUL9xyey6Wk11vdQLV43O9GJiIiIiIiIiIiIiCrATnQiIiIiIiIiIqL6RibTdQb1A+vhybHuHqqFemAnOhERERERERERERFRBdiJTkRERERERERERPVLYx3Hm+oldqITEREREREREREREVWAnehERERERERERERERBVgJzoREREREREREemEvr6+rlOo/zisCT2txvoeqsXrZic6ERERERERERHphJGRka5TICKqEjvRiYiIiIiIiIiI6huZTNcZ1A+shyfHunuoFuqBnehERERERA3QihUr4ObmBoVCAYVCAaVSiV9++UUqX7lyJXr37g2FQgGZTIacnJxyx3B0dIRMJtNY5s2bpxFz8uRJ9OjRA0ZGRrC3t8f8+fPLHWfz5s1o3749jIyM0LFjR+zcubPWr5eIiIgamMY6BAnVS+xEJyIiIiJqgFq1aoV58+YhNTUVR48eRd++fTF48GCcPn0aAHD37l34+vriP//5T6XHmTNnDjIzM6Vl6tSpUlleXh58fHzg4OCA1NRULFiwAOHh4Vi5cqUUc+DAAYwYMQLjx4/H8ePHMWTIEAz5f+zdeVxN+f8H8Ndtu6VVpFsjsk1lCyE1xtoofI3wtTZaJMMIFYbGIOM7wtiX0fgOwmjQmLHOaJqSNVvKNoQwDC1DKoXW8/vj/jpfVzvVbXk9H4/z6N5zPudz3ufc+tzT+577Ps7OuHbtWtXsOBER1SpZWVnKDoGIqExqyg6AiIiIiIgq35AhQxSef/3119i0aRPOnj2Ldu3awcfHBwAQFRVVaj+6urqQyWTFLtu1axdycnKwdetWaGhooF27doiLi8OqVaswadIkAMDatWvh5OSE2bNnAwAWL16M8PBwbNiwAUFBQcX2m52djezsbPF5RkZGeXaZiIiIiKhK8Ep0IiIiIqI6Lj8/H7t370ZWVhbs7OwqtO7SpUvRqFEjdO7cGd988w3y8vLEZdHR0ejVqxc0NDTEeY6OjoiPj8ezZ8/ENg4ODgp9Ojo6Ijo6usRtBgYGQl9fX5zMzMwqFDMREVGdwrIm9K7q6+9QJe43r0QnIiIiIqqjrl69Cjs7O7x69Qo6Ojr45Zdf0LZt23KvP336dHTp0gWGhoY4c+YM/P39kZiYiFWrVgEAkpKS0KJFC4V1jI2NxWUNGzZEUlKSOO/1NklJSSVu19/fH35+fuLzjIwMJtKJiIiISGmYRCciIiIiqqMsLCwQFxeH9PR0/PTTT3Bzc8Px48fLnUh/PZHdsWNHaGho4NNPP0VgYCCkUmlVhQ2pVFql/RMREdUKEomyI6gZeBzeHo+dXCUcB5ZzISKqh54/fw4fHx80b94cWlpasLe3x4ULF8TlycnJcHd3h6mpKRo0aAAnJyfcvn1boY+EhAQMGzYMRkZG0NPTw6hRo5CcnFzqdgMCAiCRSBQmS0tLhTavXr3C1KlT0ahRI+jo6GDEiBFl9ktERMXT0NBA69atYWNjg8DAQFhbW2Pt2rVv3Z+trS3y8vJw//59AIBMJisyRhc+L6yjXlKbkuqsExEREQGovyVIqEZiEp2IqB6aOHEiwsPDsXPnTly9ehUDBgyAg4MDHj16BEEQ4OzsjLt37+LAgQOIjY1F8+bN4eDggKysLABAVlYWBgwYAIlEgsjISJw+fRo5OTkYMmQICgoKSt12u3btkJiYKE6nTp1SWO7r64tDhw4hNDQUx48fx+PHjzF8+PAqOxZERPVJQUGBwg07KyouLg4qKipo0qQJAMDOzg4nTpxAbm6u2CY8PBwWFhZo2LCh2CYiIkKhn/Dw8ArXZiciIiIiUhaWcyEiqmdevnyJffv24cCBA+jVqxcA+RXihw4dwqZNm+Dq6oqzZ8/i2rVraNeuHQBg06ZNkMlk+PHHHzFx4kScPn0a9+/fR2xsLPT09AAA27dvR8OGDREZGVnkBnKvU1NTK/Hqw/T0dGzZsgUhISHo168fAGDbtm2wsrLC2bNn0aNHj8o8FEREdZq/vz8GDhyIZs2a4fnz5wgJCUFUVBTCwsIAyGuWJyUl4c6dOwDk9dN1dXXRrFkzGBoaIjo6GufOnUPfvn2hq6uL6Oho+Pr64pNPPhET5OPGjcOiRYvg6emJOXPm4Nq1a1i7di1Wr14txjFjxgz07t0bK1euxODBg7F7925cvHgRmzdvrv6DQkRENY6KCq/vJKKajyMVEVE9k5eXh/z8fGhqairM19LSwqlTp8QrFF9frqKiAqlUKl41np2dDYlEolCvVlNTEyoqKkWuLH/T7du3YWpqipYtW8LFxQUPHjwQl8XExCA3N1chCW9paYlmzZohOjq62P6ys7ORkZGhMBEREZCSkgJXV1dYWFigf//+uHDhAsLCwvDRRx8BAIKCgtC5c2d4eXkBAHr16oXOnTvj4MGDAOR1yXfv3o3evXujXbt2+Prrr+Hr66uQ/NbX18fvv/+Oe/fuwcbGBjNnzsSCBQswadIksY29vT1CQkKwefNmWFtb46effsL+/fvRvn37ajwaRERUU2lpaSk7BCKiMvFKdCKiekZXVxd2dnZYvHgxrKysYGxsjB9//BHR0dFo3bq1mLT29/fHd999B21tbaxevRp///03EhMTAQA9evSAtrY25syZgyVLlkAQBMydOxf5+flim+LY2toiODgYFhYWSExMxKJFi/Dhhx/i2rVr0NXVRVJSEjQ0NGBgYKCwnrGxMZKSkortMzAwEIsWLaq040NEVFds2bKl1OUBAQEICAgocXmXLl1w9uzZMrfTsWNHnDx5stQ2I0eOxMiRI8vsi4iIiIrB2uD0rurr71Al7jevRCciqod27twJQRDw3nvvQSqVYt26dRg7dixUVFSgrq6On3/+Gbdu3YKhoSEaNGiAY8eOYeDAgeJXLY2MjBAaGopDhw5BR0cH+vr6SEtLQ5cuXUr9OubAgQMxcuRIdOzYEY6Ojvj111+RlpaGvXv3vvW++Pv7Iz09XZwePnz41n0REREREdVHqampcHFxgZ6eHgwMDODp6YnMzMxyrSsIAgYOHAiJRIL9+/dXbaBERErCK9GJiOqhVq1a4fjx48jKykJGRgZMTEwwevRotGzZEgBgY2ODuLg4pKenIycnB0ZGRrC1tUXXrl3FPgYMGICEhAQ8efIEampqMDAwgEwmE/soDwMDA7z//vtiPV6ZTIacnBykpaUpXI2enJxcYh11qVSqUFaGiIiIiIgqxsXFBYmJiQgPD0dubi48PDwwadIkhISElLnumjVrIJFI3nrbWVlZ4n2W6A3vcFzrhMKriOv7cXgXPHZylXAceCU6EVE9pq2tDRMTEzx79gxhYWEYOnSownJ9fX0YGRnh9u3buHjxYpHlANC4cWMYGBggMjISKSkp+Pjjj8u9/czMTCQkJMDExASAPHmvrq6OiIgIsU18fDwePHgAOzu7t9xLIiIiIiIqyY0bN3D06FF8//33sLW1Rc+ePbF+/Xrs3r0bjx8/LnXduLg4rFy5Elu3bi1zO7yXERHVZkyiExHVQ2FhYTh69Cju3buH8PBw9O3bF5aWlvDw8AAAhIaGIioqCnfv3sWBAwfw0UcfwdnZGQMGDBD72LZtG86ePYuEhAT88MMPGDlyJHx9fWFhYSG26d+/PzZs2CA+nzVrFo4fP4779+/jzJkzGDZsGFRVVTF27FgA8qS9p6cn/Pz8cOzYMcTExMDDwwN2dnbo0aNHNR0dIiIiIqL6Izo6GgYGBgrfOnVwcICKigrOnTtX4novXrzAuHHjsHHjxhK/Nfq6wMBA6Ovri5OZmVmlxE9EVB0qnEQ/ceIEhgwZAlNT0xLrXd24cQMff/wx9PX1oa2tjW7duuHBgwfi8levXmHq1Klo1KgRdHR0MGLECCQnJyv08eDBAwwePBgNGjRAkyZNMHv2bOTl5Sm0iYqKQpcuXSCVStG6dWsEBwdXdHeIiOql9PR0TJ06FZaWlnB1dUXPnj0RFhYGdXV1AEBiYiLGjx8PS0tLTJ8+HePHj8ePP/6o0Ed8fDycnZ1hZWWFr776CvPmzcOKFSsU2hSWeyn0999/Y+zYsbCwsMCoUaPQqFEjnD17FkZGRmKb1atX41//+hdGjBiBXr16QSaT4eeff67Co0FEREREVH8lJSWhSZMmCvPU1NRgaGiIpKSkEtfz9fWFvb19sd9WLQ7vZUREtVmFa6JnZWXB2toaEyZMwPDhw4ssT0hIQM+ePeHp6YlFixZBT08P169fh6amptjG19cXR44cQWhoKPT19eHt7Y3hw4fj9OnTAID8/HwMHjwYMpkMZ86cQWJiIlxdXaGuro4lS5YAAO7du4fBgwdj8uTJ2LVrFyIiIjBx4kSYmJjA0dHxbY8HEVG9MGrUKIwaNarE5dOnT8f06dNL7WPp0qVYunRpqW3u37+v8Hz37t1lxqapqYmNGzdi48aNZbYlIiIiIqLizZ07F8uWLSu1zY0bN96q74MHDyIyMhKxsbHlXof3MnoHhbXBid5Wff0dqsT9rnASfeDAgRg4cGCJy+fNm4dBgwZh+fLl4rxWrVqJj9PT07FlyxaEhISgX79+AOQlAaysrHD27Fn06NEDv//+O/7880/88ccfMDY2RqdOnbB48WLMmTMHAQEB0NDQQFBQEFq0aIGVK1cCAKysrHDq1CmsXr26xCR6dnY2srOzxeesv0VEREREREREddHMmTPh7u5eapuWLVtCJpMhJSVFYX5eXh5SU1NLLNMSGRmJhIQEGBgYKMwfMWIEPvzwQ0RFRb1D5ERENU+l1kQvKCjAkSNH8P7778PR0RFNmjSBra2tQsmXmJgY5ObmwsHBQZxnaWmJZs2aITo6GoC8HleHDh1gbGwstnF0dERGRgauX78utnm9j8I2hX0Uh/W3iIiIiIiIiKg+MDIygqWlZamThoYG7OzskJaWhpiYGHHdyMhIFBQUwNbWtti+586diytXriAuLk6cAHlpxm3btlXH7tUPEomyI6gZeBzeHo+dXCUch0pNoqekpCAzMxNLly6Fk5MTfv/9dwwbNgzDhw/H8ePHAchrbWloaBT5tNLY2FistZWUlKSQQC9cXristDYZGRl4+fJlsfGx/hYRERERERER0f9YWVnByckJXl5eOH/+PE6fPg1vb2+MGTMGpqamAIBHjx7B0tIS58+fBwDIZDK0b99eYQKAZs2aoUWLFhXavopKpaamqC6pryVIqEaqcDmX0hQUFAAAhg4dCl9fXwBAp06dcObMGQQFBaF3796VubkKY/0tIiIiIiIiIiJFu3btgre3N/r37w8VFRWMGDEC69atE5fn5uYiPj4eL168qPRta2lpVXqfRESVrVKT6I0bN4aamhratm2rML+wXjkg/7QyJycHaWlpClejJycni7W2ZDKZ+Onm68sLlxX+LJz3ehs9PT0OwERERERERERE5WRoaIiQkJASl5ubm0Mo46rgspYTEdVmlfqdGQ0NDXTr1g3x8fEK82/duoXmzZsDAGxsbKCuro6IiAhxeXx8PB48eAA7OzsAgJ2dHa5evapwY4vw8HDo6emJCXo7OzuFPgrbFPZBRERERERERERERPSuKnwlemZmJu7cuSM+v3fvHuLi4mBoaIhmzZph9uzZGD16NHr16oW+ffvi6NGjOHTokHhnZn19fXh6esLPzw+GhobQ09PDtGnTYGdnhx49egAABgwYgLZt22L8+PFYvnw5kpKS8OWXX2Lq1KliOZbJkydjw4YN+PzzzzFhwgRERkZi7969OHLkSCUcFiIiIiIiIiIiqmovXryAnp6essOo2XiVP72r+vo7VIn7XeEk+sWLF9G3b1/xuZ+fHwDAzc0NwcHBGDZsGIKCghAYGIjp06fDwsIC+/btQ8+ePcV1Vq9eLdbYys7OhqOjI7799ltxuaqqKg4fPowpU6bAzs4O2tracHNzw1dffSW2adGiBY4cOQJfX1+sXbsWTZs2xffffw9HR8e3OhBERERERERERFS9WAaGiGqDCifR+/TpU+YAN2HCBEyYMKHE5Zqamti4cSM2btxYYpvmzZvj119/LTOW2NjY0gMmIiIiIiIiIiKqbSQSZUegXIX5x/p+HN4Fj51cJRyHSq2JTkRERERERERERERUlzCJTkRERERERERERERUAibRiYiIiIiIiIiIiIhKwCQ6EREREVEdtGnTJnTs2BF6enrQ09ODnZ0dfvvtN3H55s2b0adPH+jp6UEikSAtLa1IH6mpqXBxcYGenh4MDAzg6emJzMxMhTZXrlzBhx9+CE1NTZiZmWH58uVF+gkNDYWlpSU0NTXRoUOHMu99RERERK/hzVfpXdXX36FK3G8m0YmIiIiI6qCmTZti6dKliImJwcWLF9GvXz8MHToU169fBwC8ePECTk5O+OKLL0rsw8XFBdevX0d4eDgOHz6MEydOYNKkSeLyjIwMDBgwAM2bN0dMTAy++eYbBAQEYPPmzWKbM2fOYOzYsfD09ERsbCycnZ3h7OyMa9euVd3OExFRrSHhjQ+JqBZQU3YARERERERU+YYMGaLw/Ouvv8amTZtw9uxZtGvXDj4+PgCAqKioYte/ceMGjh49igsXLqBr164AgPXr12PQoEFYsWIFTE1NsWvXLuTk5GDr1q3Q0NBAu3btEBcXh1WrVonJ9rVr18LJyQmzZ88GACxevBjh4eHYsGEDgoKCit12dnY2srOzxecZGRnvciiIiKgGa9CggbJDqLnq+wcMhVcR1/fj8C547OQq4TjwSnQiIiIiojouPz8fu3fvRlZWFuzs7Mq1TnR0NAwMDMQEOgA4ODhARUUF586dE9v06tULGhoaYhtHR0fEx8fj2bNnYhsHBweFvh0dHREdHV3itgMDA6Gvry9OZmZm5d5XIiIiIqLKxiQ6EREREVEddfXqVejo6EAqlWLy5Mn45Zdf0LZt23Ktm5SUhCZNmijMU1NTg6GhIZKSksQ2xsbGCm0Kn5fVpnB5cfz9/ZGeni5ODx8+LFfMRERERERVgeVciIiIiIjqKAsLC8TFxSE9PR0//fQT3NzccPz48XIn0pVFKpVCKpUqOwwiIqoGL168gJ6enrLDICIqFZPoRERERER1lIaGBlq3bg0AsLGxwYULF7B27Vp89913Za4rk8mQkpKiMC8vLw+pqamQyWRim+TkZIU2hc/LalO4nIiI6jehsO41EVENxnIuRERERET1REFBgcINO0tjZ2eHtLQ0xMTEiPMiIyNRUFAAW1tbsc2JEyeQm5srtgkPD4eFhQUaNmwotomIiFDoOzw8vNy12YmIiOo9ftBA76q+/g5V4n4ziU5EREREVAf5+/vjxIkTuH//Pq5evQp/f39ERUXBxcUFgLxWeVxcHO7cuQNAXj89Li4OqampAAArKys4OTnBy8sL58+fx+nTp+Ht7Y0xY8bA1NQUADBu3DhoaGjA09MT169fx549e7B27Vr4+fmJccyYMQNHjx7FypUrcfPmTQQEBODixYvw9vau5iNCREREtUp9TfxSjcQkOhERERFRHZSSkgJXV1dYWFigf//+uHDhAsLCwvDRRx8BAIKCgtC5c2d4eXkBAHr16oXOnTvj4MGDYh+7du2CpaUl+vfvj0GDBqFnz57YvHmzuFxfXx+///477t27BxsbG8ycORMLFizApEmTxDb29vYICQnB5s2bYW1tjZ9++gn79+9H+/btq+lIEBER1VISibIjqBl4HN4ej51cJRwHJtGJiOqh58+fw8fHB82bN4eWlhbs7e1x4cIFcXlycjLc3d1hamqKBg0awMnJCbdv31boIyEhAcOGDYORkRH09PQwatSoIjVv3xQYGIhu3bpBV1cXTZo0gbOzM+Lj4xXa9OnTBxKJRGGaPHly5e08EVE9sWXLFty/fx/Z2dlISUnBH3/8ISbQASAgIACCIBSZ3N3dxTaGhoYICQnB8+fPkZ6ejq1bt0JHR0dhOx07dsTJkyfx6tUr/P3335gzZ06RWEaOHIn4+HhkZ2fj2rVrGDRoUJXtNxERERFRZWMSnYioHpo4cSLCw8Oxc+dOXL16FQMGDICDgwMePXoEQRDg7OyMu3fv4sCBA4iNjUXz5s3h4OCArKwsAEBWVhYGDBgAiUSCyMhInD59Gjk5ORgyZAgKCgpK3O7x48cxdepUnD17FuHh4cjNzcWAAQPEfgt5eXkhMTFRnJYvX16lx4OIiIiIiIiIqCRqyg6AiIiq18uXL7Fv3z4cOHAAvXr1AiC/GvHQoUPYtGkTXF1dcfbsWVy7dg3t2rUDAGzatAkymQw//vgjJk6ciNOnT+P+/fuIjY2Fnp4eAGD79u1o2LAhIiMj4eDgUOy2jx49qvA8ODgYTZo0QUxMjBgLADRo0AAymawqdp+IiIiIiGoQCctNEFEtwCvRiYjqmby8POTn50NTU1NhvpaWFk6dOoXs7GwAUFiuoqICqVSKU6dOAQCys7MhkUgglUrFNpqamlBRURHblEd6ejoAebmA1+3atQuNGzdG+/bt4e/vjxcvXpTYR3Z2NjIyMhQmIiIiIiKqHRo0aKDsEGo+3mCT3lV9/R2qxP1mEp2IqJ7R1dWFnZ0dFi9ejMePHyM/Px8//PADoqOjkZiYCEtLSzRr1gz+/v549uwZcnJysGzZMvz9999ITEwEAPTo0QPa2tqYM2cOXrx4gaysLMyaNQv5+flim7IUFBTAx8cHH3zwgcLN5caNG4cffvgBx44dg7+/P3bu3IlPPvmkxH4CAwOhr68vTmZmZu92gIiIiIiIiEj56mvil2okJtGJiOqhnTt3QhAEvPfee5BKpVi3bh3Gjh0LFRUVqKur4+eff8atW7dgaGiIBg0a4NixYxg4cCBUVORvG0ZGRggNDcWhQ4ego6MDfX19pKWloUuXLmKbskydOhXXrl3D7t27FeZPmjQJjo6O6NChA1xcXLBjxw788ssvSEhIKLYff39/pKeni9PDhw/f7eAQERERERHVBCx1I8fj8PZ47OQq4TiwJjoRUT3UqlUrHD9+HFlZWcjIyICJiQlGjx6Nli1bAgBsbGwQFxeH9PR05OTkwMjICLa2tujatavYx4ABA5CQkIAnT55ATU0NBgYGkMlkYh+l8fb2xuHDh3HixAk0bdq01La2trYAgDt37qBVq1ZFlkulUoWyMkREREREVHu8fPlSvM8SEVFNxSQ6EVE9pq2tDW1tbTx79gxhYWFYvny5wnJ9fX0AwO3bt3Hx4kUsXry4SB+NGzcGAERGRiIlJQUff/xxidsTBAHTpk3DL7/8gqioKLRo0aLMGOPi4gAAJiYm5d0tIiKqgxoAQFYWoKqq7FCIqL7KylJ2BFUmNTUV06ZNw6FDh6CiooIRI0Zg7dq10NHRKXW96OhozJs3D+fOnYOqqio6deqEsLAwaGlplXvbBQUF7xo+EVGVYxKdiKgeCgsLgyAIsLCwwJ07dzB79mxYWlrCw8MDABAaGgojIyM0a9YMV69exYwZM+Ds7IwBAwaIfWzbtg1WVlYwMjJCdHQ0ZsyYAV9fX1hYWIht+vfvj2HDhsHb2xuAvIRLSEgIDhw4AF1dXSQlJQGQJ+u1tLSQkJCAkJAQDBo0CI0aNcKVK1fg6+uLXr16oWPHjtV4hIiIqKbJAgBTU2WHQUT1WF2+VtrFxQWJiYkIDw9Hbm4uPDw8MGnSJISEhJS4TnR0NJycnODv74/169dDTU0Nly9fLnd5RyKi2oRJdCKieig9PR3+/v74+++/YWhoiBEjRuDrr7+Guro6ACAxMRF+fn5ITk6GiYkJXF1dMX/+fIU+4uPj4e/vj9TUVJibm2PevHnw9fVVaFNY7qXQpk2bAAB9+vRRaLdt2za4u7tDQ0MDf/zxB9asWYOsrCyYmZlhxIgR+PLLL6vgKBARERER0Y0bN3D06FFcuHBBLN+4fv16DBo0CCtWrIBpCR9g+vr6Yvr06Zg7d6447/ULat6UnZ2N7Oxs8XlGRkYl7QERUdVjEp2IqB4aNWoURo0aVeLy6dOnY/r06aX2sXTpUixdurTUNvfv31d4LpRxd3UzMzMcP3681DZERFQ/aQNIfPyYdXOJSGkyMjLq5DdioqOjYWBgoHD/IwcHB6ioqODcuXMYNmxYkXVSUlJw7tw5uLi4wN7eHgkJCbC0tMTXX3+Nnj17FrudwMBALFq0qMr2o04r4/+oOqu+7ndVqK/HshL3m0l0IiIiIiKq8V4AgLa2fCIiUob8fGVHUCWSkpLQpEkThXlqamowNDQUyy++6e7duwCAgIAArFixAp06dcKOHTvQv39/XLt2DW3atCmyjr+/P/z8/MTnGRkZMDMzq8Q9ISKqOixURURERERERERUx8ydOxcSiaTU6ebNm2/Vd+HNQD/99FN4eHigc+fOWL16NSwsLLB169Zi15FKpdDT01OYqAwSibIjqBl4HN4ej51cJRwHXolORERERERERFTHzJw5E+7u7qW2admyJWQyGVJSUhTm5+XlITU1FTKZrNj1TExMAABt27ZVmG9lZYUHDx68fdBERDUUk+hERERERERERHWMkZERjIyMymxnZ2eHtLQ0xMTEwMbGBgAQGRmJgoIC2NraFruOubk5TE1NER8frzD/1q1bGDhwYIXi1GaZLiKqBVjOhYiIiIiIiIionrKysoKTkxO8vLxw/vx5nD59Gt7e3hgzZgxM//9Gqo8ePYKlpSXOnz8PAJBIJJg9ezbWrVuHn376CXfu3MH8+fNx8+ZNeHp6KnN3iIiqRIWT6CdOnMCQIUNgamoKiUSC/fv3Kyx3d3cvUmPLyclJoU1qaipcXFygp6cHAwMDeHp6IjMzU6HNlStX8OGHH0JTUxNmZmZYvnx5kVhCQ0NhaWkJTU1NdOjQAb/++mtFd4eIiIiIiIiIqF7btWsXLC0t0b9/fwwaNAg9e/bE5s2bxeW5ubmIj4/HixcvxHk+Pj7w9/eHr68vrK2tERERgfDwcLRq1UoZu1C3CYKyI6Darr7+DlXifle4nEtWVhasra0xYcIEDB8+vNg2Tk5O2LZtm/hcKpUqLHdxcUFiYiLCw8ORm5sLDw8PTJo0CSEhIQDkd2geMGAAHBwcEBQUhKtXr2LChAkwMDDApEmTAABnzpzB2LFjERgYiH/9618ICQmBs7MzLl26hPbt21d0t4iIiIiIiIiI6iVDQ0MxJ1Mcc3NzCMUko+bOnYu5c+e+07ZfvnzJm4xS8epr4pdqpAon0QcOHFhmfSupVFrizSdu3LiBo0eP4sKFC+jatSsAYP369Rg0aBBWrFgBU1NT7Nq1Czk5Odi6dSs0NDTQrl07xMXFYdWqVWISfe3atXBycsLs2bMBAIsXL0Z4eDg2bNiAoKCgYrednZ2N7Oxs8XlGRkZFd5+IiIiIiIiIiCpJQUGBskOouSQSZUdQM/A4vD0eO7lKOA5VUhM9KioKTZo0gYWFBaZMmYKnT5+Ky6Kjo2FgYCAm0AHAwcEBKioqOHfunNimV69e0NDQENs4OjoiPj4ez549E9s4ODgobNfR0RHR0dElxhUYGAh9fX1xMjMzq5T9JSIiIiKqaTZt2oSOHTtCT08Penp6sLOzw2+//SYuf/XqFaZOnYpGjRpBR0cHI0aMQHJyskIfb5ZplEgk2L17t0KbqKgodOnSBVKpFK1bt0ZwcHCRWDZu3Ahzc3NoamrC1tZWrKlLRERERFQbVHoS3cnJCTt27EBERASWLVuG48ePY+DAgcjPzwcAJCUloUmTJgrrqKmpwdDQEElJSWIbY2NjhTaFz8tqU7i8OP7+/khPTxenhw8fvtvOEhERERHVUE2bNsXSpUsRExODixcvol+/fhg6dCiuX78OAPD19cWhQ4cQGhqK48eP4/Hjx8WWa9y2bRsSExPFydnZWVx27949DB48GH379kVcXBx8fHwwceJEhIWFiW327NkDPz8/LFy4EJcuXYK1tTUcHR2RkpJS5ceAiIiIiKgyVLicS1nGjBkjPu7QoQM6duyIVq1aISoqCv3796/szVWIVCotUp+diIiIiKguGjJkiMLzr7/+Gps2bcLZs2fRtGlTbNmyBSEhIejXrx8AebLcysoKZ8+eRY8ePcT1DAwMSizVGBQUhBYtWmDlypUAACsrK5w6dQqrV6+Go6MjAGDVqlXw8vKCh4eHuM6RI0ewdevWd66jS0RERERUHaqknMvrWrZsicaNG+POnTsAAJlMVuSqk7y8PKSmpoon5zKZrMhXSQufl9WmpBN8IiIiIqL6Kj8/H7t370ZWVhbs7OwQExOD3NxchfKIlpaWaNasWZHyiFOnTkXjxo3RvXt3bN26VeHGcmWVWMzJyUFMTIxCGxUVFTg4OJRahjE7OxsZGRkKExERERGRslT6lehv+vvvv/H06VOYmJgAAOzs7JCWloaYmBjY2NgAACIjI1FQUABbW1uxzbx585Cbmwt1dXUAQHh4OCwsLNCwYUOxTUREBHx8fMRthYeHw87Orqp3iYiIiIioVrh69Srs7Ozw6tUr6Ojo4JdffkHbtm0RFxcHDQ0NGBgYKLR/szziV199hX79+qFBgwb4/fff8dlnnyEzMxPTp08HUHKJxYyMDLx8+RLPnj1Dfn5+sW1u3rxZYtyBgYFYtGjRO+49ERFRHfH554ChobKjqH6PHys7grrjhx+AixeVHUX1i42ttK4qnETPzMwUryoH5HUQ4+LiYGhoCENDQyxatAgjRoyATCZDQkICPv/8c7Ru3Vr8OqeVlRWcnJzg5eWFoKAg5ObmwtvbG2PGjIGpqSkAYNy4cVi0aBE8PT0xZ84cXLt2DWvXrsXq1avF7c6YMQO9e/fGypUrMXjwYOzevRsXL17E5s2b3/WYEBERERHVCRYWFoiLi0N6ejp++uknuLm54fjx4+Vef/78+eLjzp07IysrC998842YRK8q/v7+8PPzE59nZGTAzMysSrdJRERU4zRpAty/D1TgvbtOMjJSdgS1V+F9KW/ckE/1VSX8DlU4iX7x4kX07dtXfF54cuvm5oZNmzbhypUr2L59O9LS0mBqaooBAwZg8eLFCrXId+3aBW9vb/Tv3x8qKioYMWIE1q1bJy7X19fH77//jqlTp8LGxgaNGzfGggULMGnSJLGNvb09QkJC8OWXX+KLL75AmzZtsH//frRv3/6tDgQRERERUV2joaGB1q1bAwBsbGxw4cIFrF27FqNHj0ZOTg7S0tIUrkYvqzyira0tFi9ejOzsbEil0hJLLOrp6UFLSwuqqqpQVVWtcBlG3suIiKj+0NbWVnYINdeePUBYGPBaKbV6p1UrwMJC2VHUXnPnyo/fixfKjkR59PWBYcPeuZsKJ9H79OmjUAfxTWFhYWX2YWhoiJCQkFLbdOzYESdPniy1zciRIzFy5Mgyt0dEREREREBBQQGys7NhY2MDdXV1REREYMSIEQCA+Ph4PHjwoNTyiHFxcWjYsKGY4Lazs8Ovv/6q0Ob1EosaGhqwsbFBREQEnJ2dxRgiIiLg7e1dBXtIRERUh5ibA59+quwoqDbT1QVcXZUdRZ1Q5TXRiYiIiIio+vn7+2PgwIFo1qwZnj9/jpCQEERFRSEsLAz6+vrw9PSEn58fDA0Noaenh2nTpsHOzg49evQAABw6dAjJycno0aMHNDU1ER4ejiVLlmDWrFniNiZPnowNGzbg888/x4QJExAZGYm9e/fiyJEjYhs/Pz+4ubmha9eu6N69O9asWYOsrCx4eHhU+zEhIiIiInobTKITEREREdVBKSkpcHV1RWJiIvT19dGxY0eEhYXho48+AgCsXr1aLK2YnZ0NR0dHfPvtt+L66urq2LhxI3x9fSEIAlq3bo1Vq1bBy8tLbNOiRQscOXIEvr6+WLt2LZo2bYrvv/9evB8SAIwePRr//PMPFixYgKSkJHTq1AlHjx4tcrNRIiKqn169egU9PT1lh0FEVCom0YmIiIiI6qAtW7aUulxTUxMbN27Exo0bi13u5OQEJyenMrfTp08fxMbGltrG29ub5VuIiKhY+fn5yg6BiKhMKsoOgIiIiIiIiIiIiIiopmISnYiIiIiIiIiIiIioBEyiExERERERERERERGVgEl0IqJ66Pnz5/Dx8UHz5s2hpaUFe3t7XLhwQVyenJwMd3d3mJqaokGDBnBycsLt27cV+khISMCwYcNgZGQEPT09jBo1CsnJyWVue+PGjTA3N4empiZsbW1x/vx5heWvXr3C1KlT0ahRI+jo6GDEiBHl6peIiIiIiIiIqCowiU5EVA9NnDgR4eHh2LlzJ65evYoBAwbAwcEBjx49giAIcHZ2xt27d3HgwAHExsaiefPmcHBwQFZWFgAgKysLAwYMgEQiQWRkJE6fPo2cnBwMGTIEBQUFJW53z5498PPzw8KFC3Hp0iVYW1vD0dERKSkpYhtfX18cOnQIoaGhOH78OB4/fozhw4dX+TEhIiIiIiIiIiqOmrIDUCZBEAAAGRkZSo6EiOqrwvGncDyqDi9fvsS+fftw4MAB9OrVCwAQEBCAQ4cOYdOmTXB1dcXZs2dx7do1tGvXDgCwadMmyGQy/Pjjj5g4cSJOnz6N+/fvIzY2Fnp6egCA7du3o2HDhoiMjISDg0Ox2161ahW8vLzg4eEBAAgKCsKRI0ewdetWzJ07F+np6diyZQtCQkLQr18/AMC2bdtgZWWFs2fPokePHkX6zM7ORnZ2tvg8PT0dAMf2+uz58+d49eoVnj9/Dm1t7Xq3faoZlDG+12U8byeimoBje+UqPI48ZyIiZSrv2F6vk+hPnz4FAJiZmSk5EiKq754/fw59ff1q2VZeXh7y8/OhqampMF9LSwunTp3C6NGjAUBhuYqKCqRSKU6dOoWJEyciOzsbEokEUqlUbKOpqQkVFRWcOnWq2CR6Tk4OYmJi4O/vr9Cvg4MDoqOjAQAxMTHIzc1VWN/S0hLNmjVDdHR0sUn0wMBALFq0qMh8ju20dOnSer19qhmqc3yvy54/fw6AYzsR1Qwc2ytHYU7GwsJCyZEQEZU9ttfrJLqhoSEA4MGDB3wDrAMyMjJgZmaGhw8filfGUu1VX15PQRDw/PlzmJqaVts2dXV1YWdnh8WLF8PKygrGxsb48ccfER0djdatW4tJa39/f3z33XfQ1tbG6tWr8ffffyMxMREA0KNHD2hra2POnDlYsmQJBEHA3LlzkZ+fL7Z505MnT5Cfnw9jY2OF+cbGxrh58yYAICkpCRoaGjAwMCjSJikpqdh+/f394efnJz5PS0tD8+bNObbXQPXl77q24utTuZQxvtdlpqamePjwIXR1dSGRSJQdDv0/jht1C1/PsnFsr1zMydRcHA9qLr42la+8Y3u9TqKrqMhLwuvr6/MXrw7R09Pj61mH1IfXUxknjDt37sSECRPw3nvvQVVVFV26dMHYsWMRExMDdXV1/Pzzz/D09IShoSFUVVXh4OCAgQMHil9vMjIyQmhoKKZMmYJ169ZBRUUFY8eORZcuXcSxtbpIpVKFK+ILcWyvuerD33Vtxten8jAhUHlUVFTQtGlTZYdBJeC4Ubfw9Swdx/bKw5xMzcfxoObia1O5yjO21+skOhFRfdWqVSscP34cWVlZyMjIgImJCUaPHo2WLVsCAGxsbBAXF4f09HTk5OTAyMgItra26Nq1q9jHgAEDkJCQgCdPnkBNTQ0GBgaQyWRiH29q3LgxVFVVkZycrDA/OTkZMpkMACCTyZCTk4O0tDSFq9Ffb0NEREREREREVJ2q93JBIiKqUbS1tWFiYoJnz54hLCwMQ4cOVViur68PIyMj3L59GxcvXiyyHJAnxw0MDBAZGYmUlBR8/PHHxW5LQ0MDNjY2iIiIEOcVFBQgIiICdnZ2AOTJe3V1dYU28fHxePDggdiGiIiIiIiIiKg61esr0aVSKRYuXFhsGQCqffh61i18PatWWFgYBEGAhYUF7ty5g9mzZ8PS0hIeHh4AgNDQUBgZGaFZs2a4evUqZsyYAWdnZwwYMEDsY9u2bbCysoKRkRGio6MxY8YM+Pr6KtwYqH///hg2bBi8vb0BAH5+fnBzc0PXrl3RvXt3rFmzBllZWeJ29fX14enpCT8/PxgaGkJPTw/Tpk2DnZ1dsTcVLQ5/d2ouvjY1G18fIqoojht1C19Pqm78nau5+NrUXHxtlEciFBa4JSKiemPv3r3w9/fH33//DUNDQ4wYMQJff/21WAds3bp1+Oabb5CcnAwTExO4urpi/vz50NDQEPuYO3cugoODkZqaCnNzc0yePBm+vr4KN3wzNzeHu7s7AgICxHkbNmzAN998g6SkJHTq1Anr1q2Dra2tuPzVq1eYOXMmfvzxR2RnZ8PR0RHffvsty7kQERERERERkVIwiU5EREREREREREREVALWRCciIiIiIiIiIiIiKgGT6EREREREREREREREJWASnYiIiIiIiIiIiIioBEyiExERERERERERERGVoN4m0Tdu3Ahzc3NoamrC1tYW58+fV3ZI9BaWLl0KiUQCHx8fcd6rV68wdepUNGrUCDo6OhgxYgSSk5OVFySVKD8/H/Pnz0eLFi2gpaWFVq1aYfHixXj9fseCIGDBggUwMTGBlpYWHBwccPv2bSVGTTUZx3bl4991zXLixAkMGTIEpqamkEgk2L9/f5E2N27cwMcffwx9fX1oa2ujW7duePDggbic76tE9QvHjbolMDAQ3bp1g66uLpo0aQJnZ2fEx8crtCnP6/XgwQMMHjwYDRo0QJMmTTB79mzk5eVV565QLVXR8/PQ0FBYWlpCU1MTHTp0wK+//lpNkdY/b/u/0+7duyGRSODs7Fy1AdZTFX1d1qxZAwsLC2hpacHMzAy+vr549epVNUVbv9TLJPqePXvg5+eHhQsX4tKlS7C2toajoyNSUlKUHRpVwIULF/Ddd9+hY8eOCvN9fX1x6NAhhIaG4vjx43j8+DGGDx+upCipNMuWLcOmTZuwYcMG3LhxA8uWLcPy5cuxfv16sc3y5cuxbt06BAUF4dy5c9DW1oajoyPfFKgIju01A/+ua5asrCxYW1tj48aNxS5PSEhAz549YWlpiaioKFy5cgXz58+Hpqam2Ibvq0T1C8eNuuX48eOYOnUqzp49i/DwcOTm5mLAgAHIysoS25T1euXn52Pw4MHIycnBmTNnsH37dgQHB2PBggXK2CWqRSp6fn7mzBmMHTsWnp6eiI2NhbOzM5ydnXHt2rVqjrzue9v/ne7fv49Zs2bhww8/rKZI65eKvi4hISGYO3cuFi5ciBs3bmDLli3Ys2cPvvjii2qOvJ4Q6qHu3bsLU6dOFZ/n5+cLpqamQmBgoBKjoop4/vy50KZNGyE8PFzo3bu3MGPGDEEQBCEtLU1QV1cXQkNDxbY3btwQAAjR0dFKipZKMnjwYGHChAkK84YPHy64uLgIgiAIBQUFgkwmE7755htxeVpamiCVSoUff/yxWmOlmo9je83Av+uaC4Dwyy+/KMwbPXq08Mknn5S4Dt9Xieo3jht1T0pKigBAOH78uCAI5Xu9fv31V0FFRUVISkoS22zatEnQ09MTsrOzq3cHqFap6Pn5qFGjhMGDByvMs7W1FT799NMqjbM+epv/nfLy8gR7e3vh+++/F9zc3IShQ4dWQ6T1S0Vfl6lTpwr9+vVTmOfn5yd88MEHVRpnfVXvrkTPyclBTEwMHBwcxHkqKipwcHBAdHS0EiOjipg6dSoGDx6s8DoCQExMDHJzcxXmW1paolmzZnx9ayB7e3tERETg1q1bAIDLly/j1KlTGDhwIADg3r17SEpKUng99fX1YWtry9eTFHBsrzn4d117FBQU4MiRI3j//ffh6OiIJk2awNbWVqF0A99Xieh1HDdqv/T0dACAoaEhgPK9XtHR0ejQoQOMjY3FNo6OjsjIyMD169erMXqqTd7m/Dw6OrrI//iOjo4cOyrZ2/7v9NVXX6FJkybw9PSsjjDrnbd5Xezt7RETEyOWfLl79y5+/fVXDBo0qFpirm/UlB1AdXvy5Any8/MVTgAAwNjYGDdv3lRSVFQRu3fvxqVLl3DhwoUiy5KSkqChoQEDAwOF+cbGxkhKSqqmCKm85s6di4yMDFhaWkJVVRX5+fn4+uuv4eLiAgDia1bc3ytfT3odx/aag3/XtUdKSgoyMzOxdOlS/Oc//8GyZctw9OhRDB8+HMeOHUPv3r35vkpECjhu1G4FBQXw8fHBBx98gPbt2wMo3/9PSUlJxb5vFy4jKs7bnJ+X9LvG37PK9TavzalTp7BlyxbExcVVQ4T109u8LuPGjcOTJ0/Qs2dPCIKAvLw8TJ48meVcqki9S6JT7fbw4UPMmDED4eHhCnUXqXbau3cvdu3ahZCQELRr1w5xcXHw8fGBqakp3NzclB0eEb0F/l3XHgUFBQCAoUOHwtfXFwDQqVMnnDlzBkFBQejdu7cywyOiGojjRu02depUXLt2DadOnVJ2KERUizx//hzjx4/Hf//7XzRu3FjZ4dBroqKisGTJEnz77bewtbXFnTt3MGPGDCxevBjz589Xdnh1Tr1Lojdu3BiqqqpF7jaenJwMmUympKiovGJiYpCSkoIuXbqI8/Lz83HixAls2LABYWFhyMnJQVpamsLVFHx9a6bZs2dj7ty5GDNmDACgQ4cO+OuvvxAYGAg3NzfxNUtOToaJiYm4XnJyMjp16qSMkKmG4thec/DvuvZo3Lgx1NTU0LZtW4X5VlZWYoJFJpPxfZWIRBw3ai9vb28cPnwYJ06cQNOmTcX55Xm9ZDKZWCrg9eWFy4iK8zbn5zKZjOfz1aCir01CQgLu37+PIUOGiPMKP1RVU1NDfHw8WrVqVbVB1wNv8zczf/58jB8/HhMnTgQg/98rKysLkyZNwrx586CiUu+qeFepenc0NTQ0YGNjg4iICHFeQUEBIiIiYGdnp8TIqDz69++Pq1evIi4uTpy6du0KFxcX8bG6urrC6xsfH48HDx7w9a2BXrx4UWRQV1VVFd+QW7RoAZlMpvB6ZmRk4Ny5c3w9SQHH9pqDf9e1h4aGBrp164b4+HiF+bdu3ULz5s0BADY2NnxfJSIRx43aRxAEeHt745dffkFkZCRatGihsLw8r5ednR2uXr2KlJQUsU14eDj09PSKfKBCVOhtzs/t7OwU2gPy3zWOHZWroq+NpaVlkTzMxx9/jL59+yIuLg5mZmbVGX6d9TZ/MyX97wXIx3+qZEq+salS7N69W5BKpUJwcLDw559/CpMmTRIMDAwU7jZOtUfv3r2FGTNmiM8nT54sNGvWTIiMjBQuXrwo2NnZCXZ2dsoLkErk5uYmvPfee8Lhw4eFe/fuCT///LPQuHFj4fPPPxfbLF26VDAwMBAOHDggXLlyRRg6dKjQokUL4eXLl0qMnGoiju01A/+ua5bnz58LsbGxQmxsrABAWLVqlRAbGyv89ddfgiAIws8//yyoq6sLmzdvFm7fvi2sX79eUFVVFU6ePCn2wfdVovqF40bdMmXKFEFfX1+IiooSEhMTxenFixdim7Jer7y8PKF9+/bCgAEDhLi4OOHo0aOCkZGR4O/vr4xdolqkrPPz8ePHC3PnzhXbnz59WlBTUxNWrFgh3LhxQ1i4cKGgrq4uXL16VVm7UGdV9LV5k5ubmzB06NBqirb+qOjrsnDhQkFXV1f48ccfhbt37wq///670KpVK2HUqFHK2oU6rV4m0QVBENavXy80a9ZM0NDQELp37y6cPXtW2SHRW3ozif7y5Uvhs88+Exo2bCg0aNBAGDZsmJCYmKi8AKlEGRkZwowZM4RmzZoJmpqaQsuWLYV58+YJ2dnZYpuCggJh/vz5grGxsSCVSoX+/fsL8fHxSoyaajKO7crHv+ua5dixYwKAIpObm5vYZsuWLULr1q0FTU1NwdraWti/f79CH3xfJapfOG7ULcW9lgCEbdu2iW3K83rdv39fGDhwoKClpSU0btxYmDlzppCbm1vNe0O1UWnn571791YYWwRBEPbu3Su8//77goaGhtCuXTvhyJEj1Rxx/VHR1+Z1TKJXnYq8Lrm5uUJAQIDQqlUrQVNTUzAzMxM+++wz4dmzZ9UfeD0gEQRe309EREREREREREREVJx6VxOdiIiIiIiIiIiIiKi8mEQnIiIiIiIiIiIiIioBk+hERERERERERERERCVgEp2IiIiIiIiIiIiIqARMohMRERERERERERERlYBJdCIiIiIiIiIiIiKiEjCJTkRERERERERERERUAibRiYiIiIiIiIiIiIhKwCQ6ERERERERERERVQt3d3c4OztX+3aDg4MhkUggkUjg4+Mjzjc3N8eaNWtKXbdwPQMDgyqNkWouJtGJStGnTx9xoIyLi6vy7bm7u4vb279/f5Vvj4ioPuLYTkRU93BsJyKqGQrHxpKmgIAArF27FsHBwUqJT09PD4mJiVi8eHGF1ktMTCwz0U51G5PoRGXw8vJCYmIi2rdvX+XbWrt2LRITE6t8O0RE9R3HdiKiuodjOxGR8iUmJorTmjVrxKR14TRr1izo6+sr7YpuiUQCmUwGXV3dCq0nk8mgr69fRVFRbcAkOlEZGjRoAJlMBjU1tSrflr6+PmQyWZVvh4iovuPYTkRU93BsJyJSPplMJk76+vpi0rpw0tHRKVLOpU+fPpg2bRp8fHzQsGFDGBsb47///S+ysrLg4eEBXV1dtG7dGr/99pvCtq5du4aBAwdCR0cHxsbGGD9+PJ48efJWcb948QITJkyArq4umjVrhs2bN7/LYaA6iEl0qjf++ecfyGQyLFmyRJx35swZaGhoICIiokJ9nTp1Curq6nj16pU47/79+5BIJPjrr7/e+g2AiIgqhmM7EVHdw7GdiKj+2b59Oxo3bozz589j2rRpmDJlCkaOHAl7e3tcunQJAwYMwPjx4/HixQsAQFpaGvr164fOnTvj4sWLOHr0KJKTkzFq1Ki32v7KlSvRtWtXxMbG4rPPPsOUKVMQHx9fmbtItRyT6FRvGBkZYevWrQgICMDFixfx/PlzjB8/Ht7e3ujfv3+F+oqLi4OVlRU0NTXFebGxsWjYsCGaN28OoOJvAEREVHEc24mI6h6O7URE9Y+1tTW+/PJLtGnTBv7+/tDU1ETjxo3h5eWFNm3aYMGCBXj69CmuXLkCANiwYQM6d+6MJUuWwNLSEp07d8bWrVtx7Ngx3Lp1q8LbHzRoED777DO0bt0ac+bMQePGjXHs2LHK3k2qxZhEp3pl0KBB8PLygouLCyZPngxtbW0EBgZWuJ/Lly+jc+fOCvPi4uJgbW0tPq/oGwAREb0dju1ERHUPx3YiovqlY8eO4mNVVVU0atQIHTp0EOcZGxsDAFJSUgDIx/djx45BR0dHnCwtLQEACQkJ77T9whI0hdsiAoCqLxZHVMOsWLEC7du3R2hoKGJiYiCVSivcR1xcHMaNG6cwLzY2Fp06dRKfV/QNgIiI3h7HdiKiuodjOxFR/aGurq7wXCKRKMyTSCQAgIKCAgBAZmYmhgwZgmXLlhXpy8TEpFK2X7gtIoBXolM9lJCQgMePH6OgoAD379+v8Pr5+fm4du1akStaLl26pHAyXtE3ACIiensc24mI6h6O7UREVJIuXbrg+vXrMDc3R+vWrRUmbW1tZYdHdRCT6FSv5OTk4JNPPsHo0aOxePFiTJw4scJXlMTHx+PVq1cwNTUV50VHR+PRo0cKJ+NERFQ9OLYTEdU9HNuJiKg0U6dORWpqKsaOHYsLFy4gISEBYWFh8PDwQH5+vrLDozqISXSqV+bNm4f09HSsW7cOc+bMwfvvv48JEyZUqI+4uDgAwPr163H79m389ttvcHV1BSA/2SciourFsZ2IqO7h2E5ERKUxNTXF6dOnkZ+fjwEDBqBDhw7w8fGBgYEBVFSY7qTKx5roVG9ERUVhzZo1OHbsGPT09AAAO3fuhLW1NTZt2oQpU6aUq5+4uDg4Ojri7t276NChA9q2bYtFixZhypQpWLduHXbu3FmVu0FERK/h2E5EVPdwbCciqhvc3d3h7u5eZH5wcLDC86ioqCJtiivjJQiCwvM2bdrg559/focIS95W4QexRIWYRKd6o0+fPsjNzVWYZ25ujvT09Ar1c/nyZXTr1g3/+c9/FOa/fsOit30DICKiiuHYTkRU93BsJyKiqpKeng4dHR1MnTq12JuSlkRHRwd5eXnQ1NSswuioJuP3G4jK8O2330JHRwdXr14FID8Z79ChQ5Vsa/LkydDR0amSvomI6H84thMR1T0c24mIqDQjRozA7du3ERcXh9mzZ1do3bi4OFy7dg2xsbFVFB3VdBKBH6kTlejRo0d4+fIlAKBZs2ZITU2FiYkJrl+/jrZt21b69lJSUpCRkQEAMDEx4R2liYiqAMd2IqK6h2M7ERERVSUm0YmIiIiIiIiIiIiISsByLkREREREREREREREJWASnYiIiIiIiIiIiIioBEyiExERERERERERERGVgEl0IiIiIiIiIiIiIqISMIlORERERERERERERFQCJtGJiIiIiIiIiIiIiErAJDoRERERERERERERUQmYRCciIiIiIiIiIiIiKgGT6EREREREREREREREJWASnYiIiIiIiIiIiIioBEyiExERERERERERERGVgEl0IiIiIiIiIiIiIqISMIlORERERERERERERFQCJtGJiIiIiIiIiIiIiErAJDoRERERERERERERUQmYRCciIiIiIiIiIiIiKgGT6FQh5ubmWLNmjVJjCA4OhoGBgVJjqKiacNyUISAgAJ06darQOhKJBPv37y9xeZ8+fSCRSCCRSBAXF1ehvt3d3cV1S9sGUV1Xk/8G3mbcqM/e5j2xrPekdxkrAwICxHXr4/seUVWIioqCRCJBWlpaqe1qwvkmz9NrD56nE5Gy1ORx9/79++JY9Db/kxSuW9veC6l8mESvIQpPGpYuXaowf//+/ZBIJNUeT0knwBcuXMCkSZOqPZ6qVBtP9t9Wnz594OPjUyV9F3fCO2vWLERERFT6try8vJCYmIj27dsjJiYGEokEZ8+eLbZt//79MXz4cADA2rVrkZiYWOnxENUkr/8T+vrk5ORUZdtU5j+8NW0Md3d3h7Ozc5X0Xdw/HKNHj8atW7cqfVtOTk5ITEzEwIEDkZycDHV1dezevbvYtp6enujSpQsA+bifmJiIpk2bVnpMRDXZ62OvhoYGWrduja+++gp5eXnv3Le9vT0SExOhr68PgOfpdRXP03meTlTTDRkypMT/KU6ePAmJRIIrV65UuN+a+OHZH3/8IY6R06ZNg5WVVbHtHjx4AFVVVRw8eBAAkJiYWGM/IKB3xyR6DaKpqYlly5bh2bNnyg6lREZGRmjQoIGyw1CKnJwcZYdQ6+jo6KBRo0aV3m+DBg0gk8mgpqYGGxsbWFtbY+vWrUXa3b9/H8eOHYOnpycAQF9fHzKZrNLjIappChOgr08//vijUmPiGFo1tLS00KRJk0rvVyqVQiaTQSqVwtjYGIMHDy52nM3KysLevXvFcVZHRwcymQyqqqqVHhNRTVc49t6+fRszZ85EQEAAvvnmm3fuV0NDAzKZrMwLa3ieThXB83QiqihPT0+Eh4fj77//LrJs27Zt6Nq1Kzp27KiEyCpfo0aNxDHS09MTN2/exJkzZ4q0Cw4ORpMmTTBo0CAAgEwmEz/0prqHSfQaxMHBATKZDIGBgaW2O3XqFD788ENoaWnBzMwM06dPR1ZWlrg8MTERgwcPhpaWFlq0aIGQkJAiV6+tWrUKHTp0gLa2NszMzPDZZ58hMzMTgPwrox4eHkhPTxevqAkICACgeBXcuHHjMHr0aIXYcnNz0bhxY+zYsQMAUFBQgMDAQLRo0QJaWlqwtrbGTz/9VOr+ZWdnY9asWXjvvfegra0NW1tbREVFlbrOgQMH0KVLF2hqaqJly5ZYtGiRwpU/aWlp+PTTT2FsbAxNTU20b98ehw8fLnNfFy9eDFdXV+jp6YlX9uzbtw/t2rWDVCqFubk5Vq5cqRBLSkoKhgwZIh7/Xbt2FYk3LS0NEydOhJGREfT09NCvXz9cvny5xP0r/ErR7t27YW9vL+7D8ePHFdodP34c3bt3h1QqhYmJCebOnSseB3d3dxw/fhxr164V9/X+/fsAgGvXrmHgwIHQ0dGBsbExxo8fjydPnoj99unTB9OnT8fnn38OQ0NDyGQy8TgVHisAGDZsGCQSifj8za+JXrhwAR999BEaN24MfX199O7dG5cuXSpxv8vL09MTe/bswYsXLxTmBwcHw8TEpEqvwCWqiQoToK9PDRs2LLH9w4cPMWrUKBgYGMDQ0BBDhw4Vx4dCW7duFcc+ExMTeHt7Ayj77//7779HixYtoKmpCUB+tcbQoUOho6MDPT09jBo1CsnJycXGdeLECairqyMpKUlhvo+PDz788MNSx/C3eS+RSCTYtGkTBg4cCC0tLbRs2bLIe9bVq1fRr18/aGlpoVGjRpg0aZL4/hkQEIDt27fjwIEDYjyF2yzrGBdewb5ixQqYmJigUaNGmDp1KnJzcwHIx+G//voLvr6+Yt9A0as0ExISMHToUBgbG0NHRwfdunXDH3/8Uep+l4enpyciIiLw4MEDhfmhoaHIy8uDi4vLO2+DqLYrHHubN2+OKVOmwMHBQbwy7dmzZ3B1dUXDhg3RoEEDDBw4ELdv3xbX/euvvzBkyBA0bNgQ2traaNeuHX799VcAiuVceJ7+v33lebocz9OJqLr861//gpGREYKDgxXmZ2ZmIjQ0VPxQrKyx+HUljVHlOactT+6romN6cTp16oQuXboU+UBQEAQEBwfDzc0NampqFeqTaicm0WsQVVVVLFmyBOvXry/2kz1APpA4OTlhxIgRuHLlCvbs2YNTp06JyQwAcHV1xePHjxEVFYV9+/Zh8+bNSElJUehHRUUF69atw/Xr17F9+3ZERkbi888/ByD/yuiaNWugp6cnXsE4a9asIrG4uLjg0KFDYvIAAMLCwvDixQsMGzYMABAYGIgdO3YgKCgI169fh6+vLz755JMiJ5Wv8/b2RnR0NHbv3o0rV65g5MiRcHJyUvhH43UnT56Eq6srZsyYgT///BPfffcdgoOD8fXXXwOQ/4MwcOBAnD59Gj/88AP+/PNPLF26FKqqqmXu64oVK2BtbY3Y2FjMnz8fMTExGDVqFMaMGYOrV68iICAA8+fPV3gTcXd3x8OHD3Hs2DH89NNP+Pbbb4sc/5EjRyIlJQW//fYbYmJi0KVLF/Tv3x+pqaklHhcAmD17NmbOnInY2FjY2dlhyJAhePr0KQDg0aNHGDRoELp164bLly9j06ZN2LJlC/7zn/8AkH9F0s7OTvyKZWJiIszMzJCWloZ+/fqhc+fOuHjxIo4ePYrk5GSMGjVKYdvbt2+HtrY2zp07h+XLl+Orr75CeHg4APlJNyD/9DkxMVF8/qbnz5/Dzc0Np06dwtmzZ9GmTRsMGjQIz58/L3W/y+Li4oLs7GyFf/wEQcD27dvh7u7OKyKJSpGbmwtHR0fo6uri5MmTOH36NHR0dODk5CRe2bdp0yZMnToVkyZNwtWrV3Hw4EG0bt0aQOl//3fu3MG+ffvw888/Iy4uDgUFBRg6dChSU1Nx/PhxhIeH4+7du0USPYV69eqFli1bYufOnQrx7tq1CxMmTCh1DK/oe0mh+fPnY8SIEbh8+TJcXFwwZswY3LhxA4D8qmtHR0c0bNgQFy5cQGhoKP744w/xPXjWrFkYNWqUwjcB7O3ty3WMAeDYsWNISEjAsWPHsH37dgQHB4vvLz///DOaNm2Kr776Suy7OJmZmRg0aBAiIiIQGxsLJycnDBkypEjyu6IGDRoEY2PjIv80bdu2DcOHD6835RaIKkJLS0v8G3d3d8fFixdx8OBBREdHQxAEDBo0SPygbOrUqcjOzsaJEydw9epVLFu2DDo6OkX65Hk6z9N5nk5EyqKmpgZXV1cEBwdDEARxfmhoKPLz8zF27NhyjcWvK2mMKs85bXlyX287pr/J09MTe/fuVbiANSoqCvfu3cOECRMq1BfVYgLVCG5ubsLQoUMFQRCEHj16CBMmTBAEQRB++eUX4fWXydPTU5g0aZLCuidPnhRUVFSEly9fCjdu3BAACBcuXBCX3759WwAgrF69usTth4aGCo0aNRKfb9u2TdDX1y/Srnnz5mI/ubm5QuPGjYUdO3aIy8eOHSuMHj1aEARBePXqldCgQQPhzJkzCn14enoKY8eOLTaOv/76S1BVVRUePXqkML9///6Cv79/sbH1799fWLJkiUL7nTt3CiYmJoIgCEJYWJigoqIixMfHF7vN0vbV2dlZYd64ceOEjz76SGHe7NmzhbZt2wqCIAjx8fECAOH8+fPi8sLXpPC4nTx5UtDT0xNevXql0E+rVq2E7777rtgY7927JwAQli5dKs7Lzc0VmjZtKixbtkwQBEH44osvBAsLC6GgoEBss3HjRkFHR0fIz88XBEEQevfuLcyYMUOh78WLFwsDBgxQmPfw4UMBgHjMevfuLfTs2VOhTbdu3YQ5c+aIzwEIv/zyi0KbhQsXCtbW1sXukyAIQn5+vqCrqyscOnSo1H5eV9w+CIIgjBkzRujdu7f4PCIiQgAg3L59u0jbsrZBVJu5ubkJqqqqgra2tsL09ddfi21e/xvYuXNnkbEjOztb0NLSEsLCwgRBEARTU1Nh3rx5JW6zpL9/dXV1ISUlRZz3+++/C6qqqsKDBw/EedevX1cYN98cN5YtWyZYWVmJz/ft2yfo6OgImZmZgiAUP4aX572kpP2YPHmywjxbW1thypQpgiAIwubNm4WGDRuK2xYEQThy5IigoqIiJCUlCYKg+H5eqDzH2M3NTWjevLmQl5cnthk5cqT4nioIiu/BhUp6D3tdu3bthPXr15faz+uK2wdBEIS5c+cKLVq0EPfjzp07gkQiEf74448ibcvaBlFd8/rfTUFBgRAeHi5IpVJh1qxZwq1btwQAwunTp8X2T548EbS0tIS9e/cKgiAIHTp0EAICAort+9ixYwIA4dmzZ4Ig8Dy9cF95ns7zdCKqfoXj5rFjx8R5H374ofDJJ58IglD2WCwIRc8Ty/t3//o5bXlyX+8ypsfGxirMf/bsmaCpqSls27ZNnDd+/Pgi468glO/8nGonXoleAy1btgzbt28Xr3x73eXLlxEcHAwdHR1xcnR0REFBAe7du4f4+HioqamJN/gCgNatWxf5Gv8ff/yB/v3747333oOuri7Gjx+Pp0+fFvmaXWnU1NQwatQo8WuQWVlZOHDggPiV7jt37uDFixf46KOPFOLdsWMHEhISiu3z6tWryM/Px/vvv6+wzvHjx0tc5/Lly/jqq68U2hdexfHixQvExcWhadOmeP/998u9b4W6du2q8PzGjRv44IMPFOZ98MEHuH37NvLz83Hjxg2x/l8hS0tLhSv0Ll++jMzMTDRq1Egh5nv37pW4j4Xs7OzEx2pqaujatav4e3Ljxg3Y2dkp1Mv84IMPkJmZWeI3GwrjOXbsmEIslpaWAKAQz5u1zUxMTIp8yluW5ORkeHl5oU2bNtDX14eenh4yMzPf+QpJAJgwYQJOnDghxrx161b07t1bvFqWqD7p27cv4uLiFKbJkycX2/by5cu4c+cOdHV1xTHA0NAQr169QkJCAlJSUvD48WP079+/wnE0b94cRkZG4vMbN27AzMwMZmZm4ry2bdvCwMCg2Pc8QH7V4J07d8SbkgUHB2PUqFHQ1tYucbtv815S6PVxtvD56+OstbW1wrY/+OADFBQUID4+vsQ+yzrGhdq1a6dwRd7bjLOZmZmYNWsWrKysYGBgAB0dHdy4caPSxtl79+7h2LFjAORXDJmbm6Nfv37v3DdRXXD48GHo6OhAU1MTAwcOxOjRoxEQECCeH9ra2optGzVqBAsLC3F8mT59Ov7zn//ggw8+wMKFC9/qxmyv43m6HM/Ty4/n6URUHpaWlrC3txdLm9y5cwcnT54US7mUNRaXV1nntOXJfb3LmP4mAwMDDB8+XNzvjIwM7Nu3T9xvqh9YtKcG6tWrFxwdHeHv7w93d3eFZZmZmfj0008xffr0Ius1a9YMt27dKrP/+/fv41//+hemTJmCr7/+GoaGhjh16hQ8PT2Rk5NToRsSubi4oHfv3khJSUF4eDi0tLTEunaFXx89cuQI3nvvPYX1pFJpsf1lZmZCVVUVMTExRb7aV9xXWgvXWbRokXhn99dpampCS0ur3PvzptKSNG8rMzMTJiYmxdaPVMbX4TMzMzFkyBAsW7asyDITExPxsbq6usIyiUSCgoKCCm3Lzc0NT58+xdq1a9G8eXNIpVLY2dlVys2g+vfvj2bNmiE4OBizZ8/Gzz//jO++++6d+yWqjbS1tcv9j2lmZiZsbGyKrQtrZGQEFZW3/7y9MsbQJk2aYMiQIdi2bRtatGiB3377rcz6u2/zXlKVyjrGhSpjnJ01axbCw8OxYsUKtG7dGlpaWvj3v/9dKeNsmzZt8OGHH2Lbtm3o06cPduzYAS8vrzJvdkhUX/Tt2xebNm2ChoYGTE1NK1QfdeLEiXB0dMSRI0fw+++/IzAwECtXrsS0adPeOh6ep1ccz9N5nk5EZfP09MS0adOwceNGbNu2Da1atULv3r0rdRuVcU5b2WO6p6cn+vfvjzt37uDYsWNQVVXFyJEjK9wP1V5MotdQS5cuRadOnWBhYaEwv0uXLvjzzz9LTI5YWFggLy8PsbGx4lUWd+7cwbNnz8Q2MTExKCgowMqVK8XkyN69exX60dDQKNenhPb29jAzM8OePXvw22+/YeTIkeJJXNu2bSGVSvHgwYNyD6idO3dGfn4+UlJS8OGHH5ZrnS5duiA+Pr7EY9KxY0f8/fffuHXrVrFXuZR3XwHAysoKp0+fVph3+vRpvP/++1BVVYWlpSXy8vIQExODbt26AZB/QpqWlqYQb1JSEtTU1MSbZpTX2bNn0atXLwAQt1NYi9fKygr79u2DIAhiQuP06dPQ1dVF06ZNS9zXLl26YN++fTA3N3+nm2Goq6uXeRxPnz6Nb7/9Vrxz9cOHDxVujPQuVFRU4OHhgS1btuC9996DhoYG/v3vf1dK30R1WZcuXbBnzx40adIEenp6xbYxNzdHREQE+vbtW+zy8vz9A/Jx6uHDh3j48KF4Nfqff/6JtLQ0tG3btsT1Jk6ciLFjx6Jp06Zo1aqVwtUtxY1rb/NeUujs2bNwdXVVeN65c2cx/uDgYGRlZYnJm9OnT0NFRUV8vy5pnC3rGJdHed6vTp8+DXd3d7HmcWZmZpGbxL4LT09PTJkyBR9//DEePXpU5MN+ovqspA8wrayskJeXh3PnzsHe3h4A8PTpU8THxyuMfWZmZpg8eTImT54Mf39//Pe//y02ic7z9OLxPL1kPE8noso0atQozJgxAyEhIdixYwemTJkijm1ljcXFKW6MKuuctjy5r3cZ04vTt29ftGjRAtu2bcOxY8cwZsyYKvlAl2oulnOpoTp06AAXFxesW7dOYf6cOXNw5swZeHt7Iy4uDrdv38aBAwfEEzRLS0s4ODhg0qRJOH/+PGJjYzFp0iRoaWmJg1rr1q2Rm5uL9evX4+7du9i5cyeCgoIUtmNubo7MzExERETgyZMnpZZ5GTduHIKCghAeHi5+RRQAdHV1MWvWLPj6+mL79u1ISEjApUuXsH79emzfvr3Yvt5//324uLjA1dUVP//8M+7du4fz588jMDAQR44cKXadBQsWYMeOHVi0aBGuX7+OGzduYPfu3fjyyy8BAL1790avXr0wYsQIhIeH4969e/jtt99w9OjRCu/rzJkzERERgcWLF+PWrVvYvn07NmzYIN7kyMLCAk5OTvj0009x7tw5xMTEYOLEiQpX2Tg4OMDOzg7Ozs74/fffcf/+fZw5cwbz5s3DxYsXS9w2AGzcuBG//PILbt68ialTp+LZs2fiTSw+++wzPHz4ENOmTcPNmzdx4MABLFy4EH5+fuKHJebm5jh37hzu37+PJ0+eoKCgAFOnTkVqairGjh2LCxcuICEhAWFhYfDw8KjQ160Kk2xJSUkKb1yva9OmDXbu3IkbN27g3LlzcHFxeacrkN7k4eGBR48e4YsvvsDYsWMrtW+i2iQ7OxtJSUkKU0n/CLu4uKBx48YYOnQoTp48iXv37iEqKgrTp08Xv2IeEBCAlStXYt26dbh9+7Y4lhcqz98/IB//Ct/fLl26hPPnz8PV1RW9e/cu8rX81zk6OkJPTw//+c9/4OHhobCsuDH8bd5LCoWGhmLr1q24desWFi5ciPPnz4vvsS4uLtDU1ISbmxuuXbuGY8eOYdq0aRg/fjyMjY3FeK5cuYL4+Hg8efIEubm55TrG5WFubo4TJ07g0aNHJb6ebdq0EW/kevnyZYwbN67CVyOWpjAJ9+mnn2LAgAEKpXmIqHht2rTB0KFD4eXlhVOnTuHy5cv45JNP8N5772Ho0KEAAB8fH4SFheHevXu4dOkSjh07Bisrq2L743l68XieXjKepxNRZdLR0cHo0aPh7++PxMREhYsqyhqLi1PcGFXWOW15cl/vMqYXRyKRYMKECdi0aROio6NZyqU+UnZRdpIr7iZe9+7dEzQ0NIQ3X6bz588LH330kaCjoyNoa2sLHTt2VLhh3OPHj4WBAwcKUqlUaN68uRASEiI0adJECAoKEtusWrVKMDExEbS0tARHR0dhx44dCjcsEgRBmDx5stCoUSMBgLBw4UJBEIq/Udiff/4pABCaN2+ucLMcQZDfWGnNmjWChYWFoK6uLhgZGQmOjo7C8ePHSzwWOTk5woIFCwRzc3NBXV1dMDExEYYNGyZcuXJFEITib9Jw9OhRwd7eXtDS0hL09PSE7t27C5s3bxaXP336VPDw8BAaNWokaGpqCu3btxcOHz5c4X0VBEH46aefhLZt2wrq6upCs2bNhG+++UZheWJiojB48GBBKpUKzZo1E3bs2FGkr4yMDGHatGmCqampoK6uLpiZmQkuLi4KN9t7XeHNLUJCQoTu3bsLGhoaQtu2bYXIyEiFdlFRUUK3bt0EDQ0NQSaTCXPmzBFyc3PF5fHx8UKPHj0ELS0tAYBw7949QRAE4datW8KwYcMEAwMDQUtLS7C0tBR8fHzE17O4mwQNHTpUcHNzE58fPHhQaN26taCmpiY0b95cEISiNyy6dOmS0LVrV0FTU1No06aNEBoaWuGbipR0w6JCAwYMKHLTqDeVtQ2i2szNzU0AUGSysLAQ27z5N5CYmCi4uroKjRs3FqRSqdCyZUvBy8tLSE9PF9sEBQWJY7mJiYkwbdo0cVl5/v4L/fXXX8LHH38saGtrC7q6usLIkSPFm3KWtt78+fMFVVVV4fHjx0WWFTeGl/VeUhwAwsaNG4WPPvpIkEqlgrm5ubBnzx6FNleuXBH69u0raGpqCoaGhoKXl5fw/PlzcXlKSor4Ho3XbrpU1jEu7jxgxowZCjdii46OFjp27ChIpVLx3ODN98R79+4Jffv2FbS0tAQzMzNhw4YNRcbNt72xaKFJkyYJAMQbIhaHNxal+qasv5vU1FRh/Pjxgr6+vnj+fevWLXG5t7e30KpVK0EqlQpGRkbC+PHjhSdPngiCUPTGooLA83Sep/M8nYiU68yZMwIAYdCgQUWWlTUWvzm2FDdGleectjy5r7cd09+8sWihhw8fCioqKkK7du1KPDa8sWjdJREEQaj6VD0p099//w0zMzPxZqJU+9y/fx8tWrRAbGwsOnXqpOxwlKpPnz7o1KkT1qxZ89Z9SCQS/PLLL3B2dq60uIioanl6euKff/7BwYMHq2wbHBvk3N3dkZaWhv379791H+bm5vDx8YGPj0+lxUVEVBPxPP1/eJ5ORMpUGbmvyhjTg4OD4ePjo1AujOoGlnOpgyIjI3Hw4EHcu3cPZ86cwZgxY2Bubi7W6COq7b799lvo6Ojg6tWrFVpv8uTJSrmpIBG9vfT0dJw6dQohISHvdIM9qpjDhw9DR0cHhw8frtB6S5YsgY6ODh48eFBFkRERUU3G83Qiqi5Vmfuyt7cX72NSETo6Opg8efI7b59qJl6JXgeFhYVh5syZuHv3LnR1dWFvb481a9agefPmyg6N3hKvcPmfR48e4eXLlwCAZs2aQUNDo9zrpqSkICMjAwBgYmLCm4AQ1QJ9+vTB+fPn8emnn2L16tVVui1e/Sb3LmNlamoqUlNTAQBGRkbQ19evkhiJiGoKnqf/D8/Tiag6VUXuKy8vT7yBqVQqrfD9f+7cuQMAUFVVRYsWLd46DqqZmEQnIiIiIiIiIiIiIipBtZRzOXHiBIYMGQJTU1NIJJJy1diMiopCly5dIJVK0bp1awQHBxdps3HjRpibm0NTUxO2trY4f/585QdPRERERERERERERPVWtSTRs7KyYG1tjY0bN5ar/b179zB48GD07dsXcXFx8PHxwcSJExEWFia22bNnD/z8/LBw4UJcunQJ1tbWcHR0REpKSlXtBhERERERERERERHVM9VezqU89UbnzJmDI0eO4Nq1a+K8MWPGIC0tDUePHgUA2Nraolu3btiwYQMAoKCgAGZmZpg2bRrmzp1bpftARERERERERERERPWDmrIDKE50dDQcHBwU5jk6OsLHxwcAkJOTg5iYGPj7+4vLVVRU4ODggOjo6BL7zc7ORnZ2tvi8oKAAqampaNSoESQSSeXuBBFROQiCgOfPn8PU1BQqKtXy5aA6r6CgAI8fP4auri7HdiJSGo7vlYtjOxHVBBzbKxfHdiKqCco7ttfIJHpSUhKMjY0V5hkbGyMjIwMvX77Es2fPkJ+fX2ybmzdvlthvYGAgFi1aVCUxExG9i4cPH6Jp06bKDqNOePz4cYXvok5EVFU4vlcOju1EVJNwbK8cHNuJqCYpa2yvkUn0quLv7w8/Pz/xeXp6Opo1a4aHDx9CT09PiZERUX2VkZEBMzMz6OrqKjuUOqPwWHJsr7+SkpKwbds2eHh4QCaT1bvtU83A8b1ycWwnopqAY3vlKjyO8fHxPGciIqUp79heI5PoMpkMycnJCvOSk5Ohp6cHLS0tqKqqQlVVtdg2pQ28UqkUUqm0yHw9PT2ejBORUvHri5Wn8FhybK+/srKyoKmpCV1dXaX8Dih7+1SzcHyvHBzbiagm4dheOQqPI8+ZiKgmKGtsr5FFvOzs7BAREaEwLzw8HHZ2dgAADQ0N2NjYKLQpKChARESE2IaIiIiIiIiIiIiI6F1VSxI9MzMTcXFxiIuLAwDcu3cPcXFxePDgAQB5mRVXV1ex/eTJk3H37l18/vnnuHnzJr799lvs3bsXvr6+Yhs/Pz/897//xfbt23Hjxg1MmTIFWVlZ8PDwqI5dIiIiIiIiIiIiIqJ6oFrKuVy8eBF9+/YVnxfWJXdzc0NwcDASExPFhDoAtGjRAkeOHIGvry/Wrl2Lpk2b4vvvv4ejo6PYZvTo0fjnn3+wYMECJCUloVOnTjh69GiRm40SEREREREREREREb2takmi9+nTB4IglLg8ODi42HViY2NL7dfb2xve3t7vGh4RERERERERERERUbFqZE10IiIiIiIiIiKq+xo0aKDsEIiIysQkOhERERERERERKYVEIlF2CEREZWISnYiIiIiIiIiIiIioBEyiExERERERERGRUmRnZys7BKqpnjwBLl1SdhRUm+XlASdOALm579wVk+hERERERERERKQUeXl5yg6BaqIXLwBbW6BrV+DuXWVHQ7WVhwfQuzewY8c7d8UkOhEREREREREREdUcgYHy5LkgAI8fKzsaqo2iooAffpA//vvvd+6OSXQiIiIiIiIiIiKqGe7cAZYvV3YUVJvl5gLe3pXaJZPoREREREREREREpHyCAEyfDuTkKDsSqs02bACuX6/ULplEJyIiIiIiIiIiIuU7eBD47TdAXR3Q15fPEwTlxkS1S2IisHCh/LGRkfxnJfwOMYlOREREREREREREyvXyJeDjI388cyZgbKzUcKiWmj0beP4c6N4dGDGi0rplEp2IiIiIiIiIiIiUKzAQuH8faNoU+PJLZUdDtdHx48CuXYBEAmzcCKhUXuqbSXQiIiIiIiIiIlKKBg0aKDsEqgni44Fly+SPV60CtLWVGw/VPjk5wJQp8seTJgFdu1Zq90yiExERERERERGRUkgkEmWHQMomCPLkZ04OMHAg8O9/F11OVJYVK4AbN4AmTeTfangda6ITERERERERERFRrfXDD8CxY4CmJrBhg7wUB/C/n0RlSUgAFi+WP161CmjYUP64En+HmEQnIiIiIiIiIiKlyM7OVnYIpEypqfKbiALAggVAy5bKjYdqH0EApk4FXr0C+vcHxo2rks0wiU5EREREREREREqRl5en7BBImebOBf75B2jb9n/JdKKKCA0FwsIADQ3g22+r7BsMTKITERERERERERFR9TpzBvjvf+WPg4LkSdDXFSZDWROdSpKeDsyYIX/8xRfA++8X34410YmIiIiIiIiIiKhWyc0FPv1U/njCBODDD5UbD9VO8+YBSUny5PncuUWXsyY6ERERERERERER1Upr1gDXrgGNGgHLlys7GqqNLlyQl28BgE2bAKm0SjfHJDoRERERERERERFVj7/+AgIC5I9XrJAn0okqIi9P/k0GQQA++QTo16/KN8kkOhFRPZOamgoXFxfo6enBwMAAnp6eyMzMLHWdzZs3o0+fPtDT04NEIkFaWlqx7Y4cOQJbW1toaWmhYcOGcHZ2FpcFBwdDIpEUO6WkpAAAoqKiil2elJRUWbtPREREREREyiIIgLc38OIF0Ls34OZWclvWRKeSbNwIxMYCBgbyD2LKUgm/Q2rv3AMREdUqLi4uSExMRHh4OHJzc+Hh4YFJkyYhJCSkxHVevHgBJycnODk5wd/fv9g2+/btg5eXF5YsWYJ+/fohLy8P165dE5ePHj0aTk5OCuu4u7vj1atXaNKkicL8+Ph46Onpic/fXE5ERERERES10C+/AIcPA+rq8hIclVizmuqJhw+BL7+UP162DDA2LrltbayJvnHjRpibm0NTUxO2trY4f/58iW379OlT7JWIgwcPFtu4u7sXWf5mcoaIiBTduHEDR48exffffw9bW1v07NkT69evx+7du/H48eMS1/Px8cHcuXPRo0ePYpfn5eVhxowZ+OabbzB58mS8//77aNu2LUaNGiW20dLSgkwmEydVVVVERkbC09OzSH9NmjRRaKuiwi9OERERERHVRVpaWsoOgarLs2fA1Knyx3PmAFZWyo2Hah9BAKZMATIzAXt7YOLEatt0tWQl9uzZAz8/PyxcuBCXLl2CtbU1HB0dxa/vv+nnn39GYmKiOF27dg2qqqoYOXKkQjsnJyeFdj/++GN17A4RUa0VHR0NAwMDdO3aVZzn4OAAFRUVnDt37q37vXTpEh49egQVFRV07twZJiYmGDhwoMKV6G/asWMHGjRogH//+99FlnXq1AkmJib46KOPcPr06VK3nZ2djYyMDIWJiIiIiIhqB14wU4/Mng0kJQEWFsC8ecqOhmqj3buBI0cADQ3gv/8FqnH8qJYtrVq1Cl5eXvDw8EDbtm0RFBSEBg0aYOvWrcW2NzQ0VLgCMTw8HA0aNCiSRJdKpQrtGjZsWGocTLQQUX2XlJRUpDSKmpoaDA0N36nu+N27dwEAAQEB+PLLL3H48GE0bNgQffr0QWpqarHrbNmyBePGjVO48sTExARBQUHYt28f9u3bBzMzM/Tp0weXLl0qcduBgYHQ19cXJzMzs7feDyIiIiIiIqoCkZHAli3yx99/D2hqlr0Oa6LT6548AaZPlz+eNw9o27b861bC71CVJ9FzcnIQExMDBweH/21URQUODg6Ijo4uVx9btmzBmDFjoK2trTA/KioKTZo0gYWFBaZMmYKnT5+W2g8TLURUV82dO7fEm3YWTjdv3qyy7RcUFAAA5s2bhxEjRsDGxgbbtm2DRCJBaGhokfbR0dG4ceNGkVIuFhYW+PTTT2FjYwN7e3ts3boV9vb2WL16dYnb9vf3R3p6ujg9fPiwcneOiIiIiIiqTE5OjrJDoKr24gUwaZL88WefAT17Kjceqp38/OSJ9Pbtgblzy7dOJdZEr/Ibiz558gT5+fkwfqPIu7GxcbkSOufPn8e1a9ewpfDTqv/n5OSE4cOHo0WLFkhISMAXX3yBgQMHIjo6GqqqqsX25e/vDz8/P/F5RkYGE+lEVCfMnDkT7u7upbZp2bIlZDJZkVJaeXl5SE1NhUwme+vtm5iYAADavvZJsFQqRcuWLfHgwYMi7b///nt06tQJNjY2ZfbdvXt3nDp1qsTlUqkUUqn0LaImIiIiIiJly83NVXYIVNUCAoCEBKBpUyAwUNnRUG109Ciwc6c8Kf799/JyLtWsxhee2rJlCzp06IDu3bsrzB8zZgw+/vhjdOjQAc7Ozjh8+DAuXLiAqKioEvuSSqXQ09NTmIiI6gIjIyNYWlqWOmloaMDOzg5paWmIiYkR142MjERBQQFsbW3fevs2NjaQSqWIj48X5+Xm5uL+/fto3ry5QtvMzEzs3bu32BuKFicuLk5M0hMRUdXatGkTOnbsKJ4r29nZ4bfffiuxfW5uLr766iu0atUKmpqasLa2xtGjR4u027hxI8zNzaGpqQlbW1ucP3++KneDiIhew7GdlComBli5Uv540yaAuTiqqMxM4NNP5Y9nzADeIXfxLqo8id64cWOoqqoiOTlZYX5ycnKZVz1mZWVh9+7d5Uq0tGzZEo0bN8adO3feKV4iorrMysoKTk5O8PLywvnz53H69Gl4e3tjzJgxMDU1BQA8evQIlpaWCifBSUlJiIuLE8fYq1evIi4uTqx3rqenh8mTJ2PhwoX4/fffER8fjylTpgBAkftZ7NmzB3l5efjkk0+KxLdmzRocOHAAd+7cwbVr1+Dj44PIyEhMLbyDOxERVammTZti6dKliImJwcWLF9GvXz8MHToU169fL7b9l19+ie+++w7r16/Hn3/+icmTJ2PYsGGIjY0V2+zZswd+fn5YuHAhLl26BGtrazg6Ohb5ZhQREVUNju2kNLm5gKcnUFAAjBkD/OtfFVufNdEJkNc/f/AAaN4cWLz47fqoDTXRNTQ0YGNjg4iICHFeQUEBIiIiYGdnV+q6oaGhyM7OLjbR8qa///4bT58+5dWKRERl2LVrFywtLdG/f38MGjQIPXv2xObNm8Xlubm5iI+Px4sXL8R5QUFB6Ny5M7y8vAAAvXr1QufOnXHw4EGxzTfffIMxY8Zg/Pjx6NatG/766y9ERkYWuenzli1bMHz4cBgYGBSJLScnBzNnzkSHDh3Qu3dvXL58GX/88Qf69+9fyUeBiIiKM2TIEAwaNAht2rTB+++/j6+//ho6Ojo4e/Zsse137tyJL774AoMGDULLli0xZcoUDBo0CCsLrzgDsGrVKnh5ecHDwwNt27ZFUFAQGjRogK1bt1bXbhER1Wsc20lpVq4ELl8GDA2BtWuVHQ3VRmfPAuvXyx9v3gzo6FRs/dpUEx0A/Pz84Obmhq5du6J79+5Ys2YNsrKy4OHhAQBwdXXFe++9h8A36iJt2bIFzs7OaNSokcL8zMxMLFq0CCNGjIBMJkNCQgI+//xztG7dGo6OjtWxS0REtZahoSFCQkJKXG5ubg7hjU9pAwICEBAQUGq/6urqWLFiBVasWFFquzNnzpS47PPPP8fnn39e6vpERFQ98vPzERoaiqysrBIvfsnOzoampqbCPC0tLfFeFjk5OYiJiYG/v7+4XEVFBQ4ODoiOji5x29nZ2cjOzhafZ2RkvMuuEBHR/+PYTtXm1i15LXQAWLMGaNJEmdFQbZSTA0ycKL+K3NUVGDBAqeFUSxJ99OjR+Oeff7BgwQIkJSWhU6dOOHr0qHiz0QcPHkBFRfGi+Pj4eJw6dQq///57kf5UVVVx5coVbN++HWlpaTA1NcWAAQOwePFi3lyOiIiIiOgdXL16FXZ2dnj16hV0dHTwyy+/KNw4+nWOjo5YtWoVevXqhVatWiEiIgI///wz8vPzAQBPnjxBfn6+eN5fyNjYGDdv3iwxhsDAQCxatKjydoqIqJ7j2E7VqqAA8PICsrMBR0egHBUmiIoIDASuXweMjIBVq5QdTfUk0QHA29sb3t7exS4r7magFhYWRa6ELKSlpYWwsLDKDI+IiIiIiCA/D4+Li0N6ejp++uknuLm54fjx48UmW9auXQsvLy9YWlpCIpGgVatW8PDweOev8/v7+8PPz098npGRATMzs3fqk4ioPuPYTtXq22+BEycAbW0gKOjtS2qwJnr9dfky8J//yB+vWwe8UaWkwmpDTXQiIiIiIqo9NDQ00Lp1a9jY2CAwMBDW1tZYW0IdUyMjI+zfvx9ZWVn466+/cPPmTejo6KBly5YAgMaNG0NVVRXJyckK6yUnJ0Mmk5UYg1QqhZ6ensJERERvryaP7VpaWpW0l1QjJCQAc+bIHy9bBpibKzUcqoVycgB3dyAvDxg2DBg9+u37qsSa6EyiExERERFRiQoKChRq2BZHU1MT7733HvLy8rBv3z4MHToUgDxpY2Njg4iICIX+IiIiSqzFS0REVa8mje1vlvelWqygAJgwAXjxAujbF5gyRdkRUW20ZAkQFye/+nzTpkpNhL+LaivnQkRERERENZu/vz8GDhyIZs2a4fnz5wgJCUFUVJRYStHV1RXvvfceAgMDAQDnzp3Do0eP0KlTJzx69AgBAQEoKChQuEm0n58f3Nzc0LVrV3Tv3h1r1qxBVlYWPDw8lLKPRET1Dcd2qjYbNvyvjMuWLcC7fkBSQ5KnVI1iY4Gvv5Y/3rgReOPeC8rEJDoREREREQEAUlJS4OrqisTEROjr66Njx44ICwvDRx99BAB48OCBwhWDr169wpdffom7d+9CR0cHgwYNws6dO2FgYCC2GT16NP755x8sWLAASUlJ6NSpE44ePVrkhnRERFQ1avrYnpOT8877SDXA7dvA3LnyxytWAC1aVF7frIleP+TkAG5u8jIuI0YAo0ZVXt+V8DvEJDoREREREQEAtmzZUuryqKgohee9e/fGn3/+WWa/3t7e8Pb2fpfQiIjoLdX0sT03N/ed+yAly88HPDyAly+B/v2BTz9VdkRUGy1eDFy9CjRuLL85bWV8E4E10YmIiIiIiIiIiEjp1q0DTp8GdHTkZVxYhoUqKiYG+P+SUvj2W6BJE+XGUwwm0YmIiIiIiIiIiKji4uOBL76QP165EmjevPL6ZjK+fsjOlpdxyc+Xl3AZOVLZERWLSXQiIiIiIiIiIiKqmMIyLq9eAR99BHh5Vc12WBO9bvvqK+D6dcDISH5z2qpQCb9DTKITERERERERERFRxXzzDRAdDejqAt9/zyvHqeKio4GlS+WPN22SJ9IrE2uiExERERERERERkVLExgILFsgfr10LNGum3Hio9snMBMaPBwoKABcXYMQIZUdUKibRiYiIiIiIiIiIqHxevpQnPXNzgWHDAHf3qtkOr2yv23x9gYQEwMys6sq4VCIm0YmIiIiIiIiISCk0NTWVHQJV1Jw5wI0bgEwGbN5c9clu1kSvew4e/F8JoB07AAODqt0ea6ITEREREREREVFtpaqqquwQqCJ+/x1Yv17+eNs2oHFj5cZDtU9yMjBxovzxrFlAnz5Vty3WRCciIiIiIiIiIqJq8/Tp/0q3TJ0KODkpNRyqhQQB8PQE/vkHsLYGFi9WdkTlxiQ6EREREREREREpRU5OjrJDoPIQBGDyZCAxEbC0BJYvr/ptsiZ63bN5M3DkCCCVAj/8IP9ZSzCJTkRERERERERESpGbm6vsEKg8du4EfvoJUFOTJz8bNKi+bbMmet1w6xbg5yd/HBgItG9ffdtmTXQiIiIiIiIiIiKqMgkJgLe3/PGiRYCNjXLjodonJwdwcQFevAD69wdmzKie7bImOhEREREREREREVWpnBxgzBjg+XOgZ09gzpzq2zbLudQdX3wBXLwIGBoCwcGASu1LSde+iImIiIiIiIiIiKjqzZsnT342bAiEhACqqsqOiGqb334DVq6UP962DWjaVLnxvCUm0YmIiIiIiIiIiEjRb78BK1bIH2/bBpiZKScO1kSvvR4/Blxd5Y+nTQM+/lg5cbAmOhERVVRqaipcXFygp6cHAwMDeHp6IjMzs9R1Nm/ejD59+kBPTw8SiQRpaWkKy6OioiCRSIqdLly4ILa7cuUKPvzwQ2hqasLMzAzLi7mje2hoKCwtLaGpqYkOHTrg119/rZT9JiIiIiIionJ6M/k5dKhy46HaJz8fGD8eePIE6NQJKOb//yrHmuhERPS2XFxccP36dYSHh+Pw4cM4ceIEJk2aVOo6L168gJOTE7744otil9vb2yMxMVFhmjhxIlq0aIGuXbsCADIyMjBgwAA0b94cMTEx+OabbxAQEIDNmzeL/Zw5cwZjx46Fp6cnYmNj4ezsDGdnZ1y7dq3yDgARERERERGV7PXkp7W1cpKfAGui13ZLlwKRkYC2NrB7N6CpqeyI3km1JdE3btwIc3NzaGpqwtbWFufPny+xbXBwcJErGTXfONCCIGDBggUwMTGBlpYWHBwccPv27areDSKiWu3GjRs4evQovv/+e9ja2qJnz55Yv349du/ejcePH5e4no+PD+bOnYsePXoUu1xDQwMymUycGjVqhAMHDsDDwwOS/z/x2bVrF3JycrB161a0a9cOY8aMwfTp07Fq1Sqxn7Vr18LJyQmzZ8+GlZUVFi9ejC5dumDDhg2VeyCIiIiIiKhGeDPfQzXA68nPPXtqffKTlODUKWDhQvnjjRsBCwvlxlMJqiWJvmfPHvj5+WHhwoW4dOkSrK2t4ejoiJSUlBLX0dPTU7ii8a+//lJYvnz5cqxbtw5BQUE4d+4ctLW14ejoiFevXlX17hAR1VrR0dEwMDAQrw4HAAcHB6ioqODcuXOVtp2DBw/i6dOn8PDwUNh2r169oKGhIc5zdHREfHw8nj17JrZxcHBQ6MvR0RHR0dElbis7OxsZGRkKExERERER1Q6qvFFlzVITk5+siV67pKYC48bJv9HwySf/KwukTLWlJvqqVavg5eUFDw8PtG3bFkFBQWjQoAG2bt1a4joSiUThqkZjY2NxmSAIWLNmDb788ksMHToUHTt2xI4dO/D48WPs37+/xD6ZaCGi+i4pKQlNmjRRmKempgZDQ0MkJSVV2na2bNkCR0dHNH3trttJSUkKYzkA8XnhtktqU1psgYGB0NfXFyczZd3shoiIiIiIqDZLSQFGj5YnP11cakbyk2qXggJ54vzhQ6B1a+Dbb5Vblqc21UTPyclBTEyMwpWFKioqcHBwKPXKwszMTDRv3hxmZmYYOnQorl+/Li67d+8ekpKSFPrU19eHra1tqX0y0UJEddXcuXNLvLFn4XTz5s1qieXvv/9GWFgYPD09q2V7/v7+SE9PF6eHDx9Wy3aJiIiIiOjd5ebmKjsEAoC8PGDMGPkNRa2sgKAg5dckV/b2qeKWLAF++01eAuinnwBdXWVHVGnUqnoDT548QX5+frFXFpaU0LGwsMDWrVvRsWNHpKenY8WKFbC3t8f169fRtGlT8YrEil6t6O/vDz8/P/F5RkYGE+lEVCfMnDkT7u7upbZp2bIlZDJZkVJaeXl5SE1NhUwmq5RYtm3bhkaNGuHjjz9WmC+TyZCcnKwwr/B54bZLalNabFKpFFKptDJCJyIiIiKiapaTk6PsEAgAFiwAjh2T10Hftw/Q0VF2RFTbhIfLf48AYNMm+U1p65AqT6K/DTs7O9jZ2YnP7e3tYWVlhe+++w6LFy9+636ZaCGiusrIyAhGRkZltrOzs0NaWhpiYmJgY2MDAIiMjERBQQFsbW3fOQ5BELBt2za4urpCXV29yLbnzZuH3NxccVl4eDgsLCzQsGFDsU1ERAR8fHzE9cLDwxXeE4iIiIiIiKgSHToEBAbKH2/ZIr8SvSZhTfSa7+FDeR10QQAmTgTKuMiv2tWGmuiNGzeGqqpqha8sfJ26ujo6d+6MO3fuAPjfFYvv0icRUX1kZWUFJycneHl54fz58zh9+jS8vb0xZswYmJqaAgAePXoES0tLnD9/XlwvKSkJcXFx4jh89epVxMXFITU1VaH/yMhI3Lt3DxMnTiyy7XHjxkFDQwOenp64fv069uzZg7Vr1yp8Q2jGjBk4evQoVq5ciZs3byIgIAAXL16Et7d3VRwOIiIiIiKi+u3u3f/VPp82TV4TnagicnKAUaOAJ0+Azp2B9euVHdH/1Kaa6BoaGrCxsUFERIQ4r6CgABEREeW+sjA/Px9Xr16FiYkJAKBFixaQyWQKfWZkZODcuXO8WpGIqAy7du2CpaUl+vfvj0GDBqFnz57YvHmzuDw3Nxfx8fF48eKFOC8oKAidO3eGl5cXAKBXr17o3LkzDh48qND3li1bYG9vD0tLyyLb1dfXx++//4579+7BxsYGM2fOxIIFCzBp0iSxjb29PUJCQrB582ZYW1vjp59+wv79+9G+ffvKPgxERERERET126tXwL//DaSlAT16ACtWKDsiRayJXjvMmgWcPQsYGMjroGtqKjuiKlEt5Vz8/Pzg5uaGrl27onv37lizZg2ysrLg4eEBAHB1dcV7772HwP//6shXX32FHj16oHXr1khLS8M333yDv/76S7yyUSKRwMfHB//5z3/Qpk0btGjRAvPnz4epqSmcnZ2rY5eIiGotQ0NDhISElLjc3NwcwhtfdQoICEBAQECZfZfWLwB07NgRJ0+eLLXNyJEjMXLkyDK3RURERERERG9JEABvbyA2FmjcGAgNBTQ0lB0V1Ta7d//vyvOdO4GWLZUbTxWqliT66NGj8c8//2DBggVISkpCp06dcPToUfHGoA8ePICKyv8uin/27Bm8vLyQlJSEhg0bwsbGBmfOnEHbtm3FNp9//jmysrIwadIkpKWloWfPnjh69Cg06+inHURERERERERERJVi0yZ5/XOJBAgJAZo2VXZEJWNN9JopNhaYMEH+2N8f+Ne/lBtPaSrhd6jabizq7e1dYk3bqKgoheerV6/G6tWrS+1PIpHgq6++wldffVVZIRIREREREREREdVtUVHAjBnyx8uW31U/FAAAYmpJREFUAR99pNRwSsRyLjVXSgowdCjw8iXg5AQsXqzsiIpXm2qiExERERERERERFUcqlSo7hPrl/n15HfS8PGDcOHk9a6KKyMmR/w49fAi8/z7w44+Aqqqyo6pyTKITEREREREREZFSqKlVW5EEysqSXz389CnQpQvw/fe82psqbsYM4ORJQE8POHBAfkPReoBJdCIiIiIiIiIiorpMEAB3d+DKFaBJE2D/fkBLS9lRlQ9rotccQUHyqbCWvqWlsiMqn0r4HWISnYiIiIiIiIiIlCI3N1fZIdQPS5YAP/0EqKsD+/YBZmbKjqhsvEq+Zjl5Epg2Tf54yRJg8GDlxlMerIlORERERERERES1XU5OjrJDqPv27QPmz5c/3rgR6NlTufFQ7XP3LjB8uLyW/ujRwJw5yo6o2jGJTkREREREREREVBedOwd88om8nMXUqYCXl7Ijotrm2TNg0CDgyRN5Lf2tW+vltwSYRCciIiIiIiIiIqpr7t8HPv4YePVKngRds0bZEb0d1kRXnpwc+RXo8fHyEkCHDgENGig7qopjTXQiIiIiIiIiIiJSkJYmr1mdkgJYWwO7dwNqasqOqmLq4dXONYogAJ9+CkRFAbq6wOHDgKmpsqOqGNZEJyIiIiIiIiIioiJyc4GRI4E//5QnPQ8flidBiSpiyRIgOBhQVQX27gU6dlR2RErFJDoREREREREREVFdIAjAlCnAH38A2tryBHrTpsqOimqbH38EvvxS/nj9esDJSbnx1ABMohMREREREREREdUFy5cDW7YAKiryEi6dOys7orenqSn/+fy5cuOob06fBtzd5Y9nzpR/KFNbVeLvEJPoRERERERERESkFFKpVNkh1B179wJz58ofr10L/Otfyo3nXbVpI/9586Zy46hPbt8Ghg6V31B02DD5hzK1WeHv0I0b79wVk+hERERERERERKQUarXtZpc11YkTwPjx8sfTpwPe3sqNpzIUXkUfEaHcOOqLlBR52ZanT4GuXYEffpB/o6E269JF/vPiRfnNdt9BLT8SRERERERERERE9diNG4pXD69apeyIKsfQoYBEApw5A5w/r+xo6rasLGDIEODuXaBFC3kt/QYNlB3Vu3v/faBtW/nNdr/77p26YhKdiIiIiIiIiIiUIi8vT9kh1G6JicDAgfKrbO3sgF27AFVVZUdVOd57D/jkE/njTz6R7ytVvrw8YOxY+QcVhobAb78BxsbKjqryzJkj/7lwofwbG2+JSXQiIiIiIiIiIlKK7OxsZYdQez1/DgweDPz1l7z288GDgJaWsqOqXCtWAM2ayWt129gAO3bIr7inyiEI8vI/hw7Jb8J56BBgYaHsqCrXJ5/Ir7LPzgYcHIAFC4DU1Ap3wyQ6ERERERERERFRbZKbC4waBcTGAkZG8quHGzdWdlSVr0kTeU10Kyv5lehubvIr1N3cgP/+F7hwASgoUHaUtdfy5cCmTfKyObt2Afb2yo6o8qmoAD/+CPz73/K/m8WLARMTeWL9m2+AkyfL100Vh0lERERERLXEpk2b0LFjR+jp6UFPTw92dnb47bffSl1nzZo1sLCwgJaWFszMzODr64tXr16JywMCAiCRSBQmS0vLqt4VIiL6fxzb6yBBACZPBo4elV95fvgw0KqVsqOqOq1bAzExQGAgIJMBT57Ir0ifNAno3l1+LKjiQkKAuXPlj1evBoYPV248VUlbG9i7F9i3D7C2ln+b4fBh4PPPgX/9q1xd8BbIREREREQEAGjatCmWLl2KNm3aQBAEbN++HUOHDkVsbCzatWtXpH1ISAjmzp2LrVu3wt7eHrdu3YK7uzskEglWvXZTs3bt2uGPP/4Qn6up8d8QIqLqwrG9DlqyBNi6VX6F7Z498kRyXaelJU/4zpoFREXJp6+/li+7elWZkdVOJ04A7u7yx35+wIwZSg2nWkgk8g8Khg8HLl8GwsOBU6fkj+/fL3N1jnBERERERAQAGPJ/7d15XFT1/sfx9wACboCGgF41txItF9Lih1l51Ru4W2ZpGGiKV5PKpQXLLb25lJVpKplrpdf0tpl1MVLJyjUUU1NzTUvQlACFRIXz+2OukxObsswCr+fjcR7MnPM953zOnOHL8Dnf+ZwePayev/zyy5o/f762bt2ab6Jl8+bNuvvuu/Xoo49Kkho0aKD+/ftr27ZtVu3c3NwUEBBQdoEDAApE317OfPyxNG6c+fFbb5lLUlQkbm7mutadO5svHvTqZe+InM+xY1KfPubSJg89ZC5pUtG0amWennlGysiQvL2LXIVyLgBQwaSmpio8PFxeXl7y8fHR4MGDdeHChULXWbBggTp06CAvLy+ZTCalpaVZLU9ISMjzdc6r044dOyxtevXqpdq1a6tq1apq3bq1li9fbrWdpUuX5lnf09OzVI8fAHB9cnJytHLlSmVmZiokJCTfNu3atVNiYqK2b98uSTp69Ki++OILde3a1ardoUOHVKdOHTVq1Ejh4eE6ceJEofvOzs5WRkaG1QQAKDn6dieXlGS+SaIkPfmkNHy4XcOBEzp/XurZ01wSp00badky8zcaUCSbvUpz585VgwYN5OnpqeDgYEtnnJ933nlH99xzj2rUqKEaNWqoc+fOedpf/SrRtVNYWFhZHwYAOL3w8HDt27dP8fHxWrt2rTZt2qShQ4cWuk5WVpbCwsL0wgsv5Lu8Xbt2Sk5OtpqGDBmihg0bqm3btpLMI1patmypDz/8UD/88IMGDRqkiIgIrV271mpbXl5eVtv5+eefS+fAAQDXZc+ePapWrZo8PDw0bNgwffzxx2revHm+bR999FFNnjxZ7du3V6VKldS4cWN16NDB6u9FcHCwli5dqri4OM2fP1/Hjh3TPffco/PnzxcYw7Rp0+Tt7W2Z6tWrV+rHCQAVCX17OXDunHnUdVaWeRT2NaV1KjzDsHcEzsEwpIgIae9ec235Tz+VqlSxd1TOw7CBlStXGu7u7sbixYuNffv2GVFRUYaPj49x+vTpfNs/+uijxty5c41du3YZ+/fvNwYOHGh4e3sbv/zyi6VNZGSkERYWZiQnJ1um1NTUG4orPT3dkGSkp6eX6PgAoLhs3Q/9+OOPhiRjx44dlnn//e9/DZPJZPz6669Frr9x40ZDkvH7778X2u7SpUtGrVq1jMmTJxfarmvXrsagQYMsz5csWWJ4e3sXGce1Ll68aKSnp1umkydP0rdXcKdOnTImTZpknDp1qkLuH47BmT9nZmdnG4cOHTK+//57IyYmxvD19TX27duXb9uNGzca/v7+xjvvvGP88MMPxkcffWTUq1ev0P7/999/N7y8vIyFCxcW2Ia+HYAjom8vm7797NmzJT6+ci831zB69jQMyTCaNDGMG8x/lVtr1phfk+Bge0fiHGbPNr9e7u6GsXWrvaNxGNfbt9ukJvrrr7+uqKgoDRo0SJIUGxurzz//XIsXL1bM1bvAXuOvX+9fuHChPvzwQ61fv14RERGW+R4eHtTfAoAbsGXLFvn4+FhGh0tS586d5eLiom3btumBBx4olf2sWbNG586ds/T7BUlPT1ezZs2s5l24cEE333yzcnNzdccdd2jq1Kn51mq8atq0aXrppZdKJW4AgOTu7q4mTZpIktq0aaMdO3bozTff1Ntvv52n7fjx4/XYY49pyJAhkqQWLVooMzNTQ4cO1YsvviiXfL4e7OPjo1tvvVWHDx8uMAYPDw95eHiU0hEBABy5b69UqVJxD6vimDdPWrNGcneXVq2SatSwd0RwNrt3m+t/S9LMmVJwsH3jcUJlXs7l0qVLSkxMVOfOnf/cqYuLOnfurC1btlzXNrKysnT58mXVrFnTan5CQoL8/PzUtGlTDR8+XOfOnSt0O9TfAlDRpaSkyM/Pz2qem5ubatasqZSUlFLbz6JFixQaGqq6desW2GbVqlXasWOHVaK9adOmWrx4sT799FO9//77ys3NVbt27fTLL78UuJ2xY8cqPT3dMp08ebLUjgMAIOXm5io7OzvfZVlZWXmSKa6urpIko4CvVl+4cEFHjhxR7dq1SzdQAMB1o293Ir/8Ij3/vPnxK69IQUH2jQfOJzdXGjpUunRJ6t5dio62d0ROqcxHop89e1Y5OTny9/e3mu/v768DBw5c1zaef/551alTxyoRHxYWpgcffFANGzbUkSNH9MILL6hLly7asmWLpXP/K0YrAiivYmJiNGPGjELb7N+/3yax/PLLL1q3bp1WrVpVYJuNGzdq0KBBeuedd6xGmYeEhFjd4Khdu3Zq1qyZ3n77bU2ZMiXfbTFaEQBKz9ixY9WlSxfVr19f58+f14oVK5SQkKB169ZJkiIiIvS3v/1N06ZNkyT16NFDr7/+uoKCghQcHKzDhw9r/Pjx6tGjh+Uz+TPPPKMePXro5ptv1qlTpzRx4kS5urqqf//+djtOAKhIHL1vv3LlSukdbHn03HNSZqYUEmK+mSjyoiZ64ZYulbZvl6pXlxYskEwme0fklGxSzqUkpk+frpUrVyohIUGenp6W+f369bM8btGihVq2bKnGjRsrISFBnTp1yndbY8eO1ejRoy3PMzIyuJEFgHJhzJgxGjhwYKFtGjVqpICAAJ05c8Zq/pUrV5Samlpq5bGWLFmim266ST179sx3+ddff60ePXrojTfesCrRlZ9KlSopKCio0K+FAgBKz5kzZxQREaHk5GR5e3urZcuWWrdunf7xj39Ikk6cOGE1OnHcuHEymUwaN26cfv31V9WqVUs9evTQyy+/bGnzyy+/qH///jp37pxq1aql9u3ba+vWrapVq5bNjw8AKiJH79sLGhEPSUeOSCtXmh+/9ZaUTymdCo1kcNFyc6Xp082PJ0yQ+LZIsZV5Et3X11eurq46ffq01fzTp08XmbCZOXOmpk+frq+++kotW7YstG2jRo3k6+urw4cPF5hEZ7QigPKqVq1a1/WBNSQkRGlpaUpMTFSbNm0kSRs2bFBubq6CS6EmmmEYWrJkiSIiIvKtbZiQkKDu3btrxowZGjp0aJHby8nJ0Z49e9S1a9cSxwYAKNqiRYsKXZ6QkGD13M3NTRMnTtTEiRMLXGfl1X/+AQB2Qd/uxJYuNY+yDguT7rjD3tHAGW3aJB06JPn4SMOG2Tsap1bml7Dc3d3Vpk0brV+/3jIvNzdX69evt/rK/l+98sormjJliuLi4qxugFeQX375RefOnaP+FgAUolmzZgoLC1NUVJS2b9+u7777TtHR0erXr5/q1KkjSfr1118VGBio7du3W9ZLSUlRUlKSZUT4nj17lJSUpNTUVKvtb9iwQceOHbPchOhaGzduVLdu3fTUU0+pT58+SklJUUpKitU2Jk+erC+//FJHjx7Vzp07NWDAAP3888/5bg8AAAAAyrUNG8w/H37YvnHAeV19D3XrJlWrZt9YnJxNvgcyevRovfPOO1q2bJn279+v4cOHKzMz03IzuYiICI0dO9bSfsaMGRo/frwWL16sBg0aWBItFy5ckGS+YcWzzz6rrVu36vjx41q/fr169eqlJk2aKDQ01BaHBABOa/ny5QoMDFSnTp3UtWtXtW/fXgsWLLAsv3z5sg4ePKisrCzLvNjYWAUFBSkqKkqSdO+99yooKEhr1qyx2vaiRYvUrl07BQYG5tnvsmXLlJWVpWnTpql27dqW6cEHH7S0+f333xUVFaVmzZqpa9euysjI0ObNm9W8efPSfhkAAAAAwLGdOmX+mc//V7gGNdELlpxs/sl7qMRsUhP9kUce0W+//aYJEyYoJSVFrVu3VlxcnOVmo3+tvzV//nxdunRJDz30kNV2Jk6cqEmTJsnV1VU//PCDli1bprS0NNWpU0f333+/pkyZQrkWAChCzZo1tWLFigKXN2jQQMZfPoRMmjRJkyZNKnLbhW136dKlWrp0aaHrv/HGG3rjjTeK3A8AAAAAVBjUQs8fNdGvH++hErPZjUWjo6MVHR2d77K/1t86fvx4oduqXLmy5S7SAAAAAAAAAACUFS5DAAAAAAAAAI6GMiUoKd5DpYYkOgAAAAAAAOzC3d3d3iE4PsqWFI5EMWyAJDoAAAAAAADsolKlSvYOAc6KiwvXj9eqxEiiAwAAAAAAAABQAJLoAAAAAAAAsIucnBx7h+C4KFOCkuI9VGpIogMAAAAAAMAuLl68aO8QHB+lOApHohg2QBIdAAAAAAAAgHPh4sL147UqMZLoAAAAAAAAAAAUgCQ6AAAAAAAA4GgoU4KS4j1UakiiAwAAAAAAAI6KUhyFI1EMGyCJDgAAAAAAAMC5cHHh+vFalRhJdAAAAAAAAAAACkASHQAAAAAAAHZRqVIle4fguChTgpLiPVRqSKIDAAAAAADALtzd3e0dguOjFEfhSBQXjfdQiZFEBwAAAAAAAOBcSAzDhkiiAwAAAAAAwC5ycnLsHQIAFIkkOgAAAAAAAOzi4sWL9g7BcV0tU8KIaxQXpW5KDUl0AAAAAAAAAM6JRHHRuBBTYiTRAQAAAAAAADgXEsOwIZLoAAAAAAAAAAAUgCQ6AAAAAAAA4GioiY6SotRNqSGJDgAVTGpqqsLDw+Xl5SUfHx8NHjxYFy5cKHSdBQsWqEOHDvLy8pLJZFJaWprV8oSEBJlMpnynHTt2SJKOHz+e7/KtW7dabWv16tUKDAyUp6enWrRooS+++KJUjx8AAAAAUI6QKC4aF2JKzGZJ9Llz56pBgwby9PRUcHCwtm/fXmj7opIohmFowoQJql27tipXrqzOnTvr0KFDZXkIAFAuhIeHa9++fYqPj9fatWu1adMmDR06tNB1srKyFBYWphdeeCHf5e3atVNycrLVNGTIEDVs2FBt27a1avvVV19ZtWvTpo1l2ebNm9W/f38NHjxYu3btUu/evdW7d2/t3bu35AcOAAAAACg/SAzDhtxssZMPPvhAo0ePVmxsrIKDgzVr1iyFhobq4MGD8vPzy9P+ahJl2rRp6t69u1asWKHevXtr586duv322yVJr7zyimbPnq1ly5apYcOGGj9+vEJDQ/Xjjz/K09PzumOrIkmZmZKraykdLQDcgMxMm+5u//79iouL044dOyzJ7Tlz5qhr166aOXOm6tSpk+96I0eOlGQecZ4fd3d3BQQEWJ5fvnxZn376qZ588kmZ/vLB5qabbrJqe60333xTYWFhevbZZyVJU6ZMUXx8vN566y3Fxsbmu052drays7MtzzMyMvJtBwAAAMDxVKpUyd4hAECRbJJEf/311xUVFaVBgwZJkmJjY/X5559r8eLFiomJydO+qCSKYRiaNWuWxo0bp169ekmS3n33Xfn7++uTTz5Rv3798o0jv0RLpiQVkDQCgLLmZeP9bdmyRT4+Plajwzt37iwXFxdt27ZNDzzwQKnsZ82aNTp37pyl379Wz549dfHiRd1666167rnn1LNnT6v4Ro8ebdU+NDRUn3zySYH7mjZtml566aVSiRsAAACAbbm7u9s7BMdFTXSUFKVuSk2Zl3O5dOmSEhMT1blz5z936uKizp07a8uWLfmus2XLFqv2kjmJcrX9sWPHlJKSYtXG29tbwcHBBW5TMidavL29LVO9evVKcmgA4HRSUlLyfAPIzc1NNWvWVEpKSqntZ9GiRQoNDVXdunUt86pVq6bXXntNq1ev1ueff6727durd+/eWrNmjVV8/v7+Vtvy9/cvNLaxY8cqPT3dMp08ebLUjgMAAAAA4OBIFBeNCzElVuYj0c+ePaucnJx8kyIHDhzId52ikihXfxYn0XLtCMeMjAxVrVdPyadOycvL1uNBAeB/pUdK4dswMTExmjFjRqFt9u/fX+L9XI9ffvlF69at06pVq6zm+/r6WvXBd955p06dOqVXX33VajT6jfLw8JCHh0ex1wcAAABgP7m5ufYOAc6KxDBsyCblXBxFfomWLEmqWtU8AYCt5eSUymbGjBmjgQMHFtqmUaNGCggI0JkzZ6zmX7lyRampqQXWKb9RS5Ys0U033XRdifHg4GDFx8dbngcEBOj06dNWbU6fPl1qsQEAAABwLH/88Yd8fHzsHQYAFKrMk+i+vr5ydXW9oaRIUUmUqz9Pnz6t2rVrW7Vp3bp1KUYPAM6hVq1aqlWrVpHtQkJClJaWpsTERLVp00aStGHDBuXm5io4OLjEcRiGoSVLligiIuK6bhCUlJRk1Y+HhIRo/fr1lhuZSlJ8fLxCQkJKHBsAAAAAOBVqoqOkKHVTasq8Jrq7u7vatGmj9evXW+bl5uZq/fr1BSZFriZRrnVtEqVhw4YKCAiwapORkaFt27aRaAGAQjRr1kxhYWGKiorS9u3b9d133yk6Olr9+vVTnf+Vlfn1118VGBio7du3W9ZLSUlRUlKSDh8+LEnas2ePkpKSlJqaarX9DRs26NixYxoyZEiefS9btkz//ve/deDAAR04cEBTp07V4sWL9eSTT1raPP3004qLi9Nrr72mAwcOaNKkSfr+++8VHR1dFi8HAAAAAMDZkSguGhdiSswm5VxGjx6tyMhItW3bVnfddZdmzZqlzMxMDRo0SJIUERGhv/3tb5o2bZokcxLlvvvu02uvvaZu3bpp5cqV+v7777VgwQJJkslk0siRI/Wvf/1Lt9xyixo2bKjx48erTp066t27ty0OCQCc1vLlyxUdHa1OnTrJxcVFffr00ezZsy3LL1++rIMHDyorK8syLzY2Vi+99JLl+b333ivJXLrl2jIyixYtUrt27RQYGJjvvqdMmaKff/5Zbm5uCgwM1AcffKCHHnrIsrxdu3ZasWKFxo0bpxdeeEG33HKLPvnkE91+++2ldfgAAAAAgPKAxDBsyCZJ9EceeUS//fabJkyYoJSUFLVu3VpxcXGWG4OeOHFCLi5/Doq/niTKc889p8zMTA0dOlRpaWlq37694uLi5OnpaYtDAgCnVbNmTa1YsaLA5Q0aNJDxlyv5kyZN0qRJk4rcdmHbjYyMVGRkZJHb6Nu3r/r27VtkOwAAAACoEEgWA3ZnsxuLRkdHF/h1/ISEhDzzikqimEwmTZ48WZMnTy6tEAEAAAAAAADHQJkSlBTvoVJT5jXRAQAAAAAAAKBMkCguGt9mKDGS6AAAAAAAALCLSpUq2TsEOCsSw7AhkugAAAAAAACwC3d3d3uH4PhIFgN2RxIdAAAAAAAAcDSUKUFJ8R4qNSTRAQAAAAAAYBe5ubn2DgHOjkRx0fg2Q4mRRAcAAAAAAIBd/PHHH/YOAc6KxDBsiCQ6AAAAAAAA4KhIFgN2RxIdAAAAAAAAcDSUKUFJ8R4qNSTRAQAAAEiS5s+fr5YtW8rLy0teXl4KCQnRf//730LXmTVrlpo2barKlSurXr16GjVqlC5evGjVZu7cuWrQoIE8PT0VHBys7du3l+VhAACuQd+Oco9EcdH4NkOJkUQHAAAAIEmqW7eupk+frsTERH3//ffq2LGjevXqpX379uXbfsWKFYqJidHEiRO1f/9+LVq0SB988IFeeOEFS5sPPvhAo0eP1sSJE7Vz5061atVKoaGhOnPmjK0OCwAqNPp2lFskhmFDJNEBAAAASJJ69Oihrl276pZbbtGtt96ql19+WdWqVdPWrVvzbb9582bdfffdevTRR9WgQQPdf//96t+/v9VoxNdff11RUVEaNGiQmjdvrtjYWFWpUkWLFy+21WEBQIVG314OkCwG7I4kOgAAAIA8cnJytHLlSmVmZiokJCTfNu3atVNiYqIlsXL06FF98cUX6tq1qyTp0qVLSkxMVOfOnS3ruLi4qHPnztqyZUuB+87OzlZGRobVBAAoOfp2J0OZEpQU76FS42bvAAAAAAA4jj179igkJEQXL15UtWrV9PHHH6t58+b5tn300Ud19uxZtW/fXoZh6MqVKxo2bJjlK/9nz55VTk6O/P39rdbz9/fXgQMHCoxh2rRpeumll0rvoACggnPkvt3NjdQUSohEcdH4NkOJMRIdAAAAgEXTpk2VlJSkbdu2afjw4YqMjNSPP/6Yb9uEhARNnTpV8+bN086dO/XRRx/p888/15QpU0oUw9ixY5Wenm6ZTp48WaLtAUBF58h9u4eHR4m2WyGQAM0frwtsiMt9AAAAACzc3d3VpEkTSVKbNm20Y8cOvfnmm3r77bfztB0/frwee+wxDRkyRJLUokULZWZmaujQoXrxxRfl6+srV1dXnT592mq906dPKyAgoMAYPDw8SKoAQCmibweAkmEkOgAAAIAC5ebmKjs7O99lWVlZcnGx/pfC1dVVkmQYhtzd3dWmTRutX7/eanvr168vsBYvAKDsOVLfblCKo2C8Nigp3kOlhpHoAAAAACSZv2rfpUsX1a9fX+fPn9eKFSuUkJCgdevWSZIiIiL0t7/9TdOmTZMk9ejRQ6+//rqCgoIUHBysw4cPa/z48erRo4cl4TJ69GhFRkaqbdu2uuuuuzRr1ixlZmZq0KBBdjtOAKhIHL1vz8rKkre3d+kdMCoeEsVFo/RNiZFEBwAAACBJOnPmjCIiIpScnCxvb2+1bNlS69at0z/+8Q9J0okTJ6xGJ44bN04mk0njxo3Tr7/+qlq1aqlHjx56+eWXLW0eeeQR/fbbb5owYYJSUlLUunVrxcXF5bkhHQCgbNC3lwMkQPPH6wIbIokOAAAAQJK0aNGiQpcnJCRYPXdzc9PEiRM1ceLEQteLjo5WdHR0ScMDABQDfTsAlBw10QEAAAAAAABHQ5kSlBTvoVJDEh0AKpjU1FSFh4fLy8tLPj4+Gjx4sC5cuFDoOgsWLFCHDh3k5eUlk8mktLQ0q+UJCQkymUz5Tjt27JAkTZo0Kd/lVatWtWxn6dKleZZ7enqW+msAAAAAACgnSBQXjdI3JVbmSfQbTdakpqbqySefVNOmTVW5cmXVr19fTz31lNLT063a5ZeIWblyZVkfDgA4vfDwcO3bt0/x8fFau3atNm3apKFDhxa6TlZWlsLCwvTCCy/ku7xdu3ZKTk62moYMGaKGDRuqbdu2kqRnnnkmT5vmzZurb9++Vtvy8vKyavPzzz+XzoEDAAAAgDMiAZo/XhfYUJnXRA8PD1dycrLi4+N1+fJlDRo0SEOHDtWKFSvybX/q1CmdOnVKM2fOVPPmzfXzzz9r2LBhOnXqlP7zn/9YtV2yZInCwsIsz318fMryUADA6e3fv19xcXHasWOHJbk9Z84cde3aVTNnzlSdOnXyXW/kyJGS8tZLvMrd3V0BAQGW55cvX9ann36qJ598Uqb/fbCpVq2aqlWrZmmze/du/fjjj4qNjbXalslkstoWAACSVEWSMjMlV1d7hwKgosrMtHcE5dNvv0m1a9s7CgAoVJkm0YuTrLn99tv14YcfWp43btxYL7/8sgYMGKArV67Ize3PkH18fEi0AMAN2LJli3x8fCx9siR17txZLi4u2rZtmx544IFS2c+aNWt07tw5DRo0qMA2Cxcu1K233qp77rnHav6FCxd08803Kzc3V3fccYemTp2q2267rcDtZGdnKzs72/I8IyOj5AcAAHA4mZJUwMVeALAFL3sHUE65ffCB1LKlvcNwTJQpQUnxHio1ZVrOpahkzfVKT0+Xl5eXVQJdkkaMGCFfX1/dddddWrx4sYwi3hjZ2dnKyMiwmgCgIklJSZGfn5/VPDc3N9WsWVMpKSmltp9FixYpNDRUdevWzXf5xYsXtXz5cg0ePNhqftOmTbV48WJ9+umnev/995Wbm6t27drpl19+KXBf06ZNk7e3t2WqV69eqR0HAAAAgLLlcfq0vUOAs6pSxfzzLyWgkQ9K35RYmY5EL41kzdmzZzVlypQ89XonT56sjh07qkqVKvryyy/1xBNP6MKFC3rqqacK3Na0adP00ksv3fiBAICDi4mJ0YwZMwpts3//fpvE8ssvv2jdunVatWpVgW0+/vhjnT9/XpGRkVbzQ0JCFBISYnnerl07NWvWTG+//bamTJmS77bGjh2r0aNHW55nZGSQSAeAcqiqpORTp+TlxVhQAPaRkZHBN2LKQiEDZvA/JEDz17ix+WdKinT+vFS9un3jQblWrCS6rZI1GRkZ6tatm5o3b65JkyZZLRs/frzlcVBQkDIzM/Xqq68WmkQn0QKgvBozZowGDhxYaJtGjRopICBAZ86csZp/5coVpaamllp5rCVLluimm25Sz549C2yzcOFCde/eXf7+/oVuq1KlSgoKCtLhw4cLbOPh4SEPD49ixwsAcA5ZklS1qnkCAHvIybF3BOWSUchnfaBQPj6Sn5905oz0449ScLC9I0I5Vqwkui2SNefPn1dYWJiqV6+ujz/+WJUqVSq0fXBwsKZMmaLs7OwCkykkWgCUV7Vq1VKtWrWKbBcSEqK0tDQlJiaqTZs2kqQNGzYoNzdXwaXwgcMwDC1ZskQREREF9tvHjh3Txo0btWbNmiK3l5OToz179qhr164ljg0AAACA48k6ckTe585JN91k71AcD/Wsi/Z//yetWSN9/TVJ9PzwHio1xaqJXqtWLQUGBhY6ubu7WyVrrrqeZE1GRobuv/9+ubu7a82aNfL09CwypqSkJNWoUYMkOQAUolmzZgoLC1NUVJS2b9+u7777TtHR0erXr5/lZs+//vqrAgMDtX37dst6KSkpSkpKsowI37Nnj5KSkpSammq1/Q0bNujYsWMaMmRIgTEsXrxYtWvXVpcuXfIsmzx5sr788ksdPXpUO3fu1IABA/Tzzz8Xuj0AAAAATi4hwd4RODbKuRTs7383//zqK/vG4eh4D5VYmd5YtDjJmqsJ9MzMTC1atEgZGRlKSUlRSkqKcv731anPPvtMCxcu1N69e3X48GHNnz9fU6dO1ZNPPlmWhwMA5cLy5csVGBioTp06qWvXrmrfvr0WLFhgWX758mUdPHhQWVlZlnmxsbEKCgpSVFSUJOnee+9VUFBQntHkixYtUrt27RQYGJjvvnNzc7V06VINHDhQrq6ueZb//vvvioqKUrNmzdS1a1dlZGRo8+bNat68eWkcOgAAAABH9J//2DsCOKur31resMFc1gUoI2V6Y1HJnKyJjo5Wp06d5OLioj59+mj27NmW5X9N1uzcuVPbtm2TJDVp0sRqW8eOHVODBg1UqVIlzZ07V6NGjZJhGGrSpIlef/11S3IHAFCwmjVrasWKFQUub9CggYy/fOVr0qRJee5NkZ/CtitJLi4uOnnyZIHL33jjDb3xxhtF7gcAAABAOfLZZ9KFC1K1avaOBM7m1lultm2l77+XVq+WRoywd0Qop8o8iX6jyZoOHTrkSd78VVhYmMLCwkotRgAAAAAAANhBo0bS0aPSe+9Jw4fbOxrHQj3r6xMebk6iL1woPfEEpUuuxXuo1JRpORcAAAAAAACgQIMGmX/OmUPCryAkhQsXESFVriwlJZlvMIq8eA+VGEl0AAAAAAAA2MfDD5vLuOzfL33+ub2jgTOqWVOKjDQ/pjwoyghJdAAAAAAAANiFq4+PuQSHJE2cWLFHo+fmSkeOmC8mLFwopafbOyLnMXKkebT1mjXS7t32jsa+zpyR1q+X3n1X+vBDe0dTbpBEBwAAAAAAgF14enpKzz5rHo2+c6f06af2Dsm2DMN8Y9WHHpJq1JCaNJG6d5eiov5sU7Wq/eJzFk2bSo88Yn48frx9Y7GHH34wX4yqX1/y95c6d/5zdL7ETXtLQZnfWBQAAAAAAAAokK+v9NRT0tSp5gRo9+6SWwVIWZ07J/XtK23c+Oc8Dw8pMFCqW1eqXVu65x6pTh37xehMJk2SVq0yX5TYtk0KDrZ3RGUvN1d67jnptdf+nGcySY0bSw0amN9DgYHSgw/aLcTyogL0SAAAAAAAAHBoY8ZIsbHS3r3SO+9Iw4fbO6KyZRhSv37mBHqVKubjfeQRqXVrqVIle0fnnJo2Nd9kdOlS6fnnza9teb+h5iuv/JlA79vXfKPee+/l2wtlgHIuAAAAAAAAsIvMzEzzg5o1pcmTzY/Hj5d+/91+QdnC999LX31lHnm+ZYs0c6Z0550k0EvqpZckT0/p66+l//zH3tGUrcuXzUl0SZo3zzwKv0sXEuhlhCQ6AAAAAAAA7O+f/5Ruu81c5uSll+wdTdlKTDT/7NhRatnSvrGUJ/Xrm0ehS+ZvN2Rl2TeesnT8uPlik6enNHSovaMp90iiAwAAAAAAwP7c3KRZs8yP33rLfLPE8io31/yTUcOl77nnpHr1pJMn/xypXR5dfQ95ekqurvaNpQIgiQ4AAAAAAADH0Lmz+SaIOTnm0bU5OfaOCM6mSpU/64TPmCEdOWLfeFAukEQHAAAAAACA45g9W/LykrZtk+bPt3c0cEYPPSR16iRdvGguE2QY9o4ITo4kOgAAAAAAABzH3/4mTZ9ufjx2rLksR3lDUrdsmUxSbKy51Mn69dJ779k7otLHe8imSKIDAAAAAADAsfzzn1JIiHThghQdXX4ThiaTvSMov5o0kSZOND8ePVr67Tf7xlNWeA/ZBEl0AAAAAAAA2IVrQTdEdHGRFiww32x0zRpp9WrbBobyYcwYqVUr6dw5adQoe0cDJ0YSHQAAAAAAAHbh6elZ8MLbb5deeMH8+IknpNOnbROULZTXkfWOplIl6Z13zKO1ly+XPv/c3hHBSZFEBwAAAAAAgGN68cU/RxIPG0byGTfuzjv/HIUeFSWlpto3ntJy9XeBci42QRIdAAAAAAAAjsndXVq2zDyi+JNPpBUr7B1R6SIBahv/+pfUtKmUnCw99ZS9o4ETIokOAAAAAAAAu8jMzCy6UatW0oQJ5sfR0dKpU2UbFMqfypXNF2NcXMxlXT76yN4RwcmQRAcAAAAAAIBje/55qU0bKS1NGjrU+cu6OHv8zig4WIqJMT8eNkw6c8a+8cCpkEQHAAAAAACAY6tUyTyS2N3dfHPIpUvtHRGc0YQJUosW0m+/ScOHO/fFDGqi2xRJdAAAAAAAADi+226TJk82P376aenoUfvGUxpIgNqWh4f07ruSm5u5pEt5q7GPMkMSHQAqmNTUVIWHh8vLy0s+Pj4aPHiwLly4UOg6CxYsUIcOHeTl5SWTyaS0tLQ8bX766Sf16tVLvr6+8vLyUvv27bVx40arNidOnFC3bt1UpUoV+fn56dlnn9WVK1es2iQkJOiOO+6Qh4eHmjRpoqWMMAEAAABw1TPPSO3bS+fPSwMGSH/5fwIoUuvW1jX2T5ywazhwDmWeRC9OsqZDhw4ymUxW07Bhw6zaXE8iBgCQV3h4uPbt26f4+HitXbtWmzZt0tChQwtdJysrS2FhYXrhhRcKbNO9e3dduXJFGzZsUGJiolq1aqXu3bsrJSVFkpSTk6Nu3brp0qVL2rx5s5YtW6alS5dqwtUPL5KOHTumbt266e9//7uSkpI0cuRIDRkyROvWrSudgwcAAADg3Fxdpffek7y8pC1bpKlT7R1R8ThzGZHyYOxYc430tDTpsceknBx7RwQHV+ZJ9OIkayQpKipKycnJlumVV16xLLueRAwAIK/9+/crLi5OCxcuVHBwsNq3b685c+Zo5cqVOlXIHe5HjhypmJgY/d///V++y8+ePatDhw4pJiZGLVu21C233KLp06crKytLe/fulSR9+eWX+vHHH/X++++rdevW6tKli6ZMmaK5c+fq0qVLkqTY2Fg1bNhQr732mpo1a6bo6Gg99NBDeuONN0r/xQAAAADgnBo0kObNMz+ePFnautWu4cAJublJy5dL1apJmzZJ1+QdnQY10W2qTJPoxU3WSFKVKlUUEBBgmby8vCzLricRAwDIa8uWLfLx8VHbtm0t8zp37iwXFxdt27at2Nu96aab1LRpU7377rvKzMzUlStX9Pbbb8vPz09t2rSx7LtFixby9/e3rBcaGqqMjAzt27fP0qZz585W2w4NDdWWLVsK3Hd2drYyMjKsJgAAAADOwcWlmKmp8HCpf3/zCOIBA8zlXZwRCVD7adxYmjPH/HjCBGnHDvvGA4dWpkn0kiRrli9fLl9fX91+++0aO3assrKyrLZbVCImPyRaAFR0KSkp8vPzs5rn5uammjVrWsquFIfJZNJXX32lXbt2qXr16vL09NTrr7+uuLg41ahRw7Lva/ttSZbnV/ddUJuMjAz98ccf+e572rRp8vb2tkz16tUr9nEAAAAAsK3KlSsXf+V586T69aUjR6SRI0stJlQgkZFS377m2vrh4VIRJahRcZVpEr24yZpHH31U77//vjZu3KixY8fqvffe04ABA6y2W1QiJj8kWgCUVzExMXnuJfHX6cCBA2W2f8MwNGLECPn5+embb77R9u3b1bt3b/Xo0UPJyclltl9JGjt2rNLT0y3TyZMny3R/AAAAAByEj4/07rvm0dyLF0sffmjviK4fNdEdg8kkxcZKdetKhw5Jo0bZOyI4KLfirBQTE6MZM2YU2mb//v3FCkiSVc30Fi1aqHbt2urUqZOOHDmixo0bF3u7Y8eO1ejRoy3PMzIySKQDKBfGjBmjgQMHFtqmUaNGCggI0JkzZ6zmX7lyRampqQoICCj2/jds2KC1a9fq999/t5TfmjdvnuLj47Vs2TLFxMQoICBA27dvt1rv9OnTkmTZd0BAgGXetW28vLwKHKHi4eEhDw+PYscOAAAAwIndd58UEyNNmyZFRUn/93/S3/5m76jgTGrWNN+stmNHaeFCqUsX6cEH7R1V0aiJblPFSqLbOlkTHBwsSTp8+LAaN258XYmY/JBoAVBe1apVS7Vq1SqyXUhIiNLS0pSYmGipVb5hwwbl5uZa+triuFpy66/1DF1cXJSbm2vZ98svv6wzZ85YvqUUHx8vLy8vNW/e3NLmiy++sNpGfHy8QkJCih0bAAAAAMeVmZlpdR+8Ypk0SfrySykx0VySY/16ydW1VOIrcyRAHUOHDtLzz0vTp5svxgQHczEGVopVzqVWrVoKDAwsdHJ3d7dK1lxVnGRNUlKSJKl27dqSzEmWPXv2WCXo/5qIAQDk1axZM4WFhSkqKkrbt2/Xd999p+joaPXr10916tSRJP36668KDAy0uliZkpKipKQkHT58WJK0Z88eJSUlKTU1VZK5X65Ro4YiIyO1e/du/fTTT3r22Wd17NgxdevWTZJ0//33q3nz5nrssce0e/durVu3TuPGjdOIESMsFziHDRumo0eP6rnnntOBAwc0b948rVq1SqP4Sh0AAACAgri7SytWSFWrSl9/LU2ZYu+I4Ixeeklq00ZKTTVfjMnJsXdEcCBlWhO9OMmaI0eOaMqUKUpMTNTx48e1Zs0aRURE6N5771XLli0lXV8iBgCQv+XLlyswMFCdOnVS165d1b59ey1YsMCy/PLlyzp48KDVDZ1jY2MVFBSkqKgoSdK9996roKAgrVmzRpLk6+uruLg4XbhwQR07dlTbtm317bff6tNPP1WrVq0kSa6urlq7dq1cXV0VEhKiAQMGKCIiQpMnT7bsp2HDhvr8888VHx+vVq1a6bXXXtPChQsVGhpqi5cGAAAAgLO69Vbp7bfNjydPljZutG88RaEmuuO5ejGmWjXzxZhr/ld1aHybwSaKVc7lRixfvlzR0dHq1KmTXFxc1KdPH82ePduy/K/JGnd3d3311VeaNWuWMjMzVa9ePfXp00fjxo2zrHM1ETN8+HCFhISoatWqioyMtErEAADyV7NmTa1YsaLA5Q0aNJDxlw90kyZN0qRJkwrdbtu2bbVu3bpC29x88815yrX8VYcOHbRr165C2wAAAABAHuHh0oYN5puMhodLSUnS/0pJAtfl6sWY8HDzNxruvVfq1MneUeWPCzE2VaYj0aU/kzXnz59Xenq6Fi9erGrVqlmWX03WdOjQQZJUr149ff311zp37pwuXryoQ4cO6ZVXXslTH+tqIiYrK0u//fabZs6cKTe3Mr8mAAAAAJRb8+fPV8uWLeXl5SUvLy+FhITov//9b4HtO3ToIJPJlGe6WspLkgYOHJhneVhYmC0OBwCgCti3z54tNW8uJSdLERHS/+7R5LAYRex4Hn1UGjLEnKQOD5f+dx9GVGxknQEAAABIkurWravp06frlltukWEYWrZsmXr16qVdu3bptttuy9P+o48+0qVLlyzPz507p1atWqlv375W7cLCwrRkyRLLc0owAoDtVLi+vWpV6YMPpDvvlNatk1591XzDSOBGvPmmtHWrtHevNGCAFBfnPDerRZkgiQ4AAABAktSjRw+r5y+//LLmz5+vrVu35ptoqVmzptXzlStXqkqVKnkSLR4eHgoICCj9gAEARaqQffvtt0tz5khRUdKLL0r33CO1a2fvqKxRisOxVany58WYr76Spk83v5ccEd9msIkyL+cCAAAAwPnk5ORo5cqVyszMVEhIyHWts2jRIvXr109Vq1a1mp+QkCA/Pz81bdpUw4cP17lz5wrdTnZ2tjIyMqwmAEDJOWLf7uJSRqmpwYOl/v2lnBypXz8pNbVs9oPyq3lzae5c8+MJE6RNm+wbz19xIcamSKIDAAAAsNizZ4+qVasmDw8PDRs2TB9//LGaN29e5Hrbt2/X3r17NWTIEKv5YWFhevfdd7V+/XrNmDFDX3/9tbp06aKcnJwCtzVt2jR5e3tbpnr16pX4uACgInPkvr1y5colO7iCmExSbKzUpIl08qTj1kdnFLFjGzjwz/dO//7Sb7/ZOyLYCUl0AAAAABZNmzZVUlKStm3bpuHDhysyMlI//vhjkestWrRILVq00F133WU1v1+/furZs6datGih3r17a+3atdqxY4cSEhIK3NbYsWOVnp5umU6ePFnSwwKACq3C9u1eXtKqVZKHh/T559LUqWW/T5Q/c+dKgYHSqVPmm44WcrEI5RdJdAAAAAAW7u7uatKkidq0aaNp06apVatWevPNNwtdJzMzUytXrtTgwYOL3H6jRo3k6+urw4cPF9jGw8NDXl5eVhMAoPgqdN8eFCTNm2d+PGGC9OWXttlvUSjF4TyqVZNWrzbXSf/qK/P7yJHwbQabIIkOAAAAoEC5ubnKzs4utM3q1auVnZ2tAQMGFLm9X375RefOnVPt2rVLK0QAwA1ypL49Kyvrhte5YY8/Lg0ZYk5cP/qo9PPPZb9PlC+33y4tXGh+PHWq9Omn9o1H4kKMjZFEBwAAACDJ/FX7TZs26fjx49qzZ4/Gjh2rhIQEhYeHS5IiIiI0duzYPOstWrRIvXv31k033WQ1/8KFC3r22We1detWHT9+XOvXr1evXr3UpEkThYaG2uSYAKCic/S+3bBVInDOHKlNG+ncOalvX6mIiwg2wyhi59G/v/T00+bHERHSoUP2jQc25WbvAAAAKG1VJCkzU3J1tXcosANTVpYqXbokU1aW+X1QwfYPB+Gk5/7MmTOKiIhQcnKyvL291bJlS61bt07/+Mc/JEknTpyQi4v1OJyDBw/q22+/1Zf5fD3e1dVVP/zwg5YtW6a0tDTVqVNH999