diff --git a/pybop/samplers/mcmc_summary.py b/pybop/samplers/mcmc_summary.py index 3bba41414..bc95903ab 100644 --- a/pybop/samplers/mcmc_summary.py +++ b/pybop/samplers/mcmc_summary.py @@ -178,7 +178,7 @@ def autocorrelation(self, x: np.ndarray) -> np.ndarray: Computes the autocorrelation (Pearson correlation coefficient) of a numpy array representing samples. """ - x = (x - x.mean()) / (x.std() * np.sqrt(len(x))) + x = (x - x.mean()) / (x.std() * np.sqrt(len(x)) + np.finfo(float).eps) cor = np.correlate(x, x, mode="full") return cor[len(x) : -1] diff --git a/tests/integration/test_monte_carlo_thevenin.py b/tests/integration/test_monte_carlo_thevenin.py index a48628b3d..0b78774e8 100644 --- a/tests/integration/test_monte_carlo_thevenin.py +++ b/tests/integration/test_monte_carlo_thevenin.py @@ -72,7 +72,7 @@ def noise(self, sigma, values): return np.random.normal(0, sigma, values) @pytest.fixture - def likelihood(self, model, parameters, init_soc): + def posterior(self, model, parameters, init_soc): # Form dataset solution = self.get_data(model, init_soc) dataset = pybop.Dataset( @@ -86,7 +86,20 @@ def likelihood(self, model, parameters, init_soc): # Define the cost to optimise problem = pybop.FittingProblem(model, parameters, dataset) - return pybop.GaussianLogLikelihoodKnownSigma(problem, sigma0=0.0075) + likelihood = pybop.GaussianLogLikelihoodKnownSigma(problem, sigma0=self.sigma0) + return pybop.LogPosterior(likelihood) + + @pytest.fixture + def map_estimate(self, posterior): + common_args = { + "max_iterations": 100, + "max_unchanged_iterations": 35, + "sigma0": [3e-4, 3e-4], + } + optim = pybop.CMAES(posterior, **common_args) + results = optim.run() + + return results.x # Parameterize the samplers @pytest.mark.parametrize( @@ -105,46 +118,41 @@ def likelihood(self, model, parameters, init_soc): ], ) @pytest.mark.integration - def test_sampling_thevenin(self, sampler, likelihood): - posterior = pybop.LogPosterior(likelihood) - - # set common args + def test_sampling_thevenin(self, sampler, posterior, map_estimate): + x0 = np.clip(map_estimate + np.random.normal(0, 1e-3, size=2), 1e-3, 1e-1) common_args = { "log_pdf": posterior, "chains": 1, - "warm_up": 250, - "max_iterations": 500, - "cov0": [3e-4, 3e-4], + "warm_up": 450, + "cov0": [1e-3, 1e-3] if sampler in self.fast_samplers else [0.1, 0.1], + "max_iterations": 1000, + "x0": x0, } - if sampler in self.fast_samplers: - common_args["warm_up"] = 600 - common_args["max_iterations"] = 1200 # construct and run sampler = sampler(**common_args) if isinstance(sampler, SliceRankShrinkingMCMC): sampler._samplers[0].set_hyper_parameters([1e-3]) - results = sampler.run() + chains = sampler.run() # Test PosteriorSummary - summary = pybop.PosteriorSummary(results) + summary = pybop.PosteriorSummary(chains) ess = summary.effective_sample_size() np.testing.assert_array_less(0, ess) + if not isinstance(sampler, RelativisticMCMC): + np.testing.assert_array_less(summary.rhat(), 1.05) # Assert both final sample and posterior mean - x = np.mean(results, axis=1) + x = np.mean(chains, axis=1) for i in range(len(x)): - np.testing.assert_allclose(x[i], self.ground_truth, atol=1.5e-2) - np.testing.assert_allclose(results[i][-1], self.ground_truth, atol=1e-2) + np.testing.assert_allclose(x[i], self.ground_truth, atol=5e-3) + np.testing.assert_allclose(chains[i][-1], self.ground_truth, atol=1e-2) def get_data(self, model, init_soc): initial_state = {"Initial SoC": init_soc} experiment = pybop.Experiment( [ - ( - "Discharge at 0.5C for 2 minutes (4 second period)", - "Rest for 1 minute (4 second period)", - ), + ("Discharge at 0.5C for 4 minutes (8 second period)",), ] ) sim = model.predict(initial_state=initial_state, experiment=experiment)