- #118 - Adds example jupyter notebooks.
- #151 - Adds a standalone version of the Problem class.
- #12 - Adds initial implementation of an Observer class and an unscented Kalman filter.
- #190 - Adds a second example design cost, namely the VolumetricEnergyDensity.
- #63 - Removes NLOpt Optimiser from future releases. This is to support deployment to the Apple M-Series platform.
- #164 - Fixes convergence issues with gradient-based optimisers, changes default
model.check_params()
to allow infeasible solutions during optimisation iterations. Adds a feasibility check on the optimal parameters.
v23.12 - 2023-12-19
- #141 - Adds documentation with Sphinx and PyData Sphinx Theme. Updates docstrings across package, relocates
costs
anddataset
to top-level of package. Adds noxfile session and deployment workflow for docs. - #131 - Adds
SciPyDifferentialEvolution
optimiser, adds functionality for user-selectable maximum iteration limit toSciPyMinimize
,NLoptOptimize
, andBaseOptimiser
classes. - #107 - Adds Equivalent Circuit Model (ECM) with examples, Import/Export parameter methods
ParameterSet.import_parameter
andParameterSet.export_parameters
, updates default FittingProblem.signal definition to"Voltage [V]"
, and testing infrastructure - #127 - Adds Windows and macOS runners to the
test_on_push
action - #114 - Adds standard plotting class
pybop.StandardPlot()
via plotly backend - #114 - Adds
quick_plot()
,plot_convergence()
, andplot_cost2d()
methods - #114 - Adds a SciPy minimize example and logging for non-Pints optimisers
- #116 - Adds PSO, SNES, XNES, ADAM, and IPropMin optimisers to PintsOptimisers() class
- #38 - Restructures the Problem classes ahead of adding a design optimisation example
- #38 - Updates tests and adds a design optimisation example script
spme_max_energy
- #120 - Updates the parameterisation test settings including the number of iterations
- #145 - Reformats Dataset to contain a dictionary and signal into a list of strings
- Initial release
- Adds Pints, NLOpt, and SciPy optimisers
- Adds SumofSquareError and RootMeanSquareError cost functions
- Adds Parameter and Dataset classes