/v6ZMmSIPDw+bHBMAVHT07f/j6Sn95z/mRPqOHeZkaGys/eJhFLFzevVV6fvvpe++kx58UNq6Vapa1d5RwQZMhs0u+TmejIwMeXt7Kz09nTqLAOyCfqj0ZWRkyMvb295hAIBMEv17KeHvJQBHQF9Uuq6+nqdOnbJtia+4OKlrV3MSe8kSaeBA2+37Wq+9Jj3zjDRggPTee/aJAcWTnCzdcYeUkmIenb58uX2+UbB7t9S6tVS7tvmmpyiW6+3bKecCAAAAAACAiiEsTJo0yfx4+HBp1y67hgMnVLu2tGqV5OYm/fvf5lJB9lBxx0XbBeVcAADlTlVJyadOMUKogkpJSdHixYv1+OOPKyAgoMLtH44hIyNDqlPH3mEAAID8jBsnbdsmffGF1KuXubyLv799YqEmunO65x5p5kxp5EhpzBipVSvpvvvsHRXKEEl0AEC5kyWZ69JRm65CMqpU0WV3dxlVqtjlPWDv/cNB5OTYOwIAAFAQFxdzCY7gYOmnn6Q+faQNGyR3d9vFwChi5/fUU+aLMf/+t/k9tGOH1LCh7ePgQoxNUM4FAAAAAAAAdmGyVwLQx0das0by9jbfJHLECBLbuDEmk7RwoflmtefOmb/VcP68vaNCGSGJDgAAAAAAALuoUqWK/XbetKl5FPHVZOjcufaLBc6pShXpk0/M5YD27JEiIqTcXNvsm4s+NkUSHQAAAAAAABVTly7SK6+YH48caS7rYkuU4nB+deuaE+nu7uafEyfaOyKUAZLoAAAAAAAAqLjGjJEGDDDf06RvX+no0bLfJ6OIy5f/+z9pwQLz43/9S/rgA9vtmwsxNkESHQAAAAAAAHaRlZVl7xDMSch33pHuuktKTZV69pTS0+0dFZxNZKT5gowkDRok7dxp33hQqkiiAwAAAAAAwC4MRxmR7ekpffyxVKeOtG+feUT65cv2jgrOZsYMc4mgP/6QevSQfvnF3hGhlJBEBwAAAAAAAOrUkT77TKpaVYqPl554ouzLrlCKo3xxdTXfrLZZM+nUKalbNykjo2z25SgXoCoIkugAAAAAAACAJN1xh7RypeTiIi1caB5ZXBZIgJZf3t7SF19I/v7SDz9IDz9ctt9q4EKMTZBEB4AKJjU1VeHh4fLy8pKPj48GDx6sCxcuFLrOggUL1KFDB3l5eclkMiktLS1Pm59++km9evWSr6+vvLy81L59e23cuNGyfPfu3erfv7/q1aunypUrq1mzZnrzzTettpGQkCCTyZRnSklJKZVjBwAAAIAide8uXf1fZexY294kEuVDgwbS2rVSlSrSunXSiBFcOHFyZZ5Ev9FkzfHjx/NNoJhMJq1evdrSLr/lK1euLOvDAQCnFx4ern379ik+Pl5r167Vpk2bNHTo0ELXycrKUlhYmF544YUC23Tv3l1XrlzRhg0blJiYqFatWql79+6WBHhiYqL8/Pz0/vvva9++fXrxxRc1duxYvfXWW3m2dfDgQSUnJ1smPz+/kh00AAAAANyI6Ghp5Ejz48hI6bvv7BoOnFDbtubSLldvXPvKK/aOCCXgVtY7CA8PV3JysuLj43X58mUNGjRIQ4cO1YoVK/JtX69ePSUnJ1vNW7BggV599VV16dLFav6SJUsUFhZmee7j41Pq8QNAebJ//37FxcVpx44datu2rSRpzpw56tq1q2bOnKk6derku97I/314TEhIyHf52bNndejQIS1atEgtW7aUJE2fPl3z5s3T3r17FRAQoMcff9xqnUaNGmnLli366KOPFB0dbbXMz8/vuvv07OxsZWdnW55nlFW9OQAAAAAVy8yZ0rFj0qefSr16SVu3Sk2alO4+KMVRvvXsaf5Ww1NPSTEx5hHqjzxSOttmZLtNlelI9KvJmoULFyo4OFjt27fXnDlztHLlSp06dSrfdVxdXRUQEGA1ffzxx3r44YdVrVo1q7Y+Pj5W7Tw9PQuNJzs7WxkZGVYTAFQkW7ZskY+PjyWBLkmdO3eWi4uLtm3bVuzt3nTTTWratKneffddZWZm6sqVK3r77bfl5+enNm3aFLheenq6atasmWd+69atVbt2bf3jH//Qd0WM+Jg2bZq8vb0tU7169Yp9HAAAAABsy+TISWRXV2n5cvOI4nPnpNBQqbRKTZIArTiefPLPbzVEREibNpXu9h35d6gcKdMkemkkaxITE5WUlKTBgwfnWTZixAj5+vrqrrvu0uLFi2UU0QGRaAFQ0aWkpOQpjeLm5qaaNWuWqO64yWTSV199pV27dql69ery9PTU66+/rri4ONWoUSPfdTZv3qwPPvjAqpRM7dq1FRsbqw8//FAffvih6tWrpw4dOmjnzp0F7nvs2LFKT0+3TCdPniz2cQAAAACwrSpVqtg7hMJVrSp99pnUqJF09KgUFialp9s7KjibmTOlBx6QLl2SevSQkpLsHRFuUJkm0UsjWbNo0SI1a9ZM7dq1s5o/efJkrVq1SvHx8erTp4+eeOIJzZkzp9BtkWgBUF7FxMQUeD+Jq9OBAwfKbP+GYWjEiBHy8/PTN998o+3bt6t3797q0aNHnhJdkrR371716tVLEydO1P3332+Z37RpU/3zn/9UmzZt1K5dOy1evFjt2rXTG2+8UeC+PTw85OXlZTUBAAAAQKkJCJC+/FLy95d27zaXdrl4sXS2zSjiiuHqtxruvVfKyDBfjDlyxN5R4QYUqyZ6TEyMZsyYUWib/fv3Fyuga/3xxx9asWKFxo8fn2fZtfOCgoKUmZmpV199VU899VSB2/Pw8JCHh0eJ4wIARzNmzBgNHDiw0DaNGjVSQECAzpw5YzX/ypUrSk1NVUBAQLH3v2HDBq1du1a///67JYk9b948xcfHa9myZYqJibG0/fHHH9WpUycNHTpU48aNK3Lbd911l7799ttixwYAAAAAJda4sfTf/0r33Sd9/bX06KPS6tXm5ChwPSpXltasMb+Hdu+W7r9f+vZbqXbt4m2PkkA2Vawkuq2SNf/5z3+UlZWliIiIItsGBwdrypQpys7OJlEOoMKpVauWatWqVWS7kJAQpaWlKTEx0VKrfMOGDcrNzVVwcHCx95+VlSVJcnGx/oKTi4uLcnNzLc/37dunjh07KjIyUi+//PJ1bTspKUm1i/uhAgAAAIBD++OPP5zn26RBQeYkaGio9PHH0vDh0ttvF280OQnQisnbW4qLk+6+21weqEsXKSFB8vEp/jb5NoNNFCuJbqtkzaJFi9SzZ8/r2ldSUpJq1KhBAh0ACtGsWTOFhYUpKipKsbGxunz5sqKjo9WvXz/VqVNHkvTrr7+qU6dOevfdd3XXXXdJMpfnSklJ0eHDhyVJe/bsUfXq1VW/fn3VrFlTISEhqlGjhiIjIzVhwgRVrlxZ77zzjo4dO6Zu3bpJMpdw6dixo0JDQzV69GhLWS9XV1dLPz9r1iw1bNhQt912my5evKiFCxdqw4YN+vLLL239UgEAAACwgWsH3TiFDh2kf/9b6ttXeucdqVYt6ToHCAGS/iwPdPfd5hHpPXtK69aZR6rDYZVpTfRrkzXbt2/Xd999l2+yJjAwUNu3b7da9/Dhw9q0aZOGDBmSZ7ufffaZFi5cqL179+rw4cOaP3++pk6dqieffLIsDwcAyoXly5crMDBQnTp1UteuXdW+fXstWLDAsvzy5cs6ePCgZXS5JMXGxiooKEhRUVGSpHvvvVdBQUFas2aNJMnX11dxcXG6cOGCOnbsqLZt2+rbb7/Vp59+qlatWkkyf7vot99+0/vvv6/atWtbpjvvvNOyn0uXLmnMmDFq0aKF7rvvPu3evVtfffWVOnXqZIuXBgAAAACK9uCD0vz55sdTp0pFlDwuFKOIK6bGjc0j0r28pG++kR5+2HzTUTisYo1EvxHLly9XdHS0OnXqJBcXF/Xp00ezZ8+2LM8vWSNJixcvVt26da1uOHdVpUqVNHfuXI0aNUqGYahJkyZ6/fXXLckdAEDBatasqRUrVhS4vEGDBjL+8tXCSZMmadKkSYVut23btlq3bl2By69nG88995yee+65QtsAAAAAgN0NHSqlpkpjx0oxMeZRxIXcpy8PyrmgdWvps8/M5YHWrpXCw83fcnC7znTt1fcQF2JsosyT6MVJ1kjS1KlTNXXq1HzXCQsLU1hYWKnFCAAAAAAAANyQmBgpK0uaMkV6+mnJ09OcXAeu1733muvr9+ol/ec/kru79O673LDWAZVpORcAAAAAAACg3HrpJemZZ8yPhw2T3nvPvvHA+YSFSatXm0egr1ghRUVJznavgAqAJDoAAAAAAABQHCaT9MorUnS0ubzGwIHmhOiNrA/07Gku5eLiIi1ZIo0YQckfB0MSHQAAAAAAACguk0l6801p8GDzCOJHH5U++aTwdUiQ4q8eeshcysVkkmJjpVGjCn+fUBPdpkiiAwAAAAAAwC6qVq1q7xBKh4uL9Pbb5ptDXrki9e0rffihvaOCswkPlxYuND9+801pzBguuDgIkugAAAAAAABASbm6SkuXmkeiX7kiPfKI9MEH9o4Kzubxx80j0SXpjTekJ5+kRroDIIkOAAAAAAAAlAY3N3NJjshIKSfHnFB///2C21OKA/n55z/NI9JNJmnuXPNNa0mk2xVJdAAAAAAAANjFH3/8Ye8QSp+rq7R48Z810iMizCPUr0WJDhRl8GDz+8bFRXrnHfPznJw/l1MT3aZIogMAAAAAAMAucsvr6FoXF2nBAvMIYsMwl+i4WusauF4REeZvMlwtFRQRYS4VBJsjiQ4AAAAAAACUNhcXad48c01rw5Ciosw3iwRuRP/+0sqV5lJBK1aYSwRdumTvqCocN3sHAAAAAAAAAJRLJpM5ce7uLr32mjRypJSebk6wX10OFOWhh6RKlaS+faXVq6ULF6Rnn7V3VBUKSXQAAAAAAACgrJhM0quvSt7e0oQJ0sSJUt269o4KzqZXL+mzz6QHHpD++19p717zfC7E2ATlXAAAAAAAAICyZDJJ48f/Wc7ll1/sGw+cU2ioFB9vviBz8qS9o6lQSKIDAAAAAAAAtvDUU9KyZZRzQfHdfbeUkCD5+Zmf8x6yCZLoAAAAAAAAgK1EREgffSQFBUl9+tg7Gjij1q2lb76R2reXBg2ydzQVAjXRAQAAAAAAYBdVq1a1dwj20auXeQKK69ZbzYl02AQj0QEAAAAAAAAAKABJdAAAAAAAAAAACkASHQAAAAAAAHZx8eJFe4cAAEUiiQ4AAAAAAAC7yMnJsXcIAFAkkugAAAAAAAAAABSAJDoAAAAAAAAAAAUo8yT6yy+/rHbt2qlKlSry8fG5rnUMw9CECRNUu3ZtVa5cWZ07d9ahQ4es2qSmpio8PFxeXl7y8fHR4MGDdeHChTI4AgAoX4rTfy5YsEAdOnSQl5eXTCaT0tLS8rT56aef1KtXL/n6+srLy0vt27fXxo0brdqYTKY808qVK63aJCQk6I477pCHh4eaNGmipUuXlvSQAQAAAAAAiq3Mk+iXLl1S3759NXz48Ote55VXXtHs2bMVGxurbdu2qWrVqgoNDbW62UR4eLj27dun+Ph4rV27Vps2bdLQoUPL4hAAoFwpTv+ZlZWlsLAwvfDCCwW26d69u65cuaINGzYoMTFRrVq1Uvfu3ZWSkmLVbsmSJUpOTrZMvXv3tiw7duyYunXrpr///e9KSkrSyJEjNWTIEK1bt65ExwwAAAAAAFBcbmW9g5deekmSrnskoWEYmjVrlsaNG6devXpJkt599135+/vrk08+Ub9+/bR//37FxcVpx44datu2rSRpzpw56tq1q2bOnKk6deqUybEAgLMrbv85cuRISeZR4vk5e/asDh06pEWLFqlly5aSpOnTp2vevHnau3evAgICLG19fHysnl8rNjZWDRs21GuvvSZJatasmb799lu98cYbCg0NzXed7OxsZWdnW55nZGQU/AIAAAAAAADcoDJPot+oY8eOKSUlRZ07d7bM8/b2VnBwsLZs2aJ+/fppy5Yt8vHxsSSAJKlz585ycXHRtm3b9MADD+S77b8mWtLT0yWRcAFgP1f7H8MwbLK/4vafRbnpppvUtGlTvfvuu5ZSLG+//bb8/PzUpk0bq7YjRozQkCFD1KhRIw0bNkyDBg2SyWSyxHdt/y9JoaGhliR+fqZNm2a5YHst+vaK6/z587p48aLOnz+vqlWrVrj9wzHYun8v766+jvTtAOyJvr10XX0d+cwEwJ6ut293uCT61a/9+/v7W8339/e3LEtJSZGfn5/Vcjc3N9WsWTNP2YBrFZRoqVevXknDBoASOX/+vLy9vct8P8XtP4tiMpn01VdfqXfv3qpevbpcXFzk5+enuLg41ahRw9Ju8uTJ6tixo6pUqaIvv/xSTzzxhC5cuKCnnnrKEl9+/X9GRob++OMPVa5cOc++x44dq9GjR1ueHzt2TK1bt6Zvh6ZPn16h9w/HYKv+vbw7f/68JD63A3AM9O2l49y5c5Kkpk2b2jkSACi6by9WEj0mJkYzZswotM3+/fsVGBhYnM2Xmb8mWtLS0nTzzTfrxIkT/AEsBzIyMlSvXj2dPHlSXl5e9g4HJVRRzqdhGDp//nyJy1Bdb79cVgzD0IgRI+Tn56dvvvlGlStX1sKFC9WjRw/t2LFDtWvXliSNHz/esk5QUJAyMzP16quvWpLoxeHh4SEPDw/L85tvvlmS6NsdUEX5vXZWnJ/SVVr9O8zq1KmjkydPqnr16pZvL8H+6DfKF85n0ejbS1fNmjUl8bndEdEfOC7OTem73r69WEn0MWPGaODAgYW2adSoUXE2bamTe/r0aUvS5erz1q1bW9qcOXPGar0rV64oNTW1wDq7Ut5Ey1Xe3t688coRLy8vzmc5UhHOZ2l8YLzefrm4/WdRNmzYoLVr1+r333+3nK958+YpPj5ey5YtU0xMTL7rBQcHa8qUKcrOzpaHh4cCAgJ0+vRpqzanT5+Wl5dXvqPQ8+PiYr5nNn2746oIv9fOjPNTekgIlB4XFxfVrVvX3mGgAPQb5Qvns3D07aWHz+2Oj/7AcXFuStf19O3FSqLXqlVLtWrVKs6qRWrYsKECAgK0fv16S9I8IyND27Zt0/DhwyVJISEhSktLU2JioqXW7oYNG5Sbm6vg4OAyiQsAHNn19stl1X9mZWVJ+vOD8FUuLi7Kzc0tcL2kpCTVqFHDcoEzJCREX3zxhVWb+Ph4hYSEFDs2AAAAAACAknApuknJnDhxQklJSTpx4oRycnKUlJSkpKQkXbhwwdImMDBQH3/8sSRzXd2RI0fqX//6l9asWaM9e/YoIiJCderUUe/evSVJzZo1U1hYmKKiorR9+3Z99913io6OVr9+/fhaFQAU4nr6z19//VWBgYHavn27Zb2UlBQlJSXp8OHDkqQ9e/YoKSlJqampkszJ7xo1aigyMlK7d+/WTz/9pGeffVbHjh1Tt27dJEmfffaZFi5cqL179+rw4cOaP3++pk6dqieffNKyn2HDhuno0aN67rnndODAAc2bN0+rVq3SqFGjbPUSAQAAAAAAWCnzG4tOmDBBy5YtszwPCgqSJG3cuFEdOnSQJB08eFDp6emWNs8995wyMzM1dOhQpaWlqX379oqLi5Onp6elzfLlyxUdHa1OnTrJxcVFffr00ezZs28oNg8PD02cODHfEi9wPpzP8oXzWXaK6j8vX76sgwcPWkaXS1JsbKzVjZnvvfdeSdKSJUs0cOBA+fr6Ki4uTi+++KI6duyoy5cv67bbbtOnn36qVq1aSZIqVaqkuXPnatSoUTIMQ02aNNHrr7+uqKgoy3YbNmyozz//XKNGjdKbb76punXrauHChQoNDb3u4+O947g4N46N8wPgRtFvlC+cT9ga7znHxblxXJwb+zEZhmHYOwgAAAAAAAAAABxRmZdzAQAAAAAAAADAWZFEBwAAAAAAAACgACTRAQAAAAAAAAAoAEl0AAAAAAAAAAAKUGGT6HPnzlWDBg3k6emp4OBgbd++3d4hoRimT58uk8mkkSNHWuZdvHhRI0aM0E033aRq1aqpT58+On36tP2CRIFycnI0fvx4NWzYUJUrV1bjxo01ZcoUXXu/Y8MwNGHCBNWuXVuVK1dW586ddejQITtGDUdG325//F47lk2bNqlHjx6qU6eOTCaTPvnkkzxt9u/fr549e8rb21tVq1bVnXfeqRMnTliW83cVqFjoN8qXadOm6c4771T16tXl5+en3r176+DBg1Ztrud8nThxQt26dVOVKlXk5+enZ599VleuXLHlocBJ3ejn89WrVyswMFCenp5q0aKFvvjiCxtFWvEU93+nlStXymQyqXfv3mUbYAV1o+dl1qxZatq0qSpXrqx69epp1KhRunjxoo2irVgqZBL9gw8+0OjRozVx4kTt3LlTrVq1UmhoqM6cOWPv0HADduzYobffflstW7a0mj9q1Ch99tlnWr16tb7++mudOnVKDz74oJ2iRGFmzJih+fPn66233tL+/fs1Y8YMvfLKK5ozZ46lzSuvvKLZs2crNjZW27ZtU9WqVRUaGsofBeRB3+4Y+L12LJmZmWrVqpXmzp2b7/IjR46offv2CgwMVEJCgn744QeNHz9enp6eljb8XQUqFvqN8uXrr7/WiBEjtHXrVsXHx+vy5cu6//77lZmZaWlT1PnKyclRt27ddOnSJW3evFnLli3T0qVLNWHCBHscEpzIjX4+37x5s/r376/Bgwdr165d6t27t3r37q29e/faOPLyr7j/Ox0/flzPPPOM7rnnHhtFWrHc6HlZsWKFYmJiNHHiRO3fv1+LFi3SBx98oBdeeMHGkVcQRgV01113GSNGjLA8z8nJMerUqWNMmzbNjlHhRpw/f9645ZZbjPj4eOO+++4znn76acMwDCMtLc2oVKmSsXr1akvb/fv3G5KMLVu22ClaFKRbt27G448/bjXvwQcfNMLDww3DMIzc3FwjICDAePXVVy3L09LSDA8PD+Pf//63TWOF46Nvdwz8XjsuScbHH39sNe+RRx4xBgwYUOA6/F0FKjb6jfLnzJkzhiTj66+/Ngzj+s7XF198Ybi4uBgpKSmWNvPnzze8vLyM7Oxs2x4AnMqNfj5/+OGHjW7dulnNCw4ONv75z3+WaZwVUXH+d7py5YrRrl07Y+HChUZkZKTRq1cvG0RasdzoeRkxYoTRsWNHq3mjR4827r777jKNs6KqcCPRL126pMTERHXu3Nkyz8XFRZ07d9aWLVvsGBluxIgRI9StWzer8yhJiYmJunz5stX8wMBA1a9fn/PrgNq1a6f169frp59+kiTt3r1b3377rbp06SJJOnbsmFJSUqzOp7e3t4KDgzmfsELf7jj4vXYeubm5+vzzz3XrrbcqNDRUfn5+Cg4OtirdwN9VANei33B+6enpkqSaNWtKur7ztWXLFrVo0UL+/v6WNqGhocrIyNC+fftsGD2cSXE+n2/ZsiXP//ihoaH0HaWsuP87TZ48WX5+fho8eLAtwqxwinNe2rVrp8TEREvJl6NHj+qLL75Q165dbRJzReNm7wBs7ezZs8rJybH6ACBJ/v7+OnDggJ2iwo1YuXKldu7cqR07duRZlpKSInd3d/n4+FjN9/f3V0pKio0ixPWKiYlRRkaGAgMD5erqqpycHL388ssKDw+XJMs5y+/3lfOJa9G3Ow5+r53HmTNndOHCBU2fPl3/+te/NGPGDMXFxenBBx/Uxo0bdd999/F3FYAV+g3nlpubq5EjR+ruu+/W7bffLun6/n9KSUnJ9+/21WVAforz+byg9xrvs9JVnHPz7bffatGiRUpKSrJBhBVTcc7Lo48+qrNnz6p9+/YyDENXrlzRsGHDKOdSRipcEh3O7eTJk3r66acVHx9vVXcRzmnVqlVavny5VqxYodtuu01JSUkaOXKk6tSpo8jISHuHB6AY+L12Hrm5uZKkXr16adSoUZKk1q1ba/PmzYqNjdV9991nz/AAOCD6Dec2YsQI7d27V99++629QwHgRM6fP6/HHntM77zzjnx9fe0dDq6RkJCgqVOnat68eQoODtbhw4f19NNPa8qUKRo/fry9wyt3KlwS3dfXV66urnnuNn769GkFBATYKSpcr8TERJ05c0Z33HGHZV5OTo42bdqkt956S+vWrdOlS5eUlpZmNZqC8+uYnn32WcXExKhfv36SpBYtWujnn3/WtGnTFBkZaTlnp0+fVu3atS3rnT59Wq1bt7ZHyHBQ9O2Og99r5+Hr6ys3Nzc1b97can6zZs0sCZaAgAD+rgKwoN9wXtHR0Vq7dq02bdqkunXrWuZfz/kKCAiwlAq4dvnVZUB+ivP5PCAggM/zNnCj5+bIkSM6fvy4evToYZl39aKqm5ubDh48qMaNG5dt0BVAcX5nxo8fr8cee0xDhgyRZP7fKzMzU0OHDtWLL74oF5cKV8W7TFW4V9Pd3V1t2rTR+vXrLfNyc3O1fv16hYSE2DEyXI9OnTppz549SkpKskxt27ZVeHi45XGlSpWszu/Bgwd14sQJzq8DysrKytOpu7q6Wv4gN2zYUAEBAVbnMyMjQ9u2beN8wgp9u+Pg99p5uLu7684779TBgwet5v/000+6+eabJUlt2rTh7yoAC/oN52MYhqKjo/Xxxx9rw4YNatiwodXy6zlfISEh2rNnj86cOWNpEx8fLy8vrzwXVICrivP5PCQkxKq9ZH6v0XeUrhs9N4GBgXnyMD179tTf//53JSUlqV69erYMv9wqzu9MQf97Seb+H6XMzjc2tYuVK1caHh4extKlS40ff/zRGDp0qOHj42N1t3E4j/vuu894+umnLc+HDRtm1K9f39iwYYPx/fffGyEhIUZISIj9AkSBIiMjjb/97W/G2rVrjWPHjhkfffSR4evrazz33HOWNtOnTzd8fHyMTz/91Pjhhx+MXr16GQ0bNjT++OMPO0YOR0Tf7hj4vXYs58+fN3bt2mXs2rXLkGS8/vrrxq5du4yff/7ZMAzD+Oijj4xKlSoZCxYsMA4dOmTMmTPHcHV1Nb755hvLNvi7ClQs9Bvly/Dhww1vb28jISHBSE5OtkxZWVmWNkWdrytXrhi33367cf/99xtJSUlGXFycUatWLWPs2LH2OCQ4kaI+nz/22GNGTEyMpf13331nuLm5GTNnzjT2799vTJw40ahUqZKxZ88eex1CuXWj5+avIiMjjV69etko2orjRs/LxIkTjerVqxv//ve/jaNHjxpffvml0bhxY+Phhx+21yGUaxUyiW4YhjFnzhyjfv36hru7u3HXXXcZW7dutXdIKKa/JtH/+OMP44knnjBq1KhhVKlSxXjggQeM5ORk+wWIAmVkZBhPP/20Ub9+fcPT09No1KiR8eKLLxrZ2dmWNrm5ucb48eMNf39/w8PDw+jUqZNx8OBBO0YNR0bfbn/8XjuWjRs3GpLyTJGRkZY2ixYtMpo0aWJ4enoarVq1Mj755BOrbfB3FahY6DfKl/zOpSRjyZIlljbXc76OHz9udOnSxahcubLh6+trjBkzxrh8+bKNjwbOqLDP5/fdd59V32IYhrFq1Srj1ltvNdzd3Y3bbrvN+Pzzz20cccVxo+fmWiTRy86NnJfLly8bkyZNMho3bmx4enoa9erVM5544gnj999/t33gFYDJMBjfDwAAAAAAAABAfipcTXQAAAAAAAAAAK4XSXQAAAAAAAAAAApAEh0AAAAAAAAAgAKQRAcAAAAAAAAAoAAk0QEAAAAAAAAAKABJdAAAAAAAAAAACkASHQAAAAAAAACAApBEBwAAAAAAAACgACTRAQAAAAAAANjEwIED1bt3b5vvd+nSpTKZTDKZTBo5cqRlfoMGDTRr1qxC1726no+PT5nGCMflZu8AAAAAAAAAADg/k8lU6PKJEyfqzTfflGEYNorImpeXlw4ePKiqVave0HrJycn64IMPNHHixDKKDI6OkehAITp06GC52piUlFTm+xs4cKBlf5988kmZ7w8AKiL6dgAof+jbAcAxJCcnW6ZZs2bJy8vLat4zzzwjb29vu43oNplMCggIUPXq1W9ovYCAAHl7e5dRVHAGJNGBIkRFRSk5OVm33357me/rzTffVHJycpnvBwAqOvp2ACh/6NsBwP4CAgIsk7e3tyVpfXWqVq1annIuHTp00JNPPqmRI0eqRo0a8vf31zvvvKPMzEwNGjRI1atXV5MmTfTf//7Xal979+5Vly5dVK1aNfn7++uxxx7T2bNnixV3VlaWHn/8cVWvXl3169fXggULSvIyoBwiiQ4UoUqVKgoICJCbW9lXP/L29lZAQECZ7wcAKjr6dgAof+jbAcB5LVu2TL6+vtq+fbuefPJJDR8+XH379lW7du20c+dO3X///XrssceUlZUlSUpLS1PHjh0VFBSk77//XnFxcTp9+rQefvjhYu3/tddeU9u2bbVr1y498cQTGj58uA4ePFiahwgnRxIdFcZvv/2mgIAATZ061TJv8+bNcnd31/r1629oW99++60qVaqkixcvWuYdP35cJpNJP//8c7GvogIAbgx9OwCUP/TtAFDxtGrVSuPGjdMtt9yisWPHytPTU76+voqKitItt9yiCRMm6Ny5c/rhhx8kSW+99ZaCgoI0depUBQYGKigoSIsXL9bGjRv1008/3fD+u3btqieeeEJNmjTR888/L19fX23cuLG0DxNOjCQ6KoxatWpp8eLFmjRpkr7//nudP39ejz32mKKjo9WpU6cb2lZSUpKaNWsmT09Py7xdu3apRo0auvnmmyXd+FVUAMCNo28HgPKHvh0AKp6WLVtaHru6uuqmm25SixYtLPP8/f0lSWfOnJEk7d69Wxs3blS1atUsU2BgoCTpyJEjJdr/1RI0V/cFSCTRUcF07dpVUVFRCg8P17Bhw1S1alVNmzbthreze/duBQUFWc1LSkpSq1atLM9v9CoqAKB46NsBoPyhbweAiqVSpUpWz00mk9U8k8kkScrNzZUkXbhwQT169FBSUpLVdOjQId17772lsv+r+wIkkuiogGbOnKkrV65o9erVWr58uTw8PG54G0lJSWrdurXVvF27dlnNu9GrqACA4qNvB4Dyh74dAFCQO+64Q/v27VODBg3UpEkTq6lq1ar2Dg/lEEl0VDhHjhzRqVOnlJubq+PHj9/w+jk5Odq7d2+eES07d+60+jB+o1dRAQDFR98OAOUPfTsAoCAjRoxQamqq+vfvrx07dujIkSNat26dBg0apJycHHuHh3Ko7G9bDjiQS5cuacCAAXrkkUfUtGlTDRkyRHv27JGfn991b+PgwYO6ePGi6tSpY5m3ZcsW/frrr3lGuQAAyh59OwCUP/TtAIDC1KlTR999952ef/553X///crOztbNN9+ssLAwubgwZhiljyQ6KpQXX3xR6enpmj17tqpVq6YvvvhCjz/+uNauXXvd20hKSpIkzZkzR0899ZQOHz6sp556SpL5wz4AwLbo2wGg/KFvBwDnN3DgQA0cODDP/KVLl1o9T0hIyNMmv28gGYZh9fyWW27RRx99VIIIC97X1b8hwFVcmkGFkZCQoFmzZum9996Tl5eXXFxc9N577+mbb77R/Pnzr3s7SUlJCg0N1dGjR9WiRQu9+OKLeumll+Tl5aXZs2eX4REAAP6Kvh0Ayh/6dgBAWUlPT1e1atX0/PPP39B61apV07Bhw8ooKjgDRqKjwujQoYMuX75sNa9BgwZKT0+/oe3s3r1bd955p/71r39ZzX/00Uctj4t7FRUAcGPo2wGg/KFvBwCUhT59+qh9+/aSJB8fnxta9+rIdFdX11KOCs6CkehAEebNm6dq1appz549kswfxlu0aFEm+xo2bJiqVatWJtsGAPyJvh0Ayh/6dgBAYapXr64mTZqoSZMm8vX1vaF1r67XsGHDMooOjs5kcEkdKNCvv/6qP/74Q5JUv359paamqnbt2tq3b5+aN29e6vs7c+aMMjIyJEm1a9dW1apVS30fAFDR0bcDQPlD3w4AAMoSSXQAAAAAAAAAAApAORcAAAAAAAAAAApAEh0AAAAAAAAAgAKQRAcAAAAAAAAAoAAk0QEAAAAAAAAAKABJdAAAAAAAAAAACkASHQAAAAAAAACAApBEBwAAAAAAAACgACTRAQAAAAAAAAAoAEl0AAAAAAAAAAAKQBIdAAAAAAAAAIAC/D9pNV++FzK5QwAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ], + "source": [ + "sim.plot()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "kPlPy2oo04p-" + }, + "source": [ + "Now, let's corrupt the synthetic data with 1mV of gaussian noise centered around zero," + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "id": "IW9PFOV904p-" + }, + "outputs": [], + "source": [ + "corrupt_V = synthetic_sol[\"Terminal voltage [V]\"].data\n", + "corrupt_V += np.random.normal(0, 0.001, len(corrupt_V))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "X8-tubYY04p_" + }, + "source": [ + "## Identify the Parameters" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "PQqhvSZN04p_" + }, + "source": [ + "Now, to blind fit the synthetic parameters we need to define the observation variables as well as update the forward model to be of PyBOP type (This composes PyBaMM's model class). For the observed voltage variable, we used the newly corrupted voltage array," + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": { + "id": "zuvGHWID04p_" + }, + "outputs": [], + "source": [ + "pyb_model = pybop.lithium_ion.SPM()\n", + "dataset = [\n", + " pybop.Dataset(\"Time [s]\", synthetic_sol[\"Time [s]\"].data),\n", + " pybop.Dataset(\"Current function [A]\", synthetic_sol[\"Current [A]\"].data),\n", + " pybop.Dataset(\"Terminal voltage [V]\", corrupt_V),\n", + "]" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ffS3CF_704qA" + }, + "source": [ + "Next, we define the targeted forward model parameters for estimation. Furthermore, PyBOP provides functionality to define a prior for the parameters. The initial parameters values used in the estimiation will be randomly drawn from the prior distribution." + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": { + "id": "WPCybXIJ04qA" + }, + "outputs": [], + "source": [ + "parameters = [\n", + " pybop.Parameter(\n", + " \"Negative electrode active material volume fraction\",\n", + " prior=pybop.Gaussian(0.5, 0.02),\n", + " bounds=[0.48, 0.625],\n", + " ),\n", + " pybop.Parameter(\n", + " \"Positive electrode active material volume fraction\",\n", + " prior=pybop.Gaussian(0.65, 0.02),\n", + " bounds=[0.525, 0.75],\n", + " ),\n", + "]" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "n4OHa-aF04qA" + }, + "source": [ + "We can now define the fitting signal, a problem (which combines the model with the dataset) and construct a cost function." + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "metadata": { + "id": "etMzRtx404qA" + }, + "outputs": [], + "source": [ + "# Define the cost to optimise\n", + "signal = \"Terminal voltage [V]\"\n", + "problem = pybop.Problem(pyb_model, parameters, dataset, signal=signal)\n", + "cost = pybop.RootMeanSquaredError(problem)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "eQiGurUV04qB" + }, + "source": [ + "Let's construct PyBOP's optimisation class. This class provides the methods needed to fit the forward model. For this example, we use a root-mean square cost function with the BOBYQA algorithm implemented in NLOpt." + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "metadata": { + "id": "N3FtAhrT04qB" + }, + "outputs": [], + "source": [ + "parameterisation = pybop.Optimisation(\n", + " cost=cost,\n", + " optimiser=pybop.NLoptOptimize,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "caprp-bV04qB" + }, + "source": [ + "Finally, we run the estimation algorithm." + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": { + "id": "-9OVt0EQ04qB" + }, + "outputs": [], + "source": [ + "x, final_cost = parameterisation.run()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "-4pZsDmS04qC" + }, + "source": [ + "Let's view the identified parameters:" + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Hgz8SV4i04qC", + "outputId": "e1e42ae7-5075-4c47-dd68-1b22ecc170f6" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "array([0.48367449, 0.63380314])" + ] + }, + "metadata": {}, + "execution_count": 69 + } + ], + "source": [ + "x" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "KxKURtH704qC" + }, + "source": [ + "## Plotting" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "-cWCOiqR04qC" + }, + "source": [ + "First, run the SPM forward model with the estimated parameters," + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "metadata": { + "id": "ZVfozY0A04qC" + }, + "outputs": [], + "source": [ + "params.update(\n", + " {\n", + " \"Negative electrode active material volume fraction\": x[0],\n", + " \"Positive electrode active material volume fraction\": x[1],\n", + " }\n", + ")\n", + "optsol = sim.solve()[\"Terminal voltage [V]\"].data" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ntIvAJmA04qD" + }, + "source": [ + "Now, we plot the estimated forward model against the corrupted synthetic observation," + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 467 + }, + "id": "tJUJ80Ve04qD", + "outputId": "855fbaa2-1e09-4935-eb1a-8caf7f99eb75" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "<matplotlib.legend.Legend at 0x7d7b24dc6d40>" + ] + }, + "metadata": {}, + "execution_count": 71 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "<Figure size 640x480 with 1 Axes>" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAGwCAYAAABB4NqyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACJ4ElEQVR4nOzddXxV9RvA8c+5tWQjRtcoR4fkAAkZUiKoP0VECekQkVBGSUiHhLSEggiiYNAhA5FGkG5GbjQbbGy7cX5/DK5MaoNt557teb9e0+3ec899vpx7zn3ONxVVVVWEEEIIIdIRg9YBCCGEEEKkNkmAhBBCCJHuSAIkhBBCiHRHEiAhhBBCpDuSAAkhhBAi3ZEESAghhBDpjiRAQgghhEh3TFoH4IocDgeXL18mQ4YMKIqidThCCCGESARVVblz5w65cuXCYHh6HY8kQI9x+fJl8ubNq3UYQgghhHgOFy5cIE+ePE/dRhKgx8iQIQMQ/w/o4+OjcTRCCCGESIzIyEjy5s3r/B5/GkmAHuNBs5ePj48kQEIIIYTOJKb7inSCFkIIIUS6IwmQEEIIIdIdSYCEEEIIke5IH6AXYLfbsVqtWochXITFYnnmsEshhBCuQRKg56CqKuHh4dy+fVvrUIQLMRgMFChQAIvFonUoQgghnkESoOfwIPnJli0bnp6eMlmicE6eGRYWRr58+eQzIYQQLk4SoCSy2+3O5CdLlixahyNcSNasWbl8+TI2mw2z2ax1OEIIIZ5COiwk0YM+P56enhpHIlzNg6Yvu92ucSRCCCGeRRKg5yRNHOK/5DMhhBD6IQmQEEIIIdIdSYCEEEIIke5IAiRc3uDBgylbtmyqvmdoaCiKorB///5UfV8hhBCpQxKgdCY8PJxPPvmEwoUL4+7uTvbs2alWrRrTp08nOjpa6/ASpXXr1jRt2tRl9ydSz7046XAuhHg+Mgw+HTlz5gzVqlUjY8aMjBgxglKlSuHm5sbBgweZNWsWuXPn5o033njkdVarVZfDuvUat0icFQcu023RPsa8XZp3K+bVOhwhhM5IDVAyUFWV6Dhbqv+oqpqkOLt06YLJZGLPnj28++67FCtWjIIFC9KkSRNWrlxJ48aNgfjRTNOnT+eNN97Ay8uL4cOHAzB9+nQKFSqExWIhICCABQsWOPf9uCaj27dvoygKISEhAISEhKAoChs3bqRChQp4enpStWpVjh8/niDOUaNGkT17djJkyEDbtm2JiYlxPjd48GC+/fZbfv31VxRFce7/wfsvWbKEmjVr4u7uzvfff//Y5rOJEyfi7+//1P09cObMGWrXro2npydlypRh+/btSfo3Fymn26J9AHz28wGNIxFC6JHUACWDe1Y7xQetTfX3PTK0Hp6WxB3CGzdusG7dOkaMGIGXl9djt3l4GPfgwYMZNWoUEydOxGQysXz5cj755BMmTpxIUFAQK1asoE2bNuTJk4fatWsnKe7+/fszfvx4smbNSqdOnfjoo4/466+/APjxxx8ZPHgwU6dOpXr16ixYsIDJkydTsGBBAHr37s3Ro0eJjIxk3rx5AGTOnJnLly8D0LdvX8aPH0+5cuVwd3dn5syZT43lWfvr378/48aNo0iRIvTv35/mzZtz6tQpTCY5dbR0+tpdrUMQIl3749gVft57idAbUdyLs7Pqk1dwNxu1DitJ5CqeTpw6dQpVVQkICEjwuJ+fn7OGpWvXrowePRqA999/nzZt2ji3a968Oa1bt6ZLly4A9OzZkx07djBu3LgkJ0DDhw+nZs2aQHzC0qhRI2JiYnB3d2fixIm0bduWtm3bAvDll1+yYcMGZ4ze3t54eHgQGxtLjhw5Htl3jx49eOuttxIdy7P217t3bxo1agTAkCFDKFGiBKdOnaJo0aJJKrNIXnXGbyYbt+huWsZie9I+f0KIF/fR/D0AvG3Ygr8hnC3HA3itZE6No0oaSYCSgYfZyJGh9TR53xe1a9cuHA4HLVq0IDY21vl4hQoVEmx39OhROnTokOCxatWqMWnSpCS/Z+nSpZ2/58wZf8JcvXqVfPnycfToUTp16pRg+8DAQDZt2pSoff837hf1pFglAdLOvTg7Cg4mmqdS1XgELyUG+FjrsIRIN25GxQFQSTnKeMsMAHbFdAEkAUp3FEVJdFOUVgoXLoyiKI/0t3nQtOTh4ZHg8Sc1kz2JwRDfnezhfkkPlg35r4c7Jj9odnM4HEl6vyf5b9wGg+GRvlJPiutxUjJWkXRDfj/MvL9CaWH8g6rGIwCYsWkclRDpx91YGy8PW487sYwxz3I+nslNw6Cek3SCTieyZMlC3bp1+frrr4mKikry64sVK+bsp/PAX3/9RfHixYH4hUABwsLCnM8/zxw6xYoVY+fOnQke27FjR4K/LRZLotfbypo1K+Hh4QmSoP/GlZT9Ce1cuBnNvL9CyaNcI9i0yPm4xShLkAiRWqZuOgVAH9OP+BuuOB/XYzLh2tUWIllNmzaNatWqUaFCBQYPHkzp0qUxGAzs3r2bY8eOUb58+Se+tk+fPrz77ruUK1eOoKAgfv/9d5YtW8aGDRuA+BqkKlWqMGrUKAoUKMDVq1cZMGBAkmP85JNPaN26NRUqVKBatWp8//33HD582FlTBeDv78/atWs5fvw4WbJkwdfX94n7q1WrFteuXWPMmDH873//Y82aNaxevRofH5/n2p/QTotvdgIqo0yz8FZisKkGTIoDP2+L1qEJkW78uPsCFZRjtDGuAcCuKhgVFUjaqGRXoMekTTynQoUKsW/fPoKCgggODqZMmTJUqFCBKVOm0Lt3b4YNG/bE1zZt2pRJkyYxbtw4SpQowcyZM5k3bx61atVybjN37lxsNhvly5enR48efPnll0mOsVmzZgwcOJDPPvuM8uXLc+7cOTp37pxgm/bt2xMQEECFChXImjXrIzVTDytWrBjTpk1j6tSplClThl27dtG7d+/n3p/Qxt5zNzl/M5rmxj+objxMjGpmvj31+90JkZ51XfQ3UVF3GGOehUFRWWKrxQ3ibxhVHSZAiprUyWTSgcjISHx9fYmIiEhQUwAQExPD2bNnKVCgAO7u7hpFKFyRfDZSRnScjeKD1pKba6x1+xxvJYZh1g+IxcyX5nns83qFcn1WaB2mEGma3aFSqN8q+psW0t60ijA1M/ViR7PBrQ/ZlNucfms1hUpX1TrMp35//5fUAAkhXNq5G9GAykjzN3grMexxvMQ8e31eK6GvESdC6Nm1O7GUV47T1rgagGBrWyLxcg4O0WNNiiRAQgiXdfZ6FA0m/UkzYwg1jAeJUc18Zu3A0s7VsJgeXL70eOkVQj8mbzxJzZGrGWueiUFRWWqrQYijXMKNdNiYJAmQEMJlLdl9gVxcZ4BpIQDjbO/yfsM6lM+fGZDRX0KkNFVVmbD+BL1NP1LQEE64molhtg8A+Kvvq6g6Pg9lFJgQwmXN3HySheaZZFDusddRhLn2BhyolA/4N/1RpAZIiBSz9nA4lZWjDzV9tSMSb0582QCLycBV55b6Ow8lARJCuJSIe1YW7jjH2LXHaWVcTzXjYaJVN3pZO7G1bxDebvGXLfXB2nX6u+4K4fJirHZGrT7G0m1HWWOZgUFRWWyrxSZHOf4eWPehJuh4OmwBkwRICOFahq04wk97L1JQueyc8HCkrTmhak5yZfR4xquFEC8qItpKmaHrABhhWkhewzUuqn58afuANtX8yez179xb/zaB6S8Dkj5AQgiX8tPeixixM8E8HXfFyhZ7KRbag9jZr84TXqG/C68Qrmz90fgZnmsb9vG+aRMOVaFXXGfu4snARsUf/yIdVgFJAiSEcBmHL0cA0Mn4O2UNp4lUPfnM2gGzyUR2n//MraTot/OlEK5s+MojZOQOo82zAZhrr89OtRij3iqFwZDwvHtQA6TD/EcSIPH85s+fT8aMGbUOI0n0GHN6ER1no9XcXZRQQulh+hmAL6ytCCcLfw+s+8TXSSdoIZJPVKyNW9FWhpnnkU25zUlHbsbamgHw3v0BCI+nv/NQEqB0pHXr1iiK8shP/fr1n/laf39/Jk6cmOCxZs2aceLEiRSK9l+StKR9t6PjKD5oLZF3oxhvno5ZsbPaXpHljurkzujh7PickNQACZGcbHYHJb5YS2PDNhobd2BTDfS0dqZAjqfdhOh3IkTpBJ3O1K9fn3nz5iV4zM3N7bn25eHhgYeHdEoVL+6tadsA6Gn6iaKGC1xTfehvbUufekVpUjbXE16l386XQrii+dtCycYthpnjvyO+tjfloFqQ0B41nvlaPdbESg1QOuPm5kaOHDkS/GTKlAlVVRk8eDD58uXDzc2NXLly0b17dyB+RfVz587x6aefOmuN4NGamcGDB1O2bFnmzp1Lvnz58Pb2pkuXLtjtdsaMGUOOHDnIli0bw4cPTxDThAkTKFWqFF5eXuTNm5cuXbpw9+5dAEJCQmjTpg0RERHO9x48eDAAsbGx9O7dm9y5c+Pl5UXlypUJCQlJsO/58+eTL18+PD09efPNN7lx40bK/MOKF3LmehQVlGN0MMav6dXP2o63qpeha+3C5Mnk+YRXKff/q78LrxCu5uz1KL5ceYTR5llkVKI44CjA17amNH3iDUi8B2efHpcVlRqg5KCqYI1O/fc1eyZbR9Cff/6Zr776isWLF1OiRAnCw8P5559/AFi2bBllypShQ4cOtG/f/qn7OX36NKtXr2bNmjWcPn2a//3vf5w5c4aXXnqJzZs3s23bNj766COCgoKoXLkyAAaDgcmTJ1OgQAHOnDlDly5d+Oyzz5g2bRpVq1Zl4sSJDBo0iOPHjwPg7e0NQLdu3Thy5AiLFy8mV65cLF++nPr163Pw4EGKFCnCzp07adu2LSNHjqRp06asWbOGL774Iln+vUTyCY+IwZMYxptnOKfZX++oQOjrTxhtIoRIdrXHhfCecRO1jf8Qq5rpae2MDROj/1f6qa9TFSU+C5IEKJ2yRsOIp2fJKaLfZbB4JeklK1ascCYQzt3064e7uzs5cuQgKCgIs9lMvnz5qFSpEgCZM2fGaDSSIUMGcuTI8dT9OxwO5s6dS4YMGShevDi1a9fm+PHjrFq1CoPBQEBAAKNHj2bTpk3OBKhHjx7O1/v7+/Pll1/SqVMnpk2bhsViwdfXF0VRErz3+fPnmTdvHufPnydXrvh/+969e7NmzRrmzZvHiBEjmDRpEvXr1+ezzz4D4KWXXmLbtm2sWbMmSf9mImVExlj55s+zTN54ki9N35PfcJWLqh9DbS0J6V3r2TuQFjAhkkXwsgPkVa44l5wZY3uXU2oeFrWvjJvJmKh9qDo8ESUBSmdq167N9OnTEzyWOXNmoqKimDhxIgULFqR+/fo0bNiQxo0bYzIl7SPi7+9PhgwZnH9nz54do9GIwWBI8NjVq/9OoL5hwwZGjhzJsWPHiIyMxGazERMTQ3R0NJ6ej2/+OHjwIHa7nZdeeinB47GxsWTJkgWAo0eP8uabbyZ4PjAwUBIgFxAdZ6PF7J0cvBRBTcM/fGDaCEAfa0f+V604/n6JSOxlGLwQL0xVVZbsOscPlpl4KzHscBRjrr0BAFUL+SViD/o9DyUBSg5mz/jaGC3eN4m8vLwoXLjwI49nzpyZ48ePs2HDBtavX0+XLl0YO3Ysmzdvxmw2Jz6k/2yrKMpjH3M4HACEhoby+uuv07lzZ4YPH07mzJnZunUrbdu2JS4u7okJ0N27dzEajezduxejMeEdyn9ruIRrUVWV4oPWApCJSMaaZwIwz1aP7Y4S/NC4RJL2J32AhHg+kTFWSg9eRyfjCiobjnFXdae3tSNVC2cluEGxpO1MmsDSKUVJclOUK/Lw8KBx48Y0btyYrl27UrRoUQ4ePMjLL7+MxWLBbrcn+3vu3bsXh8PB+PHjnbVEP/74Y4JtHvfe5cqVw263c/XqVV555ZXH7rtYsWLs3LkzwWM7duxIxujF81h35Mr931RGmb9xzjUyytacPz+rnYQ96ffOUwit3YyK4+Vh6ymhnKWnaSkAQ2wtuahmY8tHlR+Z8PBJ9Jf2/EsSoHQmNjaW8PDwBI+ZTCZWrFiB3W6ncuXKeHp6snDhQjw8PMifPz8Q37S1ZcsW3nvvPdzc3PDzS0zV6LMVLlwYq9XKlClTaNy4MX/99RczZsxIsI2/vz93795l48aNlClTBk9PT1566SVatGhBy5YtGT9+POXKlePatWts3LiR0qVL06hRI7p37061atUYN24cTZo0Ye3atdL85QImbjgJQDNjCPWMe4hTjXxi7UosFvJmTnqtpr4vwUJo4+Vh63Enlsnmr7EodlbZK7HUXhMg0clPAjqsAZJh8OnMmjVryJkzZ4Kf6tWrkzFjRmbPnk21atUoXbo0GzZs4Pfff3f2pxk6dCihoaEUKlSIrFmzJls8ZcqUYcKECYwePZqSJUvy/fffM3LkyATbVK1alU6dOtGsWTOyZs3KmDFjAJg3bx4tW7akV69eBAQE0LRpU3bv3k2+fPGzlVapUoXZs2czadIkypQpw7p16xgwYECyxS6ez9GwSPyVML4wfQfAONu7HFH9af7UWWYfR3nov0KIpOpv+p5ChjDC1Uz0s7YFFL5vVzlJ+1B1PBGioupx8H4Ki4yMxNfXl4iICHx8fBI8FxMTw9mzZylQoADu7u5P2INIj+Sz8XSHLkUwbMUR9p69yk+WwZQ1nGGbvTgtrP3I5OXOhp41E6wy/Sw7ln1NlQP9OeRRkZKfb0jByIVIG25Hx/HJ4v3UKZaNkN8XMNcyDoAWccH85ShFu+oFGJDE6ScuDilKHjWMYw2WUrTyaykRdpI87fv7v6QJTAiRKl6fshWAnqZllDWcIUL1pJe1MyqGp6719UTOUWCO5AtSiDSsw4K97Dp7k8MnTrHGbRYAs20N+ctRirMjGzonuX0eeqxJkSYwIUSKi46zAVBBOUZX468A9Le2JYwsfNFYJjwUIqWFXo9i19mbgMoY80z8lEiOOvIyzvYuO/vVee7kR9XxhFySAAkhUtyYNcfJQDRfmadjVFR+tldnhSOQ9q8UoE21Ai+0b0V/110hUtWyvy9Sa1wIAB8YN/CqcT+xqplPrN2IxYKPe+KnOnkSPfamkSYwIUSKUlWV+dtCGW+eT17DNS44svKFtTWhoxq92I5lIkQhEmXqplMAFFIuOWd7HmV7jxNqXgDczemzLiR9ljoZ6DHbFSlLPhOPV3rIOl43bOdt41bsqkIPaxf2D387Gd9B/t2FeJpLt+9hxsYk81TcFStb7KWYb68HQIvK+V6o74+TDq9/UgOURA9mNY6OjsbDw0PjaIQriYuLA3hkZur0zjvmCsPd5gAw1d6EvWoAJmNy3HvF70Nmghbi6WKsDj43LaWkIZSbqje9rJ3oUrsIfeoVfeF9P1gMVY9noSRASWQ0GsmYMaNzLStPT8/kyZ6FrjkcDq5du4anp2eS109LqyJjrHibDYw3T8dXiWa/oxCTbW9pHZYQ6crJK3eoYjhCR+MKAPpa23ONTLSrXjBZ9u/sBC01QEkzffp0pk+fTmhoKAAlSpRg0KBBNGjQ4LHbW61WRo4cybfffsulS5ecK4vXr18/wXZTp05l7NixhIeHU6ZMGaZMmeJc2Tw5PFiV/OEFPYUwGAzky5dM1ck6t+5wOB0W7KWz8Tc+Nx8hSnWjh7ULNkz4erx4h0t4ePSJEOJxgpcdYPWuI6xym4ZBUfnBVpuBvT9j1nPNuJ72aJoA5cmTh1GjRlGkSBFUVeXbb7+lSZMm7Nu3jxIlHl0QccCAASxcuJDZs2dTtGhR1q5dy5tvvsm2bdsoV64cAEuWLKFnz57MmDGDypUrM3HiROrVq8fx48fJli1bssStKAo5c+YkW7ZsWK3WZNmn0D+LxZJg1fv0ymZ30GHBXsopJ+llil/XbYitJaFqTt6tkId2ryTPnafkP0I83vSQ0+y/cIu1h8OZZZ5FLuUmpx05WZOnO82TPfmRGqDn0rhx4wR/Dx8+nOnTp7Njx47HJkALFiygf//+NGzYEIDOnTuzYcMGxo8fz8KF8T3bJ0yYQPv27WnTpg0AM2bMYOXKlcydO5e+ffs+No7Y2FhiY2Odf0dGRiYqfqPRKP09hPiPfy7exocoJpu/xqQ4+N1ehR/ttXi1aDbG/K9Msr+f9AESIqHRa44B8KFxPa8Z9xKrmuhu/Zhp7yRtmYukUHV4HrrM7ardbmfx4sVERUURGBj42G1iY2MfWWLAw8ODrVvjZ5iNi4tj7969BAUFOZ83GAwEBQWxffv2J773yJEj8fX1df7kzZs3GUokRPoTej2Kt6dvY7h5DnkN1zjvyEo/aztAYdw7yZz8SFOjEI94MBq1mHKOAabvARhla87SIR3Jn8Ur+d/vMb/pheYJ0MGDB/H29sbNzY1OnTqxfPlyihd//Myw9erVY8KECZw8eRKHw8H69etZtmwZYWFhAFy/fh273U727NkTvC579uyPrID+sODgYCIiIpw/Fy5cSL4CCpFOHLoUQa1xIbxrDKGxcQdW1Uh368fcwZPQUY2StM5Xkuiw6l2IlPLz35fwIIYp5im4KVY22ssxz14fT0sKN/jo8DzUPAEKCAhg//797Ny5k86dO9OqVSuOHDny2G0nTZpEkSJFKFq0KBaLhW7dutGmTZsX7nfh5uaGj49Pgh8hRNK8PmUrhZRLDDF9C8B42zvsVwun4Ds+WA1efxdeIVJK76X/MMi0gMKGy1xRM9LH2pHQUa+n4DvqtyZW8wTIYrFQuHBhypcvz8iRIylTpgyTJk167LZZs2bll19+ISoqinPnznHs2DG8vb0pWDC+U6Wfnx9Go5ErV64keN2VK1ecI7eEEMlLVVX8+67EjTi+Nk/BQ4njT3tJZtpfx9fDzIaeNbQOUYh0Yebm07xu2E5z0yYcqkIPa1c8MmZ/9gtfgJ6HwWueAP2Xw+FI0CH5cdzd3cmdOzc2m42ff/6ZJk2aAPHJVPny5dm4cWOC/W3cuPGJ/YqEEC9m0/H46SCCTYsoZjjPddWHnvdXed/Zrw6Fs2VIoXfW7yKMQiS34+F3WLBmCyPM3wDxk45ud5TA30+GvD+JpqPAgoODadCgAfny5ePOnTssWrSIkJAQ1q5dC0DLli3JnTs3I0eOBGDnzp1cunSJsmXLcunSJQYPHozD4eCzzz5z7rNnz560atWKChUqUKlSJSZOnEhUVJRzVJgQIvks2HGOgb8coq5hD61N6wDoZe3MNTLxUbUCuJtTcJSkdIIWgvVHrrD6YBi/7TvHUsvX+Cj32OsowqT7k44aU3xqjvjzUIcVQNomQFevXqVly5aEhYXh6+tL6dKlWbt2LXXr1gXg/PnzCfr3xMTEMGDAAM6cOYO3tzcNGzZkwYIFZMyY0blNs2bNuHbtGoMGDSI8PJyyZcuyZs2aRzpGCyFe3MBfDpGDG4wxzwJglq0Rmx1lmN+mIrUCkmferWeRNEikV1tOXKP9d3sA6GP6iXKGU0Sqnnxi7Ybt/td7cIMXX+4icfSXAWmaAM2ZM+epz4eEhCT4u2bNmk/sIP2wbt260a1btxcJTQiRCAYcTLRMI5NylwOOAoy1NePMiIYYDJKWCJHSFu8+D0BVwyE6G38HoK+1HRfVrLxSxI+5rStiTpZ1955Mz8PgZdEiIUSSRcfZuH4nju6mZVQxHOWu6s7H1o+xYkrF5Ef6AIn0zeGArNxmojl+qYtFttqsclQBoGiODCme/CSgwzYwSYCEEElyKyqOcsPWU91wkO/MywHob/2Ic2oOhjV5dAb3FKPIMHiRfsVY7aw7fJmF5q/JptzmuCMPQ20tyeRp5r1K+ehWOyWnoPiXquO+eJIACSGSZN62ULJxi4nmqc67zl8d1anon4kPA/21Dk+IdKHowDV8alpGVWP8YsNdrJ8QgxuH+gdhSs2aH2cnaP3diEgCJIRItBirnakbj7HIMgU/JZIjjvwMsbUC4J7VnsrR6Hf+ESFexLbT16luOMjHxgc1sG05rebm2LD6qZz86JskQEKIRNsdepOepqVUNhzjjupBV2t3Yolf4sKSyhdeHde8C/HcrkTG0GP2Gla5/VsD+4ujOkDKTjvxBHqeCFESICFEomw5cY2582cx3/IbAH2t7SkYUIY+5fMwccMJRr1dOlXjUZ1LYQiRPty4G8vMkONM+U8N7PuV81EspyzhlFSSAAkhnmn5vouMWfIHK92mAfCdrS4rHVUIUqBhqZw0LJVT4wiFSNu+33mO/ssP0ce0mMqmY9xV3Z01sCPeLKV1eKg6HIwgCZAQ4qkG/3aYhdtOscQymczKXQ46/PnS9gEATcvl1jAyGQYv0oebUXH0X36IWob9dDX9WwN7VpUbjxchCZAQ4on+OnWd+dtCCTYtobzhJJGqB12tn/Bzt9rE2uyUz59Js9ge9AGSYfAirZu88SQ5ucEEc3wN7AJbECsc8etbtqicT8vQpA+QECJtavHNToIMe+loWglAH2tHXipailJ5fDWOTOp9RNrncKi8N2sHf4defWwNbM+6L9Gmmr+2QTprYh2aRvE8JAESQjwi4p6VhpP+JK9yhfHm6QDMtdVnraMSZz6soHF098lEiCKNm7HlNLtCb9LvPzWwpfJnp2vtwtQumjrr7T2VjkchSAIkhHhEmSHrcCOOZZaJ+CrR7HcUYqTtfQCXWedL0fOVV4hEGLPmOA0NO+jwUA3snB7vUCR7Bo0j+5eq49XgZcYkIUQC205dB1SGm+dSwnCO66oPneN6YMXE4g5VtA7PSZUESKRhNruDwspFxppnAjDD9jprHZVcKvnRO6kBEkI42R0q73+zkxbGjfzPuAW7qvCx9WPCyMJffV8ld0YPrUMUIs0LvR7F6+NW8avlK7yUWLbZizPW1oyyeTNqHdqT6bAKSBIgIQQAUzedYuza45RTTvKF6VsAxtjeo0PL1ix8KStGF2n6+tf9PkA6vPAK8Th3YqzsPXeL1vN2Md08k0KGMMLUzHxs/Zhe9YvTtnoBrUNMUyQBEkIQFWtj7NrjZCGCaZZJWBQ7q+0VmWl/nWBX6Gj5GP8uhSEJkEgb2s7fw67Qm3Q0rqCBcTdxqpEucZ9wA1+61Eqd1d2TSs/D4KUPkBDpnMOhMnPzaYzYmWKeQk7lJqcdOelj7YgrD/HQ3+VWiCeLsdrZFXqTQMNhPjMtBmCIrRX71CIaR/Z0qo4nJJUaICHSsRNX7vDaV1sA6GtaQlXjEaJUNzpaP+UuntQOyKpxhE8hw+BFGtJj8X5ycoOvzZMxKio/2Wvwvb0OAN99VEnj6J7Mmf7osAZIEiAh0rEHyU99wy46mVYA8UNtT6l52B78KtkyuGsZnhDpxh+HL/CjZSJZlDscduSnv/UjTg5viNno2g01eh6NKQmQEOlcIeUS48wzAJhla0R0kcacaVXRZeb7eTJXj0+IxIm4Z+UL03eUNZzmtupFR+unvF25sMsnP3onCZAQ6dT6I1fw4S6zzePxVmLYbi/OaNt7HG9ZQQfJjxBpw5Ld5znwy1cMN2/EoSr0sHblopqNwY1LaB1a4igPJkKUJjAhhA7E2ux0/G4X88xfU9AQzkXVj27Wj/n145qYdHLX+aDqXfoACT3aE3qTP45dZffmlSyyxE87Mc72LiGOsvz5WW0sJn2ch3omCZAQ6Yiqqqw9HE6nhX8TbPqBmsYD3FMtdIjrSeOqZSiZW/tFThNLUfQ7+kSkX/2WH+RqZCwbjl4hN9f41W0iZsXO7/YqTLO/wa9dq5E3s6fWYSbag7NPkcVQhRCubMbmM4xec4ymhq3OFd57WzvRsO5rdHbReUaeTJrphL6oqsqinecBcCeWWZYJ+CmRHHL408fakWPDGuBuNmocZVLp9zyUOjYh0onf/rnM6DXHKK2cZrR5NgBf25qw0lGFygWzuOBMz4kjM0ELvbA7HnxWVcaaZzrX2usQ15N3A1/SYfLzLz32AZIESIh0ovsP+8jKLWZZJuCmWFlvf5nxtncAyKejKncnfeZrIh27fc8KQBfjbzQ27sCqGukc14PL+DG0SUmNo3s+qo6XpJEESIg0TlVVOi7YgwUrMywTyaHc4qQjN59au6BiYFmXqmT30eN8P8pD/xXCtR24eJsKX27gVcPf9Db9CMAXttbsVosyp1UFjaN7cfpLf6QPkBBp2qFLEbw+ZSugMto0j/KGk0SonrS39uQunpwd2fChzsRCiJSweNd5+i47SCHlEpPMUzEoKgtsQSyy18HP2406xbJrHeIL0O/1QxIgIdIoq91xP/mBj4xraGYKwa4qdLN2J1TNyVfNyug8+ZFRYMK1Xb8bS4NJf3LtTiwZucM35nFkUO6x01GUobaWBBbMwtzWFbUO88Xody1USYCESKvuWe0AvGr4mwGmhQCMsL3Pn47SrOxenRK59DPk/bGUB//T4ZVXpHkOh8qwFUe4dicWMzZmWCZSwHCFi6ofneN6UCxPFha1r6zzm5CHh8Hr7zyUBEiINGri+pMUU84xxTwFg6KyyFabJp2G857FRJHsGbQOLxno+4tDpF1XI2OoNGLj/b9URpi+oYrhKHdUDz6K68NNfPi7W3VNY0w+92eClgRICKG1a3diqTh8A1m5xa9uY/FSYtlqL8EgWxtO5c2kdXgpQH8XXpG2zdl61vl7Z+PvvGPa4mx+PqHmZcXHaSX5eYgO28AkARIiDem26G9WHAjDnVi+sYwnl3KT046cdLF+gi2tne46bzoQade1O7EANDDs5HPzYiB+xNdmRxlmt6ygqxnXn0VWgxdCaO7cjShWHAhDwcEE83TKGM5wU/WmjfUzIvGmc61CWoeYrJT//F8IV7Fs3yVKK6f5yjwNgHm2eiy01+XwkHp4uaWtr91/hyJIDZAQQiO/7b8MQB/TjzQ07iJWNdExrifn1eyMebs071bMq3GEyUvPd54ibZqw7jiT/zhFLq7zjWU87oqVP+xlGWb7kOktXk5zyQ88PBGixoE8h7R3NIRIh9YcCmP8+hO8Ywyhi+k3AD63dmC3WpRjw+rreor9J9Px+FuR5py7EcXkP07hxT3mWMaSTbnNUUdePrZ+zNctKtCgVE6tQ0wZD05DHdYAyUzQQujcnRgrnRb+TaDhMMNNcwCYbGvKL474jpZpM/n5twuQHoffirRny8nrGLEzxTyFYoYLXFN9aRvXhyg8aJhWk5+H6fBGRGqAhNCp8IgYfv/nMsNXHaWocp6Z5glYFDu/26vwle1/AHz3USWNo0w50gQmXMGcrWeZ99dZLt6KZpRpDq8a93NPtdAurheX8aNKwcxah5ii9HweSgIkhE69O3M7529Gk5MbzLOMwef+DLO9rZ14Kbsvy7pUTZN9Dv5LaoCEVk5eucOwFUcA6G5cznv3Z1v/2Pox/6iF+ax+AJ1qpK3BB0+ix/Mw7V8dhUiDYm12zt+Mxoco5ltGk1O5yQlHbtrH9SQWC2t6vKL7GWafKa2XT7i06Dgbdb/aAsA7xhB6mn8CYJCtDfcKvkZouyoaRpea7k+EqL/8RxIgIfRm3NrjfL3pFBaszLJMIMBwkXA1E63jPsdq9mXme2XTfvKDDH8X2io+aC0AtQz7GWn6BoCvbU343h6UjpKfh+kvA5IESAgduRNj5etNp1BwMN483Tm9fpu4z3g3KJCPXy2C0ZBeUoP0Uk7hSlRVpcU3OwEopZxhqnkSJsXBz/ZXGGd7lwGNimkcYepSFf0uSiyjwITQkUrD49cXCjb9QGPjDuJUIx2tn3JUzU9QsezpKPn5lx77Hgj92nziGttO3yCvcoW5ljF4KbFssZeir7U9WbzcaPdKQa1D1IQ0gQkhkp2qqiiKwokrd7hntdPGuJoOppUA9LF2ZJujJAD5snhqGWbqu3/nKQmQSA2qqhJy4hp/n7tFJiL51jyarEokhx356WL9BCsmOtVMHx2eE9LveSgJkBAu7MbdWBpM+pOGpXIyf1sobxj+4gvzAgBGW9/jV0d1mpTNRXCDYvi4mzWOVoi0a8WBMD7+YR9e3ON7yxgKGsK5qPrRJu4z7hJ/8/FR9QIaR6kdPdYASROYEC7su+3nuHonlvnbQqll2Md48wwA5tteY7q9MQAGRSGHr7uWYWpMh1deoTuf/XQAC1ZmmidQ9v46e63iPucqmQAY0KhYumyCVtFvHyCpARLChan3b6sqKMeYYZ6IWbGz3F6NIbaWPKh6rls8u4YRaigdjHQT2ouOsxFxz0qs1crX5qlUNx7mrupO67jPOa3mJoePO0s7BZI3czprgk4DJAESwsWEHL+KfxYv9p67xeQ/TlFMOcdcyzjcFSsb7eXoY+3I0WENibU6OHH1DhXyZ9I6ZI0oD/1XiJRRafhG7sZaGWX6xrnIcAdrTw6o8f19fuocSJ5MkvxIDZAQ4oXsCb1J63m7nX/nV8L5zjIKHyWaXY4Aulq7079xadzNRtzNRir6p+1p9p9Gz1PwC30Ii7jH3VgbfU2LnbM8d7d+7Bx40KJyPkl+FJkIUQiRDNYfueL8PTs3WWgeSVYlgiOO/LSL600MbrSpln47Wj6WHq+8wqXZ7A7enr6Nfy5G0NH4O51MvwPQ19aetY6KAJz4sgEWk3SjfUBGgQkhXsjMLWcA8OUu31lGkddwjbOO7LSM60skXnzTsoLGEboORYbBixRSdOAabA6VZsZNBJt/AGC49X2W2muxtkcNAnJk0DhC1+GsidXhjYgkQEK4iB93XwDAi3vMt4xxLnHxobUf1/EFoGy+jBpG6Foc96+3cXaHtoGINCPO5uBenB2bQ6WhYQcj7i9xMd3WmNn21/mlazVJfv5Dzw3RkgAJ4QIG/3aY+dtC8SCGuZaxlDOc4pbqzYdxwVxUs6IosLt/EH7eblqH6jK2nrpOVa2DEGlGjNVOzbGbuBIZS13DHiaZp2JUVBbZajPa9h6L2lWmbN6MWofpcvRcAyQNmEJobNvp68zfFoobcXxjHk9lwzEiVQ8+jOtL13dfp3hOH5Z3qSbJz38UzeGjdQgiDdl49CpXImOpZdjPVPMk55QTA2xtmde6ElUL+2kdoou63wla4yieh9QACaGx/ssPYcHKDPNXVHtojpFv+3cgi7cbTcvl1jpEl1S5YBbYLX2AxIu7eCuarov+pqrhEDPMX2FR7KywV6a3tRMODNQumk3rEF2eHs9DqQESQmMXrkfwtXkytY3/cE+18FFcH277lSOL1Pg8lZvZ6PzdJv2AxHPae+4m1UdvoqJyjG/M43FXrKyzl6eHtSt2jLz9ch6tQ3Rp0VY7AOduRGscSdJJDZAQqchqd6AAJqOBsIh7TF53lInmqbxm3EusaqadtRe71GJU9UnPS1skjpt7/Pwr3txj2d6LvFspn8YRCT25dPse+87fotuifZRTTjLPMgZPJZYQexm6Wbvzxsv5aRnoT/Gc0tT6NDdjDWCEo+cuYbU7MBv1U6+in0iF0Dm7QyVowmaKf7GWe3F2qo3cQMUDA3nduJM41UhHaw/+cpQCYPTbpTWO1vW5ZS2EQ1XwVaIZs2yr1uEInak26g+6LdpHCeUs31pG463E8Je9BB2tnxKHmRFvlqJs3owy188znFFzAFBIucyYNcc0jiZp5MgKkUpuRsVx7kY0cTYHxQetYrhpDm8Zt2JVjXS1fkKIoxw5fNw5MrSerCuUCAY3T0LV+HXQyhpO4XDorw+C0MaFm/HNNQHKeRZaRjpnWm9n7UUsFgDcH2piFU92Qs0LQDnDaWb/eVbjaJJGEiAhUonqHCaqMtj0Lc1Nm7CrCj2sXVnviJ/gcEnHKnhapGU6sTY7ygDwmmEPBfut4ps/z2CV/kDiGV4Zs4lCyiW+t4wgk3KXfY7CfBTXh3tI03NSla3ZFLuqUMxwnrzKFfz7riTinlXrsBJFEiAhUkmszQGo9Dd9TyvTehyqQi9rZ1Y6qlDAz4uJzcqSP4uX1mHqyk6PVwB4w7iNbNziy5VHmXV/Nm0hHmf4yiPkV8JZZBmOnxLJQYc/reI+5y7/1rq2qCz9yRLr9col2eYoAUBb42oAei/9h8gYK7vO3nzoxs/1KKorR6eRyMhIfH19iYiIwMdHOsCJF7fp2FXazN9Fb9OPdDP9CsDn1vYssdcG4I9eNSmY1VvLEHXpWFgEd6YHUdFwgvX28nSwfoqKgY41ChLcsBgOh4rB8GCxRpVeS//Bw2xk+JulNI5cpLY9oTcZs/Y4l0OPs8QylNzKDY468tI8bgC3yUCZvBlZ2LYS3m4m5zIrInGa9xvDD5bh2FQD78YN4m/1JedzHWsWZP2RK/h5uzG8aUmKZE/ZmbST8v0tNUBCpLAYq50283fT3bjcmfwMtLZ2Jj9j/ldakp/nVDSnL4OtrYlVTdQ17mW4aS5G7MzccoaP5u+mYL9VtJ63i6//OElYRAzL/r7E9zvPc/VOjNahi1S05lAY/5uxnQtnT/KD+UtyKzc45cjFB3H9KFm4AMu7VOXXrtXI4G6W5Oc5bHeU4Dd7ICbFwTeWcZRU/q2Fnbn5DGeuRbHr7E3qfrVFwygfJZ0NhEghkTFWSg9eB0An42/0NP8EwDBrCxbYXwNg5oflqVcih2YxpgWHVX/6Wtsz3jyD901/UNRwnoHWNvxxf0BKyPFrhBy/Rpzt375BdcZv5uDgehpFLFKD3aHSbdHflMzty9i1x8nGLRZZvnQuMPx+XH+mdqhHlYJZtA5V99Z9WoO3voomn3KVsobT/GwZzCTb28y11yeGhPOZjVt7nMxeFt4sl5tMXhaNIo4nNUBCpJAlu+IXN21rXEVf82IAxlibMcfeCIDsPm6S/CST5Y5X6GL9hEjVg5cNp1jp1p/55tE0NmwjA/Ejfib/ccq5/Z0Ym1ahilSy9dR1Vh8KZ+za4/gRwSLLcAoYrnDekZX34wZwlUyS/CSTl7Jn4C6efBgXzHr7y7gpNj4zL+FPtx58bvqBosp5HiyW8fWmUwxdcYTui/dpGzRSAyREsguLuMfFW/f4etMpPjCuZ6B5IQATbW8xzd6EygUy87/yeaheRNYWSg55Mnlw8dY91jgqcTC2AL3NP9LEsI1axn+oZfwHu6pwUC3IfkchTqh5OeHIzSG1gNZhixRmvV/jl4lIFlpGUNhwmUtqFt63DiAMSXySW+dahdh8/Brtw3rxlv1PPjX9TF7DNTqbfqez6XeuqT7schTlmCMfJ9Q8nD6Viy2Hc1KjhHYdzqUT9GNIJ2jxvO7F2Sk2aA0AzYybGG2eDcA02xuMsTUjsKAfC9tVxmiQfgbJJcZq5/d/LlMzICvTQ04z769Q8ivhvG3cwuuGHRQ0hD/ympOO3BQZchikv0eatfnENbrP/YNFluGUMJwjXM1Es7iBnLs/cd/c1hV4tWh2jaNMWxwOlYL9VgFgxsarhr/5n/FPqhsO4qHEPbL939nf5uXOc5M1Bt10gp4+fTqlS5fGx8cHHx8fAgMDWb169VNfM3HiRAICAvDw8CBv3rx8+umnxMT826Fx8ODBKIqS4Kdo0aIpXRQhADh59Q4Abxm2MNL0DQDf2BowxtYMUPimVQVJfpKZu9nIOxXyki2DO4NeL05mLwvn1BxMsL3Lq3ETCIyZQo+4Lsy0NWK/oxAARQyXwGHXOHKREiKirRy4eJtuc0P4zjKKEoZzXFN9aRHXj6um3PzStRqnRzSU5CcFGAwKx7+sTwZ3E1ZMrHVUor21F6Vjv+F/sYMYYW3OT/YaHHAU4I7qwUW0PQaaNoHlyZOHUaNGUaRIEVRV5dtvv6VJkybs27ePEiVKPLL9okWL6Nu3L3PnzqVq1aqcOHGC1q1boygKEyZMcG5XokQJNmzY4PzbZJKWPpHyvlp/gkkbT1LfsIux5pkYFJVvbXX50vYBEJ/0eLnJZzElKYrCzn51mP3nGVQVrkTG8N12+MVRnV8c1fHlLv+4dwDA4XBgkMl+05wqIzeiWqNZYBlDGcMZbqretIjrx2k1N6HD6msdXprnZjKytkcN+vz0D++Uz0vWDG60+GYne9Si7LEXBed9h0rxGC/e0DBWTa/GjRs3TvD38OHDmT59Ojt27HhsArRt2zaqVavG+++/D4C/vz/Nmzdn586dCbYzmUzkyCGdS0XquXYnlkkbTxJoOMwk89cYFZXFtloMtrXiQfIztMmjn2mR/MxGA11qFQbim8fyZfbky5VHAfB2//eS51BVGQWSBlmtscw0T6ai4QQRqicfxPXjhJqXr98vp3Vo6UaujB58366K8+/DQ+rRddHfhBy/9tBWCmXya9sP0mVuR+12O0uXLiUqKorAwMDHblO1alUWLlzIrl27qFSpEmfOnGHVqlV8+OGHCbY7efIkuXLlwt3dncDAQEaOHEm+fE/uaBUbG0tsbKzz78jIyOQplEjzDl6MYPDvh7kdHUdJ5QyzzeNxU2ystlekn60dGdwtRMbY+KlTIBX8M2sdbrrjbjbS7pWCeFpMLNp1jnnvlYep8c+pSPfHtGL5votk8XLDy2JgtHkWdYz7iFHNfBTXhyOqP8eG1Ze1vTTk5WZiYrOyDFtxlJ//vsiHVfLjYTHS9f6NilY07wR98OBBAgMDiYmJwdvbm0WLFtGwYcMnbj958mR69+6NqqrYbDY6derE9OnTnc+vXr2au3fvEhAQQFhYGEOGDOHSpUscOnSIDBkePwPl4MGDGTJkyCOPSydo8TS3ouIoN2w9AAWUMJZahuCnRLLNXpw21s+IxcLhIfUIi7hH4WwpO/upSJyIm9fxnRzfD8ja7wpmi6z9pHenrt4laMJmAPqZvqeDaSU21UB7ay82OeJrfUJHNdIyRPGQh2dnTwm66QQNEBAQwP79+9m5cyedO3emVatWHDly5LHbhoSEMGLECKZNm8bff//NsmXLWLlyJcOGDXNu06BBA9555x1Kly5NvXr1WLVqFbdv3+bHH398YgzBwcFEREQ4fy5cuJDs5RRpS4zV7kx+fLnLXPMY57pCHaw9icVC5QKZ8XIzSfLjolRZPV73tp687kx+PjCup4NpJQCfWTs4k58cPpLkupKUTH6SSvMmMIvFQuHC8dVg5cuXZ/fu3UyaNImZM2c+su3AgQP58MMPadeuHQClSpUiKiqKDh060L9/fwyGR/O5jBkz8tJLL3Hq1KlHnnvAzc0NNze3Jz4vxH+FR8SPPDRhY6p5EgUMV7io+tHm/qKKY/9XmvolpR+ay3no4qsiq8br3Qdz4vt/BhoOM9j0LRA/2egyRw2yeFloUjY3Hwbm1zJE4cI0T4D+y+FwJOiP87Do6OhHkhyjMb5d90kteXfv3uX06dOP9BMS4kU8mD6mv+l7qhsPE6W60S6uN9fxZVPvWhTwk1XdXZGs85R23IqKn1cmr3KF6eaJmBQHy+zVmWaPH1e0s18dTEbNGzmEC9M0AQoODqZBgwbky5ePO3fusGjRIkJCQli7di0ALVu2JHfu3IwcORKIHzU2YcIEypUrR+XKlTl16hQDBw6kcePGzkSod+/eNG7cmPz583P58mW++OILjEYjzZs316ycIu1xqFDXsIc2pvjP6qfWLhxT82ExGST50QlpAtO3ehO3YMLGZPNUMipR7HMUJtjaDj9vd/YMCNI6PKEDmiZAV69epWXLloSFheHr60vp0qVZu3YtdevWBeD8+fMJanwGDBiAoigMGDCAS5cukTVrVho3bszw4cOd21y8eJHmzZtz48YNsmbNSvXq1dmxYwdZs2ZN9fKJtOnX/ZcYvngTa9xmATDT1oh1jop0q12YN1/OrXF04mmk/iftuHonlp6mZZQznCJS9aRrXHdisbCzZw2tQxM6ofkoMFckS2GIp/Hvu5JJ5q9pYtzGIYc/b8YN5cTIN6R5RQfuRNwkw1fx64DFfHYRd0/poK5XdYJnscbSF7Nip2tcd1Y6qtCr7kt8XKeI1qEJDelqFJgQenLhZjQVlGM0MW7DoSp8bu2AFZMkPzqhPGaghNCfbaev84XpO8yKnXX28qx0xE+6J8mPSAq5GgiRBMv+vkQ3068ALLbX4rDqr21AIkkeTlOlD5B+jfpmETWMB4lTjQyzfQBAd0l+RBK53CgwIVzZ0o1b+cTtHxyqwoz7o022fl5b46hE4j08DF4SIL1qYdwIwO+OQPzyBrCwWVnyZ5HBByJpJAESIglqGA4CsFsN4LyanTU9XiFPJk+NoxKJpSSYhE0SIF1SVWoa/wHgD8urLO9STeOAhF5JE5gQSVBCCQVgtyOADjUKUjSHdJLXK2kC06eYiCvkUG4B0Oo9md5EPD9JgIRIgly+ZgCiVTdeLZpN42hEUilyydO9LcfDAbCpBtzcpfZVPD+5GgiRBA8aUErl9qVKwSyaxiKS7uHBetIHSJ/cTf9+bRXK5q1hJELvktQH6Pbt2yxfvpw///yTc+fOER0dTdasWSlXrhz16tWjatWqKRWnEC5Buf+lmVc6XOrTQxmQzICmT1m8LACoKHi7STdW8fwSVQN0+fJl2rVrR86cOfnyyy+5d+8eZcuWpU6dOuTJk4dNmzZRt25dihcvzpIlS1I6ZiGEeHGSAemaTL0lXlSi0udy5crRqlUr9u7dS/HixR+7zb179/jll1+YOHEiFy5coHfv3skaqBBCvLiHh8ELfVLv/1cyIPFiEpUAHTlyhCxZnt7fwcPDg+bNmzvX4RIibZOLrx7JMPi0Q46eeFGJagLLkiULK1aswOFwJGqnz0qWhNAr5UGzieQ/uqQ8XAMkTWD6JMdNJJNEjwJr2rQpefPmpX///pw6dSolYxJCByQD0qcEw8CEDj1IXKUJTLyoRCdAZ8+epWPHjixevJiAgABq1qzJggULuHfvXkrGJ4RLUeRbU9ce7jirSE2CTslxE8kj0QlQ3rx5GTRoEKdPn2bDhg34+/vTuXNncubMSadOndi9e3dKximEi3hw8ZW7T11SZC0w/ZNzUCSP55oIsXbt2nz77beEhYUxduxYDh48SJUqVShTpkxyxyeEEMkm4VemJEBCpGcvNItUhgwZqFOnDufOnePYsWMcOXIkueISwrXJJCS6pCj/3vNJC5hOOfsACfFinqsG6N69e3z33XfUqlWLIkWKsHjxYnr27EloaGgyhyeEq5Hqd11LsBaGfIXqmXSCFi8qSTVAO3bsYO7cufz444/ExcXx1ltvsWHDBmrXrp1S8QnhUuSSq28yC5AQ4oFEJ0DFixfn+PHjlCtXjpEjR/L+++/j6+ubkrEJ4bqkCUynHp4HKHHzmgnX8qDiTmqAxItKdAIUFBTEDz/8IB2dRTon9QZ6liBvlSYwnZLjJpJHohOgyZMnp2QcQuiD3H3qmmJ4qBO0hnEIIbSXqE7Q9evXZ8eOHc/c7s6dO4wePZqpU6e+cGBCuCKZCDEtkWOpS9J0KZJJomqA3nnnHd5++218fX1p3LgxFSpUIFeuXLi7u3Pr1i2OHDnC1q1bWbVqFY0aNWLs2LEpHbcQGpFRYGmFtIDpkyKrwYtkkqgEqG3btnzwwQcsXbqUJUuWMGvWLCIiIgBQFIXixYtTr149du/eTbFixVI0YCFcgnSC1i2HqmBQVKQGSIj0LdF9gNzc3Pjggw/44IMPAIiIiODevXtkyZIFs9mcYgEK4Uok7RFCY7IYqkgmzz0TtK+vrwyDF+mX1ADplrPexyE1QHokR00kl+eaCVqIdEs6jqQhcix1SZV+eCJ5SAIkxHORi69ePWg6kfRH3+T4iRclCZAQSSDD4NMOVWrzdEqOm0gekgAJkSRS/a530nlW52QyUpFMnisBun37Nt988w3BwcHcvHkTgL///ptLly4la3BCuCy59urWgxRW1gITIn1L8iiwAwcOEBQUhK+vL6GhobRv357MmTOzbNkyzp8/z3fffZcScQrhEqQJTAityTB4kTySXAPUs2dPWrduzcmTJ3F3d3c+3rBhQ7Zs2ZKswQnhuuTiq1/3O0FLHyBdksMmkkuSE6Ddu3fTsWPHRx7PnTs34eHhyRKUEEII8Xj3MyC5BxEvKMkJkJubG5GRkY88fuLECbJmzZosQQnh8mQiRN1yNp1IVYKuSROYeFFJToDeeOMNhg4ditVqBeLXAjt//jyff/45b7/9drIHKIQrUWQUWJohnaD1SZHEVSSTJCdA48eP5+7du2TLlo179+5Rs2ZNChcuTIYMGRg+fHhKxCiE65BZaHVPvj717UHiKjVA4kUleRSYr68v69evZ+vWrRw4cIC7d+/y8ssvExQUlBLxCSFEsnLOBC2ZkBDp2nMvhlq9enWqV6+enLEI4fKUR34RQqQuyVxF8khyAjR58uTHPq4oCu7u7hQuXJgaNWpgNBpfODghXJdkQHolnaD1TY6aSC5JToC++uorrl27RnR0NJkyZQLg1q1beHp64u3tzdWrVylYsCCbNm0ib968yR6wEFqSiRDTDsl/9EmRiRBFMklyJ+gRI0ZQsWJFTp48yY0bN7hx4wYnTpygcuXKTJo0ifPnz5MjRw4+/fTTlIhXCNcgw+DTAMmA9EwSIPGiklwDNGDAAH7++WcKFSrkfKxw4cKMGzeOt99+mzNnzjBmzBgZEi/SKPnSTDtkGLwuySkokkmSa4DCwsKw2WyPPG6z2ZwzQefKlYs7d+68eHRCuBiZB0j/pOZA3x4sYSLHUbyoJCdAtWvXpmPHjuzbt8/52L59++jcuTOvvvoqAAcPHqRAgQLJF6UQLkcuvnrlHAbvkKoEPZMzULyoJCdAc+bMIXPmzJQvXx43Nzfc3NyoUKECmTNnZs6cOQB4e3szfvz4ZA9WCO3JOkRphaQ/eqU+9F8hnl+S+wDlyJGD9evXc+zYMU6cOAFAQEAAAQEBzm1q166dfBEK4UqcV13JgPRKfcxvQk/kuInk8dwTIRYtWpSiRYsmZyxCuDxJe9IA5zRA8kWqS9IHSCST50qALl68yG+//cb58+eJi4tL8NyECROSJTAhXJpce3XrwRenzOkkRPqW5ARo48aNvPHGGxQsWJBjx45RsmRJQkNDUVWVl19+OSViFMKFyCiwtELSH72Sc1AkjyR3gg4ODqZ3794cPHgQd3d3fv75Zy5cuEDNmjV55513UiJGIVyQXHz1S5bC0DU1wf+EeG5JToCOHj1Ky5YtATCZTNy7dw9vb2+GDh3K6NGjkz1AIVyJTMOvfw++OCX/0Ss5cCJ5JDkB8vLycvb7yZkzJ6dPn3Y+d/369eSLTAgXJithpAXyRapHirMGSE5C8WKS3AeoSpUqbN26lWLFitGwYUN69erFwYMHWbZsGVWqVEmJGIVwIdL/QO9kNXh9k6MmkkuSE6AJEyZw9+5dAIYMGcLdu3dZsmQJRYoUkRFgIs2TtCftkC9SvZKbEJE8kpwAFSxY0Pm7l5cXM2bMSNaAhNADVa69uuUcBi81QEKka0nuA1SwYEFu3LjxyOO3b99OkBwJkTbFf2lK/qN/kv7o1f2BCHISiheU5AQoNDQUu93+yOOxsbFcunQpWYISwvXJ1Ve/7i+GKjVAuqRKJ2iRTBLdBPbbb785f1+7di2+vr7Ov+12Oxs3bsTf3z9ZgxPC1SgyDb/uyVpg+iYzeIvkkugEqGnTpgAoikKrVq0SPGc2m/H395cV4EU6cL8JTMbB654qX6T6JDchIpkkOgFyOBwAFChQgN27d+Pn55diQQnh+uTiq1fSCVrfJHEVySXJo8DOnj2bEnEIoQuS9qQdkv/onZyN4sUkKgGaPHlyonfYvXv35w5GCN2QJjAde9AJWuMwhBCaSlQC9NVXXyVqZ4qiSAIk0jTpgCmEtv4diCDEi0lUAiTNXkLEk4uu/jkXQ8WhaRzi+cg5KJJLkucBepiqqjKXhkhXFJmGX/dk9JDOqXIOiuTxXAnQd999R6lSpfDw8MDDw4PSpUuzYMGCJO9n+vTplC5dGh8fH3x8fAgMDGT16tVPfc3EiRMJCAjAw8ODvHnz8umnnxITE5Ngm6lTp+Lv74+7uzuVK1dm165dSY5NiMdRHvlF6JbcvOmUDIMXyeO5FkMdOHAg3bp1o1q1agBs3bqVTp06cf36dT799NNE7ytPnjyMGjWKIkWKoKoq3377LU2aNGHfvn2UKFHike0XLVpE3759mTt3LlWrVuXEiRO0bt0aRVGcC7EuWbKEnj17MmPGDCpXrszEiROpV68ex48fJ1u2bEktrhBPIBdfvZLV4IUQ8BwJ0JQpU5g+fTotW7Z0PvbGG29QokQJBg8enKQEqHHjxgn+Hj58ONOnT2fHjh2PTYC2bdtGtWrVeP/99wHw9/enefPm7Ny507nNhAkTaN++PW3atAFgxowZrFy5krlz59K3b98klVWIR8iXphAakxogkTyS3AQWFhZG1apVH3m8atWqhIWFPXcgdrudxYsXExUVRWBg4GO3qVq1Knv37nU2aZ05c4ZVq1bRsGFDAOLi4ti7dy9BQUHO1xgMBoKCgti+ffsT3zs2NpbIyMgEP0I8lQyD1z3pvyhE+pbkBKhw4cL8+OOPjzy+ZMkSihQpkuQADh48iLe3N25ubnTq1Inly5dTvHjxx277/vvvM3ToUKpXr47ZbKZQoULUqlWLfv36AXD9+nXsdjvZs2dP8Lrs2bMTHh7+xBhGjhyJr6+v8ydv3rxJLodIH5ydoCUBEkIbkriKZJLkJrAhQ4bQrFkztmzZ4uwD9Ndff7Fx48bHJkbPEhAQwP79+4mIiOCnn36iVatWbN68+bFJUEhICCNGjGDatGlUrlyZU6dO8cknnzBs2DAGDhyY5Pd+IDg4mJ49ezr/joyMlCRIiDTq36YT+SLVI1kKQySXRCdAhw4domTJkrz99tvs3LmTr776il9++QWAYsWKsWvXLsqVK5fkACwWC4ULFwagfPny7N69m0mTJjFz5sxHth04cCAffvgh7dq1A6BUqVJERUXRoUMH+vfvj5+fH0ajkStXriR43ZUrV8iRI8cTY3Bzc8PNzS3JsYv0R4bB65/0HdE35f4pqEotrHhBiU6ASpcuTcWKFWnXrh3vvfceCxcuTJGAHA4HsbGxj30uOjoagyFhq53RaATi2/MtFgvly5dn48aNztXrHQ4HGzdupFu3bikSr0if5NKrf6pDahL0TBJZ8aIS3Qdo8+bNlChRgl69epEzZ05at27Nn3/++UJvHhwczJYtWwgNDeXgwYMEBwcTEhJCixYtAGjZsiXBwcHO7Rs3bsz06dNZvHgxZ8+eZf369QwcOJDGjRs7E6GePXsye/Zsvv32W44ePUrnzp2JiopyjgoTIjnIxVfP7q8FJk0pOiXHTSSPRNcAvfLKK7zyyitMmTKFH3/8kfnz51OzZk0KFy5M27ZtadWq1VObmR7n6tWrtGzZkrCwMHx9fSldujRr166lbt26AJw/fz5Bjc+AAQNQFIUBAwZw6dIlsmbNSuPGjRk+fLhzm2bNmnHt2jUGDRpEeHg4ZcuWZc2aNY90jBbiechaYEJoS0bvieSiqC/waTp16hTz5s1jwYIFhIeHU79+fX777bfkjE8TkZGR+Pr6EhERgY+Pj9bhCBdy5MtAituOcLD6VEoFfaB1OOI5hA0pTE71Gscb/0JA+dpahyOSaN/mXym3qSXnjPnJP/CA1uEIF5OU7+8XWguscOHC9OvXjwEDBpAhQwZWrlz5IrsTQgdkGLzeSfOlvinIavAieSR5GPwDW7ZsYe7cufz8888YDAbeffdd2rZtm5yxCSFEipGmFJ2SwyaSSZISoMuXLzN//nzmz5/PqVOnqFq1KpMnT+bdd9/Fy8srpWIUwmXIMPi04EEnaKFPcg6K5JHoBKhBgwZs2LABPz8/WrZsyUcffURAQEBKxiaEEClGkRogIdK1RCdAZrOZn376iddff9055FyI9EZqgPRP0h69k8VQRfJIdAKUFkZ3CfHC5NszDZGDqUuqdIIWyeOFRoEJkW7JzaeO3e8DJE1gQqRrkgAJkQT/rgYvp45eSdOJ3kkztEgezz0MXiRdrM1ORFQMJkccmTNl0jocIdIlRQFUsNntWocinoNU3InkIrexqWjPgv5knpCHo99/pnUo4rnJ3af+xR87q02+SfXpfh8gmYxUvCBJgFKR4pYBk+LAKzZc61CESLdUJX4Uqy02WuNIhBBakgQoFTky5AIgQ+xVjSMRz0t5zG9CX66bcwJgjgzVNhDxXBQZBi+SiSRAqeieR/yFN4PUAOmWrAavf5dMeQCICT+ucSTiecjoPZFcJAFKRWfVHDhUhWzKbTb/fVjrcMRzcF56pf+Bbm2+lQUAQ/g/GkcihNCSJECpqFm1EpxUcwOwZo1MLKlHD2qAJP/Rr8hslQAoq5zijwPnNI5GJJkqTWAieUgClIp8Pc3sdRQBoEj0fmKsMgxXiNRW8KVShKmZcVNszFu8iEU7z2sdkhBCA5IApbJNjnIAvGbcw897L2gcjUgq6YCpf1FxdkLsZQBoaNhJv+UHNY5IPB85B8WLkQQolQ3o3pVo1Y08ynWW/Pob9+KkFkiI1PRG2Vz85qgKQAPjLixYpWOtEOmQJECpLH8OP9Y7ygPwnvEP+v8id596pMhSGLpVPn9mdjqKEa5mIqMSxauGfRy+HKl1WCLRZDFUkTzkKq6B7211AGhi3Mb6v09qHI1ICkVqCtKEr957mZ/sNQBobVpLeESMxhGJRFMdWkcg0ghJgDSwSy3KSUduvJRY3jVu0joc8Vyk/4GeuZmMLLQFYVMNVDEc5fLxXdIM5qK+Wn+C7j/sw+H47/GRc1C8GEmANNC8Uj6+sTcEoINpJUOW7dU4IpFY/64GLxdfPasVkJVwsrDaET8k3uvvGRQIXsWm41clEXIxkzae5Ld/LrPn3K34B2QYvEgmkgBpoF/DYuz1fY1LahayK7ex7l1ARLRV67DSvRirHavdwfkb0Yxfd5zKIzbQ9fu/uRIZg8OhEhFtlX4HaYS72cjpEQ2ZZXsdgKaGvyighNFm3m5mbjmjcXTigYeT0Tsx8ddIOQdFcpEESAMZ3M2s7hXEDFtjALqYfqXS0BUaR5W+nbxyh6ID11Ck/2pqjN3ElD9OcSUylpUHw6g8YiPNZm2nzNB1xNlk1F5aYTQoNKjXgPX28hgVle6mZQCMWn1M48jSt6hYG7//c5k/T17jRlSc8/G23+7h6z9OMiPkFCCJkHhxJq0DSK/MRgM/2mvR0bSCPMp12hpXsSe0JhX8M2sdWrpyMyqO4+F3aD57x1O32x16K8HfcvFNG1oG+tNs7dvUNe6liWEb05U3OKHm1TqsdOvLFUf4ZuvZJz4/bt0JXrt/2x4lU4iIFyQJkIZyZMnImFvNmGyZShfTb9SaUZs9o97XOqx05eVh6x/7uA9RFFPO428IJwc3yaHcJJtym/zKVQCi42QkSlrgZTFyWPVnlb0SDY27GGBaSEtrX2JtdtxMRq3DSxduRcXx/c5zfL3pFDHWf88rAw78lXBeUi6SW7lODiX+PCykhAHSB0i8OEmANPRHr1oU7neXjxyrKWs4Q0/TUvz7+rKpdy0K+HlpHV6adyTB3C8qgYYj1DfsoqbhAP6GK099bRhZUjY4kSoURWHGBy+zIqQzda79TQ3jQV617+P8jZoUyZ5B6/DShfJfrufBAK9MRNLEuI3ahv1UNBzHU4l94usuqX5USKUYRdokCZCGjAaFxR2q8uXsD/jJbSjvGTexxF6L2uMgdFQjrcNL8xbvjl8DqpJylCHmbylmSLgm1EXVj5OO3ISpWQhXM3OFTNxWvTmp5qadt78GEYuUUL9kTuqXfIvpA5bR2fQ7A0wL+eXvN+nZoKTWoaULDhU8iOFT08+0NK7DXfl3QMg91cJxNQ/n1ezx56CaiWuqL7fxZqejGE00jFvonyRAGqtcMAuvv/4WP6/5g7eNWxlhnsMbcV/i33clw5qU4MNAf61DTLOOhkXyvnEjI8xzAIhS3fjNXpWNjpfZ5QggEu8nvvatl3OnVpgilSzzbs7/7m2hoCGcuK1TaHGpDd+3q6J1WGlanM1BJiJZaBlJCcM5AA46/PnNXpUtjtKcVPPgeMJYnQYlc6RmqCINklFgLqB1tQIMt37ALdWbEoZztDauAWDgr4c1jixtK+Y4xZemuQAstdUgMHYKwbb2bHCUT5D89KkX4Px9c59ahI5qhLtZ+oekNV+8XZlR1uYAfGJaxvnTR4iVUX8p6p+Ltxltnk0JwzmuqT60jutD47jhzLa/znE132OTn+w+bgxuXJxx75TRIGKRlkgC5CJGt3yVkbb4i28v00/k5hoAZ67d1TKsNK3J3SUYFJXf7IH0sXV8pMZn9Nul2DMgiK61C7Opdy029qpJ/izSNyutql7Ej5w12rDNXhwPJY4RpjkEDFjNoUsRWoeWZu3dvY3XjHuxqkZaxgUT4ijHwzM8Z3A3EdK7lvPvE182YGe/IFpXK4CXmzRgiBcjnyAXUeMlPzrYa/K28U8qG44x0vwNLa19eXX8ZukPlEIKRe0DBb6xNeS/0+r/r3wemlXM5/xbOqWnD80q5ePDzW1Za+jLK8ZDvGnfyutTFDkHU8il/evBDNscJShf+RWmVy9IFm8LVrvKhiNXqFbEj9wZPVjxcXWyeFuwmOSeXSQfSYBchNlgQMVAP2tbVlr6UcN4kOaOP/jBXocjlyMpnstH6xDTlIh7VizYALiJDwvbVqZ6ET9UVeXcjWjyZvbUOEKhhbyZPQlVczLJ9hafmZcw0LyAzbHS1JJS8vuaIBpu4MOXTUsleO7div/Ox1Qyt29qhybSAUmnXYTBEF8DcVrNzVjbuwD0N31PHuUqDSf/KatVJzf133W9fulalepF/ID4YdH+fl4YDTLHSHpVuUBmZtkbcdSRj8zKXb40z8UmfYFSRIlc8VMNZM/gpnEkIj2SBMiFFMwa38wyz96AXY4AvJUYxplnouCg3Xe7NY4u7croYdE6BOFCZn5YnqVdatDb2hGraqShcRcbfpwqi6SmIIsMKhAakATIhazrUYPfu1XHgYHe1k5Eq25UMRyllXEdhy5FPnsHItFU1H9XdhfiIRk9LZTLl4nDagEm2d4CoOrxkQQGL6Dnkv3aBpfGyDkotCQJkAsxGQ2UyuPL0k6BnFezM8IWvyxGX9MPFFEuMmLVUY0jTFseNHIpBjkNxKMWta/MdPsb7HcUwkeJZqx5Jsv3XdA6rLTFWasmTc4i9cmV3wVVvL8g6vf2Omy2l8ZdsTLZPIVvtxxj07GrGkcnRPpQtZAfdoz0tHbmnmrhFeMhPjBuYP2Rpy+TIhLv3/ofSYBE6pMEyEWVyOWDer8p7LrqQzHDBfqafqDNfOkLlHzk7lM82xk1F6Puz9HVz7SI0Qt+4eSVOxpHlTYoD2qA5BQUGpAEyEXNalmBHD7uXCMjva0dAWhjWkttwz6Clx2QDpkvKME/nyJXX/F4zSvFD8X+zl6XLfZSeChxTDFP4fWvNnAzKk7j6PRPaoCEliQBclG5M3qwo18dutUuTIijHHNt9QEYZ57Bhl0HqDrqD8asOaZxlPr2oAOmXHrFkwxtUpIVH1fnhw5V6WXtzLX7tbH9TN/z8rD1HL4ss0QLoVeSALm47nWKADDK1pwjjvxkUe4w3jyD8IhopoWc1ji6tEJSIPF4ZqOBkrl9qVIwC6+UK0Eva2cAWpnW85phN40mb8XhkNrY56fe/6+cgyL1SQLk4iwmA6GjGhGHmY+t3binWqhhPEgH40qtQ9M1FUl7RNK0e6UgWxxlmGmLXxZjjHkWObnByoNhGkemY6rUwgrtSAKkEy0D83Nazc0QW0sA+piWUF45TnScTePI9MvZBCazPotEcDPHXy7H2Zrxj6MgGZUoJlqm8skPe7FLLdBzUh/6rxCpSxIgnejXsBhfNSvDYnttfrFXxaQ4+NoyheqDlvLd9lDpkClECsubyZMM7iay+nrT3dqNu6o7lQ3H+Ni4nEL9VrFBhsc/PxmIIDQgCZBOuJuNvFkuD7kzetLP2o7TjpzkVG7ylXkaX/x6kPbf7dE6RN1RZBi8SAKLycDu/kGE9KnNOTUH/a0fAfCJaRlVDYdo990eIqKtGkepL4qMghcakgRIZ37pWo1o3Oli/YR7qoWaxgN0Mf7G3nO3uCW1QImWYBoBufsUieRuNmIxGfixYyC/Oqqz2FYLg6Iyyfw12blJmaHrWH/kCqHXo7QOVRdU6QQtNCQJkM5kzeBGRk8zx9V8DLS1AaCnaSmBhsNMCzmlcXT64lwKQy6+IokqFYifrf0LW2uOOPKTVYlkimUKJmy0/24PtcaFsOLAZY2j1AOpAhLakQRIh5Z3qQbAT/aa/GiriVFRmWSeyi9/7mP2ljPcjZWO0UkiNUDiOdQrkZ1YLHS2fkKk6kElw3F6m350Pj9h3QkNo9MJZ0WsnIMi9UkCpEMF/LxY1K4yb5XLzSBba4458pJNuc0k89eMXHWYil9u0DpEl6cCBkXGnojn1yPoJQDOqTnoc3+29k6mFdQ1xPfHOyPNYIkg56DQjiRAOlW1sB8TmpUlBje6WrsTpbpR1XiET00/cc9qJ8ZqZ/OJa8RY7VqHqgNy9ymSrlhOHw4Mfg2AtY5KfGNrAMB48wzyKjIiLCmkD5DQgiRAOhdULDun1dwEW9sD8LHpF4IMeyk6cA2t5u5i0K+HNI5QiLTLx93Mio+rA/Gzte91FMFHiWaaeRJuxHE0LFLjCF2ccyCmJEAi9UkCpHNfv1+OHzsGcjBzXebZ6gEwwTwNfyV+dtof91zUMjzXJaPARDIpmduX0yMaYsNEt7ju3FAzUMoQyiDTAub/Fap1eC5OZoIW2pEESOfczUYqFchM/4bFGG5rwS5HAD7KPWaYJ+JJjNbhuSxVuh6IZGQ0KPyvfB7CyEIPa1ccqkIL00bs+xbi33clF25Gax2ii5Jh8EI7kgClEUHFs2PDRNe47lxVM1LUcIHR5llIJ8MnefjfRS6+4sUNfqMEDUrm4E9HaSba3gZguGkupZQzNJz8p8bRCSH+SxKgNGTFx9W5RiY6x32CVTXS2LiDtsbVTNpwUuvQXJs0gYlk4O1mYvoH5QGYYm/KevvLuClWZli+whxzk/HrjnPp9j2No3Qxcn8mNCQJUBpSMrcvi9pXZq8awDDbBwAEmxax/Y9ftA3MFUkbmEghHWsURMVAT2sXTjtyklu5wRTzFKb9cZxqo/4gMkaWy/iXLEcjtCMJUBpTtZAfGdxNfGd/jWX26pgUB1PMk6nS9zv8+67kamSMrFfEv1PwC5HcghsW4+TwBtzBk47WT7mrulPNeJjPTYsB2Hf+trYBupQHM0FLAiRSnyRAadCvXasBCv2sbZ3T9E+3TMKClUojNlJm6DpOXb2jdZgakwRIpByz0cC81hU5peaht7UTAB1MK3nDsI0fd1/QODoXIqeh0JAkQGlQwazeNCqVkxjc6GjtwW3Vi3KGU3xh+s65zfc7z2sYoQuQYfAihZmN8ZfXNY5KTLO9AcBo8yxOH9pJdJwsVwOgSAYkNCQJUBo1tcXLjH+nDBfU7AmG5b5v3AhAdGw6nyFarrsihQUWysKrRbPx9st5GGd7ly32Ungoccw0TyBw0M/UGR+idYia+/c0lJsQkfokAUrD3i6fB4AQR1nG2d4BYIhpPpWUo6w/mt6n6pdh8CJlGQ0Kc1tXZPy7ZXBg4GPrx5x3ZCW/4SqTzFM5e+0O/n1XcvFWep4jSPoACe1IApTGfdWsDADT7E343V4Fs2JnumUiHlGXGLbiiMbRuQi5+IoUVtE/ExF409Hak3uqhVrGf5wrx1cfvQk1vY5KTKfFFq5BEqA07s1yedjVvw4F/LzpY+3IIYc/WZQ7zLZMYNHWo1y/G6t1iNpIr184QhOL2ldhW99XOarm5/P76/Z1Mf3GG4a/ACgQvErL8DQk56HQjiRA6UC2DO7MblmBGNzoENeTa6oPxQ3nGGueSYUv17Pp+NV0N1V/wsuu1ACJlGU2GsiV0YN/vniN3xzVnJ2ix5pnUUY5BcCZa3e1DFEjshSG0I4kQOlEAT8vAC7jR+e4HsSpRl437qSb8RfazNvNK2M2aRxhapM7T5H6fD3MAIy1veucKXqWZQLZuUnfnw9qHJ0GZDV4oSFJgNIJo0Hhn0GvAbBHLcogWxsAepuXUtewBwD/viuZHnJasxg1IxdfkcpUDPSwduW4Iw/ZldvMskzgn9Bw2n+3J531B0pPZRWuRhKgdMTX0+z8fbH9Vb611QXgK/M0XlLiJ2cbveaYJrGltvT1JSNcSdOyuQCIwoN21l7cVL0pYzjDGPMs1h8JZ/BvhzWOUAtyEyJSn6YJ0PTp0yldujQ+Pj74+PgQGBjI6tWrn7h9rVq1UBTlkZ9GjRo5t2nduvUjz9evXz81iqMLf/SqyeIOVQAYZvuQbfbieCsxzDaPJyPxs0Nb7Q4tQ0wdqgyDF9r4qllZDg2pB8AFNTtdrD2wqkaaGLfRxfgb324/p3GEqUluRIR2NE2A8uTJw6hRo9i7dy979uzh1VdfpUmTJhw+/Pg7oGXLlhEWFub8OXToEEajkXfeeSfBdvXr10+w3Q8//JAaxdGFglm9qVIwC22rF8CGia7W7ly4PzfJdPMkzNj4+o9TWocpRJqlKArebibqFs8OwA5HcQbbWgHQ2/QjQYa97Dp7U8sQU4/0ARIaMmn55o0bN07w9/Dhw5k+fTo7duygRIkSj2yfOXPmBH8vXrwYT0/PRxIgNzc3cuTIkeg4YmNjiY39dzh4ZGRkol+rVwNfL87L+TIxeeNJ2l7tzc+WwQQaj/ClOpfPN7bn07ovaR1iikowBb9cfIUGZn5Qntv3rBy5HMkHcyBAuUBL03ommqfy9qysxGYuSstAfyr4Z6J0noxahytEmuMyfYDsdjuLFy8mKiqKwMDARL1mzpw5vPfee3h5eSV4PCQkhGzZshEQEEDnzp25cePGU/czcuRIfH19nT958+Z97nLoSaPSOVn7aQ26NmvMx9aPsasKzUwhdDSu4Os/TmJ3pN3qaVVmghYaMxgUMntZqF7Ej6ND6zP0oSbpb8zjibwRztAVR3jj67/469R1rkTGaB1yCnjQ3C7noEh9midABw8exNvbGzc3Nzp16sTy5cspXrz4M1+3a9cuDh06RLt27RI8Xr9+fb777js2btzI6NGj2bx5Mw0aNMBuf/LaV8HBwURERDh/LlxIX6s1v1EmFyGOsgyxtQQg2PwDBzcspFC/VWw7fV3j6FJI2s3thA55WIw0KpuPLtZPCHVkJ6/hGrMt43EjDoAW3+wkcORGjaMUIm3RPAEKCAhg//797Ny5k86dO9OqVSuOHHn2Eg1z5syhVKlSVKpUKcHj7733Hm+88QalSpWiadOmrFixgt27dxMSEvLEfbm5uTk7Yj/4SU8URaFwNm++s9djvi1+qPxE8zRKKWd4f/bOtD9iSprAhAtoXDoXt8lAW2tvIlRPyhtOMs48A+V+LUlarJBV0vq1Rbg0zRMgi8VC4cKFKV++PCNHjqRMmTJMmjTpqa+Jiopi8eLFtG3b9pn7L1iwIH5+fpw6JR17n+bbj+ITyWG2D9lkL4OHEsc3lnHk4AYFgleluflJ0lJZRNpQp1g2utcpwmk1Nx2tPYlTjTQ27qCXaalzm7TWLO0sjaL5V5FIh1zuU+dwOBJ0SH6cpUuXEhsbywcffPDM/V28eJEbN26QM2fO5AoxTcqd0YNhTUpgx8jH1o855shLduU2cy3j8CSG9UeucP5mNDHWJzcl6ooMgxcuRlEUetZ9iXL5MrLDUZzg+2uGdTP9yjvGEAC6fv+3dgGmADnzhJY0TYCCg4PZsmULoaGhHDx4kODgYEJCQmjRogUALVu2JDg4+JHXzZkzh6ZNm5IlS5YEj9+9e5c+ffqwY8cOQkND2bhxI02aNKFw4cLUq1cvVcqkZx8G+rP189rcxZO2cb2da4ZNNk/BgIMxa49TdOAa/j5/S+tQhUizlnepRpFs3vzsqMFkW1MARpjmEGg4zJrD4aw9HK5tgMlIlc54QkOaJkBXr16lZcuWBAQEUKdOHXbv3s3atWupWzd+huLz588TFhaW4DXHjx9n69atj23+MhqNHDhwgDfeeIOXXnqJtm3bUr58ef7880/c3NxSpUx6lyeTJy/ny8g9r9y0j+tNjGomyLiPfqbvWXkg/lgM/f3ZfbRcnwyDF65rdssKAEywvcNv9kDMip2Z5q8opFyi44K9aWZEmLMPkJyCQgOazgM0Z86cpz7/uI7LAQEBT+y/4eHhwdq1a5MjtHRtaaeqOFSVIv3j6GXtzFTLZNqZVnNRzcp8e332X7iN3aFiNOj3qiWrwQtX5u/nxXsV87J49wX6WDuSS7lBBcMJ5pnH8GbcUCqP2EjoqEbP3pFOyGrwQgsu1wdIaM9oUDAb4z8aKx1VGG19D4BBpgXUM+wCYOEOnU/XL52ghYsb9XZpDg2pRwZvbzrE9eScIxv5HhoefysqjqAJm3W9dti/Z6F8FYnUJ5868UzT7Y1ZYAvCoKhMMk+lvHKcL347zLkbUVqHljykCUy4KG83E3sG1OUmPnxk7UOE6snLhlN8ZZ5G+WFrOXX1LvO3hWod5nNTpA+Q0JAkQCIRFL6wtWa9vTzuipVvLOMpqFym5tgQLt2+x66zN4m16Wt0mKqmgwVfRZpR46WszuHxsaqJhsZdDDJ9x4M6FN1O6+BcC0zTKEQ6JQmQeKKQ3rUY83ZpfulaDQcGPrZ2Y5+jMJmUu3xrHk1WblNt1B+8O3M7wcsOah3uC5Crr3BtrxT2A+IXTu1l7QxAa9M6Oht/B+DAxQjNYnsx8RmQnIFCC5IAiSfy9/Pi3Yp5KZs3Iy0D8xODG23jenP2/lT9cy1j8CR+NMqyvy+x4cgVouNsGkedWDq9Yxbp0oeB+WleKR9j3i6NX5XmDLPGz4H2uXkxbxm20GTqXyzdc4F/LtzWNtDnJJ2ghRYkARKJMrRJSQBu4kNr6+fcUDNQyhDKNPMkTMQnPe2+20OfpQe0DDPREkzBL32AhItzNxsZ+VYp3q2Yly8aF2eOvSGzbPGjwEabZ1PD8A99fjpAk6l/cfLKHY2jTYr7NUByCgoNSAIkEm39pzUAOKfmoG1cH+6pFmoZ/+FL01weXMhWHgx7yh5ch167TAih3M8WRtqa84u9KmbFznTzREoqZwCYuumUfmZsv38iSg2Q0IIkQCLRimTPwPh3ygCwXy3Mx9aPsasK75lCEqxXZLProYOxLIUh9CuzlwUVA32sndhqL4GXEss8yxjyKlf4Zf9lui3S25IZcg6K1CcJkEiSt17OzS9dq7G8S1U2OMoz0PYRAB+bfuEj42oACvdf7Zw1Whek/l3ozPpPa/Bz50CsmOhk/ZQjjvxkVSL5zjyKzESy4ehVrUNMFBkGL7QkCZBIEkVRKJs3I+XyZWJOqwosstdhrPVdAAaZF/Cm4U8Aurr6Hai0gQkdy+LtRvn8mfmr76vcxZNWcZ9xUfWjgOEK8yxj8CaaD77ZydaT17UO9an+XQ1ebkJE6pMESDy3OsWys6RDFabamzDH1gCAseaZ1DHsBWDf+VvcibFqGWLiyMVX6FTujB4AXCMTLeP6ckPNQBnDGWabJ7D71GU+mLOT7advsPPMDY0jfbwHgxHkDBRakARIvJDKBbPwboW8fGlrwc/26pgUB1PNk6moHOPNadsoNXid1iEKkaat6v4KlQtk5oyai1Zxn3NH9SDQeISvzVMwYaP57B00m7XDJScr/bceVlIgkfokARIvbMz/ytC5VhE+t3Zgg70c7oqVOZaxFFdCtQ7tKaQJTKQNxXP5MLtV/Orxh9SCtIvrTaxqpq5xL2PMs1CIH5QQa3O9wQnSB0hoSRIgkSw+rfsSNkx0tX7CTkdRfJR7fGsZTX4lHP++K7UO7xHSBUikJT7uZrb0qQ3ATrUYXazdsakG3jJuZZBpAaBSevA6l+2bp0oztNCAJEAiWZiNBv78rDYenl60j+t1f1RKBAvNI8nGLfz7rnSt9Yrux+JQ5cIr0oZ8WTzZOyAIgI2O8vSydsKhKrQxreVT088ArDwQxpcrjrA79KaWoT6GnIci9UkCJJJN3sye7BtYl0i8aBnX17lkxiLLcLIQQYHgVSzfd5E4F6yKFyItyOLtxj9fvAbAr47qDLK1BuAT0zLnNBXfbD3LOzO2axViQrIosdCQJEAiWSmKgsVk4Dq+fGjtx2U1M4UNl1loGYkvd/l0yT/M/vOM1mHiXEVb4yiESG5eFqPz94X2ugmmqXjHGKJNUM8iTWBCA5IAiWS3f1Bd/vniNS6qWXk/rj9X1YwUM5znO8soMhDN2LXHqTthMxHRWg6Rlyn4RdpkMhrYOyCInf3qADDV3oTZtoYAjDbN5g3DXwBUHbmRi7eiNYvzYXIWCi1IAiSSnafFhK+HmQ09axCq5uT9uH7O+Unm3V9B/uTVu3y96aR2QbpSfyQhklkWbzey+7jf/0thuK0F39vqYFBUJpin08Cwk8sRMYxcfUzTOB+QGxGhBUmARIopnC0Dy7pU5ZSahw/jgolQPalgOME35nG4EcfsP89qHaJceEWatqBtJUa+VYoZH5RngK0NP9pqYlIcTDZ/TV3DHlYeCKPs0HVcuxOrUYQyEaLQjiRAIkW9nC8TtQOyckT1p2VcX+6oHlQ1HmGm+SssWGkzb5cmTWEuNSJNiBTySpGsNK+Uj3olcvBZ/eL0tbVnub0aZsXOVPMkahn2cTvaSsXhG3A4NDgnHqwGL32AhAYkARIpbk6rilQqkJl/1MK0ietDtOpGLeM/fG2ezJ/HwwhefkCDqCQBEumHoih0rlWI6R9WpLe1EyvslbEodmaaJ1LdcBCAzSeuaRylEKlLEiCR4gwGheFNSwKwRy1KO2svYlUzrxn3Mtn8NesOXsS/70qKD1pDjNX1pusXIq2o5J8ZO0Z6WLuy1l4BN8XKbPN4qhiO0Gb+bvz7rsSeijVBMhO00JIkQCJVFMmege3Br1I2b0a2OUrS0dqDWNVEQ+Muptxfsyg6zs6yvy+lTkCqjAIT6U8mLwv1S+TAhomPrR+z0V4ODyWOOeaxVFDiO0RP3ph6gxOcLdHSBCY0IAmQSDU5fT34pWs1AEIc5eho/ZRY1UQD426+Nk/BjI17qVQDpDr/Lxdekb7M+LA8AxoVIw4zXayfsMVeCi8llm8to6mkHGXSxpNUG/UHZ69HpXgsirMTtJyHIvVJAiQ0E+IoR4f7zWH1jbuZap7EqBUHOHHlDlGxthR+9/spkFx3RTrUuqo/ALFY6GDtyZ/2kngpscy3jCHQcJhLt+9Re1xIKkYkJ6JIfZIACU1tdpShvbWns0/QNPNEXv9qIyW+WMueVFivSHogiPTIZDTQuEwuAGJwo521NyH2Mngqscwzj3F2jIaUHjEpZ6DQjiRAItUtal+ZYU1LkieTBwBbHGVoZ+1FjGqmrvFvppknYsHK/1JyvSIthvwK4UJGvx0/P1ABPy9isdDR+ikb7eVwV6zMMY+jlmE/VUZspEDwKn7753LKBOEcBp8yuxfiaSQBEqmuaiE/PqySny19ajO4cXEA/nSUpq21NzGqmSDjPmaYv8KNOH7ccyGFopBO0CJ987SYqF8yB7Nblgfim8M6WT9lnb08boqVmeYJlLgbv2xG9x/2pXA0ch6K1CcJkNCMwaDQuloBXi2aDYC/HKX4yNqHe6qFV437mW0ezxc/7eLv87cIvR7FmWt3NY5YiLSncLYMhI5qxOEh9WhS3p8u1k9YZa+Em2Jjunki9Qy7ARi9xjWWzRAiuZi0DkCIOa0qEGN1EGO1M/DXnHx0SOEb8zhqGA/ynTKKVtMc3METgKND6+Px0GrXz885/jYZ9iWE/nm5mRj3Thl+2nuR7tZu2JlGY+MOvjZPpoe1K9NDYPXBMH7tWh1fT3Pyvrki9+Ii9cmnTmhOURQ8LEYyeVmY0rwc2x0l+CCuHxGqJxUNJ1hk+ZLMRAJQc+wmLtx88RWspQeQEI8368Py2DDRw9rVuWzGZPMU3jGGEHojmjJD1zF3a/Ks46fIWmBCQ5IACZeiKArVC/uxTy1C87gBXFd9KGUIZYllGNm4xdU7sbScu+vF38g5EaIQ4mGvlcgBgB0jvaydWWSrjVFRGWueRVvjKgCGrjjCnydffOkMWZJPaEkSIOFyFrStxJkRDTmhFKBZ3EDC1MwUMVxiqWUIeZSrnL0exYLtocnyXtIJWohHhfSuRccaBXFgoJ+tHTNsrwMw0LyQT00/ASofzom/EXmRYfKyFIbQkiRAwuUoioLBoPB9u8qcVnPzTtwgzjmykd9wlaWWoRRSLjHw18Mv9B6yGrwQT+bv50Vww2KEjmpE80r5GGVrzhhrMwA+MS3jC9N3KDjw77uSAsGrOHQp4jnf6cGEpHIjIlKfJEDCZZXLl4kCfl6EKdl5J+4LTjhyk1O5yRLLMEoooaw7HE65oev449iVJO9bkWHwQiRK79cCAIVp9iYMsLYBoI1pLWPNszASv3TN61O28vPei8//JpIACQ1IAiRclsVkYEPPmpwa3oACBQrRLG4gBx3++CmRLLYMY97333Er2spH8/dgtTu0DleINCmLtxu/d6vOO+XzsNBelx5xXbCpBv5n3MJU82QsWAHotfSf59i71MQK7UgCJFya0aCgKAq9XgvgFj68HzeA7fbiZFDu8a15FI0MOwAoP2x90pq1pBO0EIlWKo8vI98qRc+6L/GLozqdrT2IVU3UN+5mnnkM3sSPzIyMsT7nO0gNkEh9kgAJXajon4nmlfJxB09aWz9jpb0SFsXOFPMUWhnXEhljY9SaY9yLs3P+RmKGyUvqI0RSmIwGutcpwokvG7DeUYHW1s+5q7pTzXiYHy3DyMotSg9eR7/lBxN5DoKiyjB4oR1JgIQuKIrCyLdK8U3LCpQrmIOPrd351lYXg6IyxPwtvU1LmLn5NMUGraHG2E38lOj+CHLpFSIpLCYDx4bVZ7ujBM3iBnJN9aW44RzL3b6goHKZRTvPU2PsJmKs9mfu68FtiCp9gIQGJAESuhJUPDutAv1xYOALW2vGWd8BoJvpV0abZjs7ZQ5feSRR+5NO0EIknbvZSI+gIhxWC/BW3GDOOHKQR7nOz5bBvKycAOD63dhn7keGwQstSQIkdOeVl7Le/03ha/ubfG5tj11VaGYKYYb5K9yJ5Va0le93nnviPlRZDV6IF9KhRkHer5yPC2p2/hc3mP2OQmRS7vK9ZQR1DHupPnpTEobHy42ISH2SAAnd8XYzsbFXTeffS+y16WT9lBjVTF3j3yyyDCcLEfRffoi7sban7ktqgIR4Pp4WEyPeLEXhbN7cxIfmcf35w14WDyWOWeYJNDNu4vUpW9lx5sazdyZNYEIDkgAJXSqU1Zv1n9ZgfpuKAKx3VOCDuGBuq168bDjFcssgCimXKPnFWn775zKHL//3TlRqgIRIDht61iR0VCPu4U57ay+W2GphVFRGm2fTw/QT783ajn/flfRffvDR6SpkQlKhIUmAhG4VyZ6BWgHZnEnQHrUob8UN4ZwjG/kM1/jZMpjKylG6/7CPRpO3cvra3YdeLcPghUhOX79fDjtGPre1Z7KtKQA9TMuYYJ6OBSvf7zxP2SHrGPr74/rnSQ2QSH2SAAndqxWQjdBRjZjXuiJn1Fy8GTeUvx2FyahEscAygqaGrQDUGb8Zh/T9ESJFvF46FwcGv8aY/5Vhgu1dPre2x6YaeMu4lQWWkWTkDlFxdub+9e9K8s7V4CX/ERqQBEikGcVy+gDc748wwDlX0ETLNLoblwEqEzec4Nf9l4h29g2SK68QycXH3cw75fMwu2UFlthr08r6OZGqJ5UNx1huGUQBJQwAq91BrM1OrC2+SUz64gktSAIk0owcvu7M+rA8ZfNmJBYL3azdmWFrDEBP80+MM89k+h/H+GTxfrov3qdxtEKkTYqiUNE/EwB/OUrxVtxgLjiyUsBwheWWQVRWjjJ85VFe+2oLN+7GxL9Gy4BFuiUJkEhTXiuRg1+6VmNZl6qoGBhla04/a1vn2kXfmUfhy13nBVfuPIVIfhk9LXSsWRCAU2qeR5qlI3d8x7kb0XIeCk1JAiTSpFy+Hs7fF9nr0M7am7uqO4HGIyy3DKLg/ap4u3QJEiJFBDcoxvpPa/BZ/QCu40vzuAGssFfBotiZYJlBT9OPKMQ3gSnSCUhowKR1AEKkhBy+7nzfrjKrD4XhZTExcwv8L24w31jGUdAQzhTzZK1DFCLNK5I9A0WyZ+BKRAzfbj/Hx9ZuhKrZ6Wb6le6mX7QOT6RzkgCJNKtaYT+qFfZDVVVCjl/j2JV8NI0dxkzLBMobTgIyDF6I1NC/UXHuWe38uOci42zNCFVzMML0DRbl2euFCZFSpAlMpHmKorD20xqEjmrEdXx5P64/y+3VAIhUvTSOToi0z2IyMOZ/ZVjZvToAP9lr8kFcP+fzdouvVqGJdExqgES6smdAEH+evManS8ystlfigpqN1VoHJUQ6USKXLxPeLUPPH/9hl1qMKjFTqGI4yqA6H2odmkiHJAES6YqftxtvlstD+XyZaTPfmw+q5Nc6JCHSlbdezkO1wn50XriXfJlzMfG9llqHJNIpRVVlMZb/ioyMxNfXl4iICHx8fLQORwghhBCJkJTvb+kDJIQQQoh0RxIgIYQQQqQ7kgAJIYQQIt2RBEgIIYQQ6Y4kQEIIIYRIdyQBEkIIIUS6IwmQEEIIIdIdSYCEEEIIke5IAiSEEEKIdEcSICGEEEKkO5IACSGEECLd0TQBmj59OqVLl8bHxwcfHx8CAwNZvfrJa3PXqlULRVEe+WnUqJFzG1VVGTRoEDlz5sTDw4OgoCBOnjyZGsURQgghhE5omgDlyZOHUaNGsXfvXvbs2cOrr75KkyZNOHz48GO3X7ZsGWFhYc6fQ4cOYTQaeeedd5zbjBkzhsmTJzNjxgx27tyJl5cX9erVIyYmJrWKJYQQQggX53KrwWfOnJmxY8fStm3bZ247ceJEBg0aRFhYGF5eXqiqSq5cuejVqxe9e/cGICIiguzZszN//nzee++9RMUgq8ELIYQQ+pOU729TKsX0THa7naVLlxIVFUVgYGCiXjNnzhzee+89vLy8ADh79izh4eEEBQU5t/H19aVy5cps3779iQlQbGwssbGxzr8jIiKA+H9IIYQQQujDg+/txNTtaJ4AHTx4kMDAQGJiYvD29mb58uUUL178ma/btWsXhw4dYs6cOc7HwsPDAciePXuCbbNnz+587nFGjhzJkCFDHnk8b968iS2GEEIIIVzEnTt38PX1feo2midAAQEB7N+/n4iICH766SdatWrF5s2bn5kEzZkzh1KlSlGpUqUXjiE4OJiePXs6/3Y4HNy8eZMsWbKgKMoL7/9hkZGR5M2blwsXLqS55jUpmz5J2fQpLZcN0nb5pGwpR1VV7ty5Q65cuZ65reYJkMVioXDhwgCUL1+e3bt3M2nSJGbOnPnE10RFRbF48WKGDh2a4PEcOXIAcOXKFXLmzOl8/MqVK5QtW/aJ+3Nzc8PNzS3BYxkzZkxiSZLmwci3tEjKpk9SNn1Ky2WDtF0+KVvKeFbNzwMuNw+Qw+FI0B/ncZYuXUpsbCwffPBBgscLFChAjhw52Lhxo/OxyMhIdu7cmeh+RUIIIYRI+zStAQoODqZBgwbky5ePO3fusGjRIkJCQli7di0ALVu2JHfu3IwcOTLB6+bMmUPTpk3JkiVLgscVRaFHjx58+eWXFClShAIFCjBw4EBy5cpF06ZNU6tYQgghhHBxmiZAV69epWXLloSFheHr60vp0qVZu3YtdevWBeD8+fMYDAkrqY4fP87WrVtZt27dY/f52WefERUVRYcOHbh9+zbVq1dnzZo1uLu7p3h5EsPNzY0vvvjikSa3tEDKpk9SNn1Ky2WDtF0+KZtrcLl5gIQQQgghUprL9QESQgghhEhpkgAJIYQQIt2RBEgIIYQQ6Y4kQEIIIYRIdyQBSkVTp07F398fd3d3KleuzK5du7QO6ZkGDx6MoigJfooWLep8PiYmhq5du5IlSxa8vb15++23uXLlSoJ9nD9/nkaNGuHp6Um2bNno06cPNpsttYvCli1baNy4Mbly5UJRFH755ZcEz6uqyqBBg8iZMyceHh4EBQVx8uTJBNvcvHmTFi1a4OPjQ8aMGWnbti13795NsM2BAwd45ZVXcHd3J2/evIwZMyali/bMsrVu3fqR41i/fv0E27hq2UaOHEnFihXJkCED2bJlo2nTphw/fjzBNsn1OQwJCeHll1/Gzc2NwoULM3/+fM3LVqtWrUeOXadOnVy+bNOnT6d06dLOCfECAwNZvXq183m9HrPElE2vx+xxRo0a5Zxi5gE9H7sEVJEqFi9erFosFnXu3Lnq4cOH1fbt26sZM2ZUr1y5onVoT/XFF1+oJUqUUMPCwpw/165dcz7fqVMnNW/evOrGjRvVPXv2qFWqVFGrVq3qfN5ms6klS5ZUg4KC1H379qmrVq1S/fz81ODg4FQvy6pVq9T+/fury5YtUwF1+fLlCZ4fNWqU6uvrq/7yyy/qP//8o77xxhtqgQIF1Hv37jm3qV+/vlqmTBl1x44d6p9//qkWLlxYbd68ufP5iIgINXv27GqLFi3UQ4cOqT/88IPq4eGhzpw5U9OytWrVSq1fv36C43jz5s0E27hq2erVq6fOmzdPPXTokLp//361YcOGar58+dS7d+86t0mOz+GZM2dUT09PtWfPnuqRI0fUKVOmqEajUV2zZo2mZatZs6bavn37BMcuIiLC5cv222+/qStXrlRPnDihHj9+XO3Xr59qNpvVQ4cOqaqq32OWmLLp9Zj9165du1R/f3+1dOnS6ieffOJ8XM/H7mGSAKWSSpUqqV27dnX+bbfb1Vy5cqkjR47UMKpn++KLL9QyZco89rnbt2+rZrNZXbp0qfOxo0ePqoC6fft2VVXjv5gNBoMaHh7u3Gb69Omqj4+PGhsbm6KxP81/kwSHw6HmyJFDHTt2rPOx27dvq25ubuoPP/ygqqqqHjlyRAXU3bt3O7dZvXq1qiiKeunSJVVVVXXatGlqpkyZEpTt888/VwMCAlK4RP96UgLUpEmTJ75GL2VTVVW9evWqCqibN29WVTX5PoefffaZWqJEiQTv1axZM7VevXopXSSn/5ZNVeO/TB/+8vkvvZRNVVU1U6ZM6jfffJOmjtkDD8qmqmnjmN25c0ctUqSIun79+gTlSUvHTprAUkFcXBx79+4lKCjI+ZjBYCAoKIjt27drGFninDx5kly5clGwYEFatGjB+fPnAdi7dy9WqzVBuYoWLUq+fPmc5dq+fTulSpUie/bszm3q1atHZGQkhw8fTt2CPMXZs2cJDw9PUBZfX18qV66coCwZM2akQoUKzm2CgoIwGAzs3LnTuU2NGjWwWCzOberVq8fx48e5detWKpXm8UJCQsiWLRsBAQF07tyZGzduOJ/TU9kiIiIAyJw5M5B8n8Pt27cn2MeDbVLzHP1v2R74/vvv8fPzo2TJkgQHBxMdHe18Tg9ls9vtLF68mKioKAIDA9PUMftv2R7Q+zHr2rUrjRo1eiSGtHTsNF8MNT24fv06drs9wYcBIHv27Bw7dkyjqBKncuXKzJ8/n4CAAMLCwhgyZAivvPIKhw4dIjw8HIvF8sjCsdmzZyc8PByA8PDwx5b7wXOu4kEsj4v14bJky5YtwfMmk4nMmTMn2KZAgQKP7OPBc5kyZUqR+J+lfv36vPXWWxQoUIDTp0/Tr18/GjRowPbt2zEajbopm8PhoEePHlSrVo2SJUs63zs5PodP2iYyMpJ79+7h4eGREkVyelzZAN5//33y589Prly5OHDgAJ9//jnHjx9n2bJlT437wXNP2yaly3bw4EECAwOJiYnB29ub5cuXU7x4cfbv36/7Y/aksoG+jxnA4sWL+fvvv9m9e/cjz6WV8w0kARLP0KBBA+fvpUuXpnLlyuTPn58ff/wxVT6gInm89957zt9LlSpF6dKlKVSoECEhIdSpU0fDyJKma9euHDp0iK1bt2odSrJ7Utk6dOjg/L1UqVLkzJmTOnXqcPr0aQoVKpTaYSZJQEAA+/fvJyIigp9++olWrVqxefNmrcNKFk8qW/HixXV9zC5cuMAnn3zC+vXrXWYJqZQiTWCpwM/PD6PR+Egv+StXrpAjRw6Nono+GTNm5KWXXuLUqVPkyJGDuLg4bt++nWCbh8uVI0eOx5b7wXOu4kEsTztGOXLk4OrVqwmet9ls3Lx5U3flLViwIH5+fpw6dQrQR9m6devGihUr2LRpE3ny5HE+nlyfwydt4+Pjk+LJ/pPK9jiVK1cGSHDsXLVsFouFwoULU758eUaOHEmZMmWYNGlSmjhmTyrb4+jpmO3du5erV6/y8ssvYzKZMJlMbN68mcmTJ2MymciePbvuj90DkgClAovFQvny5dm4caPzMYfDwcaNGxO0GevB3bt3OX36NDlz5qR8+fKYzeYE5Tp+/Djnz593liswMJCDBw8m+HJdv349Pj4+zupiV1CgQAFy5MiRoCyRkZHs3LkzQVlu377N3r17ndv88ccfOBwO5wUuMDCQLVu2YLVandusX7+egIAAzZq/HufixYvcuHGDnDlzAq5dNlVV6datG8uXL+ePP/54pBkuuT6HgYGBCfbxYJuUPEefVbbH2b9/P0CCY+eKZXsch8NBbGysro/Zkzwo2+Po6ZjVqVOHgwcPsn//fudPhQoVaNGihfP3NHPsUq27dTq3ePFi1c3NTZ0/f7565MgRtUOHDmrGjBkT9JJ3Rb169VJDQkLUs2fPqn/99ZcaFBSk+vn5qVevXlVVNX44ZL58+dQ//vhD3bNnjxoYGKgGBgY6X/9gOORrr72m7t+/X12zZo2aNWtWTYbB37lzR923b5+6b98+FVAnTJig7tu3Tz137pyqqvHD4DNmzKj++uuv6oEDB9QmTZo8dhh8uXLl1J07d6pbt25VixQpkmCo+O3bt9Xs2bOrH374oXro0CF18eLFqqenZ4oPFX9a2e7cuaP27t1b3b59u3r27Fl1w4YN6ssvv6wWKVJEjYmJcfmyde7cWfX19VVDQkISDCuOjo52bpMcn8MHw3L79OmjHj16VJ06dWqKD8t9VtlOnTqlDh06VN2zZ4969uxZ9ddff1ULFiyo1qhRw+XL1rdvX3Xz5s3q2bNn1QMHDqh9+/ZVFUVR161bp6qqfo/Zs8qm52P2JP8d1abnY/cwSYBS0ZQpU9R8+fKpFotFrVSpkrpjxw6tQ3qmZs2aqTlz5lQtFouaO3dutVmzZuqpU6ecz9+7d0/t0qWLmilTJtXT01N988031bCwsAT7CA0NVRv8v507DGnijeMA/l065/DMWbeuLFjIhkaYTipIYsSsgdDAFxb5YuTCvQhRjOhFUAt6IRH4xiKFwEgQE6J6EWS9aC+qNyaiYwZTpOarihSlmmXMpxfh0f3V7K/NOe77gYPtd8/5PD8n48vdeVVVwmw2C1mWxfnz58WPHz/WuxURCoUEgEXb6dOnhRC//hX+8uXLQlEUYTKZRGVlpYhGo5qfMTk5KWpra4UkSWLz5s3C7/eLz58/a8YMDw+Lw4cPC5PJJHbu3CmuXbuW0t7i8bjweDzCarUKo9EobDabCAQCi8L3Ru1tqb4AiDt37qhj/tXfYSgUEmVlZSIrK0sUFhZq5khFbxMTE8LlcoktW7YIk8kk7Ha7uHDhguaZMhu1tzNnzgibzSaysrKE1WoVlZWVavgRIn0/s5V6S+fPbDn/DUDp/Nn9ziCEEOt3vomIiIgo9XgPEBEREekOAxARERHpDgMQERER6Q4DEBEREekOAxARERHpDgMQERER6Q4DEBEREekOAxARERHpDgMQEaWFuro6VFdXp2x+n8+HlpaWvxp76tQptLa2JnlFRLQWfBI0EaWcwWD44/4rV67g3LlzEELAYrGsz6J+Mzw8DLfbjVgsBkmSVhwfiUTgcrnw9u1b5OXlrcMKiej/YgAiopR7//69+rq3txfBYBDRaFStSZL0V8EjWerr65GZmYmOjo6/PubAgQOoq6tDQ0NDEldGRKvFS2BElHLbt29Xt7y8PBgMBk1NkqRFl8COHDmCxsZGNDc3Iz8/H4qi4Pbt2/j69Sv8fj9yc3Nht9vx5MkTzVyRSARVVVWQJAmKosDn8+HTp0/Lri2RSOD+/fvwer2a+q1bt+BwOJCdnQ1FUVBTU6PZ7/V6ce/evbX/cogoKRiAiCht3b17F7Iso7+/H42NjTh79ixOnDiBiooKDA4OwuPxwOfzIR6PAwCmp6fhdrvhdDoxMDCAvr4+fPjwASdPnlx2jnA4jJmZGezfv1+tDQwMoKmpCVevXkU0GkVfXx9cLpfmuIMHD6K/vx/fv39PTvNEtCYMQESUtkpLS3Hp0iU4HA5cvHgR2dnZkGUZgUAADocDwWAQk5OTCIfDAICbN2/C6XSipaUFxcXFcDqd6OzsRCgUwujo6JJzxGIxZGRkYNu2bWptYmICOTk5OH78OGw2G5xOJ5qamjTHFRQUYG5uTnN5j4g2DgYgIkpb+/btU19nZGRg69atKCkpUWuKogAAPn78CODXzcyhUEi9p0iSJBQXFwMAxsfHl5xjdnYWJpNJc6P2sWPHYLPZUFhYCJ/Ph+7ubvUs0wKz2QwAi+pEtDEwABFR2jIajZr3BoNBU1sILfPz8wCAL1++wOv1YmhoSLONjY0tuoS1QJZlxONxzM3NqbXc3FwMDg6ip6cHO3bsQDAYRGlpKaanp9UxU1NTAACr1fpPeiWif4sBiIh0o7y8HCMjI9i9ezfsdrtmy8nJWfKYsrIyAMCbN2809czMTBw9ehTXr19HOBzGu3fv8Pz5c3V/JBLBrl27IMty0vohotVjACIi3WhoaMDU1BRqa2vx+vVrjI+P4+nTp/D7/UgkEkseY7VaUV5ejpcvX6q1x48fo62tDUNDQ4jFYujq6sL8/DyKiorUMS9evIDH40l6T0S0OgxARKQbBQUFePXqFRKJBDweD0pKStDc3AyLxYJNm5b/Oqyvr0d3d7f63mKx4MGDB3C73dizZw86OjrQ09ODvXv3AgC+ffuGR48eIRAIJL0nIlodPgiRiGgFs7OzKCoqQm9vLw4dOrTi+Pb2djx8+BDPnj1bh9UR0WrwDBAR0QrMZjO6urr++MDE3xmNRty4cSPJqyKiteAZICIiItIdngEiIiIi3WEAIiIiIt1hACIiIiLdYQAiIiIi3WEAIiIiIt1hACIiIiLdYQAiIiIi3WEAIiIiIt1hACIiIiLd+QlcEJ4J8Wpn6wAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ], + "source": [ + "plt.plot(corrupt_V, label=\"Groundtruth\")\n", + "plt.plot(optsol, label=\"Estimated\")\n", + "plt.xlabel(\"Time (s)\")\n", + "plt.ylabel(\"Voltage (V)\")\n", + "plt.legend()" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": { + "id": "N5XYkevi04qD" + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.12" + }, + "colab": { + "provenance": [] + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "8d003c14da5f4fa68284b28c15cee6e6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "VBoxModel", + "model_module_version": "2.0.0", + "state": { + "_dom_classes": [ + "widget-interact" + ], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "VBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "VBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_aef2fa7adcc14ad0854b73d5910ae3b4", + "IPY_MODEL_7d46516469314b88be3500e2afcafcf6" + ], + "layout": "IPY_MODEL_423bffea3a1c42b49a9ad71218e5811b", + "tabbable": null, + "tooltip": null + } + }, + "aef2fa7adcc14ad0854b73d5910ae3b4": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatSliderModel", + "model_module_version": "2.0.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatSliderModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "FloatSliderView", + "behavior": "drag-tap", + "continuous_update": true, + "description": "t", + "description_allow_html": false, + "disabled": false, + "layout": "IPY_MODEL_06f2374f91c8455bb63252092512f2ed", + "max": 1.1333333333333333, + "min": 0, + "orientation": "horizontal", + "readout": true, + "readout_format": ".2f", + "step": 0.011333333333333332, + "style": "IPY_MODEL_56ff19291e464d63b23e63b8e2ac9ea3", + "tabbable": null, + "tooltip": null, + "value": 0 + } + }, + "7d46516469314b88be3500e2afcafcf6": { + "model_module": "@jupyter-widgets/output", + "model_name": "OutputModel", + "model_module_version": "1.0.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_646a8670cb204a31bb56bc2380898093", + "msg_id": "", + "outputs": [], + "tabbable": null, + "tooltip": null + } + }, + "423bffea3a1c42b49a9ad71218e5811b": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "2.0.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "06f2374f91c8455bb63252092512f2ed": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "2.0.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "56ff19291e464d63b23e63b8e2ac9ea3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "SliderStyleModel", + "model_module_version": "2.0.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "SliderStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "description_width": "", + "handle_color": null + } + }, + "646a8670cb204a31bb56bc2380898093": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "2.0.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + } + } + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/examples/scripts/CMAES.py b/examples/scripts/CMAES.py new file mode 100644 index 000000000..65315b41e --- /dev/null +++ b/examples/scripts/CMAES.py @@ -0,0 +1,55 @@ +import pybop +import numpy as np +import matplotlib.pyplot as plt + +parameter_set = pybop.ParameterSet("pybamm", "Chen2020") +model = pybop.lithium_ion.SPMe(parameter_set=parameter_set) + +# Fitting parameters +parameters = [ + pybop.Parameter( + "Negative electrode active material volume fraction", + prior=pybop.Gaussian(0.7, 0.05), + bounds=[0.6, 0.9], + ), + pybop.Parameter( + "Positive electrode active material volume fraction", + prior=pybop.Gaussian(0.58, 0.05), + bounds=[0.5, 0.8], + ), +] + +sigma = 0.001 +t_eval = np.arange(0, 900, 2) +values = model.predict(t_eval=t_eval) +CorruptValues = values["Terminal voltage [V]"].data + np.random.normal( + 0, sigma, len(t_eval) +) + +dataset = [ + pybop.Dataset("Time [s]", t_eval), + pybop.Dataset("Current function [A]", values["Current [A]"].data), + pybop.Dataset("Terminal voltage [V]", CorruptValues), +] + +# Generate problem, cost function, and optimisation class +problem = pybop.Problem(model, parameters, dataset) +cost = pybop.SumSquaredError(problem) +optim = pybop.Optimisation(cost, optimiser=pybop.CMAES) +optim.set_max_iterations(100) + +x, final_cost = optim.run() +print("Estimated parameters:", x) + +# Show the generated data +simulated_values = problem.evaluate(x) + +plt.figure(dpi=100) +plt.xlabel("Time", fontsize=12) +plt.ylabel("Values", fontsize=12) +plt.plot(t_eval, CorruptValues, label="Measured") +plt.fill_between(t_eval, simulated_values - sigma, simulated_values + sigma, alpha=0.2) +plt.plot(t_eval, simulated_values, label="Simulated") +plt.legend(bbox_to_anchor=(0.6, 1), loc="upper left", fontsize=12) +plt.tick_params(axis="both", labelsize=12) +plt.show() diff --git a/examples/scripts/Chen_example.csv b/examples/scripts/Chen_example.csv new file mode 100644 index 000000000..99d509e37 --- /dev/null +++ b/examples/scripts/Chen_example.csv @@ -0,0 +1,1389 @@ +Time [s],Current [A],Terminal voltage [V],Cycle,Step +0.0,2.5,4.160927753511467,0.0,0.0 +1.0,2.5,4.157601075676489,0.0,0.0 +2.0,2.5,4.154490994259158,0.0,0.0 +3.0,2.5,4.151579735777284,0.0,0.0 +4.0,2.5,4.148849144222897,0.0,0.0 +5.0,2.5,4.146282844054771,0.0,0.0 +6.0,2.5,4.143866411877354,0.0,0.0 +7.0,2.5,4.14158685882251,0.0,0.0 +8.0,2.5,4.139432527584678,0.0,0.0 +9.0,2.5,4.1373935777586475,0.0,0.0 +10.0,2.5,4.135460207732003,0.0,0.0 +11.0,2.5,4.133623207865335,0.0,0.0 +12.0,2.5,4.131876288053798,0.0,0.0 +13.0,2.5,4.130210715881797,0.0,0.0 +14.0,2.5,4.128621343373044,0.0,0.0 +15.0,2.5,4.127102372425127,0.0,0.0 +16.0,2.5,4.1256486435085735,0.0,0.0 +17.0,2.5,4.124255949522701,0.0,0.0 +18.0,2.5,4.122920513753348,0.0,0.0 +19.0,2.5,4.121637691133036,0.0,0.0 +20.0,2.5,4.1204045357969346,0.0,0.0 +21.0,2.5,4.11921859787859,0.0,0.0 +22.0,2.5,4.118077799023512,0.0,0.0 +23.0,2.5,4.116977284631903,0.0,0.0 +24.0,2.5,4.115915940608523,0.0,0.0 +25.0,2.5,4.1148922144992515,0.0,0.0 +26.0,2.5,4.113904682884345,0.0,0.0 +27.0,2.5,4.112949360973445,0.0,0.0 +28.0,2.5,4.1120256982856205,0.0,0.0 +29.0,2.5,4.1111323466687715,0.0,0.0 +30.0,2.5,4.11026804945668,0.0,0.0 +31.0,2.5,4.109430366615028,0.0,0.0 +32.0,2.5,4.10861857427313,0.0,0.0 +33.0,2.5,4.1078315059979635,0.0,0.0 +34.0,2.5,4.107068078631514,0.0,0.0 +35.0,2.5,4.106326974076594,0.0,0.0 +36.0,2.5,4.105607359218209,0.0,0.0 +37.0,2.5,4.104908336227618,0.0,0.0 +38.0,2.5,4.1042290586599,0.0,0.0 +39.0,2.5,4.1035685421348544,0.0,0.0 +40.0,2.5,4.1029261716599965,0.0,0.0 +41.0,2.5,4.10230128451634,0.0,0.0 +42.0,2.5,4.101693276866006,0.0,0.0 +43.0,2.5,4.101101600597589,0.0,0.0 +44.0,2.5,4.100525726267815,0.0,0.0 +45.0,2.5,4.099964502197802,0.0,0.0 +46.0,2.5,4.099417847146635,0.0,0.0 +47.0,2.5,4.098885319974872,0.0,0.0 +48.0,2.5,4.098366517541476,0.0,0.0 +49.0,2.5,4.097861072571672,0.0,0.0 +50.0,2.5,4.097368645549943,0.0,0.0 +51.0,2.5,4.09688808870161,0.0,0.0 +52.0,2.5,4.0964195142422435,0.0,0.0 +53.0,2.5,4.095962581548417,0.0,0.0 +54.0,2.5,4.095516971816701,0.0,0.0 +55.0,2.5,4.095082386937095,0.0,0.0 +56.0,2.5,4.094658548400727,0.0,0.0 +57.0,2.5,4.09424471783567,0.0,0.0 +58.0,2.5,4.093840843122007,0.0,0.0 +59.0,2.5,4.093446656829645,0.0,0.0 +60.0,2.5,4.093061889347226,0.0,0.0 +61.0,2.5,4.092686283528498,0.0,0.0 +62.0,2.5,4.092319594146908,0.0,0.0 +63.0,2.5,4.091961442559183,0.0,0.0 +64.0,2.5,4.091611652591053,0.0,0.0 +65.0,2.5,4.091270004239898,0.0,0.0 +66.0,2.5,4.090936275768548,0.0,0.0 +67.0,2.5,4.090610254161096,0.0,0.0 +68.0,2.5,4.090291734778852,0.0,0.0 +69.0,2.5,4.089980493354697,0.0,0.0 +70.0,2.5,4.089676347645338,0.0,0.0 +71.0,2.5,4.089379115842617,0.0,0.0 +72.0,2.5,4.089088619679142,0.0,0.0 +73.0,2.5,4.088804687536027,0.0,0.0 +74.0,2.5,4.088527154174912,0.0,0.0 +75.0,2.5,4.088255804667979,0.0,0.0 +76.0,2.5,4.087990501979117,0.0,0.0 +77.0,2.5,4.087731105819368,0.0,0.0 +78.0,2.5,4.087477471187321,0.0,0.0 +79.0,2.5,4.08722945847457,0.0,0.0 +80.0,2.5,4.086986933232946,0.0,0.0 +81.0,2.5,4.086749765949343,0.0,0.0 +82.0,2.5,4.0865178318285365,0.0,0.0 +83.0,2.5,4.086291010583731,0.0,0.0 +84.0,2.5,4.0860691862348055,0.0,0.0 +85.0,2.5,4.085852132426833,0.0,0.0 +86.0,2.5,4.085639716421859,0.0,0.0 +87.0,2.5,4.085431899989458,0.0,0.0 +88.0,2.5,4.085228574804643,0.0,0.0 +89.0,2.5,4.0850296359704155,0.0,0.0 +90.0,2.5,4.084834981878631,0.0,0.0 +91.0,2.5,4.084644514076079,0.0,0.0 +92.0,2.5,4.0844581371360364,0.0,0.0 +93.0,2.5,4.084275758534926,0.0,0.0 +94.0,2.5,4.084097288534272,0.0,0.0 +95.0,2.5,4.083922580111833,0.0,0.0 +96.0,2.5,4.083751443484631,0.0,0.0 +97.0,2.5,4.083583895147556,0.0,0.0 +98.0,2.5,4.083419848098537,0.0,0.0 +99.0,2.5,4.083259217539309,0.0,0.0 +100.0,2.5,4.083101920805127,0.0,0.0 +101.0,2.5,4.082947877296784,0.0,0.0 +102.0,2.5,4.08279700841526,0.0,0.0 +103.0,2.5,4.0826492374987975,0.0,0.0 +104.0,2.5,4.082504489762482,0.0,0.0 +105.0,2.5,4.0823626853081025,0.0,0.0 +106.0,2.5,4.082223665259328,0.0,0.0 +107.0,2.5,4.082087423199833,0.0,0.0 +108.0,2.5,4.0819538876851205,0.0,0.0 +109.0,2.5,4.081822988827989,0.0,0.0 +110.0,2.5,4.081694658258913,0.0,0.0 +111.0,2.5,4.081568829087869,0.0,0.0 +112.0,2.5,4.081445435866936,0.0,0.0 +113.0,2.5,4.081324414554147,0.0,0.0 +114.0,2.5,4.0812057024784885,0.0,0.0 +115.0,2.5,4.081089238305971,0.0,0.0 +116.0,2.5,4.08097494232456,0.0,0.0 +117.0,2.5,4.080862764679917,0.0,0.0 +118.0,2.5,4.080752650215037,0.0,0.0 +119.0,2.5,4.080644541698893,0.0,0.0 +120.0,2.5,4.080538383064326,0.0,0.0 +121.0,2.5,4.080434119381322,0.0,0.0 +122.0,2.5,4.080331696830786,0.0,0.0 +123.0,2.5,4.080231062679405,0.0,0.0 +124.0,2.5,4.080132165254847,0.0,0.0 +125.0,2.5,4.0800349539220875,0.0,0.0 +126.0,2.5,4.079939376720904,0.0,0.0 +127.0,2.5,4.0798453847155685,0.0,0.0 +128.0,2.5,4.079752931441735,0.0,0.0 +129.0,2.5,4.079661970018632,0.0,0.0 +130.0,2.5,4.079572454489028,0.0,0.0 +131.0,2.5,4.0794843397994525,0.0,0.0 +132.0,2.5,4.079397581781398,0.0,0.0 +133.0,2.5,4.079312137132995,0.0,0.0 +134.0,2.5,4.079227963401337,0.0,0.0 +135.0,2.5,4.079145018965368,0.0,0.0 +136.0,2.5,4.0790632581457285,0.0,0.0 +137.0,2.5,4.078982634181892,0.0,0.0 +138.0,2.5,4.07890311548313,0.0,0.0 +139.0,2.5,4.078824663331393,0.0,0.0 +140.0,2.5,4.078747239768525,0.0,0.0 +141.0,2.5,4.078670807581731,0.0,0.0 +142.0,2.5,4.078595330289514,0.0,0.0 +143.0,2.5,4.078520772128148,0.0,0.0 +144.0,2.5,4.078447098038876,0.0,0.0 +145.0,2.5,4.078374273655544,0.0,0.0 +146.0,2.5,4.078302265292856,0.0,0.0 +147.0,2.5,4.078231039935201,0.0,0.0 +148.0,2.5,4.078160565225972,0.0,0.0 +149.0,2.5,4.078090809457463,0.0,0.0 +150.0,2.5,4.0780217415612645,0.0,0.0 +151.0,2.5,4.077953331099245,0.0,0.0 +152.0,2.5,4.077885548254853,0.0,0.0 +153.0,2.5,4.0778183457825286,0.0,0.0 +154.0,2.5,4.077751683756053,0.0,0.0 +155.0,2.5,4.077685554179354,0.0,0.0 +156.0,2.5,4.077619928841112,0.0,0.0 +157.0,2.5,4.077554780081825,0.0,0.0 +158.0,2.5,4.077490080785911,0.0,0.0 +159.0,2.5,4.07742580437427,0.0,0.0 +160.0,2.5,4.077361924797133,0.0,0.0 +161.0,2.5,4.077298416527288,0.0,0.0 +162.0,2.5,4.077235254553625,0.0,0.0 +163.0,2.5,4.077172414375023,0.0,0.0 +164.0,2.5,4.077109871994523,0.0,0.0 +165.0,2.5,4.077047603913931,0.0,0.0 +166.0,2.5,4.076985587128584,0.0,0.0 +167.0,2.5,4.0769237991225085,0.0,0.0 +168.0,2.5,4.0768622178638925,0.0,0.0 +169.0,2.5,4.076800821800829,0.0,0.0 +170.0,2.5,4.076739567832886,0.0,0.0 +171.0,2.5,4.076678430698656,0.0,0.0 +172.0,2.5,4.076617407022613,0.0,0.0 +173.0,2.5,4.076556476171565,0.0,0.0 +174.0,2.5,4.076495617921502,0.0,0.0 +175.0,2.5,4.076434812452586,0.0,0.0 +176.0,2.5,4.076374040344133,0.0,0.0 +177.0,2.5,4.076313282569893,0.0,0.0 +178.0,2.5,4.076252520493434,0.0,0.0 +179.0,2.5,4.0761917358636595,0.0,0.0 +180.0,2.5,4.076130910810625,0.0,0.0 +181.0,2.5,4.076070027841338,0.0,0.0 +182.0,2.5,4.076009069835855,0.0,0.0 +183.0,2.5,4.075948020043392,0.0,0.0 +184.0,2.5,4.075886862078759,0.0,0.0 +185.0,2.5,4.075825579918716,0.0,0.0 +186.0,2.5,4.075764157898728,0.0,0.0 +187.0,2.5,4.075702566041725,0.0,0.0 +188.0,2.5,4.075640790574839,0.0,0.0 +189.0,2.5,4.075578824437293,0.0,0.0 +190.0,2.5,4.075516652749117,0.0,0.0 +191.0,2.5,4.07545426093731,0.0,0.0 +192.0,2.5,4.075391634731802,0.0,0.0 +193.0,2.5,4.075328760161517,0.0,0.0 +194.0,2.5,4.075265623550525,0.0,0.0 +195.0,2.5,4.0752022115142985,0.0,0.0 +196.0,2.5,4.075138510956072,0.0,0.0 +197.0,2.5,4.075074509063162,0.0,0.0 +198.0,2.5,4.075010193303642,0.0,0.0 +199.0,2.5,4.074945551422783,0.0,0.0 +200.0,2.5,4.074880571439843,0.0,0.0 +201.0,2.5,4.0748152416447745,0.0,0.0 +202.0,2.5,4.074749550595088,0.0,0.0 +203.0,2.5,4.074683487112824,0.0,0.0 +204.0,2.5,4.074617034797386,0.0,0.0 +205.0,2.5,4.074550184650403,0.0,0.0 +206.0,2.5,4.074482928099226,0.0,0.0 +207.0,2.5,4.074415254780117,0.0,0.0 +208.0,2.5,4.074347154566803,0.0,0.0 +209.0,2.5,4.074278617567291,0.0,0.0 +210.0,2.5,4.074209634120945,0.0,0.0 +211.0,2.5,4.074140194795576,0.0,0.0 +212.0,2.5,4.074070290384515,0.0,0.0 +213.0,2.5,4.073999911903955,0.0,0.0 +214.0,2.5,4.0739290505900705,0.0,0.0 +215.0,2.5,4.073857697896411,0.0,0.0 +216.0,2.5,4.073785845491324,0.0,0.0 +217.0,2.5,4.073713485255321,0.0,0.0 +218.0,2.5,4.0736406092786925,0.0,0.0 +219.0,2.5,4.073567209858991,0.0,0.0 +220.0,2.5,4.073493279498674,0.0,0.0 +221.0,2.5,4.073418808567246,0.0,0.0 +222.0,2.5,4.07334379108645,0.0,0.0 +223.0,2.5,4.073268220616229,0.0,0.0 +224.0,2.5,4.07319209037358,0.0,0.0 +225.0,2.5,4.073115393764511,0.0,0.0 +226.0,2.5,4.073038124381744,0.0,0.0 +227.0,2.5,4.072960276002726,0.0,0.0 +228.0,2.5,4.072881842587348,0.0,0.0 +229.0,2.5,4.072802818276068,0.0,0.0 +230.0,2.5,4.072723197387714,0.0,0.0 +231.0,2.5,4.0726429744177235,0.0,0.0 +232.0,2.5,4.072562144036067,0.0,0.0 +233.0,2.5,4.072480701085468,0.0,0.0 +234.0,2.5,4.072398640579519,0.0,0.0 +235.0,2.5,4.072315957700959,0.0,0.0 +236.0,2.5,4.072232647799895,0.0,0.0 +237.0,2.5,4.072148706392074,0.0,0.0 +238.0,2.5,4.072064120134619,0.0,0.0 +239.0,2.5,4.071978890849423,0.0,0.0 +240.0,2.5,4.0718930154476585,0.0,0.0 +241.0,2.5,4.071806489930813,0.0,0.0 +242.0,2.5,4.07171931045325,0.0,0.0 +243.0,2.5,4.071631473320771,0.0,0.0 +244.0,2.5,4.071542974989084,0.0,0.0 +245.0,2.5,4.071453812062383,0.0,0.0 +246.0,2.5,4.071363981291887,0.0,0.0 +247.0,2.5,4.0712734795745265,0.0,0.0 +248.0,2.5,4.0711823039515815,0.0,0.0 +249.0,2.5,4.071090451607358,0.0,0.0 +250.0,2.5,4.070997919867907,0.0,0.0 +251.0,2.5,4.070904706199816,0.0,0.0 +252.0,2.5,4.070810808208975,0.0,0.0 +253.0,2.5,4.070716223639418,0.0,0.0 +254.0,2.5,4.070620950372149,0.0,0.0 +255.0,2.5,4.070524986424056,0.0,0.0 +256.0,2.5,4.07042832994678,0.0,0.0 +257.0,2.5,4.070330979225705,0.0,0.0 +258.0,2.5,4.070232932678884,0.0,0.0 +259.0,2.5,4.070134188856022,0.0,0.0 +260.0,2.5,4.070034746437567,0.0,0.0 +261.0,2.5,4.069934604233671,0.0,0.0 +262.0,2.5,4.069833761183301,0.0,0.0 +263.0,2.5,4.069732216353356,0.0,0.0 +264.0,2.5,4.069629962608646,0.0,0.0 +265.0,2.5,4.069526974796968,0.0,0.0 +266.0,2.5,4.069423277465929,0.0,0.0 +267.0,2.5,4.06931886975559,0.0,0.0 +268.0,2.5,4.0692137509128425,0.0,0.0 +269.0,2.5,4.069107920290343,0.0,0.0 +270.0,2.5,4.069001377345511,0.0,0.0 +271.0,2.5,4.0688941216394525,0.0,0.0 +272.0,2.5,4.068786152836081,0.0,0.0 +273.0,2.5,4.068677470701036,0.0,0.0 +274.0,2.5,4.068568075100781,0.0,0.0 +275.0,2.5,4.068457966001725,0.0,0.0 +276.0,2.5,4.068347143469275,0.0,0.0 +277.0,2.5,4.068235607666899,0.0,0.0 +278.0,2.5,4.0681233588553765,0.0,0.0 +279.0,2.5,4.068010397391818,0.0,0.0 +280.0,2.5,4.067896723728946,0.0,0.0 +281.0,2.5,4.067782338414229,0.0,0.0 +282.0,2.5,4.067667242089039,0.0,0.0 +283.0,2.5,4.067551435487968,0.0,0.0 +284.0,2.5,4.0674349194379875,0.0,0.0 +285.0,2.5,4.067317694857721,0.0,0.0 +286.0,2.5,4.067199762756734,0.0,0.0 +287.0,2.5,4.067081124234777,0.0,0.0 +288.0,2.5,4.066961780481108,0.0,0.0 +289.0,2.5,4.066841732773772,0.0,0.0 +290.0,2.5,4.066720982478961,0.0,0.0 +291.0,2.5,4.0665995265560175,0.0,0.0 +292.0,2.5,4.066477362635106,0.0,0.0 +293.0,2.5,4.066354495157822,0.0,0.0 +294.0,2.5,4.066230925036236,0.0,0.0 +295.0,2.5,4.066106653219106,0.0,0.0 +296.0,2.5,4.065981680690279,0.0,0.0 +297.0,2.5,4.065856008467152,0.0,0.0 +298.0,2.5,4.065729637599162,0.0,0.0 +299.0,2.5,4.065602569166355,0.0,0.0 +300.0,2.5,4.065474804277807,0.0,0.0 +300.000000001,0.0,4.083337104220067,0.0,1.0 +301.0,0.0,4.08411857143703,0.0,1.0 +302.0,0.0,4.084823935791453,0.0,1.0 +303.0,0.0,4.085462722054559,0.0,1.0 +304.0,0.0,4.086043182007179,0.0,1.0 +305.0,0.0,4.0865724051017125,0.0,1.0 +306.0,0.0,4.087056427997617,0.0,1.0 +307.0,0.0,4.087500374077019,0.0,1.0 +308.0,0.0,4.08790902639921,0.0,1.0 +309.0,0.0,4.088286058882586,0.0,1.0 +310.0,0.0,4.088635268080958,0.0,1.0 +311.0,0.0,4.088959341219949,0.0,1.0 +312.0,0.0,4.089261112677142,0.0,1.0 +313.0,0.0,4.089542668887757,0.0,1.0 +314.0,0.0,4.089806112806356,0.0,1.0 +315.0,0.0,4.090053122784463,0.0,1.0 +316.0,0.0,4.090285221354024,0.0,1.0 +317.0,0.0,4.090503745704817,0.0,1.0 +318.0,0.0,4.090710046396893,0.0,1.0 +319.0,0.0,4.090905114792385,0.0,1.0 +320.0,0.0,4.091089906030976,0.0,1.0 +321.0,0.0,4.091265371880813,0.0,1.0 +322.0,0.0,4.0914322422960385,0.0,1.0 +323.0,0.0,4.091591184363877,0.0,1.0 +324.0,0.0,4.0917428222357195,0.0,1.0 +325.0,0.0,4.091887766010014,0.0,1.0 +326.0,0.0,4.092026518729413,0.0,1.0 +327.0,0.0,4.0921594814565765,0.0,1.0 +328.0,0.0,4.092287017515516,0.0,1.0 +329.0,0.0,4.09240944878535,0.0,1.0 +330.0,0.0,4.092527417454655,0.0,1.0 +331.0,0.0,4.092641028661417,0.0,1.0 +332.0,0.0,4.092750526981569,0.0,1.0 +333.0,0.0,4.092856120722325,0.0,1.0 +334.0,0.0,4.092958108470949,0.0,1.0 +335.0,0.0,4.093056869083674,0.0,1.0 +336.0,0.0,4.093152462953598,0.0,1.0 +337.0,0.0,4.09324505576939,0.0,1.0 +338.0,0.0,4.093334793123759,0.0,1.0 +339.0,0.0,4.093421944422245,0.0,1.0 +340.0,0.0,4.093506649887989,0.0,1.0 +341.0,0.0,4.093589011210733,0.0,1.0 +342.0,0.0,4.093669150941425,0.0,1.0 +343.0,0.0,4.093747185325492,0.0,1.0 +344.0,0.0,4.093823278769266,0.0,1.0 +345.0,0.0,4.093897505111239,0.0,1.0 +346.0,0.0,4.09396995992965,0.0,1.0 +347.0,0.0,4.094040730949751,0.0,1.0 +348.0,0.0,4.09410990799957,0.0,1.0 +349.0,0.0,4.094177578696497,0.0,1.0 +350.0,0.0,4.094243806711216,0.0,1.0 +351.0,0.0,4.094308657608522,0.0,1.0 +352.0,0.0,4.094372191189041,0.0,1.0 +353.0,0.0,4.094434507708313,0.0,1.0 +354.0,0.0,4.094495651938244,0.0,1.0 +355.0,0.0,4.094555664953677,0.0,1.0 +356.0,0.0,4.094614591157936,0.0,1.0 +357.0,0.0,4.094672469999011,0.0,1.0 +358.0,0.0,4.094729336096383,0.0,1.0 +359.0,0.0,4.0947852193522305,0.0,1.0 +360.0,0.0,4.094840145048124,0.0,1.0 +361.0,0.0,4.094894277223266,0.0,1.0 +362.0,0.0,4.0949475944493345,0.0,1.0 +363.0,0.0,4.0950000983298045,0.0,1.0 +364.0,0.0,4.095051812803234,0.0,1.0 +365.0,0.0,4.095102758594911,0.0,1.0 +366.0,0.0,4.0951529532665045,0.0,1.0 +367.0,0.0,4.095202411257952,0.0,1.0 +368.0,0.0,4.095251143922228,0.0,1.0 +369.0,0.0,4.095299315797117,0.0,1.0 +370.0,0.0,4.09534688558349,0.0,1.0 +371.0,0.0,4.0953938468241775,0.0,1.0 +372.0,0.0,4.095440216551898,0.0,1.0 +373.0,0.0,4.095486010140206,0.0,1.0 +374.0,0.0,4.095531241327584,0.0,1.0 +375.0,0.0,4.095575922238512,0.0,1.0 +376.0,0.0,4.095620063401408,0.0,1.0 +377.0,0.0,4.095663760543893,0.0,1.0 +378.0,0.0,4.095706993028133,0.0,1.0 +379.0,0.0,4.095749763336209,0.0,1.0 +380.0,0.0,4.095792085594328,0.0,1.0 +381.0,0.0,4.095833973140304,0.0,1.0 +382.0,0.0,4.095875438539559,0.0,1.0 +383.0,0.0,4.09591649359953,0.0,1.0 +384.0,0.0,4.0959571493826985,0.0,1.0 +385.0,0.0,4.095997438202164,0.0,1.0 +386.0,0.0,4.096037362024716,0.0,1.0 +387.0,0.0,4.0960769292507475,0.0,1.0 +388.0,0.0,4.096116150545187,0.0,1.0 +389.0,0.0,4.096155036066913,0.0,1.0 +390.0,0.0,4.096193595477757,0.0,1.0 +391.0,0.0,4.096231837950833,0.0,1.0 +392.0,0.0,4.096269772177853,0.0,1.0 +393.0,0.0,4.096307408860641,0.0,1.0 +394.0,0.0,4.096344754822972,0.0,1.0 +395.0,0.0,4.096381817330585,0.0,1.0 +396.0,0.0,4.096418603484685,0.0,1.0 +397.0,0.0,4.096455119952227,0.0,1.0 +398.0,0.0,4.096491372969539,0.0,1.0 +399.0,0.0,4.096527368345044,0.0,1.0 +400.0,0.0,4.096563111461736,0.0,1.0 +401.0,0.0,4.096598627108964,0.0,1.0 +402.0,0.0,4.09663391003031,0.0,1.0 +403.0,0.0,4.096668963385099,0.0,1.0 +404.0,0.0,4.096703791876213,0.0,1.0 +405.0,0.0,4.096738399802303,0.0,1.0 +406.0,0.0,4.096772791057752,0.0,1.0 +407.0,0.0,4.096806969132171,0.0,1.0 +408.0,0.0,4.096840937109579,0.0,1.0 +409.0,0.0,4.0968746976672685,0.0,1.0 +410.0,0.0,4.096908253074219,0.0,1.0 +411.0,0.0,4.096941605189362,0.0,1.0 +412.0,0.0,4.096974755459436,0.0,1.0 +413.0,0.0,4.097007704916578,0.0,1.0 +414.0,0.0,4.097040480435536,0.0,1.0 +415.0,0.0,4.097073076123438,0.0,1.0 +416.0,0.0,4.097105491844794,0.0,1.0 +417.0,0.0,4.097137731121214,0.0,1.0 +418.0,0.0,4.09716979741555,0.0,1.0 +419.0,0.0,4.0972016941341565,0.0,1.0 +420.0,0.0,4.097233424628999,0.0,1.0 +420.000000001,-2.5,4.115314153407617,0.0,2.0 +421.0,-2.5,4.11580126816336,0.0,2.0 +422.0,-2.5,4.116287981535286,0.0,2.0 +423.0,-2.5,4.116777990744232,0.0,2.0 +424.0,-2.5,4.117273191364564,0.0,2.0 +425.0,-2.5,4.117774915639592,0.0,2.0 +426.0,-2.5,4.118284040604012,0.0,2.0 +427.0,-2.5,4.118801048057358,0.0,2.0 +428.0,-2.5,4.119326515995133,0.0,2.0 +429.0,-2.5,4.119860399527127,0.0,2.0 +430.0,-2.5,4.120403180460219,0.0,2.0 +431.0,-2.5,4.120954562276548,0.0,2.0 +432.0,-2.5,4.121514781148596,0.0,2.0 +433.0,-2.5,4.122083516198534,0.0,2.0 +434.0,-2.5,4.1226607942227185,0.0,2.0 +435.0,-2.5,4.123246364371904,0.0,2.0 +436.0,-2.5,4.123840020969835,0.0,2.0 +437.0,-2.5,4.124441526266611,0.0,2.0 +438.0,-2.5,4.125050951332003,0.0,2.0 +439.0,-2.5,4.125667962076965,0.0,2.0 +440.0,-2.5,4.126292367649658,0.0,2.0 +441.0,-2.5,4.126924195444504,0.0,2.0 +442.0,-2.5,4.127563200844878,0.0,2.0 +443.0,-2.5,4.12820917027299,0.0,2.0 +444.0,-2.5,4.128861945806709,0.0,2.0 +445.0,-2.5,4.129521510767318,0.0,2.0 +446.0,-2.5,4.130187710940636,0.0,2.0 +447.0,-2.5,4.130860241429103,0.0,2.0 +448.0,-2.5,4.131538785425746,0.0,2.0 +449.0,-2.5,4.132223012474197,0.0,2.0 +450.0,-2.5,4.1329137060465575,0.0,2.0 +451.0,-2.5,4.1336100747288285,0.0,2.0 +452.0,-2.5,4.134311816352641,0.0,2.0 +453.0,-2.5,4.135018566209412,0.0,2.0 +454.0,-2.5,4.135730402582563,0.0,2.0 +455.0,-2.5,4.136447738344287,0.0,2.0 +456.0,-2.5,4.137169913020526,0.0,2.0 +457.0,-2.5,4.137896687838134,0.0,2.0 +458.0,-2.5,4.13862779190947,0.0,2.0 +459.0,-2.5,4.139363583911809,0.0,2.0 +460.0,-2.5,4.140103858101116,0.0,2.0 +461.0,-2.5,4.140848348950613,0.0,2.0 +462.0,-2.5,4.1415969032465085,0.0,2.0 +463.0,-2.5,4.142349392150335,0.0,2.0 +464.0,-2.5,4.14310594336973,0.0,2.0 +465.0,-2.5,4.143866307267678,0.0,2.0 +466.0,-2.5,4.144630367242537,0.0,2.0 +467.0,-2.5,4.14539800048952,0.0,2.0 +468.0,-2.5,4.146169135105322,0.0,2.0 +469.0,-2.5,4.1469437054342855,0.0,2.0 +470.0,-2.5,4.147721556947632,0.0,2.0 +471.0,-2.5,4.148502566664649,0.0,2.0 +472.0,-2.5,4.149286603209791,0.0,2.0 +473.0,-2.5,4.150073818632925,0.0,2.0 +474.0,-2.5,4.150864013380658,0.0,2.0 +475.0,-2.5,4.151657032252208,0.0,2.0 +476.0,-2.5,4.152452742603151,0.0,2.0 +477.0,-2.5,4.153250998409786,0.0,2.0 +478.0,-2.5,4.154051639048997,0.0,2.0 +479.0,-2.5,4.154854488114104,0.0,2.0 +480.0,-2.5,4.155659352267687,0.0,2.0 +481.0,-2.5,4.156467062646512,0.0,2.0 +482.0,-2.5,4.157276995734728,0.0,2.0 +483.0,-2.5,4.158088929742623,0.0,2.0 +484.0,-2.5,4.158902722580855,0.0,2.0 +485.0,-2.5,4.159718220883334,0.0,2.0 +486.0,-2.5,4.160535259263556,0.0,2.0 +487.0,-2.5,4.161353659596958,0.0,2.0 +488.0,-2.5,4.162173230329908,0.0,2.0 +489.0,-2.5,4.162995033345934,0.0,2.0 +490.0,-2.5,4.163818275506938,0.0,2.0 +491.0,-2.5,4.1646427911171955,0.0,2.0 +492.0,-2.5,4.165468472838174,0.0,2.0 +493.0,-2.5,4.166295209164681,0.0,2.0 +494.0,-2.5,4.167122884071705,0.0,2.0 +495.0,-2.5,4.16795137667258,0.0,2.0 +496.0,-2.5,4.168780560888696,0.0,2.0 +497.0,-2.5,4.1696110735551075,0.0,2.0 +498.0,-2.5,4.170442384273522,0.0,2.0 +499.0,-2.5,4.171274413467192,0.0,2.0 +500.0,-2.5,4.1721070926304,0.0,2.0 +501.0,-2.5,4.172940353307712,0.0,2.0 +502.0,-2.5,4.173774126914772,0.0,2.0 +503.0,-2.5,4.17460834456357,0.0,2.0 +504.0,-2.5,4.175442940725014,0.0,2.0 +505.0,-2.5,4.176278044626564,0.0,2.0 +506.0,-2.5,4.17711347773185,0.0,2.0 +507.0,-2.5,4.177949187515572,0.0,2.0 +508.0,-2.5,4.178785121997135,0.0,2.0 +509.0,-2.5,4.179621229611505,0.0,2.0 +510.0,-2.5,4.180457459083005,0.0,2.0 +511.0,-2.5,4.181293759302215,0.0,2.0 +512.0,-2.5,4.182130080544206,0.0,2.0 +513.0,-2.5,4.182966395471069,0.0,2.0 +514.0,-2.5,4.1838026396555374,0.0,2.0 +515.0,-2.5,4.184638763875634,0.0,2.0 +516.0,-2.5,4.185474718707162,0.0,2.0 +517.0,-2.5,4.186310454421232,0.0,2.0 +518.0,-2.5,4.187145920884718,0.0,2.0 +519.0,-2.5,4.187981067463743,0.0,2.0 +520.0,-2.5,4.188815859287128,0.0,2.0 +521.0,-2.5,4.1896504023686605,0.0,2.0 +522.0,-2.5,4.190484538000852,0.0,2.0 +523.0,-2.5,4.191318220929476,0.0,2.0 +524.0,-2.5,4.192151405074641,0.0,2.0 +525.0,-2.5,4.1929840434470975,0.0,2.0 +526.0,-2.5,4.19381608806758,0.0,2.0 +527.0,-2.5,4.1946474898890145,0.0,2.0 +528.0,-2.5,4.195478198721599,0.0,2.0 +529.0,-2.5,4.196308163160786,0.0,2.0 +530.0,-2.5,4.197137330518019,0.0,2.0 +531.0,-2.5,4.197965646754283,0.0,2.0 +532.0,-2.5,4.198793056416422,0.0,2.0 +533.0,-2.5,4.1996195697873056,0.0,2.0 +534.0,-2.5,4.200445644043602,0.0,2.0 +535.0,-2.5,4.201270821156214,0.0,2.0 +536.0,-2.5,4.20209506239229,0.0,2.0 +537.0,-2.5,4.202918328424658,0.0,2.0 +538.0,-2.5,4.203740579283007,0.0,2.0 +539.0,-2.5,4.2045617743068116,0.0,2.0 +540.0,-2.5,4.205381872100225,0.0,2.0 +541.0,-2.5,4.206200830488596,0.0,2.0 +542.0,-2.5,4.207018606476822,0.0,2.0 +543.0,-2.5,4.207835156209456,0.0,2.0 +544.0,-2.5,4.208650434932421,0.0,2.0 +545.0,-2.5,4.209464396956459,0.0,2.0 +546.0,-2.5,4.210277075901499,0.0,2.0 +547.0,-2.5,4.211088946655144,0.0,2.0 +548.0,-2.5,4.211899546903226,0.0,2.0 +549.0,-2.5,4.212708850053829,0.0,2.0 +550.0,-2.5,4.213516829576945,0.0,2.0 +551.0,-2.5,4.2143234589756196,0.0,2.0 +552.0,-2.5,4.215128711758133,0.0,2.0 +553.0,-2.5,4.215932561410892,0.0,2.0 +554.0,-2.5,4.216734981372289,0.0,2.0 +555.0,-2.5,4.217535945007451,0.0,2.0 +556.0,-2.5,4.218335425583666,0.0,2.0 +557.0,-2.5,4.219133396246829,0.0,2.0 +558.0,-2.5,4.219929829998552,0.0,2.0 +559.0,-2.5,4.220724737110144,0.0,2.0 +560.0,-2.5,4.221518305656589,0.0,2.0 +561.0,-2.5,4.222310344723525,0.0,2.0 +562.0,-2.5,4.223100839241547,0.0,2.0 +563.0,-2.5,4.223889774647726,0.0,2.0 +564.0,-2.5,4.224677136866221,0.0,2.0 +565.0,-2.5,4.2254629122892915,0.0,2.0 +566.0,-2.5,4.226247087758805,0.0,2.0 +567.0,-2.5,4.227029650547929,0.0,2.0 +568.0,-2.5,4.227810588343391,0.0,2.0 +569.0,-2.5,4.228589889227962,0.0,2.0 +570.0,-2.5,4.229367541663446,0.0,2.0 +570.000000001,0.0,4.210029284710582,0.0,3.0 +571.0,0.0,4.207213583314949,0.0,3.0 +572.0,0.0,4.2045971631097725,0.0,3.0 +573.0,0.0,4.202161839008122,0.0,3.0 +574.0,0.0,4.199890898745848,0.0,3.0 +575.0,0.0,4.197769335614359,0.0,3.0 +576.0,0.0,4.195783879691244,0.0,3.0 +577.0,0.0,4.193922813568967,0.0,3.0 +578.0,0.0,4.19217522692314,0.0,3.0 +579.0,0.0,4.1905311507282805,0.0,3.0 +580.0,0.0,4.1889814120405005,0.0,3.0 +581.0,0.0,4.187518661668531,0.0,3.0 +582.0,0.0,4.186134907137069,0.0,3.0 +583.0,0.0,4.184824930563117,0.0,3.0 +584.0,0.0,4.1835819030923505,0.0,3.0 +585.0,0.0,4.182401580048656,0.0,3.0 +586.0,0.0,4.181278703809178,0.0,3.0 +587.0,0.0,4.180209910457267,0.0,3.0 +588.0,0.0,4.179190532538634,0.0,3.0 +589.0,0.0,4.178216902784102,0.0,3.0 +590.0,0.0,4.177286614461846,0.0,3.0 +591.0,0.0,4.176396007237823,0.0,3.0 +592.0,0.0,4.175542354184778,0.0,3.0 +593.0,0.0,4.17472364073388,0.0,3.0 +594.0,0.0,4.17393750941874,0.0,3.0 +595.0,0.0,4.173181867365283,0.0,3.0 +596.0,0.0,4.172454471651524,0.0,3.0 +597.0,0.0,4.171754031090117,0.0,3.0 +598.0,0.0,4.171079263572318,0.0,3.0 +599.0,0.0,4.17042913754243,0.0,3.0 +600.0,0.0,4.16980120491864,0.0,3.0 +601.0,0.0,4.169194204224323,0.0,3.0 +602.0,0.0,4.168607759644541,0.0,3.0 +603.0,0.0,4.168041150823556,0.0,3.0 +604.0,0.0,4.167493774627918,0.0,3.0 +605.0,0.0,4.166962625224374,0.0,3.0 +606.0,0.0,4.166448148159899,0.0,3.0 +607.0,0.0,4.165949685934117,0.0,3.0 +608.0,0.0,4.165466676378533,0.0,3.0 +609.0,0.0,4.164998206772577,0.0,3.0 +610.0,0.0,4.1645429199915345,0.0,3.0 +611.0,0.0,4.1641007216410015,0.0,3.0 +612.0,0.0,4.1636710663369385,0.0,3.0 +613.0,0.0,4.16325346065624,0.0,3.0 +614.0,0.0,4.1628471299862,0.0,3.0 +615.0,0.0,4.162451571498087,0.0,3.0 +616.0,0.0,4.162066421723589,0.0,3.0 +617.0,0.0,4.16169126270297,0.0,3.0 +618.0,0.0,4.161325704401287,0.0,3.0 +619.0,0.0,4.1609692153506135,0.0,3.0 +620.0,0.0,4.160621529491947,0.0,3.0 +621.0,0.0,4.160282325457457,0.0,3.0 +622.0,0.0,4.159951311130621,0.0,3.0 +623.0,0.0,4.159628069141708,0.0,3.0 +624.0,0.0,4.159312117980469,0.0,3.0 +625.0,0.0,4.159003373346276,0.0,3.0 +626.0,0.0,4.158701613036827,0.0,3.0 +627.0,0.0,4.158406643057931,0.0,3.0 +628.0,0.0,4.158118297327637,0.0,3.0 +629.0,0.0,4.157836437392334,0.0,3.0 +630.0,0.0,4.157560952154421,0.0,3.0 +631.0,0.0,4.157291261979277,0.0,3.0 +632.0,0.0,4.157026688466741,0.0,3.0 +633.0,0.0,4.156767652572423,0.0,3.0 +634.0,0.0,4.156514032810383,0.0,3.0 +635.0,0.0,4.156265726685805,0.0,3.0 +636.0,0.0,4.15602265052153,0.0,3.0 +637.0,0.0,4.155784739291854,0.0,3.0 +638.0,0.0,4.155551946463349,0.0,3.0 +639.0,0.0,4.1553237049393745,0.0,3.0 +640.0,0.0,4.155099377411003,0.0,3.0 +641.0,0.0,4.154879446227916,0.0,3.0 +642.0,0.0,4.154663814247297,0.0,3.0 +643.0,0.0,4.154452393741274,0.0,3.0 +644.0,0.0,4.154245106315513,0.0,3.0 +645.0,0.0,4.154041882830858,0.0,3.0 +646.0,0.0,4.153842663327825,0.0,3.0 +647.0,0.0,4.153647101167119,0.0,3.0 +648.0,0.0,4.153454830558504,0.0,3.0 +649.0,0.0,4.153266067313362,0.0,3.0 +650.0,0.0,4.153080721404211,0.0,3.0 +651.0,0.0,4.152898707130987,0.0,3.0 +652.0,0.0,4.152719943082192,0.0,3.0 +653.0,0.0,4.152544352097112,0.0,3.0 +654.0,0.0,4.152371861229269,0.0,3.0 +655.0,0.0,4.1522023277734,0.0,3.0 +656.0,0.0,4.152035610979901,0.0,3.0 +657.0,0.0,4.1518717097175015,0.0,3.0 +658.0,0.0,4.151710551395647,0.0,3.0 +659.0,0.0,4.151552066364199,0.0,3.0 +660.0,0.0,4.1513961878880865,0.0,3.0 +661.0,0.0,4.15124285212288,0.0,3.0 +662.0,0.0,4.151091998090975,0.0,3.0 +663.0,0.0,4.1509435592345785,0.0,3.0 +664.0,0.0,4.150797472097141,0.0,3.0 +665.0,0.0,4.150653690629847,0.0,3.0 +666.0,0.0,4.150512163297496,0.0,3.0 +667.0,0.0,4.1503728411991965,0.0,3.0 +668.0,0.0,4.15023567804895,0.0,3.0 +669.0,0.0,4.150100630156968,0.0,3.0 +670.0,0.0,4.149967656411437,0.0,3.0 +671.0,0.0,4.1498366540695955,0.0,3.0 +672.0,0.0,4.1497075385471796,0.0,3.0 +673.0,0.0,4.149580332413257,0.0,3.0 +674.0,0.0,4.149454998704056,0.0,3.0 +675.0,0.0,4.14933150294905,0.0,3.0 +676.0,0.0,4.149209813155258,0.0,3.0 +677.0,0.0,4.149089899791887,0.0,3.0 +678.0,0.0,4.148971735775508,0.0,3.0 +679.0,0.0,4.148855296455618,0.0,3.0 +680.0,0.0,4.1487405596006734,0.0,3.0 +681.0,0.0,4.148627505384641,0.0,3.0 +682.0,0.0,4.14851611637379,0.0,3.0 +683.0,0.0,4.148406377514072,0.0,3.0 +684.0,0.0,4.148298213522299,0.0,3.0 +685.0,0.0,4.148191511522451,0.0,3.0 +686.0,0.0,4.148086312994496,0.0,3.0 +687.0,0.0,4.1479825873201,0.0,3.0 +688.0,0.0,4.147880304164437,0.0,3.0 +689.0,0.0,4.147779433472801,0.0,3.0 +690.0,0.0,4.147679945467388,0.0,3.0 +690.000000001,2.5,4.128614765545601,1.0,0.0 +691.0,2.5,4.125806121237927,1.0,0.0 +692.0,2.5,4.123215794986313,1.0,0.0 +693.0,2.5,4.1208229134493735,1.0,0.0 +694.0,2.5,4.118607471025524,1.0,0.0 +695.0,2.5,4.116551784497935,1.0,0.0 +696.0,2.5,4.114640381218213,1.0,0.0 +697.0,2.5,4.112859689636109,1.0,0.0 +698.0,2.5,4.111197424781445,1.0,0.0 +699.0,2.5,4.1096425953611275,1.0,0.0 +700.0,2.5,4.108185319207477,1.0,0.0 +701.0,2.5,4.106817367636223,1.0,0.0 +702.0,2.5,4.105530584404381,1.0,0.0 +703.0,2.5,4.104318858718375,1.0,0.0 +704.0,2.5,4.103175499004113,1.0,0.0 +705.0,2.5,4.102095597490596,1.0,0.0 +706.0,2.5,4.101073956789457,1.0,0.0 +707.0,2.5,4.100106646480028,1.0,0.0 +708.0,2.5,4.099189265075946,1.0,0.0 +709.0,2.5,4.0983181499111465,1.0,0.0 +710.0,2.5,4.0974904450012435,1.0,0.0 +711.0,2.5,4.096702826328648,1.0,0.0 +712.0,2.5,4.095952583807382,1.0,0.0 +713.0,2.5,4.0952374707757215,1.0,0.0 +714.0,2.5,4.094555187694315,1.0,0.0 +715.0,2.5,4.093903667889831,1.0,0.0 +716.0,2.5,4.093280877078022,1.0,0.0 +717.0,2.5,4.092685281272766,1.0,0.0 +718.0,2.5,4.092115414449436,1.0,0.0 +719.0,2.5,4.091569972939239,1.0,0.0 +720.0,2.5,4.09104717147136,1.0,0.0 +721.0,2.5,4.090545739714515,1.0,0.0 +722.0,2.5,4.0900648204169885,1.0,0.0 +723.0,2.5,4.089603449382283,1.0,0.0 +724.0,2.5,4.089160753388908,1.0,0.0 +725.0,2.5,4.088735029900462,1.0,0.0 +726.0,2.5,4.0883258737423,1.0,0.0 +727.0,2.5,4.0879325054599285,1.0,0.0 +728.0,2.5,4.087554207133284,1.0,0.0 +729.0,2.5,4.087190186810957,1.0,0.0 +730.0,2.5,4.086839527158593,1.0,0.0 +731.0,2.5,4.086501759926133,1.0,0.0 +732.0,2.5,4.0861762895157385,1.0,0.0 +733.0,2.5,4.085862558779947,1.0,0.0 +734.0,2.5,4.085559956599416,1.0,0.0 +735.0,2.5,4.08526796397757,1.0,0.0 +736.0,2.5,4.084986129068984,1.0,0.0 +737.0,2.5,4.084713999265481,1.0,0.0 +738.0,2.5,4.084451147597297,1.0,0.0 +739.0,2.5,4.08419712400763,1.0,0.0 +740.0,2.5,4.083951565539416,1.0,0.0 +741.0,2.5,4.083714107407066,1.0,0.0 +742.0,2.5,4.083484404949723,1.0,0.0 +743.0,2.5,4.083262100125357,1.0,0.0 +744.0,2.5,4.083046824275364,1.0,0.0 +745.0,2.5,4.08283832164241,1.0,0.0 +746.0,2.5,4.082636310723714,1.0,0.0 +747.0,2.5,4.0824405255597345,1.0,0.0 +748.0,2.5,4.082250714809793,1.0,0.0 +749.0,2.5,4.082066640890373,1.0,0.0 +750.0,2.5,4.0818880791738374,1.0,0.0 +751.0,2.5,4.08171473227161,1.0,0.0 +752.0,2.5,4.08154625823742,1.0,0.0 +753.0,2.5,4.081382576608256,1.0,0.0 +754.0,2.5,4.081223491802858,1.0,0.0 +755.0,2.5,4.0810688177970835,1.0,0.0 +756.0,2.5,4.080918377636783,1.0,0.0 +757.0,2.5,4.080772002987455,1.0,0.0 +758.0,2.5,4.08062953371918,1.0,0.0 +759.0,2.5,4.080490740915204,1.0,0.0 +760.0,2.5,4.080355347942114,1.0,0.0 +761.0,2.5,4.080223318596588,1.0,0.0 +762.0,2.5,4.080094506404174,1.0,0.0 +763.0,2.5,4.079968770905705,1.0,0.0 +764.0,2.5,4.0798459774126865,1.0,0.0 +765.0,2.5,4.0797259967792545,1.0,0.0 +766.0,2.5,4.079608705189785,1.0,0.0 +767.0,2.5,4.079493948205887,1.0,0.0 +768.0,2.5,4.079381547473939,1.0,0.0 +769.0,2.5,4.079271442100604,1.0,0.0 +770.0,2.5,4.079163519575337,1.0,0.0 +771.0,2.5,4.079057671435461,1.0,0.0 +772.0,2.5,4.078953793119238,1.0,0.0 +773.0,2.5,4.078851783826287,1.0,0.0 +774.0,2.5,4.07875154638534,1.0,0.0 +775.0,2.5,4.0786529792242465,1.0,0.0 +776.0,2.5,4.078555977035114,1.0,0.0 +777.0,2.5,4.078460463561321,1.0,0.0 +778.0,2.5,4.0783663529236325,1.0,0.0 +779.0,2.5,4.078273562173607,1.0,0.0 +780.0,2.5,4.078182011193613,1.0,0.0 +781.0,2.5,4.078091622601979,1.0,0.0 +782.0,2.5,4.078002321662702,1.0,0.0 +783.0,2.5,4.077914035307862,1.0,0.0 +784.0,2.5,4.077826692056932,1.0,0.0 +785.0,2.5,4.0777402258409134,1.0,0.0 +786.0,2.5,4.077654571435659,1.0,0.0 +787.0,2.5,4.077569665857292,1.0,0.0 +788.0,2.5,4.077485448296463,1.0,0.0 +789.0,2.5,4.077401860056638,1.0,0.0 +790.0,2.5,4.077318844495759,1.0,0.0 +791.0,2.5,4.077236341050073,1.0,0.0 +792.0,2.5,4.0771542857423775,1.0,0.0 +793.0,2.5,4.0770726373132895,1.0,0.0 +794.0,2.5,4.076991345937895,1.0,0.0 +795.0,2.5,4.076910363576668,1.0,0.0 +796.0,2.5,4.076829643933492,1.0,0.0 +797.0,2.5,4.076749142416511,1.0,0.0 +798.0,2.5,4.076668816102087,1.0,0.0 +799.0,2.5,4.076588623701528,1.0,0.0 +800.0,2.5,4.07650852553042,1.0,0.0 +801.0,2.5,4.076428483480787,1.0,0.0 +802.0,2.5,4.076348460995688,1.0,0.0 +803.0,2.5,4.076268423046131,1.0,0.0 +804.0,2.5,4.076188320415346,1.0,0.0 +805.0,2.5,4.076108076853919,1.0,0.0 +806.0,2.5,4.076027700246825,1.0,0.0 +807.0,2.5,4.075947158610126,1.0,0.0 +808.0,2.5,4.075866421197667,1.0,0.0 +809.0,2.5,4.075785458480302,1.0,0.0 +810.0,2.5,4.075704242126962,1.0,0.0 +811.0,2.5,4.075622744987126,1.0,0.0 +812.0,2.5,4.07554094107501,1.0,0.0 +813.0,2.5,4.075458805555057,1.0,0.0 +814.0,2.5,4.0753763147289055,1.0,0.0 +815.0,2.5,4.075293446023828,1.0,0.0 +816.0,2.5,4.075210177982228,1.0,0.0 +817.0,2.5,4.075126478009019,1.0,0.0 +818.0,2.5,4.075042268381398,1.0,0.0 +819.0,2.5,4.0749575776201485,1.0,0.0 +820.0,2.5,4.074872385282608,1.0,0.0 +821.0,2.5,4.07478667174869,1.0,0.0 +822.0,2.5,4.074700418206247,1.0,0.0 +823.0,2.5,4.074613606637252,1.0,0.0 +824.0,2.5,4.074526219804822,1.0,0.0 +825.0,2.5,4.07443824124094,1.0,0.0 +826.0,2.5,4.0743496552349345,1.0,0.0 +827.0,2.5,4.07426044682273,1.0,0.0 +828.0,2.5,4.074170601776774,1.0,0.0 +829.0,2.5,4.074080106596522,1.0,0.0 +830.0,2.5,4.073988944409249,1.0,0.0 +831.0,2.5,4.07389706411082,1.0,0.0 +832.0,2.5,4.07380448348669,1.0,0.0 +833.0,2.5,4.073711189875896,1.0,0.0 +834.0,2.5,4.073617171155592,1.0,0.0 +835.0,2.5,4.073522415729633,1.0,0.0 +836.0,2.5,4.073426912517358,1.0,0.0 +837.0,2.5,4.073330650942989,1.0,0.0 +838.0,2.5,4.073233620925456,1.0,0.0 +839.0,2.5,4.073135812868662,1.0,0.0 +840.0,2.5,4.073037217652044,1.0,0.0 +841.0,2.5,4.072937826621785,1.0,0.0 +842.0,2.5,4.072837631582176,1.0,0.0 +843.0,2.5,4.072736624454799,1.0,0.0 +844.0,2.5,4.072634785196609,1.0,0.0 +845.0,2.5,4.07253211599917,1.0,0.0 +846.0,2.5,4.07242860985028,1.0,0.0 +847.0,2.5,4.072324260116496,1.0,0.0 +848.0,2.5,4.072219060535384,1.0,0.0 +849.0,2.5,4.072113005207956,1.0,0.0 +850.0,2.5,4.072006088591653,1.0,0.0 +851.0,2.5,4.07189830549335,1.0,0.0 +852.0,2.5,4.071789651062911,1.0,0.0 +853.0,2.5,4.071680120786833,1.0,0.0 +854.0,2.5,4.071569710482282,1.0,0.0 +855.0,2.5,4.071458416291358,1.0,0.0 +856.0,2.5,4.071346234675647,1.0,0.0 +857.0,2.5,4.071233157910828,1.0,0.0 +858.0,2.5,4.071119185993691,1.0,0.0 +859.0,2.5,4.0710043162925444,1.0,0.0 +860.0,2.5,4.070888546282846,1.0,0.0 +861.0,2.5,4.070771873720951,1.0,0.0 +862.0,2.5,4.0706542966396135,1.0,0.0 +863.0,2.5,4.070535813343663,1.0,0.0 +864.0,2.5,4.070416422405941,1.0,0.0 +865.0,2.5,4.070296122663345,1.0,0.0 +866.0,2.5,4.070174913213193,1.0,0.0 +867.0,2.5,4.070052793409649,1.0,0.0 +868.0,2.5,4.069929762860374,1.0,0.0 +869.0,2.5,4.069805821423346,1.0,0.0 +870.0,2.5,4.069680951292653,1.0,0.0 +871.0,2.5,4.069555163670968,1.0,0.0 +872.0,2.5,4.069428460770549,1.0,0.0 +873.0,2.5,4.069300842934896,1.0,0.0 +874.0,2.5,4.069172310729855,1.0,0.0 +875.0,2.5,4.069042864941206,1.0,0.0 +876.0,2.5,4.06891250657255,1.0,0.0 +877.0,2.5,4.068781236843257,1.0,0.0 +878.0,2.5,4.068649057186542,1.0,0.0 +879.0,2.5,4.06851596924772,1.0,0.0 +880.0,2.5,4.068381974882488,1.0,0.0 +881.0,2.5,4.068247076155449,1.0,0.0 +882.0,2.5,4.06811127533861,1.0,0.0 +883.0,2.5,4.067974574910159,1.0,0.0 +884.0,2.5,4.067836977553112,1.0,0.0 +885.0,2.5,4.067698486154311,1.0,0.0 +886.0,2.5,4.067559103803314,1.0,0.0 +887.0,2.5,4.067418833791489,1.0,0.0 +888.0,2.5,4.067277679611176,1.0,0.0 +889.0,2.5,4.067135644954893,1.0,0.0 +890.0,2.5,4.066992733714616,1.0,0.0 +891.0,2.5,4.066848892267121,1.0,0.0 +892.0,2.5,4.066704158323439,1.0,0.0 +893.0,2.5,4.066558545968444,1.0,0.0 +894.0,2.5,4.066412058590058,1.0,0.0 +895.0,2.5,4.066264699716728,1.0,0.0 +896.0,2.5,4.066116473016315,1.0,0.0 +897.0,2.5,4.065967382294969,1.0,0.0 +898.0,2.5,4.065817431496182,1.0,0.0 +899.0,2.5,4.065666624699817,1.0,0.0 +900.0,2.5,4.065514966121278,1.0,0.0 +901.0,2.5,4.0653624601105625,1.0,0.0 +902.0,2.5,4.065209111151687,1.0,0.0 +903.0,2.5,4.065054923861827,1.0,0.0 +904.0,2.5,4.064899902990779,1.0,0.0 +905.0,2.5,4.064744053420258,1.0,0.0 +906.0,2.5,4.064587380163446,1.0,0.0 +907.0,2.5,4.064429888364402,1.0,0.0 +908.0,2.5,4.06427158329768,1.0,0.0 +909.0,2.5,4.064112470367832,1.0,0.0 +910.0,2.5,4.063952555109091,1.0,0.0 +911.0,2.5,4.063791843184997,1.0,0.0 +912.0,2.5,4.063630277497095,1.0,0.0 +913.0,2.5,4.063467894940995,1.0,0.0 +914.0,2.5,4.063304716928806,1.0,0.0 +915.0,2.5,4.063140748220183,1.0,0.0 +916.0,2.5,4.062975993642285,1.0,0.0 +917.0,2.5,4.06281045808888,1.0,0.0 +918.0,2.5,4.062644146519421,1.0,0.0 +919.0,2.5,4.062477063958197,1.0,0.0 +920.0,2.5,4.062309215493494,1.0,0.0 +921.0,2.5,4.062140606276824,1.0,0.0 +922.0,2.5,4.061971241522149,1.0,0.0 +923.0,2.5,4.061801126505238,1.0,0.0 +924.0,2.5,4.0616302665629105,1.0,0.0 +925.0,2.5,4.061458667092474,1.0,0.0 +926.0,2.5,4.061286333551058,1.0,0.0 +927.0,2.5,4.061113271455032,1.0,0.0 +928.0,2.5,4.060939486379491,1.0,0.0 +929.0,2.5,4.060764983957747,1.0,0.0 +930.0,2.5,4.060589769880763,1.0,0.0 +931.0,2.5,4.060413849896752,1.0,0.0 +932.0,2.5,4.060237229810745,1.0,0.0 +933.0,2.5,4.06005987981483,1.0,0.0 +934.0,2.5,4.0598818196646285,1.0,0.0 +935.0,2.5,4.059703067216386,1.0,0.0 +936.0,2.5,4.059523627666805,1.0,0.0 +937.0,2.5,4.059343506233953,1.0,0.0 +938.0,2.5,4.059162708156519,1.0,0.0 +939.0,2.5,4.058981238693309,1.0,0.0 +940.0,2.5,4.058799103122527,1.0,0.0 +941.0,2.5,4.058616306741245,1.0,0.0 +942.0,2.5,4.058432854864801,1.0,0.0 +943.0,2.5,4.05824875282633,1.0,0.0 +944.0,2.5,4.058064005976207,1.0,0.0 +945.0,2.5,4.057878619681599,1.0,0.0 +946.0,2.5,4.057692599325923,1.0,0.0 +947.0,2.5,4.05750595030854,1.0,0.0 +948.0,2.5,4.0573186780442025,1.0,0.0 +949.0,2.5,4.057130787962739,1.0,0.0 +950.0,2.5,4.056942285508683,1.0,0.0 +951.0,2.5,4.0567531761408,1.0,0.0 +952.0,2.5,4.056563465331922,1.0,0.0 +953.0,2.5,4.056373158568492,1.0,0.0 +954.0,2.5,4.056182249396747,1.0,0.0 +955.0,2.5,4.055990746503981,1.0,0.0 +956.0,2.5,4.055798660633878,1.0,0.0 +957.0,2.5,4.055605997033133,1.0,0.0 +958.0,2.5,4.05541276094956,1.0,0.0 +959.0,2.5,4.055218957631721,1.0,0.0 +960.0,2.5,4.055024592328643,1.0,0.0 +961.0,2.5,4.054829670289562,1.0,0.0 +962.0,2.5,4.054634196763572,1.0,0.0 +963.0,2.5,4.054438176999461,1.0,0.0 +964.0,2.5,4.054241616245413,1.0,0.0 +965.0,2.5,4.054044519748825,1.0,0.0 +966.0,2.5,4.053846892756033,1.0,0.0 +967.0,2.5,4.053648740512184,1.0,0.0 +968.0,2.5,4.0534500682609895,1.0,0.0 +969.0,2.5,4.05325088124461,1.0,0.0 +970.0,2.5,4.053051184703445,1.0,0.0 +971.0,2.5,4.0528509838760245,1.0,0.0 +972.0,2.5,4.052650283998865,1.0,0.0 +973.0,2.5,4.05244909030632,1.0,0.0 +974.0,2.5,4.052247408030486,1.0,0.0 +975.0,2.5,4.052045239239031,1.0,0.0 +976.0,2.5,4.051842589327295,1.0,0.0 +977.0,2.5,4.051639465184019,1.0,0.0 +978.0,2.5,4.051435871888983,1.0,0.0 +979.0,2.5,4.051231814512316,1.0,0.0 +980.0,2.5,4.051027298114285,1.0,0.0 +981.0,2.5,4.0508223277452835,1.0,0.0 +982.0,2.5,4.050616908445679,1.0,0.0 +983.0,2.5,4.050411045245694,1.0,0.0 +984.0,2.5,4.050204743165406,1.0,0.0 +985.0,2.5,4.049998007214599,1.0,0.0 +986.0,2.5,4.0497908423927385,1.0,0.0 +987.0,2.5,4.049583253688934,1.0,0.0 +988.0,2.5,4.049375246081811,1.0,0.0 +989.0,2.5,4.049166824539588,1.0,0.0 +990.0,2.5,4.048957994019945,1.0,0.0 +990.000000001,0.0,4.066274523105717,1.0,1.0 +991.0,0.0,4.067511739204034,1.0,1.0 +992.0,0.0,4.068650009253588,1.0,1.0 +993.0,0.0,4.0696997147561635,1.0,1.0 +994.0,0.0,4.070670124553682,1.0,1.0 +995.0,0.0,4.0715693731808384,1.0,1.0 +996.0,0.0,4.072404508687583,1.0,1.0 +997.0,0.0,4.073181636025303,1.0,1.0 +998.0,0.0,4.0739062339845,1.0,1.0 +999.0,0.0,4.074584320156081,1.0,1.0 +1000.0,0.0,4.075218792981734,1.0,1.0 +1001.0,0.0,4.07581509928771,1.0,1.0 +1002.0,0.0,4.0763762026188575,1.0,1.0 +1003.0,0.0,4.0769049131918,1.0,1.0 +1004.0,0.0,4.077404780641758,1.0,1.0 +1005.0,0.0,4.077877158490983,1.0,1.0 +1006.0,0.0,4.07832509236538,1.0,1.0 +1007.0,0.0,4.0787501488805855,1.0,1.0 +1008.0,0.0,4.079154052977803,1.0,1.0 +1009.0,0.0,4.079538687437624,1.0,1.0 +1010.0,0.0,4.0799050326547475,1.0,1.0 +1011.0,0.0,4.080254786713908,1.0,1.0 +1012.0,0.0,4.080588888736091,1.0,1.0 +1013.0,0.0,4.080908472259136,1.0,1.0 +1014.0,0.0,4.081214603883834,1.0,1.0 +1015.0,0.0,4.081507905298471,1.0,1.0 +1016.0,0.0,4.0817893903723315,1.0,1.0 +1017.0,0.0,4.082059896227781,1.0,1.0 +1018.0,0.0,4.082320048210548,1.0,1.0 +1019.0,0.0,4.082570341984091,1.0,1.0 +1020.0,0.0,4.082811496044326,1.0,1.0 +1021.0,0.0,4.083044069852036,1.0,1.0 +1022.0,0.0,4.083268510883889,1.0,1.0 +1023.0,0.0,4.083485244294439,1.0,1.0 +1024.0,0.0,4.083694693278856,1.0,1.0 +1025.0,0.0,4.08389721605856,1.0,1.0 +1026.0,0.0,4.0840933422143015,1.0,1.0 +1027.0,0.0,4.08428335109877,1.0,1.0 +1028.0,0.0,4.084467487019907,1.0,1.0 +1029.0,0.0,4.084645991753886,1.0,1.0 +1030.0,0.0,4.084819072696092,1.0,1.0 +1031.0,0.0,4.084986904340376,1.0,1.0 +1032.0,0.0,4.085149911007361,1.0,1.0 +1033.0,0.0,4.085308604700753,1.0,1.0 +1034.0,0.0,4.08546285585263,1.0,1.0 +1035.0,0.0,4.0856128132306715,1.0,1.0 +1036.0,0.0,4.08575860412488,1.0,1.0 +1037.0,0.0,4.085900335197976,1.0,1.0 +1038.0,0.0,4.086038098836824,1.0,1.0 +1039.0,0.0,4.08617270770479,1.0,1.0 +1040.0,0.0,4.086303863559995,1.0,1.0 +1041.0,0.0,4.086431684092347,1.0,1.0 +1042.0,0.0,4.086556275849842,1.0,1.0 +1043.0,0.0,4.086677734646073,1.0,1.0 +1044.0,0.0,4.0867961459470274,1.0,1.0 +1045.0,0.0,4.086911791390844,1.0,1.0 +1046.0,0.0,4.08702481724515,1.0,1.0 +1047.0,0.0,4.087135220618481,1.0,1.0 +1048.0,0.0,4.0872430942025275,1.0,1.0 +1049.0,0.0,4.087348524979184,1.0,1.0 +1050.0,0.0,4.087451594413944,1.0,1.0 +1051.0,0.0,4.087552393836369,1.0,1.0 +1052.0,0.0,4.0876510648822855,1.0,1.0 +1053.0,0.0,4.087747639120805,1.0,1.0 +1054.0,0.0,4.08784218853943,1.0,1.0 +1055.0,0.0,4.087934781211356,1.0,1.0 +1056.0,0.0,4.088025481420903,1.0,1.0 +1057.0,0.0,4.088114349783614,1.0,1.0 +1058.0,0.0,4.088201455845237,1.0,1.0 +1059.0,0.0,4.088286851571946,1.0,1.0 +1060.0,0.0,4.088370586763548,1.0,1.0 +1061.0,0.0,4.088452710494326,1.0,1.0 +1062.0,0.0,4.088533268835792,1.0,1.0 +1063.0,0.0,4.088612304946186,1.0,1.0 +1064.0,0.0,4.08868988445602,1.0,1.0 +1065.0,0.0,4.088766078305341,1.0,1.0 +1066.0,0.0,4.0888408949833455,1.0,1.0 +1067.0,0.0,4.088914370653588,1.0,1.0 +1068.0,0.0,4.088986538911817,1.0,1.0 +1069.0,0.0,4.089057430858544,1.0,1.0 +1070.0,0.0,4.089127075168416,1.0,1.0 +1071.0,0.0,4.0891954981568714,1.0,1.0 +1072.0,0.0,4.089262723844032,1.0,1.0 +1073.0,0.0,4.089328774015838,1.0,1.0 +1074.0,0.0,4.089393689368266,1.0,1.0 +1075.0,0.0,4.089457657266609,1.0,1.0 +1076.0,0.0,4.0895205732893665,1.0,1.0 +1077.0,0.0,4.089582460509208,1.0,1.0 +1078.0,0.0,4.089643340419053,1.0,1.0 +1079.0,0.0,4.089703232972178,1.0,1.0 +1080.0,0.0,4.089762156620776,1.0,1.0 +1081.0,0.0,4.089820128353002,1.0,1.0 +1082.0,0.0,4.089877163728433,1.0,1.0 +1083.0,0.0,4.0899332769123,1.0,1.0 +1084.0,0.0,4.089988480708047,1.0,1.0 +1085.0,0.0,4.090042942961702,1.0,1.0 +1086.0,0.0,4.090096605343914,1.0,1.0 +1087.0,0.0,4.09014946085848,1.0,1.0 +1088.0,0.0,4.0902015264805796,1.0,1.0 +1089.0,0.0,4.090252818381426,1.0,1.0 +1090.0,0.0,4.090303351946826,1.0,1.0 +1091.0,0.0,4.090353141795051,1.0,1.0 +1092.0,0.0,4.090402201794179,1.0,1.0 +1093.0,0.0,4.090450545078762,1.0,1.0 +1094.0,0.0,4.090498184065852,1.0,1.0 +1095.0,0.0,4.09054517636494,1.0,1.0 +1096.0,0.0,4.090591544875099,1.0,1.0 +1097.0,0.0,4.090637274177523,1.0,1.0 +1098.0,0.0,4.090682378239904,1.0,1.0 +1099.0,0.0,4.090726870582236,1.0,1.0 +1100.0,0.0,4.090770764286746,1.0,1.0 +1101.0,0.0,4.090814072007476,1.0,1.0 +1102.0,0.0,4.0908568059794765,1.0,1.0 +1103.0,0.0,4.09089897802794,1.0,1.0 +1104.0,0.0,4.090940599576809,1.0,1.0 +1105.0,0.0,4.090981683409852,1.0,1.0 +1106.0,0.0,4.091022245792877,1.0,1.0 +1107.0,0.0,4.091062295272398,1.0,1.0 +1108.0,0.0,4.091101843141846,1.0,1.0 +1109.0,0.0,4.091140900448937,1.0,1.0 +1110.0,0.0,4.091179478000868,1.0,1.0 +1110.000000001,-2.5,4.108685027099113,1.0,2.0 +1111.0,-2.5,4.109249145264736,1.0,2.0 +1112.0,-2.5,4.109756288211877,1.0,2.0 +1113.0,-2.5,4.110216306657217,1.0,2.0 +1114.0,-2.5,4.11063679848971,1.0,2.0 +1115.0,-2.5,4.111024144279855,1.0,2.0 +1116.0,-2.5,4.111383688693465,1.0,2.0 +1117.0,-2.5,4.111719910353336,1.0,2.0 +1118.0,-2.5,4.112036627838165,1.0,2.0 +1119.0,-2.5,4.1123374513584645,1.0,2.0 +1120.0,-2.5,4.112624703713546,1.0,2.0 +1121.0,-2.5,4.112901264842645,1.0,2.0 +1122.0,-2.5,4.113169023059253,1.0,2.0 +1123.0,-2.5,4.113429662109631,1.0,2.0 +1124.0,-2.5,4.1136849705905485,1.0,2.0 +1125.0,-2.5,4.11393590218169,1.0,2.0 +1126.0,-2.5,4.114183898556045,1.0,2.0 +1127.0,-2.5,4.114429812580923,1.0,2.0 +1128.0,-2.5,4.114674508933649,1.0,2.0 +1129.0,-2.5,4.114918858556363,1.0,2.0 +1130.0,-2.5,4.115163355133316,1.0,2.0 +1131.0,-2.5,4.115408750813659,1.0,2.0 +1132.0,-2.5,4.115655457774607,1.0,2.0 +1133.0,-2.5,4.115903970540377,1.0,2.0 +1134.0,-2.5,4.116154731935361,1.0,2.0 +1135.0,-2.5,4.1164079747050675,1.0,2.0 +1136.0,-2.5,4.116664113153866,1.0,2.0 +1137.0,-2.5,4.116923483994771,1.0,2.0 +1138.0,-2.5,4.117186304751822,1.0,2.0 +1139.0,-2.5,4.117452733393656,1.0,2.0 +1140.0,-2.5,4.117723048647415,1.0,2.0 +1141.0,-2.5,4.117997449976209,1.0,2.0 +1142.0,-2.5,4.118276067261086,1.0,2.0 +1143.0,-2.5,4.118559027442687,1.0,2.0 +1144.0,-2.5,4.118846454892512,1.0,2.0 +1145.0,-2.5,4.119138434977853,1.0,2.0 +1146.0,-2.5,4.119435211584634,1.0,2.0 +1147.0,-2.5,4.1197368141989426,1.0,2.0 +1148.0,-2.5,4.120043272604645,1.0,2.0 +1149.0,-2.5,4.120354607129009,1.0,2.0 +1150.0,-2.5,4.120670808247033,1.0,2.0 +1151.0,-2.5,4.120991834230043,1.0,2.0 +1152.0,-2.5,4.121317949818342,1.0,2.0 +1153.0,-2.5,4.1216494070134075,1.0,2.0 +1154.0,-2.5,4.121985930927271,1.0,2.0 +1155.0,-2.5,4.122327484251333,1.0,2.0 +1156.0,-2.5,4.122674005538976,1.0,2.0 +1157.0,-2.5,4.123025407361925,1.0,2.0 +1158.0,-2.5,4.123381649938508,1.0,2.0 +1159.0,-2.5,4.1237434461927736,1.0,2.0 +1160.0,-2.5,4.124110291142608,1.0,2.0 +1161.0,-2.5,4.124482143996708,1.0,2.0 +1162.0,-2.5,4.124858951949952,1.0,2.0 +1163.0,-2.5,4.125240649374779,1.0,2.0 +1164.0,-2.5,4.125627156974626,1.0,2.0 +1165.0,-2.5,4.126018765297173,1.0,2.0 +1166.0,-2.5,4.126415420508046,1.0,2.0 +1167.0,-2.5,4.1268169804047625,1.0,2.0 +1168.0,-2.5,4.1272234104186545,1.0,2.0 +1169.0,-2.5,4.127634671758837,1.0,2.0 +1170.0,-2.5,4.128050721125763,1.0,2.0 +1171.0,-2.5,4.128471557190049,1.0,2.0 +1172.0,-2.5,4.128897234233817,1.0,2.0 +1173.0,-2.5,4.129327650792582,1.0,2.0 +1174.0,-2.5,4.1297627716613174,1.0,2.0 +1175.0,-2.5,4.130202559226611,1.0,2.0 +1176.0,-2.5,4.13064697326481,1.0,2.0 +1177.0,-2.5,4.131095970727928,1.0,2.0 +1178.0,-2.5,4.131549539618323,1.0,2.0 +1179.0,-2.5,4.132007619400688,1.0,2.0 +1180.0,-2.5,4.132470161637274,1.0,2.0 +1181.0,-2.5,4.132937116253136,1.0,2.0 +1182.0,-2.5,4.133408429926535,1.0,2.0 +1183.0,-2.5,4.133884045858476,1.0,2.0 +1184.0,-2.5,4.13436399518869,1.0,2.0 +1185.0,-2.5,4.134848256511372,1.0,2.0 +1186.0,-2.5,4.135336720628326,1.0,2.0 +1187.0,-2.5,4.135829329839066,1.0,2.0 +1188.0,-2.5,4.136326022479192,1.0,2.0 +1189.0,-2.5,4.136826732668227,1.0,2.0 +1190.0,-2.5,4.137331390055763,1.0,2.0 +1191.0,-2.5,4.137839919566874,1.0,2.0 +1192.0,-2.5,4.138352241147238,1.0,2.0 +1193.0,-2.5,4.138868269508739,1.0,2.0 +1194.0,-2.5,4.139388090405576,1.0,2.0 +1195.0,-2.5,4.139911945468805,1.0,2.0 +1196.0,-2.5,4.140439469506935,1.0,2.0 +1197.0,-2.5,4.140970596830726,1.0,2.0 +1198.0,-2.5,4.141505258693858,1.0,2.0 +1199.0,-2.5,4.142043383132191,1.0,2.0 +1200.0,-2.5,4.142584894803722,1.0,2.0 +1201.0,-2.5,4.143129714829247,1.0,2.0 +1202.0,-2.5,4.143677760634381,1.0,2.0 +1203.0,-2.5,4.1442289457928165,1.0,2.0 +1204.0,-2.5,4.14478322862258,1.0,2.0 +1205.0,-2.5,4.145341122756782,1.0,2.0 +1206.0,-2.5,4.145902133383769,1.0,2.0 +1207.0,-2.5,4.146466201686998,1.0,2.0 +1208.0,-2.5,4.147033267834858,1.0,2.0 +1209.0,-2.5,4.1476032709162425,1.0,2.0 +1210.0,-2.5,4.148176148876015,1.0,2.0 +1211.0,-2.5,4.148751838450418,1.0,2.0 +1212.0,-2.5,4.149330275102583,1.0,2.0 +1213.0,-2.5,4.149911392958335,1.0,2.0 +1214.0,-2.5,4.150495124742351,1.0,2.0 +1215.0,-2.5,4.151081702911843,1.0,2.0 +1216.0,-2.5,4.151670935118932,1.0,2.0 +1217.0,-2.5,4.152262725946282,1.0,2.0 +1218.0,-2.5,4.152857026354436,1.0,2.0 +1219.0,-2.5,4.153453787405518,1.0,2.0 +1220.0,-2.5,4.154052960236228,1.0,2.0 +1221.0,-2.5,4.154654496030229,1.0,2.0 +1222.0,-2.5,4.155258345990371,1.0,2.0 +1223.0,-2.5,4.155864461310419,1.0,2.0 +1224.0,-2.5,4.156472793146713,1.0,2.0 +1225.0,-2.5,4.157083337101548,1.0,2.0 +1226.0,-2.5,4.157696051150865,1.0,2.0 +1227.0,-2.5,4.1583108666402815,1.0,2.0 +1228.0,-2.5,4.158927739327761,1.0,2.0 +1229.0,-2.5,4.159546625154724,1.0,2.0 +1230.0,-2.5,4.160167480223082,1.0,2.0 +1231.0,-2.5,4.160790260771999,1.0,2.0 +1232.0,-2.5,4.161414923154602,1.0,2.0 +1233.0,-2.5,4.162041423814567,1.0,2.0 +1234.0,-2.5,4.16266971926274,1.0,2.0 +1235.0,-2.5,4.163299771039238,1.0,2.0 +1236.0,-2.5,4.1639315429873,1.0,2.0 +1237.0,-2.5,4.164564985346292,1.0,2.0 +1238.0,-2.5,4.165200055599982,1.0,2.0 +1239.0,-2.5,4.165836711249497,1.0,2.0 +1240.0,-2.5,4.1664749097914004,1.0,2.0 +1241.0,-2.5,4.1671146086956625,1.0,2.0 +1242.0,-2.5,4.167755765383997,1.0,2.0 +1243.0,-2.5,4.168398337208374,1.0,2.0 +1244.0,-2.5,4.1690422814296175,1.0,2.0 +1245.0,-2.5,4.169687567259625,1.0,2.0 +1246.0,-2.5,4.170334241751983,1.0,2.0 +1247.0,-2.5,4.170982193315098,1.0,2.0 +1248.0,-2.5,4.171631382319352,1.0,2.0 +1249.0,-2.5,4.172281769042215,1.0,2.0 +1250.0,-2.5,4.172933313647918,1.0,2.0 +1251.0,-2.5,4.173585976167334,1.0,2.0 +1252.0,-2.5,4.174239716478154,1.0,2.0 +1253.0,-2.5,4.1748944942855015,1.0,2.0 +1254.0,-2.5,4.175550269102773,1.0,2.0 +1255.0,-2.5,4.1762070002328775,1.0,2.0 +1256.0,-2.5,4.176864646749841,1.0,2.0 +1257.0,-2.5,4.177523167480745,1.0,2.0 +1258.0,-2.5,4.178182520988054,1.0,2.0 +1259.0,-2.5,4.178842665552368,1.0,2.0 +1260.0,-2.5,4.179503559155461,1.0,2.0 +1260.000000001,0.0,4.160964013318741,1.0,3.0 +1261.0,0.0,4.158572141824962,1.0,3.0 +1262.0,0.0,4.156376079810138,1.0,3.0 +1263.0,0.0,4.154355287883229,1.0,3.0 +1264.0,0.0,4.152491375699777,1.0,3.0 +1265.0,0.0,4.15076812516371,1.0,3.0 +1266.0,0.0,4.149171470426165,1.0,3.0 +1267.0,0.0,4.147689317719975,1.0,3.0 +1268.0,0.0,4.146309632986848,1.0,3.0 +1269.0,0.0,4.145023571363815,1.0,3.0 +1270.0,0.0,4.143820927136515,1.0,3.0 +1271.0,0.0,4.142695079880294,1.0,3.0 +1272.0,0.0,4.1416381894283445,1.0,3.0 +1273.0,0.0,4.14064487102113,1.0,3.0 +1274.0,0.0,4.13970920934347,1.0,3.0 +1275.0,0.0,4.138826626364079,1.0,3.0 +1276.0,0.0,4.137992857750286,1.0,3.0 +1277.0,0.0,4.137204112149755,1.0,3.0 +1278.0,0.0,4.136456270215449,1.0,3.0 +1279.0,0.0,4.135746551393303,1.0,3.0 +1280.0,0.0,4.135072086036729,1.0,3.0 +1281.0,0.0,4.134429879915956,1.0,3.0 +1282.0,0.0,4.133817769759332,1.0,3.0 +1283.0,0.0,4.133233704495695,1.0,3.0 +1284.0,0.0,4.132675743275834,1.0,3.0 +1285.0,0.0,4.132141856675212,1.0,3.0 +1286.0,0.0,4.13163047997326,1.0,3.0 +1287.0,0.0,4.13114039589672,1.0,3.0 +1288.0,0.0,4.130670508342971,1.0,3.0 +1289.0,0.0,4.130219777592415,1.0,3.0 +1290.0,0.0,4.129785742285175,1.0,3.0 +1291.0,0.0,4.129368320529917,1.0,3.0 +1292.0,0.0,4.1289667590876435,1.0,3.0 +1293.0,0.0,4.128580441095567,1.0,3.0 +1294.0,0.0,4.128208154421832,1.0,3.0 +1295.0,0.0,4.127848527451031,1.0,3.0 +1296.0,0.0,4.127501498535111,1.0,3.0 +1297.0,0.0,4.127166525127259,1.0,3.0 +1298.0,0.0,4.12684313956645,1.0,3.0 +1299.0,0.0,4.126530143174026,1.0,3.0 +1300.0,0.0,4.1262271792578895,1.0,3.0 +1301.0,0.0,4.125933882682511,1.0,3.0 +1302.0,0.0,4.125649818819935,1.0,3.0 +1303.0,0.0,4.125374543972036,1.0,3.0 +1304.0,0.0,4.125107415795206,1.0,3.0 +1305.0,0.0,4.124848189574386,1.0,3.0 +1306.0,0.0,4.124596511743216,1.0,3.0 +1307.0,0.0,4.124352057786894,1.0,3.0 +1308.0,0.0,4.124114469897172,1.0,3.0 +1309.0,0.0,4.123883423770482,1.0,3.0 +1310.0,0.0,4.123658683075876,1.0,3.0 +1311.0,0.0,4.123440001395834,1.0,3.0 +1312.0,0.0,4.123227154652392,1.0,3.0 +1313.0,0.0,4.123019671431074,1.0,3.0 +1314.0,0.0,4.122817455156986,1.0,3.0 +1315.0,0.0,4.122620334724273,1.0,3.0 +1316.0,0.0,4.122428142796556,1.0,3.0 +1317.0,0.0,4.12224073234334,1.0,3.0 +1318.0,0.0,4.122057976175602,1.0,3.0 +1319.0,0.0,4.121879766506314,1.0,3.0 +1320.0,0.0,4.121706014534377,1.0,3.0 +1321.0,0.0,4.121535798038875,1.0,3.0 +1322.0,0.0,4.121369506151888,1.0,3.0 +1323.0,0.0,4.121207051728784,1.0,3.0 +1324.0,0.0,4.12104834283579,1.0,3.0 +1325.0,0.0,4.120893300672793,1.0,3.0 +1326.0,0.0,4.120741859315891,1.0,3.0 +1327.0,0.0,4.120593965473212,1.0,3.0 +1328.0,0.0,4.12044955868774,1.0,3.0 +1329.0,0.0,4.12030772622053,1.0,3.0 +1330.0,0.0,4.120168950001753,1.0,3.0 +1331.0,0.0,4.120033151243904,1.0,3.0 +1332.0,0.0,4.119900257880457,1.0,3.0 +1333.0,0.0,4.119770204439625,1.0,3.0 +1334.0,0.0,4.119642931924266,1.0,3.0 +1335.0,0.0,4.119518387696884,1.0,3.0 +1336.0,0.0,4.119396494292352,1.0,3.0 +1337.0,0.0,4.119276777146785,1.0,3.0 +1338.0,0.0,4.1191594517585095,1.0,3.0 +1339.0,0.0,4.119044450606128,1.0,3.0 +1340.0,0.0,4.118931709417646,1.0,3.0 +1341.0,0.0,4.11882116710964,1.0,3.0 +1342.0,0.0,4.118712765728629,1.0,3.0 +1343.0,0.0,4.1186064503949895,1.0,3.0 +1344.0,0.0,4.118502156713998,1.0,3.0 +1345.0,0.0,4.118399739448249,1.0,3.0 +1346.0,0.0,4.118299209261662,1.0,3.0 +1347.0,0.0,4.118200513557185,1.0,3.0 +1348.0,0.0,4.1181036019272454,1.0,3.0 +1349.0,0.0,4.118008426115434,1.0,3.0 +1350.0,0.0,4.117914939979552,1.0,3.0 +1351.0,0.0,4.117823099456101,1.0,3.0 +1352.0,0.0,4.117732860639865,1.0,3.0 +1353.0,0.0,4.1176441741203815,1.0,3.0 +1354.0,0.0,4.117557007544608,1.0,3.0 +1355.0,0.0,4.117471323815646,1.0,3.0 +1356.0,0.0,4.117387087687448,1.0,3.0 +1357.0,0.0,4.11730426573703,1.0,3.0 +1358.0,0.0,4.117222826337418,1.0,3.0 +1359.0,0.0,4.117142739631756,1.0,3.0 +1360.0,0.0,4.117063958651974,1.0,3.0 +1361.0,0.0,4.116986396092423,1.0,3.0 +1362.0,0.0,4.116910074054813,1.0,3.0 +1363.0,0.0,4.116834966029668,1.0,3.0 +1364.0,0.0,4.116761047174298,1.0,3.0 +1365.0,0.0,4.116688294290901,1.0,3.0 +1366.0,0.0,4.11661668580559,1.0,3.0 +1367.0,0.0,4.116546201748191,1.0,3.0 +1368.0,0.0,4.1164768237325,1.0,3.0 +1369.0,0.0,4.116408534937501,1.0,3.0 +1370.0,0.0,4.116341320089215,1.0,3.0 +1371.0,0.0,4.1162751654430405,1.0,3.0 +1372.0,0.0,4.116210058766934,1.0,3.0 +1373.0,0.0,4.1161459643077425,1.0,3.0 +1374.0,0.0,4.11608277734336,1.0,3.0 +1375.0,0.0,4.116020544200532,1.0,3.0 +1376.0,0.0,4.115959245171489,1.0,3.0 +1377.0,0.0,4.115898860961665,1.0,3.0 +1378.0,0.0,4.11583937268339,1.0,3.0 +1379.0,0.0,4.115780761849897,1.0,3.0 +1380.0,0.0,4.115723010369455,1.0,3.0 diff --git a/examples/scripts/spm_descent.py b/examples/scripts/spm_descent.py new file mode 100644 index 000000000..85f77f262 --- /dev/null +++ b/examples/scripts/spm_descent.py @@ -0,0 +1,60 @@ +import pybop +import numpy as np +import matplotlib.pyplot as plt + +# Parameter set and model definition +parameter_set = pybop.ParameterSet("pybamm", "Chen2020") +model = pybop.lithium_ion.SPMe(parameter_set=parameter_set) + +# Fitting parameters +parameters = [ + pybop.Parameter( + "Negative electrode active material volume fraction", + prior=pybop.Gaussian(0.7, 0.05), + bounds=[0.6, 0.9], + ), + pybop.Parameter( + "Positive electrode active material volume fraction", + prior=pybop.Gaussian(0.58, 0.05), + bounds=[0.5, 0.8], + ), +] + +# Generate data +sigma = 0.001 +t_eval = np.arange(0, 900, 2) +values = model.predict(t_eval=t_eval) +corrupt_values = values["Terminal voltage [V]"].data + np.random.normal( + 0, sigma, len(t_eval) +) + +# Dataset definition +dataset = [ + pybop.Dataset("Time [s]", t_eval), + pybop.Dataset("Current function [A]", values["Current [A]"].data), + pybop.Dataset("Terminal voltage [V]", corrupt_values), +] + +# Generate problem, cost function, and optimisation class +problem = pybop.Problem(model, parameters, dataset) +cost = pybop.SumSquaredError(problem) +optim = pybop.Optimisation(cost, optimiser=pybop.GradientDescent) +optim.optimiser.set_learning_rate(0.025) +optim.set_max_iterations(100) + +# Run optimisation +x, final_cost = optim.run() +print("Estimated parameters:", x) + +# Show the generated data +simulated_values = problem.evaluate(x) + +plt.figure(dpi=100) +plt.xlabel("Time", fontsize=12) +plt.ylabel("Values", fontsize=12) +plt.plot(t_eval, corrupt_values, label="Measured") +plt.fill_between(t_eval, simulated_values - sigma, simulated_values + sigma, alpha=0.2) +plt.plot(t_eval, simulated_values, label="Simulated") +plt.legend(bbox_to_anchor=(0.6, 1), loc="upper left", fontsize=12) +plt.tick_params(axis="both", labelsize=12) +plt.show() diff --git a/examples/scripts/spm_nlopt.py b/examples/scripts/spm_nlopt.py new file mode 100644 index 000000000..19401ed45 --- /dev/null +++ b/examples/scripts/spm_nlopt.py @@ -0,0 +1,53 @@ +import pybop +import pandas as pd +import matplotlib.pyplot as plt + +# Form dataset +Measurements = pd.read_csv("examples/scripts/Chen_example.csv", comment="#").to_numpy() +dataset = [ + pybop.Dataset("Time [s]", Measurements[:, 0]), + pybop.Dataset("Current function [A]", Measurements[:, 1]), + pybop.Dataset("Terminal voltage [V]", Measurements[:, 2]), +] + +# Define model +parameter_set = pybop.ParameterSet("pybamm", "Chen2020") +model = pybop.models.lithium_ion.SPM( + parameter_set=parameter_set, options={"thermal": "lumped"} +) + +# Fitting parameters +parameters = [ + pybop.Parameter( + "Negative electrode active material volume fraction", + prior=pybop.Gaussian(0.75, 0.05), + bounds=[0.6, 0.9], + ), + pybop.Parameter( + "Positive electrode active material volume fraction", + prior=pybop.Gaussian(0.65, 0.05), + bounds=[0.5, 0.8], + ), +] + +# Define the cost to optimise +signal = "Terminal voltage [V]" +problem = pybop.Problem(model, parameters, dataset, signal=signal, init_soc=0.98) +cost = pybop.RootMeanSquaredError(problem) + +# Build the optimisation problem +parameterisation = pybop.Optimisation(cost=cost, optimiser=pybop.NLoptOptimize) + +# Run the optimisation problem +x, final_cost = parameterisation.run() + +# Show the generated data +simulated_values = problem.evaluate(x) + +plt.figure() +plt.xlabel("Time") +plt.ylabel("Values") +plt.plot(dataset[0].data, dataset[2].data, label="Measured") +plt.plot(dataset[0].data, simulated_values, label="Simulated") +plt.legend(bbox_to_anchor=(0.6, 1), loc="upper left", fontsize=12) +plt.show() diff --git a/noxfile.py b/noxfile.py new file mode 100644 index 000000000..c88e483e4 --- /dev/null +++ b/noxfile.py @@ -0,0 +1,26 @@ +import nox + +# nox options +nox.options.reuse_existing_virtualenvs = True + + +@nox.session +def unit(session): + session.run_always("pip", "install", "-e", ".") + session.install("pytest") + session.run("pytest", "--unit", "-v") + + +@nox.session +def coverage(session): + session.run_always("pip", "install", "-e", ".") + session.install("pytest-cov") + session.run("pytest", "--unit", "-v", "--cov", "--cov-report=xml") + + +@nox.session +def notebooks(session): + """Run the examples tests for Jupyter notebooks.""" + session.run_always("pip", "install", "-e", ".") + session.install("pytest", "nbmake") + session.run("pytest", "--nbmake", "examples/", external=True) diff --git a/pybop/__init__.py b/pybop/__init__.py new file mode 100644 index 000000000..29dcd88b1 --- /dev/null +++ b/pybop/__init__.py @@ -0,0 +1,75 @@ +# +# Root of the pybop module. +# Provides access to all shared functionality (models, solvers, etc.). +# +# This file is adapted from Pints +# (see https://github.com/pints-team/pints) +# + +import sys +from os import path + +# +# Version info +# +from pybop.version import __version__ + +# +# Constants +# +# Float format: a float can be converted to a 17 digit decimal and back without +# loss of information +FLOAT_FORMAT = "{: .17e}" +# Absolute path to the pybop repo +script_path = path.dirname(__file__) + +# +# Cost function class +# +from .costs.error_costs import BaseCost, RootMeanSquaredError, SumSquaredError + +# +# Dataset class +# +from .datasets.base_dataset import Dataset + +# +# Model classes +# +from .models.base_model import BaseModel +from .models import lithium_ion + +# +# Main optimisation class +# +from .optimisation import Optimisation + +# +# Optimiser class +# +from .optimisers.base_optimiser import BaseOptimiser +from .optimisers.nlopt_optimize import NLoptOptimize +from .optimisers.scipy_minimize import SciPyMinimize +from .optimisers.pints_optimisers import GradientDescent, CMAES + +# +# Parameter classes +# +from .parameters.base_parameter import Parameter +from .parameters.base_parameter_set import ParameterSet +from .parameters.priors import Gaussian, Uniform, Exponential + +# +# Problem class +# +from ._problem import Problem + +# +# Plotting class +# +from .plotting.quick_plot import QuickPlot + +# +# Remove any imported modules, so we don't expose them as part of pybop +# +del sys diff --git a/pybop/_problem.py b/pybop/_problem.py new file mode 100644 index 000000000..469b65047 --- /dev/null +++ b/pybop/_problem.py @@ -0,0 +1,97 @@ +import numpy as np + + +class Problem: + """ + Defines a PyBOP single output problem, follows the PINTS interface. + """ + + def __init__( + self, + model, + parameters, + dataset, + signal="Terminal voltage [V]", + check_model=True, + init_soc=None, + x0=None, + ): + self._model = model + self.parameters = parameters + self.signal = signal + self._model.signal = self.signal + self._dataset = {o.name: o for o in dataset} + self.check_model = check_model + self.init_soc = init_soc + self.x0 = x0 + self.n_parameters = len(self.parameters) + self.n_outputs = len([self.signal]) + + # Check that the dataset contains time and current + for name in ["Time [s]", "Current function [A]", signal]: + if name not in self._dataset: + raise ValueError(f"expected {name} in list of dataset") + + self._time_data = self._dataset["Time [s]"].data + self.n_time_data = len(self._time_data) + self._target = self._dataset[signal].data + + if np.any(self._time_data < 0): + raise ValueError("Times can not be negative.") + if np.any(self._time_data[:-1] >= self._time_data[1:]): + raise ValueError("Times must be increasing.") + + if len(self._target) != len(self._time_data): + raise ValueError("Time data and signal data must be the same length.") + + # Set bounds + self.bounds = dict( + lower=[param.bounds[0] for param in self.parameters], + upper=[param.bounds[1] for param in self.parameters], + ) + + # Sample from prior for x0 + if x0 is None: + self.x0 = np.zeros(self.n_parameters) + for i, param in enumerate(self.parameters): + self.x0[i] = param.rvs(1) + elif len(x0) != self.n_parameters: + raise ValueError("x0 dimensions do not match number of parameters") + + # Add the initial values to the parameter definitions + for i, param in enumerate(self.parameters): + param.update(value=self.x0[i]) + + # Set the fitting parameters and build the model + self.fit_parameters = {o.name: o.value for o in parameters} + if self._model._built_model is None: + self._model.build( + dataset=self._dataset, + fit_parameters=self.fit_parameters, + check_model=self.check_model, + init_soc=self.init_soc, + ) + + def evaluate(self, parameters): + """ + Evaluate the model with the given parameters and return the signal. + """ + + y = np.asarray(self._model.simulate(inputs=parameters, t_eval=self._time_data)) + + return y + + def evaluateS1(self, parameters): + """ + Evaluate the model with the given parameters and return the signal and + its derivatives. + """ + for i, key in enumerate(self.fit_parameters): + self.fit_parameters[key] = parameters[i] + + y, dy = self._model.simulateS1( + inputs=self.fit_parameters, + t_eval=self._time_data, + ) + + return (np.asarray(y), np.asarray(dy)) diff --git a/PyBOP/__init__.py b/pybop/costs/__init__.py similarity index 100% rename from PyBOP/__init__.py rename to pybop/costs/__init__.py diff --git a/pybop/costs/error_costs.py b/pybop/costs/error_costs.py new file mode 100644 index 000000000..2c497d45b --- /dev/null +++ b/pybop/costs/error_costs.py @@ -0,0 +1,114 @@ +import numpy as np + + +class BaseCost: + """ + Base class for defining cost functions. + This class computes a corresponding goodness-of-fit for a corresponding model prediction and dataset. + Lower cost values indicate a better fit. + """ + + def __init__(self, problem): + self.problem = problem + if problem is not None: + self._target = problem._target + self.x0 = problem.x0 + self.bounds = problem.bounds + self.n_parameters = problem.n_parameters + + def __call__(self, x, grad=None): + """ + Returns the cost function value and computes the cost. + """ + raise NotImplementedError + + +class RootMeanSquaredError(BaseCost): + """ + Defines the root mean square error cost function. + """ + + def __init__(self, problem): + super(RootMeanSquaredError, self).__init__(problem) + + def __call__(self, x, grad=None): + """ + Computes the cost. + """ + try: + prediction = self.problem.evaluate(x) + + if len(prediction) < len(self._target): + return np.float64(np.inf) # simulation stopped early + else: + return np.sqrt(np.mean((prediction - self._target) ** 2)) + + except Exception as e: + raise ValueError(f"Error in cost calculation: {e}") + + +class SumSquaredError(BaseCost): + """ + Defines the sum squared error cost function. + + The initial fail gradient is set equal to one, but this can be + changed at any time with :meth:`set_fail_gradient()`. + """ + + def __init__(self, problem): + super(SumSquaredError, self).__init__(problem) + + # Default fail gradient + self._de = 1.0 + + def __call__(self, x, grad=None): + """ + Computes the cost. + """ + try: + prediction = self.problem.evaluate(x) + + if len(prediction) < len(self._target): + return np.float64(np.inf) # simulation stopped early + else: + return np.sum( + (np.sum(((prediction - self._target) ** 2), axis=0)), + axis=0, + ) + + except Exception as e: + raise ValueError(f"Error in cost calculation: {e}") + + def evaluateS1(self, x): + """ + Compute the cost and corresponding + gradients with respect to the parameters. + """ + try: + y, dy = self.problem.evaluateS1(x) + if len(y) < len(self._target): + e = np.float64(np.inf) + de = self._de * np.ones(self.problem.n_parameters) + else: + dy = dy.reshape( + ( + self.problem.n_time_data, + self.problem.n_outputs, + self.problem.n_parameters, + ) + ) + r = y - self._target + e = np.sum(np.sum(r**2, axis=0), axis=0) + de = 2 * np.sum(np.sum((r.T * dy.T), axis=2), axis=1) + + return e, de + + except Exception as e: + raise ValueError(f"Error in cost calculation: {e}") + + def set_fail_gradient(self, de): + """ + Sets the fail gradient for this optimiser. + """ + de = float(de) + self._de = de diff --git a/pybop/costs/standalone.py b/pybop/costs/standalone.py new file mode 100644 index 000000000..197dcca5b --- /dev/null +++ b/pybop/costs/standalone.py @@ -0,0 +1,18 @@ +import pybop +import numpy as np + + +class StandaloneCost(pybop.BaseCost): + def __init__(self, problem=None): + super().__init__(problem) + + self.x0 = np.array([4.2]) + self.n_parameters = len(self.x0) + + self.bounds = dict( + lower=[-1], + upper=[10], + ) + + def __call__(self, x, grad=None): + return x[0] ** 2 + 42 diff --git a/PyBOP/cost_functions/__init__.py b/pybop/datasets/__init__.py similarity index 100% rename from PyBOP/cost_functions/__init__.py rename to pybop/datasets/__init__.py diff --git a/pybop/datasets/base_dataset.py b/pybop/datasets/base_dataset.py new file mode 100644 index 000000000..ed194ae48 --- /dev/null +++ b/pybop/datasets/base_dataset.py @@ -0,0 +1,20 @@ +import pybamm + + +class Dataset: + """ + Class for experimental observations. + """ + + def __init__(self, name, data): + self.name = name + self.data = data + + def __repr__(self): + return f"Dataset: {self.name} \n Data: {self.data}" + + def Interpolant(self): + if self.variable == "time": + self.Interpolant = pybamm.Interpolant(self.x, self.y, pybamm.t) + else: + NotImplementedError("Only time interpolation is supported") diff --git a/pybop/models/__init__.py b/pybop/models/__init__.py new file mode 100644 index 000000000..e69de29bb diff --git a/pybop/models/base_model.py b/pybop/models/base_model.py new file mode 100644 index 000000000..ced38437e --- /dev/null +++ b/pybop/models/base_model.py @@ -0,0 +1,248 @@ +import pybamm +import numpy as np + + +class BaseModel: + """ + Base class for pybop models. + """ + + def __init__(self, name="Base Model"): + self.name = name + self.pybamm_model = None + self.fit_parameters = None + self.dataset = None + self.signal = None + + def build( + self, + dataset=None, + fit_parameters=None, + check_model=True, + init_soc=None, + ): + """ + Build the PyBOP model (if not built already). + For PyBaMM forward models, this method follows a + similar process to pybamm.Simulation.build(). + """ + self.fit_parameters = fit_parameters + self.dataset = dataset + if self.fit_parameters is not None: + self.fit_keys = list(self.fit_parameters.keys()) + + if init_soc is not None: + self.set_init_soc(init_soc) + + if self._built_model: + return + + elif self.pybamm_model.is_discretised: + self._model_with_set_params = self.pybamm_model + self._built_model = self.pybamm_model + else: + self.set_params() + self._mesh = pybamm.Mesh(self.geometry, self.submesh_types, self.var_pts) + self._disc = pybamm.Discretisation(self.mesh, self.spatial_methods) + self._built_model = self._disc.process_model( + self._model_with_set_params, inplace=False, check_model=check_model + ) + + # Clear solver + self._solver._model_set_up = {} + + def set_init_soc(self, init_soc): + """ + Set the initial state of charge. + """ + if self._built_initial_soc != init_soc: + # reset + self._model_with_set_params = None + self._built_model = None + self.op_conds_to_built_models = None + self.op_conds_to_built_solvers = None + + param = self.pybamm_model.param + self._parameter_set = ( + self._unprocessed_parameter_set.set_initial_stoichiometries( + init_soc, param=param, inplace=False + ) + ) + # Save solved initial SOC in case we need to rebuild the model + self._built_initial_soc = init_soc + + def set_params(self): + """ + Set the parameters in the model. + """ + if self.model_with_set_params: + return + + if self.fit_parameters is not None: + # set input parameters in parameter set from fitting parameters + for i in self.fit_parameters.keys(): + self._parameter_set[i] = "[input]" + + if self.dataset is not None and self.fit_parameters is not None: + if "Current function [A]" not in self.fit_keys: + self.parameter_set["Current function [A]"] = pybamm.Interpolant( + self.dataset["Time [s]"].data, + self.dataset["Current function [A]"].data, + pybamm.t, + ) + # Set t_eval + self.time_data = self._parameter_set["Current function [A]"].x[0] + + self._model_with_set_params = self._parameter_set.process_model( + self._unprocessed_model, inplace=False + ) + self._parameter_set.process_geometry(self.geometry) + self.pybamm_model = self._model_with_set_params + + def simulate(self, inputs, t_eval): + """ + Run the forward model and return the result in Numpy array format + aligning with Pints' ForwardModel simulate method. + """ + + if self._built_model is None: + raise ValueError("Model must be built before calling simulate") + else: + if not isinstance(inputs, dict): + inputs_dict = { + key: inputs[i] for i, key in enumerate(self.fit_parameters) + } + return self.solver.solve( + self.built_model, inputs=inputs_dict, t_eval=t_eval + )[self.signal].data + else: + return self.solver.solve( + self.built_model, inputs=inputs, t_eval=t_eval + )[self.signal].data + + def simulateS1(self, inputs, t_eval): + """ + Run the forward model and return the function evaulation and it's gradient + aligning with Pints' ForwardModel simulateS1 method. + """ + + if self._built_model is None: + raise ValueError("Model must be built before calling simulate") + else: + if not isinstance(inputs, dict): + inputs_dict = { + key: inputs[i] for i, key in enumerate(self.fit_parameters) + } + + sol = self.solver.solve( + self.built_model, + inputs=inputs_dict, + t_eval=t_eval, + calculate_sensitivities=True, + ) + else: + sol = self.solver.solve( + self.built_model, + inputs=inputs, + t_eval=t_eval, + calculate_sensitivities=True, + ) + + return ( + sol[self.signal].data, + np.asarray( + [ + sol[self.signal].sensitivities[key].toarray() + for key in self.fit_keys + ] + ).T, + ) + + def predict( + self, + inputs=None, + t_eval=None, + parameter_set=None, + experiment=None, + init_soc=None, + ): + """ + Create a PyBaMM simulation object, solve it, and return a solution object. + """ + parameter_set = parameter_set or self._parameter_set + if inputs is not None: + parameter_set.update(inputs) + if self._unprocessed_model is not None: + if experiment is None: + return pybamm.Simulation( + self._unprocessed_model, + parameter_values=parameter_set, + ).solve(t_eval=t_eval, initial_soc=init_soc) + else: + return pybamm.Simulation( + self._unprocessed_model, + experiment=experiment, + parameter_values=parameter_set, + ).solve(initial_soc=init_soc) + else: + raise ValueError("This sim method currently only supports PyBaMM models") + + @property + def built_model(self): + return self._built_model + + @property + def parameter_set(self): + return self._parameter_set + + @parameter_set.setter + def parameter_set(self, parameter_set): + self._parameter_set = parameter_set.copy() + + @property + def model_with_set_params(self): + return self._model_with_set_params + + @property + def geometry(self): + return self._geometry + + @geometry.setter + def geometry(self, geometry): + self._geometry = geometry.copy() + + @property + def submesh_types(self): + return self._submesh_types + + @submesh_types.setter + def submesh_types(self, submesh_types): + self._submesh_types = submesh_types.copy() + + @property + def mesh(self): + return self._mesh + + @property + def var_pts(self): + return self._var_pts + + @var_pts.setter + def var_pts(self, var_pts): + self._var_pts = var_pts.copy() + + @property + def spatial_methods(self): + return self._spatial_methods + + @spatial_methods.setter + def spatial_methods(self, spatial_methods): + self._spatial_methods = spatial_methods.copy() + + @property + def solver(self): + return self._solver + + @solver.setter + def solver(self, solver): + self._solver = solver.copy() diff --git a/pybop/models/lithium_ion/__init__.py b/pybop/models/lithium_ion/__init__.py new file mode 100644 index 000000000..69b51653b --- /dev/null +++ b/pybop/models/lithium_ion/__init__.py @@ -0,0 +1,4 @@ +# +# Import lithium ion based models +# +from .base_echem import SPM, SPMe diff --git a/pybop/models/lithium_ion/base_echem.py b/pybop/models/lithium_ion/base_echem.py new file mode 100644 index 000000000..d22a99e6d --- /dev/null +++ b/pybop/models/lithium_ion/base_echem.py @@ -0,0 +1,88 @@ +import pybamm +from ..base_model import BaseModel + + +class SPM(BaseModel): + """ + Composition of the PyBaMM Single Particle Model class. + + """ + + def __init__( + self, + name="Single Particle Model", + parameter_set=None, + geometry=None, + submesh_types=None, + var_pts=None, + spatial_methods=None, + solver=None, + options=None, + ): + super().__init__() + self.pybamm_model = pybamm.lithium_ion.SPM(options=options) + self._unprocessed_model = self.pybamm_model + self.name = name + + self.default_parameter_values = self.pybamm_model.default_parameter_values + self._parameter_set = ( + parameter_set or self.pybamm_model.default_parameter_values + ) + self._unprocessed_parameter_set = self._parameter_set + + self.geometry = geometry or self.pybamm_model.default_geometry + self.submesh_types = submesh_types or self.pybamm_model.default_submesh_types + self.var_pts = var_pts or self.pybamm_model.default_var_pts + self.spatial_methods = ( + spatial_methods or self.pybamm_model.default_spatial_methods + ) + self.solver = solver or self.pybamm_model.default_solver + + self._model_with_set_params = None + self._built_model = None + self._built_initial_soc = None + self._mesh = None + self._disc = None + + +class SPMe(BaseModel): + """ + Composition of the PyBaMM Single Particle Model with Electrolyte class. + + """ + + def __init__( + self, + name="Single Particle Model with Electrolyte", + parameter_set=None, + geometry=None, + submesh_types=None, + var_pts=None, + spatial_methods=None, + solver=None, + options=None, + ): + super().__init__() + self.pybamm_model = pybamm.lithium_ion.SPMe(options=options) + self._unprocessed_model = self.pybamm_model + self.name = name + + self.default_parameter_values = self.pybamm_model.default_parameter_values + self._parameter_set = ( + parameter_set or self.pybamm_model.default_parameter_values + ) + self._unprocessed_parameter_set = self._parameter_set + + self.geometry = geometry or self.pybamm_model.default_geometry + self.submesh_types = submesh_types or self.pybamm_model.default_submesh_types + self.var_pts = var_pts or self.pybamm_model.default_var_pts + self.spatial_methods = ( + spatial_methods or self.pybamm_model.default_spatial_methods + ) + self.solver = solver or self.pybamm_model.default_solver + + self._model_with_set_params = None + self._built_model = None + self._built_initial_soc = None + self._mesh = None + self._disc = None diff --git a/pybop/optimisation.py b/pybop/optimisation.py new file mode 100644 index 000000000..6dc947de7 --- /dev/null +++ b/pybop/optimisation.py @@ -0,0 +1,408 @@ +import pybop +import pints +import numpy as np + + +class Optimisation: + """ + Optimisation class for PyBOP. + This class provides functionality for PyBOP optimisers and Pints optimisers. + args: + cost: PyBOP cost function + optimiser: A PyBOP or Pints optimiser + sigma0: initial step size + verbose: print optimisation progress + + """ + + def __init__( + self, + cost, + optimiser=None, + sigma0=None, + verbose=False, + ): + self.cost = cost + self.optimiser = optimiser + self.verbose = verbose + self.x0 = cost.x0 + self.bounds = cost.bounds + self.n_parameters = cost.n_parameters + self.sigma0 = sigma0 + self.log = [] + + # Convert x0 to pints vector + self._x0 = pints.vector(self.x0) + + # PyBOP doesn't currently support the pints transformation class + self._transformation = None + + # Check if minimising or maximising + self._minimising = not isinstance(cost, pints.LogPDF) + if self._minimising: + self._function = self.cost + else: + self._function = pints.ProbabilityBasedError(cost) + del cost + + # Construct Optimiser + self.pints = True + + if self.optimiser is None: + self.optimiser = pybop.CMAES + elif issubclass(self.optimiser, pints.Optimiser): + pass + else: + self.pints = False + + if issubclass(self.optimiser, pybop.NLoptOptimize): + self.optimiser = self.optimiser(self.n_parameters) + + elif issubclass(self.optimiser, pybop.SciPyMinimize): + self.optimiser = self.optimiser() + + else: + raise ValueError("Unknown optimiser type") + + if self.pints: + self.optimiser = self.optimiser(self.x0, self.sigma0, self.bounds) + + # Check if sensitivities are required + self._needs_sensitivities = self.optimiser.needs_sensitivities() + + # Track optimiser's f_best or f_guessed + self._use_f_guessed = None + self.set_f_guessed_tracking() + + # Parallelisation + self._parallel = False + self._n_workers = 1 + self.set_parallel() + + # User callback + self._callback = None + + # Define stopping criteria + # Maximum iterations + self._max_iterations = None + self.set_max_iterations() + + # Maximum unchanged iterations + self._unchanged_threshold = 1 # smallest significant f change + self._unchanged_max_iterations = None + self.set_max_unchanged_iterations() + + # Maximum evaluations + self._max_evaluations = None + + # Threshold value + self._threshold = None + + # Post-run statistics + self._evaluations = None + self._iterations = None + + def run(self): + """ + Run the optimisation algorithm. + Selects between PyBOP backend or Pints backend. + returns: + x: best parameters + final_cost: final cost + """ + + if self.pints: + x, final_cost = self._run_pints() + elif not self.pints: + x, final_cost = self._run_pybop() + + return x, final_cost + + def _run_pybop(self): + """ + Run method for PyBOP based optimisers. + returns: + x: best parameters + final_cost: final cost + """ + x, final_cost = self.optimiser.optimise( + cost_function=self.cost, + x0=self.x0, + bounds=self.bounds, + ) + return x, final_cost + + def _run_pints(self): + """ + Run method for PINTS optimisers. + This method is heavily based on the run method in the PINTS.OptimisationController class. + returns: + x: best parameters + final_cost: final cost + """ + + # Check stopping criteria + has_stopping_criterion = False + has_stopping_criterion |= self._max_iterations is not None + has_stopping_criterion |= self._unchanged_max_iterations is not None + has_stopping_criterion |= self._max_evaluations is not None + has_stopping_criterion |= self._threshold is not None + if not has_stopping_criterion: + raise ValueError("At least one stopping criterion must be set.") + + # Iterations and function evaluations + iteration = 0 + evaluations = 0 + + # Unchanged iterations counter + unchanged_iterations = 0 + + # Choose method to evaluate + f = self._function + if self._needs_sensitivities: + f = f.evaluateS1 + + # Create evaluator object + if self._parallel: + # Get number of workers + n_workers = self._n_workers + + # For population based optimisers, don't use more workers than + # particles! + if isinstance(self._optimiser, pints.PopulationBasedOptimiser): + n_workers = min(n_workers, self._optimiser.population_size()) + evaluator = pints.ParallelEvaluator(f, n_workers=n_workers) + else: + evaluator = pints.SequentialEvaluator(f) + + # Keep track of current best and best-guess scores. + fb = fg = np.inf + + # Internally we always minimise! Keep a 2nd value to show the user. + fg_user = (fb, fg) if self._minimising else (-fb, -fg) + + # Keep track of the last significant change + f_sig = np.inf + + # Run the ask-and-tell loop + running = True + try: + while running: + # Ask optimiser for new points + xs = self.optimiser.ask() + + # Evaluate points + fs = evaluator.evaluate(xs) + + # Tell optimiser about function values + self.optimiser.tell(fs) + + # Update the scores + fb = self.optimiser.f_best() + fg = self.optimiser.f_guessed() + fg_user = (fb, fg) if self._minimising else (-fb, -fg) + + # Check for significant changes + f_new = fg if self._use_f_guessed else fb + if np.abs(f_new - f_sig) >= self._unchanged_threshold: + unchanged_iterations = 0 + f_sig = f_new + else: + unchanged_iterations += 1 + + # Update counts + evaluations += len(fs) + iteration += 1 + self.log.append(xs) + + # Check stopping criteria: + # Maximum number of iterations + if ( + self._max_iterations is not None + and iteration >= self._max_iterations + ): + running = False + halt_message = ( + "Maximum number of iterations (" + str(iteration) + ") reached." + ) + + # Maximum number of iterations without significant change + halt = ( + self._unchanged_max_iterations is not None + and unchanged_iterations >= self._unchanged_max_iterations + ) + if running and halt: + running = False + halt_message = ( + "No significant change for " + + str(unchanged_iterations) + + " iterations." + ) + + # Maximum number of evaluations + if ( + self._max_evaluations is not None + and evaluations >= self._max_evaluations + ): + running = False + halt_message = ( + "Maximum number of evaluations (" + + str(self._max_evaluations) + + ") reached." + ) + + # Threshold value + halt = self._threshold is not None and f_new < self._threshold + if running and halt: + running = False + halt_message = ( + "Objective function crossed threshold: " + + str(self._threshold) + + "." + ) + + # Error in optimiser + error = self.optimiser.stop() + if error: + running = False + halt_message = str(error) + + elif self._callback is not None: + self._callback(iteration - 1, self.optimiser) + + except (Exception, SystemExit, KeyboardInterrupt): + # Show last result and exit + print("\n" + "-" * 40) + print("Unexpected termination.") + print("Current score: " + str(fg_user)) + print("Current position:") + + # Show current parameters + x_user = self.optimiser.x_guessed() + if self._transformation is not None: + x_user = self._transformation.to_model(x_user) + for p in x_user: + print(pints.strfloat(p)) + print("-" * 40) + raise + + if self.verbose: + print("Halt: " + halt_message) + + # Save post-run statistics + self._evaluations = evaluations + self._iterations = iteration + + # Get best parameters + if self._use_f_guessed: + x = self.optimiser.x_guessed() + f = self.optimiser.f_guessed() + else: + x = self.optimiser.x_best() + f = self.optimiser.f_best() + + # Inverse transform search parameters + if self._transformation is not None: + x = self._transformation.to_model(x) + + # Return best position and score + return x, f if self._minimising else -f + + def f_guessed_tracking(self): + """ + Returns ``True`` if f_guessed instead of f_best is being tracked, + ``False`` otherwise. See also :meth:`set_f_guessed_tracking`. + + Credit: PINTS + """ + return self._use_f_guessed + + def set_f_guessed_tracking(self, use_f_guessed=False): + """ + Sets the method used to track the optimiser progress to + :meth:`pints.Optimiser.f_guessed()` or + :meth:`pints.Optimiser.f_best()` (default). + + The tracked ``f`` value is used to evaluate stopping criteria. + + Credit: PINTS + """ + self._use_f_guessed = bool(use_f_guessed) + + def set_max_evaluations(self, evaluations=None): + """ + Adds a stopping criterion, allowing the routine to halt after the + given number of ``evaluations``. + + This criterion is disabled by default. To enable, pass in any positive + integer. To disable again, use ``set_max_evaluations(None)``. + + Credit: PINTS + """ + if evaluations is not None: + evaluations = int(evaluations) + if evaluations < 0: + raise ValueError("Maximum number of evaluations cannot be negative.") + self._max_evaluations = evaluations + + def set_parallel(self, parallel=False): + """ + Enables/disables parallel evaluation. + + If ``parallel=True``, the method will run using a number of worker + processes equal to the detected cpu core count. The number of workers + can be set explicitly by setting ``parallel`` to an integer greater + than 0. + Parallelisation can be disabled by setting ``parallel`` to ``0`` or + ``False``. + + Credit: PINTS + """ + if parallel is True: + self._parallel = True + self._n_workers = pints.ParallelEvaluator.cpu_count() + elif parallel >= 1: + self._parallel = True + self._n_workers = int(parallel) + else: + self._parallel = False + self._n_workers = 1 + + def set_max_iterations(self, iterations=10000): + """ + Adds a stopping criterion, allowing the routine to halt after the + given number of ``iterations``. + + This criterion is enabled by default. To disable it, use + ``set_max_iterations(None)``. + + Credit: PINTS + """ + if iterations is not None: + iterations = int(iterations) + if iterations < 0: + raise ValueError("Maximum number of iterations cannot be negative.") + self._max_iterations = iterations + + def set_max_unchanged_iterations(self, iterations=200, threshold=1e-11): + """ + Adds a stopping criterion, allowing the routine to halt if the + objective function doesn't change by more than ``threshold`` for the + given number of ``iterations``. + + This criterion is enabled by default. To disable it, use + ``set_max_unchanged_iterations(None)``. + + Credit: PINTS + """ + if iterations is not None: + iterations = int(iterations) + if iterations < 0: + raise ValueError("Maximum number of iterations cannot be negative.") + + threshold = float(threshold) + if threshold < 0: + raise ValueError("Minimum significant change cannot be negative.") + + self._unchanged_max_iterations = iterations + self._unchanged_threshold = threshold diff --git a/pybop/optimisers/__init__.py b/pybop/optimisers/__init__.py new file mode 100644 index 000000000..e69de29bb diff --git a/pybop/optimisers/base_optimiser.py b/pybop/optimisers/base_optimiser.py new file mode 100644 index 000000000..1938c1db2 --- /dev/null +++ b/pybop/optimisers/base_optimiser.py @@ -0,0 +1,30 @@ +class BaseOptimiser: + """ + + Base class for the optimisation methods. + + """ + + def __init__(self): + self.name = "Base Optimiser" + + def optimise(self, cost_function, x0=None, bounds=None): + """ + Optimisiation method to be overloaded by child classes. + + """ + self.cost_function = cost_function + self.x0 = x0 + self.bounds = bounds + + # Run optimisation + result = self._runoptimise(self.cost_function, x0=self.x0, bounds=self.bounds) + + return result + + def _runoptimise(self, cost_function, x0=None, bounds=None): + """ + Run optimisation method, to be overloaded by child classes. + + """ + pass diff --git a/pybop/optimisers/nlopt_optimize.py b/pybop/optimisers/nlopt_optimize.py new file mode 100644 index 000000000..5c0da8f47 --- /dev/null +++ b/pybop/optimisers/nlopt_optimize.py @@ -0,0 +1,54 @@ +import nlopt +from .base_optimiser import BaseOptimiser + + +class NLoptOptimize(BaseOptimiser): + """ + Wrapper class for the NLOpt optimiser class. Extends the BaseOptimiser class. + """ + + def __init__(self, n_param, xtol=None, method=None): + super().__init__() + self.name = "NLoptOptimize" + self.n_param = n_param + + if method is not None: + self.optim = nlopt.opt(method, self.n_param) + else: + self.optim = nlopt.opt(nlopt.LN_BOBYQA, self.n_param) + + if xtol is not None: + self.optim.set_xtol_rel(xtol) + else: + self.optim.set_xtol_rel(1e-5) + + def _runoptimise(self, cost_function, x0, bounds): + """ + Run the NLOpt optimisation method. + + Inputs + ---------- + cost_function: function for optimising + method: optimisation algorithm + x0: initialisation array + bounds: bounds array + """ + + # Pass settings to the optimiser + self.optim.set_min_objective(cost_function) + self.optim.set_lower_bounds(bounds["lower"]) + self.optim.set_upper_bounds(bounds["upper"]) + + # Run the optimser + x = self.optim.optimize(x0) + + # Get performance statistics + final_cost = self.optim.last_optimum_value() + + return x, final_cost + + def needs_sensitivities(self): + """ + Returns True if the optimiser needs sensitivities. + """ + return False diff --git a/pybop/optimisers/pints_optimisers.py b/pybop/optimisers/pints_optimisers.py new file mode 100644 index 000000000..6524cb607 --- /dev/null +++ b/pybop/optimisers/pints_optimisers.py @@ -0,0 +1,30 @@ +import pints + + +class GradientDescent(pints.GradientDescent): + """ + Gradient descent optimiser. Inherits from the PINTS gradient descent class. + """ + + def __init__(self, x0, sigma0=0.1, bounds=None): + if bounds is not None: + print("Boundaries ignored by GradientDescent") + + boundaries = None # Bounds ignored in pints.GradDesc + super().__init__(x0, sigma0, boundaries) + + +class CMAES(pints.CMAES): + """ + Class for the PINTS optimisation. Extends the BaseOptimiser class. + """ + + def __init__(self, x0, sigma0=0.1, bounds=None): + if bounds is not None: + self.boundaries = pints.RectangularBoundaries( + bounds["lower"], bounds["upper"] + ) + else: + self.boundaries = None + + super().__init__(x0, sigma0, self.boundaries) diff --git a/pybop/optimisers/scipy_minimize.py b/pybop/optimisers/scipy_minimize.py new file mode 100644 index 000000000..083d93c53 --- /dev/null +++ b/pybop/optimisers/scipy_minimize.py @@ -0,0 +1,50 @@ +from scipy.optimize import minimize +from .base_optimiser import BaseOptimiser + + +class SciPyMinimize(BaseOptimiser): + """ + Wrapper class for the SciPy optimisation class. Extends the BaseOptimiser class. + """ + + def __init__(self, method=None, bounds=None): + super().__init__() + self.name = "SciPyMinimize" + self.method = method + self.bounds = bounds + + if self.method is None: + self.method = "L-BFGS-B" + + def _runoptimise(self, cost_function, x0, bounds): + """ + Run the SciPy optimisation method. + + Inputs + ---------- + cost_function: function for optimising + method: optimisation algorithm + x0: initialisation array + bounds: bounds array + """ + + if bounds is not None: + # Reformat bounds and run the optimser + bounds = ( + (lower, upper) for lower, upper in zip(bounds["lower"], bounds["upper"]) + ) + output = minimize(cost_function, x0, method=self.method, bounds=bounds) + else: + output = minimize(cost_function, x0, method=self.method) + + # Get performance statistics + x = output.x + final_cost = output.fun + + return x, final_cost + + def needs_sensitivities(self): + """ + Returns True if the optimiser needs sensitivities. + """ + return False diff --git a/pybop/parameters/__init__.py b/pybop/parameters/__init__.py new file mode 100644 index 000000000..e69de29bb diff --git a/pybop/parameters/base_parameter.py b/pybop/parameters/base_parameter.py new file mode 100644 index 000000000..fa8754831 --- /dev/null +++ b/pybop/parameters/base_parameter.py @@ -0,0 +1,46 @@ +import numpy as np + + +class Parameter: + """ "" + Class for creating parameters in PyBOP. + """ + + def __init__(self, name, value=None, prior=None, bounds=None): + self.name = name + self.prior = prior + self.value = value + self.bounds = bounds + self.lower_bound = self.bounds[0] + self.upper_bound = self.bounds[1] + self.margin = 1e-4 + + if self.lower_bound >= self.upper_bound: + raise ValueError("Lower bound must be less than upper bound") + + def rvs(self, n_samples): + """ + Returns a random value sample from the prior distribution. + """ + samples = self.prior.rvs(n_samples) + + # Constrain samples to be within bounds + offset = self.margin * (self.upper_bound - self.lower_bound) + samples = np.clip(samples, self.lower_bound + offset, self.upper_bound - offset) + + return samples + + def update(self, value): + self.value = value + + def __repr__(self): + return f"Parameter: {self.name} \n Prior: {self.prior} \n Bounds: {self.bounds} \n Value: {self.value}" + + def set_margin(self, margin): + """ + Sets the margin for the parameter. + """ + if not 0 < margin < 1: + raise ValueError("Margin must be between 0 and 1") + + self.margin = margin diff --git a/pybop/parameters/base_parameter_set.py b/pybop/parameters/base_parameter_set.py new file mode 100644 index 000000000..dd1653d81 --- /dev/null +++ b/pybop/parameters/base_parameter_set.py @@ -0,0 +1,13 @@ +import pybamm + + +class ParameterSet: + """ + Class for creating parameter sets in PyBOP. + """ + + def __new__(cls, method, name): + if method.casefold() == "pybamm": + return pybamm.ParameterValues(name).copy() + else: + raise ValueError("Only PyBaMM parameter sets are currently implemented") diff --git a/pybop/parameters/priors.py b/pybop/parameters/priors.py new file mode 100644 index 000000000..f98e9b767 --- /dev/null +++ b/pybop/parameters/priors.py @@ -0,0 +1,80 @@ +import scipy.stats as stats + + +class Gaussian: + """ + Gaussian prior class. + """ + + def __init__(self, mean, sigma): + self.name = "Gaussian" + self.mean = mean + self.sigma = sigma + + def pdf(self, x): + return stats.norm.pdf(x, loc=self.mean, scale=self.sigma) + + def logpdf(self, x): + return stats.norm.logpdf(x, loc=self.mean, scale=self.sigma) + + def rvs(self, size): + if size < 0: + raise ValueError("size must be positive") + else: + return stats.norm.rvs(loc=self.mean, scale=self.sigma, size=size) + + def __repr__(self): + return f"{self.name}, mean: {self.mean}, sigma: {self.sigma}" + + +class Uniform: + """ + Uniform prior class. + """ + + def __init__(self, lower, upper): + self.name = "Uniform" + self.lower = lower + self.upper = upper + + def pdf(self, x): + return stats.uniform.pdf(x, loc=self.lower, scale=self.upper - self.lower) + + def logpdf(self, x): + return stats.uniform.logpdf(x, loc=self.lower, scale=self.upper - self.lower) + + def rvs(self, size): + if size < 0: + raise ValueError("size must be positive") + else: + return stats.uniform.rvs( + loc=self.lower, scale=self.upper - self.lower, size=size + ) + + def __repr__(self): + return f"{self.name}, lower: {self.lower}, upper: {self.upper}" + + +class Exponential: + """ + Exponential prior class. + """ + + def __init__(self, scale): + self.name = "Exponential" + self.scale = scale + + def pdf(self, x): + return stats.expon.pdf(x, scale=self.scale) + + def logpdf(self, x): + return stats.expon.logpdf(x, scale=self.scale) + + def rvs(self, size): + if size < 0: + raise ValueError("size must be positive") + else: + return stats.expon.rvs(scale=self.scale, size=size) + + def __repr__(self): + return f"{self.name}, scale: {self.scale}" diff --git a/pybop/plotting/__init__.py b/pybop/plotting/__init__.py new file mode 100644 index 000000000..e69de29bb diff --git a/PyBOP/plotting/quick_plot.py b/pybop/plotting/quick_plot.py similarity index 54% rename from PyBOP/plotting/quick_plot.py rename to pybop/plotting/quick_plot.py index f36fe2f31..5acbb2626 100644 --- a/PyBOP/plotting/quick_plot.py +++ b/pybop/plotting/quick_plot.py @@ -1,28 +1,22 @@ -import os -import numpy -import matplotlib - -class QuickPlot(item): +class QuickPlot: """ - - Class to generate the quick plots associated with PRISM. + + Class to generate plots with standard variables and formatting. Plots -------------- Observability - if method == parameterisation - + if method == parameterisation + Comparison of fitting data with optimised forward model - + elseif method == optimisation - + Pareto front Alternative solutions - Initial value compared to optimal + Initial value compared to optimal """ def __init__(self): self.name = "Quick Plot" - - diff --git a/pybop/version.py b/pybop/version.py new file mode 100644 index 000000000..915a9aedb --- /dev/null +++ b/pybop/version.py @@ -0,0 +1 @@ +__version__ = "23.11" diff --git a/requirements.txt b/requirements.txt deleted file mode 100644 index dae82630d..000000000 --- a/requirements.txt +++ /dev/null @@ -1,5 +0,0 @@ -numpy -pandas -scipy -pybamm -matplotlib \ No newline at end of file diff --git a/ruff.toml b/ruff.toml new file mode 100644 index 000000000..29a4a2442 --- /dev/null +++ b/ruff.toml @@ -0,0 +1,8 @@ +extend-include = ["*.ipynb"] +extend-exclude = ["__init__.py"] + +[lint] +ignore = ["E501","E741"] + +[lint.per-file-ignores] +"**.ipynb" = ["E402", "E703"] diff --git a/setup.py b/setup.py new file mode 100644 index 000000000..4d6b63a65 --- /dev/null +++ b/setup.py @@ -0,0 +1,38 @@ +from distutils.core import setup +import os +from setuptools import find_packages + +# User-friendly description from README.md +current_directory = os.path.dirname(os.path.abspath(__file__)) +try: + with open(os.path.join(current_directory, "README.md"), encoding="utf-8") as f: + long_description = f.read() +except Exception: + long_description = "" + +# Defines __version__ +root = os.path.abspath(os.path.dirname(__file__)) +with open(os.path.join(root, "pybop", "version.py")) as f: + exec(f.read()) + +setup( + name="pybop", + packages=find_packages("."), + version=__version__, # noqa F821 + license="BSD-3-Clause", + description="Python Battery Optimisation and Parameterisation", + long_description=long_description, + long_description_content_type="text/markdown", + url="https://github.com/pybop-team/PyBOP", + install_requires=[ + "pybamm>=23.1", + "numpy>=1.16", + "scipy>=1.3", + "pandas>=1.0", + "nlopt>=2.6", + "pints>=0.5", + ], + # https://pypi.org/classifiers/ + classifiers=[], + python_requires=">=3.8,<=3.12", +) diff --git a/tests/unit/test_cost.py b/tests/unit/test_cost.py new file mode 100644 index 000000000..0c7e329f3 --- /dev/null +++ b/tests/unit/test_cost.py @@ -0,0 +1,87 @@ +import pytest +import pybop +import numpy as np + + +class TestCosts: + """ + Class for tests cost functions + """ + + @pytest.mark.parametrize("cut_off", [2.5, 3.777]) + @pytest.mark.unit + def test_costs(self, cut_off): + # Construct model + model = pybop.lithium_ion.SPM() + + parameters = [ + pybop.Parameter( + "Negative electrode active material volume fraction", + prior=pybop.Gaussian(0.5, 0.02), + bounds=[0.375, 0.625], + ) + ] + + # Form dataset + x0 = np.array([0.52]) + solution = self.getdata(model, x0) + dataset = [ + pybop.Dataset("Time [s]", solution["Time [s]"].data), + pybop.Dataset("Current function [A]", solution["Current [A]"].data), + pybop.Dataset("Voltage [V]", solution["Terminal voltage [V]"].data), + ] + + # Construct Problem + signal = "Voltage [V]" + model.parameter_set.update({"Lower voltage cut-off [V]": cut_off}) + problem = pybop.Problem(model, parameters, dataset, signal=signal, x0=x0) + + # Base Cost + base_cost = pybop.BaseCost(problem) + assert base_cost.problem == problem + with pytest.raises(NotImplementedError): + base_cost([0.5]) + + # Root Mean Squared Error + rmse_cost = pybop.RootMeanSquaredError(problem) + rmse_cost([0.5]) + + # Sum Squared Error + sums_cost = pybop.SumSquaredError(problem) + sums_cost([0.5]) + + # Test type of returned value + assert type(rmse_cost([0.5])) == np.float64 + assert rmse_cost([0.5]) >= 0 + + assert type(sums_cost([0.5])) == np.float64 + assert sums_cost([0.5]) >= 0 + e, de = sums_cost.evaluateS1([0.5]) + + assert type(e) == np.float64 + assert type(de) == np.ndarray + + # Test option setting + sums_cost.set_fail_gradient(1) + + # Test exception for non-numeric inputs + with pytest.raises(ValueError): + rmse_cost(["StringInputShouldNotWork"]) + with pytest.raises(ValueError): + sums_cost(["StringInputShouldNotWork"]) + with pytest.raises(ValueError): + sums_cost.evaluateS1(["StringInputShouldNotWork"]) + + # Test treatment of simulations that terminated early + # by variation of the cut-off voltage. + + def getdata(self, model, x0): + model.parameter_set = model.pybamm_model.default_parameter_values + model.parameter_set.update( + { + "Negative electrode active material volume fraction": x0[0], + } + ) + + sim = model.predict(t_eval=np.linspace(0, 10, 100)) + return sim diff --git a/tests/unit/test_examples.py b/tests/unit/test_examples.py new file mode 100644 index 000000000..6e8fc09e0 --- /dev/null +++ b/tests/unit/test_examples.py @@ -0,0 +1,19 @@ +import pybop +import pytest +import runpy +import os + + +class TestExamples: + """ + A class to test the example scripts. + """ + + @pytest.mark.unit + def test_example_scripts(self): + path_to_example_scripts = os.path.join( + pybop.script_path, "..", "examples", "scripts" + ) + for example in os.listdir(path_to_example_scripts): + if example.endswith(".py"): + runpy.run_path(os.path.join(path_to_example_scripts, example)) diff --git a/tests/unit/test_models.py b/tests/unit/test_models.py new file mode 100644 index 000000000..ce73000a6 --- /dev/null +++ b/tests/unit/test_models.py @@ -0,0 +1,56 @@ +import pybop +import pytest +import numpy as np + + +class TestModels: + """ + A class to test the models. + """ + + @pytest.mark.unit + def test_simulate_without_build_model(self): + # Define model + model = pybop.lithium_ion.SPM() + + with pytest.raises( + ValueError, match="Model must be built before calling simulate" + ): + model.simulate(None, None) + + with pytest.raises( + ValueError, match="Model must be built before calling simulate" + ): + model.simulateS1(None, None) + + @pytest.mark.unit + def test_predict_without_pybamm(self): + # Define model + model = pybop.lithium_ion.SPM() + model._unprocessed_model = None + + with pytest.raises(ValueError): + model.predict(None, None) + + @pytest.mark.unit + def test_predict_with_inputs(self): + # Define model + model = pybop.lithium_ion.SPM() + t_eval = np.linspace(0, 10, 100) + inputs = { + "Negative electrode active material volume fraction": 0.52, + "Positive electrode active material volume fraction": 0.63, + } + + res = model.predict(t_eval=t_eval, inputs=inputs) + assert len(res["Terminal voltage [V]"].data) == 100 + + @pytest.mark.unit + def test_build(self): + model = pybop.lithium_ion.SPM() + model.build() + assert model.built_model is not None + + # Test that the model can be built again + model.build() + assert model.built_model is not None diff --git a/tests/unit/test_optimisation.py b/tests/unit/test_optimisation.py new file mode 100644 index 000000000..5bbb4998b --- /dev/null +++ b/tests/unit/test_optimisation.py @@ -0,0 +1,144 @@ +import pybop +import numpy as np +import pytest +from pybop.costs.standalone import StandaloneCost + + +class TestOptimisation: + """ + A class to test the optimisation class. + """ + + @pytest.mark.unit + def test_standalone(self): + # Build an Optimisation problem with a StandaloneCost + cost = StandaloneCost() + + opt = pybop.Optimisation(cost=cost, optimiser=pybop.NLoptOptimize) + + assert len(opt.x0) == opt.n_parameters + + x, final_cost = opt.run() + + np.testing.assert_allclose(x, 0, atol=1e-2) + np.testing.assert_allclose(final_cost, 42, atol=1e-2) + + @pytest.mark.unit + def test_prior_sampling(self): + # Tests prior sampling + model = pybop.lithium_ion.SPM() + + dataset = [ + pybop.Dataset("Time [s]", np.linspace(0, 3600, 100)), + pybop.Dataset("Current function [A]", np.zeros(100)), + pybop.Dataset("Terminal voltage [V]", np.ones(100)), + ] + + param = [ + pybop.Parameter( + "Negative electrode active material volume fraction", + prior=pybop.Gaussian(0.75, 0.2), + bounds=[0.73, 0.77], + ) + ] + + signal = "Terminal voltage [V]" + problem = pybop.Problem(model, param, dataset, signal=signal) + cost = pybop.RootMeanSquaredError(problem) + + for i in range(50): + opt = pybop.Optimisation(cost=cost, optimiser=pybop.NLoptOptimize) + + assert opt.x0 <= 0.77 and opt.x0 >= 0.73 + + @pytest.mark.unit + def test_optimiser_construction(self): + # Tests construction of optimisers + + dataset = [ + pybop.Dataset("Time [s]", np.linspace(0, 360, 10)), + pybop.Dataset("Current function [A]", np.zeros(10)), + pybop.Dataset("Terminal voltage [V]", np.ones(10)), + ] + parameters = [ + pybop.Parameter( + "Negative electrode active material volume fraction", + prior=pybop.Gaussian(0.75, 0.2), + bounds=[0.73, 0.77], + ) + ] + + problem = pybop.Problem( + pybop.lithium_ion.SPM(), parameters, dataset, signal="Terminal voltage [V]" + ) + cost = pybop.SumSquaredError(problem) + + # Test construction of optimisers + # NLopt + opt = pybop.Optimisation(cost=cost, optimiser=pybop.NLoptOptimize) + assert opt.optimiser is not None + assert opt.optimiser.name == "NLoptOptimize" + assert opt.optimiser.n_param == 1 + + # Gradient Descent + opt = pybop.Optimisation(cost=cost, optimiser=pybop.GradientDescent) + assert opt.optimiser is not None + + # None + opt = pybop.Optimisation(cost=cost) + assert opt.optimiser is not None + assert ( + opt.optimiser.name() + == "Covariance Matrix Adaptation Evolution Strategy (CMA-ES)" + ) + + # None with no bounds + cost.bounds = None + opt = pybop.Optimisation(cost=cost) + assert opt.optimiser.boundaries is None + + # SciPy + opt = pybop.Optimisation(cost=cost, optimiser=pybop.SciPyMinimize) + assert opt.optimiser is not None + assert opt.optimiser.name == "SciPyMinimize" + + # Incorrect class + class randomclass: + pass + + with pytest.raises(ValueError): + pybop.Optimisation(cost=cost, optimiser=randomclass) + + @pytest.mark.unit + def test_halting(self): + # Tests halting criteria + model = pybop.lithium_ion.SPM() + + dataset = [ + pybop.Dataset("Time [s]", np.linspace(0, 3600, 100)), + pybop.Dataset("Current function [A]", np.zeros(100)), + pybop.Dataset("Terminal voltage [V]", np.ones(100)), + ] + + param = [ + pybop.Parameter( + "Negative electrode active material volume fraction", + prior=pybop.Gaussian(0.75, 0.2), + bounds=[0.73, 0.77], + ) + ] + + problem = pybop.Problem(model, param, dataset, signal="Terminal voltage [V]") + cost = pybop.SumSquaredError(problem) + + # Test max evalutions + optim = pybop.Optimisation(cost=cost, optimiser=pybop.GradientDescent) + optim.set_max_evaluations(10) + x, __ = optim.run() + assert optim._iterations == 10 + + # Test max unchanged iterations + optim = pybop.Optimisation(cost=cost, optimiser=pybop.GradientDescent) + optim.set_max_unchanged_iterations(1) + x, __ = optim.run() + assert optim._iterations == 2 diff --git a/tests/unit/test_parameter_sets.py b/tests/unit/test_parameter_sets.py new file mode 100644 index 000000000..9cc478525 --- /dev/null +++ b/tests/unit/test_parameter_sets.py @@ -0,0 +1,20 @@ +import pybop +import numpy as np +import pytest + + +class TestParameterSets: + """ + A class to test parameter sets. + """ + + @pytest.mark.unit + def test_parameter_set(self): + # Tests parameter set creation + with pytest.raises(ValueError): + pybop.ParameterSet("pybamms", "Chen2020") + + parameter_test = pybop.ParameterSet("pybamm", "Chen2020") + np.testing.assert_allclose( + parameter_test["Negative electrode active material volume fraction"], 0.75 + ) diff --git a/tests/unit/test_parameterisations.py b/tests/unit/test_parameterisations.py new file mode 100644 index 000000000..142e590d0 --- /dev/null +++ b/tests/unit/test_parameterisations.py @@ -0,0 +1,209 @@ +import pybop +import pybamm +import pytest +import numpy as np + + +class TestModelParameterisation: + """ + A class to test the model parameterisation methods. + """ + + @pytest.mark.parametrize("init_soc", [0.3, 0.7]) + @pytest.mark.unit + def test_spm(self, init_soc): + # Define model + parameter_set = pybop.ParameterSet("pybamm", "Chen2020") + model = pybop.lithium_ion.SPM(parameter_set=parameter_set) + + # Form dataset + x0 = np.array([0.52, 0.63]) + solution = self.getdata(model, x0, init_soc) + + dataset = [ + pybop.Dataset("Time [s]", solution["Time [s]"].data), + pybop.Dataset("Current function [A]", solution["Current [A]"].data), + pybop.Dataset( + "Terminal voltage [V]", solution["Terminal voltage [V]"].data + ), + ] + + # Fitting parameters + parameters = [ + pybop.Parameter( + "Negative electrode active material volume fraction", + prior=pybop.Gaussian(0.5, 0.02), + bounds=[0.375, 0.625], + ), + pybop.Parameter( + "Positive electrode active material volume fraction", + prior=pybop.Gaussian(0.65, 0.02), + bounds=[0.525, 0.75], + ), + ] + + # Define the cost to optimise + signal = "Terminal voltage [V]" + problem = pybop.Problem( + model, parameters, dataset, signal=signal, init_soc=init_soc + ) + cost = pybop.RootMeanSquaredError(problem) + + # Select optimiser + optimiser = pybop.NLoptOptimize + + # Build the optimisation problem + parameterisation = pybop.Optimisation(cost=cost, optimiser=optimiser) + + # Run the optimisation problem + x, final_cost = parameterisation.run() + + # Assertions + np.testing.assert_allclose(final_cost, 0, atol=1e-2) + np.testing.assert_allclose(x, x0, atol=1e-1) + + @pytest.mark.parametrize("init_soc", [0.3, 0.7]) + @pytest.mark.unit + def test_spme_optimisers(self, init_soc): + # Define model + parameter_set = pybop.ParameterSet("pybamm", "Chen2020") + model = pybop.lithium_ion.SPMe(parameter_set=parameter_set) + + # Form dataset + x0 = np.array([0.52, 0.63]) + solution = self.getdata(model, x0, init_soc) + + dataset = [ + pybop.Dataset("Time [s]", solution["Time [s]"].data), + pybop.Dataset("Current function [A]", solution["Current [A]"].data), + pybop.Dataset( + "Terminal voltage [V]", solution["Terminal voltage [V]"].data + ), + ] + + # Fitting parameters + parameters = [ + pybop.Parameter( + "Negative electrode active material volume fraction", + prior=pybop.Gaussian(0.5, 0.02), + bounds=[0.375, 0.625], + ), + pybop.Parameter( + "Positive electrode active material volume fraction", + prior=pybop.Gaussian(0.65, 0.02), + bounds=[0.525, 0.75], + ), + ] + + # Define the cost to optimise + signal = "Terminal voltage [V]" + problem = pybop.Problem( + model, parameters, dataset, signal=signal, init_soc=init_soc + ) + cost = pybop.RootMeanSquaredError(problem) + + # Select optimisers + optimisers = [pybop.NLoptOptimize, pybop.SciPyMinimize, pybop.CMAES] + + # Test each optimiser + for optimiser in optimisers: + parameterisation = pybop.Optimisation(cost=cost, optimiser=optimiser) + + if optimiser == pybop.CMAES: + parameterisation.set_f_guessed_tracking(True) + assert parameterisation._use_f_guessed is True + parameterisation.set_max_iterations(1) + x, final_cost = parameterisation.run() + + parameterisation.set_f_guessed_tracking(False) + parameterisation.set_max_iterations(250) + + x, final_cost = parameterisation.run() + assert parameterisation._max_iterations == 250 + + else: + x, final_cost = parameterisation.run() + + # Assertions + np.testing.assert_allclose(final_cost, 0, atol=1e-2) + np.testing.assert_allclose(x, x0, atol=1e-1) + + @pytest.mark.parametrize("init_soc", [0.3, 0.7]) + @pytest.mark.unit + def test_model_misparameterisation(self, init_soc): + # Define two different models with different parameter sets + # The optimisation should fail as the models are not the same + + parameter_set = pybop.ParameterSet("pybamm", "Chen2020") + model = pybop.lithium_ion.SPM(parameter_set=parameter_set) + + second_parameter_set = pybop.ParameterSet("pybamm", "Ecker2015") + second_model = pybop.lithium_ion.SPM(parameter_set=second_parameter_set) + + # Form observations + x0 = np.array([0.52, 0.63]) + solution = self.getdata(second_model, x0, init_soc) + + dataset = [ + pybop.Dataset("Time [s]", solution["Time [s]"].data), + pybop.Dataset("Current function [A]", solution["Current [A]"].data), + pybop.Dataset( + "Terminal voltage [V]", solution["Terminal voltage [V]"].data + ), + ] + + # Fitting parameters + parameters = [ + pybop.Parameter( + "Negative electrode active material volume fraction", + prior=pybop.Gaussian(0.5, 0.02), + bounds=[0.375, 0.625], + ), + pybop.Parameter( + "Positive electrode active material volume fraction", + prior=pybop.Gaussian(0.65, 0.02), + bounds=[0.525, 0.75], + ), + ] + + # Define the cost to optimise + signal = "Terminal voltage [V]" + problem = pybop.Problem( + model, parameters, dataset, signal=signal, init_soc=init_soc + ) + cost = pybop.RootMeanSquaredError(problem) + + # Select optimiser + optimiser = pybop.NLoptOptimize + + # Build the optimisation problem + parameterisation = pybop.Optimisation(cost=cost, optimiser=optimiser) + + # Run the optimisation problem + x, final_cost = parameterisation.run() + + # Assertions + with np.testing.assert_raises(AssertionError): + np.testing.assert_allclose(final_cost, 0, atol=1e-2) + np.testing.assert_allclose(x, x0, atol=1e-1) + + def getdata(self, model, x0, init_soc): + model.parameter_set.update( + { + "Negative electrode active material volume fraction": x0[0], + "Positive electrode active material volume fraction": x0[1], + } + ) + experiment = pybamm.Experiment( + [ + ( + "Discharge at 1C for 3 minutes (1 second period)", + "Rest for 2 minutes (1 second period)", + "Charge at 1C for 3 minutes (1 second period)", + "Rest for 2 minutes (1 second period)", + ), + ] + * 2 + ) + sim = model.predict(init_soc=init_soc, experiment=experiment) + return sim diff --git a/tests/unit/test_priors.py b/tests/unit/test_priors.py new file mode 100644 index 000000000..342c35c46 --- /dev/null +++ b/tests/unit/test_priors.py @@ -0,0 +1,59 @@ +import pybop +import numpy as np +import pytest + + +class TestPriors: + """ + A class to test the priors. + """ + + @pytest.fixture + def Gaussian(self): + return pybop.Gaussian(mean=0.5, sigma=1) + + @pytest.fixture + def Uniform(self): + return pybop.Uniform(lower=0, upper=1) + + @pytest.fixture + def Exponential(self): + return pybop.Exponential(scale=1) + + @pytest.mark.unit + def test_priors(self, Gaussian, Uniform, Exponential): + # Test pdf + np.testing.assert_allclose(Gaussian.pdf(0.5), 0.3989422804014327, atol=1e-4) + np.testing.assert_allclose(Uniform.pdf(0.5), 1, atol=1e-4) + np.testing.assert_allclose(Exponential.pdf(1), 0.36787944117144233, atol=1e-4) + + # Test logpdf + np.testing.assert_allclose(Gaussian.logpdf(0.5), -0.9189385332046727, atol=1e-4) + np.testing.assert_allclose(Uniform.logpdf(0.5), 0, atol=1e-4) + np.testing.assert_allclose(Exponential.logpdf(1), -1, atol=1e-4) + + @pytest.mark.unit + def test_gaussian_rvs(self, Gaussian): + samples = Gaussian.rvs(size=500) + mean = np.mean(samples) + std = np.std(samples) + assert abs(mean - 0.5) < 0.2 + assert abs(std - 1) < 0.2 + + @pytest.mark.unit + def test_uniform_rvs(self, Uniform): + samples = Uniform.rvs(size=500) + assert (samples >= 0).all() and (samples <= 1).all() + + @pytest.mark.unit + def test_exponential_rvs(self, Exponential): + samples = Exponential.rvs(size=500) + assert (samples >= 0).all() + mean = np.mean(samples) + assert abs(mean - 1) < 0.2 + + @pytest.mark.unit + def test_repr(self, Gaussian, Uniform, Exponential): + assert repr(Gaussian) == "Gaussian, mean: 0.5, sigma: 1" + assert repr(Uniform) == "Uniform, lower: 0, upper: 1" + assert repr(Exponential) == "Exponential, scale: 1" diff --git a/tests/unit/test_problem.py b/tests/unit/test_problem.py new file mode 100644 index 000000000..aa470d9b4 --- /dev/null +++ b/tests/unit/test_problem.py @@ -0,0 +1,74 @@ +import pybop +import numpy as np +import pybamm +import pytest + + +class TestProblem: + """ + A class to test the problem class. + """ + + @pytest.mark.unit + def test_problem(self): + # Define model + model = pybop.lithium_ion.SPM() + parameters = [ + pybop.Parameter( + "Negative electrode active material volume fraction", + prior=pybop.Gaussian(0.5, 0.02), + bounds=[0.375, 0.625], + ), + pybop.Parameter( + "Positive electrode active material volume fraction", + prior=pybop.Gaussian(0.65, 0.02), + bounds=[0.525, 0.75], + ), + ] + signal = "Voltage [V]" + + # Form dataset + x0 = np.array([0.52, 0.63]) + solution = self.getdata(model, x0) + + dataset = [ + pybop.Dataset("Time [s]", solution["Time [s]"].data), + pybop.Dataset("Current function [A]", solution["Current [A]"].data), + pybop.Dataset("Voltage [V]", solution["Terminal voltage [V]"].data), + ] + + # Test incorrect number of initial parameter values + with pytest.raises(ValueError): + pybop.Problem(model, parameters, dataset, signal=signal, x0=np.array([])) + + # Construct Problem + problem = pybop.Problem(model, parameters, dataset, signal=signal) + + assert problem._model == model + assert problem._model._built_model is not None + + # Test model.simulate + model.simulate(inputs=[0.5, 0.5], t_eval=np.linspace(0, 10, 100)) + + def getdata(self, model, x0): + model.parameter_set = model.pybamm_model.default_parameter_values + + model.parameter_set.update( + { + "Negative electrode active material volume fraction": x0[0], + "Positive electrode active material volume fraction": x0[1], + } + ) + experiment = pybamm.Experiment( + [ + ( + "Discharge at 1C for 5 minutes (1 second period)", + "Rest for 2 minutes (1 second period)", + "Charge at 1C for 5 minutes (1 second period)", + "Rest for 2 minutes (1 second period)", + ), + ] + * 2 + ) + sim = model.predict(experiment=experiment) + return sim